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Abstract 

This thesis demonstrates the ability to model and simulate the operation of Maximum Power 

Point Tracking, MPPT. Moreover, the MPPT technology is contextualized within the confines of 

the Solar Splash competition to provide the foundation for future model development and 

simulation for optimal competition performance. MatLab Simulink was used to model the solar 

panel's operation. A MPPT algorithm was written using the perturb and observe method and was 

implemented in the model using a buck DC to DC converter. The performance of the model with 

hardware in the loop using Typhoon and dSPACE, which demonstrated how the actual hardware 

would operate in real time. The results showed that in Simulink, an idealized environment, the 

MPPT operates as expected. However, hardware simulation revealed inaccuracies of MPPT at 

lower irradiance values. For all cases, the driving force for changes in power is the value of 

irradiance.  
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1 Introduction 

1.1 Motivation 

Solar Splash is a nationwide competition for collegians. Many teams design and build a 

boat with power source solely comprised of solar energy. The boat will compete in three 

different competitions; endurance, sprint, and solar slalom. The endurance race has the boat 

travel as far as possible on the lake in two hours. The sprint race focuses on speed by timing how 

fast the boat can cover a 70-meter distance. The solar slalom focuses on the ability to maneuver 

the boat in a figure eight pattern as quick as possible [1]. These events happen over a four-day 

period, and therefore efficient charging of the batteries for these competitions is paramount.  

The general electrical set up is a solar panel, batteries, and motor according to certain 

limits as stated in the rules [1]. This purposely leaves the design of the boat up to the discretion 

of the teams involved. Therefore, the motivation for this thesis is to be a first stepping stone to 

model and analyze the operation of an electrical system for the Solar Splash Competition.  

1.2 Objective 

The objective of this research is to model and simulate in MatLab Simulink the operation 

of solar panels within a maximum power point tracking system.  
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2 Background 

2.1 Solar Energy 

Solar Energy, the energy produced by sunlight, is becoming an increasingly common 

source of energy. The demand for solar energy through the year 2020 is growing exponentially. 

Between the years 2015 and 2016 alone the global demand for solar power grew by 25.6% [2]. 

This demand for solar energy not only calls for improved technology but also investments in 

younger generations to fulfil those industry needs. Solar Splash is an example which engages 

undergraduate students with solar technology under the guise of fun and competition. 

2.2 Photovoltaics 

Photovoltaics is a system defined by the photovoltaic effect which is the phenomenon of 

certain material to produce a voltage and current when exposed to the sunlight [3]. A common 

application of photovoltaics is solar panels or solar arrays. Solar panels are comprised of smaller 

cells made of silicon. Panels can be further categorized based on production as monosilicon, 

polysilicon or thin-film [4]. The number of cells that comprise a panel and the method of 

production varies widely according to the application. 

2.3 Solar Applications 

Two main applications for solar arrays is grid-tie and stand-alone. Grid-tie is when the 

energy produced is tied into a grid, which is distributed to many consumers. High voltages and 

currents are typical for a grid-tie because the energy must be transported over long distances. 

A stand-alone solar energy system is one that is not tied to the grid, rather it is closed to 

itself. Generally, the power for a stand-alone is much smaller when compared to a grid-tie. A 

solar boat which uses solar energy to charge batteries to power a motor is an example of a stand-

alone system [5]. 



3 

 

2.4 Maximum Power Point Tracking 

Maximum Power Point Tracking, MPPT, is an essential step within a photovoltaic system 

by influencing the panels to operate at their maximum power. As shown by the Power versus 

Voltage, PV, curve, Figure 1, for a given irradiance level and temperature there is one maximum 

power. 

 

Figure 1 General PV Curve for Solar Array 

 That value for maximum power corresponds to a specific operating voltage and current 

shown by the IV curve in Figure 2.  

 

Figure 2 General IV Curve for Solar Array 

The nature of photovoltaics is completely dependent upon the sun and weather conditions 

which are continually changing. Even on a cloudless day there is the inevitable rise and set of the 
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sun. Therefore, in reaction to different values for temperature and irradiance the power curve, 

while maintaining a similar shape, will scale itself accordingly. Moreover, the maximum power 

point is constantly changing. This illustrates the advantage of being able to track that maximum 

power point and control the operating point in a dynamic system [6]. 

2.5 MPPT Methods 

There are many different methods of MPPT that have been developed. They have a 

similar goal to create a system that will automatically find the voltage and current at that specific 

irradiance and temperature that result in the maximum power [7].  Two of the most common 

MPPT methods are known as Perturb and Observe, PO, and Incremental Conductance, IC [8]. 

2.5.1 Perturb and Observe 

Perturb and Observe method manipulates the duty ratio and reacts to how that 

perturbation affects the voltage and ultimately the power. A reduction in the duty ratio results in 

a lower voltage. Conversely, a rise in the duty ratio results in a higher voltage.   

At the center of the PO method is that the system will be perturbed, and the resulting 

change in power is what determines the next perturbation. This method is also referred to as a 

‘hill-climbing’ method. The shape of the PV curve, figure 1, is shaped like a single hill. To 

operate at the MPP the system is constantly taking a step and then checking if the power is 

higher or lower than its previous step. The logic of PO can be summarized in table 1, there are 

only four paths that the can be taken [9].  

Previous Perturbation Effect on Power Next Perturbation 

Increase Increase Increase 

Increase Decrease Decrease 

Decrease Increase Decrease 

Decrease Decrease Increase 

Table 1 Perturb and Observe Logic 
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This requirement to either decrease or increase with every step reveals an issue with PO 

in steady state. When the MPP is reached and the system is in steady state the value for power 

will not be constant, rather the power will oscillate around the MPP value [10].  

2.6 DC to DC converter 

A DC/DC converter is an electronic device that converts an input of direct current, DC, at 

one voltage to an output DC at another voltage. This has many different applications within 

power electronics. Comparable to a transformer that steps-up and steps-down AC power, the 

DC/DC converter can also be used to step-up voltage (boost), step-down voltage (buck), or both 

(buck-boost) [11]. 

2.6.1 Buck Converter 

The Circuit diagram for a buck converter is shown in figure 3, where Vs is the input 

voltage. Va is the average output voltage across the load resistance. A buck converter operates in 

two modes, when the switch is on and when the switch is off [12].  

 

Figure 3 Circuit Schematic of a Buck Converter 

 Mode 1 is given by the equivalent circuit figure 4 where Qs is switched on.  
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Figure 4 Equivalent Circuit of Buck Converter when switch is On 

 The amount of time in mode 1, ton, is calculated through equation 1. 

𝑡𝑜𝑛 =  
𝐿 ∆𝐼

𝑉𝑠−𝑉𝑎
………………………………...................... (1) 

 Mode 2 is given by the equivalent circuit figure 5 where Qs is switched on.  

 

Figure 5 Equivalent Circuit of Buck Converter when switch is Off 

 The amountt of time in mode 2, toff, is calculated through equation 2. Where delta I is 

the current ripple in the inductor. 

𝑡𝑜𝑓𝑓 =
𝐿∆𝐼

𝑉𝑎
…………………………………………………(2) 
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The switching period, T, or 1 over the switching frequency fs is the sum of ton and toff. 

𝑇 =
1

𝑓𝑠
=  𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓 =

𝐿𝑉𝑠∆𝐼

𝑉𝑎(𝑉𝑠−𝑉𝑎)
……………..............................(3) 

 Where, the output voltage is a fraction of the input voltage. D is the duty cycle which is 

between 0 and 1, equation 4.  

𝑉𝑎 = 𝑉𝑠𝐷………………………………………………..(4) 

Substitute equation 4 into equation 3 and rearrange to solve for L, the inductance value. 

𝐿 =
𝑉𝑠𝐷(1−𝐷)

𝑓∆𝐼
………………………………………………..(5) 

The capacitor voltage, vc, is given by equation 6. 

𝑣𝑐(𝑡) = 𝑣𝑐(0) +  
1

𝐶
∫

∆𝐼

4

𝑇/2

0
…………………………………….(6) 

The integral from equation 6 can be solved and the capacitor ripple voltage, delta vc, determined, 

equation 7. 

∆𝑣𝑐 =  𝑣𝑐(𝑡) − 𝑣𝑐(0) =
1

𝐶
∫

∆𝐼

4

𝑇

2
0

 𝑑𝑡 =  
∆𝐼

8𝑓𝑠𝐶
……………………………..(7) 

Substitute equation 5 for the value of ripple current through the inductor, delta I, and rearrange to 

solve for C, the value of the capacitor, equation 8. 

𝐶 =  
𝑉𝑠𝐷(1−𝐷)

8𝐿𝑓2∆𝑉
…………………………………………(8) 

 Equations 5 and 6 are necessary calculations for correctly sizing the capacitor and the 

inductor within the DC to DC buck converter. 
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3 Model and Simulation 

3.1 PV and IV curves of the solar array 

3.1.1 Solar Configuration 

This model uses four 100 Watt solar panels where there are two parallel strings each with 

two panels in parallel. This produces a maximum power of 400 Watts. The manufacturer is 

Grape Solar, and this is the same solar configuration that was used in Solar Boat 2017 

competition. The characteristics for one panel are given in table 2 and the specification sheet for 

the solar panel is given in Appendix 1. 

Maximum Power Pmax 100 W (-10%, +10%) 

Voltage at Maximum Power Point Vmpp 17.8 V 

Current at Maximum Power Point Impp 5.62 A 

Open Circuit Voltage Voc 21.6 V 

Short Circuit Current Isc 5.97 A 

Temperature Coefficient of Voc -0.28 %/°C 

Temperature Coefficient of Isc +0.04 %/°C 

Table 2 100W Grape Solar PV panel 

 

3.1.2 PV and IV Curves 

The PV and IV curves characteristic to the solar array described in section 4.2.1 of this 

thesis were modeled via the same method detailed in the “Comprehensive Approach to Modeling 

and Simulation of Photovoltaic Arrays” [13]. 

The MPP of the solar array occurs when the irradiance is at 1000 W/m^2 and the 

temperature is 25 °C. The graphs for how the power curve and corresponding current and voltage 

are affected by changes in the irradiance values are shown in figures 6 and 7.  
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Figure 6 PV Curve for Multiple Irradiances at Constant Temperature 

 

 

Figure 7 IV Curve for Multiple Irradiances at Constant Temperature  
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Figures 8 and 9 are the PV and IV curves for multiple temperatures and a constant 

irradiance value. 

 

Figure 8 PV Curve for Multiple Temperatures at Constant Irradiance 

 

 

Figure 9 IV Curve for Multiple Temperatures at Constant Irradiance 
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3.2 Model in Simulink 

3.2.1 Methodology 

• Model solar array 

• Implement MPPT algorithm 

• Develop of the Buck DC/DC  

• Produce IV and PV curves with MPPT and DC/DC 

3.2.2 Model Solar Array 

The same model for generating the characteristic PV and IV curves was also used to simulate 

the operation of the solar panels. Figure 10 is the block as seen in Simulink with two input 

arrows temperature and irradiance. Temperature is measured in Kelvin, K, and irradiance is 

measured in Watts per meter squared, W/m^2. These are the input values that will be changed to 

evaluate the model at different conditions.  

 

Figure 10 Simulink Block of Solar Array  

3.2.3 MPPT Algorithm 

Perturb and Observe was the chosen method of MPPT by providing a simple starting 

point for modeling. The logic of Table 1 from section 3.5.1 of this thesis can be presented via the 

flow chart in figure 11. This step by step decision tree is the logic of the MatLab written code 

attached in Appendix 2. 
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Figure 11 Perturb and Observe (PO) Logic 

Within Simulink there is a block which creates a bridge between the MatLab workspace 

and the Simulink interface as shown in figure 12.  

 

Figure 12 P&O MPPT Controller Block in Simulink 
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This block titled P&O MPPT Controller has three input arrows; Param, Va, and Ia. Param 

are four inputs for the PO code; Dinit, Dmax, Dmin, and deltaD. Dinit is the initial values for the 

duty cycle for the start of the simulation. Dmax and Dmin are the maximum and minimum 

values of the duty cycle, 1 and 0 respectively. Lastly, deltaD which is the amount each run of the 

code the duty cycle will be perturbed [14]. Va is the voltage measured across the solar panels and 

Ia is the current from the solar panels. The output arrow for the P&O MPPT Controller block is 

D, the value for duty cycle determined by the logic of the code. 

This value for duty cycle, D, must be converted into a pulse for the input to the switch of 

the DC to DC converter. As shown in figure 13 the value for duty cycle is input into the pulse 

generator also known as a pulse width modulator, PWM. The output is the pulse, g. The pulse is 

either on or off, the value for duty cycle changes the percentage the pulse is on in a period. 

Moreover, it controls the width. Within this block the switching frequency, f, of the system is 

established. 

 

Figure 13 Pulse Generator in Simulink 

3.2.4 DC to DC Buck Converter Design 

Using equations 5 and 8 the L and C values can be calculated for the model. The ripple 

current was approximated to be 5% of the total current at MPP. The ripple voltage was similarly 

approximated as 5% of the total voltage at MPP. The duty cycle, D, which ranges from a value 

of 0 to 1 was set to an average of 0.5. The switching frequency that was set within the model was 

10000 Hz. Vs is the source voltage at MPP. Table 3 summarizes these values and includes the 

resulting L and C values. 
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ΔI 0.568 A 

Vs 35.6V 

D 0.5 

f 10000 Hz 

ΔV 1.78 V 

L 1.57 mH 

C 3.9 μF 

Table 3 L and C Calculations 

 The DC to DC Buck Converter is what accomplishes the task of controlling the solar 

panels to the MPP determined by the MPPT algorithm. The model of the DC to DC Buck 

converter is shown in Figure 14, which mirrors the configuration of figure 3 from section 3.7.1 

of this thesis. The capacitor on the leftmost side of the circuit, C_PV, is to smooth out the initial 

oscillation of the voltage exiting the solar panels. The value of capacitor C_PV was set to a small 

value of 1 μF. 

 

Figure 14 DC to DC Buck Converter in Simulink 

 Figure 14 also shows on the right side the sampling of the resulting current and voltage, 

and the calculation for power using a multiplication operator in Simulink. 
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3.2.5 Model Overview 

The model fully built in MatLab Simulink is shown in figure 15. The time step for the 

simulation is 1μs shown in figure 15 in the upper left-hand corner, the powergui block. 

 

Figure 15 Complete Simulink Model with Panels, MPPT, and DC/DC Converter 
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4 Model Results 

4.1 Results at MPP Conditions 

At the MPP values of 1000 W/m^2 and 25°C the model will be operating at peak 

performance. Figures 16, 17, and 18 are the Power, Voltage and Current over a short span of 0.2 

seconds. In all three graphs there is the initial increase in the values as the MPPT is climbing the 

hill working to find the maximum power. After the initial climb there is a constant oscillation 

which demonstrates the drawback of the PO method. This oscillation is minimalized with proper 

sizing of the capacitor and the inductor. 

 

 

Figure 16 Power vs Time MPP Conditions 
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Figure 17 Voltage vs Time MPP Conditions 

 

Figure 18 Current vs Time MPP Conditions 
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 Figures 19 and 20 show the PV and IV curve generated by the panels themselves 

overlaid on the output values produced by the Simulink model. Each instance of the model 

output is represented by a circle. The circles at the beginning of the curve are spaced enough 

apart to see their shape. However, the oscillation around the MPP produces a cluster of points at 

the end of the curve. The important characteristic of the graph of the model output is not the 

shape, rather the distribution of points. 

 
Figure 19 PV Curve: 1000 W/m^2 and 25°C 

 
Figure 20 IV Curve: 1000 W/m^2 and 25°C 
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4.2 Results with Multiple Irradiance at 25°C 

Figures 21 through 26 are plotted similarly to figures 19 and 20. Figures 21 and 22 are the 

PV and IV output when the value of irradiance is decreased to 750 W/m^2 and the temperature is 

constant at 25°C. 

 

Figure 21 PV Curve: 750 W/m^2 and 25°C 

 

Figure 22 IV Curve: 750 W/m^2 and 25°C 
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Figures 23 and 24 are the PV and IV output when the value of irradiance is decreased to 

500 W/m^2 and the temperature is constant at 25°C. 

 
Figure 23 PV Curve: 500 W/m^2 and 25°C 

 

Figure 24 IV Curve: 500 W/m^2 and 25°C 
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Figures 25 and 26 are the PV and IV output when the value of irradiance is decreased to 

250 W/m^2 and the temperature is constant at 25°C. 

 

Figure 25 IV Curve: 250 W/m^2 and 25°C 

 

Figure 26 IV Curve: 250 W/m^2 and 25°C 
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4.3 Results with Multiple Irradiance at 1000 W/m^2 

Figures 27 through 30 are plotted similarly to figures 19 and 20. Figures 27 and 28 are the 

PV and IV output after the value of temperature is increased to 30°C and the irradiance is a 

constant 1000 W/m^2. 

 
Figure 27 PV Curve: 1000 W/m^2 and 30°C 

 
Figure 28 IV Curve: 1000 W/m^2 and 30°C 
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Figures 29 and 30 are the PV and IV output after the value of temperature is increased to 

35°C and the irradiance is a constant 1000 W/m^2. 

 

Figure 29 PV Curve: 1000 W/m^2 and 35°C 

 

 

Figure 30 PV Curve: 1000 W/m^2 and 35°C 
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5 Hardware Simulation 

5.1 Typhoon HIL and dSPACE 

Typhoon HIL is a hardware in the loop system which produces real hardware results. The 

model made in MatLab Simulink is an idealized case. Whereas Typhoon uses actual hardware to 

produce the same curves, and combined with dSPACE give the data in real time. 

5.2 Solar Panels in Hardware 

 A disadvantage to using Typhoon is in simulating photovoltaics. There are a limited 

number of solar panels from which to choose that can be used in the hardware loop. Therefore, 

the Grape Solar panels from the Simulink mode could not be used. However, two 200 Watt 

panels were chosen to match as close as possible the behavior of the panels modeled in Simulink. 

The panels are from Jinko Solar and the model number of the hardware panels is JKM200M. The 

panel characteristics are summarized in table 4 and the specification sheet for the solar panel is 

given in Appendix 3. 

 

Maximum Power Pmax 200 W 

Voltage at Maximum Power Point Vmpp 36.9 V 

Current at Maximum Power Point Impp 5.42 A 

Open Circuit Voltage Voc  45.6 V 

Short Circuit Current Isc 5.80 A 

Temperature Coefficient of Voc -0.29 %/°C 

Temperature Coefficient of Isc 0.05 %/°C 

Table 4 Jinko Solar JKM200M 200 Watt Solar Panel 
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Figure 31 is the change in the power max when the temperature of the solar panel 

changes. Table 5 summarized the value for Temperature and corresponding percent change in 

power and the predicted power. 

 

 

Figure 31 Percent Change in Pmax versus the Cell Temperature 

Temperaure (°C) Change in Pmax (%) Power (W) 

25 100 400 

35 96 384 

45 92 368 

55 88 352 

Table 5 Temperature of Solar Panel Corresponding to the relative Change in Power and Value 

for Power 
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Figure 32 is the IV and PV curve for the Jinko Solar panel at varying irradiances that is 

provided in the data sheet attached in Appendix 3. Therefore, the estimated values for power can 

be determined by this graph. Since there are two panels the value for power will be doubled. 

Table 6 summarizes the expected power of two of the Jinko Solar JKM200M 200 Watt solar 

panels corresponding to the value of irradiance predicted from figure 33.  

 

Figure 32 IV and PV Curves at Different Values of Irradiance  

 

Irradiance Value (W/m^2) Power (Watts) 

1000 400 

800 315 

600 245 

400 175 

Table 6 Power Produced by Irradiance for two Jinko Solar JKM200M 200 Watt Solar Panels 
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6 Hardware Results 

 Although the hardware data is not directly comparable to the data produced by the 

simulation model there are many behaviors that can be observed that speak to the consistent 

function of the MPPT. All hardware results are shown through an oscilloscope, measured values 

relative to time. 

 Figure 33 shows the hardware adjusting from zero input to conditions of 1000 W/m^2 at 

25°C. As the value for power increases steps are formed. This behavior within the figure is 

located within the red brackets. This is the MPPT completing the perturb and observe process in 

real time, starting at approximately 0 Watts and stepping up and oscillating around 400 Watts. 

When the system reaches steady state, the oscillation is larger than the oscillation from the 

Simulink model in figure 16.  

 

Figure 33 Power versus Time: Simulation Reaching Steady State at 25°C and 1000 W/m^2 

400 W 
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6.1.1 Power: Changing Temperature 

Figures 34, 35 and 36 are a 2 second period with a yellow line indicating input power 

from the solar panels and a blue line indicating the output power after MPPT. The blue output 

power line is difficult to observe because the input yellow line covers it. This is a result of the 

MPPT controlling to MPP such that the input and output are balanced. The red arrow indicates 

the location the values for power change when the temperature is increased. 

Figure 34 is the result of increasing the temperature from 25°C to 35°C and displayed on 

an oscilloscope. The power is in steady state at 25°C, oscillating at approximately 400 Watts. At 

the red arrow the temperature is increased to 35°C. The power reduces slightly and returns to 

steady state, but now oscillating around approximately the predicted value of 384 Watts from 

table 5. 

 

Figure 34 Power versus Time: Increasing Temperature from 25°C to 35°C at 1000 W/m^2 
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Figure 35 is the result of increasing the temperature from 35°C to 45°C and displayed on 

an oscilloscope. The power is in steady state at 35°C, oscillating at approximately 384 Watts. At 

the red arrow the temperature is increased to 45°C. The power reduces slightly and returns to 

steady state, but now oscillating around approximately the predicted value of 368 Watts from 

table 5. 

 

 

Figure 35 Power versus Time: Increasing Temperature from 35°C to 45°C at 1000 W/m^2 
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Figure 36 is the result of increasing the temperature from 45°C to 55°C and displayed on 

an oscilloscope. The power is in steady state at 45°C, oscillating at approximately 368 Watts. At 

the red arrow the temperature is increased to 55°C. The power reduces slightly and returns to 

steady state, but now oscillating around approximately the predicted value of 352 Watts from 

table 5. 

 

 

Figure 36 Power versus Time: Increasing Temperature from 45°C to 55°C at 1000 W/m^2 
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6.1.2 Power: Changing Irradiance 

Figures 37, 38, and 39 are a 2 second period with a yellow line indicating input power 

from the solar panels and a blue line indicating the output power after MPPT. The blue output 

power line is difficult to observe because the input yellow line covers it. This is a result of the 

MPPT controlling to MPP such that the input and output are balanced. The red arrow indicates 

the location the values for power change when the temperature is increased. 

Figure 37 is the result of decreasing the irradiance from 1000W/m^2 to 800 W/m^2 and 

displayed on an oscilloscope. The power is in steady state at 1000W/m^2, oscillating at 

approximately 400 Watts. At the red arrow the irradiance is decreased to 800 W/m^2. The power 

reduces and returns to steady state, but now oscillating around approximately the predicted value 

of 315 Watts from table 6. 

 

Figure 37 Power versus Time: Decreasing Irradiance from 1000 to 800 W/m^2 at 25°C 
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Figure 38 is the result of decreasing the irradiance from 800W/m^2 to 600 W/m^2 and 

displayed on an oscilloscope. The power is in steady state at 800W/m^2, oscillating at 

approximately 315 Watts. At the red arrow the irradiance is decreased to 600 W/m^2. The power 

reduces and returns to steady state, but now oscillating slightly lower than the predicted value of 

245 Watts from table 6. 

 

 

Figure 38 Power versus Time: Decreasing Irradiance from 800 to 600 W/m^2 at 25°C 
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Figure 39 is the result of decreasing the irradiance from 600W/m^2 to 400 W/m^2 

displayed on an oscilloscope. The power is in steady state at 600W/m^2, oscillating slightly 

lower than 245 Watts. At the red arrow the irradiance is decreased to 400 W/m^2. The power 

reduces and returns to steady state, but now oscillating much lower than the predicted value of 

175 Watts from table 6. At this lowest irradiance value tested the power output is approximately 

50 Watts lower than the predicted value. 

 

Figure 39 Power versus Time: Decreasing Irradiance from 600 to 400 W/m^2 at 25°C 
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6.1.3 Voltage and Current: Changing Temperature 

Figure 40 is comprised of two graphs. The bottom graph is a zoomed in, 0.4 second, 

segment of the upper graph of 2 seconds. The top two lines in each graph are the input current, 

yellow, and voltage, blue. The bottom two lines are the output current, pink, and voltage green 

after it has been controlled by the MPPT.  The red arrow indicates the location of the values for 

current and voltage change when the temperature is increase from 25°C to 55°C. 

 

Figure 40 Voltage and Current Input and Output versus Time of Increasing Temperature from 

25 to 55°C 1000 W/m^2 
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6.1.4 Voltage and Current: Changing Irradiance 

Figure 41 is comprised of two graphs. The bottom graph is a zoomed in, 0.2 second, 

segment of the upper graph of 2 seconds. The top two lines in each graph are the input current, 

yellow, and voltage, blue. The bottom two lines are the output current, pink, and voltage green 

after it has been controlled by the MPPT.  The red arrow indicates the location the values for 

current and voltage change when the irradiance is decreased from 1000 W/m^2 to 500 W/m^2. 

 

Figure 41 Voltage and Current Input and Output versus Time of Decreasing Irradiance from 

1000 to 500 W/m^2 at 25°C 
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7 Conclusion 

The model from MatLab Simulink is useful to optimize the electrical system. The clear 

results that can be reported and plotted allow for many configurations to be applied and analyzed. 

However, when compared to the hardware results, the output of the simulation are idealized. The 

demonstration of the simulation in real time reveals more oscillation within the circuit. Relative to 

the simulation within MatLab Simulink which shows a much smaller oscillation on the MPPT in 

steady state. 

The results from Typhoon and dSPACE do confirm the operation of the MPPT designed 

in MatLab Simulink in hardware. The results of the simulation model and the experimental 

hardware readings are comparable in the performance of the MPPT PO algorithm. 

Both simulation and experimentation confirm that the temperature does not cause as much 

fluctuation in the power output of panels as the irradiance values. However, when in competition 

this seemingly small amount of power loss due to temperature would result in a lower performance. 

Therefore, it is important to keep the panels as close to the MPP operating temperature as possible.  

The hardware simulation displayed a loss in power at lower irradiances. This makes sense 

because the system was designed to operate at the maximum output of 400 W. Moreover, the L 

and C values within the DC to DC converter were found when the panels were operating in ideal 

conditions. Therefore, when the conditions changed the accuracy of the MPPT was affected.  
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Appendix 1: Grape Solar 100 W Specifications 
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Appendix 2: MatLab Code for PO Method 
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Appendix 3: Jinko Solar 200 W Specifications 
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