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ABSTRACT

This dissertation is concerned with the application of the level crossing method on fluid

queues driven by a background process. The basic assumption of the fluid queue in this

thesis is that during the busy period of the driving process, the fluid content fills at net

rate r1, and during the idle period of the driving process, the fluid content, if positive-

valued, empties at a rate r2. Moreover, nonempty fluid content, leaks continuously at a

rate r2. The fluid models considered are: the fluid queue driven by an M/G/1 queue in

Chapter 2, the fluid queue driven by an M/G/1 queue with net input and leaking rate

depending on fluid level, and type of arrivals in the driving M/G/1 queue, in chapter 3,

and the fluid queue driven by an M/G/1 queue with upward fluid jumps in Chapter 4. In

addition, a triangle diagram has been introduced in this thesis as a technique to visualize

the proportion of time that the content of the fluid queue is increasing or decreasing

during nonempty cycles. Finally, we provide several examples on how the probability

density function of the fluid level is related to the probability density function of the

waiting time of M/G/1 queues with different disciplines.
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Chapter 1

Introduction

1.1 Introduction

Waiting in line is a phenomenon in daily life. All of us encounter certain types of waiting

lines before receiving service, such as waiting lines at Tim Hortons to buy a coffee, in

a hospital (or outside a hospital) to access a healthcare service, at the border to enter

another country, or on the phone when calling customer support. Waiting in line is

annoying for most of us; unfortunately, no one can escape waiting in line. However, we

can use a mathematical model to study the characteristics of waiting lines to reduce the

delay time and to improve the efficiency of the service.

A mathematical model used to study the characteristics of waiting time phenomena is

called a queueing model and was first studied by Erlang [17] in 1909. The original paper

by Erlang was intended to study traffic in telecommunications. Since then, hundreds

of queueing papers are published each year. In traditional queueing theory, a queueing

model consists of a single server that provides service to individual arrivals. The inter-

arrival times are arbitrary, and the service times required are uncertain. Arrivals may

1



1.2. Introduction

or may not need to wait in line before receiving service. For this single server queueing

model, we are interested in the experience of arrivals in terms of delay and service time.

The assumptions of queueing models can be summarized in the notation A/B/n/m in-

troduced by Kendall [23], where A and B correspond to the distribution of interarrival

time and service time, n is the number of servers for the queueing model, and m is the

capacity of the system.

The queueing models we have mentioned so far can be classified as discrete state space

queueing models where the states are the numbers of customers in the system. In discrete

state space queueing models, some characteristics of the queueing model can be analyzed

by a discrete event. For instance, using the fact that the waiting time and service time

are attached on individual arrivals, we can find the distribution of the busy period by

adding up each individual’s service time in a busy cycle, where the busy cycle is defined

as the time between of two consecutive arrivals’ waiting times being equal to 0.

Recently, continuous state space queueing models, such as the fluid queue, have received

more attention from researchers. In a fluid queue, arrivals are too small to distinguish

between them in the fluid system. Thus, it is easier to consider arrivals as continuous fluid

that enters and exits the fluid queue. One example of a fluid queue has arrivals which

enter and leave the queue with rates modulated by a background Markovian random

environment process such as a birth-death processes, G/G/1 queue, or vacation queueing

model ([42]). Researchers usually refer to capacity of the queue as the fluid content. In

this dissertation, we focus on infinite-capacity and finite fluid content queues driven by

an M/G/1 queue or modified M/G/1 queues.

2



1.2. Literature review of fluid queues driven by Markovian process

1.2 Literature review of fluid queues driven by Marko-

vian process

1.2.1 Stationary distribution of fluid queue

Consider an infinite fluid content queue with a background Markovian random process

(or environment process) with finite state space. The fluid content fills and empties at

rates that are modulated by the background Markovian random process, which is not

necessary observable. Denote by C(t) the fluid level at time t (≥ 0), and by Z(t) ∈

{1, 2, 3, . . . } the states of the continuous time random process which makes the joint

process {C(t), Z(t)}t≥0 a Markov process. The characteristics of the fluid queue can be

summarized as follows:

dC(t)

dt
=





rZ(t), C(t) > 0,

max(0, rZ(t)), C(t) = 0.
(1.1)

where rZ(t) < ∞ is the net input rate of the fluid queue at time t. Using Kulkarni’s

terminology [25], we may refer to the {C(t)}t≥0 process as a fluid process driven by the

background Markov renewal process {Z(t)}t≥0.

Consider a Markov renewal process {Z(t)}t≥0 with the states of an M/G/1 queue defined

as follows

Z(t) =





1 if the server of the M/G/1 queue is busy,

2 if the server of the M/G/1 queue is idle.
(1.2)

The {C(t)}t≥0 process is referred to as a fluid queue driven by an M/G/1 queue [4, 44].

Virtamo and Norros [44] study the steady-state distribution of the fluid level using a

spectral decomposition technique, where the service time of the driving queue is expo-

3



1.2. Literature review of fluid queues driven by Markovian process

nentially distributed with rate µ (i.e. the net input rate of the fluid queue is modulated

by an M/G/1 queue). Adan and Resing [4] re-investigate the model and derive the

Laplace-Stieltjes transform (henceforth LST) of the steady-state distribution of the level

of fluid queue with net input rate r1 = 1 and leaking rate r2 = −1 driven by an M/G/1

queue, using a regenerative processes approach1.

More precisely, let {Bn}n≥1 be a sequence of busy periods, and {In}n≥1 be a sequence of

idle periods of an M/G/1 queue (see ([45]) for definition of busy and idle periods). Adan

and Resing consider B1, I1, B2, I2, . . . as an alternating renewal process, the fluid level

Cn at the beginning of the nth busy period Bn satisfies the well known Lindley recursion

(see [12, p. 3 eq (1.1)] and [18, p.14, eq (1.5)] for the details on Lindley recursion)

Cn+1 = (0, Cn +Bn − In)
+, n = 1, 2, . . . . (1.3)

Observation 1.2.1. Consider Cn to be the waiting time of the nth arrival, Bn to be the

service time of the nth arrival, and In to be the interarrival time between nth and (n+1)st

arrivals of an M/G/1 queue, then (1.3) is the Lindley recursion for an virtual waiting

time of the M/G/1 queue. Thus, expression (1.3) suggests that the characteristics of the

fluid queue can be achieved by understanding the characteristics of the M/G/1 queue.

Laplace-Stieltjes transform of steady-state distribution of the fluid level

Let B̃(s) :=
∫∞
0

e−sxdP[B ≤ x] be the LST of the probability density function (pdf)

of the busy period of an M/G/1 queue which is driving the fluid queue, and C̃(s) :=
∫∞
0−

e−sxdP[C ≤ x] be the LST2 of the pdf of the fluid level of the fluid queue C. Adan

and Resing derive the LST of the pdf of the fluid level of the fluid queue driven by an

1It turns out that using renewal theory, the expected fluid cycle and the expected number of peaks

within a fluid cycle can be easily achieved.
2We use 0− in the lower limit of the integral of the LST to indicate that there has a point mass at

level 0 for the fluid level C.

4



1.2. Literature review of fluid queues driven by Markovian process

M/G/1 queue in [4, eq. (3), p. 172] as

C̃(s) =

(
1− λE[B]

1 + λE[B]

)(
s+ λ− λB̃(s)

s− λ+ λB̃(s)

)
, s > 0, (1.4)

and the tail probability of the fluid level of the fluid queue driven by an M/M/1 queue

[4, eq. (5), p. 173],

P[C > x] = 4ρe−(µ/2−λ)x − 2ρ

[∫ x

0

e−(µ/2−λ)(x−y)f(y)dy + 1−

∫ x

0

f(y)dy

]
(1.5)

for x ≥ 0, where 1/µ is the expected service time in the M/M/1 system, with a ρ := λ/µ

and a point mass at level 0,

πE = 1− lim
x→0+

P[C > x] = 1− 2λ/µ. (1.6)

Formula (1.6) coincides with the results derived by Virtamo and Norros in [44] using a

spectral decomposition approach.

Applying Leibniz’s Rule [14, Theorem 2.4.1, p. 69] to (1.5), the pdf of the fluid level can

be found as

f(x) = 4

(
λ

µ

)
(µ/2− λ) e−(µ/2−λ)x − 2

(
λ

µ

)(µ
2
− λ
)∫ x

0

e−(
µ

2
−λ)(x−y)f(y)dy (1.7)

for x > 0.

Observation 1.2.2. Letting x→ 0+ in (1.7) yields

lim
x→0+

f(x) = 2λ (1− 2λ/µ) . (1.8)

As shown in (1.6), the term (1− 2λ/µ) on the right-hand side of (1.8) is the point mass

of fluid at level 0; the term 2λ will be explained later in Chapter 2.
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1.3. Literature review of fluid queues driven by Markovian process

1.2.2 New contributions

Some researchers (e.g. [38]) have considered (matrix analytic) Erlangized fluid queues.

Other researchers have addressed fluid queues driven by an M/G/1 queue (e.g. [4, 25,

44]). In Chapter 2 of this dissertation, we add a level crossing approach and reanalyze

fluid queue models. The additional value of doing this is that the new approach simplifies

the derivation and adds to the understanding of the geometry of results in this field.

Further, the level crossing method allows for generalizations to models that would be

difficult to analyze with other methods. In Chapter 3, a new model is introduced for

which the leaking rate is level-dependent. Also, another model considers a situation

in which the leaking rate depends on the type of arrival. In Chapter 4, a new model is

introduced where arrivals are accepted with a fixed probability, but regardless of whether

the arrivals are accepted or not, the fluid content increases. Another contribution is the

introduction of a triangle diagram to help illustrate properties of fluid queues.

1.2.3 Potential applications

Fluid queues arise in financial applications, health and pharmacokinetic applications,

battery recharge, water resources, and insurance. In finance, the value of a portfolio

moves continuously according to information over time. In health, the glucose reading

of a diabetic increases or decreases continuously with food intake and exercise. Many

devices use rechargeable batteries. The power level decreases over time but the battery

can be recharged as needed. In insurance, the surplus has an upper bound called a barrier

and the company may pay dividends when the barrier is reached. All of these situations

can be modeled by fluid queues.
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1.3. Elementary properties of renewal processes

1.3 Elementary properties of renewal processes

Before starting to introduce the phenomenon of a rate balance equation, we first introduce

some properties of renewal processes.

Suppose that (Ω,F,P) is a probability space. A real-valued function X is said to be a

random variable defined on (Ω,F,P) if

X : Ω→ R. (1.9)

A stochastic process is a dynamic version of random variable. For more details, refer to

Ross [34, Section 2.8, pp. 83 - 85], Taylor and Karlin [40, Section 1.1, p. 5], and Wolff

[45, Section 2.1, pp. 53 - 54]. Suppose that T = [0,∞), such that

∀t ∈ T, Xt : Ω→ R (1.10)

is a random variable defined on (Ω,F,P). For t ∈ T and ω ∈ Ω, the mapping

X(t, ω) : T × Ω→ R (1.11)

which is jointly measurable in (t, ω), is called a stochastic process with indexing set T .

The index t is often interpreted as time, and we refer to X(t, ω) as the state of the

stochastic process at time t ∈ T .

Remark 1.3.1. Even though we obtain (1.10) by replacing X by Xt in equation (1.9),

we assume that t is a fixed number. By knowing ω ∈ Ω, we know the exact value of Xt(ω)

in (1.10); therefore, Xt(ω) is a mapping of ω ∈ Ω, and it is a random variable. The

mapping (1.11) is a function of t ∈ T and ω ∈ Ω. If we fix ω1 ∈ Ω, then X(t, ω1) is

a function of t. Thus for each ω ∈ Ω, we have a set of random variables Xt, which we
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1.3. Elementary properties of renewal processes

call a stochastic process. For simplification of notation, we will use X(t) := X(t, ω) for

a particular ω ∈ Ω and t ∈ T [30].

Definition 1.3.2 (Ross, 2003, Counting processes, p. 288). A stochastic process {N(t)}t≥0

is a counting process if N(t) represents the number of events that occurred in the interval

(0, t].

Definition 1.3.3 (Ross, 2003, Renewal processes, p. 401). A stochastic process {N(t)}t≥0

is a renewal process if {N(t)}t≥0 is a counting process and the interarrival time for the

events are independent and identically distributed (henceforth iid) with expected value µ.

Proposition 1.3.4 (Ross, 2003, Proposition 7.1 , p. 407). If {N(t)}t≥0 is a renewal

process, then with probability 1 (w.p.1),

lim
t→∞

N(t)

t
→

1

µ
.

Theorem 1.3.5 (Ross, 2003, Elementary Renewal Theorem, p. 409). If {N(t)}t≥0 is a

renewal process, then

lim
t→∞

E[N(t)]

t
→

1

µ
.

Theorem 1.3.6 (Ross, 2003, Proposition 7.3, Renewal reward theorem, pp. 416 - 417).

Let {N(t)}t≥0 be a renewal process having interarrival times Xn, n ≥ 1, with E[Xn] =

E[X] <∞, and Rn, n ≥ 1, be the reward earned at the time of the nth renewal. Assume

that Rn are independent and identically distributed with E[Rn] = E[R] <∞. Define R(t)

be the total reward earned by time t, i.e.

R(t) =

N(t)∑

n=1

Rn. (1.12)
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1.3. Elementary properties of renewal processes

Then, we have

lim
t→∞

R(t)

t
=

E[R]

E[X]
, (with probability 1), (1.13)

lim
t→∞

E[R(t)]

t
=

E[R]

E[X]
. (1.14)

Let {X(t, ω)}{t∈T, ω∈Ω} be a continuous-time Markov chain with a countable discrete

state space of S such tat the states of the future of the process given the present state

is independent of the past. We define a sample path of X(t, ω) as a mapping of t ∈ T ,

such that

t→ X(t, ω) := X(t) (1.15)

for a particular choice of ω ∈ Ω. In addition, we assume that (1.15) is a right-continuous

step function. The level-crossing method (henceforth LC) method focuses on the be-

haviour of the sample path of a stochastic process, especially the number of times that

the leading point (henceforth LP) of the sample path enters and leaves certain states.

By studying the SP, the LC method allows researchers to write an integral equation for

the steady-state pdf of X(t) as t→∞.

Definition 1.3.7 (Brill, 2008, Definition 2.1, p. 19). A function

X : T → S

is a sample path of a stochastic process if X(t) is a bounded real-valued cadlag function3

[8, p. 121] for all t > 0.

3A function is a cadlag function, if it is right continuous with left limits.
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1.4. Elementary properties of renewal processes

For a fixed x, let tk be a time point in (0, t), and define

Dt(x) := #{k : X(t−k ) ≥ x and X(tk) < x}, (1.16)

Ut(x) := #{k : X(t−k ) ≤ x and X(tk) > x}, (1.17)

where X(t) is a sample path of the stochastic process [12, pp. 31-32]. We interpret Dt(x)

and Ut(x) as the number of downcrossings and upcrossings, respectively, of level x in

(0, t). Further, since Dt(x) and Ut(x) represent the number of events (downcrossings and

upcrossings of level x) in (0, t), {Ut(x)}t≥0 and {Dt(x)}t≥0 are counting processes.

Remark 1.3.8. Formulas (1.16) and (1.17) require that the left limits of the sample

path, X(t), exist for all t > 0.

Theorem 1.3.9 (Brill, 2008, Theorem 3.3, p. 54). Given that Dt(x) is a renewal process

of downcrossings of level x of an M/G/1 queue, we have

lim
t→∞

E[Dt(x)]

t
a.s.
= lim

t→∞

Dt(x)

t
a.s.
= f(x)

where f(x) is the steady-state probability density function of the state variable.

Theorem 1.3.10 (Brill, 2008, principle of rate balance, pp. 34 - 35). If {Dt(x)}t≥0 and

{Ut(x)}t≥0 are counting processes for the number of downcrossings and upcrossings of

level x respectively in an M/G/1 queue, then

lim
t→∞

Dt(x)

t
a.s.
= lim

t→∞

Ut(x)

t
,

lim
t→∞

E[Dt(x)]

t
= lim

t→∞

E[Ut(x)]

t
.

For the proof of Theorem 1.3.9 and 1.3.10, refer to Brill [12, p. 54 for Theorem 1.3.9 and

pp. 34 - 35 for Theorem 1.3.10].
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1.4. Applications of level crossing methods on fluid queues

1.4 Applications of level crossing methods on fluid

queues

1.4.1 Example 1: Buffer level of fluid queue driven by a single

On/Off source

Let {C(t)}t≥0 be the fluid level at time t, andM(t) ∈ {0, 1} be the state of the background

process that alternates between on and off periods. During the on periods, M(t) = 1,

the fluid content fills at net rate c1(x) > 0. During the off periods, M(t) = 0, the fluid

content empties at rate c0(x) > 0 if C(t) > 0, or c0(x) = 0 if C(t) = 0, where x is the level

of fluid content at time t. It is assumed that the on and off periods are exponentially

distributed with rate µ and λ respectively.

Define {C(t),M(t)}t≥0 as a two-dimensional Markov process. Following the argument in

[12, Section 10.10.1], the partial steady-state cumulative distribution function (cdf) of

fluid level is

Fi(x) = lim
t→∞

P[C(t) ≤ x,M(t) = i], x > 0, i = 0, 1, (1.18)

and the partial pdf of the fluid level is

fi(x) =
d

dx
Fi(x), x > 0, i = 0, 1, (1.19)

whenever the derivatives exist. The marginal cdf of the fluid level is

P[C(t) ≤ x] = πE + F0(x) + F1(x), x ≥ 0, (1.20)
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1.4. Applications of level crossing methods on fluid queues

where

πE = lim
t→∞

P[C(t) = 0] = 1−

∫ ∞

0+
f(x)dx. (1.21)

and

f(x) = f0(x) + f1(x), x > 0. (1.22)

For a small interval of length ∆t, we have

F0(t+∆t, x) = F0(t, x+ c0(x
∗)∆t) (1− λ∆t+ o(∆t))

+ F1(t, x− c1(x
∗)∆t) (µ∆+ o(∆t)) , (1.23)

F1(t+∆t, x) = F0(t, x+ c0(x
∗)∆t) (λ∆t+ o(∆t))

+ F1(t, x− c1(x
∗)∆t) (1− µ∆+ o(∆t)) , (1.24)

where x < x∗ < x+ c0(x)∆t. Formula (1.23) follows since in order for the system to stay

in [0, x] at time t+∆t, it is necessary and sufficient that the system is in [0, x+ c0(x
∗)∆t]

at time t and the off period with rate λ does not end during (t, t + ∆t), or the system

is in [0, x − c0(x
∗)∆t] at time t and the on period with rate µ ended during (t, t + ∆t).

For the special case when the state happens to be at level 0 at time t + ∆t, by the

memoryless property of the exponential distribution, the system state is at level 0 for a

time ∼ Exp(λ). Formula (1.24) can be interpreted in a similar manner as (1.23).

Adding and subtracting F0(t, x) to (1.23) and F1(t, x) to (1.24), dividing both equations

by ∆t, and letting ∆t→ 0, we get Chapman-Kolmogorov equations that are satisfied by

12



1.4. Applications of level crossing methods on fluid queues

the two-dimensional Markov process (see [33, p. 74] and [19, p. 230] for more details):

1

c0(x)

∂

∂t
F0(t, x)−

∂

∂x
F0(t, x) = −λ

F0(t, x)

c0(x)
+ µ

F1(t, x)

c0(x)
, (1.25)

1

c1(x)

∂

∂t
F1(t, x) +

∂

∂x
F1(t, x) = λ

F0(t, x)

c1(x)
− µ

F1(t, x)

c1(x)
. (1.26)

Taking limits as t→∞, we get

c0(x)f0(x) + µ

∫ x

0

f1(y)dy = λ

∫ x

0

f0(y)dy, (1.27)

c1(x)f1(x) + µ

∫ x

0

f1(y)dy = λ

∫ x

0

f0(y)dy, (1.28)

which yields the following equality

c0(x)f0(x) = c1(x)f1(x). (1.29)

Equation (1.29) can be interpreted as total downcrossing rate equals total upcrossing

rate of level x.

Remark 1.4.1 (Brill, 2008, pp. 433 - 437, page method). Equations (1.27) and (1.28)

have interesting interpretations in terms of rate into and rate out of the composite states

{(0, x], 0} and {(0, x], 1}.

For equation (1.27): Define LP to be the leading point of a SP (sample path). Then

c0(x)f0(x) + µ

∫ x

0

f1(y)dy, x > 0 (1.30)

is the downcrossing rate into {(0, x], 0)}. For instance, the first term in (1.30) corre-

sponds to the downcrossing rate of level x, and the second term corresponds to the rate
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1.4. Applications of level crossing methods on fluid queues

at which on periods end when the state is in {(0, x], 1}, resulting in parallel transitions

into {(0, x], 0}. On the other hand, the rate at which off periods end when the state is in

{(0, x], 0} is

λ

∫ x

0

f0(y)dy, x > 0, (1.31)

resulting in parallel transitions out of {(0, x], 0}, and it is the only way to exit {(0, x], 0}.

Thus, the expression (1.31) is the total rate out of {(0, x], 0}. Balancing the total rate

out of and rate into {(0, x], 0} yields equation (1.27). Similar arguments yield equation

(1.28).

Remark 1.4.1 suggests that the LC method can be used to bypass using the Chapman-

Kolmogorov equations. The solution of (1.27) and (1.28) can be found in [12, pp. 436-437,

eq. (10.82) and eq. (10.84)], namely

f(x) = λ

(
c0(x) + c1(x)

c0(x)c1(x)

)
πE exp

(
−

∫ x

0

(
µ

c1(y)
−

λ

c0(y)

)
dy

)
, (1.32)

where πE can be achieved by using the normalizing condition. (1.21), We have

πE =

(
1 + λ

∫ ∞

0

((
c0(x) + c1(x)

c0(x)c1(x)

)
exp

(
−

∫ x

0

(
µ

c1(y)
−

λ

c0(y)

)
dy

))
dx

)−1
. (1.33)

Note that the solutions (1.32) and (1.33) in [12, pp. 443 - 440] are for ‘a dam with

alternating influx and efflux.’ It turns out that the solutions are for the underlying fluid

queue as well. Let c0(x) = c1(x) = 1. Substituting c0(x) and c1(x) into (1.32) and (1.33)

yields

f(x) = 2λπEe
−(µ−λ)x, x > 0, (1.34)
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1.4. Applications of level crossing methods on fluid queues

and

πE = 1−
2λ

µ+ λ
. (1.35)

Note that by letting c0(x) = c1(x) = 1, the expression (1.34) is similar to the waiting

time distribution of a modified M/M/1 queue where first arrivals in a cycle have arrival

rate 2λ and other arrivals have arrival rate λ.

To see this, denote λ and µ as the arrival rate of general arrivals, µ be the service rate

of all arrivals, and f(x) be the pdf of waiting time of the modified M/M/1 queue. Using

an LC argument, we have for x > 0

f(x) = 2λπ0e
−µx + λ

∫ x

0

e−µ(x−y)f(y)dy, (1.36)

where π0 is the probability of the M/M/1 queue being empty. Differentiating both sides

of (1.36) with respect to x yields

f ′(x) = −2λµπ0e
−µx − λ

∫ x

0

µe−µ(x−y)f(y)dy + λf(x)

= −(µ− λ)f(x), x > 0 (1.37)

with solution

f(x) = Ae(µ−λ)x, x > 0. (1.38)

Let x→ 0 in (1.36) and (1.38) and compare the coefficients to yield

A = 2λπ0. (1.39)
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1.4. Applications of level crossing methods on fluid queues

Letting π0 = πE and substituting A in (1.39) into (1.38) yields

f(x) = 2λπEe
−(µ−λ)x, x > 0. (1.40)

which is identical to f(x) defined in (1.34). Expressions (1.34) and (1.40) suggests that

we can study the characteristics of the fluid queue by studying the characteristics of the

driving queueing model or vice versa.

1.4.2 Example 2: Distribution of the fluid level of the fluid

queue with a finite capacity R

Similar to the M/G/1 queue, not all queueing models have a potentially infinite waiting

time, such as ‘queue with uniformly bounded actual waiting time’ (henceforth finite

M/G/1 with upper boundary), [15, p. 478]. Researchers are interested in the finite

content fluid queue as well. Denote by R the upper limit of the fluid content, and by

C(R)(t) the fluid level at time t. The characteristic of the finite content fluid queue can

be summarized as follows

dC(R)(t)

dt
=





rZ(t), Z(t) = 1, 2; 0 < C(R)(t) < R,

max(0, rZ(t)), Z(t) = 2; C(R)(t) = 0,
(1.41)

where Z(t) is defined in (1.2). However, when the fluid level reaches the maximum

capacity of the fluid content (i.e. C(R)(t) = R), all customers in the driving M/G/1

queue are lost, and the server of the driving M/G/1 queue becomes idle. The driving

queue can be thought of as an M/G/1 queue with disasters (or negative arrivals), once

the disaster arrive to the queue (here, in our case, the fluid level of the fluid queue hits

level R), all customers in the system are lost (for the details of the M/G/1 queue with

negative arrivals or disasters, see [27]).
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1.4. Applications of level crossing methods on fluid queues

Consider a fluid queue with a finite capacity R driven by an M/G/1 queue defined in

(1.41). Let C(R) be the steady-state random variable of {C(R)(t)}t≥0 as t goes to ∞.

During the busy period of an M/G/1 queue, the content fills at net rate 1, and during

the idle period, the content empties at rate 1 as long as the fluid level is above zero.

The fluid queue with finite capacity R > 0 is characterized as follows: the fluid queue

with upper boundary R is equivalent to the fluid queue without upper boundary driven

by an M/G/1 queue except that once the fluid level reaches level R, all customers in the

driving M/G/1 queue are lost. Here, we refer to the fluid queue without upper boundary

discussed in Section 1.2.1 as an ordinary fluid queue.

Remark 1.4.2. There are two possible ways for the driving M/G/1 queue becomes empty.

First, all customers are served during the busy period of the driving M/G/1 queue, before

the fluid level hits R. This is a normal completion for busy periods. Second, the fluid

level reaches level R such that all customers in the driving M/G/1 are required to leave

the M/G/1 queue instantly.

Denote by {C(t)}t≥0 and {C(R)(t)}t≥0 the fluid level for the ordinary fluid queue and

finite fluid queue respectively. To illustrate the differences between the infinite and finite

fluid queues, we plot the states of the driving M/G/1 queue {Z(t)}t≥0 corresponding to

the ordinary fluid queue, and the sample paths of the fluid level of the infinite and finite

fluid queues in Figure 1.1 (a), (b), and (c) respectively. As observed in the Figures 1.1

(b) and (c), on one hand, once the fluid level {C(t)}t≥0 of the finite fluid queue reaches

level R, the fluid level starts (instantly) to decrease at rate −1. On the other hand, the

fluid level C(t)}t≥0 of the ordinary fluid queue can go beyond level R. Denote by B the

busy period of the driving M/G/1 queue of the finite fluid queue, it is important to note

that P[B ≤ R] = 1 as the consequence of the upper boundary of the fluid level R.

As observed in Figure 1.1, the duration of the time that the fluid level {C(t)}t≥0 of the

ordinary fluid queue below level R is G1 +G2 +G3 +G4 which equals to the duration of
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Figure 1.1: A sample path of fluid level and driving process of ordinary fluid queue. (a)
{Z(t)}t≥0, (b) {C(t)}t≥0, (c) {C

(R)(t)}t≥0.

the time that the fluid level {C(R)(t)}t≥0 of the finite fluid queue is below level R. Thus,

we have

∫ W
(R)
c

0

I(0,R)

(
{C(R)(t)}t≥0

)
dt =

∫ Wc

0

I(0,R) ({C(t)}t≥0) dt, (1.42)

where I(x,y)(•) is an indicator function. The expression in the left-hand side of (1.42)

refers to the duration of time that the sample path of fluid level {C(R)(t)}t≥0 is below R
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over (0,W
(R)
c ), and the expression in the right-hand side of (1.42) refers to the duration

of time that the sample path of the fluid level {C(t)}t≥0 is below R over (0,Wc). For

instance, as observed in Figure 1.1, both sides of (1.42) equal to G1 + G2 + G3 + G4.

Denote by Wc the complete cycle (the non-empty period + the empty period) of the

ordinary fluid queue. The LST of the Wc is discussed in Section 2.3.3 and the expected

value of the Wc is expressed in (2.18). Denote by W
(R)
c the complete cycle (the non-

empty period + the empty period) of the finite fluid queue. By the Renewal Reward

Theorem [34, Section 7.4, Proposition 7.3], the expected complete cycle of the finite fluid

queue can be expressed in terms of the proportion of the expected complete cycle of the

ordinary fluid queue, namely

E[W (R)
c ] = lim

t→∞
P[C(t) ≤ R]E[Wc] = P[C ≤ R]E[Wc]. (1.43)

Denote by πE the long-run proportion of time that the fluid level of the finite fluid queue

is at level 0, by the Renewal Reward Theorem ([34, Section 7.4, Popposition 7.3]), we

have

πE =
1

λ · P[C ≤ R] · E[Wc]
, (1.44)

where λ is the arrival rate of the driving M/G/1 queue for the finite fluid queue. Thus,

1/λ is the expected empty period of the finite fluid queue. By the Smith’s Theorem [37],

for 0 < x < R, the cumulative distribution function of the ordinary fluid queue and finite

fluid queue can be expressed in terms of the long-run proportion of the time that the

fluid level is below level x, namely

P[C ≤ x] =

∫Wc

0
I(0,R) ({C(t)}t≥0) dt

E[Wc]
, (1.45)

P[C(R) ≤ x] =

∫W(R)
c

0
I(0,R)

(
{C(R)(t)}t≥0

)
dt

E[W
(R)
c ]

. (1.46)

19



1.4. Applications of level crossing methods on fluid queues

The expressions (1.42), (1.45) and (1.46) suggest that

P[C(R) ≤ x] =
E[Wc] · P[C ≤ x]

E[W
(R)
c ]

, 0 < x < R. (1.47)

Substituting the expression (1.43) into (1.47) yields

P[C(R) ≤ x] =
P[C ≤ x]

P[C ≤ R]
, 0 < x < R. (1.48)

Denote by C̃(s) the LST of the pdf of the fluid level of the ordinary fluid queue, then

the cdf of the C can be computed by taking inverse LST of C̃(s)/s using Euler and

post-Widder algorithms [1, 2, 3].

1.4.3 Example 3: Distribution of the fluid level in a fluid queue

with an upper barrier R

A sample path of the states {Z(t)}t≥0 of the driving M/G/1 queue and a sample path of

the fluid level {C(t)}t≥0 of the fluid queue driven by an M/G/1 queue are illustrated in

Figure 1.2 (a) and (b) below, respectively. As observed, during the busy periods of the

driving queue {Z(t) = 1}t≥0, the fluid level increases at rate 1. During the idle period of

the driving queue {Z(t) = 1}t≥0, the fluid level decreases at rate −1 as long as the fluid

level is above 0. We refer the fluid queue driven by an M/G/1 queue as an ordinary fluid

queue. In this example, we are interested in distribution of the fluid level of a fluid queue

with an upper barrier R, such that whenever the fluid level {C(t)}t≥0 of the ordinary

fluid queue is above level R, the fluid level {C(R)(t)} of the fluid queue with an upper

barrier R stays at level R. The sample path of the fluid level {C(R)}t≥0 is illustrated in

Figure 1.2 (c) below. Here, we assume that the fluid level {C(R)(t)}t≥0 of the fluid queue

with an upper barrier R depends on the fluid level in the ordinary fluid queue.
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Figure 1.2: The sample paths of the processes: (a) {Z(t)}t≥0, (b) {C(t)}t≥0, (c)
{C(R)(t)}t≥0.

Denote by Wc the complete cycle (non-empty fluid period plus empty fluid period) of

the fluid queue driven by an M/G/1 queue discussed in Section 1.2.1. We refer to the

fluid queue driven by an M/G/1 with arrival rate λ and expected service time 1/µ as

ordinary fluid queue. The LST of the pdf of the fluid level C of the ordinary fluid queue

is given in (1.4).

Denote by πR the long-run proportion of time that the fluid level is above level R and

by πE the long-run proportion of time that the fluid level is at level 0. Using the Renewal
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1.4. Applications of level crossing methods on fluid queues

Reward Theorem ([34, Section 7.4, Popposition 7.3]), we have

πR =
E[time above R in Wc]

E[Wc]
= lim

t→∞
P[C(t) ≥ R] = P[C ≥ R], (1.49)

Letting s go to ∞ in (1.4) yield

πE =
1− λE[B]

1 + λE[B]
=

E[I]

E[Wc]
, (1.50)

where B and I are the busy and idle period of the driving M/G/1 queue of the ordinary

fluid queue respectively. Using the expressions (1.49) and (1.50) yields

P[0 < C < R] = 1−
E[I] + E[time above R in Wc]

E[Wc]
= P[C ≤ R]− πE , (1.51)

as expected. As observed in Figure 1.2, the long-run proportion of time for CR in (0,R)

equals to the long-run proportion of time for C in (0,R), thus we have the duration of

the time that the fluid level {C(t)}t≥0 of the ordinary fluid queue below level R (i.e.

G1+G2+G3+G4) equals the duration of the time that the fluid level {C(R)(t)}t≥0 below

R (i.e. G1 +G2 +G3 +G4). Thus, we have

∫ Wc

0

I(0,R)

(
{C(R)(t)}t≥0

)
dt =

∫ Wc

0

I(0,R) ({C(t)}t≥0) dt. (1.52)

Since the expected duration of the complete cycle E[Wc] for the ordinary fluid queue and

fluid queue with upper barrier R is the same, by the Smith’s Theorem [37], we have

P[0 < CR < R] = P[0 < C < R], 0 < x < R. (1.53)

To summarize (1.49) - (1.53), the cdf of the fluid level of the fluid queue with an upper
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barrier R is

P[0 < CR < R] = P[0 < C < R], 0 < x < R, (1.54)

with a point mass at level 0 with probability πE = P[C ≤ 0] and a point mass at level R

with probability πR = P[C ≥ R].

1.5 Conclusion

To summarize this chapter, we introduce an LC method and indicate how to apply it

to derive the pdf of fluid level of the finite and infinite-capacity fluid queue driven by

an M/G/1 queue, and the probability of the busy period of an M/G/1 queue being

interrupted in a particular model of a finite content fluid queue.

23



Chapter 2

Infinite capacity fluid system

We consider a fluid queue with infinite capacity driven by an M/G/1 queue investigated

by J. Virtamo and I. Norros in [44]. As usual, the fluid content empties at rate r2

continuously as long as the content is non-empty, and the content fills at net rate r1 as

long as the server of the driving queue is busy. The structure of this chapter is as follows:

in Section 2.1, we define the fluid queue driven by an M/G/1 queue, and introduce the

terminologies used in this dissertation. In Section 2.2, we derive the distribution of the

fluid level using the level crossing (LC) methods together with a triangle diagram; then we

formulate the probability density function (pdf) of the fluid level in terms of a Beneš-like

series [16, 24, 32]. In Section 2.3, we use a probabilistic interpretation of the Laplace-

Stieltjes transform (LST) to interpret the LST of the pdf of the non-empty period of the

fluid queue1 [11, 24, 35]. In Section 2.4, we derive the probability generating functions

(pgf) of the number of the tagged arrivals, the arrivals served, and the the number of peaks

in a non-empty period of the fluid queue. In Section 2.5, a simulation of the expected

values of fluid level and non-empty period is conducted and the simulated results are then

compared to the theoretical results. Lastly, we provide two examples to demonstrate the

1The Laplace-Stieltjes transform of the non-empty period of the fluid queue was first presented by
the Boxma et al. [11] in a different fluid queue model.
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2.1. Fluid queue driven by an M/G/1 queue

connection between the fluid queue and the M/G/1 queue with multiple inputs and the

M/G/1 queue with a balking discipline, in Section 2.6.

2.1 Fluid queue driven by an M/G/1 queue

2.1.1 Introduction

Denote by {C(t)}t≥0 the fluid level at time t, and by {Z(t)}t≥0 the Markov renewal

process at time t which takes values in the finite state space Ω := {1, 2, . . . , n}. We

refer to the two-dimensional Markov process {C(t), Z(t)}t≥0 as a fluid queue driven by

a Markov renewal process (or more formally, an environmental process) {Z(t)}t≥0. The

rates at which the fluid content of the fluid queue fills and empties are governed by the

process {Z(t)}t≥0 in such a way that

dC(t)

dt
=





rZ(t), C(t) > 0,

max(0, rZ(t)), C(t) = 0,
(2.1)

where rZ(t) ∈ R is a rate corresponding to the sojourn of Z(t) = i. In this chapter, we

assume that the Markov renewal process {Z(t)}t≥0 is an M/G/1 queue status, which

takes values in the finite state space Ω = {1, 2} such that

Z(t) =





1, if the server of the M/G/1 queue is busy,

2, if the server of the M/G/1 queue is idle,
(2.2)

with the net input rate r1 > 0 and continuous leaking rate r2 < 0.

To recap the characteristics of the fluid queue driven by an M/G/1 queue (henceforth

fluid queue) discussed above, the fluid content of the fluid queue empties at rate r2
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2.1. Fluid queue driven by an M/G/1 queue

continuously as long as the content is non-empty, and the content fills at net rate r1 as

long as the server of the driving M/G/1 queue is busy.

2.1.2 Terminology of the fluid queue

We define

φ(t) =





0, if C ′(t) = 0 and Z(t) = 2,

1, if C ′(t) > 0 and Z(t) = 1,

2, if C ′(t) < 0 and Z(t) = 2,

(2.3)

where C ′(t) := dC(t)/dt, as the states of the fluid process {C(t), Z(t)}t≥0 at time t. We

refer to (1) the state {φ(t) = 0}t≥0 as an empty period with notation E ; (2) the state

{φ(t) = 1}t≥0 as an activity period with notation A; (3) the state {φ(t) = 2}t≥0 as a

silence period with notation S. These terminologies have been used in the fluid queue

literature [9, 10, 20, 21, 26]. For each complete cycle (non-empty period plus empty

period) of the fluid queue, denote by AT the duration of activity periods , and by ST

the duration of silence periods in a complete cycle of the fluid queue respectively.

Finally, denote by Wc := AT + ST + E the wet cycle (complete cycle) of the fluid

queue, and by W := AT + ST the wet period (non-empty period) of the fluid queue.

A typical sample path of the fluid level {C(t)}t≥0, the states of the fluid queue {φ(t)}t≥0

and the states of the driving M/G/1 queue {Z(t)}t≥0 corresponding to the fluid queue

are illustrated in Figure 2.1.

Remark 2.1.1. As observed in Figure 2.1 and using the expressions (2.2) - (2.3), we have

{φ(t) = 1}t≥0 = {Z(t) = 1}t≥0, and {φ(t) = 0}t≥0
⋃
{φ(t) = 2}t≥0 = {Z(t) = 2}t≥0.

These properties are important when finding the long-run proportion of time of the empty,

activity, and silence periods.
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Figure 2.1: (a) A typical sample path of fluid level. (b) The states of the fluid queue.
(c) The states of the driving M/G/1 queue.

2.1.3 Definition of the probability density function of the fluid

level

In this section, we define a partial probability density function (ppdf) and a total (or

marginal) pdf of the fluid level. For x > 0, define the steady-state partial cumulative

probability distribution function (cdf) of the fluid level as

Fi(x) := lim
t→∞

P[0 < C(t) ≤ x, φ(t) = i] + lim
t→∞

P[φ(t) = 0], i = 1, 2, (2.4)

where φ(t) is defined in (2.3). The steady-state partial pdf is defined as

fi(x) =
d

dx

(
lim
t→∞

P [C(t) ≤ x, φ(t) = i]
)
, i = 1, 2. (2.5)
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2.1. Fluid queue driven by an M/G/1 queue

Define the total pdf of the fluid level as

f(x) =
d

dx

(
lim
t→∞

P[C(t) ≤ x]
)
, x > 0. (2.6)

The total pdf of the fluid level is

f(x) = f1(x) + f2(x), x > 0. (2.7)

We remark that the partial pdf f1(x) corresponds to the fluid level in the activity period,

and the partial pdf f2(x) corresponds to the fluid level in the silence period. More

importantly, the expression (2.4) indicates that there has a point mass for the distribution

of the fluid level at 0. Finally, it is important to highlight that

∫ ∞

0

f1(x)dx 6= 1 and

∫ ∞

0

f2(x)dx 6= 1. (2.8)

2.1.4 Stability condition of the fluid queue

For a fixed x > 0 and t > 0, define Ut(x) and Dt(x) be the number of up- and downcross-

ings of level x during the time interval (0, t) respectively. Brill [12, Section 6.2.7, pp. 304

- 309] shows that the up- and downcrossing rate of level x during the time interval (0, t)

are

lim
t→ ∞

Ut(x)

t
a.s.
= r1f1(x) and lim

t→ ∞

Dt(x)

t
a.s.
= r2f2(x), x > 0, (2.9)

where f1(x) and f2(x) are defined in (2.5) respectively. Here r1 and r2 are the net

input rate and the continuous leaking rate of the fluid queue respectively. Let πE :=

lim
t→∞

P[φ(t) = 0] be the point mass of the fluid level at 0. Using a LC argument, the rate

at which the sample path of the fluid level enters and leaves level 0 are equal. Hence,
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2.1. Fluid queue driven by an M/G/1 queue

by (2.9), we have r1f1(0
+) = λπE = r2f2(0

+). The term λπE is the rate at which an

arrival arrives to the empty M/G/1 queue while the fluid content is also empty, and

this particular arrival initiates a busy period in the driving M/G/1 queue and causes

the sample path to leave level 0. Each time point when {C(t)}t≥0 leaves level 0 is a

regenerative point [36, 43]. Hence, {C(t)}t≥0 is a regenerative process with wet cycle Wc

that forms a renewal process. By the Elementary Renewal Theorem [34, Section 7.3, pp.

407 - 416], E[Wc] = 1/(λπE). By the Renewal Reward Theorem [34, Proposition 7.3, pp.

416 - 417], the long-run proportion of time that {φ(t) = 1 or 2}t≥0 is

E[{φ(t) = 1 or 2}t≥0]

E[{φ(t) = 0}t≥0] + E[{φ(t) = 1 or 2}t≥0]
=

E[W ]

E[Wc]
= 1− πE . (2.10)

For each wet cycle, the amount of fluid entering equals the amount of fluid leaving the

fluid content. Consequently, we have

r1 lim
t→∞

P[{φ(t) = 1}t≥0] = r2 lim
t→∞

P[{φ(t) = 2}t≥0]. (2.11)

The expression (2.11) leads to

r1AT = r2ST , (2.12)

given that E[Wc] <∞. In addition, by the Remark 2.1.1, we have ∀t > 0,P[φ(t) = 1] =

P[Z(t) = 1], i.e., A and B are identical distributed, where B is the busy period of the

driving M/G/1 queue. Since each wet cycle consists multiple of busy cycles (Np) of the

driving M/G/1 queue, and E[AT ] = E[Np] · E[A] = E[Np] · E[B], we have the long-run

proportion of the time of the AT equals the traffic intensity of the driving M/G/1 queue,

namely: ρ := λ/µ := (E[Np] · E[B]) / (E[Np] · (E[B] + E[I])), where I is the idle period

of the driving M/G/1 queue with arrival rate λ and expected service time 1/µ. Using
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2.1. Fluid queue driven by an M/G/1 queue

this property with (2.10) and (2.11), we obtain

πE = 1−

(
1 +

r1
r2

)
ρ = 1−

(
1 +

r1
r2

)(
E[B]

E[B] + E[I]

)
. (2.13)

Setting 0 < πE ≤ 1 yields the stability condition of the fluid queue, namely

r2E[I] > r1E[B]. (2.14)

If this condition is not satisfied, then the steady-state distribution of the fluid level does

not exist. Considering that the activity periods of the fluid queue are governed by the

busy periods of the M/G/1 queue, the stability condition (2.14) states that the expected

(net) fluid entering the fluid content during the busy period of the M/G/1 queue has

to be less than the expected fluid leaving the fluid content during the idle period of the

M/G/1 queue.

2.1.5 Expected values of the fluid queue

Denote by Np the number of complete busy cycles of the M/G/1 queue in a wet cycle.

Figure 2.2 illustrates the composition of a wet cycle of the fluid queue in terms of activity

and silence periods, and empty periods.

On one hand, the expected wet cycle can be written as

E[Wc] = E

[
Np∑

i=1

(Bi + Ii)

]
= E[Np] (E[B] + E[I]) . (2.15)

On the other hand, since the arrival process of the driving M/G/1 queue is a Poisson

process, by the memoryless property and (2.12), the expected wet cycle can be written
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2.2. Fluid queue driven by an M/G/1 queue

as

E[Wc] = E[AT ] + E[ST ] + E[E ] =

(
1 +

r1
r2

)
E[Np]E[B] + E[I], (2.16)

where E[E ] = E[I], and AT ,ST , and E are defined in Section 2.1.1.
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Figure 2.2: Composition of a single wet cycle

Equating (2.15) and (2.16), and collecting the terms yield

E[Np] =
E[I]

E[I]− r1
r2
E[B]

. (2.17)

The expression (2.17) implies, by (2.12) and (2.16), that

E[AT ] =
E[I]E[B]

E[I]− r1
r2
E[B]

and E[W ] =
E[B](E[I])2

E[I]− r1
r2
E[B]

. (2.18)

As observed in Figure 2.2, it is important to highlight that Np can be also interpreted as

the number of peaks in a wet period.
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2.2. Probability distribution of the fluid level

2.2 Probability distribution of the fluid level

2.2.1 Downcrossing and upcrossing rates of level x

Recall that, for x > 0 and t > 0, the upcrossing and downcrossing rates at which the

sample path of the fluid level crosses level x from above and below are given in (2.9). In

addition, the rate at which the sample path of the fluid level upcrosses level x can be

expressed as2

r1f1(x) = λπEB

(
x

r1

)
+ λ

∫ y=x

y=0+
B

(
x− y

r1

)
f2(y)dy, (2.19)

where B(•) is the complementary cumulative distribution function (ccdf) of the busy

period of the driving M/G/1 queue. In addition, since the upcrossing rate of level x

equals the downcrossing rate, the expression (2.19) can be interpreted as the downcrossing

rate of level x (i.e., r2f2(x)) as well. The first term on the right hand side of (2.19) is

the rate at which the sample path upcrosses level x starting at level 0, and the second

term of the right hand side of (2.19) is the rate at which the sample path upcrosses level

of x starting from level y in the interval (0, x). For details, readers are referred to [12,

Section 1.6 and 1.7, pp. 13 - 17].

Observation 2.2.1. Letting r1 = r2 = 1 in (2.19) yields a LC equation analogous to the

equation for the pdf of the virtual waiting time for an M/G/1 queue (see [12, p. 17] for

the details). It hints that the LC equation of the fluid level links to the LC equation of

the virtual waiting time of an M/G/1 queue with adjustment for the rates. However, it

is important to point out that πE is the point mass at level 0 for the fluid level instead of

the point mass of the virtual waiting time at level 0 for an M/G/1 queue.

2r1f1(x) is the upcrossing rate of level x, and r2f2(x) is the downcrossing rate of level x.
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2.2. Probability distribution of the fluid level

2.2.2 Triangle diagram

In this section, we introduce a triangle diagram for the sample path of the fluid level

which can be applied to express the upcrossing rate r1f1(x) and the downcrossing rate

r2f2(x) in terms of the pdf of the fluid level f(x).

���

���

�

�

Figure 2.3: (a) A typical sample path of fluid level. (b) A corresponding sample path of
fluid level.

Figure 2.3 illustrates the sample paths of the fluid level. In Figure 2.3, both sample

paths encompass two complete wet cycles and one incomplete wet cycle. Specifically, in

Figure 2.3 (a), the first wet cycle encompasses two activity and silence periods, and the

second wet cycle encompasses three activity and silence periods. In Figure 2.3 (b), both

wet cycles encompass one activity and one silence periods. Although, the fluid level at

time t in Figure 2.3 (a) and (b) are different in general, the duration of the activity AT

and silence ST periods, and wet cycles Wc are equal. This suggests that relocating the
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2.2. Probability distribution of the fluid level

activity and silence periods in a wet cycle do not affect the duration of activity and silence

periods; or the duration of wet period. Thus, if we would like to express f1(x) and f2(x) in

terms of f(x), then the information achieved from 2.3 (b) are identical to the information

achieved from 2.3 (a). Hence, to simplify our work, in this section, we focus on Figure 2.3

(b). It is important to point out here that the processes demonstrated in Figure 2.3 (a)

and (b) are both regenerative processes. Thus by the theory of regenerative processes, for

these particular figures, the long-run proportion of time of the activity periods achieved

using the first wet cycle equals the long-run proportion of time of the activity periods

achieved using the second wet cycle. Thus, we will express f1(x) and f2(x) in terms of

f(x) using the first wet period, and refer to the diagram of as a triangle diagram. Figure

2.4 illustrates the triangle diagram of the fluid level in a wet cycle.

�
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�
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�

Figure 2.4: Triangle diagram of the fluid level

Denote by AT = A1+A2+A3 the duration of the activity periods in the first wet cycle in

Figure 2.4; then the duration of the silence periods is (r1AT )/r2. Thus, the proportions

of time of the activity and silence periods are

r2
r1 + r2

and
r1

r1 + r2
, (2.20)
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2.2. Probability distribution of the fluid level

respectively. The above expression implies that the weights associated with f(x) on

{φ(t) = 1}t≥0 and {φ(t) = 2}t≥0 are r2/(r1 + r2) and r1/(r1 + r2) respectively. These

properties suggest that (x > 0)

f1(x) =
r2

r1 + r2
f(x) and f2(x) =

r1
r1 + r2

f(x). (2.21)

The expression (2.21) does not violate the principle of rate balance condition (see [12, p.

16] for the details) at which the necessary condition for (2.21) to be true is

lim
t→∞

Dt(x)

t
= r1f1(x) =

r1r2
r1 + r2

f(x) = r2f2(x) =
r1r2

r1 + r2
f(x) = lim

t→∞

Ut(x)

t
(2.22)

(i.e., the downcrossing rate of level x equals the upcrossing rate of level x.) Finally, it

is important to highlight that solving a system of linear equations (i.e., (2.7) and (2.22)

together) gives the same conclusion as shown in (2.21). The intention in this section is

to provide an alternative way to express the rate at which the sample path upcrosses

and downcrosses level x in terms of the pdf of the fluid level as well as visualizing the

concepts behind the mathematics.

We end this section by highlighting the limitations of the triangle diagram when applied

to express f1(x) and f2(x) in terms of f(x). The triangle diagram approach discussed in

this section relies on the two assumptions: (1) the net input and continuous leaking rate

are constant, and (2) the wet cycle is a regenerative process.

2.2.3 Level-crossing equations

Substituting (2.21) into (2.19) yields an LC equation for the pdf of the fluid level, namely

r1r2
r1 + r2

f(x) = λπEB

(
x

r1

)
+ λ

(
r1

r1 + r2

)∫ y=x

y=0+
B

(
x− y

r1

)
f(y)dy, x > 0. (2.23)
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Remark 2.2.2. The expression (2.23) can be interpreted in two ways: (1) equating

two different expressions of the upcrossing rate at level x. (2) balancing upcrossing and

downcrossing rates of level x, since r1f1(x) = r2f2(x).

2.2.4 Beneš-like series for PDF of fluid level

In this section, we formulate the pdf of the fluid level using a LC argument (see [13] for

more details) which explains the meaning of Beneš’ mathematical series first introduced

by Beneš in [6] for the pdf of the virtual waiting time of an M/G/1 queue (discussed

and made noteworthy by Kleinrock [24]). Two completely different explanations of the

Beneš’ series for the pdf of the virtual waiting time of an M/G/1 queue are given by

Cooper and Niu in [16] and Prabhu in [32].

Consider the equation (2.23). Applying a technique similar to that in Brill [13], we

multiply by r1 + r2 and divide by r1r2 to yield

f(x) = λπE

(
1

r1
+

1

r2

)
B

(
x

r1

)
+

λ

r2

∫ y=x

y=0+
B

(
x− y

r1

)
f(y)dy, x > 0. (2.24)

We divide and multiply by E[B] in the first term of the right-hand side of above equation

to yield

λE[B]πE

(
1

r1
+

1

r2

)
1

E[B]
B

(
x

r1

)
= ρBπE

(
1

r1
+

1

r2

)
g∗1
(
x

r1

)
, x > 0, (2.25)

where ρB = λE[B] and g∗k (x/r1) is the k-fold self convolution of the residual time of the

busy period at x/r1 of the driving M/G/1 queue, k = 1, 2, . . . . Next, we substitute the

complete expression for f(y) obtained from (2.24) back into the integral part of (2.24).
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2.2. Probability distribution of the fluid level

This gives (for x > 0)

λ

r2

∫ y=x

y=0

B

(
x− y

r1

)
f(y)dy

=
λ

r2

∫ y=x

y=0

B

(
x− y

r1

)[
λπE

(
1

r1
+

1

r2

)
B

(
y

r1

)]
dy

+
λ

r2

∫ y=x

y=0

B

(
x− y

r1

)[
λ

r2

∫ z=y

z=0

B

(
y − z

r1

)
f(z)dz

]
dy

=
λ2

r2
πE

(
1

r1
+

1

r2

)∫ y=x

y=0

B

(
x− y

r1

)
B

(
y

r1

)
dy

+

(
λ

r2

)2 ∫ y=x

y=0

∫ z=y

z=0

B

(
x− y

r1

)
B

(
y − z

r1

)
f(z)dzdy. (2.26)

In the second-last term of (2.26), multiplying and dividing (E[B])2 yields

λ2

r2
πE

(
1

r1
+

1

r2

)∫ y=x

y=0

B

(
x− y

r1

)
B

(
y

r1

)
dy

=
ρ2B
r2

πE

(
1

r1
+

1

r2

)∫ y=x

y=0

1

E[B]
B

(
x− y

r1

)
1

E[B]
B

(
y

r1

)
dy. (2.27)

Notice that the integral from equation (2.27) can be further simplified to

∫ y=x

y=0

1

E[B]
B

(
x− y

r1

)
1

E[B]
B

(
y

r1

)
dy = r1

∫ u=x/r1

u=0

1

E[B]
B

(
x

r1
− u

)
1

E[B]
B(u)du

= r1g
∗2

(
x

r1

)
. (2.28)

Thus equation (2.27) can be further simplified to

λ2

r2
πE

(
1

r1
+

1

r2

)∫ y=x

y=0

B

(
x− y

r1

)
B

(
y

r1

)
dy

=
r1
r2
ρ2BπE

(
1

r1
+

1

r2

)
g∗2
(
x

r1

)

= πE

(
r1 + r2

r21

)(
r1
r2
ρB

)2

g∗2
(
x

r1

)
. (2.29)

Similarly, substituting f(•) from equation (2.24) into the last term of equation (2.26)
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2.2. Probability distribution of the fluid level

yields (for x > 0)

(
λ

r2

)2 ∫ y=x

y=0

∫ z=y

z=0

B

(
x− y

r1

)
B

(
y − z

r1

)
f(z)dzdy

=

(
λ

r2

)2 ∫ y=x

y=0

∫ z=y

z=0

B

(
x− y

r1

)
B

(
y − z

r1

)[
λπE

(
1

r1
+

1

r2

)
B

(
z

r1

)]
dzdy + . . .

=

(
λ3

r22

)
πE

(
1

r1
+

1

r2

)∫ y=x

y=0

∫ z=y

z=0

B

(
x− y

r1

)
B

(
y − z

r1

)
B

(
z

r1

)
dzdy + . . . .

Multiplying and dividing by (E[B])3 in the above equation yields

(
λ

r2

)2 ∫ y=x

y=0

∫ z=y

z=0

B

(
x− y

r1

)
B

(
y − z

r1

)
f(z)dzdy

= πE

(
r1 + r2

r21

)(
r1
r2
ρB

)3

g∗3
(
x

r1

)
+ . . . . (2.30)

Repeatedly substituting for f(•), we get

f(x) =





πE , x = 0,

πE

(
r1 + r2

r21

) ∞∑

k=1

(
r1
r2
ρB

)k

g∗k
(
x

r1

)
, x > 0.

(2.31)

The expression (2.31) suggests that for x > 0, f(x) is the weighted sum of convolved

residual busy periods of B ar x/r1. Integrating (2.31) with respect to x over (0+,∞)

yields

∫ x=∞

x=0+
f(x)dx =

∫ x=∞

x=0+
πE

(
r1 + r2

r21

) ∞∑

k=1

(
r1
r2
ρB

)k

g∗k
(
x

r1

)
dx

= πE

(
r1 + r2

r1

) ∞∑

k=1

(
r1
r2
ρB

)k

. (2.32)

Using the normalization condition,

πE +

∫ x=∞

x=0+
f(x)dx = 1, (2.33)
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2.3. Laplace-Stieltjes transform

and (2.32) gives

πE =

(
1 +

(
r1 + r2

r1

) ∞∑

k=1

(
r1
r2
ρB

)k
)−1

=

(
1 +

(
r1 + r2

r1

)
r1
r2
λE[B]

1

1− r1
r2
λE[B]

)−1

=
r2 − r1λE[B]

r2 + r2λE[B]
(2.34)

where we assume that the geometric series in equation (2.32) converges to a number.

Letting 0 < πE < 1, we obtain

r1
r2
ρB < 1 ⇐⇒ r1E[B] < r2E[I] (2.35)

which is the stability condition of the fluid queue in (2.14). Finally, since B is the busy

period of the driving M/G/1 queue with arrival rate λ and expected service time 1/µ,

substituting E[B] = 1/(µ− λ) into (2.34) gives (2.13).

2.3 Laplace-Stieltjes transform

2.3.1 Introduction

Denote by X the random variable that has a legitimate probability density function

f(x), x ≥ 0. The Laplace-Stieltjes transform (LST) of f(x) named after the mathemati-

cian Pierre Simon Laplace, is defined as

Lf (s) =

∫ ∞

0−
e−sxdF (x), (2.36)
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2.3. Laplace-Stieltjes transform

where F (x) is the cdf of X. The equation (2.36) is a mathematical transformation which

at this point has no meaning attached. However,there is a probabilistic interpretation

of L(s). One can introduce a new random variable Y which is exponentially distributed

with rate s > 0 and refer to Y as a catastrophe random variable. Using this, we have

F̃ (s) =

∫ ∞

0−
P[Y > x]dF (x) = P[X < Y ], (2.37)

where F̃ (s) is the LST of f(x). This suggests that the LST of the pdf f(x) can be

interpreted as the probability that the event associated with X occurs before the event

(catastrophe) associated with Y . A complete discussion of catastrophe processes can be

found in Kleinrock [24, pp. 267 - 269], Nelson [31, pp. 197 - 204], and Roy et al. [35]

2.3.2 Laplace-Stieltjes transform of the fluid level

We have expressed the pdf of the fluid level previously in Section 2.2.4 as a Beneš-like

series. In this section, we derive the LST of the pdf of the fluid level. Denote by C the

steady-state random variable of the fluid level and by B the steady-state random variable

of the busy period of the driving M/G/1 queue. For s > 0, denote by

C̃(s) = πE +

∫ ∞

0−
e−sxdP[C < x] and B̃(s) =

∫ ∞

0−
e−sxdP[B < x] (2.38)

the LST of the pdf of the fluid level and the pdf of the busy period of the driving M/G/1

queue respectively. Multiplying e−sx to both sides of (2.23) and integrating with respect

to x over (0,∞) yield

r1r2s
(
C̃(s)− πE

)
= (r1 + r2)λπE

(
1− B̃(r1s)

)

+ r1λ
(
1− B̃(r1s)

)(
C̃(s)− πE

)
, s > 0. (2.39)
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2.3. Laplace-Stieltjes transform

Collecting the terms yields

C̃(s) = πE

(
r1r2s+ r2λ(1− B̃(r1s))

r1r2s− r1λ(1− B̃(r1s))

)
, s > 0. (2.40)

Using the property that lim
s→0

C̃(s) = 1 and letting s→ 0 in (2.40) gives

πE =
r2 − r1λE[B]

r2 + r2λE[B]
, (2.41)

which is identical to (2.34). An alternative way to derive (2.40) is provided in Appendix

A.1.

Multiplying −1 to (2.40) and taking derivatives with respect to s yields

−C̃ ′(s) =
r21r2(r1 + r2)sλB

′(r1s) + r1r2(r1 + r2)λ(1− B(r1s))

(r1r2s− r2λ (1− B(r1s)))
2 , s > 0. (2.42)

Applying twice L’Hôpital’s rule in (2.42) yields

− lim
s→0

C̃ ′(s) = lim
s→0

(
r1r2(r1 + r2)λ(r1sB

′′′(r1s)) + B′′(r1s))

2[(r1 + λ(1− B(r1s)))2 + (r2s− λ(1− B(r1s))(r21B
′′(r1s))]

)
.

Simplifying the above expression, we have the expected value of the fluid level

E[C] =
r1r2(r1 + r2)λE[B

2]

2(r2 − λr1E[B])2
. (2.43)

Remark 2.3.1. Alternatively, the expression (2.40) can be achieved by using (2.21)

directly. Applying the LST on both sides of (2.21) yields

Lf (s) =
r1 + r2

r1
Lf2(s) =⇒ W̃(s)− πE =

r1 + r2
r1

(Lf2(s)− πE) , s > 0, (2.44)

where Lf2(s) is the LST of the f2(x) in (2.19). Taking LST on both sides of (2.19) and
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2.3. Laplace-Stieltjes transform

substituting the LST of f2(x) into the above expression yields (for s > 0)

W̃(s)− πE =

(
r1 + r2

r1

)
·

(
πEr2s

sr2 − λ(1− B̃(r1s))
− πE

)
= πE

(
r1r2s+ r2λ(1− B̃(r1s))

r1r2s− r1λ(1− B̃(r1s))

)
.

It is important to highlight that Lf2(s) is analogous to the Pollaczek-Khinchim formula

for the virtual waiting time of an M/G/1 queue with two exceptions: (1) the service

time of the server is the busy period of another M/G/1 queue with arrival rate λ/r2 and

expected service time r1E[B]; (2) we use the πE which is the point mass for the fluid level

at 0 instead of the point mass at level 0 attached to the process corresponding to f2(x).

2.3.3 Laplace-Stieltjes transform of the wet period

In this section, we explain the Laplace-Stieltjes transform of the pdf of the wet period

using the probabilistic interpretation and the concepts of sub-busy periods of an M/G/1

queue first discussed by Kleinrock in [24, p. 210]. The concept of sub-busy periods relies

on the fact that the order of arrivals being served does not affect the distribution of

the busy period, as first suggested by Takacs in [39, p. 32]. Further discussions on the

sub-busy periods of the M/G/1 queue can be found in [12, pp. 72 - 74] and [24, pp. 206

- 216].

As usual, denote by {C(t)}t≥0 the fluid level at time t, by ai the arrivals who initiate

a busy period of the driving queue in a wet period, by tai the time at which the busy

periods of the driving M/G/1 are initiated by ais. It is important to highlight that the

arrivals who initiate the wet periods are excluded in the definition of ai. Finally, define

v1 = a1 (2.45)

vn+1 = min{ai | C(tai) < C(tvn); ai > vn} (2.46)
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2.3. Laplace-Stieltjes transform

as an arrival who initiates a sub-wet period and refer to these arrivals as tagged arrivals

(see [12, Section 3.3.8, pp. 71 - 75] for the full discussion of the tagged arrivals and

sub-busy periods). Define NT as the number of tagged arrivals in a wet period with

expected value (r1λE[B])/r2. Figure 2.5 (a) illustrates the concepts of the sub-wet cycle.

As observed in Figure 2.5 (b), the wet period can be decomposed into
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Figure 2.5: (a) Two successive wet periods of the fluid queue; (b) Life time of the sub-wet
periods corresponding to (a).

W
dist.
= B +

r1
r2
B +

NT∑

i=1

Wi, (2.47)

where {Wi}
NT

i=1 is a sequence of iid random variables distributed as W and independent

of NT . Taking expectation of both sides yields

E [W ] =

(
1 +

r1
r2

)
E[B] + λ

r1
r2
E[B]E[W ], (2.48)
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2.3. Laplace-Stieltjes transform

which implies that

E[W ] =
(r1 + r2)E[B]

r2 − r1λE[B]
. (2.49)

Applying eq. (5.2) in [11, Boxma, Perry and Schouten, 1999] yields the following Theo-

rem.

Theorem 2.3.2. The Laplace-Stieltjes transform of the fluid wet period driven by an

M/G/1 queue with arrival rate λ and expected service time 1/µ satisfies the following

functional equation

W̃(s) = E

[
e−sB(1+r1/r2)−λ(1−B̃(s))(r1B)/r2

]

= B̃

(
s

(
1 +

r1
r2

)
+ λ

(
1− W̃(s)

) r1
r2

)
, s > 0, (2.50)

where r1 and r2 are the net input rate and leaking rate modulated by the driving process

respectively, W̃(s) and B̃(s) are the Laplace-Stieltjes transform of the wet period and the

busy period of the M/G/1 queue respectively.

The details of the proof are skipped by the authors in [11]. Hence, we provide a proof

for Theorem 2.3.2 in the Appendix A.2. Here, we use the probabilistic interpretation of

the LST to interpret the LST of the pdf of the wet period.

Before going to the probabilistic interpretation, we first introduce an extended silence

period of the fluid queue. Consider at time 0, an arrival ends the empty period of the fluid

queue and initiates a busy period B in the driving queue that contributes r1B units of

the fluid at the end of the busy period. After the end of the busy period, the fluid queue

takes (r1B)/r2 units of time to release the fluid that is generated by the busy period.

We refer to the (r1B)/r2 units of time as an extended silence period. It is important to

highlight that the number of tagged arrivals (i.e. the number of sub-wet periods) in a wet
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2.3. Laplace-Stieltjes transform

period is identically distributed as the number of arrivals in the extended silence period.

Figure 2.5 (b) illustrates the concept of the extended silence period. The extended silence

period is indicated as Sext in Figure 2.5 (b).

Denote by W̃(s) the LST of the pdf of the wet period. Each tagged arrival entering the

driving queue in the extended silence period has a sub-wet period associated with it.

With probability W̃(s), the sub-wet period initiated by a tagged arrival ends before the

catastrophe occurs. Similarly, with probability 1 − W̃(s), the sub-wet period initiated

by a tagged arrival ends after the catastrophe occurs. We refer to a good arrival if the

associated sub-wet period ends before the catastrophe occurs, and refer to a bad arrival

if the associated sub-wet period ends after the catastrophe occurs. Multiplying λ to the

probabilities W̃(s) and 1 − W̃(s) gives us the rate λW̃(s) at which the good arrivals

arrive, and the rate λ(1− W̃(s)) at which the bad arrivals arrive.

Following the probabilistic interpretation of the LST of the pdf of the busy period in

[35], the LST of the pdf of the wet period can be defined as

W̃(s) = P[wet period ends before the catastrophe occurs]

= P[first activity period ends before the catastrophe occurs,

extended silence period ends before catastrophe occurs

and ends before bad arrival arrives].

Define the random variable Y as a catastrophe random variable which is exponentially

distributed with rate s for the first activity and extended silence period, and the random

variable YA as the time that a bad arrival arrives which is exponential distributed with
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2.4. Number of tagged arrivals, arrivals served, and peaks in a wet period

rate λ(1− W̃(s)). Applying a linear transform technique, we obtain

W̃(s) = P[min(Y, (r2/r1)Y, (r2/r1)YA) > B]

= B̃

(
s

(
1 +

r1
r2

)
+

r1
r2
λ(1− W̃(s))

)
, s > 0.

which is equivalent to Theorem 2.3.2, where B̃(s) is the LST of the pdf of the busy period

of the driving queue.

2.4 Number of tagged arrivals, arrivals served, and

peaks in a wet period

2.4.1 Number of tagged arrivals in a fluid wet cycle

In this section, we derive the probability generating function (hereafter pgf) of the num-

ber of tagged arrivals NT in a wet cycle. The tagged arrivals provide an important

performance measure for a fluid queue, since the duration of the wet period depends on

the number of tagged arrivals in the extended silence period. Let B be the busy period

of the driving M/G/1 queue. Then the extended silence period is Sext = (r1B)/r2 (see

Figure 2.5 for the details). Thus, the conditional random variable (NT |B = x) is Poisson

distributed with parameter (r1xλ)/r2. Consequently, the probability of the number of

tagged arrivals in a wet period is

P[NT = n] =

∫ ∞

0

P[NT = n|B = x]dP[B < x], n = 0, 1, . . . (2.51)
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2.4. Number of tagged arrivals, arrivals served, and peaks in a wet period

where

P[NT = n|B = x] =
exp(−r1xλ/r2)(r1xλ/r2)

n

n!
. (2.52)

Multiplying both sides of (2.51) by zn, summing over n, and using Taylor expansion of

the exponential function, we have the pgf of the number of tagged arrivals in a wet period

is

mNT
(z) = B̃

(
r1
r2
λ(1− z)

)
, 0 < z < 1, x > 0. (2.53)

The same procedures can be used to find the number of tagged arrivals for an M/G/1

queue (see [18, p. 226, and p. 238] for the details).

2.4.2 Number of arrivals served in a wet cycle

Denote by NB the number of arrivals served in the driving M/G/1 queue during of a wet

cycle. Since each tagged arrival initiates a sub-wet period of the fluid queue, the number

of arrivals served in the wet period is the number of of arrivals served in the first activity

period plus the number of arrivals served in each sub-wet period,

NB = N +N 1
B + · · ·+NNT

B , (2.54)

where N is the number of arrivals served in the first activity period (or equivalently,

the number of arrivals served in the busy period that initiates the wet period), and

N i
B, i = 1, 2, . . . ,NT , are the number of arrivals served in each sub-wet period. The N i

Bs

are independent and identically distributed as NB. We remark here that NT can take

an integer value from 0 to ∞. When NT = 0, then NB = NT . Taking expectation in

both sides of (2.54) and applying Little’s law (i.e., E[NT ] = (λ/r2) · (r1E[B])) and Wald’s
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theorem ([45]), we obtain

E[NB] = E [N ] + E

[
NT∑

i=0

N i
B

]
=

1

π0

+ λ
r1
r2
E[B]E[NB],

which implies that

E[NB] =
1

1− λ r1
r2
E[B]

·
1

π0

= E[Np]E[N ], (2.55)

where π0 := 1− λE[S] is the point mass of the driving M/G/1 is empty, where S is the

service time of the driving M/G/1 queue. Next define the pgf of the number of arrivals

served in a wet cycle as

mNB
(z) = E

[
zNB

]
, 0 < z < 1. (2.56)

Conditioning the above expression on NT = k yields

E
[
zNB |NT = k

]
= E

[
zN
] k∏

i=1

E
[
zN

i
B

]
= E

[
zN
]
(mNB

(z))k . (2.57)

Substituting equation (2.54) into equation (2.56) and using equation (2.57) yields

mNB
(z) = E

[
zN+N 1

B
+···+N

NT
B

]
= mN(z)mNT

(mNB
(z)), 0 < z < 1,

where mN(z) and mNT
(z) are the pgfs of the number of arrivals served in an M/G/1

queue busy period and the number of tagged arrivals in a wet cycle respectively. Further

simplification can be achieved by using the following equality in [31, p. 307, eq. (7.47)]

mNT
(z) = G̃S (λ(1− z)) , 0 < z < 1,

48
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where G̃S is the LST of the pdf of the service time of an M/G/1 queue with arrival rate

λ and service rate µ. Finally, we have

mNB
(z) = mN(z)G̃S (λf (1−mNB

(z))) , 0 < z < 1. (2.58)

Here the busy period of a regular M/G/1 queue with arrival rate λf := λ/r2 and service

rate µf := 1/(r1E[B]) is served as a service time for the M/G/1 queue in (2.58). Taking

derivatives with respect with z in (2.58) yields

m′
NB

(z) = −
λ

r2
mN(z)G̃

′
S

(
λ

r2
(1−mB(z))

)
m′
NB

(z) + G̃S

(
λ

r2
(1−mB(z))

)
m
′

N(z).

Substituting z = 1 into the above equation yields

m′
NB

(1) =
λ

r2
mN(1)G̃

′
S(0)m

′
NB

(1) + G̃S(0)m
′

N(1).

Simplifying the above expression and collecting the terms E[NB] yields the same expres-

sion as shown in (2.55). The immediately above expression is a check on the general

formula in (2.58).

2.4.3 Number of peaks in a wet cycle

Denote by NP the number of busy periods in a wet period (and thus the number of peaks

in a wet cycle). Using a similar argument as in Section 2.4.2, we express the number

of driving queue M/G/1 busy periods in a wet period in terms of the number of busy

periods in each sub-wet period and the busy period corresponding to the activity period

that initiates the wet period. Hence, we have

NP = 1 +N 1
P + · · ·+NNT

P , (2.59)
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where NT is the number of tagged arrivals in a fluid wet period, N i
P , i = 1, 2, . . . ,NT

is the number of driving M/G/1 queue busy periods within a sub-wet period that are

independent and identically distributed as NP . Define the pgf of the number of peaks in

a wet cycle as

mNP
(z) = E

[
zNP

]
. (2.60)

Substituting equation (2.59) into equation (2.60) yields

mNP
(z) = E

[
z1+N

1
P
+···+N

NT
P

]
= zG̃S(λf (1−mNP

(z))), 0 < z < 1,

where mNT
(z) is the pgf of the number of arrivals served in an M/G/1 queue busy period,

and G̃S(z) is the LST of the pdf of the busy period of the M/G/1 queue with arrival

rate λf := λ/r2 and service rate µf := 1/(r1E[B]). Taking the derivative of mNP
(z) with

respect to z and evaluating at z → 1 gives

m′
NP

(z) |z=1 = G̃S (λf (1−mNP
(z))) |z=1 − λfzG̃S (λf (1−mNP

(z)))m′
NP

(z) |z=1

= G̃S(0)− λfG̃
′
S(0)m

′
NP

(1),

which leads to

E[NNP
] = 1 + λfE[S]E[NP ] =

1

1− r1
r2
λE[B]

. (2.61)

The expression (2.61) confirms the expression (2.17) derived from the analysis of the

sample path of the fluid level in Section 2.1.3.
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2.5 Numerical illustration

2.5.1 Simulation

In this section, we present a numerical example which illustrates the expected value of

the fluid level and the expected value of the wet period using Theorem 2.3.2, and the

LSTs in (2.40) and (2.50) respectively. For each iteration and each set of parameters,

we simulate 10, 000 arrivals and record the duration of the wet periods, wet cycles, and

the average fluid level in each wet cycle. The simulations are conducted using Maple 18.

Note that, the stability condition of the fluid queue is

r1E[B] < r2E[I] ⇐⇒ α :=

(
r1
r2

)(
λ

µ− λ

)
< 1. (2.62)

Thus to satisfy the stability condition, we choose the combination of r1, r2, λ, and µ such

that α < 1. The results and the parameters for each simulation are reported in Table

2.1. It is important to note that as α → 1, the results achieved using (2.40) and (2.50)

might not be close to the simulated results because many samples are required under

this case. We choose parameter values which cover a large spectrum of values of α by

carefully selecting values r1, r2, λ, and µ which satisfy the condition (2.62). As observed

in Table 2.1, as α equals 0.90 and 0.89, the simulated and the theoretical expected values

are off by 6% to 3% (with respect to the simulated results) for the fluid level respectively,

whereas simulated wet periods are still close to the theoretical expected wet period (off

by 1.41% and 0.03% with respect to the simulated results).

51



2.6. Relating probability distributions of the driving and fluid queues

Table 2.1: Simulation results of fluid queue expected values

Parameters Simulated results Theoretical results
λ µ r1 r2 α E[C] E[B] πE E[C] E[B] πE
2.5 7.0 1.0 2.0 0.28 0.255 0.461 0.464 0.256 0.461 0.464
3.0 7.0 1.0 2.0 0.38 0.454 0.601 0.356 0.449 0.600 0.357
3.5 7.0 1.0 2.0 0.50 0.835 0.845 0.252 0.857 0.857 0.250
4.0 7.0 1.0 2.0 0.67 1.919 1.484 0.144 1.999 1.500 0.142
4.5 7.0 1.0 2.0 0.90 10.09 5.915 0.036 10.79 6.000 0.035

2.5 6.0 1.0 2.0 0.36 0.477 0.667 0.374 0.476 0.666 0.375
2.5 5.5 1.0 2.0 0.42 0.708 0.852 0.319 0.714 0.857 0.318
2.5 5.0 1.0 2.0 0.50 1.170 1.184 0.252 1.199 1.200 0.250
2.5 4.5 1.0 2.0 0.63 2.570 2.009 0.165 2.449 2.000 0.166
2.5 4.0 1.0 2.0 0.83 9.599 5.998 0.062 9.999 6.000 0.062

2.5 6.0 0.5 2.0 0.18 0.154 0.435 0.479 0.155 0.434 0.479
2.5 6.0 1.0 2.0 0.36 0.480 0.667 0.374 0.476 0.666 0.375
2.5 6.0 1.5 2.0 0.54 1.130 1.064 0.272 1.153 1.076 0.270
2.5 6.0 2.0 2.0 0.71 2.848 1.986 0.168 2.857 2.000 0.166
2.5 6.0 2.5 2.0 0.89 10.31 5.988 0.062 10.71 6.000 0.062

2.5 6.0 1.0 4.0 0.18 0.312 0.435 0.479 0.310 0.434 0.479
2.5 6.0 1.0 3.5 0.20 0.328 0.459 0.465 0.329 0.461 0.464
2.5 6.0 1.0 3.0 0.24 0.353 0.497 0.357 0.357 0.500 0.444
2.5 6.0 1.0 2.5 0.29 0.403 0.560 0.415 0.399 0.560 0.416
2.5 6.0 1.0 2.0 0.36 0.471 0.667 0.375 0.476 0.666 0.375

2.6 Relating probability distributions of the driving

and fluid queues

In this section, we establish a relationship between the pdf of the virtual waiting time of

the driving queue system and the pdf of the fluid level of the fluid queue. To do so, we

first observe the following property. By letting r1 = r2 = 1 in (2.19), we have

f2(x) = λπEB(x) + λ

∫ y=x

y=0+
B (x− y) f2(y)dy, (2.63)

which is the integral equation for the pdf of the virtual waiting time of an M/G/1 queue

with arrival rate λ and a specific service time which is distributed as a busy period of
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2.6. Relating probability distributions of the driving and fluid queues

an M/G/1 queue with arrival rate λ and expected service time 1/µ. It is important to

highlight that the term πE in (2.63) corresponding to the point mass of fluid level at 0

rather than the point mass of virtual waiting time of the M/G/1 queue at 0.

Denote by G(x) the distribution of the general service time of an M/G/1 queue. Replac-

ing B(x) by G(x) in (2.63), then (2.63) becomes the equation for the pdf of the virtual

waiting time of an M/G/1 queue3 with an exception that the term πE corresponding to

the point mass of fluid level at 0. By (2.22) with the assumption that r1 = r2 = 1, we

have f2(x) = f(x)/2, where f(x) is the steady-state distribution of the fluid level. These

properties together give us

Lf2(s) =
1

2

(
C̃(s)− πE

)
+ πE =

sπE

s− λ
(
1− G̃(s)

) , s > 0 (2.64)

which is the LST of the pdf of the virtual waiting time of an M/G/1 queue. Next, denote

by π0 the point mass of virtual waiting time of an M/G/1 queue at 0. Replacing πE by

π0 and taking s→ 0 in (2.64) yield

π0 = 1− λ/µ. (2.65)

Remark 2.6.1. The LST of the virtual waiting time of an M/G/1 queue f2(x) is eval-

uated using the LST of the pdf of the fluid level C̃(s) which involves πE as indicated in

(2.64). After we find the LST of f2(x), we substitute π0 for πE . Since, we are matching

the LC equation of the pdf of the virtual waiting time of an M/G/1 queue to the LC

equations of f2(x) in (2.64).

Thus, studying the distribution of the fluid level leads us to the distribution of the fluid

level as well as the distribution of the virtual waiting time of the driving M/G/1 queue.

3Here B(x) is just a dummy variable attached with a specific distribution. Changing the notation of
B does not destroy the structure of the LC equation.
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2.6. Relating probability distributions of the driving and fluid queues

In the next two subsections, we study the distribution of the fluid level which is driven by

two M/G/1 variants and highlight the distribution of the waiting time associated with

the distribution of the fluid level in the fluid queue.

2.6.1 Fluid queue driven by modified M/G/1 queue

In this example, we use a fluid queue model to derive the pdf of the virtual waiting time of

an M/G/1 queue with multiple inputs discussed in [12, Section 3.6]. The characteristics

of the queue are similar to the ordinary M/G/1 queue except arrivals arrive to the system

in N independent Poisson processes with rate λi, and the service times associated to the

N independent Poisson arrivals follows Gi, i = 1, . . . , N , distribution. The LC equation

corresponding to the pdf of the waiting time of the model has been shown in [12, eq.

(3.125), p.103] to be

f(x) = λ

N∑

i=1

λi

λ

(
π0Gi(x) +

∫ x

y=0

Gi(x− y)f(y)dy

)
, (2.66)

where λ = λ1+ · · ·+λN , and Gi(•) is the ccdf of the service time for the arrivals coming

from the ith source of the Poisson process, and π0 is the probability point mass of waiting

time at level 0.

To construct a fluid queue that shares similar characteristics of the M/G/1 queue with

multiple inputs, we first note that the activity period Ai of the fluid queue multiplied

by the net input rate r1 of the fluid queue gives the service time of the M/G/1 queue

with multiple inputs, when we use the pdf of the fluid level of the fluid queue to derive

the pdf of the wait of the multiple inputs model. Next, as observed in Figure 2.6 below,

the duration of the activity period Ai, i = 1, . . . , N of the fluid queue is equal to the

duration of the busy period B
(j)
i , j = 1, . . . , N of the driving queue. Hence, to capture

the characteristic of the M/G/1 queue with multiple inputs such that the service time
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2.6. Relating probability distributions of the driving and fluid queues

of the arrivals depends on the sources of the Poisson process, we have to restrict the

service times of the arrivals in the same activity period to follow a common distribution.

In addition, in the fluid queue, we assume that all arrivals follow a Poisson process with

rate λ instead of multiple Poisson inputs with different rates. Keeping this in mind,

Figure 2.6 illustrates a sample path of the fluid queue and the virtual waiting time of the

driving process. As observed in Figure 2.6, arrivals arrive to the system at time points

t1 and t4, the driving queue manager assigns these arrivals a service time which follows

a distribution G(1) with rate 1/µ1 with probability λ1/λ, such that λ = λ1 + · · · + λN .

These two arrivals initiate busy periods B
(1)
1 and B

(4)
1 in the driving queue and activity

periods A1 and A4 in the fluid queue. In addition, all other arrivals in B
(1)
1 and B

(1)
4

receive a service time that follows a common distribution that the first arrivals in B
(1)
1

and B
(4)
1 encountered.
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Figure 2.6: Sample path of the fluid level and waiting time.

Denote by B
(i)
(x) the ccdf of the busy period of the driving queue that the manager

assigns to the first arrival in the busy period. Using the expression (2.23), for x > 0, we
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2.6. Relating probability distributions of the driving and fluid queues

have

f(x) =

(
1

r1
+

1

r2

)
· πE ·

n∑

i=1

λiB
(i)
(
x

r1

)
+

1

r2

n∑

i=1

λi

∫ ∞

y=0+
B

(i)
(
x− y

r1

)
f(y)dy. (2.67)

Applying the LST operator on both sides of (2.67) yields

C̃(s) = πE

r1r2s+ r2
n∑

i=1

λi(1− B̃(i)(r1s))

r1r2s− r1
n∑

i=1

λi(1− B̃(i)(r1s))
, s > 0, (2.68)

where

πE =

r2 − r1
n∑

i=1

λiE[B
(i)]

r2 + r2
n∑

i=1

λiE[B(i)]
. (2.69)

Using the similar arguments as in (2.64) and (2.65), i.e. r1 = r2 = 1, the LST of the pdf

of the virtual waiting time of the M/G/1 queue with multiple inputs (denoted as Lg(s)),

associated with the fluid queue is

Lg(s) =
1

2
(Lf (s)− πE) + πE =

sπE

s−
n∑

i=1

λi(1− G̃(i)(s))
, s > 0. (2.70)

Denote by π0 the point mass of the virtual waiting time of theM/G/1 queue with multiple

Poisson inputs. Substituting πE by π0 in (2.70) and letting s→ 0 yield

π0 = 1−
n∑

i=1

λi/µi. (2.71)

The expression (2.70) is the LST of the pdf of the virtual waiting time of an M/G/1 with

multiple Poisson inputs discussed in [12, Section 3.6, pp. 102 - 106], and π0 (replacing for

πE) is the probability of the virtual waiting time being at level 0 for the multiple Poisson
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2.6. Relating probability distributions of the driving and fluid queues

inputs queue. For the details of the queueing system, please refer to [12, Section 3.6, pp.

102 - 106].

2.6.2 Fluid queue driven by an M/M/1/1 queue

In this section, we first consider a fluid queue driven by an M/G/1 queue with arrival

rate λ and expected service time 1/µ. In addition, we assume that zero-wait arrivals (an

arrival’s waiting time is 0) at time t, join the driving M/G/1 queue only if the fluid level

of the fluid queue at time t is below K; otherwise, these zero-wait arrivals will be blocked

by the system manager from entering the driving queue. We refer to this discipline as a

balking rule. In other words, a busy period of the driving M/G/1 queue can be initiated

only if the fluid level is below level K. However, the fluid level can go above level K if

the busy period of the driving queue is initiated below level K.

Figures 2.7 (a) and (b) illustrate the sample path of the fluid level and the virtual waiting

time Vb of the driving M/G/1 queue. Here, zero-wait arrivals at time point t1 and t2

are blocked from entering the driving queue, since the fluid levels C at time point t1

and t2 are above level K. It is important to observe in Figures 2.7 (a) and (b) that the

busy periods in the driving queue are distributed as a regular busy period of an M/G/1

queue. Blocking the zero-wait arrivals do not affect the characteristics of the busy period

of the driving queue. Hence, using the previous result (2.23), we have the following LC

equations:

g1(x) = λπE

(
1

r1
+

1

r2

)
B

(
x

r1

)
+

λ

r2

∫ y=x

y=0+
B

(
x− y

r1

)
g1(y)dy, 0 < x ≤ K, (2.72)

g2(x) = λπE

(
1

r1
+

1

r2

)
B

(
x

r1

)
+

λ

r2

∫ y=K

y=0+
B

(
x− y

r1

)
g2(y)dy, K < x <∞, (2.73)
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Figure 2.7: Sample paths of the fluid level and corresponding virtual waiting time of the
driving queue: Diagrams (a), (b) and (c) are discussed below.

with the following initial conditions:

g1(0
+) = λπE

(
1

r1
+

1

r2

)
and g1(K

−) = g2(K
+), (2.74)

where the continuity at the level K is due to the continuity of the sampe path at every

up- and downcrossing instant of level K, and there are no sample path tangents at level

K (see [12, Proposition 3.7, p. 113, for M/D/1]). Solving the equations (2.72) and (2.73)

is difficult since we do not know the form of B(x) which is the ccdf of the busy period of

the driving M/G/1 queue.

Driving queue: M/M/1/1 queue
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2.6. Relating probability distributions of the driving and fluid queues

Instead of focusing on the driving process as an M/G/1 queue with general ‘G’, we now

assume that the driving process is an M/M/1/1/ queue. The details of the M/M/1/1

queue can be found in [12, Section 3.4.10], [24, Section 3.6], and [41, Chapter 5]. In

addition, we apply the same balking rule to this fluid queue, as above. The sample paths

of the fluid level and virtual waiting time of the driving M/G/1 queue are illustrated

in Figure 2.7 (a) and (c). As observed, similar to the M/G/1 queue example, zero-wait

arrivals at time points t1 and t2 are blocked from entering the driving queue by the system

manager. Since we assume the service time S of the M/M/1/1 queue is Exp(µ), we have

P[S > t] = exp(−µt). Substituting this into (2.72) and (2.73), we have (for x ≤ K)

g1(x) = λπE

(
1

r1
+

1

r2

)
exp

(
−

µ

r1
x

)
+

λ

r2

∫ y=x

y=0+
g1(y) exp

(
−

µ

r1
(x− y)

)
dy. (2.75)

Similarly, for x > K, we have,

g2(x) = λπE

(
1

r1
+

1

r2

)
exp

(
−

µ

r1
x

)
+

λ

r2

∫ y=K

y=0+
g2(y) exp

(
−

µ

r1
(x− y)

)
dy. (2.76)

The interpretation of the (2.75) and (2.76) are the same as for (2.23), except that the

upper limit of the integrals are restricted by the level of y ≤ K. To solve for f1(x) and

f2(x) in (2.75) and (2.76), we take derivative with respect to x in (2.75) and (2.76). This

gives us

g′1(x) = −

(
µ

r1
−

λ

r2

)
g1(x) and g′2(x) = −

µ

r1
g2(x) (2.77)
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with a solution that

g1(x) = C1 exp

(
−

(
µ

r1
−

λ

r2

)
x

)
, x ≤ K, (2.78)

g2(x) = C2 exp

(
−

µ

r1
x

)
, x > K. (2.79)

Using the initial condition (2.74) with (2.79), we have

C1 = λπE

(
1

r1
+

1

r2

)
and C2 = λπE

(
1

r1
+

1

r2

)
exp

(
λ

r2
K

)
. (2.80)

Finally, using the normalizing condition,

πE +

∫ ∞

0+
g1(x) + g2(x)dx = 1, (2.81)

we have

πE =
r2(r2 − r1ρ)

(r1 + r2)ρ
(
r2 − ρr1 exp

(
−
(

µ
r1
− λ

r2

)
K
)) , (2.82)

where ρ := λ/µ. To check that πE satisfies a necessary condition, we evaluate the units

on both sides of (2.82). We obtain

[πE ] =

[
(gram/time)2

(gram/time)2

]
= dimensionless, (2.83)

which is a correct dimension for a probability value. This suggests that the expression

(2.82) is reasonable.

To recap our findings in this example, we find the pdf of the fluid level modulated by the
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2.6. Relating probability distributions of the driving and fluid queues

M/M/1/1 queue with arrival rate λ and service rate µ,

f(x) =





λπE

(
1

r1
+

1

r2

)
exp

(
−

(
µ

r1
−

λ

r2

)
x

)
, x ≤ K

λπE

(
1

r1
+

1

r2

)
exp

(
λ

r2
K

)
exp

(
−

µ

r1
x

)
, x > K

(2.84)

where πE is defined in (2.82).

In addition, letting r1 = 1, r2 = 1, multiplying (2.84) by 1/2 and evaluating4 πE in (2.82),

we get the steady-state distribution of waiting time of an M/M/1 queue with workload

dependent balking [29, Theorem 4, p. 256]. In addition, letting K →∞, the expression

(2.84) becomes the distribution of the virtual waiting time of an M/M/1 queue [12, eq.

(3.87) - (3.88), p. 86]. Finally, these two examples hint that we can find the distribution

of the waiting time of an M/G/1-like queue by matching the M/G/1-like queue to the

fluid queue. Finally, it is interesting to point out that the driving queue in this example

is an M/M/1/1 queue; however, we express the pdf of the waiting time of the M/G/1

queue with balking rather than the pdf of the waiting time of the M/M/1/1 queue by

mapping the fluid queue to the M/G/1 queue with balking.

4The authors have a typo on c (which is 2 · πE in our example) on Theorem 6 in [28, p. 27]. When
ρ 6= 1, c = (1− ρ)/(ρ− ρ2e−(µ−λ)b) instead of c = (1− ρ)/(1− ρ2e−(µ−λ)b), where b = K in our case.
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Chapter 3

Fluid queue with level-dependent

rates

We consider two fluid queues with infinite capacity driven by an M/G/1 queue with net

input and the continuous leaking rates depending on the fluid level of the fluid queue and

the type of arrivals in the driving queue. The first model considered in this chapter is a

fluid queue such that the leaking rate depends on the fluid level x > 0. The second model

considered in this chapter is a fluid queue such that both the net input and continuous

leaking rates depend on type of arrivals. The structure of this chapter is as follows:

Section 3.1 corresponds to the first model. There, we first define a fluid queue such that

the leaking rate depends on the fluid level, and then we study the characteristics of such

a model in Sections 3.1.2 - 3.1.4. In Sections 3.1.5 and 3.1.6, we provide two examples for

this model. Section 3.2 corresponds to the second model. The structure of this section

is similar to Section 3.1, except we provide a simulation results in Section 3.2.5 instead

of providing examples as in Sections 3.1.5 and 3.1.6.
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3.1. Fluid queue with leaking rate depending on fluid level

3.1 Fluid queue with leaking rate depending on fluid

level

3.1.1 Introduction

In this section, we consider a fluid queue with a constant net input rate k1 and leaking

rate k2x that depends on the fluid level x (> 0). For example, the total input rate may

be k1 + k2x, in order to compensate for the continuing leakage rate k2x. In terms of

application, such a fluid queue can be used to model battery life of an electronic device.

For instance, the battery life of a device might be modulated by a program within the

device that depends on the remaining life time of the battery before the next charge. To

be more specific, a cell phone device might contain a program to detect the remaining

life time of the battery. When the lifetime of the battery is high, the cell phone is fully

functioning; if the lifetime of the battery is low, certain functions of the cell phone are

restricted to access to reduce the consumption of the battery before the next charge. In

this section, we are interested in the characteristics of fluid level, such as the probability

density function, the expected value, and the LST of the fluid level [22]. Let {C(t)}t≥0

be the fluid level at time t, and let C be the steady-state random variable of {C(t)}t≥0

as t goes to ∞. Figure 3.1 demonstrates a typical sample path of the fluid level and the

virtual waiting time of the driving M/G/1 queue. As observed in the Figure 3.1, once

the fluid level approaches level 0+, the leaking rate of the fluid queue approaches 0+, but

never reaches to 0. This observation in Figure 3.1 hints that the point mass of the fluid

level at zero is zero.
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Figure 3.1: A typical sample path of the fluid queue with leaking rate depending on fluid
level and the virtual waiting time of the driving queue. Top corresponds to the fluid
queue. Bottom corresponds to the driving M/G/1 queue.

3.1.2 Level-crossing equation

As usual, denote by Ut(x) and Dt(x) the number of upcrossings and downcrossings of

level x during (0, t), respectively. Using an LC argument [12, Theorem 6.1, p. 304], we

obtain

lim
t→∞

Ut(x)

t
= k1f1(x) and lim

t→∞

Dt(x)

t
= k2 · x · f2(x), x > 0, (3.1)

and

f(x) = f1(x) + f2(x), x > 0, (3.2)

where lim
t→∞

Ut(x)/t and lim
t→∞

Dt(x)/t are the upcrossing and downcrossing rates of level x,

f1(x) and f2(x) are the partial pdfs of the fluid level defined in similar manner as in (2.5),

and f(x) is the total pdf of the fluid level. Balancing the upcrossing and downcrossing
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3.1. Fluid queue with leaking rate depending on fluid level

rates of level x yields

k1f1(x) = k2 · x · f2(x) =⇒ f1(x) =
k2
k1

xf2(x), x > 0. (3.3)

Substituting (3.3) into (3.2), we have

f1(x) =
k2x

k1 + k2x
f(x) and f2(x) =

k1
k1 + k2x

f(x). (3.4)

Substituting (3.4) into (3.1) agrees with

lim
t→∞

Ut(x)

t
= lim

t→∞

Dt(x)

t
, x > 0. (3.5)

The expression (3.5) is a check on a basic rate balance property of the LC method. In

addition, by the LC argument, we have

k1f1(0
+) = λπE = k2 · 0

+ · f2(0
+), (3.6)

where πE is defined as point mass of the fluid level at level 0. From second equality in

(3.6), we have

πE = 0+ · k2 · f2(0
+)/λ, (3.7)

which implies that πE = 0 for this particular fluid queue. Substituting f2(x) in (3.4) into

lim
t→∞

Dt(x)/t in (3.1) yields

lim
t→∞

Dt(x)

t
=

k1k2x

k1 + k2x
f(x), x > 0. (3.8)

Remark 3.1.1. The unit for k2 [1/time] is different than the unit of the net input rate

k1 [gram/time], since the unit of fluid, x, is grams, and the units for the leaking rate,
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k2 · x, is [gram/time].

Alternative expression of upcrossing rate of level x in the fluid queue: The

alternative expression of the rate at which the sample path of fluid level upcrosses level

x is

lim
t→∞

Ut(x)

t
= λ

∫ ∞

0+
B

(
x− y

k1

)
f2(y)dy, (3.9)

where B(•) is the ccdf of the busy period of the driving M/G/1 queue. The expression

B((x−y)/k1) in (3.9) accounts for the fact that the time required for the sample path to

upcross level x starting from level y in the interval (0, x) is (x−y)/k1. Substituting f2(x)

in terms of f1(x) expressed in (3.3) into (3.9), and balancing two different expressions of

upcrossing rate of level x, (3.1) and (3.9), yields

f1(x) = λ

∫ ∞

0+

1

k2y
· B

(
x− y

k1

)
· f1(y)dy. (3.10)

Alternative expression of downcrossing rate of level x in the fluid queue:

Using the basic property of the LC method, namely: rate in = rate out, the alternative

expression of the rate at which the sample path of fluid level downcrosses level x is

lim
t→∞

Dt(x)

t
= λ

∫ ∞

0+
B

(
x− y

k1

)
f2(y)dy, (3.11)

Balancing two different expression of downcrossing rate of level x, (3.1) and (3.11), yields

f2(x) =
λ

k2x

∫ ∞

0+
B

(
x− y

k1

)
· f2(y)dy. (3.12)
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3.1. Fluid queue with leaking rate depending on fluid level

Summing (3.10) and (3.12) gives

f(x) =
λ(k1 + k2x)

k2x

∫ x

y=0+
B

(
x− y

k1

)
·

1

k1 + k2y
· f(y)dy. (3.13)

To further support the expression f(x) in (3.13) is valid, we use different approach

(method of the ‘page’ by Brill [12, Chapter 4, pp. 162 - 254, and Section 10.10, pp.

433 - 439]) to find the f(x). The details of the different approach can be found in Ap-

pendix A.3. Here, to increase the confidence of the expression (3.13) is valid, we evaluate

the unit of the both sides of (3.13), namely

[
1

gram

]
=




1

T
·
(gram

T
+

gram

T

)

gram

T


 ·
[
1 ·

T

gram
·

1

gram
· gram

]
=

[
1

gram

]
. (3.14)

Solving the functional equation of the form in (3.13) is challenge, instead we solve for

f(x) using the expression (3.4) and the functional equation for f2(x) expressed in (3.12).

3.1.3 Probability distribution of fluid level

In this section, we express the pdf of the fluid level in terms of the pdf f2(x) defined in

(3.4). First, we summarize the findings of the pdf f2(x) in Section 3.1.2. For x > 0, by

using the expressions (3.4), the pdf of the fluid level f(x) can be expressed in terms of

f2(x):

f(x) =

(
1 +

k2x

k1

)
f2(x), x > 0, (3.15)

where f(x) is the total pdf of the fluid level, and f2(x) > 0 is the partial pdf defined as

f2(x) =
d

dx
lim
t→∞

P[C(t) ≤ x, Z(t) = 2], (3.16)
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3.1. Fluid queue with leaking rate depending on fluid level

where {Z(t)}t≥0 is defined in (2.2). The functional equation form for f2(x) is expressed

in (3.12). More importantly, as observed in the expression (3.16), it is clearly that f2(x)

is not a well-defined pdf such that

∫ ∞

0+
f2(x)dx 6= 1, (3.17)

and equivalently

lim
s→0

Lf2(s) 6= 1. (3.18)

Denote by {C(t), Z(t)}t≥0 the process of the fluid queue. To find the pdf of the fluid

level, we decompose the process {C(t), Z(t)}t≥0 into two sub-processes corresponding to

{Z(t) = 1}t≥0 and {Z(t) = 2}t≥0, namely:

{C(t), Z(t)}t≥0 = {C(t), Z(t) = 1}t≥0
⋃
{C(t), Z(t) = 2}t≥0. (3.19)

We refer to the page that corresponds to the process {C(t), Z(t)}t≥0 as the cover page.

Likewise, we refer to the page that corresponds to the process {C(t), Z(t) = 1}t≥0 as the

page 1, and the page that corresponds to the process {C(t), Z(t) = 2}t≥0 as the page

2. The sample path of the process {Z(t)}t≥0, and the sample paths of the fluid level on

page 1 and 2, and cover page are illustrated in Figure 3.2. As observed in the figures, the

fluid enters the fluid content is governed by the alternative renewal process {Z(t)}t≥0.

Denote by B the busy period of the driving M/G/1 queue and by I the idle period of

the driving M/G/1 queue, we have

lim
t→∞

P[Z(t) = 1] =
E[B]

E[B] + E[I]
and lim

t→∞
P[Z(t) = 2] =

E[I]

E[B] + E[I]
. (3.20)

Solution for f2(x): Let C2 denote the steady-state random variable of {C(t), Z(t) =
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Figure 3.2: (a) a sample path of {Z(t)}t≥0, (b) a sample path of {C(t), Z(t)}t≥0, (c) a
sample path of {C(t), Z(t) = 2}t≥0, and (d) a sample path of {C(t), Z(t) = 1}t≥0.

2}t≥0 as t goes to ∞. For s > 0, define

C̃2(s) =

∫ ∞

0−
e−sxdP[C2 ≤ x], and B̃(s) =

∫ ∞

0+
e−sxdP[B ≤ x], (3.21)

as the LST of the pdf of the fluid level and the LST of the pdf of the busy period of

the driving M/G/1 queue respectively. Multiplying e−xs on both sides of (3.12) and
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3.1. Fluid queue with leaking rate depending on fluid level

integrating with respect to x over (0,∞) yields

∫ ∞

0+
e−sxxf2(x)dx =

λ

k2

∫ ∞

x=0+

∫ x

y=0+
e−xsB

(
x− y

k1

)
f2(y)dydx, x > 0. (3.22)

In the double integral, replacing e−xs by e−(x−y+y)s, and interchanging limits yields

∫ ∞

x=0+

∫ x

y=0+
e−(x−y+y)sB

(
x− y

k1

)
f(y)dydx

=

∫ ∞

y=0+
e−ysf2(y)

∫ ∞

x=0+
e−(x−y)sB

(
x− y

k1

)
dxdy.

Letting u = (x− y)/k1 and k1du = dx, and substituting into the above expression yields

∫ ∞

y=0+
e−ysf2(y)

∫ ∞

x=0+
e−(x−y)sB

(
x− y

k1

)
dxdy

= k1

∫ ∞

x=0+
e−xsdP[C2 ≤ x]

∫ ∞

u=0+
e−uk1sB(u)du. (3.23)

Using a property of LST1 and substituting (3.23) into (3.22) yield

C̃2
′
(s)

C̃2(s)
= −λ

1− B̃(k1s)

k2s
, s > 0, (3.24)

with solution

C̃2(s) = C0 exp

(
−

λ

k2

∫ s

0

1− B̃(k1w)

w
dw

)
, s > 0, (3.25)

where C0 is an unknown. As highlight in the (3.18), letting s → 0 in (3.25) do not give

1, hence we cannot find C0 using this property of LST for pdf.

Denote by Cx|2 the steady-state random variable of {C(t)|Z(t) = 2}t≥0 as t goes to ∞,

1For x > 0, L(xf(x)) = −f̃ ′(s) where f̃(s) is the LST of f(x).
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3.1. Fluid queue with leaking rate depending on fluid level

and by g(x) the pdf of the random variable Cx|2. The cdf of Cx|2 is

P[Cx|2 ≤ x] =
P[C ≤ x, Z = 2]

P[Z = 2]
=

P[C2 ≤ x]

P[Z = 2]
, x > 0, (3.26)

where P[Z = 2] is defined in (3.20). The expression (3.26) suggests that

g(x) =
1

P[Z = 2]
f2(x), and Lg(s) =

1

P[Z = 2]
, C̃2(s). (3.27)

where C̃2(s) is the LST of the f2(x) defined in (3.25). Letting s go to 0 in (3.27) yield

C0 = P[Z = 2]. Substituting f2(x) = P[Z = 2] · g(x) into (3.15) we have,

f(x) =

(
1 +

k2x

k1

)
· P[Z = 2] · g(x), x > 0. (3.28)

Taking LST in both sides of (3.28), we have2

C̃(s) =

(
C̃2(s)−

k2
k1
C̃ ′2(s)

)
, (3.29)

Driving process: M/M/1 queue: Assume that the driving queue of the fluid queue

is an M/M/1 queue with arrival rate λ and service rate µ such that λ < µ. The LST of

the pdf of the busy period is well-known (see [45, eq. (31), p. 390] for the details):

B̃(s) =
µ+ λ+ s−

√
(µ+ λ+ s)2 − 4λµ

2λ
, s > 0. (3.30)

Fixing λ = 1 and µ = 2, and substituting (3.30) into (3.29), Figure 3.3 illustrates the LST

of the pdf of the fluid level for 4 cases3: k1 = 6, k2 = 2; k1 = 1, k2 = 3, and k1 = 1, k2 = 4,

and k1 = 1, k2 = 5.

2For x > 0, L(xf(x)) = −f̃ ′(s) where f̃(s) is the LST of f(x).
3The pdf and the cdf of the fluid level can be numerically computed using Euler and Post-Widder

algorithm. The details of the numerical inversion of LST of probability distributions and the algorithms
are discussed in [2].
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3.1. Fluid queue with leaking rate depending on fluid level

Figure 3.3: Laplace-Stieltjes transform of the pdf of the fluid level. Driving queue is
M/M/1.

3.1.4 Mapping the integral equation of the probability density

function of the workload of M/M/r(·) and the fluid level

Consider an M/M/r(·) dam model (see [12, Section 10.8, pp.423 - 426] for the details

of the model and setup of the LC equation) with releasing rate depending on the level

of the workload, namely: k2x, and arrival rate λ and service rate µ. Denote by D(t)

the workload at time t for the M/M/r(·). A typical sample path of the {D(t)}t≥0 is

illustrated in Figure 3.4. Brill [12, Section 10.8.2, eq. (10.57), pp. 424 - 426] found that

the LC equation of the pdf of the workload of the M/M/r(·) dam is

h(x) =
λ

k2x

∫ x

y=0+
e−µ(x−y)g(y)dy, x > 0, (3.31)
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Figure 3.4: A sample path of {D(t)}t≥0.

with solution that h(x) is a Gamma pdf, namely (see Brill [12, eq. (6.44), p. 317] for

details)

h(x) =
1

Γ(λ/k2)
µ(µx)(λ/k−1) exp(−µx), x > 0, (3.32)

with

Lh(s) =

(
1 +

s

µ

)−λ/k2
, s > 0, (3.33)

where Lh(s) is the LST of the pdf h(x). The goal of this section is expressing the h(x)

in terms of the pdf of the fluid level f2(x).

To express h(s) in terms of f2(x), we fix the net input rate k1 = 1 and assume that

B is exponential distributed with rate µ in this section. A typical sample path of the

{C(t)}t≥0 is illustrated in Figure 3.5 (a). To connect the sample paths of the {D(t)}t≥0

and the {C(t)}t≥0, we focus on the sample path of the fluid level on ‘page 2’, i.e. the

fluid process {C(t), Z(t) = 2}t≥0. The sample path of {C(t), Z(t) = 2}t≥0 is illustrated

in Figure 3.5 (b). The steady-state partial pdf of the sub-process {C(t), Z(t) = 2}t≥0 as

t→∞ is expressed in (3.4), namely

f2(x) =

(
1

1 + k2x

)
f(x), x > 0. (3.34)
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Figure 3.5: (a) a sample path of {C(t)}t≥0, (b) a sample path of {C(t), Z(t) = 2}t≥0, (c)
a sample path of {C(t) | Z(t) = 2}t≥0.

Consider the process {C(t) | Z(t) = 2}t≥0 which illustrated in Figure 3.5 (c). Comparing

the sample path of {C(t) | Z(t) = 2}t≥0 in Figure 3.5 (c) and the sample path of {D(t)}t≥0

in Figure 3.4, these two sample paths share the same characteristics. This suggests that

the pdf associated with the process {D(t)}t≥0 is identical to the pdf associated with the

process {C(t)|Z(t) = 2}t≥0. Thus, we can express h(x) in terms of f2(x), namely

h(x) =
d

dx

(
P[C ≤ x, Z = 2]

P[Z = 2]

)
=

(
1 +

λ

µ

)
f2(x), (3.35)

where lim
t→∞

P [Z(t) = 2] = µ/ (µ + λ), since we assume that B is exponential distributed

with rate µ. To validate the expression in (3.16)), we take LST on both sides (3.35).
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3.2. Fluid queue with different leaking rates

This yields

Lh(s) =

(
1 +

λ

µ

)
Lf2(s). (3.36)

To evaluate (1 + λ/µ)Lf2(s), we substitute
(
1− B̃(w)

)
= µ/(µ + w) into (3.25). This

gives

(
1 +

λ

µ

)
Lf2(s) = exp

(
−

λ

k2

∫ s

0

1

µ+ w
dw

)
=

(
1 +

s

µ

)−λ/k2
, (3.37)

which suggests that (1 + λ/µ)f2(x) is Gamma distributed. Comparing the expressions

(3.35) and (3.33), we confirm that the expression (3.35) is valid.

3.2 Fluid queue with different leaking rates

3.2.1 Introduction

We consider a fluid queue with infinite capacity as discussed in Chapter 2 such that

the activity, silence, and empty periods of the fluid queue are modulated by an M/G/1

queue (hereafter modified fluid queue). During the busy period of the driving M/G/1

queue, the fluid content fills at net rate r1, whereas during the idle period of the driving

queue, the fluid content empties at one of two different possible rates decided by a system

manager at the time point that the activity period of the fluid queue starts at the fluid

queue. With probability p2, the fluid content empties at rate r2, and with probability

p3, the fluid content empties at rate r3, such that p2 + p3 = 1. In addition, once the

continuous leaking rate is determined, the leaking rate stays the same for the entire busy

cycle of the driving queue. Figure 3.6 demonstrates a typical sample path of the modified

fluid queue and the driving M/G/1 queue. As observed in Figure 3.6, the M/G/1 queue
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Figure 3.6: A sample path of the fluid queue and the driving M/G/1 queue

consists of six completed busy cycles Ci and one incompleted busy cycle. During the 1
st

and 3rd cycles, the fluid content empties at rate r2, whereas during the 2
nd, 4th 5th, and

6th cycles, the fluid content empties at rate r3. More importantly, the leaking rate of the

fluid queue for each busy cycle of the driving queue is determined by the system manager

at the time points (which is indicated by circles in Figure 3.6) when arrivals arrive to the

empty M/G/1 queue.

3.2.2 Level-crossing equation

Denote by C(t), Z(t), and R(t) the fluid level, the states of the driving queue defined in

(2.2), and the net input rate of the fluid queue at time t > 0. Denote by Fi,j,t(x) the

partial cdf’s of fluid content at time t,

Fi,j,t(x) := P[C(t) ≤ x, Z(t) = i,R(t) = rj], i = 1, 2; j = 1, 2, 3; x > 0, (3.38)
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and by fi,j(x) the partial steady-state pdfs corresponding to Fi,j,t(x) as t→∞,

fi,j(x) :=
d

dx
lim
t→∞

P[C(t) ≤ x, Z(t) = i,R(t) = rj], i = 1, 2; j = 1, 2, 3, x > 0. (3.39)

The marginal steady-state pdf of the fluid content is

f(x) = f1,1(x) + f2,2(x) + f2,3(x), x > 0. (3.40)

Denote by Fi,j(x) the steady-state cdf of Fi,j,t(x) as t→∞. Then we have

Fi,j(x) = πE +

∫ ∞

x=0+
fi,j(x)dx, (3.41)

where πE is the point mass of the fluid level at 0. To simplify the notation in this section,

we replaced fi,j(x) by fj(x). Note that the pdfs f(x), f1(x), f2(x), and f3(x) are defined

only when x > 0.

To find the steady-state distribution of the fluid level, we use the page method [12,

Chapter 4, pp. 162 - 254, and Section 10.10, pp. 433 - 439]. The page method allows

researchers to write a total pdf of a process in terms of its sub-process pdfs. Thus, to apply

the page method, first we decompose the stochastic process {C(t), Z(t),R(t)}t≥0 into 4

different sub-processes and record the sample path of each process on 4 different ‘pages’.

The sample path on page 1 corresponds to the process {C(t), Z(t) = 1,R(t) = r1}t≥0,

the sample path on page 2 corresponds to the process {C(t), Z(t) = 2,R(t) = r2}t≥0, the

sample path on page 3 corresponds to the process {C(t), Z(t) = 2,R(t) = r3}t≥0, and

the sample path on page 4 corresponds to the process {C(t) = 0, Z(t) = 2,R(t) = 0}t≥0.

Figure 3.7 illustrates a typical sample path of the {C(t), Z(t),R(t)}t≥0 and the sub-

processes of it. Finally, we refer to the page that corresponds to the original process

{C(t), Z(t),R(t)}t≥0 as the cover page (note that in LC, ‘pages’ are also called ‘sheets’).
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Figure 3.7: Sheet and line 0 diagram

Page equations:

Page 1: Balancing the rate at which the sample path enters the composition state

((x,∞), 1), x > 0, and leaves the composition state ((x,∞), 1), x > 0, where 1 corre-
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3.2. Fluid queue with different leaking rates

sponds to the page 1, gives us

r1f1(x) + λ

∫ ∞

y=x

f2(y)dy + λ

∫ ∞

y=x

f3(y)dy

= λπEB

(
x

r1

)

+ λ

∫ ∞

y=x

f2(y)dy + λ

∫ x

y=0+
B

(
x− y

r1

)
f2(y)dy

+ λ

∫ ∞

y=x

f3(y)dy + λ

∫ x

y=0+
B

(
x− y

r1

)
f3(y)dy, (3.42)

where B(·) is ccdf of the busy period of the drivingM/G/1 queue. The terms on the left-

hand side of (3.42) correspond to the rate at which the sample path enters ((x,∞), 1),

namely: (i) the sample path upcrosses level x at rate r1f1(x); (ii) the rate at which

the sample path enters ((x,∞), 1) from ((x,∞), 2); (iii) the rate at which the sample

path enters ((x,∞), 1) from ((x,∞), 3). The terms on the right-hand side correspond to

the rate at which the sample path leaves ((x,∞), 1) on page 1, namely: (i) the rate at

which the sample path enters ((x,∞), 1) from level 0 and the busy period of the driving

queue ends via the fluid level above level x; (ii) the rate at which the sample path enters

((x,∞), 1) from ((x,∞), 2); (iii) the rate at which the sample path enters ((x,∞), 1)

from ((0+, x), 2) and the activity period of the fluid queue ends at level y in (x,∞) on

page 1; (iv) the rate at which the sample path enters ((x,∞), 1) from ((x,∞), 3); (v) the

rate at which the sample path enters ((x,∞), 1) from ((0+, x), 3) and the activity period

of the fluid queue ends at level y in (x,∞) on page 1.

To further support the level crossing equation (3.42), we examine the unit of the left-hand

and right-hand sides of (3.42). Let T be the unit of time and grams be the unit of the

fluid. The unit of the right-hand side of (3.42) is

[
r1f1(x) + λ

∫ ∞

y=x

f2(y)dy + λ

∫ ∞

y=x

f3(y)dy

]
=

[
grams

T
·

1

grams
+
1

T

]
=

[
1

T

]
. (3.43)
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The unit of the first term on the right-hand side of (3.42) is

[
λπEB

(
x

r1

)]
=

[
1

T

]
, (3.44)

and the units of the second and third terms on the right-hand side of (3.42) are

[∫ ∞

y=x

f2(y)dy + λ

∫ x

z=0+
B

(
x− y

r1

)
f2(y)dy

]
=

[
1

T
·

1

grams
· grams

]
=

[
1

T

]
. (3.45)

Similarly, the units of the remaining terms on the right-hand side of (3.42) are [1/T ] as

well. Thus, the units of the left- and right-hand side of (3.42) are equal.

Remark 3.2.1. The unit of the left- and right-hand side in the level crossing equation

being equal does not guarantee that the level crossing equation is defined correctly. Unit

checking can only be used to verify that the level crossing equation is not defined incor-

rectly, i.e. it is a necessary condition for the level crossing equation to be correct, but it

is not a sufficient condition.

Next, simplifying (3.42) gives us,

r1f1(x) = λπEB

(
x

r1

)
+ λ

∫ x

y=0

B

(
x− y

r1

)
(f2(y) + f3(y)) dy, x > 0. (3.46)

Both sides of (3.46) can be interpreted as the rate at which the sample path upcrosses

level x.

Pages 2 and 3: Balancing the rate at which the sample path enters and leaves ((x,∞), 2), x >
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0, and the rate at which the sample path enters and leaves ((x,∞), 3), x > 0, yields

p2λπEB

(
x

r1

)
+ p2λ

∫ x

z=0

B

(
x− y

r1

)
f2(y)dy + p2λ

∫ ∞

y=x

f2(y)dy

+ p2λ

∫ x

z=0

B

(
x− y

r1

)
f3(y)dy + p2λ

∫ ∞

y=x

f3(y)dy

= r2f2(x) + λ

∫ ∞

y=x

f2(y)dy, (3.47)

and

p3λπEB

(
x

r1

)
+ p3λ

∫ x

z=0

B

(
x− y

r1

)
f2(y)dy + p3λ

∫ ∞

y=x

f2(y)dy

+ p3λ

∫ x

z=0

B

(
x− y

r1

)
f3(y)dy + p3λ

∫ ∞

y=x

f3(y)dy

= r3f3(x) + λ

∫ ∞

y=x

f3(y)dy, (3.48)

respectively. The interpretations of (3.47) and (3.48) are similar to (3.42). Addition of

(3.42), (3.47), and (3.48) yields

r1f1(x) = r2f2(x) + r3f3(x), x > 0. (3.49)

Balancing the rate at which the sample path enters and leaves level 0, we have

r1f1(0
+) = r2f2(0

+) + r3f3(0
+) = λπE , (3.50)

r2f2(0
+) = p2λπE and r2f3(0

+) = p3λπE . (3.51)

The expression (3.49) can be achieved by recognizing the following property, namely,

lim
t→∞

U1
t (x)

t
= lim

t→∞

D2
t (x)

t
+ lim

t→∞

D3
t (x)

t
, x > 0, (3.52)

where U1
t (x) is the numbers of upcrossings of level x on page 1, D2

t (x) and D3
t (x) are
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3.2. Fluid queue with different leaking rates

the numbers of downcrossings of level x on pages 2 and 3 during the time interval (0, t),

respectively. By the LC argument, we have

lim
t→∞

U1
t (x)

t
= r1f1(x), lim

t→∞

D2
t (x)

t
= r2f2(x), lim

t→∞

D3
t (x)

t
= r3f3(x). (3.53)

Substituting (3.53) into (3.52) yields (3.49). Collecting the term f3(x) in (3.49) and

substituting f3(x) into (3.40) gives us

f(x) =

(
1 +

r1
r3

)
f1(x) +

(
1−

r2
r3

)
f2(x). (3.54)

To express f1(x), f2(x), and f3(x) in terms of f(x), we use the triangle diagram approach

to find the long-run proportion of time for the activity periods. Figure 3.8 (a) and (b)

demonstrates a sample path of the fluid level with leaking rate r2 (with probability p2)

and r3 (with probability p3) given that the duration of activity period of the fluid queue

is h2 and h3, respectively.
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Figure 3.8: Triangle diagrams for a typical sample path

Observe in Figure 3.8 (a) and (b) that the proportion of time that the fluid level upcrosses

and downcrosses level x are

r2
r1 + r2

and
r1

r1 + r2
, (3.55)
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3.2. Fluid queue with different leaking rates

respectively. This suggests that

f1|2(x) =
r2

r1 + r2
f(x) and f2|2(x) =

r1
r1 + r2

f(x), (3.56)

where f(x) is the marginal density of the fluid level defined in (3.40), and fi|j(x) is the

partial density defined as

fi|j(x) =
d

dx
lim
t→∞

P[C(t) ≤ x, Z(t) = i | Leaking rate = rj], i = 1, 2; j = 2, 3. (3.57)

Using a similar approach, we have

f1|3(x) =
r3

r1 + r3
f(x) and f3|3(x) =

r1
r1 + r3

f(x). (3.58)

For {C(t) > 0}t≥0, the leaking rate is independent of the fluid level and the state back-

ground processes {Z(t)}t≥0 defined in (2.2). Thus by expressions (3.56) and (3.58), we

have

f1(x) =
p2r2

r1 + r2
f(x) +

p3r3
r1 + r3

f(x), (3.59)

f2(x) =
p2r1

r1 + r2
f(x) and f3(x) =

p3r1
r1 + r3

f(x). (3.60)

Substituting (3.60) into (3.46) gives us (for x > 0)

r1(r2p2h1 + r3p3h2)f(x) = λπEh1h2B

(
x

r1

)

+ λ(p2h1 + p3h2)

∫ x

y=0

B

(
x− y

r1

)
f(y)dy, (3.61)

where h1 = r1 + r3 and h2 = r1 + r2.
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3.2. Fluid queue with different leaking rates

3.2.3 Probability distribution of fluid level

For s > 0, define

C̃(s) = πE +

∫ ∞

0+
e−sxdP[C ≤ x], and B̃(s) =

∫ ∞

0

e−sxdP[B ≤ x] (3.62)

as the LST of the pdf of the fluid level and the pdf of the busy period of the driving

queue, respectively. Multiplying e−sx on both sides of (3.61) and integrating with respect

to x over (0, x) yields

r1s (r2p2h1 + r3p3h2)
(
C̃(s)− πE

)
= λπEh1h2

(
1− B̃(r1s)

)

+ λ(p2h1 + p3h2)
(
1− B̃(r1s)

)(
C̃(s)− πE

)
. (3.63)

Collecting the term C̃(s) yields

C̃(s) = πE




r1p2h1

[
r2s− λ

(
1− B̃(r1s)

)]
+ r1p3h2

[
r3s− λ

(
1− B̃(r1s)

)]

r1

[
p2h1

[
r2s− λ

(
1− B̃(r1s)

)]
+ p3h2

[
r3s− λ

(
1− B̃(r1s)

)]]

+
λh1h2

[
1− B̃(r1s)

]

r1

[
p2h1

[
r2s− λ

(
1− B̃(r1s)

)]
+ p3h2

[
r3s− λ

(
1− B̃(r1s)

)]]


 . (3.64)

To find πE , first letting s→ 0+ and applying L’Hôpital’s Rule in (3.64) yields

lim
s→0+

C̃(s) = πE

(
r1p2h1(r2 − r1λE[B]) + r1p3h2(r3 − r1λE[B])

r1 [p2h1(r2 − r1λE[B]) + p3h2(r3 − r1λE[B])]

+
r1λh1h2E[B]

r1 [p2h1(r2 − r1λE[B]) + p3h2(r3 − r1λE[B])]

)
.

Then using a property of LST, namely C̃(0+) = 1, gives us

πE =
r1 [p2h1(r2 − r1λE[B]) + p3h2(r3 − r1λE[B])]

r1p2h1(r2 − r1λE[B]) + r1p3h2(r3 − r1λE[B]) + r1λh1h2E[B]
. (3.65)
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3.2. Fluid queue with different leaking rates

Remark 3.2.2. Substituting r3 = r2 in (3.65) yields

πE =
r2 − r1λE[B]

r2 + r2λE[B]
, (3.66)

which equals the result in (2.34), namely the long-run proportion of time that the fluid

level is at 0 for the fluid queue defined in Section 2.1.1. The expression (3.66) is a

necessary condition for (3.65) being correct.

Figure 3.9 illustrates the LST of the pdf of the fluid level corresponding to five different

sets of parameters µ = 3, λ = 2, p2 = 0.3, p3 = 1 − p2, r1 = 1, r2 = 6 with r3 =

6, 5.5, 5, 4.5, 4. Without loss of generality, we assume that the driving queue for the

fluid queue is an M/M/1 queue. It is important to note that when r3 = 6, we have the

ordinary fluid queue driven by an M/M/1 queue discussed in Section 2.1.1. As observed,

the LST of the pdf of the fluid level for the ordinary fluid queue is the upper bond of the

LST of the pdfs of the fluid level. In addition, as r3 (< 6) decreases, the LST of the pdf

of the fluid level decreases with respect to s, and πE decreases as well. One explanation

is that the long-run proportion of time of the wet period is proportion to the continuous

leaking rate r3, as the continuous leaking rate r3 decreases, the long-run proportion of

time of the wet period increases, thus πE decreases. Using this argument, we can conclude

that the LST of the pdf of the fluid level with r3 = 6 is the upper bound of the LSTs of

the pdf of the fluid level, since the sample path of the fluid level (with rate r3 = 6) takes

less time to reach level 0 than other sample path of the fluid levels (with r3 < 6)., i.e. it

has higher chance to finish the game before the catastrophe arrives.

Similarly, Figure 3.10 illustrates the LST of the pdf of the fluid level corresponding to

five different sets of parameters µ = 3, λ = 2, p2 = 0.3, p3 = 1 − p2, r1 = 1, r2 = 6 with

r3 = 6, 6.5, 7, 7.5, 8. As observed, the LST of the pdf of the fluid level for the ordinary

fluid queue is the lower bond of the LSTs of the pdf of the fluid level. In addition, as
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3.2. Fluid queue with different leaking rates

Figure 3.9: Laplace transform of fluid level

Figure 3.10: Laplace transform of fluid level

r3 (> 6) increases, the LST of the pdf of the fluid level pdf increases with respected to

s, and πE increases as well. Finally, the LST of the pdf of the fluid level with rate r3 = 6

is the lower bound of the other LSTs of the pdf of the fluid level can be explained using

similar argument for the continuous leaking rate r3 < 6.
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3.2. Fluid queue with different leaking rates

Finally, Figures 3.11 and 3.12 illustrate the approximate pdf of fluid level for x ∈ (0, 10]

corresponding to Figures 3.9 and 3.10 respectively by using the EULERMethod described

in [1, 3].

Figure 3.11: Approximated probability density functions corresponding to the LSTs in
Figure 3.9

Figure 3.12: Approximated probability density functions corresponding to the LSTs in
Figure 3.10
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3.2. Fluid queue with different leaking rates

Taking derivatives with respect to s in (3.64) gives us

C̃ ′(s) =
λπE(h1 + h2)(p2r1h1 + p3r3h2)

(
B̃(r1s)− r1sB̃

′(r1s)− 1
)

r1

[
p2h3

(
r2s− λ

(
1− B̃(r1s)

))
+ p3h2

(
r3s− λ

(
1− B̃(r1s)

))]2 , (3.67)

where h1 = r1+r3 and h2 = r1+r2. Multiplying ny −1 on both sides of above expression,

and letting s→ 0 (and applying L’Hôpital’s Rule two times) yields

−C̃ ′(s)
∣∣∣
s=0

= πE
r1λh1h3(p2r1r2 + p2r2r3 + p3r1r3 + p3r2r3)E[B

2]

2 (p2h1 (r2 − λr1E[B]) + p3h2 (r3 − λr1E[B]))
2 , (3.68)

which is the expected fluid level of this particular fluid queue.

Remark 3.2.3. Letting r3 = r2 in (3.68) yields

E[C] =
r1r2(r1 + r2)λE[B

2]

2(r2 − λE[B])2
(3.69)

which equals the expression in (2.43) for the expected fluid level discussed in Section 2.3.2.

3.2.4 Expected value of fluid level

Denote by W and E the wet period and the idle period of the fluid queue. Using the

Renewal Reward Theorem ([34, Prop. 7.3, p. 417]), often used in the LC method, the

long-run proportion of time that {C(t)}t>0 is above level 0 is

λπEE[W ] = 1− πE , (3.70)

and the long-run proportion of time that {C(t)}t>0 is at level 0 is

λπEE[E ] = πE . (3.71)
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3.2. Fluid queue with different leaking rates

Summing (3.70) and (3.71) gives

λπEE[Wc] = 1, (3.72)

whereWc is the wet cycle of the fluid queue. The expression (3.72) can be easily achieved

by using the Renewal Reward Theorem ([34, Prop. 7.3, p. 417]).

Lemma 3.2.4. Assume that fluid queue is stable. Then the expected wet period, idle

period, and wet cycle of the fluid queue are determined by λ and πE , namely

E[W ] =
1− πE
λπE

, E[E ] =
1

λ
, and E[Wc] =

1

λπE
. (3.73)

Using a simple LC argument, we express the expected value of wet cycle, wet period,

and idle period in terms of λ and πE without finding the distribution of the wet cycle

and wet period4.

3.2.5 Simulation of fluid level

In this section, we conduct a numerical study to illustrate the performance of the modified

fluid queue and the ordinary fluid queue introduced in Section 2.1.1, in terms of their

expected values (C), wet periods (W), and the point mass of fluid level at 0 (πE), using

MAPLE 18. As usual, we assume that both fluid queues are driven by an M/M/1 queue

with arrival rate λ = 2.5 and service rate µ = 6. In addition, we assume that the net

input rate r1 = 1, the leaking rate r2 = 6 with probability p2 = 0.3, and the leaking rates

r3 with probability p3 = 1− p2.

In terms of the simulation processes, each simulation contains 10, 000 arrivals in the

4Similar arguments can be used to find the busy cycle, busy period and idle period of an M/G/1
queue. See [12, Section 3.3.8, p. 71].
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3.2. Fluid queue with different leaking rates

driving M/M/1 queue. For each complete wet cycle of the fluid queues, we compute the

average fluid levels, wet and empty periods corresponding to the modified fluid queue.

The empirical expected fluid level and wet period, and probability of fluid level being at

level 0 are computed by aggregating the average fluid level for each simulated complete

wet cycle, and duration of wet and empty periods in each simulated complete wet cycle.

In terms of the theoretical expected values of fluid level, wet period and probability

of being at level 0, we use (3.68), (3.73), and (3.65) respectively. The results of the

simulation are reported in Table 3.1.

Table 3.1: Simulation results of fluid level

Parameters Empirical results Theoretical results
λ µ r1 r2 r3 p2 p3 E[C] E[W ] πE E[C] E[W ] πE
2.5 6.0 1.0 6.0 4.0 0.3 0.7 0.311 0.435 0.478 0.310 0.434 0.479
2.5 6.0 1.0 6.0 4.5 0.3 0.7 0.297 0.415 0.490 0.296 0.415 0.490
2.5 6.0 1.0 6.0 5.0 0.3 0.7 0.286 0.400 0.499 0.285 0.400 0.500
2.5 6.0 1.0 6.0 5.5 0.3 0.7 0.278 0.388 0.507 0.277 0.388 0.507

2.5 6.0 1.0 6.0 6.0 0.3 0.7 0.271 0.378 0.513 0.270 0.378 0.513

2.5 6.0 1.0 6.0 6.5 0.3 0.7 0.265 0.370 0.518 0.264 0.370 0.519
2.5 6.0 1.0 6.0 7.0 0.3 0.7 0.260 0.363 0.523 0.259 0.363 0.523
2.5 6.0 1.0 6.0 7.5 0.3 0.7 0.256 0.358 0.527 0.255 0.357 0.527
2.5 6.0 1.0 6.0 8.0 0.3 0.7 0.252 0.353 0.531 0.252 0.352 0.531

As shown in Table 3.1, the expected fluid level and the expected wet period decrease as

the leaking rate r3 increases. Conversely, the probability of the fluid level being at level

0 increases as the leaking rate r3 increases. It is important to note that for the modified

fluid queue, when r2 = r3 = 6, it becomes the ordinary fluid queue discussed in Chapter

2. When r3 < 6, the expected fluid level and wet period are larger than the expected

fluid level and wet period of the ordinary fluid queue, whereas the expected fluid level

and wet period are less than the expected fluid level and wet period of the ordinary fluid

queue when r3 > 6.
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Chapter 4

Fluid queue with jump fluid inputs

In Chapters 2 and 3, we consider fluid queues where the fluid content fills at rate r1

continuously when the server of the driving queue is busy, and the fluid content empties

at rate r2 continuously as long as the fluid content is non-empty. In this chapter, we

consider two models of fluid queues in which the arrival process of the driving queue, in

terms of accepting or rejecting a zero-wait arrival, is controlled by a fluid queue manager.

If the system manager rejects the zero-wait arrivals, then the arrivals leave the driving

queue without having a service. However, the fluid content is able to receive the fluid

generated by these arrivals instantly when they leave the driving queue. For each model,

the Laplace-Stieltje transforms (LST) of the probability density function (pdf) of the

fluid level is derived for the fluid models.
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4.1. Model I: Fluid queue with irregular arrivals

4.1 Model I: Fluid queue with irregular arrivals

4.1.1 Motivation and introduction

Motivation. In Chapters 2 and 3, we study the characteristics of the fluid queue where

the fluid enters and leaves the fluid content depending on the background process, and

the fluid level. For these fluid queues, it is assumed that any arrival at the driving queue

will receive a service, and the fluid content receives the fluid generated by these arrivals

continuously with net input rate r1 when the server of the driving queue is busy. In this

chapter, we consider a fluid queue where the fluid content not only fills at rate r1, but

also the fluid content can receive the fluid instantly when an arrival in the driving queue

is rejected by the system manager.

Introduction. In the classical fluid queue driven by a single server M/G/1 queue, let

B denote the busy period of the driving M/G/1 queue. All busy periods initiated by

the zero-wait arrivals in the driving queue contribute r1B units of the fluid to the fluid

content up to the end of the busy period in the driving queue. Suppose, however, that

during an empty period of the fluid queue, the decision of accepting (with probability

1− p) or rejecting (with probability p) a zero-wait arrival in the driving M/G/1 queue is

made by a system manager. If the system manager decides to reject the zero-wait arrival

in the driving queue, the rejected arrival will leave the driving queue without receiving

a service. However, the fluid content in the fluid queue can still receive (instantly) the

fluid generated by the rejected zero-wait arrival. Here, we assume that the magnitude

of the fluid inputs generated by the rejected zero-wait arrivals equal the magnitude of

their service times in the driving queue. We refer to the zero-wait arrivals who arrive

at the time when the fluid content is empty and are rejected by the driving queue as

irregular zero-wait arrivals, and those accepted by the system manager as regular zero-

wait arrivals.
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Figure 4.1: A sample path of fluid queue with irregular arrival

Figure 4.1 illustrates a sample path of the fluid level (top) and a sample path of the

virtual waiting time of the driving queue (middle) corresponding to the fluid queue.

The arrival times of the regular and irregular zero-wait arrivals are illustrated at the

bottom of the Figure 4.1. Here, the fluid queue consists of 3 wet periods. The first

wet period W1 encompasses three M/G/1 busy periods (B1, B2, and B3 as indicated in

Figure 4.1) without an irregular zero-wait arrival. Thus, the characteristics of this wet

period is identical to the wet period of the ordinary fluid queue driven by an M/G/1

queue discussed in Section 2.1.1. The second wet period W2 encompasses one irregular

zero-wait arrival followed by two M/G/1 busy periods. This irregular zero-wait arrival

at time t4 contributes his/her service time (here, we assume one unit of time is equal to

one unit of fluid) to the fluid content without receiving a service in the driving queue.

The characteristics of the wet period W3 are similar to W1, since no irregular zero-wait

arrival is in W3. We refer to this particular fluid queue as a fluid queue with irregular

93



4.1. Model I: Fluid queue with irregular arrivals

arrivals.

4.1.2 Level crossing equations for f1(x), f2(x), and f(x)

To derive the LST of the pdf of the fluid level for the fluid queue with irregular arrivals,

we use LC methods [12]. Consider a single server M/G/1 queue with arrival rate λ and

expected service time 1/µ. We assume that the services are independent and identically

distributed (iid) with a common distribution G. During the empty period of the fluid

queue, with probability p, the system manager rejects a zero-wait arrival. This rejected

arrival causes a jump in the fluid content. To simplify our notation, we denote

λp = p · λ and λq = q · λ, (4.1)

where q = 1 − p. We remark that these two arrival rates apply only to the zero-wait

arrivals who arrive during the empty periods of the fluid queue.

Crossing rates of the fluid level x. Denote by U c
t (x) the number of upcrossings

(continuously) of level x, by U j
t (x) the number of upward jumps (instantly) of level x,

and by Dt(x) the number of downcrossings (continuously) of level x, during the time

interval (0, t). For a fixed fluid level x > 0, by a LC argument [12, p. 109, and pp. 304

- 309], the rates at which the sample path upcrosses and downcrosses level x during the

time interval (0, t) are

lim
t→∞

U c
t (x)

t
= r1f1(x) plus lim

t→∞

U j
t (x)

t
= λpπEG(x), (4.2)

lim
t→∞

Dt(x)

t
= r2f2(x), (4.3)

where f1(x) and f2(x) are defined in (2.5) respectively, G(x) is the complementary cumu-

lative distribution function (ccdf) of the service in the driving queue (i.e., the magnitude
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4.1. Model I: Fluid queue with irregular arrivals

of the jump in the fluid queue), and πE is the point mass for the fluid level at 0. The

terms lim
t→∞

U c
t (x)/t in (4.2) and lim

t→∞
Dt(x)/t in (4.3) can be interpreted in a similar man-

ner as in (2.9). The term lim
t→∞

U j
t (x)/t in (4.2) can be interpreted as follows: the rate at

which a zero-wait arrival is rejected by the fluid queue manager, i.e. the rate at which an

irregular zero-wait arrival causes a jump above level x in the fluid content. It is important

to highlight that the jump in the fluid content can only start at level 0. Let lim
t→∞

Ut(x)/t

denote the total upcrossing (continuous and jump) rate of level x, then

lim
t→∞

Ut(x)

t
= lim

t→∞

U c
t (x)

t
+ lim

t→∞

U j
t (x)

t
= r1f1(x) + λpπEG(x), x > 0. (4.4)

Downcrossing rate of level x toward level zero. As indicated in (4.2), there are

two different ways for the sample path to leave level 0: (1) upward jump at level 0 (i.e.

upward jumps caused by an irregular zero-wait arrival), and (2) sloped upcrossing of

level 0 (i.e. an activity period is initiated by a regular zero-wait arrival). However, there

is only one way to downcross level x, namely with slope r2. Balancing the downcrossing

rate of level x and the total upcrossing rate of level x , we obtain

r2f2(x) = r1f1(x) + λpπEG(x), x > 0. (4.5)

It is important to highlight that the jumps caused by the irregular zero-wait arrivals are

strictly positive. Thus, we have G(0+) = 1. Letting x→ 0+ in (4.5) yields

(λp + λq)πE = r1f1(0
+) + λpπE , (4.6)

with λp + λq = λ.

In addition, since the rate at which the sample path leaves level 0 equals the rate at
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which the sample path enters level 0, we have

(λp + λq)πE = r2f2(0
+). (4.7)

The term λπE = (λp + λq)πE is the rate at which sample path leaves level 0. Let gram

be the unit of the fluid queue and T be the unit of the time; a necessary condition on

equality (4.6) and (4.7) is that the units of these two expressions are the same, i.e. [1/T ].

Substituting the units for the rates and the units for the fluid into (4.6) and (4.7), the

unit of (4.6) and (4.7) is

[
gram

T
·

1

gram

]
=

[
1

T

]
and

[
gram

T
·

1

gram

]
+

[
1

T

]
=

[
1

T

]
(4.8)

respectively. The interpretation of expression (4.6) is equating two different expressions

of the rate at which the sample path leaves level 0. Simplifying (4.6) yields

λqπE = r1f1(0
+). (4.9)

The term on the left-hand side of (4.9) is the rate at which the sample path upcrosses

(continuously) level x starting from level 0. It implies that r1f1(0
+) is the rate at which

the sample path (continuous) leaves level 0 (but not the rate at which the sample path

leaves level 0 by an upward jump).

Denote by C(t) the fluid level at time t. Each instant when {C(t)}t≥0 enters level 0 is

a regenerative point, due to Poisson arrivals in the driving process, and the memoryless

property of the exponential distribution. Thus {C(t)}t≥0 is a regenerative process with

wet cycles {Wc} that form renewal process. Denote by W and Wc the wet period and

the wet cycle of the fluid queue. By the Elementary Renewal Theorem [34, Section 7.3,

pp. 407 - 416], E[Wc] = 1/(λπE). By the Renewal Reward Theorem [34, Proposition

7.3, pp. 416 - 417], the long-run proportion of time that the fluid level is at level 0 is
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E[E ]/(E[E ] + E[W ]), where E is the empty period of the fluid queue with expected value

E[E ] = 1/λ. It follows that once we get πE , we get the E[W ] and E[Wc].

Upcrossing rate of level x in the fluid queue: Let f(x) = f1(x) + f2(x) denote the

total pdf of the fluid level, where f1(x) and f2(x) are defined in (2.5). We refer to the

sample path corresponding to f1(x) as a sample path on ‘page 1’, and to the sample path

corresponding to the f2(x) as a sample path on ‘page 2’. For the details of the method

of page pages, the reader is referred to Brill [12, Chapter 4, pp. 162 - 254, and Section

10.10, pp. 433 - 439]. Using a LC argument, the total rate at which the sample path

upcrosses level x can be written in two different expressions, namely:

lim
t→∞

Ut(x)

t
= r1f1(x), (4.10)

lim
t→∞

Ut(x)

t
= λpπEG(x) + λqπEB

(
x

r1

)
+ λ

∫ x

y=0

B

(
x− y

r1

)
f2(y)dy. (4.11)

The right-hand side of (4.10) is the rate at which the sample path upcrosses level x on

page 1 (see [12, p. 304, eq (6.5) and Section 10.10.2, p. 435] for details). The first term

on the right-hand side of (4.11) is the rate at which the sample path jumps across level

x from level 0. The second term on the right-hand side of (4.11) is the rate at which the

sample path upcrosses level x at slope r1 starting from level 0, and the third term on the

right-hand side of (4.11) is the rate at which the sample path upcrosses level x at slope

r1 starting from level y in (0, x) on page 1 due to an instantaneously parallel jump from

page 2. The terms (x − y)/r1 in B(•) is the time needed to upcross level x starting at

level y ∈ (0, x).

Downcrossing rate of level x in the fluid queue: The rate at which the sample
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4.1. Model I: Fluid queue with irregular arrivals

path downcrosses level x is

lim
t→∞

Dt(x)

t
= r2f2(x). (4.12)

The term on the right-hand side of (4.12) is the rate at which the sample path downcrosses

level x on page 2. All downcrossings of level x occur on page 2.

4.1.3 Laplace-Stieltjes transform of fluid level

Solution for f2(x): Let Lf2(s) denote the LST of the pdf f2(x). Setting (4.11) equal to

(4.12), and taking the LST of the both sides of (4.11) and (4.12) yields

r2(Lf2(s)− πE) = λpπE ·
1− G̃(s)

s
+ λqπE ·

1− B̃(r1s)

s

+ λ ·
1− B̃(r1s)

s
· (Lf2(s)− πE). (4.13)

It is important to highlight that the unit of the parameter s in G̃(s) and B̃(r1s) are

[1/gram] instead of [1/T ], as expected. This is because the unit of the fluid level is

[gram], but not time. More specifically, the term G̃(s) is the LST of the pdf of the jump

fluid input, thus the unit of s is [1/gram]. Yet, the term B̃(r1s) is the LST of the pdf of

the busy period, thus the unit of r1s is [1/T ]. This gives the unit of s as [1/gram], since

the unit of r1 is [gram/T ]. Keeping this in mind, the unit of both sides of (4.13) is

[gram
T

]
=
[gram

T

]
+
[gram

T

]
+
[gram

T

]
=
[gram

T

]
. (4.14)
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4.1. Model I: Fluid queue with irregular arrivals

This satisfies a necessary condition for the LC equation, and thus increases the confidence

that the expression (4.13) is valid. Collecting the terms Lf2(s) yields

Lf2(s) = πE
sr2 + λp(1− G̃(s)) + (λq − λ)(1− B̃(r1s))

sr2 − λ(1− B̃(r1s))
, s > 0. (4.15)

To see that the expression (4.15) is reasonable, we check whether the expression on the

right-hand side of (4.15) is dimensionless. Evaluating the unit of the expression (4.15),

we have

[
1/T + 1/T + 1/T

1/T − 1/T

]
= [1], (4.16)

which is dimensionless.

Solution for f(x): Substituting f(x) = f1(x) + f2(x) into (4.5), we obtain

r1f(x) = (r1 + r2)f2(x)− λpπEG(x). (4.17)

Let C̃(s) = πE +
∫∞
0−

e−sxf(x)dx be the LST of the pdf of the fluid level. Taking LST of

both sides of (4.17) yields

sr1(C̃(s)− πE) = s(r1 + r2)(Lf2(s)− πE)− λπE(1− G̃(s)). (4.18)

Simplifying the above expression yields

C̃(s) =
(r1 + r2)(Lf2(s)− πE)

r1
−

λπE(1− G̃(s))

sr1
+ πE , (4.19)

which is the LST of the pdf of the fluid level. Recalling that the unit of sr1 is [1/T ] gives

us that the right-hand side of (4.19) is dimensionless. Substituting (4.15) into (4.19), we
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4.1. Model I: Fluid queue with irregular arrivals

obtain

C̃(s) =

(
r1 + r2

r1

)(
πE

λp(1− G̃(s)) + λq(1− B̃(r1s))

sr2 − λ(1− B̃(r1s))

)
−

λπE(1− G̃(s))

sr1
+ πE (4.20)

Applying L’Hôpital’s rule in (4.20) yields

1

πE
lim
s→0

C̃(s) = lim
s→0

((
r1 + r2

r1

)(
−λpG̃

′(s)− λqr1B̃
′(s)

r2 + λr1B̃′(s)

)
+

λG̃′(s)

r1
+ 1

)
, (4.21)

which gives

πE =

(
(r1 + r2)(λpE[G] + λqr1E[B])

r1r2 − λr21E[B]
−

E[G]

r1
+ 1

)−1
. (4.22)

To verify that the expression (4.22) is reasonable, we let p → 0 such that λp → 0 and

λq → λ. The above expression becomes the point mass at level 0 for the ordinary fluid

queue driven by an M/G/1 queue in (2.34). It is interesting to check the unit of the

right-hand side of (4.22). This gives us1




gram

T

(
1

T
· gram+

1

T
·
gram

T
· T

)

(gram
T

)2
−

1

T
·
(gram

T

)2
· T




−1

= [1], (4.23)

which is a correct dimension for πE .

1The dimension of E[G] is gram, not time, and the dimension of E[B] is time, not gram.
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4.1. Model I: Fluid queue with irregular arrivals

4.1.4 Mapping the sample path of the virtual waiting time of

an M/G/1 with exceptional service for zero-wait arrivals

to the sample path of the fluid level of the fluid queue

with irregular arrivals

In this section, we determine the pdf of the virtual waiting time of an M/G/1 queue with

exceptional service for zero-wait arrivals by using the pdf of the fluid level with irregular

zero-wait arrivals. Let S0 and S1 denote the service time for the zero-wait arrivals and

non-zero wait arrivals of an M/G/1 queue respectively. Figure 4.2 illustrates the virtual

waiting time of the M/G/1 queue with exceptional service for zero-wait arrivals.
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Figure 4.2: A sample path of virtual waiting time of an M/G/1 queue with exceptional
service for zero-wait arrivals

To map the integral equation of the pdf of the virtual waiting time of the M/G/1 queue

with exceptional service for zero-wait arrivals to the integral equation of the pdf of the

fluid level of the fluid queue with irregular arrivals (Model I), we first set the net input

rate r1 and the continuous leaking rate r2 of the fluid queue equal to 1.

A sample path of the fluid level of the fluid queue is illustrated at Figure 4.3. As observed

in the figure, since the net input rate is 1, the magnitude of the net fluid that enters

to the fluid content during the activity period equals the magnitude of the duration of

the busy period of the driving M/G/1 queue. In addition, one zero-wait arrival in the

driving queue is rejected by the system manager at time tk with probability p. Balancing
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4.1. Model I: Fluid queue with irregular arrivals

�
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Figure 4.3: A sample path of virtual waiting time of an M/G/1 queue with exceptional
service for zero-wait arrivals

the downcrossing rate (4.12) and upcrossing rate (4.11) of level x of the sample path of

the fluid level, we have

f2(x) = λpπEG(x) + λqπEB(x) + λ

∫ x

y=0

B(x− y)f2(y)dy, x > 0. (4.24)

Next, we fix p = 1 (i.e., λp = λ and λq = 0) such that all zero-wait arrivals in the driving

queue who initiate the activity period of the wet cycle are rejected. In addition, we

assume that the size of the fluid jumps caused by the irregular arrivals are distributed as

S0 (such that G(x) = S0(x)), and the busy period of the driving queue B is distributed

as S1 (such that B(x) = S1(x)). The sample path of the fluid level of the fluid queue

after these adjustments is illustrated in Figure 4.4. As observed in the figure, each time

point when arrivals rejected by the system manger of the fluid queue is a regenerative

points of the fluid process {C(t)}t≥0. Substituting λp = p, λq = 0, B(s) = S1(x), and
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Figure 4.4: A sample path of fluid level of the fluid queue
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4.2. Model II: Fluid queue with variant

G(x) = S0(x) into (4.24) gives

f2(x) = λπES0(x) + λ

∫ x

y=0

S1(x− y)f2(y)dy, x > 0. (4.25)

The integral equation of the pdf of the virtual waiting time of the M/G/1 queue with

exceptional service for zero-wait arrivals is well-known (see [12, p. 99, eq (3.118)] for the

details), namely

g(x) = λπ0S0(x) + λ

∫ x

y=0

S1(x− y)g(y)dy, x > 0, (4.26)

where π0 is the point mass of the virtual waiting time of the queue at level 0..

As observed, the form of the integral equation of the pdf of the virtual waiting time in

(4.26) has the same form of the integral equation of the pdf of the fluid level on ‘page’

2 as expressed in (4.25) with one exception. The term πE in (4.25) is the point mass of

fluid level at level 0. Yet, the term π0 in (4.26) is the long-run proportion of time that

the virtual waiting time of the M/G/1 queue is at level 0.

4.2 Model II: Fluid queue with variant

To illustrate the flexibility of the LC method, we modify the fluid queue model in Section

4.1 with jump fluid inputs. Assume the arrival process of the driving queue is controlled

by the fluid queue and that the system manager can accept (with probability 1− p) and

reject (with probability p) any zero-wait arrival at the driving queue when the fluid level

of the fluid queue is at any level. One characteristic of the fluid queue is that the fluid

content can receive the fluid (instantly) generated by a rejected zero-wait arrival. The

significant difference between this fluid queue model and the one introduced in Section 4.1

is that in this particular fluid queue, the system manager can accept or reject zero-wait
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4.2. Model II: Fluid queue with variant

arrivals in the driving queue at any fluid level.
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Figure 4.5: A sample path of fluid queue with irregular arrival

Figure 4.5 illustrates a sample path of the fluid level and a sample path of the virtual

waiting time of the driving queue corresponding to the fluid queue. Each wet cycle in

Figure 4.5 encompasses two busy periods in the driving queue. Here, as observed, one

irregular arrival at time t3 in the first wet period causes an upward jump. For the second

wet period, two irregular arrivals at time t4 and t6 cause upward jumps in the fluid queue.

There are no irregular arrivals in the third wet period.

Rate balance equation: Balancing the downcrossing rate and total upcrossing rate of

level x, we obtain

r2f2(x) = r1f1(x) + λpπEG(x) + λp

∫ x

y=0+

G(x− y)f2(y)dy. (4.27)
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4.2. Model II: Fluid queue with variant

The first term on the right-hand side of (4.27) is the upcrossing (continuously) rate of

level x; the second and third term on the right-hand side of (4.27) are the rates of the

upward jumps above level x starting at level 0 and at some point y ∈ (0, x) when the

driving queue encounters zero-wait arrivals. To express f2(x) in terms of f(x) in (4.27),

we substitute f1(x) = f(x)− f2(x) into (4.27). This yields

r1f(x) = (r1 + r2)f2(x)− λpπEG(x)− λp

∫ x

y=0+

G(x− y)f2(y)dy. (4.28)

Let C̃(s) be the LST of the pdf of the fluid level. Taking the LST on both sides of (4.28)

and collecting the terms yields

C̃(s) =
sr1πE

sr1 + λp(1− G̃(s))
+

(r1 + r2)(Lf2(s)− πE)

sr1 + λp(1− G̃(s))
, s > 0, (4.29)

where πE is the point mass of the fluid at level 0.

Alternatively, the rate balance equation in (4.27) can be written differently, namely:

r2f2(x) = λpπEG(x) + λp

∫ x

y=0

G(x− y)f2(y)dy

+ λqπEB

(
x

r1

)
+ λq

∫ x

y=0

B

(
x− y

r1

)
f2(y)dy, x > 0. (4.30)

The first two terms on the right-hand side of (4.30) are the rates at which the sample

path jumps across level x, and the last two terms on the right-hand side of (4.30) are the

rates at which the sample path upcrosses (continuously) level x.

LST of the pdf of the fluid level: Taking LST of both sides of (4.30) yields

sr2(Lf2(s)− πE) = λpπE(1− G̃(s)) + λp(1− G̃(s))(Lf2(s)− πE)

+ λqπE(1− B̃(r1s)) + λq(1− B̃(r1s))(Lf2(s)− πE). (4.31)
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Evaluating the unit of the expression (4.31) yields

[
1

gram
·
gram

T

]
=

[
1

T

]
+

[
1

T

]
+

[
1

T

]
+

[
1

T

]
=

[
1

T

]
, (4.32)

which is a necessary condition for the expression (4.31) to be valid. Collecting the terms

Lf2(s) yields

Lf2(s) =
sr2πE

sr2 − λp(1− G̃(s))− λq(1− B̃(r1s))
, s > 0. (4.33)

Substituting (4.33) into (4.27) yields (for s > 0)

C̃(s) =
sr1πE

sr1 + λp(1− G̃(s))

+

(
(r1 + r2)πE

sr1 + λp(1− G̃(s))

)(
λp(1− G̃(s)) + λq(1− B̃(r1s))

sr2 − λp(1− G̃(s))− λq(1− B̃(r1s))

)
. (4.34)

Applying L’Hôpital’s rule in (4.34) yields

1

πE
lim
s→0

C̃(s) =
r1

r1 + λpE[G]
+

r1 + r2
r1 + λpE[G]

·

(
λpE[G] + λqr1E[B]

r2 − λpE[G]− λqr1E[B]

)

=
r2(r1 + λpE[G] + λqr1E[B])

(r1 + λpE[G])(r2 − λpE[G]− λqr1E[B])
. (4.35)

This gives

πE =
(r1 + λpE[G])(r2 − λpE[G]− λqr1E[B])

r2(r1 + λpE[G] + λqr1E[B])
. (4.36)
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Here, the unit of the right-hand side of (4.36) is




(
gram

T
+

1

T
· gram

)
·

(
gram

T
−

1

T
· gram−

1

T
·
gram

T
· T

)

gram

T
·

(
gram

T
+

1

T
· gram+

1

T
·
gram

T
· T

)


 = [1], (4.37)

which is the correct dimension for πE .

Letting p→ 0 such that λp → 0 and λq → λ, we have

πE =
r2 − r1λE[B]

r2 + r2λE[B]
(4.38)

which is the point mass of the fluid level at 0 in (2.34).
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Chapter 5

Summary of chapters

Here, we briefly summarize each chapter.

5.1 Summary of Chapter 1

In this dissertation, we study the characteristics of fluid queues driven by a stochastic

background processes (such as M/G/1 queue or M/G/1/1 queue), and map the charac-

teristics of theM/G/1 queue to the fluid queue using the Level Crossing method proposed

by Brill in 1974 (see [12]). Level crossing methods allow researchers to write down an

integral equation of the probability density function (pdf) of a process by studying the

characteristics of the sample path corresponding to the process that is under investi-

gation. Chapter 1 provides a basic review of renewal processes and the level crossing

methods. Applications of level crossing methods are demonstrated in Section 1.5.

108



5.3. Summary of Chapter 3

5.2 Summary of Chapter 2

In this chapter, we study the characteristics (i.e., the fluid level, the wet period, number

of peaks in a wet cycle, etc.) of a fluid queue driven by an M/G/1 queue with net input

rate r1 and continuous leaking rate r2. We remark that the fluid queue driven by an

M/G/1 queue was first studied by Virtamo and Norros in [44] with r1 = r2 = 1 and

service time of the M/G/1 queue being exponentially distributed. This model is re-

investigated by Adan and Resing [4] using a regenerative process approach with general

service time for the driving queue. The Beneš-like series of the pdf of fluid level is derived

in Section 2.2.4 [7, 24]. In Section 2.3, the LST of the pdf of the wet period is derived.

In Section 2.4, the characteristics of the number of tagged arrivals, arrivals served, and

peaks in a wet period are discussed. In Section 2.5, simulations are conducted to verify

our results on the LST of the pdf of the fluid level and the expected value of wet period.

In Section 2.6, we discuss the relationship between the pdf of the fluid level and the pdf

of the virtual waiting time of an M/G/1 queue. Later in the same section, we derive

the pdf of the virtual waiting time of an M/G/1 queue using the pdf of the fluid level

driven by an M/G/1 queue. Similarly, we derive the pdf of the fluid queue with balking

when the fluid queue is driven by an M/M/1/1 queue, and use it to determine the pdf

of the waiting time of the M/G/1 queue with balking. More importantly, Section 2.2.2

provides an alternative way, i.e. the triangle diagram, to interpret the upcrossing and

downcrossing rates of level x in the fluid queue.

5.3 Summary of Chapter 3

In this chapter, we study the pdf of the fluid level in fluid models where the net input rate

and continuous leaking rate depend on the background process, the fluid level, and the
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5.4. Summary of Chapter 4

type of arrivals in the driving queue. The first fluid model in this chapter is illustrated

in Section 3.1 and the second fluid model is illustrated in Figure 3.2. A triangle diagram

has been applied in Section 3.2.2 to find the pdf of the fluid level in the second fluid

model.

5.4 Summary of Chapter 4

In this chapter, via the level crossing methods, we derive the pdf of the fluid level that

involves jump fluid inputs in the fluid queue. A pdf of the virtual waiting time for an

M/G/1 queue with special service for zero-wait arrivals is derived using the results of

the fluid queue model introduced in Section 4.1.
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Appendices

A Alternative proofs of some formulas

A.1 Proof of the LST in formula (2.40)

Here, we provide alternative way to derive the expression (2.40) on page 35.

Laplace-Stieltjes transform of pdf of fluid level using the Benes-like series:

Denote by L(•) the LST operator and by C̃(s) the LST of the fluid level. Taking the

LST of the left-hand side of equation (2.31), one gets

Lf (s) = C̃(s)− πE , x > 0. (A.1)

Similarly, taking the Laplace transform of the right-hand side of equation (2.31), one gets

Lf (s) = πE

(
r1 + r2

r2
1

)
r1

∞∑

k=1

(
r1

r2
ρB

(1− B̃(r1s))

sr1E[B]

)k

, x > 0. (A.2)

From (A.2), one gets

Lf (s) = πE

λ(r1 + r2)(1− B̃(r1s))

r1r2s− r1λ(1− B̃(r1s))
(A.3)
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by recognizing that the infinite sum can be further simplified by using a geometric series

argument because we know that from the restriction of having a stable fluid queue, we

have

r1E[I] < r2E[B] =⇒
r1
r2
ρB < 1. (A.4)

Also the term

(1− B̃(r1s))

sr1E[B]
(A.5)

in equation (A.2) is the LST of a residual busy period, which is non-negative and takes

the value at most 1. Thus the product of equation (A.4) and (A.5) is always less than 1

but greater than 0. Finally, we get (for s > 0)

∞∑

k=1

(
r1
r2
ρB

(1− B̃(r1s))

sr1E[B]

)k

=
∞∑

k=1

(
λ(1− B̃(r1s))

r2s

)k

=
λ(1− B̃(r1s))

r2s− λ(1− B̃(r1s))
. (A.6)

Setting equation (A.1) equal to equation (A.3) and solving for C̃(s) leads to

C̃(s) = πE

(
r1r2s+ r2λ(1− B̃(r1s))

r1r2s− r1λ(1− B̃(r1s))

)
, s > 0, (A.7)

which is the LST achieved in equation (2.40).
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A.2 Proof of Theorem 2.3.2

Here, we provide an alternative way to prove the Theorem 2.3.2 stated on page 38. This

theorem was first presented by Boxma et al. in [11] for a different setup of a fluid queue

model that we did not discuss in this dissertation. The proof of the theorem is skipped

by the authors. Thus we provide an alternative proof to verify that the theorem can be

applied in our fluid queue model in Chapter 2.1.

Theorem 2.3.2: The Laplace-Stieltjes transform of the fluid wet period driven by an

M/G/1 queue with arrival rate λ and expected service time 1/µ satisfies the following

functional equation

W̃(s) = E

[
e−sB(1+r1/r2)−λ(1−B̃(s))(r1B)/r2

]
,

= B̃

(
ω

(
1 +

r1
r2

)
+ λ

(
1− W̃(s)

) r1
r2

)
, s > 0,

where r1 and r2 are the net input rate and leaking rate modulated by the driving process

respectively, W̃(s) and B̃(s) are the Laplace-Stieltjes transforms of the fluid queue wet

period and the busy period of the M/G/1 queue, respectively.

Proof: From equation (2.47), the wet period can be decomposed into a series of sub-wet

periods. We have

W
dist.
=

(
1 +

r1
r2

)
B +

NT∑

i=1

Wi,

where NT is the number of tagged arrivals that initiate the sub-wet period of the fluid

queue and Wi, i = 1, 2, . . . , is the i-th sub-wet period of W . Let W̃(s), B̃(s) be the

Laplace-Stieltjes transforms of the wet period of a fluid queue and busy period of an

M/G/1 queue respectively. Taking conditional expectation of exp (−sB) on B = x and

113



A. Alternative proofs of some formulas

NT = n, and using the fact that the Wi’s are independent and identically distributed as

W , we have

E[exp (−sW) | B = x,NT = n] = E

[
exp

(
−s

(
1 +

r1
r2

)
x− s

n∑

i=1

Wi

)]
,

=

[
exp

(
−ω

(
1 +

r1
r2

)
x

)](
W̃(s)

)n
.

Applying the tower property of expectation [5] on NT = n yields

E[exp (−sW) | B = x] =
∞∑

n=0

E

[
exp

(
−s

(
1 +

r1
r2

)
x

)](
W̃(s)

)n
P[NT = n]

=
∞∑

n=0

[
exp

(
−s

(
1 +

r1
r2

)
x

)](
W̃(s)

)n exp(− r1
r2
λx)(λ r1

r2
x)n

n!

= exp

(
−s

(
1 +

r1
r2

)
x− λ

r1
r2
x

) ∞∑

n=0




(
W̃(s) r1

r2
λx
)n

n!




= exp

(
−

(
s

(
1 +

r1
r2

)
+

r1
r2
λ− W̃(s)

r1
r2
λ

)
x

)
.

Applying the tower property again, one finally gets

W̃(s) = B̃

(
s

(
1 +

r1
r2

)
+ λ

(
1− W̃(s)

) r1
r2

)
, ω ≥ 0.
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A.3 Alternative proof of integral equation in (3.13) by the method of pages

In this section, we provide an alternative proof of integral equation of the pdf of the

fluid level of the fluid queue introduced in Section 3.1 by using the ‘page’ method (or the

‘sheet’ method) [12, Chapter 4, pp. 162 - 254, and Section 10.10, pp. 433 - 439].

To apply the ‘page’ method, we first decompose the stochastic process {C(t), Z(t)}t≥0 into

2 different sub-processes and recode the sample path of each process on 2 different ‘pages’,

where Z(t) is defined in (2.2). The sample path on ‘page’ 1 corresponds to the process

{C(t), Z(t) = 1}t≥0, and the sample path on ‘page’ 2 corresponds to {C(t), Z(t) = 2}t≥0.

It is important to highlight that there has no ‘page’ on line 0, since probability of the

fluid level being at level 0 is 0 (see Section 3.1.2 for the details). We refer to the page

contains the original sample path of {C(t)}t≥0 as a cover page. Figure A.1 illustrates a

typical sample path of the {C(t), Z(t)}t≥0 and the sub-processes of it.

Page equations:

Denote by k1 the net input rate of the fluid queue and by k2x the continuous leaking

rate of the fluid queue. The LC equations can be achieved by using ‘page’ method.

Page 1: The sample path rate into ((x,∞), 1) is

k1f1(x) + λ

∫ ∞

y=x

f2(y)dy. (A.8)

The first term k1f1(x) in (A.8) is the rate at which the leading point of the sample path

enters ((x,∞), 1) at level x from below. The second term λ
∫∞
y=x

f2(y)dy is the rate at

which an activity period is initiated by a zero-wait arrival while the fluid level is above

level x (by making instantaneous parallel transitions from ((x,∞), 2) into ((x,∞), 1)).
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Figure A.1: A typical sample path of (a) the fluid level of the fluid queue with continuous

leaking rate depending on fluid level, (b) the fluid level of the fluid queue on page 1, and
(c) the fluid level of the fluid queue on page 2.

The sample path rate out of ((x,∞), 1) is

λ

∫ ∞

y=x

f2(y)dy + λ

∫ x

y=0

B

(
x− y

k1

)
f2(y)dy. (A.9)

The first term λ
∫∞
y=x

f2(y)dy in (A.9) is the rate at which an activity period is initiated at

some level above x (such that the activity period ends above level x as well). The second

term λ
∫ x

y=0
B
(

x−y
k1

)
f2(y)dy in (A.9) is the rate at which an activity period is initiated

at as some level below x and the duration of the busy period of the driving queue is long

enough to make the sample path of the fluid level upcrosses level x. These two terms are
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due to instantaneous parallel transitions from ‘page 2’ to ‘page 1’. More importantly, as

highlighted in Section 3.1.2 that the πE = P[C ≤ 0] = 0, there has no upcross of level

x starting at level 0. Thus, the expressions (A.8) and (A.9) do not include any term

associated with πE .

Balancing the sample path rate into and rate out of ((x,∞), 1) yields

k1f1(x) = λ

∫ x

y=0

B

(
x− y

k1

)
f2(y)dy. (A.10)

Page 2: Similarly, the sample path rate into ((x,∞), 2) is

λ

∫ ∞

y=x

f2(y)dy + λ

∫ x

y=0

B

(
x− y

k1

)
f2(y)dy, (A.11)

where the sample path rate out of ((x,∞), 2) is

k2xf2(x) + λ

∫ ∞

y=x

f2(y)dy. (A.12)

The interpretation of (A.11) and (A.12) is similar to (A.9) and (A.8), respectively. Bal-

ancing the sample path rate into and rate out of ((x,∞), 2) yields

λ

∫ x

y=0

B

(
x− y

k1

)
f2(y)dy = k2xf2(x). (A.13)

Summing the expressions (4.41) and (4.44) yields

k1f1(x) = k2xf2(x) =⇒ f1(x) = (k2xf2(x))/k1 =⇒ f2(x) = (k1f1(x))/(k2x). (A.14)

The expression (A.14) is achieved in (3.3) using different approach.

Substituting f2(x) = (k1f1(x))/(k2x) into (A.10) and dividing both sides of (A.10) by k1
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gives

f1(x) = λ

∫ x

y=0

1

k2y
B

(
x− y

k1

)
f1(y)dy. (A.15)

Dividing both side of (A.12) by k2x yields

f2(x) =
λ

k2x

∫ x

y=0

B

(
x− y

k1

)
f2(y)dy. (A.16)

Summing the expressions (A.15) and (A.16) gives the integral equation of the pdf of the

fluid level, namely

f(x) =
λ(k1 + k2x)

k2x

∫ x

y=0

B

(
x− y

k1

)
1

k1 + k2y
f(y)dy. (A.17)

The expression (A.17) is achieved in (3.13) using different approach. Using two different

approaches, we achieved the same integral equation expression for the pdf of the fluid

level, it increases the confidence that the integral equation expression of the pdf of the

fluid level f(x) is correct.
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