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ABSTRACT 
 

Chalcogen-based layered superconductors with a litharge structure such as FeS and 

FeSe mono-layers undergo structural and superconducting phase transitions that are tunable by 

doping. Representing another material platform with a litharge structure but without valence d-

electrons, SnO monolayers also display a structural ground state with a degenerate rectangular 

unit cell at zero temperature and a charge-tunable energy barrier that leads to a thermally-

controllable structural phase change. Doped SnO monolayers with rectangular degenerate unit 

cells give rise to two-dimensional multiferroicity. Their two-dimensional elastic energy landscape 

adopts a basic analytic expression that is employed to discuss this structural transition. The 

results contained in this thesis increase our intuition on two-dimensional phase transitions and 

their effects on the properties of two-dimensional atomic materials with structural degeneracies. 
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CHAPTER 1 

INTRODUCTION 

Imagine one can read the newspaper on a cup at breakfast time, watch a TV screen 

hanging on the wall which has a thickness less than that of a sheet of paper, use a cell phone 

less than a millimeter thick while being much faster and less power consuming than the current 

cell phones. These are some of the potential applications of some recently discovered two 

dimensional materials which are one atom thick. These new materials may transform these ideas 

into reality one day. Among 2D materials, SnO has potential in catalysis, coatings and as a lithium-

ion storage material too [1]. Other than these electronic applications, SnO becomes a 

superconductor under pressure.  

  

Degenerate structural ground states are a staple of soft-condensed matter systems. 

Structural degeneracies lead to phase transitions at a temperature that is proportional to the 

smallest energy barrier separating these degenerate structures [2]. In a similar manner, a six-fold 

degenerate ground state is the workhorse of many bulk ferroelectric [3] and multiferroic [4] 

materials. 

 

Here, we study SnO monolayers to continue our understanding towards a complete 

picture of how properties of two-dimensional materials are affected by two dimensional structural 

transitions at finite temperature. SnO monolayers share the paradigmatic litharge structure of iron-

based superconductors FeS and FeSe. But lacking d-electrons and superconductivity under 

atmospheric pressure conditions, SnO appears as a more straightforward vehicle to initiate a 

discussion related to structural transitions.  
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The existence of a ground state structure with a rectangular unit cell on α-SnO [5] provides 

a new platform for an emerging discussion of two-dimensional structural phase transitions on 

materials with rectangular unit cells [6-8]. SnO also has a charge tunable energy barrier which 

can lead to a controllable structural phase change and this phenomenon can be studied 

analytically. The analytical model yields the transition temperature, 𝑇𝑐,  captures the sudden 

change in the structural order parameters, the elastic energy, and elastic parameters. 
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CHAPTER 2 

2D MATERIALS 

2.1 2D Materials History and Impact 

There were different theories and efforts to investigate the possibility of the existence of 

two dimensional materials for a long time. However, in 2004, Graphene was the first 2D material 

to be exfoliated. [9] Based on the bulk material that has been used to create 2D materials, they 

can be classified into two main classes: 1) Van der Waals 2D materials and, 2) layered ionic 

solids. Van der Waals 2D materials are the most common form [10]. These materials are created 

by mechanical or chemical exfoliation of their bulk material.  

 

In their bulk form, these materials are stacked layers arranged with van der Waals forces 

(hence their name) [11]. Examples of this kind of 2D materials are graphene, hexagonal boron 

nitride [12], and phosphorene [13]. Graphene and phosphorene have strong covalent bonds 

between atoms in one layer. The atomic bonds in each layer can also be ionic. Due to weak van 

der Waals interaction between layers, these solids can be easily exfoliated. Metals (M) such as 

titanium, zirconium, hafnium, vanadium, niobium, and tantalum with chalcogens (elements in 

group six of the periodic table) — mostly sulfur, tellurium, and selenium (usually labeled X) — are 

the most common and studied form of other van der Waals 2D materials with chemical formula 

MX2. MoS2 [14], TiSe2 and WSe2.  

 

The second class of 2D materials is called layered ionic solids [15]. The atoms in a single 

layer of these materials are bound together with strong electrostatic bonds. Most of these 2D 

materials are metallic oxides, for instance TiO2, SnO, MnO2 and Ni(OH)2. 

 



4 

 

 

2.2 Properties of 2D Materials 

In 2D materials, electrons are confined in a surface rather than a 3-dimensional space. 

The interaction between layers of bulk materials plays a significant role in their electronic and 

optical properties [16]. By confining interactions to two dimensions, new electronic behavior is 

observed (such as Hall effects) which has made researchers optimistic to exploit these properties 

and make new electronic devices. Another difference of 2D materials compared to bulk 3D 

materials is the effect of shape and stacking on their properties. For example, the properties of a 

single layer of graphene are different from those of 2 layers and they are still different from 3 

layers of graphene [17]. Even relative stacking angular mismatches play a role in electronic 

properties [13]. Elastic deformation also changes material properties. For instance, strain changes 

the properties by altering the orbital hybridization [18]. Some 2-dimensional materials are good 

thermal conductors. For example, 2D Boron Nitride is reported to have a thermal conductivity in 

the range of 100-270 W/mK [19] due to an absent phonon scattering from subsequent layers [20].  

2.3 Lattice Structure of SnO  

The crystal structure of a SnO monolayer has orthorhombic symmetry. The Oxygen atoms 

are arranged in a planar square sub-lattice and the tin atoms are arranged in alternating pyramids 

with square bases bounded by the oxygen atoms. By using first principles calculations, the lattice 

constant for charge neutral SnO monolayer with ground state structure has been found 𝑎1𝐿 = 

4.021667245 A0 and 𝑎2𝐿 = 3.656934052 A0. So this ground state structure is rectangular, rather 

than litharge structure. 



5 

 

 

 
Figure 2.1 SnO monolayer from (A) top view (Top panel) and (B) side view (Bottom 

Pannel) 

2.4 Scope of the Work 

The objective of the thesis is to provide numerical data that will eventually lead to an 

analytical model for the two-dimensional elastic energy landscape of SnO. The specific 

contributions of this thesis are: (1) to discuss the properties of pre and post structural transition of 

neutral SnO monolayer such as the transition temperature 𝑇𝑐, which is signaled by a sudden 

change in the structural order parameters, the elastic energy, and elastic parameters, and (2) how 

doping of SnO monolayer has effect on its energy landscape. The thesis is organized into the 

following chapters. 

Chapter 1 provides the motivation for this research. 

Chapter 2 provides a brief introduction to the history and properties of 2-D materials and 

lattice structure of SnO monolayer.  
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Chapter 3 provides the first principle calculations using VASP where the input files such 

as INCAR, KPOINTS, POSCAR, and POTCAR have been described. It also describes the elastic 

energy of SnO monolayer as a function of strain. 

Chapter 4 focuses on results. It explains the elastic energy of SnO monolayer for charge 

neutral slab and also gives information for transition temperature. It also provides explanation of 

the elastic energy of SnO monolayer with hole and electron doping. 

Chapter 5 summarizes the presented work in this thesis and provides suggestions for 

future work. 

  



7 

 

 

CHAPTER 3 

FIRST PRINCIPLES CALCULATIONS USING VASP FOR SnO MONOLAYERS 

In this thesis, first principles calculations have been done based on density functional 

theory (DFT) by using the Vienna Ab Initio Simulation Package (VASP). Electronic wavefunctions 

are expanded on a plane wave basis set. First, the first principle calculations for the neutral slab 

of SnO monolayer without strain have been done and the elastic energy is calculated without 

strain and without doping. Then the elastic energy for neutral slab has been calculated as a 

function of strain. After that, the elastic energy for hole doped and electron doped SnO monolayer 

has been calculated without strain. Finally, the elastic energy calculations for doped SnO 

monolayer have been done as a function of strain. Elastic energy of the material can be described 

as the potential mechanical energy stored in the configuration of a material as work is performed 

to distort its volume or shape. Elastic energy is stored on the material when objects are 

compressed and stretched, or generally if there is a deformation in any manner. 

3.1 Input Files 

Most calculations have been done for SnO monolayer in a work directory. Before starting 

the calculations, several files have been created in this directory. The important input files are  

INCAR   KPOINTS, POSCAR and POTCAR 

These four files are the central input files, and must exist in the work directory before VASP 

can be executed.  

3.1.1 K-Points   

The file KPOINTS contains k-point coordinates or mesh size for creating the k-point grid 

[21]. The k-points samples in the Brillouin zone are calculated with the 𝛤 −centered with 15x15x1 
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for SnO monolayers. In our thesis, automatic generation has been used to generate k-meshes. 

For SnO monolayer, K-points file looks like the following way: 

 

Automatic mesh  

0              ! number of k-points = 0 ->automatic generation scheme 

Gamma          ! generate a Gamma centered grid 

15 15 1        ! subdivisions N_1, N_2 and N_3 along recipr. l. vectors 

0. 0. 0.       ! optional shift of the mesh (s_1, s_2, s_3)  .  

3.1.2 INCAR 

The INCAR file is the central input file of VASP. It determines ’what to do and how to do 

it’. It is a tagged format file: Each line consists of a tag with the equation sign ’=’ and one or several 

values [21]. The INCAR file has been modified in our thesis to create the SnO monolayer - neutral 

or doped with electrons or holes. SnO unit cells have a total number of 4 atoms and 20 electrons. 

For the neutral SnO monolayer, the NELECT has been kept as 20.00, for electron doping it goes 

from 20.01 to 20.1 this and for hole doping the calculation has been done from 19.95 to 19.55. 

Ionic steps of 400 have been kept as NSW=400. The energy cutoff is supplied in the INCAR file 

and in all cases, ENCUT = 500 has been kept. For all the cases, EDIFFG = -1E-3 has been kept 

which is the stopping criteria for ionic accuracy. In the same way for all the cases, EDIFF = 1E-7 

has been kept which is the accuracy for electronic minimization. In the INCAR file, ISIF controls 

how the stress tensor is calculated. ISIF determines which degrees of freedom (ions, cell volume, 

and cell shape) are allowed to change. When the calculations for strain have been done, ISIF =2 

was given. It means that the ions can relax but cell shape cannot change. When the calculations 

have been done for without strain, ISIF=4 was given and it means that ions can relax and cell 

shape can change. ISMEAR = 0 has been chosen here so that Gaussian smearing can be chosen 

for the partial occupancies for each wave function [21]. 
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3.1.3 POSCAR and POTCAR  

The POSCAR file contains the lattice geometry and the ionic positions. In POSCAR, the 

following information has been provided to obtain the ground state of neutral SnO monolayer: 

     Lattice geometry: 

     1.00000000000000 

     4.0216676245000000    0.0000000000000000    0.0000000000000000 

     0.0000000000000000    3.6569340451999999    0.0000000000000000 

     0.0000000000000000    0.0000000000000000    9.8111553800221625 

    Sn   O 

     2     2 

     Selective dynamics 

     Ionic Position of Sn and O: 

     0.0000000000000000  0.5000000000000000  0.3904290833675363    

     0.5000000000000000  0.0000000000000000  0.6296078454341303    

     0.0000000000000000  0.0000000000000000  0.5200376022584215    

     0.5000000000000000  0.5000000000000000  0.5000000000000000    

The POSCAR file also contains the number of atoms per species which is for this SnO 

POSCAR file two tin atoms and two oxygen atoms. So, from the POSCAR file, it can be seen that 

the ground state is rectangular structure.  This SnO rectangular structure undergoes a structural 

transition in which the two dissimilar in-plane lattice parameters acquire an identical magnitude at 

a certain transition temperature. So, then it becomes litharge structure. 

For the SnO monolayer neutral unit cell with litharge structure, in POSCAR the following 

information has been provided: 

Lattice geometry: 

1.00000000000000 

3.83561900000000         0.00000000000000       0.00000000000000 
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0.00000000000000         3.83561900000000       0.00000000000000 

0.00000000000000         0.00000000000000       9.83000000000000 

    Sn   O 

     2     2 

  Selective dynamics 

 Ionic positions of Sn and O: 

 0.0000000000000000  0.5000000000000000  0.3800469469752632     

 0.5000000000000000  0.0000000000000000  0.6199530530247368  

0.0000000000000000  0.0000000000000000  0.5000000000000000     

 0.5000000000000000  0.5000000000000000  0.5000000000000000        

At the end of each job, VASP writes the final positions to the CONTCAR file. This file has 

the same format as the POSCAR file, and the calculations can be done by copying CONTCAR to 

POSCAR and running VASP again for continuation of the jobs. 

The POTCAR file contains the pseudopotential for each atomic species of SnO used in 

the calculation. The POTCAR file also contains information about the SnO atoms such as their 

mass, their valence, and the energy of the reference configuration for which the pseudopotential 

was created [21].  

3.2 Elastic Energy of SnO-Monolayer as a Function of Strain 

First, the elastic energy of charge neutral SnO monolayer without strain has been 

assessed and for this case ions can relax as well as cell shape can change. After that, the elastic 

energy of charge neutral SnO monolayer has been assessed varying the lattice constants where 

the unitary strain has been applied ranging from ±0% up to ±10% with an interval of 0.25%. The 

ground state of the charge neutral SnO monolayer has been recorded. The litharge structure state 

energy has also been recorded for the neutral SnO. For p-type SnO material, the elastic energy 

without strain has been assessed for hole doping at 0.05, 0.25, 0.35 and 0.45. After that, similar 
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unitary strain like the charge neutral slab has been applied for hole doped SnO from ±0% up to 

±10% at an interval of 0.25%. Then for those p-type materials, the ground state energy and 

litharge state energy have been recorded. For n-type SnO material, without strain elastic energy 

has been assessed for electron doping of 0.01, 0.02, 0.03, and 0.04. Finally same unitary strain 

like charge neutral slab has been applied for electron doped SnO and ground state energy and 

litharge state energy have been recorded. In the following chapter, all the results for charge 

neutral, hole doped and electron doped SnO monolayer have been described. 

  



12 

 

 

CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Elastic Energy of Charge Neutral SnO-Monolayer  

The elastic energy landscape for the SnO monolayer with zero doping has been shown in 

the following Figure 4.1 (b). From the simulation, it has been realized that a SnO monolayer does 

not possess a litharge structure (with identical in-plane lattice vectors 𝑎1  and 𝑎2 ) at zero 

temperature. Instead its ground state structure is rectangular.  

Two dimensional materials with rectangular unit cells (𝑎1 > 𝑎2)  lead to a clear structural 

degeneracy as the elastic energy 𝑈(𝑎1, 𝑎2) remains invariant under exchange of lattice vectors: 

𝑈(𝑎1, 𝑎2) = 𝑈(𝑎2, 𝑎1) . So the Structural degeneracy of this structure is two-fold. This fact is 

illustrated in Figure 4.1 (a) for an undoped SnO monolayer following the notation introduced in 

[5].  In Figure 4.1 (a), the ground state at the energy minima    ( 𝑎1 > 𝑎2) is labeled A (with elastic 

energy  𝑈𝐴 = 𝑈(𝑎1, 𝑎2) ) and the ground state at the energy minima ( 𝑎2  > 𝑎1 ) is labeled B (with 

elastic energy  𝑈𝐵 = 𝑈 (𝑎2, 𝑎1) ) and 𝑈𝐴 =  𝑈𝐵. The litharge structure (𝑎1 =  𝑎2 = 𝑎0) is labeled C 

(with elastic energy 𝑈𝐶 = 𝑈(𝑎0, 𝑎0) ) and 𝑈𝐶  >  𝑈𝐵.  

As seen in Figure 4.1(b), the minimum energy required to turn SnO from structure A onto 

structure B is given by =  𝑈(𝑎0, 𝑎0) −  𝑈𝐴  =  𝑈𝐶 − 𝑈𝐴 where C is the middle point between A and 

B. 
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Figure. 4.1. (a) Unit cell structure of SnO at the energy minimum (structure A) and with a 
litharge structure (structure C), (b) Elastic energy landscape for the SnO monolayer with 

zero doping 
 

So, in Figure 4.1(a), the unit cell of SnO has shown with a litharge structure titled as 

structure C and structure A and B are showing the energy minimum rectangular structures. In the 

absence of doping, these materials do not possess an intrinsic magnetic moment (M = 0). Then, 

density-functional theory calculations yield the elastic energy shown in Figure. 4.1. 

The orthogonal variables x and y are functions of lattice parameters 𝑎1 and 𝑎2 as follows: 

𝑥 =  
𝑎1−𝑎2

√2
  and 𝑦 =  

𝑎1+𝑎2−2𝑎0

√2
                                                                      (4.1) 

These orthogonal variables capture the symmetry of the energy profile in Figure 4.1(b), 

as shown by the dashed white (𝑥) and red (𝑦) lines at -450 and +450 with respect to a1 axis. 

This elastic energy fitting can be described analytically as: 

𝑈(𝑥, 𝑦) = 𝑎𝑥4 − 𝑏𝑥2 + 𝑐𝑦2 +
𝑏2

4𝑎
                                                                              (4.2) 

Where a, b and c are real and positive parameters. The values are a = 0.3664 eV/A4, b = 

0.0475 eV/A2 and c = 1.9564 eV/A2 for a slab with no doping. A cut of the energy profile along the 

y = 0 line is shown in Figure 4.2. 
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Figure. 4.2. Elastic energy without doping for y=0 

 
. A cut of the energy profile along the x = 0 line and x with a constant line at minima are 

shown in figure 4.3 and 4.4. 

 
Figure 4.3. Elastic energy without doping for x=0 

B A 
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Figure 4.4. Elastic energy without doping for a constant x at minima 

 
Previous order four and hence anharmonic expression for the energy [22] yields two 

minima at points (𝑎10,𝑎20) and (𝑎20, 𝑎10) and a point of unstable equilibrium C at (𝑥𝑐 , 𝑦𝑐 )= (0,0)  or  

(a1  , a2) = (a0 , a0) with a0 = 3.8393 A0 , a10 = 4.0217 A0 and a20 = 3.6569 A0 for a charge neutral 

slab.  

𝑈(𝑥, 𝑦) is normalized such that 𝑈(𝑥0, 𝑦0)= 0, and it provides an energy scale given by the 

energy difference between the saddle point C and the energy minima: 

𝛥𝑈 = 𝑈(0,0) − 𝑈(𝑥0,𝑦0) = 
𝑏2

4𝑎
                                                                                        (4.3) 

The elastic energy profile given by equation (4.2) has two dimensional dependence on 

strain, as the shape of Figure 4.1(b) depends on both the anti-diagonal and diagonal strain (i.e., 

the variable y complements the model provided in Ref. [5] in which the strain component 

employed is the anti-diagonal one; ϵ = ϵ(𝑥)). 

Now, the elastic energy in terms of the unitary strains 𝜖11=𝜖22 can be expressed. Two 

considerations must be sorted out for this expression.  

(1) Without known exceptions, unitary displacements in elasticity theory are always 

referred with respect to a local minima (a position of stable equilibrium), not with 
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respect to points of unstable equilibrium as the saddle point C from figure 4.1(b) 

employed in [5] to define 𝜖𝑥𝑥 = 𝜖𝑦𝑦 = 0. 

(2) Given that the SnO structure is two-fold degenerate, any of the minima should be 

employed to express 𝜖𝑥𝑥 = 𝜖𝑦𝑦 = 0.  

Figure 4.1 illustrates conditions (1) and (2) at play on the SnO monolayer, and a local 

minima has been chosen at (𝑥0 ,𝑦0 ) = (+√
𝑏

2𝑎
, 0), and hence assumes the existence of a 

macroscopically large mono-domain with configuration A in Figure 4.1(a). In this case, Equation 

(4.1) can be expressed 𝑥 and 𝑦 in terms of the lattice parameters at the local minima A and unitary 

strains 𝜖11 = 𝜖22  as follows: 

𝑎10 = 𝑎0 +
1

2
√

𝑏

𝑎
 , and 𝑎20 = 𝑎0 −

1

2
√

𝑏

𝑎
                                                                           (4.4) 

where , 𝜖11 =
𝑎1−𝑎10

𝑎10
, 𝜖22 =

𝑎2−𝑎20

𝑎20
 , so 

               𝑥 =
𝑎10(1+𝜖11)−𝑎20(1+𝜖22)

√2
 , and 𝑦 =

𝑎10(1+𝜖11)+𝑎20(1+𝜖22)−2𝑎0

√2
                                                               (4.5)                              

The two-dimensional dependence of the elastic energy upon in-plane strain is realized by 

replacing 𝑥 and 𝑦 in Equation (4.2) by Equation (4.5).  

Assuming that the energy profile obtained at zero temperature holds at finite temperature, 

we bring a classical analogy of a particle on a two-well system to action, and assign a mean 

kinetic energy equals to 𝑘𝐵𝑇, where T is the temperature and 𝑘𝐵 is the Boltzmann’s constant. 

Then, since 𝑈(𝑥0, 𝑦0) = 0, the structure at the local minima (𝑥0, 𝑦0) = (+ √
𝑏

2𝑎
,0) will have a zero 

elastic energy and a mean 𝑘𝐵𝑇 kinetic energy, which will allow it to reach the walls of the confining 

well up to a height equal to 𝑘𝐵𝑇, at which its mean kinetic energy is zero. 

𝑘𝐵𝑇 = 𝑈(𝑥, 𝑦)                                                                                                                      (4.6)                                                                       

For a given T, limits along the 𝑥-axis are given by setting 𝑈(𝑥, 𝑦) = 0. Thus equation (4.6) 

leads to four solutions: 
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𝑥𝑁±(𝑇) =  −√𝑏±√4𝑎𝑘𝐵𝑇

2𝑎
 , 𝑥𝑝±(𝑇) =  √𝑏±√4𝑎𝑘𝐵𝑇

2𝑎
                                                                               (4.7)                                         

where 𝑁  and 𝑃  stands for negative and positive. The elastic energy profile, being a 

classical construct, forbids direct tunneling among the two valleys which have been shown in 

Figure 4.2 as A and B . Therefore, one is constrained to (𝑥𝑚𝑖𝑛 (T) =  𝑥𝑃−(T) ≤ 𝑥 ≤ 𝑥𝑃+(T) =  

𝑥𝑚𝑎𝑥(T)) when  𝑘𝐵T≤  𝛥𝑈 given the choice of mesoscopic monodomain made. Furthermore, 

𝑥𝑝−(T) = 0 for  𝑇 =   𝛥𝑈/𝑘𝐵.  

Transition temperature, 𝑇𝑐 can be extracted from equation (4.6) and it is 19.3K. 

As 𝑇 >  𝛥𝑈
𝑘𝐵

⁄ both valleys become accessible and the system explores them evenly. For 

this case, 𝑥𝑁− and 𝑥𝑝− become imaginary, and the accessible limits in the landscape turn into 

(𝑥min (T) = 𝑥𝑁+(T) ≤ 𝑥 ≤  𝑥𝑝+(T) = 𝑥𝑚𝑎𝑥(T)). So,  𝑥𝑚𝑖𝑛(𝑇) takes two different values, depending 

on whether T ≤ 𝛥𝑈
𝑘𝐵

⁄  or T> 𝛥𝑈
𝑘𝐵

⁄ . 

4.2 Elastic Energy of SnO with Hole Doping 

The structural stability of p-type material has been first assessed. The elastic energy has 

been calculated by applying strain and varying the lattice constants in x-direction. In this case the 

ions can relax. Elastic energy has been calculated with hole doping ranging from 0.05, 0.25, 0.35 

and 0.45. It has been found from the simulation that elastic energy is a function of charge doping. 

So, the analytical expression for the elastic energy at zero temperature from equation (4.2) can 

be rewritten as: 

𝑈(𝑥, 𝑦, 𝑞) = |𝑎(𝑞)|𝑥4-|𝑏(𝑞)|𝑥2+|𝑐(𝑞)|𝑦2+𝑑(𝑞)                                     (4.8) 

Increasing the hole doping ,the energy difference between the ground state energy 

(rectangular structure) and litharge state energy  𝛥𝑈 can be controlled.  
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Figure 4.4. Elastic energy with hole doping of 0.05 for y =0  

 

In the Table 1 hole charge per unit cell 𝑞, lattice parameters of litharge structure 𝑎0 , 

litharge structure energy 𝑈0 , optimal rectangular structure (𝑎1, 𝑎2), ground state energy  𝑈𝑔 and 

energy difference between litharge  structure and ground state energy Δ𝑈 for SnO monolayer 

have been provided. 

 

Table 1: q,𝒂𝟎 with associated energy 𝑼𝟎, (𝒂𝟏,𝒂𝟐) with associated energy 𝑼𝒈and 𝜟𝑼 

(energy difference between 𝑼𝒈 and 𝑼𝟎) 

𝑞(𝑒) 𝑎0 (𝐴0) 𝑈0 (ev) 𝑎1 (𝐴0) 𝑎2 (𝐴0) 𝑈𝑔(ev) Δ𝑈 (ev) 

0.05 3.846926 -22.64660 4.068124 3.625728 -22.65087 0.00427 

0.25 3.878704 -22.46946 4.053246 3.704162 -22.47148 0.00202 

0.35 3.893052 -22.37052 3.980646 3.805459 -22.37076 0.00024 

0.45 3.906786 -22.26017 3.906786 3.906786 -22.26017 0.000000 
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Figure 4.5. Elastic energy with hole doping of 0.25 for y =0 

 

By applying strain and varying the lattice constants in x- direction and putting y =0, the 

coefficients of equation (4.8) a, b and d can be obtained.  

The following Table 2 shows the hole charge per unit cell q with associated coefficients. 

 

Table 2: 𝒒 with associated 𝒂, 𝒃 and 𝒅 

𝑞(𝑒) 𝑎 (𝑒𝑣
𝐴4⁄ ) 𝑏(𝑒𝑣

𝐴2⁄ ) 𝑑(ev) 

0.05 0.412800 -0.080100 -22.647000 

0.25 0.317500 -0.040400 -22.470000 

0.35 0.315900 -0.001400 -22.371000 

0.45 0.000000 0.057000 -22.260000 
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Figure 4.6. Elastic energy with hole doping of 0.35 for y =0 

 

 
Figure 4.7. Elastic energy with hole doping of 0.45 for y =0 

 
From Table 1, it can be inferred that increasing the hole doping density, ground state 

energy starts to increase. With the changing hole doping density, the energy difference between 

ground state and litharge structure state ΔU can be controlled. Since from equation (4.6), it has 

been shown that the  transition temperature Tc is related to ΔU, so Tc can be also controlled with 

hole doping. As the hole doping has been increased to 0.45, from Table 1 it can be seen that ΔU 
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becomes zero. That means with hole doping of 0.45, the ground state structure becomes litharge 

structure. Again from Table 2 it can be seen that with coefficient a=0, that means varying lattice 

constants in x-direction and putting y =0, the anharmonic analytical expression (4.8) becomes 

harmonic when hole doping is 0.45.              

 
Figure 4.8. Elastic energy with hole doping of 0.05 for x=0 

 

 
Figure 4.9. Elastic energy with hole doping of 0.05 for a constant x at minima 
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Figure 4.10. Elastic energy with hole doping of 0.25 for x=0 

 
 

 

Figure 4.11. Elastic energy with hole doping of 0.25 for a constant x at minima 
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Figure 4.12. Elastic energy with hole doping of 0.35 for x =0 

 
 

 
Figure 4.13. Elastic energy with hole doping of 0.35 for a constant x at minima 
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Figure 4.14. Elastic energy with hole doping of 0.45 for x=0 

 
 

The figure for elastic energy with hole doping of 0.45 for x =0 and at the minima are same 

since ground state structure and litharge structure are same. By applying strain and varying the 

lattice constants in y- direction and putting x=0 and putting x at a constant on minima, the effect 

on elastic energy has been observed. It has been found that for higher hole doping equation (4.8) 

becomes like this 

𝑈(𝑥, 𝑦, 𝑞) = |𝑎(𝑞)|𝑥4-|𝑏(𝑞)|𝑥2+|𝑒(𝑞)|𝑦 + 𝑑(𝑞)                                                                 (4.9) 

Now putting x=0 and varrying lattice constants in y direction the coefficients 𝑐1 and 𝑒1 have 

been found for equation (4.8) and equation (4.9). Again, by fixing x at a constant value on minima 

and varrying lattice constants in y direction the coefficients 𝑐2  and 𝑒2  have been found for 

equation (4.8) and (4.9). By taking average of 𝑐1and 𝑐2, the coefficeint 𝑐 has been obtained for 

equation (4.8). Same way by taking average of 𝑒1 and 𝑒2 the coefficent 𝑒 has been obtained for 

equation (4.9). The following Table 3 shows hole charge per unit cell q with the  coefficeints. 
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Table 3: q with associated 𝒄𝟏, 𝒄𝟐, 𝒆𝟏𝒆𝟐  𝒄 and 𝒆 

𝑞(𝑒) 𝑐1(𝑒𝑣
𝐴2⁄ ) 𝑐2(𝑒𝑣

𝐴2⁄ ) 𝑐 (𝑒𝑣
𝐴2⁄ ) 𝑒1(𝑒𝑣

𝐴⁄ ) 𝑒2(𝑒𝑣
𝐴⁄ ) 𝑒(𝑒𝑣

𝐴⁄ ) 

0.05 2.480800 2.474800 2.477800 0 0 0 

0.25 0 0 0 0.716000 0.728000 0.722000 

0.35 0 0 0 0.906400 0.908900 0.907700 

0.45 0 0 0 1.102200 1.102200 1.102200 

 

4.3 Elastic Energy of SnO with Electron Doping 

The structural stability for n-type material has been assessed. The elastic energy has been 

calculated by applying strain and varying the lattice constants in x-direction with added electron 

dopants. Elastic energy has been calculated with electron doping from 0.01, 0.02, 0.03, and 0.04.  

In the Table 4 electron charge per unit cell 𝑞, lattice parameters of litharge structure 𝑎0 , 

litharge structure energy 𝑈0, optimal rectangular structure (𝑎1,𝑎2), ground state energy  𝑈𝑔 and 

energy difference between litharge  structure and ground state energy 𝛥𝑈 for SnO monolayer 

have been provided. 

 

Table 4: q, 𝒂𝟎 with associated energy 𝑼𝟎, (𝒂𝟏,𝒂𝟐) with associated energy 𝑼𝒈and 𝜟𝑼 

(energy difference between 𝑼𝒈  and 𝑼𝟎) 

𝑞(𝑒) 𝑎0 (𝐴0) 𝑈0(ev) 𝑎1(𝐴0) 𝑎2(𝐴0) 𝑈𝑔(ev) Δ𝑈(ev) 

0.01 3.841663 -22.66753 3.995330 3.687997 -22.66876 0.001233 

0.02 3.844072 -22.64692 3.988225 3.699920 -22.64787 0.000956 

0.03 3.846523 -22.62621 3.971535 3.721511 -22.62693 0.000713 

0.04 3.848771 -22.60545 3.954612 3.742930 -22.60597 0.000515 
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Again by applying strain and varying the lattice constants in x- direction and putting y=0, 

the coefficients a, b and d of equation (4.8) can be obtained for n type SnO monolayer. In the 

same way, by applying strain and varying the lattice constants in y- direction and putting x=0 the 

coefficient 𝑐1 has been obtained. Fixing x at a constant value on the minima and varying lattice 

constants in y- direction, the coefficient 𝑐2 has been obtained. By taking average of 𝑐1  and 𝑐2 , 

the coefficient 𝑐  of equation (4.8) has been obtained. The following Table 5 shows the electron 

charge per unit cell q with associated coefficients. 

Table 5: 𝒒 with associated  𝒂 ,𝒃 , 𝒄𝟏, 𝒄𝟐 c and 𝒅 

𝑞(𝑒) 𝑎 (𝑒𝑣
𝐴4⁄ ) 𝑏 (𝑒𝑣

𝐴2⁄ ) 𝑐1(𝑒𝑣
𝐴2⁄ ) 𝑐2(𝑒𝑣

𝐴2⁄ ) 𝑐(𝑒𝑣
𝐴2⁄ ) 𝑑 (ev) 

0.01 0.317200 -0.038000 1.893500 1.859300 1.876400 -22.668000 

0.02 0.278800 -0.032700 1.800900 1.772200 1.786600 -22.648000 

0.03 0.239000 -0.026400 1.708200 1.687300 1.697600 -22.626000 

0.04 0.200100 -0.019900 1.615600 1.592300 1.604000 -22.605000 

 

 
Figure 4.15. Elastic energy with electron doping of 0.01 for y =0 
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Figure 4.16. Elastic energy with electron doping of 0.02 for y =0 

 
Figure 4.17. Elastic energy with electron doping of 0.03 for y =0 
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Figure 4.18. Elastic energy with electron doping of 0.04 for y =0 

 

 
Figure 4.19. Elastic energy with electron doping of 0.01 for x=0 
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Figure 4.20. Elastic energy with electron doping of 0.01 for a constant x at minima 

 
Figure 4.21. Elastic energy with electron doping of 0.02 for x=0 
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Figure 4.22. Elastic energy with electron doping of 0.02 for a constant x at minima 

 

 
Figure 4.23. Elastic energy with electron doping of 0.03 for x=0 
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Figure 4.24. Elastic energy with electron doping of 0.03 for a constant x at minima 

 
 

 
Figure 4.25. Elastic energy with electron doping of 0.04 for x=0 
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Figure 4.26. Elastic energy with electron doping of 0.04 for a constant x at minima 

 

From the Table 4, it can be inferred that with increasing electron doping, the ground state 

energy increases. With the changing electron doping like hole doping, the energy difference 

between ground state and litharge structure state 𝛥𝑈 can be controlled and with increasing 

electron doping, 𝛥𝑈 starts to decrease, however for electron doping 𝛥𝑈 never reaches to zero. 

Unlike hole doping, electron doping 𝛥𝑈 does not reach to zero, so the ground state is always 

rectangular. Comparing Table 1 and Table 4, it can be seen that increase in ground state energy 

because of electron doping is faster than that in hole doping. Again from Table 5 it can be seen 

that varying lattice constants in x- direction and putting y =0, the anharmonic analytical expression 

(4.8) is always anharmonic while for hole doping of 0.45, that expression becomes harmonic. 

  



33 

 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion of This Work 

In summary, an analytical model has been developed for our understanding towards a 

complete picture of how properties of two-dimensional materials are affected by two dimensional 

structural transitions at finite temperature. The pre and post structural transition properties of 

neutral SnO monolayer such as the transition temperature Tc, which can signal a sudden change 

or shift in the structural order parameters, the elastic energy, and elastic parameters has been 

extracted in this thesis. Comparing of these parameters, the transition temperature has been 

obtained 19.3K for charge neutral SnO monolayer. The energy landscape of doped SnO 

monolayer and analytical model and coefficients for them have been also achieved in this thesis.  

5.2 Future Work 

In order to further enhance our understanding, Molecular Dynamics calculation can be 

done to get the transition temperature for charge neutral SnO so that the structural order 

parameters can be extracted. It will eventually increase our understanding on the pre and post 

structural parameters for vast numbers of molecules of SnO.  
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