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Abstract 

Deep dynamic site characterization and a site-specific ground motion response analysis 

(SSGMRA) were conducted for a bridge site in Monette, Arkansas. The SSGMRA indicated the 

design acceleration response spectrum determined using the American Association of State 

Highway and Transportation Officials (AASHTO) general seismic procedure could be reduced 

by 1/3 for the short period range due to attenuation of the short-period ground motions. The steel 

girder pile-bent bridge, originally designed using the AASHTO general seismic design 

procedure, was redesigned using the updated seismic demands estimated from SSGMRA. A 

cost-savings analysis was then conducted to determine the potential savings associated with 

conducting the SSGMRA. By designing based on the results of the SSGMRA, a potential 

savings of $205,000 or 7% of the original bridge construction cost could be achieved for the 

study bridge. Items that contributed most to the cost savings were the pile and embankment 

construction.  
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1. Introduction 

Northeast Arkansas (NEA) is located in the heart of the New Madrid Seismic Zone (NMSZ), 

an area of the U.S. that has some of the highest design ground motions in the nation. This large 

seismic hazard is the result of past large magnitude earthquakes occurring within the NMSZ, 

noted in Figure 1.  In addition to the high seismic threat in NEA, the region is located within the 

upper Mississippi Embayment. This geologic area, also illustrated in Figure 1, is characterized 

by deep, unconsolidated sedimentary deposits, which form a plunging syncline with an axis that 

closely traces the course of the Mississippi River [Mento et al. 1986]. The thickness of these 

deposits ranges from approximately 477 m at New Madrid, Missouri to 987 m at Memphis, 

Tennessee [Van Arsdale and TenBrink 2000, Rosenblad et al. 2010]. 
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FIGURE 1 - Top: Three centuries of earthquakes in Northeast Arkansas [Arkansas Geological 

Survey 2017] Bottom: Idealized cross section of the Mississippi Embayment [Hashash and Park 

2001]. 

 

These two regional characteristics significantly increase the seismic design costs of bridge 

abutments, deep foundations, and earthquake resisting systems (ERS) in NEA. Currently, the 

Arkansas Department of Transportation (ARDOT) typically uses the general procedure outlined 

in the American Association of State Highway and Transportation Officials (AASHTO) Load 

and Resistance Factor Design (LRFD) Bridge Design Specifications to estimate the seismic 

demand for highway bridges. Although this methodology usually provides a conservative design, 

the AASHTO LRFD specifications clearly warn that short-period structures may be over-

designed at a significant cost, and long-period structures may be under-designed at a significant 

risk. This is because the immense sediment thicknesses of the Mississippi embayment are 
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expected to amplify long-period waves and attenuate short-period waves to a much greater extent 

than estimated using the general procedure, which only considers the top 30 m of soil 

[Malekmohammadi and Pezeshk 2015]. Therefore, to better estimate the design ground motions 

at bridge sites and ensure safe and cost efficient designs, AASHTO recommends conducting a 

site-specific ground motion response analysis (SSGMRA) for areas such as the Mississippi 

Embayment. AASHTO specifications directly mention that sites with deep, soft deposits, like 

those in the Mississippi Embayment, are locations where SSGMRA should be performed. 

Recognizing the value these types of site specific analyses can add when complex conditions 

exist, AASHTO allows seismic design forces obtained from general, code based procedures to be 

reduced by up to 33% if the SSGMRA indicates this is appropriate. Cox et al. [2012] concluded 

that this reduction could be achieved for short period ranges at bridge sites in NEA, which is 

where the natural period of most NEA bridges designed by ARDOT fall.  

Other research has been conducted to understand the implications of conducting site response 

at NMSZ bridge sites. Rogers et al. [2007] performed site response analyses at three Missouri 

River highway bridge sites using artificial acceleration time histories, which predicted site 

amplification between six and nine times for a large magnitude earthquake. They also concluded 

that serious foundation failure could occur for earthquakes over Mw 6.5 to 6.6 [Rogers et al. 

2007].  However, the bedrock depths for these bridge sites are between 30 m and 40 m, which is 

much shallower than bedrock depths at bridge sites within the Mississippi Embayment. The deep 

Mississippi Embayment sedimentary deposits have a very large impact on the transfer of bedrock 

motions to surface ground motions during a large earthquake [Romero and Rix 2001, Hashash et 

al. 2010].  The thick sedimentary deposits in NEA are expected to damp out high frequency 

seismic waves, posing little threat for amplification of short period waves like that seen in the 
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Missouri River Flood Plain [Cox et al. 2012]. Liu and Stephenson [2004] conducted site 

response for two bridge sites in the Missouri Bootheel where subsurface soils are more than 600 

m thick. They demonstrated the importance of using both equivalent linear (EQL) and nonlinear 

(NL) site response analyses and the effects of deep soil deposits that cause period migration from 

short to long periods. This resulted in a broad short period range where site response predicted 

accelerations less than typical design accelerations. Other Mississippi Embayment site response 

research also predicts attenuation of short period motions for sites in western Tennessee and 

Kentucky due to deep unconsolidated sediments [Wang et al. 1996, Harris et al. 1994]. 

Ketchum et al. [2004] demonstrated the potential cost savings of conducting SSGMRA for 

post-tensioned box-girder and I-girder bridges, which the California Department of 

Transportation (CalTrans) typically prefers. Their results show that for typically low overhead 

bridges, a 5% cost savings can be obtained for each 10% reduction in PGA above a baseline of 

0.3 g to 0.4 g. Since AASHTO [2014] allows up to a 33% reduction in the simplified code based 

design response spectra (including the PGA), based on these results, conducting a SSGMRA 

could result in a cost reduction on the order of 15% of the total cost of the bridge. This cost 

savings would be significant for Arkansas bridges within the Mississippi Embayment. Figure 2 

illustrates Arkansas state owned bridges within AASHTO seismic performance zones when 

AASHTO site class D is assumed. Cost savings associated with conducting SSGMRA would be 

even more significant when the AASHTO seismic performance zone could be lowered from 4 or 

3 to 2 or 1 where design requirements are less stringent. 



5 
 

FIGURE 2 - Arkansas State owned bridges within respective AASHTO Seismic Performance 

Zones assuming site classification D. The Monette bridge used for the study is highlighted. 

 

For this study, deep dynamic site characterization and a SSGMRA were conducted at a 

recently designed and constructed ARDOT bridge in Monette, Arkansas, which was originally 

designed using the AASHTO LRFD general procedure. The bridge was then redesigned with the 

resulting design acceleration response spectrum and the cost-savings associated with conducting 

the SSGMRA at the Monette bridge was estimated. We first discuss the Monette, Arkansas 

bridge site background including seismic information and soil conditions along with the site 

response analysis methodology, including details on obtaining the site-specific shear wave 
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velocity (Vs) profile and input earthquake acceleration time histories. Then the general aspects of 

the Monette bridge superstructure and substructure are described, and the highlights of the site 

response analysis, and details on the bridge redesign based on the SSGMRA results are 

described. Finally, the cost-savings potential associated with conducting SSGMRA in NEA are 

presented and discussed.  
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2. Monette, Arkansas Bridge Site Background 

Monette, Arkansas is located on the western edge of Craighead County in NEA as shown in 

Figure 2. Just east of Monette, Highway 18 crosses the Cockle Burr Slough, a 60 m wide canal 

that connects into the St. Francis River. Recently, as part of a project that expanded Highway 18 

to four lanes and rerouted it to bypass north of Monette, a new 100 m long by 24 m wide bridge 

was constructed to cross the Cockle Burr Slough. The main components of the bridge include 

nine 100 m long continuous steel girders and six pile bents. The new structure occupies the same 

location as the old bridge and was built in stages so that traffic could still flow over the old 

structure until two lanes of the new bridge could be opened. The lowest bridge chord is 2.5 m 

above the design flood elevation, which is 2 m higher than the previous structure that crossed the 

canal. The overall cost of the project was $13.7 million, of which $2.82 million was for bridge 

construction. 

The subsurface conditions at the site are characterized by mainly sandy soils with the 

exception of a clay layer between 3 m and 6 m below existing grade according to ARDOT 

borings located at each end of the bridge. Some trace gravel exists in layers below 15 m. Soil 

information at the bridge end bents are detailed in Figure 3. The soil at the site classifies as an 

AASHTO site class D based on blow count. General procedure design values include a design 

PGA value of 0.917 g, an SDS value of 1.641 g, and an SD1 value of 0.694 g, which corresponds 

to an AASHTO seismic performance zone of 4. This high seismic hazard is the result of the 

site’s close proximity to the Reelfoot Rift, the main fault system of the NMSZ.   
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FIGURE 3 - Elevation view of Monette Bypass Bridge with restrainer block detail, bent 

numbering, and soil conditions from ARDOT boring information. N values represent raw blow 

counts from SPT measurements. Depths are defined as below ground surface (BGS). 
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3. Site Response Methodology 

To conduct a SSGMRA, there are three main steps: (1) characterize the small-strain Vs of the 

soil profile down to bedrock, (2) collect and adjust appropriate input earthquake acceleration 

time histories, and (3) simulate the propagation of input ground motions from bedrock to the 

ground surface using appropriate numerical analyses. Each of these steps has its own challenges 

that can contribute to the overall uncertainty in surface ground motion estimates. The following 

sections discuss each one of these issues for the Monette site. 

 

3.1 Dynamic Site Characterization 

To determine the small strain Vs profile at the Monette, Arkansas site, a combination of 

active source multi-channel analysis of surface waves (MASW), passive source microtremor 

array measurements (MAM), and horizontal to vertical spectral ratio (HVSR) measurements 

were carried out. The MASW method was used to collect both Rayleigh and Love surface wave 

data at the site [Park et al. 1999] with an array of 24, 4.5 Hz vertical (Rayleigh) and horizontal 

(Love) geophones with a uniform space of 2 m between each geophone (array length of 46 m). 

Rayleigh and Love waves were generated using vertical and horizontal blows from a 4.5 kg 

sledgehammer, respectively. To produce high quality data, allow for uncertainty quantification, 

and to minimize near-field effects, multiple source offsets of 5 m, 10 m, 20 m, and 40 m from the 

first geophone in the array were utilized. A total of 10 sledgehammer blows were stacked at each 

source location to improve the signal-to-noise ratio of the recorded waveforms. 

MAM measurements were made using circular arrays of ten, three-component Trillium 

Compact, 20 s broadband seismometers. These seismometers were generally arranged with one 

seismometer at the center and nine uniformly distributed around the circumference. The exact 



10 
 

location of each seismometer used for testing was recorded using a centimeter accurate GPS unit. 

Array diameters of 50 m, 200 m, and 500 m were used. Ambient noise was recorded for one hour 

for the 50 m and 200 m diameter arrays and for two hours for the 500 m diameter array.  

 Active-source MASW for Rayleigh and Love wave data were processed using the 

Frequency Domain Beamformer (FDBF) method in combination with the multiple-source offset 

technique [Zywicki 1999, Cox and Wood 2011]. The use of multiple source offsets during data 

collection and processing allows for quantifying dispersion uncertainty and the identification of 

near field contamination. The MAM Rayleigh and Love wave dispersion curves were computed 

using the HRFK method [Capon 1969] and the MSPAC method [Bettig et al. 2001] from the 

circular array data. For the MSPAC method, an average dispersion curve was computed for each 

array from the estimated auto-correlations. The MAM array data were also used to develop 

HVSRs for each of the ten seismometers for all arrays. Ambient records were processed in 

general accordance with SESAME [2004]. Once all dispersion data from each method were 

developed, data were combined to form a mixed-method composite experimental dispersion 

curve as shown for Rayleigh and Love waves in Figure 4.  

The composite experimental dispersion curve and HVSR peak for each site were used in a 

joint inversion using the Geopsy software package, Dinver [Wathelet et al. 2008]. Dinver 

operates by generating trial Vs profiles using a neighborhood algorithm [Thomson 1950, Haskell 

1953, Dunkin 1965, Knopoff 1964] within user-defined constraints. The layer parameterization 

at each site was developed based on the geologic layer boundaries and geologic materials from 

the Central United States Seismic Velocity model detailed in Ramirez-Guzman et al. [2012]. A 

range of velocity, density, and Poisson’s ratio values for each layer were estimated based on the 

type of material expected in each geologic strata. Vs values for each layer were defined based on 
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Vs reference curves from Lin et al. [2014], which are dependent on soil type and mean effective 

confining pressure. Poisson’s ratio was allowed to vary between 0.25-0.35 for soils above the 

water table. Poisson’s ratio for soils below the water table was based on a Vp of 1500 m/s in the 

near surface, however at depths where Vs was greater than 750 m/s, Vp was allowed to increase 

beyond 1500 m/s to constrain Poisson’s ratio between the range of 0.25-0.35 which is typical for 

dense sand and gravel layers present at these depths [Coduto 1999]. A uniform density of 2000 

kg/m3 was used for soils and 2300 kg/m3 for bedrock. 

For the inversion, two million trial Vs profiles were used to generate Rayleigh and Love 

wave dispersion curves and ellipicity curves in an effort to obtain the closest dispersion curve fit 

based on a misfit calculation, which is a function of the dispersion and HVSR fit. The theoretical 

fits for the Rayleigh, Love, and HVSR experimental data are shown in Figure 4 for the 1000 

lowest misfit Vs profiles. The 1000 lowest misfit Vs profiles are also shown in Figure 4. To 

conduct the SSGMRA, 10 Vs profiles (shown in green in Figure 4), were randomly selected from 

the top 1000 lowest misfit profiles. The variability in these profiles was used to account for 

uncertainty in a more meaningful way than the industry standard approach of using median and ± 

20% profiles [Griffiths et al. 2016b]. Using Vs profiles that extend to bedrock has been shown to 

be critical to properly estimating the ground motions for sites within the Mississippi Embayment  

[Cramer et al. 2004; Hashash and Park 2001]. For further information regarding the data 

collection or processing, please see Wood et al. [2014] or Deschenes et al. [2018]. 
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FIGURE 4 - Top Left – Rayleigh and Love wave experimental dispersion data fit with 

theoretical curves. Bottom Left – Experimental horizontal to vertical spectral ratio fit with 

theoretical curves. Right – 1000 lowest misfit shear wave velocity profiles from inversion and 10 

randomly selected shear wave velocity profiles used in SSGMRA.  

 

3.2 Input Ground Motions 

A deaggregation was performed using the USGS Unified Hazard Tool.  Deaggregation 

results indicated that a singular scenario governs the seismic hazard at all periods: a modal 

magnitude 7.7 earthquake at a distance between 22 km and 23 km.  The Unified Hazard 

Spectrum (UHS) was chosen as the design target spectrum, which is an appropriate target 

spectrum if conservative estimates of response are acceptable [NEHRP 2011].  

The AASHTO Guide Specifications for LRFD Seismic Bridge Design state that response-

spectrum-compatible time histories shall be developed from representative recorded earthquake 
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motions. Rathje et al. [2010] argued that these time histories have the greatest influence on site 

response results. Large magnitude ground motions at short distances have never been recorded in 

the Central United States. Therefore, as part of a Nuclear Regulatory Commission project, 

earthquake acceleration time histories from various regions were adjusted to encompass the 

frequency content expected from an earthquake occurring in the Central and Eastern United 

States [McGuire et al. 2001]. The selected input acceleration time histories from McGuire et al. 

[2001] were restricted to those with magnitudes and distances consistent with the deaggreagtion 

[Kramer 2012]. Ultimately, ten input ground motions, listed in Table 1, were selected. 

 

TABLE 1 - Summary of selected input ground motions [McGuire et al. 2001]. 

File Name EQ 
PGA 

(g) 

Magnitude 

M
w
 

Distance R 

(km) 
Duration (s) 

SHL090 Cape Mendocino 0.585 7.1 33.8 14.6 

SHL000 Cape Mendocino 0.648 7.1 33.8 14.4 

GBZ000 Kocaeli, Turkey 0.454 7.4 17 7.3 

DAY-TR Tabas, Iran 0.947 7.4 17 9.7 

DAY-LN Tabas, Iran 0.993 7.4 17 8.8 

GYN000 Kocaeli, Turkey 0.313 7.4 35.5 8.3 

TCU128-N Chi-Chi, Taiwan 0.305 7.6 9.7 29.9 

TCU046-W Chi-Chi, Taiwan 0.336 7.6 14.3 18.8 

TCU047-W Chi-Chi, Taiwan 0.7 7.6 33 12.9 

TCU047-N Chi-Chi, Taiwan 1.168 7.6 33 10.8 

 

 

RspMatch [2009] was used to match the ten selected ground motions to the UHS target 

spectrum [Hancock et al. 2006]. According to AASHTO [2011], input rock acceleration time 

histories should be adjusted, either by scaling or spectral matching, to match the seismic hazard 
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consistent with the bridge site.  Advantages to spectral matching include reduction of record-to-

record variability, which reduces output variability and also enhancement of select frequencies 

with no unconservative bias in response [NEHRP 2011].  

 

3.3 Simulating Wave Propagation 

To perform the site response analysis, the software program DEEPSOIL 6.1 was utilized. It 

has been shown to produce appropriate site response results for sites with deep sedimentary 

deposits, such as those in the Mississippi Embayment, because of its short period accuracy 

[Zheng et al. 2010, Hashash and Park 2001].  

Within DEEPSOIL, a new model for small-strain nonlinearity and strength, termed the GQ/H 

model, has recently been implemented [Groholski et al. 2016]. The GQ/H model allows users to 

define target shear strengths for each layer and satisfies both the small-strain and large-strain 

modeling of the soil backbone curve. It does so by following a fitting procedure that slightly 

increases the shear modulus reduction curve from the reference curve at higher strains. This 

eliminates the need for manually implied shear strength corrections, which were previously 

required in older models to account for strain-hardening behavior. The GQ/H model was used to 

fit corrected curves to the Darendeli [2001] modulus reduction and damping curves for each soil 

layer. These dynamic soil properties were not randomized because no reasonable variability 

parameters could be determined [Malekmohammadi and Pezeshk 2015].  

Soil type, plasticity, and blow count information was obtained from ARDOT boring logs and 

used in calculations for dynamic soil properties. For layers below the final boring depth, sand 

reference curves for normally consolidated sands were assigned. Target shear strength values 

were estimated using either a SPT blow count to shear strength correlation based on ARDOT 
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boring logs or a Mohr-Coulomb behavior shear strength assuming a friction angle of 30° and no 

cohesion.   

Due to the limitations and advantages of each type of analysis, EQL and NL analysis results 

were weighted equally to obtain an overall design response spectrum. EQL analyses can produce 

a very flat response at high frequencies due to high damping values at sites where high shear 

strains are expected [Griffiths et al. 2016a], and underestimates ground motions at high 

frequencies for thick soil deposits [Romero and Rix 2001]. NL analyses can better predict soil 

behavior under large strains from strong ground motions at soft soil sites because it accounts for 

changes in soil properties at each time step [Kim et al. 2016]. However, EQL analysis is still the 

most common method in practice [Rathje et al. 2010] and has proved to be valuable for studies 

within the NMSZ [Liu and Stephenson 2004].  
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4. Original Bridge Design Specifications 

The superstructure of the Monette bypass bridge, presented in Figure 3, consists of a 22 cm 

thick deck slab and nine 100 m long continuous W36x135, Grade 50W steel girders spaced at 

2.75 m. The girders are supported by two end stub abutments (termed end bents herein) and four 

intermediate pile-bents, and are equipped with bumper bars, which are assumed to transfer the 

lateral load to the substructure by striking against a steel bumper plate attached to the end bents 

during seismic excitation.  

An important aspect of the composite deck is the concrete restrainer block system, also 

illustrated in Figure 3. The restrainer blocks, the bridge’s main earthquake resisting system 

(ERS), are designed to resist transverse seismic loads. At end abutments, concrete was cast over 

the first 45 cm of the girders and diaphragms leaving approximately 13 cm of web and bottom 

flange exposed. Subsequently, four 63.5 cm tall by 137.2 cm wide restrainer blocks were cast on 

top of the end bents. With this interlocking system of the composite deck and the abutments, 

transverse movement is restricted during a seismic event.  

Nine 46 cm (18 in) diameter closed end concrete filled steel pipe piles of 1.25 cm (0.5 in) 

wall thickness are integrated into the bottom of each end bent. Similarly, nine 61 cm (24 in) x 

1.25 cm inch closed end concrete filled steel pipe piles are integrated into the bottom of each of 

the four intermediate bents.  

From WinSEISAB®, a dynamic analysis program that analyzes bridge structures to 

determine the seismic demand placed on various bridge components [WINSEISAB 2009], the 

bridge has a longitudinal period of 1.272 s and a transverse period of 0.365 s before joint lockup. 

After joint lockup, the longitudinal period changes to 0.360 s. The program also outputs mass 
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participation per mode and total accumulated mass participation along with the vibration 

characteristics of the structure.  
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5. 1-D Site Response Analysis Results 

A delineated design response spectrum was developed and shown in Figure 5d for the 

Monette site using the site response acceleration response spectrum, the upper limiting AASHTO 

site class D design response spectrum, and the lower limiting two-thirds AASHTO site class D 

design response spectrum. The scaled input motions are shown in Figure 5a, the EQL results are 

shown in Figure 5b, the NL results are shown in Figure 5c, and the combined EQL and NL 

results are shown in Figure 5d.  The delineated design response spectrum is the greater of either 

the site-specific response spectrum or two-thirds of the general response spectrum and is always 

less than or equal to the AASHTO site class D response spectrum obtained from the general 

procedure.  
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FIGURE 5 - AASHTO site class D design spectrum and 2/3 of AASHTO site class D design 

spectrum with a.) scaled input motions and lognormal median of scaled input motions, b.) 

equivalent linear analyses results with lognormal median of EQL  results, c.) nonlinear analyses 

results with lognormal median of NL results and d.) LNM of EQL results, LNM of NL results, 

averaged results, and delineated design spectrum. 

 

Results from this analysis indicate a generally flat response from the PGA to approximately 

0.2 s. The EQL analysis response spectrum begins to exceed the two-thirds AASHTO Site Class 

D design spectrum at around 0.7  s – 0.8 s, which is similar to the results presented in Cox et al. 

[2012] for a Blytheville, Arkansas site. The NL response spectrum begins to exceed the two-

thirds AASHTO design spectrum around 1.0 s. As expected, the NL analyses resulted in lower 

accelerations than the EQL analyses for most periods. The smooth peak of the site response 

spectrum indicates that no wave energy entrapment is expected for the soft soil site. 

(c)

(a)

(d)

(b)
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Also illustrated in Figure 5b and c, amplification of input rock motions begins around 0.5 s 

and continues until a peak amplification of 2.7 times and 2.2 times is reached at 1.85 s for EQL 

and NL analyses, respectively. This amplification is consistent with that observed in Cox et al. 

[2012]. Rogers et al. [2007] also observed this type of period migration for three Missouri River 

highway bridge sites. This causes higher potential for constructive interference with long period 

bridges. The deamplification from PGA to 0.5 s is also noteworthy. Design of structures in NEA 

with a natural period in this range will benefit from the lower design spectral acceleration 

estimated by a SSGMRA compared to those estimated using the general procedure. This 

attenuation is also consistent with previous Mississippi Embayment  SSGMRA research [Cox et 

al. 2012, Liu and Stephenson 2004, Zheng et al. 2010, Malekmohammadi and Pezeshk 2015]. 

Maximum strain levels reached 1.57% for EQL analyses and 1.54% for NL analyses as 

shown in Figure 6. The TCU128-N record (Mw = 7.6 in Chi-Chi, Taiwan) produced the highest 

maximum shear strains out of all of the selected input records. This record has the longest 

duration and shortest distance from fault rupture of all the records. It was also among records 

with the highest magnitudes. Zheng et al. [2010] observed similar shear strain magnitudes using 

their average Vs profile for Osceola, AR. These shear strain values are less than those observed 

by Cox et al. [2012], but the input ground motion was greater for their Blytheville site versus the 

Monette site.  
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FIGURE 6 - Maximum shear strains profiles for a.) equivalent linear analyses and b.) nonlinear 

analyses. 
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6. Bridge Redesign Based on SSGMRA 

Four major components of the bridge project were considered in the seismic redesign: 

restrainer blocks, columns, piles, and approach embankment. While there may be additional 

components that would benefit from being redesigned using the post SSGMRA response 

spectrum, these likely would result in limited cost savings compared to the components 

mentioned above. The redesign of each of the components used the same ARDOT design 

methodology as the original project to yield the most accurate cost savings values for the 

redesign. To maintain the intricacies of the original structure, which is important for the cost-

savings analysis, two redesign options were considered that used similar components as the 

original design. These two options were (1) use 61 cm diameter intermediate bent piles and 46 

cm end bent piles (same design as original structure), or (2) downsize the intermediate bent piles 

to 46 cm diameter piles, which uses only 46 cm piles for the entire structure. These two options 

are discussed below in detail. 

 

6.1 61 cm Intermediate Bent Piles 

A new dynamic analysis was performed in WinSEISAB® [WINSEISAB 2009] using the 

delineated design acceleration response spectrum from the SSGMRA. The reduction in notable 

loads and load effects is outlined in Table 2. From this analysis, there is a linear type of 

relationship between the reduction in design accelerations and some seismic forces/effects. In 

particular, column axial load, column transverse moment, and lateral force on restrainer blocks 

were all reduced by approximately 33% (i.e., the same reduction in the short period range of the 

updated design response spectrum).  
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TABLE 2 - Load/load effect reduction due to SSGMRA for 61 cm intermediate bent pile design.  

  Load/Effect 
Pre 

SSGMRA  

Post 

SSGMRA 
Unit 

% 

Reduction 

Location/ 

Load Case 

AASHTO 

Methods/

Criteria 

Restrainer 

Block 

Design 

FT Max 13340 8892 kN 33.3% Load Case 4 
5.7.5 

5.8.3.3 

5.8.4 

Column 

Design 

Pmax 1468 979 kN 33.3% 

Bent 3, 

Column 4, 

LC 4 

6.9.5.1 

4.5.3.2.2b 

6.12.2.2.3 

6.9.2.2 

4.7.4.5 

MT Max 629 419 kN-m 33.3% 

Bent 3, 

Column 4, 

LC 4 

ML Max 168 149 kN-m 11.3% 

Bent 2 

Column 1, 

LC3 

Pile Length 

Design 

Prequired 2358 1922 kN 18.5% 
Interior Bent 

Piles (2-5) 

Prequired 605 458 kN 24.3% 
End Bent 

Piles (1,6) 

 

 

The reduction in lateral forces on the bridge allowed a reduction in restrainer block size. The 

height and transverse width of the blocks were reduced while the lateral width of the blocks were 

not adjusted. From a construction perspective, it is easier to cast the blocks flush with the face of 

the abutment. The height of the blocks was reduced from 63.5 cm to 53 cm, and the transverse 

width was reduced from 137 cm to 89 cm. Shear and moment reinforcement was redesigned 

considering the reduction in lateral forces, which resulted in a reduction of about 450 kg of rebar. 

For the columns, 0.16 cm section loss was assumed due to corrosion or scour. Since the 

columns were structurally sound as 61 cm diameter piles with the original seismic load, they 

were satisfactory for the reduced seismic load. The axial pile capacity was then checked while 

considering the effect of potentially liquefiable layers. With the reduction in PGA, liquefaction 

hazard was reanalyzed. ARDOT utilizes a deterministic approach for liquefaction analysis. 

Liquefaction potential was evaluated using SPT blow counts for the Youd et al. [2001], Cetin et 
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al. [2004], and Idriss and Boulanger [2008] methods. However, little difference in potentially 

liquefiable layers was observed between the methods due to the poor soils at the site.  One layer 

between 6 m and 7.6 m at bent 6 changed from potentially liquefiable (FS<1) to non-liquefiable 

(FS>1) when considering the reduced SSGMRA PGA. 

DRIVEN® [DRIVEN 2001] was used to input the soil profile from boring log information 

and to determine the pile capacities at given depths. The skin friction resistance of the pile was 

reduced in layers at which the factors of safety for liquefaction were less than 1.0. Even though 

there was only small change in the potentially liquefiable layers, the reduction in axial load 

caused some piles to reach required capacity at shallower depths than in the original design. The 

intermediate bent pile lengths were reduced by 1.2 m each, resulting in a total reduction of 44 m 

of 61 cm diameter piling. The greatest length change was estimated at bent 6. The original bent 6 

piles reached the required axial capacity at 15.25 m. However, since piles are not allowed to bear 

in liquefiable layers, the design length of these piles had to be extended through the liquefiable 

layer to 20 m. The reduced axial load from SSGMRA allowed the piles to reach the required 

capacities at 12.8 m and bear in a dense sand layer. This resulted in a total reduction of 63 m of 

46 cm diameter pipe piling. The complex soil layering at bent 1 prevented any reduction in pile 

length. It should be noted that the pile length reductions are based on design calculations and true 

as-built pile lengths may vary. However, the as-built length is likely to be reduced by a similar 

amount compared to the design lengths due to the decreased axial demand. 

 

6.2 46 cm Intermediate Bent Piles 

The dynamic analysis for the structure with 46 cm diameter intermediate bent piles showed 

an even larger reduction in column loads than the 61 cm diameter intermediate bent pile 



25 
 

structure. However, restrainer block forces and pile forces were not reduced as significantly. The 

pre and post SSGMRA loads for the 46 cm diameter intermediate bent pile structure are 

presented in Table 3. 

 

TABLE 3 - Load/load effect reduction due to SSGMRA for 46 cm intermediate bent pile design. 

Design Load/Effect 
Pre 

SSGMRA  

Post 

SSGMRA 
Unit 

% 

Reduction 
Location 

AASHTO 

Methods/

Criteria 

Restrainer 

Block 

Design 

FT Max 13337 11555 kN 13.4% Load Case 4 

5.7.5 

5.8.3.3 

5.8.4 

Column 

Design 

Pmax 1469 725 kN 50.7% - 

6.9.5.1 

4.5.3.2.2b 

6.12.2.2.3 

6.9.2.2 

4.7.4.5 

MT Max 629 217 kN-m 65.5% - 

ML Max 168 55 kN-m 67.4% - 

Pile Length 

Design 

Prequired 2356 1595 kN 32.3% 
Interior Bent 

Piles (2-5) 

Prequired 604 580 kN 4.0% 
End Bent 

Piles (1,6) 

 

 

Even though the reduction in lateral forces was not as great as for the 61 cm diameter column 

structure, a reduction in restrainer block size was still achieved. The height of the blocks was 

reduced from 63.5 cm to 58.5 cm, and the transverse width was reduced from 137 cm to 89 cm. 

There was also a reduction in the reinforcement needed, which amounted to about a 220 kg 

reduction in rebar.  

The axial loads and moments were found for several different columns on respective bents 

and load cases in order to capture the design load envelope. The magnified moments and flexural 

resistance of the pile was calculated. Then, the combined axial compression and flexural 

resistance was checked for the several different columns and load cases. Displacement 
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requirements (P-Δ) were then checked. Other significant limit states, such as Strength I, were 

also satisfied. 

With the large reduction in load/load effects for the columns comes a reduction in section 

capacity. However, the 46 cm diameter piles were determined to be satisfactory as columns. The 

designs for the end bents (bents 1 and 6) are the same as those for the 61 cm diameter column 

redesigned structure. This is due to both end bent piles being 46 cm in diameter for both cases, 

and the change in seismic load between the two structures is relatively small because of their 

fully supported lengths. Intermediate pile lengths were reduced by 1.2 m each compared to the 

original pile lengths. Lengths were again reduced for bent 6 piles by about 7 m compared to the 

original ARDOT design. Again, pile lengths at bent 1 could not be reduced.  

 

6.3 Other Aspects of Bridge Design 

It is important to note other bridge aspects that could benefit from reduced seismic demand. 

In particular, the seismic design of the bridge approach embankments that are design based on a 

seismic slope stability analysis. Reducing this design PGA, would provided a potential cost 

savings. For the original design, slope stability analyses were conducted for the embankments 

which indicated 8 layers of 130 kN/m geogrid reinforcement on 30.5 cm vertical spacing and 

extending 30 meters beyond the abutment were required to satisfy stability requirements. Using 

the updated SSGMRA PGA, stability of the embankment was achieved using 4 layers of 30 

kN/m geogrid reinforcement on 30.5 cm vertical spacing and extending 30 meters beyond the 

abutment. This significantly reduced both the quality (lower tensile strength) and quantity 

(approximately half the area required) of geogrid required for the job.    
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7. Cost-Savings Analysis 

Cost savings analyses was conducted using both redesign options discussed above. Tables 4 

and 5 outline the cost savings for each analysis compared to the original bid items for the 61 cm 

structure and 46 cm structure, respectively. The redesign savings, which is directly based on the 

original bid documents for the structure with 61 cm diameter intermediate piles are outlined in 

Table 4. A total savings of $164,089 was determined for this bridge redesign, which represents a 

5.82% reduction in the cost of the project with respect to the original bid.  The savings for the 

structure with 46 cm diameter intermediate piles are listed in Table 5. A total savings of 

$206,992 was determined for this structure, which represents a 7.34% reduction in the cost of the 

project. These cost reductions are consistent with other findings from Ketchum et al. (2004). The 

majority of the savings for each structure is from the reduction in pile lengths and sizes as well as 

the reduction in strength and area of embankment reinforcement. A slight savings from the 

reduction in restrainer block design was also estimated. 
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TABLE 4 - Cost savings associated with 61 cm intermediate bent piles bridge redesign. 

Original Design  61 cm Intermediate Bent Piles 

Quantity Unit Item 

Winning 

Bid Unit 

Cost 

Total 
Redesign 

Quantity 
Unit Cost Total Savings 

206 CU M 
CLASS S 

CONCRETE-BRIDGE 
$921.57 $189,927 204 921.57  $ 187,622.36  $2,304.65 

14510 KG 
REINF STEEL 

BRIDGE (GR 60)  
$2.64 $38,352 14283 2.64 $37,752 $600 

76563 KG 
EPOXY COATED 

REINF STEEL 

(GRADE 60) 

$2.42 $185,504 76336 2.42 $184,954 $550 

329 M 
STEEL SHELL 

PILING (18" DIAM) 
$409.84 $135,000 266 409.84 $109,125 $25,875 

933 M 
STEEL SHELL 

PILING (24" DIAM) 
$459.02 $428,400 889 459.02 $408,240 $20,160 

18894 SQ M 
EMBANKMENT 

REINFORCEMENT 
$7.18 $135,600.00 8778 2.39 21000 $114,600 

      
TOTAL 
BRIDGE 

COST 

$2,821,743.30   
TOTAL 

SAVINGS 

  

 $ 164,089.65  

            
% 

SAVINGS 
  5.82% 

 

TABLE 5 - Cost savings associated with 46 cm intermediate bent pile bridge redesign. 

Original Design  46 cm Intermediate Bent Piles 

Quantity Unit Item 

Winning 

Bid Unit 

Cost 

Total 
Redesign 

Quantity 
Unit Cost Total Savings 

206 
CU 
M 

CLASS S 

CONCRETE-

BRIDGE 

$921.57 $189,927 204 921.57 $187,884.62 $2,042.39 

14510 KG 
REINF STEEL 

BRIDGE (GR 60)  
$2.64 $38,352 14396 2.64 $38,052 $300 

76563 KG 

EPOXY COATED 

REINF STEEL 
(GRADE 60) 

$2.42 $185,504 76449 2.42 $185,229 $275 

329 M 
STEEL SHELL 

PILING (18" DIAM) 
$409.84 $135,000 1156 409.84 $473,625 -$338,625 

933 M 
STEEL SHELL 

PILING (24" DIAM) 
$459.02 $428,400 0 459.02 $0 $428,400 

18894 
SQ 

M 

EMBANKMENT 

REINFORCEMENT 
$7.18 $135,600.00 8778 2.39 21000 $114,600 

      

TOTAL 

BRIDGE 
COST 

 $ 2,821,743.30    
TOTAL 

SAVINGS 
   $ 206,992.39  

            
% 

SAVINGS 
  7.34% 

 

For both the 61 cm diameter column structure and the 46 cm diameter column structure, no 

cost savings was attributed to liquefaction analysis. Only one layer, which is at bent 6 from 6 to 

7.5 m, changed from liquefiable to non-liquefiable when considering the reduced PGA from 



29 
 
 

SSGMRA. This layer contributes very little skin friction capacity even when considered as non-

liquefiable. Therefore, the reduction in cost by reducing the pile length was primarily a result of 

the reduced axial load from SSGMRA.  

Embankment design savings were calculated by comparing the pre-SSGMRA Geogrid 

requirements with the post-SSGMRA requirements. Based on information provided by Tensar, a 

unit cost of $7.18/SM was used for the 130 kN/m Geogrid and a unit cost of $2.39/SM was used 

for the 30 kN/m Geogrid. Ultimately, this resulted in a $114,600 savings for the embankment 

design. 

From the findings of this research, a gross cost savings of approximately $205,000 was 

estimated for the Monette, AR bridge as a result of performing SSGMRA. This estimate is 

expected to vary by project as the original design details, such as the relationship of SD1 to 

performance zone boundaries, location of liquefiable layers, original factor of safety of 

liquefiable layers, embankment requirements, site classification, and site specific soil conditions, 

all play a role in the potential cost savings associated with conducting a SSGMRA. The net cost 

savings for performing a future SSGMRA for bridge construction should consider the additional 

cost of performing the SSGMRA. 
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8. Conclusion 

In this study, deep dynamic site characterization using surface wave and HVSR techniques 

was conducted at an ARDOT bridge site in Monette, AR, which is located within the Mississippi 

Embayment. The Vs profiles developed to bedrock (depth of 680 meters) were used to conduct a 

SSGMRA for the bridge site using a combination of equivalent linear and completely nonlinear 

site response analyses in DeepSoil in accordance with AASHTO 3.10.2.2. The results from both 

analyses demonstrate the attenuation of high frequency seismic waves and the amplification of 

long period waves within the deep sediments of the Mississippi Embayment. This attenuation at 

short periods lead to a reduction in the design acceleration response spectrum for the bridge of 

1/3 (AASHTO lower bound limit of 2/3 of the general procedure design response spectrum) in 

the short period range (~<1.0 seconds) for the Monette, AR site. Using the updated design 

response spectrum from SSGMRA, several aspects of the bridge were redesigned including the 

restraining blocks, bents/columns, piles and pile lengths, and approach embankments. For each 

aspect, the size and/or quantity of the design element was able to be reduced. Using the original 

unit bid prices, a cost-savings analysis was conducted. The majority of the cost savings 

associated with conducting the SSGMRA was related to reducing the length/size of piling for the 

bridge (~$90,000 savings) and a reduction in the quantity and quality of geogrid required to 

reinforce the approach embankment (~114,000 savings). This resulted in a total gross potential 

cost-savings for the Monette bridge of $205,000, or approximately 7% of the original bid price 

of the project.    

While this demonstrates the significant potential cost savings associated with conducting a 

SSGMRA for bridges located in the Mississippi Embayment, there are a number of complex 

factors that play a role in whether a SSGMRA will provide a cost-savings benefit to a project. 
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Assuming that a significant cost-savings will be achieved for all Mississippi Embayment bridges 

is not appropriate. Complex variables including the magnitude of the PGA, the SD1 value used in 

determining seismic performance zone, soil liquefaction potential, bridge length and structural 

type, foundation type, depth to bedrock, and other items all play a role in determining the benefit 

of conducting a SSMGRA. Additional research is needed to determine the detailed influence of 

these parameters on the potential cost savings of conducting a SSGMRA. 
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