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ABSTRACT 
This research studies the configuration problem of a remanufacturing production network 

together with the decision for return quality thresholds, in which, the manufacturer has 

multiple remanufacturing facilities to satisfy different market demands. Quality of returns is 

stochastic, while demand for remanufactured products is either stochastic or deterministic. The 

problem we considered is to determine facilities to operate, minimum quality to accept into 

each operating facility, return quantity and demand allocation simultaneously so that the 

system’s profit is maximized. The problem is formulated as a mixed integer nonlinear 

programming model. Through the use of a numerical example, the impact of quantity of 

returns, total spending, quality uncertainty, demand uncertainty, and transportation cost on 

the remanufacturing system is analyzed. 

1. Introduction 

Many manufacturing and production processes have negative impact on the environment, 

since they coincide with waste generation, ecosystem disruption and depletion of natural 

resources. The excessive waste generation and use of natural resources caused by today’s 

manufacturing plants deprive the earth from its ability to recover and compensate. Thus, such 

processes are not environmentally sustainable. According to the U.S. Environmental Protection 

Agency (US EPA), the US, alone, generated more than 290 million scrap tires at the end of 2003. 

Those scrap tires form a breading ground for mosquitoes and are very combustible. If ignited, 

various hazardous materials are released to the air and into the soil harming both the 

environment and the living being. Therefore, to achieve sustainability and become greener, it is 

imperative to substantially reduce the rate of waste generation and use of natural resources 

through implementing the different recovery processes. Remanufacturing is one of those 

processes with which we could restore a used product to its original condition without being 

structurally destructive. It includes processes such as: collection, disassembly, inspection, 

testing, grading, cleaning, identification of parts, parts recovery and product re-assembly. 
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Remanufacturing has increased drastically in the last two decades due to the increase in 

producer and consumers awareness regarding remanufacturing outcomes. Remanufacturing is 

an approach used by many companies from different industries such as Dell, Hewlett-Packard 

(HP), IBM, Kodak, Xerox, General Motors (GM), and Goodyear. An example of the different 

remanufactured products includes: photocopiers, cellular telephones, single-use cameras, car’s 

engines and transmissions and retreaded tires. 

This paper discusses a remanufacturing system in which remanufactured products have less 

monetary value compared to newly manufactured products (no perfect substitution). According 

to Akcali & Cetinkaya (2011), literatures concerning closed loop supply chain and 

remanufacturing systems, in the last two decades, have heavily considered the case of perfect 

substitution and not the case without perfect substitution, although the second one is much 

more applicable in today’s market if durable products are considered. 

The research is also inspired by a deep relationship between quality and many 

remanufacturing attributes (e.g. returns’ acquisition price, remanufacturing cost, 

remanufacturing lead time and pre-remanufacturing holding cost). Such a relationship could be 

found in many durable products that have a long usage period and low demand volume. In this 

paper the return’s acquisition price vs. quality is described by an increasing function, while 

remanufacturing cost vs. quality is described by a decreasing function. The summation of those 

two costs introduces a decreasing function in terms of quality. As a result, better quality returns 

are always more appreciated as they are associated with lower total spending and thus more 

profit. Thus, if returns are thoroughly inspected and assigned quality scores or classes by the 

remanufacturers, then the individual return’s quality in this case is uncertain. This uncertainty 

should be represented by an appropriate quality distribution. According to Akcali & Cetinkaya 

(2011), literatures concerning remanufacturing systems and closed loop supply chains have not 

adequately addressed quality uncertainty.  

Our first contribution is to propose the quality grading method and acceptance decision for 

the returned products in a remanufacturing system with uncertain quality of returns. This 

research studies two cases of return quality distribution: normal and exponential, and study 

their impact on the system’s behavior.     

Our second contribution is to integrate optimal configuration of supply network for a 

remanufacturer with return quality decision, where the remanufacturer runs multiple facilities 

to satisfy different market demands by remanufacturing used products. We consider both 

deterministic and stochastic demands. To the best of our knowledge, this is the first work that 

considers a remanufacturing network with return quality decision. 
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The third contribution of this research is to develop mixed integer non-linear programming 

models to determine supply and market allocation and optimal minimum quality to accept into 

each operating facility so that the total profit is maximized. 

The rest of this paper is organized as follows. Related literature is first reviewed in Section 2 

and then mathematical models are presented in Section 3. After that, an example is solved and 

numerical results are reported in Section 4. Section 5 performs sensitivity analysis. Section 6 is a 

simple extension of the previous work. Finally, conclusion and suggested future research are 

presented in Section 7. 

2. Related Works 

A handful papers concerning CLSC and remanufacturing systems consider quality uncertainty 

or condition variability in used and returned items. Representation of condition variability 

through the use of defined probability density function is scarce. In Galbreth and Blackburn 

(2010), returns in each acquired lot are distributed uniformly over a range of conditions with 

certainty. The embedded uncertainty in each item’s condition is, also, presented through the 

use of negative binomial distribution. The work minimizes total acquisition and 

remanufacturing costs through the use of optimal quantity acquired. Wei, Tang & Liu (2014) 

argue that acquisition price paid for returns should balance between the capital tied up for 

customers and the risk that customers may leave the cores to another collector. They stated 

that pricing should, also, be appropriate such that cores with higher quality are more 

encouraged to be returned. In the presence of customer evaluation, three refund policies are 

studies: single with a sole refund for all returns, multiple with a refund for each quality-

category, and perfect with a refund for each quality-evaluated return. Uniform and adjusted 

normal distributions are used to represent quality uncertainty. In Wassenhove & Zikopoulos 

(2010), returns are inspected twice: first by N-suppliers who assign a grade to each return and 

second by the remanufacturer who confirms credibility of this assignment. The probability of 

correct classification is stochastic and is considered to be a form of quality uncertainty. The 

paper examines the negative impact of misclassification or overestimation of returns on 

procurement decisions and system’s profitability. Watanabe, Kusuawa & Arizono (2013) study a 

hybrid system that satisfies demand from both newly manufactured items and remanufactured 

returns. The performance of a decentralized system, with a retailer-Stackelberg game, and a 

centralized system, with retailer-manufacturer cooperation, are studied and compared. The 

paper seeks to optimize the lower quality limit, incentive paid to customers by the retailer and 

quantity ordered by the retailer at the beginning of the selling period. Both Wassenhove & 

Zikopoulos (2010) and Watanabe, Kusuawa & Arizono (2013) assign beta distribution to quality 

uncertainty to capture a large number of different characteristics by adjusting the two shape 
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parameters. Robotis, Boyaci & Veter (2012) examine the impact of normally distributed quality 

on a hybrid system under product reusability and return quantity investments.  

On the other hand, undefined probability density functions are used, sometimes, to model 

quality uncertainty (Galbreth and Blackburn 2006; Ferguson et al. 2009; Robotis et al. 2005). In 

Ferguson et al. (2009) returns are classified into three quality grades: scrap, harvest for parts, or 

fit-for-remanufacturing. In the study, returns’ quantity is deterministic and demand is either 

stochastic or deterministic. Several costs vs. quality relationships are addressed, but acquisition 

price vs. quality relationship is not. The objective of the model is to maximize total profit by 

optimizing returns to remanufacture, to salvage, and to hold for future periods. The study 

presented by Robotis et al. (2005) is for an enterprise that practice both reselling and 

remanufacturing at the same time. The paper’s objective is to compare between the 

performance of a system with vs. a system without remanufacturing activities. System’s 

performance is enhanced by selecting the optimal acquired quantities, optimal remanufactured 

quantities and quality range of remanufactured returns.  

In some other cases, quality of returns takes the form of discrete random variable (Galbreth 

and Blackburn 2010; Teunter & Flapper 2011; Behret & Korugan 2009; Aras et al. 2004). In 

Teunter & Flapper (2011), quality is assigned a multinomial distribution since returns are 

divided into k different quality types and each type has a certain probability. Sorting is 

performed after acquisition and the acquisition price is either fixed or quantity dependent. Due 

to the sequence of events, remanufacturing cost is considered to be quality dependent, while 

acquisition price is not. The model optimizes a newsboy-type problem by choosing the proper 

acquisition quantity in certain and uncertain demand environments. Also, simulation is used in 

Behret & Korugan (2009) to verify the importance of quality classification. The paper compares 

between a system without quality classification and an alternative one with quality 

classification. In the study, returns are classified into either good quality, average quality or bad 

quality. Yield or recovery rate from each returned item, remanufacturing processing cost, 

remanufacturing effort, operational disposal cost, and remanufacturing overflow disposal cost 

are all considered to be quality dependent. Both demand and return quantity are considered to 

be stochastic and follow Poisson distribution. Moreover, the problem setting defined in Aras et 

al. (2004) is very similar to that defined in the paper presented by Behret & Korugan (2009). 

They present similar cases in which quality classification is a better approach. There are few 

differences between the two studies such as number of quality classifications for returns and 

consideration of remanufacturing lead-time. The paper calculates the holding cost based on 

quality level. This study uses Continuous Markov Chain optimization technique to solve for the 

minimum long-run average system cost. 
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Quality uncertainty could be addressed as the yield or the percentage of remanufactureables 

in a lot of returns (Bakal & Akcali 2006; Zikopoulosa & Tagarasa 2008; Mukhopadhyaya & Ma 

2009). When yield is used, in either its stochastic or deterministic forms, the different costs 

associated with remanufacturing are not quality dependent, but rather fixed. The paper Bakal & 

Akcali (2006) analyses the automotive remanufacturing industry in the U.S. The objective of the 

paper is to maximize the firm’s profit by choosing the optimal selling and acquisition prices. 

Return quantity, demand quantity and return quality are all assumed to be price dependent. 

Moreover, return and demand quantities are assumed to be deterministic, while the yield is 

assumed to be either deterministic or stochastic. Zikopoulosa & Tagarasa (2008) presents a 

study in order to encourage the remanufacturing firms to design or develop a sorting or quality 

evaluation mechanism for the returns. The paper compares between the profitability of a 

system that has no sorting before disassembly and another with sorting before disassembly. 

The model optimizes system’s performance by selecting optimal remanufacturing and 

procurement quantities when demand is behaving uncertainly. Mukhopadhyaya & Ma (2009) 

maximizes system’s profit through the use of optimal return quantity to take back, items to 

acquire or to order, and items to produce. This paper has a novel contribution for considering 

delivery lead-time in the case of random yield.  

CLSC literature is rich with papers that do not consider quality uncertainty or variation in 

condition of returns. Thus, each remanufactured return is assumed to cost exactly the same 

irrespective to its quality. An example of such a direction is the work presented by Shi et al. 

(2010). They study a perfect substitution environment with manufacturing and recycling 

options. The study has the precedence in presenting the return quantity as a non-linear 

function of the acquisition price. The total expected profit is maximized by optimizing recycling 

quantity, manufacturing quantity, serviceable inventory stocking level as well as acquisition 

price. An extension of the previous work is Shi et al. (2011a) with a difference that this work is 

modeled by considering a linear relationship between return quantity and acquisition price. 

Another difference between the two works is that the return horizon is considered from the 

beginning of the planning period to the end of the remanufacturing period in the later study. 

Another extension of the earlier work is Shi et al. (2011b) with similar problem settings. The 

study optimizes quantities of return and demand by setting the optimal acquisition and selling 

prices. This paper assumes that quantities have linear relationships with their corresponding 

prices. Hsueh (2010) has the precedence in presenting dependency between demand and 

return quantity that takes into account the different phases of the product life cycle. The study 

assumes that both demand and return quantities follow normal distribution with a changing 

mean depending on the specific phase of the PLC. Closed form formulas are derived to calculate 

the optimal production quantity, reordering point and safety stock in each phase of the PLC. 

Many papers in the CLSC literature study systems with deterministic attributes such as Koh et 

al. (2002), Konstantaras et al. (2010) and Chiu et al. (2009). 
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Several papers have addressed the issue of networking in a CLSC context. Jayaraman et al. 

(1999) shows that the existence of a remanufacturing facility in certain market depends on both 

the demand of that market (similar to a traditional SC) and the availability of returns in that 

market (different than a traditional SC). In this paper, we argue that the availability of returns is 

necessary, but not sufficient due to the fact that condition of those returns plays, also, a vital 

role. Ko & Evans (2007) have proposed a heuristic MINLP model for a third party logistics 

provider in a CLSC. Due to the complexity of the model (NP hard), many heuristics have been 

developed and tested to optimize the system. A deterministic programming model was 

introduced by Lee & Dong (2008) to optimize a computer products network. Due to the 

difficulty of the problem, a two stages heuristic is developed. Reconfigurability of the network 

or its ability to adjust to new operational conditions is found to be more advantageous if it does 

not coincides with extremely high initial investment (Listes 2007). It is noticeable that none of 

the previous papers nor many others in the field of CLSC networking (Salema et al. 2007; 

Salema et al. 2006; Bostel & Lu 2007; Saman & Zhang 2012) addressed quality uncertainty.   

In contrast to the previous literature, this work studies the impact of quality uncertainty or 

condition variability on a network of remanufacturing facilities and markets. Also, this paper 

assumes quality to follow either normal or exponential distribution. Comparison between 

system’s behavior and profitability with respect to each distribution is conducted.  

3.  Model Formulation 

Few remanufacturing facilities perform quality grading for returns prior to purchasing or 

dismantling. Indeed, finding such quality grades in many industries is difficult due to the lack of 

knowhow, absence of technological enablers or complexity of the return’s structure. Thus, 

choosing a proper industry is a vital step before we could formulate the problem. One of the 

industries that have a great potential to benefit from this study is the tires remanufacturing or 

retreading industry.   

There are three key players in the retreading industry. As shown in Figure 1, the collectors or 

tire retailers collect used tires from the customers. The haulers aggregate, sort and deliver 

collected tires to the appropriate processors. Sorting is performed to separate retreadable from 

non-retreadable tires in an effort to sell those retreadable tires to a remanufacturing facility. 

According to Ontario Tire Stewardship (2009), retreadable tires could bring up to one third of 

their original price (up to $100) in revenue for the Haulers. Consequently, every retreadable tire 

is potentially associated with high revenue. This aggregation and sorting processes are assumed 

to be performed periodically. Lastly, the several processors (e.g. retreading plant) process scrap 

or used tires to produce useful and environmentally responsible products. 
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Figure 1: Tire Supply Chain 

Once used tires are received by the remanufacturing facility, each tire is thoroughly 

inspected and graded. According to Ferguson et al. (2009), adapting quality grading prior to 

remanufacturing increases profitability regardless of the quality distribution. Thus, each return 

is given a quality score ranging from 0 to 100. If the return has a higher quality grade than the 

optimal minimum quality, then it is acquired with a price that coincides with its quality and 

advanced to the remanufacturing process without being stored. Otherwise, it is rejected from 

the remanufacturing process and assigned back to the hauler. Redirecting rejected tires to 

another waste stream or to another processor is the responsibility of the hauler. The 

remanufacturing facility bears no cost associated with any rejected tire including the 

transportation cost, because it is the haulers responsibility to deliver the appropriate tire to the 

appropriate processor. The enterprise may operate a network of multiple remanufacturing 

facilities to satisfy the demand of multiple markets. Each facility may face different parameters 

and each market may have different characteristics. 

With the objective of maximizing the total expected profit of the system, the enterprise 

needs to decide remanufacturing facility location and market allocation. At the same time, to 

control the product take-back, it is important to determine the optimal minimum quality of 

returns to accept into each operating facility. We formulate the problem as mixed integer 

nonlinear programming models. 
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Model Assumptions: 

• Inspection and quality grading processes are assumed to be very precise and the speculation 

of return’s remanufacturing cost is always correct.  

• As quality increases, both remanufacturing cost decrease and acquisition price increase 

linearly. The slope in each relationship is set such that it is more profitable to remanufacture 

higher quality returns compared to lower quality returns. The assumption that the 

remanufacturing cost has a negative linear relationship with the quality is addressed in 

several papers including: Galbreth and Blackburn (2006), Ferguson et al. (2009), Galbreth 

and Blackburn (2010) & Watanabe, Kusuawa & Arizono (2013). Also, studying a system that 

assigns an acquisition price for each return based on its exact quality is inline with the work 

done by Wei, Tang & Liu (2014). They argue that such a refund policy is found to be better 

than setting a sole acquisition price for all returns or setting an acquisition price for every 

quality-category. 

• Quality is assumed to be stochastic with either normal or exponential distribution. This 

assumption is based on the following facts: 

- Due to economical reasons, many off the road (OTR) tires, which serve in a slow and 
harsh working environment, are not considered to be out of service until most of their 
economical value is well consumed. As a result, quality of returns spread close to the 
lower quality limit. Thus exponential distribution is chosen.  

- Due to safety reasons, many on the road tires, which serve on cities, are considered to be 
out of service while they are in decent quality. Thus quality of returns spread in between 
quality limits (e.g. between 0 and 100). As a result, normal distribution is chosen. 
According to Wei, Tang & Liu (2014), this assumption is valid especially if tires are 
collected from both collectors and individuals. 

• Demand is assumed to be either deterministic or stochastic with normal distribution. 

• Since the amount of used-tires can easily satisfy facility needs, the amount of returns (𝑅) is 

considered to be independent and either deterministic or a decision variable. Relatively, 

Watanabe, Kusuawa & Arizono (2013) assume the amount of returns to be price-dependent. 

If returns have unlimited supply, this assumption works will have high remaining functional 

value and do not propose a threat to users. 

• If (𝑅) is not a decision variable, then inspection cost is assumed to be zero. 

• The system does not have a pre-remanufacturing inventory, because of two main issues. 

First, tires are combustible and could attract mosquitoes. Thus, they should be stored in a 

controlled, shaded, and dry environment. Also, they are very bulky and storing those tires 

requires a spacious warehouse. Thus, storing used tires could be very expensive. Moreover, 



9 

tires deteriorate with time and there will always be new tires dumped into the system that 

exceed market’s demand. Therefore, it is better for the facility not to include a pre-

remanufacturing inventory system. 

• The system include post-remanufacturing inventory in the case of uncertain demand as 

production might exceed actual demand. Therefore, over-stocking cost is introduced to the 

model only in the case of uncertain demand. Moreover, under-stocking cost is always 

considered in the models as it might be optimal not to satisfy demand even if it is 

predetermined. 

The following notations are used in the models: 

Indices: 

𝑖 Set of facilities (1, . . . , 𝐹) 

𝑗 Set of markets (1, . . . , 𝑀) 

 

Parameters: 

𝑈 Under-stocking Cost 

𝑂 Over-stocking Cost 

𝑃 Selling price 

𝑎 Acquisition price assigned for worst possible remanufacturable return 

𝑏 Slope of acquisition price vs. quality linear relationship 

𝛼 Remanufacturing cost assigned for worst possible remanufacturable return 

𝛽 Slope of remanufacturing cost vs. quality linear relationship 

𝑅 Quantity of return assigned for facility 𝑖 

𝐷𝑗  Forecasted demand for market 𝑗, used when demand is deterministic 

𝐶𝑠𝑖 Setup cost for facility 𝑖 

𝐶𝑎𝑖 Capacity limit for facility 𝑖 

𝑇𝑖𝑗 Transportation cost per item from facility 𝑖 to market 𝑗. This cost is zero if demand is 

satisfied from a local remanufacturing facility 

𝜇𝑞𝑖  Average quality of returns delivered to facility 𝑖 

𝜎𝑞𝑖  Quality standard deviation, for the normal quality distribution, experienced by facility 𝑖  

𝑓𝑞(. )𝑖  PDF for the variables following the distribution assigned for quality in facility 𝑖  

𝐹𝑞(. )𝑖  CDF for the variables following the distribution assigned for quality in facility 𝑖  

𝑑𝑗 Actual demand for market 𝑗, used when demand is stochastic 

𝜇𝑑𝑗  Average demand for market 𝑗, used when the system is modeled with stochastic or 

normally distributed demand 
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𝜎𝑑𝑗  Demand standard deviation for market 𝑗, used when the system is modeled with 

stochastic or normally distributed demand 

𝑓𝑑(. )𝑗 PDF for the variables following the distribution assigned for demand in market 𝑗 

𝐹𝑑(. )𝑗 CDF for the variables following the distribution assigned for demand in market 𝑗 

𝑎 + 𝑏 ∗ 𝑞𝑖 Acquisition price vs. quality linear relationship 

𝛼 – 𝛽 ∗ 𝑞𝑖 Remanufacturing cost vs. quality linear relationship with 𝛽 > 𝑏 

Stochastic Variables: 

𝜋 Expected system’s profit, which is the objective function to be maximized 

𝑞𝑖 Actual quality of returned item to facility 𝑖 

Decision Variables: 

𝜔𝑖  Binary variable (0,1):   0 = facility 𝑖 is not operating 

     1 = facility 𝑖 is operating 

𝑄𝑖  Optimal minimum quality to accept into facility 𝑖 

𝑉𝑖𝑗  Number of items supplied by facility 𝑖 to market 𝑗 

Modeling for deterministic demand (Model 1): 

If the demand on remanufactured products is certain, then the profit function should be: 

𝜋 = {∑ ∑ 𝑉𝑖𝑗 ∗ 𝑃

𝑀

𝑗=1

𝐹

𝑖=1

} − {∑ ∫ [𝑎 + 𝑏 ∗ 𝑞𝑖] ∗ 𝑅𝑖  𝑓𝑞(𝑞𝑖)𝑖𝑑𝑞𝑖  
∞

𝑄𝑖

𝐹

𝑖=1

}

− {∑ ∫ [
∞

𝑄𝑖

𝛼 − 𝛽 ∗ 𝑞𝑖] ∗ 𝑅𝑖𝑓𝑞(𝑞𝑖)𝑖𝑑𝑞𝑖  

𝐹

𝑖=1

} − {𝑈 ∗ (∑ 𝐷𝑗

𝑀

𝑗=1

− ∑ ∑ 𝑉𝑖𝑗

𝑀

𝑗=1

𝐹

𝑖=1

)}

− {∑ 𝜔𝑖 ∗ 𝐶𝑠𝑖

𝐹

𝑖=1

} − {∑ ∑ 𝑇𝑖𝑗 ∗ 𝑉𝑖𝑗

𝑀

𝑗=1

𝐹

𝑖=1

} 
(1)  

Then, the problem can be formulated as (Model 1): 

Max 𝜋 

Subject to: 

∑ 𝑉𝑖𝑗
𝑀
𝑗=1 ≤ ∫ 𝑅𝑖𝑓𝑞

(𝑞
𝑖
)

𝑖
𝑑𝑞

𝑖

∞

𝑄𝑖

    for each 𝑖 (2)  

∫ 𝑅𝑖𝑓𝑞
(𝑞

𝑖
)

𝑖
𝑑𝑞

𝑖

∞

𝑄𝑖

≤ 𝐶𝑎𝑖     for each 𝑖 (3)  

𝐷𝑗 ≥ ∑ 𝑉𝑖𝑗
𝐹
𝑖=1      for each 𝑗 (4)  

𝑄𝑖 ≥ (1 − 𝜔𝑖) ∗ 𝐿     for each 𝑖 (5)  
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𝑄𝑖 ≤ 100 ∗ 𝜔𝑖 + (1 − 𝜔𝑖) ∗ 𝐿     for each 𝑖 (6)  

𝑉𝑖𝑗 ≤ 𝜔𝑖 ∗ 𝑅𝑖     for each 𝑖 and 𝑗 (7)  

It is noted that the objective function with integration to infinite is a good approximation 

since the actual distribution of the quality limits the probability beyond 100. The meaning of 

each term in the objective function (1) is explained next. The first term refers to the revenue 

generated by selling all items supplied from all facilities 𝑖 to all markets 𝑗 in the case of 

deterministic demand. The second and third terms refer to the overall returns’ acquisition cost 

and remanufacturing cost experienced by the enterprise respectively. The fourth term 

addresses the overall under-stocking cost the enterprise is facing. Lastly, fifth and sixth terms 

refer to the overall setup and transportation costs respectively. With regard to the constraints, 

the quantity constraint (2) makes sure that facility 𝑖 will only satisfy demand from the quantity 

that have been accepted and remanufactured by the facility which is equivalent to 

∫ 𝑅𝑖𝑓𝑞
(𝑞

𝑖
)

𝑖
𝑑𝑞

𝑖

∞

𝑄𝑖

. The capacity constraint (3) verifies that production from facility 𝑖 does not 

exceed the capacity limit for that facility. The demand constraint (4) forces the system not to 

exceed the deterministic demand from market 𝑗. Thus, the system experiences no over-stocking 

scenario in the case of deterministic demand.  

The first quality constraint (5) and the second quality constraint (6) make sure that the 

optimal minimum quality is meaningful (i.e. 0 ≤ 𝑄𝑖 ≤ 100) where 𝐿 is a very large number. 

Based on the constraints, if facility 𝑖 is operating (i.e. 𝜔𝑖 = 1), then the optimal minimum 

quality is 0 ≤ 𝑄𝑖 ≤ 100; otherwise, if facility 𝑖 is not operating (i.e., 𝜔𝑖 = 0), then the optimal 

minimum quality 𝑄𝑖 is a very big number, which means the facility does not take any return.  In 

this case ∫ 𝑓𝑞(𝑞𝑖)𝑖𝑑𝑞𝑖 
∞

𝑄𝑖
≈ 0 for both the normal and exponential distributions, which gives a 

good approximation. A similar assumption is used by Robotis, Boyaci & Veter (2012) when 

modeling the normally distributed remanufacturing cost. 

The inequality (7) is the excess quantity correction constraint. In our model we use 

distributions that may have values between −∞ and +∞. Thus, the previous quality constraints 

might not be enough to block all returns from entering a non-operating facility. This is true, 

because we could not choose infinity instead of a very large number while programming GAMS 

as infinity is unrecognized value. Thus, this constraint is added to compensate for such an error 

if it exists. As a result, it ensures that no demand is satisfied from a non-operating facility. 
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Modeling for stochastic demand (Model 2): 

If the demand on remanufactured products is uncertain, then the profit function should be as: 

𝜋′ = {∑ ∫ 𝑃
∑ 𝑉𝑖𝑗

𝐹
𝑖=1

−∞

𝑀

𝑗=1

∗  dj𝑓𝑑(dj)𝑗
𝑑dj} + {∑ ∫ 𝑃

∞

∑ 𝑉𝑖𝑗
𝐹
𝑖=1

𝑀

𝑗=1

∗ ∑ 𝑉𝑖𝑗

𝐹

𝑖=1

𝑓𝑑(dj)𝑗
𝑑dj}

− {∑ ∫ [𝑎 + 𝑏 ∗ 𝑞𝑖] ∗ 𝑅𝑖𝑓𝑞(𝑞𝑖)𝑖𝑑𝑞𝑖  
∞

𝑄𝑖

𝐹

𝑖=1

} − {∑ ∫ [
∞

𝑄𝑖

𝛼 − 𝛽 ∗ 𝑞𝑖] ∗ 𝑅𝑖𝑓𝑞(𝑞𝑖)𝑖𝑑𝑞𝑖  

𝐹

𝑖=1

}

− {∑ 𝑂 ∗ ∫ (∑ 𝑉𝑖𝑗

𝐹

𝑖=1

− dj)
∑ 𝑉𝑖𝑗

𝐹
𝑖=1

−∞

𝑀

𝑗=1

 𝑓𝑑(dj)𝑗
𝑑dj}

− {∑ 𝑈 ∗ ∫ (dj − ∑ 𝑉𝑖𝑗

𝐹

𝑖=1

)
∞

∑ 𝑉𝑖𝑗
𝐹
𝑖=1

𝑀

𝑗=1

 𝑓𝑑(dj)𝑗
𝑑dj} − {∑ 𝜔𝑖 ∗ 𝐶𝑠𝑖

𝐹

𝑖=1

} − {∑ ∑ 𝑇𝑖𝑗 ∗ 𝑉𝑖𝑗

𝑀

𝑗=1

𝐹

𝑖=1

} 

(8)  

 

Thus, the problem can be formulated as (Model 2): 

Max 𝜋′ 

Subject to: 

Constraints (2), (3), (5), (6), and (7). 

In the objective function (8), the first and fifth terms are the revenue generated by the 

enterprise and the expected over-stocking cost respectively. They are used if the uncertain 

demand in market 𝑗 is found to be less than all remanufactured items supplied by all facilities 

∑ 𝑉𝑖𝑗
𝐹
𝑖=1  to that specific market. Also, the second and sixth terms are the revenue generated by 

the enterprise and the expected under-stocking cost respectively. They are used if the 

uncertain demand in market 𝑗 is found to be more than all remanufactured items supplied by 

all facilities ∑ 𝑉𝑖𝑗
𝐹
𝑖=1  to that specific market. 

4. Numerical Example and Results 

The problem formulated above is a Mixed Integer Non-Linear Programming (MINLP). We 

employ GAMS to solve the example given in Table 1. 
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Parameter Value Parameter Value Parameter Value Parameter Value 

i ∈ {ON, QC, MB} [(σq)ON]Normal 10 Cs MB 10,000 Distance 

(ON-QC) 
490 

j ∈ {ON, QC, MB} [(σq)BQ]Normal 9 Ca ON 500 K 

R Ontario 205,875 [(σq)MB]Normal 8 Ca QC 500 K Distance 

(ON-MB) 
1270 

R Quebec 122,000 DON/[(μd)ON]Normal 135,000 Ca MB 500 K 

R Manitoba 19,825 DON/[(μd)QC]Normal 80,000 P 250 Distance 

(QC-MB) 
1550 

[(μq)ON]Normal 50 DON/[(μd)MB]Normal 13,000 U 15 

[(μq)QC]Normal 45 [(σd)ON]Normal 1,350 O 110 
Distance 

(ON-ON) 

(MB-MB) 

(QC-QC) 

Zero 

[(μq)MB]Normal 40 [(σd)QC]Normal 800 α 169 

[(μq)ON]Expo 15 [(σd)MB]Normal 130 𝛽 0.68 

[(μq)QC]Expo 13 Cs ON 10,000 a 90 

[(μq)MB]Expo 11 Cs QC 10,000 b 0.2 

Table 1: Numerical Example Parameters 

To present the logic in parameters calculation, few examples are given: 

• According to (State of North Carolina, Department of Administration, 2011) and (Ontario Tire 

Stewardship, 2009), the average number of nail holes in an ORT tire is about 20 which is 

assumed to occur in the middle of the quality spectrum. Also, average cost of retreading a 

tire is $135 and 25% of it is assumed to be contributed by the repair stage. Thus, 20 repairs 

are associated with $34. As a result, worst possible quality occurs at 40 repairs with a cost of 

𝛼 = 135 + 34 = 169. By applying the slope function 𝛽 = 0.68.  

• According to (Ontario Tire Stewardship, 2009), average cost of purchasing a retreadable tire 

is $100. Thus, it is associated with a tire that has 20 nail holes in it. It is assumed that each 

tire with no repair needs is purchased by $110. Thus, we can workout 𝑎 to be 90 and 𝑏 to be 

0.2. 

• To avoid model complexity, 𝑈 and 𝑂 are calculated based on the total cost associated with 

the mid quality reading. If a more complex and rigorous method is needed, the reader may 

refer to Galbreth & Blackburn (2006). In the paper, 𝑈 and 𝑂 are calculated using the average 

total cost spent on remanufacturing that is dependent on demand and optimal acquired 

return quantity. Thus,  

𝑈  = price – total cost of return at mid-quality reading (𝑞𝑖  =  50)  

= 250 – (90 +  0.2 ∗ 50) – (169 –  0.68 ∗ 50)   =  250 –  100 –  135 =  15 

𝑂  = total cost of return at mid-quality reading (𝑞𝑖  =  50) – salvage value (𝑠 =
𝑝

2
)  

= (90 +  0.2 ∗ 50) +  (169 –  0.68 ∗ 50)–
250

2
 =  110 

The different costs vs. quality linear relationships are constructed in Figure 2. The last 

relationship is the total spending/cost on returns with respect to each quality grade if they are 

to be accepted into the facility. Such a relationship is formed by adding both the acquisition 

cost and the remanufacturing cost. Normally, this relationship follows a decreasing pattern. If 

this relationship follows an increasing pattern, which this model does not support, then the 
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facility is better off remanufacturing the worse quality returns rather than the better quality 

returns. 

   

Figure 2: Acquisition Price, Remanufacturing Cost and Total Spending vs. Quality Linear Relationships Constructed for the 
Numerical Example 

The solution for the problem presented above is as the following: 

 

Exponential q 

and 

Deterministic D 

Exponential q 

and 

Normal D 

Normal q 

and 

Deterministic D 

Normal q 

and 

Normal D 

Total Profit 𝝅 $ 107,644 $ 59,733 $ 3,721,452 $ 3,603,820 

Optimal Quality 

QON Factory 6.3 6.6 46.0 46.3 

QQC Factory 5.5 5.8 41.4 41.6 

QMB Factory 4.6 4.9 36.8 37.0 

Number of Items  

Remanufactured by Factory i 

ON Factory 135,000 132,340 135,000 133,060 

QC Factory 80,000 78,409 80,000 78,815 

MB Factory 13,000 12,739 13,000 12,802 

Optimal Number of Items 

Delivered by Factory i to 

Market j – (V ij) 

ON - ON 135,000 132,340 135,000 133,060 

ON - QC – – – – 

ON - MB – – – – 

QC - ON – – – – 

QC - QC 80,000 78,409 80,000 78,815 

QC - MB – – – – 

MB - ON – – – – 

MB - QC – – – – 

MB - MB 13,000 12,739 13,000 12,802 

Operation of Facility i (ω i) 

0 = facility i is not operating 

1 = facility i is operating 

ON Factory 1 1 1 1 

QC Factory 1 1 1 1 

MB Factory 1 1 1 1 

Table 2: Numerical Example Results 

In both deterministic cases, demand is fully satisfied. Intuitively, deterministic demand is 

satisfied as long as the total spending on remanufacturing is less than the selling price plus the 

under-stocking cost (𝑃 + 𝑈). Also, we can notice from the results presented in the tables above 

that the settings in which quality is distributed normally are more profitable than the settings in 
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which quality is distributed exponentially and has higher optimal quality readings. This is due to 

the fact that the normal distribution has most of its returns under the bell shape centered 

somewhere around the middle quality, while the exponential distribution has most of its 

returns accumulated towards the lower qualities. Thus, the enterprise’s total spending on 

remanufacturing is high in the later case. It is found that a system with beta distribution will 

behave similarly under different shape parameters (Watanabe, Kusuawa & Arizono 2013). It is, 

also, important to understand that this superiority could be reversed if the amount of returns is 

extremely high. This fact is true because each distribution behave differently towards its higher 

end of quality.  Also, we can notice that ON, QC and MB facilities are all operating and each 

market’s demand is satisfied from its facility’s production.  

5. Sensitivity Analysis 

To proceed with the analysis, few parameters have been changed to show certain 

characteristics in the models. 

5.1 Return Quantity (𝑹𝒊) vs. Optimal Quality 

Let us assume that we have one facility in ON that satisfies its own market’s demand. As 

shown in Figure 3, when the return quantity increases, the optimal minimum quality increases. 

It is noticeable that the optimal minimum quality for the normally distributed quality is much 

higher than what it is for the exponentially distributed quality. Similar to Galbreth and 

Blackburn (2006), the difference between the stochastic demand and deterministic demand 

solution is small. However, it is noted that the difference is also sensitive to the parameter 

setting. For example, if 𝑅𝑂𝑁, 𝐷𝑂𝑁/𝜇𝑑𝑂𝑁
 and 𝜎𝑑𝑂𝑁

 values are changed to 200, 100 and 30, 

respectively, then the optimal quality in the deterministic case is 50% and in the stochastic case 

is 55.4%. 

 

Figure 3: Optimal Quality vs. Return Quantity 
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5.2 Total Spending Relationship vs. Optimal Quality 

𝑎, 𝛼, 𝑏 and 𝛽 work in synchronization to set the total spending on each quality graded 

return. The term (𝑎 + 𝛼) sets the total spending at the lowest quality level, while the term 

(𝑏 − 𝛽) sets the rate of reduction in total spending as quality improves. If (𝑎 + 𝛼) is lower than 

the selling price 𝑃, then the optimal quality is used to set the acquisition quantity with which 

demand is satisfied, and the expected under-stocking and over-stocking costs are minimized. If 

(𝑎 + 𝛼) is higher than the selling price 𝑃, then there will be returns that will generate a loss if 

remanufactured. If those returns are needed to satisfy demand, then the optimal quality is used 

to weigh the loss of incurring under-stocking cost vs. the loss of remanufacturing. Once the 

later loss is higher, the optimal quality will increase in an effort to only incur under-stocking 

cost. This behavior has happened when the 𝑏 value increased from 0.1 to 0.9 resulting in a 

decrease in the slope of the total spending vs. quality relationship and, thus, an increase in 

remanufacturing cost for those returns with higher quality (Figure 4). Note that a higher value 

of 𝑏 could represents higher incentives needed to acquire returns with higher quality. In 

addition, we can notice that the exponential models get affected first, because they offer lower 

number of high quality returns. Intuitively, to make profit with all sold items, the facility should 

try to increase the amount of returns (𝑅𝑖) until the optimal quality is more than the quality 

associated with 𝑃. 

 

Figure 4: Optimal Quality vs. b Value 

Relatively, in a hybrid system the optimal minimum quality is used to weigh the loss 

associated with remanufacturing vs. the loss associated with manufacturing new items 

(Watanabe, Kusuawa & Arizono 2013). This is related to the “regret loss” which is identified by 

Robotis, Boyaci & Veter (2012) as the increment of remanufacturing cost over manufacturing 

cost for a certain quality.  
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5.3 Quality Uncertainty (𝝈𝒒𝒊
) vs. Optimal Quality and Profit 

When quality is normally distributed and the uncertainty decreases, the bell shape of the 

quality distribution shrinks. Such a process deprives the system from having higher quality 

returns originally located at the higher end of the quality spectrum. As a result, the profit 

declines and the total spending increases in the system due to the need of remanufacturing 

lower quality returns (see Figure 5). Also, as quality uncertainty decreases the optimal 

minimum quality will change (increase/decrease) accordingly to preserve the acquisition 

quantity that will, only, satisfy demand needed to minimize all costs (see Figure 6 and Figure 7). 

In a related topic, Galbreth and Blackburn (2010) argue that if 𝑅𝑖 is a decision variable, then as 

quality uncertainty decreases 𝑅𝑖 will increase and the profit will change (increase/decrease) 

accordingly. This change in profit is minimal when 𝑅𝑖
∗ is low. 

 

Figure 5: Expected Profit vs. Quality Uncertainty 

 

Figure 6: Optimal Quality vs. Quality Uncertainty When Return Quantity is High 
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Figure 7: Optimal Quality vs. Quality Uncertainty When Return Quantity is Low 

5.4 Demand Uncertainty (𝝈𝒅𝒋
) vs. Optimal Quality and Profit 

In the normally distributed demand cases, as uncertainty increases the system’s expected 

profit decreases. This is due to the fact that the increase in demand uncertainty increases the 

chance of experiencing more over-stocking (𝑂) and under-stocking (𝑈) costs. 

 

Figure 8: Expected Profit vs. Demand Uncertainty 
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Figure 9: Optimal Quality vs. Demand Uncertainty 

If it happens that 𝑈 ≫ 𝑂, then there is a trade-off between decreasing the optimal quality to 

avoid the increasing chance of bearing high under-stocking cost and the high cost associated 

with remanufacturing lower quality returns. Thus, depending on the total spending vs. quality 

linear relationship and the difference between 𝑈 and 𝑂, the models could either decrease or 

increase the optimal quality as demand uncertainty increases.  

5.5 Transportation Cost vs. Facility Production, Optimal Quality and Profit 

If the enterprise runs many facilities, then the total profit could be increased by managing 

critical trade-offs between three different costs. First, is cost of transportation. The higher the 

transportation cost, the higher the need for more facilities to satisfy different markets’ 

demand. Second, is total spending associated with remanufacturing returns. The more facilities 

are utilized or opened for remanufacturing purposes, the less the total spending would be. This 

is due to the fact that with more facilities, the enterprise is able to utilize more high quality 

returns from all markets. Third, is setup cost. High facility setup costs are always associated 

with the need to aggregate production. In this Analysis, we use the model with normal quality 

and deterministic demand setting. 

To conduct the analysis, transportation cost per mile per tire is increased from 0.1¢ to 2¢. At 

the higher transportation costs, the enterprise has nothing but to supply each market’s demand 

from its own facility (see Figure 10).  

As the transportation cost declines below 1.8¢, we can notice that ON’s production 

increases, while QC’s production decreases. This could be achieved by decreasing ON’s and 

increasing QC’s optimal qualities respectively (see Figure 11). Notice that (𝜇𝑞)
𝑂𝑁

= 50 and 

(𝜇𝑞)
𝐶𝑄

= 40. Thus, if 𝑅𝑂𝑁 is very high, then ON’s facility may possess extra high quality returns 

that could be cheaply remanufactured and transported to QC. At this stage, the cost associated 

with remanufacturing ON’s high quality returns is not low enough to overcome the high 

transportation cost between ON and MB.  
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When the transportation cost is, as low as, 1.2¢ and below, ON’s facility supply portion of 

QC’s and MB’s demands. By further decreasing transportation cost to 0.9¢, the enterprise can 

shut down MB’s facility and satisfy all of its demand from ON’s facility, because (𝑑)𝑀𝐵, (𝑅)𝑀𝐵 

and (𝜇𝑞)
𝑀𝐵

 values are low. From Figure 12, we can notice the great change in the enterprise 

profitability as a result of this shut down.  

 

Figure 10: Facilities’ Production vs. Transportation Cost 

 

Figure 11: Facilities’ Optimal Quality vs. Transportation cost 
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 Figure 12: Expected Profit vs. Transportation Cost 

6. Extension of the Model with Return Quantity Decision 

In this section we extend the problem to determine both optimal minimum acceptable 

return quality (𝑄𝑖) and return quantity (𝑅𝑖) simultaneously. The return quantity is introduced as 

a decision variable and the inspection cost (𝑇) is introduced as a parameter. Thus, the problem 

modeling will change as the following: 

Deterministic demand case (Model 3): 

Max 𝜋 − ∑ 𝑅𝑖
𝐹
𝑖=1 ∗ 𝑇 

Subject to:  

Constraint (2) – (7) and 𝑅𝑖 ≥ 0 

Stochastic demand case (Model 4): 

Max 𝜋′ − ∑ 𝑅𝑖
𝐹
𝑖=1 ∗ 𝑇 

Subject to:  

Constraint (2), (3), (5), (7) and 𝑅𝑖 ≥ 0 

A single facility and single market setting is used to test the problem and the solution is 

found through GAMS. The parameters used in this section are those assigned for ON in Table 1, 

and the inspection cost per tire is ranged from $1 to $5. In the tables below, we study system’s 

performance under Model 4 where 𝑄𝑖 and 𝑅𝑖 are decision variables, and compare that to 

system’s performance under Model 2 where 𝑄𝑖 is a decision variable and 𝑅𝑖 is a parameter. To 

have a valid comparison, total inspection cost (∑ 𝑅𝑖
𝐹
𝑖=1 ∗ 𝑇) should also be subtracted from the 

expected profit functions (𝜋′) in equations (8). Tables 3 and 4 report the solutions for both 

exponential and normal quality distributions respectively, where the values of the profit for 

Model 2 are relative decrease (in percentage) compared to the profit of Model 4. 
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Inspection Cost 1 2 3 4 5 

Model 4 

Q* 29.6 19.2 13.1 8.8 5.5 

R* 957390 478150 318530 238750 190900 

π* 1977700 1314500 926870 652050 439000 

Model 2 with   

R = 1.1 R* 

Q* 31.0 20.6 14.6 10.2 6.9 

π* (% of the decrease) 0.228 0.342 0.483 0.686 1.018 

Model 2 with   

R = 1.3 R* 

Q* 33.5 23.1 17 12.7 9.4 

π* (% of the decrease) 1.820 2.739 3.874 5.503 8.166 

Model 2 with   

R = 0.9 R* 

Q* 28 17.6 11.6 7.2 3.9 

π* (% of the decrease) 0.258 0.388 0.551 0.784 1.162 

Model 2 with   

R = 0.7 R* 

Q* 24.3 13.9 7.8 3.5 0.1 

π* (% of the decrease) 2.736 4.116 5.829 8.279 12.287 

Table 3: Comparing system’s performance under Model 2 and Model 4 when quality is exponentially distributed 

Inspection Cost 1 2 3 4 5 

Model 4 

Q* 54.7 49.7 46.1 43.1 40.4 

R* 415860 259180 204130 176550 160560 

π* 3578600 3257900 3029900 2840900 2673000 

Model 2 with   

R = 1.1 R* 

Q* 55.5 50.8 47.6 45.2 43.1 

π* ( % of the decrease) 0.075 0.114 0.168 0.236 0.325 

Model 2 with   

R = 1.3 R* 

Q* 56.9 52.7 50 48 46.5 

π* (% of the decrease) 0.576 0.878 1.241 1.693 2.278 

Model 2 with   

R = 0.9 R* 

Q* 53.7 48.2 44 40.2 35.9 

π* (% of the decrease) 0.089 0.141 0.215 0.320 0.501 

Model 2 with   

R = 0.7 R* 

Q* 51.1 43.8 35.2 0 0 

π* (% of the decrease) 0.984 1.679 2.901 13.017 24.736 

Table 4: Comparing system’s performance under Model 2 and Model 4 when quality is normally distributed 

Considering the case of normally distributed quality presented in Table 4, when Model 4 is 

used and the inspection cost increases from $1 to $5, the optimal minimum quality, optimal 

return quantity and expected profit drop 26.14%, 61.39% and 25.31% respectively. Such a high 

drop in profitability should encourage retreading plants to revise their process of inspecting 

returns. For example, replacing human powered inspection machines by fully automatic ones 

could drastically increase profitability of the system even if they are tied up to higher 

investment costs. With such change the facility could add up more inspection capacity and 

reduce inspection cost per tire (𝑇). Also, If Model 2 is used and the amount of returns is 

increased or decreased by 10%, -10%, 30%, -30% in comparison to R*, then the average drop in 

profitability through all inspection costs will be 0.167%, 0.227%, 1.228% and 7.179% 

respectively. Similar to Galbreth & Blackburn (2010), there is a trade-off between the total 

inspection cost and the total spending on remanufacturing. In our work, this trade-off is 

controlled by the amount of returns and the optimal minimum quality accepted for 

remanufacturing. In contrast to Galbreth & Blackburn (2010), our work gives a precise reading 

for the optimal quality that enables remanufacturers to efficiently accept or reject a return 

directly after the inspection is conducted. 
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7. Conclusions and Managerial Insights 

The quality of returned products plays a crucial role in the development of remanufacturing 

network. This work develops MINLP models to simultaneously determine the optimal 

configuration of remanufacturing networks and return quality decision under return quality and 

demand uncertainties. An extension is given in Section 6 where the amount of returns is also 

considered as a decision variable. 

If the remanufacturing enterprise has the advantage of inspecting cores before purchasing, 

then it is important to use the optimal minimum quality as a major acceptance threshold in any 

return accepting/rejecting decision. Such a strategy saves the enterprise the costs of acquiring 

and disposing off unwanted returns. Also, the remanufacturing enterprise should deal with the 

increase in the amount of returns as an opportunity to enhance profit rather than unnecessary 

exerted effort especially with lower inspection costs. Similar to Galbreth & Blackburn (2006), 

the higher the amount of returns, the more quality selective the facility could be and, thus, the 

more profit it could generate. Compared to Robotis, Boyaci & Veter (2012) who view quality 

uncertainty as an opportunity to invest, this work suggests that quality uncertainty should be 

viewed is a chance to reduce remanufacturing cost rather than an unwelcomed interruption. 

If an enterprise runs multiple facilities, then managing transportation cost, setup cost and 

total spending effectively is vital to reach the system’s optimal performance. For example, an 

optimal solution may lead a market to be supplied by both a local facility and a remote facility 

due to the scarcity of high quality returns in the local facility. Therefore, 

decentralized/centralized decision is not only dependent on transportation cost, but also 

dependent on return quality and setup cost. Our model and solution approach provide an 

effective tool to make those decisions. 

Also, remanufacturing system’s behavior and profitability depends greatly on the 

distribution of returns along the quality spectrum. Generally, the more returns lie toward the 

higher end of quality, the more profitable the remanufacturing system is. Thus, if a 

remanufacturing facility is not facing extremely high returns, then a quality distributed normally 

is more appealing than a quality distributed exponentially. Relatively, a remanufacturing system 

facing exponential distribution might have limited chances of success when investing in a design 

used to increase reusability or amount of returns (Robotis, Boyaci & Veter 2012). Thus, 

contracting several geographically distanced collectors to supply a facility with returns might 

increase returns’ quality and, thus, profitability of the system. 

Return quantity in our models is assumed to be a parameter or a decision variable. 

Therefore, a possible extension of this work is to consider return quantity to be stochastic. Also, 

under-stocking and over-stocking costs should be quality dependent when applied in a 
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remanufacturing context. Finally, a future study could model a system with more quality 

dependent variables such as pre-remanufacturing inventory cost and remanufacturing lead-

time. 
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