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Abstract 

Although research has been unable to find strong links between observable teacher 

characteristics and a teacher’s ability to improve student achievement, it has generally not 

considered the role that teacher non-cognitive skills play in affecting student outcomes. In this 

article, we validate several novel performance-task measures of teacher conscientiousness based 

upon the effort that teachers exert completing a survey and use these measures to examine the 

role that teacher conscientiousness plays in affecting both student test scores and student non-

cognitive skills. We conduct our analysis using the Measure of Effective Teaching Longitudinal 

Database where teachers were randomly assigned to their classrooms in the second year of the 

study. We exploit this random assignment to estimate causal impacts of teachers on their 

students’ outcomes during the second year of the MET project. We find that our survey-effort 

measures of teacher conscientiousness capture important dimensions of teacher quality. More 

conscientious teachers are more effective at improving their student conscientiousness but not 

their student test scores. Additional analysis suggests that traditional measures of teacher quality 

largely fail to capture a teacher’s ability to improve student conscientiousness, though measures 

of teacher quality based upon student ratings and one particular classroom observation protocol 

are exceptions. 
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1. Introduction 

There is no doubt in the literature that teachers play an important role in improving 

student performance. Multiple researchers have shown wide variation in teacher effectiveness 

towards improving student achievement on standardized tests of math and reading (Rivkin, 

Hanushek, & Kain 2005; Rockoff, 2004). Teachers who are effective at improving student 

achievement have also been found to have impacts on their students’ long-run life outcomes such 

as educational attainment and employment income (Chetty et al, 2014).  

However, recent literature shows that teachers also affect other student outcomes besides 

test scores. A growing body of research documents the meaningful impacts that teachers have on 

their students’ non-cognitive skills, which refer to personality and character attributes such as 

diligence, self-control, and a propensity to engage in prosocial behaviors.1 Indeed, this is what 

we demonstrate in this analysis. Moreover, this research suggests that a teacher’s impacts on 

student achievement are weakly correlated with the teacher’s impacts on student non-cognitive 

skills. That is, teachers who are most effective at improving student test scores are not 

necessarily the most effective at improving student non-cognitive skills and vice-versa (Backes 

& Hansen, 2015; Blazar & Kraft, 2015; Cheng, 2015; Gershenson, forthcoming; Kraft & Grace, 

2016; Jackson, 2012; Jennings & Diprete, 2010; Koedel, 2008; Ruzek et al., 2014). It appears 

that teacher quality is then multidimensional, comprising more than just the ability to improve 

student achievement. 

It is, therefore, possible that some dimensions of teacher quality are left unmeasured if 

policymakers and practitioners solely rely on traditional value-added scores or other similar 

                                                      
1 The term non-cognitive is intended to differentiate this set of attributes from cognitive skills, which consist of 

intelligence and content knowledge that standardized tests typically capture (West et al, 2016; Duckworth & Yeager, 

2015).  
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measures of teacher quality that are derived from student achievement on standardized tests 

(Grissom, Loeb, Doss, 2016). Some schools and researchers have responded by engaging in 

efforts to develop alternative measures of teacher quality in an attempt to capture other aspects of 

teacher effectiveness and effective teaching practice. Some evaluators have asked students to rate 

teachers on surveys (Ferguson, 2012) and many others have relied on evaluations of teachers 

through formal classroom observations (Danielson, 2007; Pianta & Hamre, 2009). Notably, 

measures of teacher quality based upon these alternative measures are only modestly correlated 

with value-added scores, suggesting that different measures of teacher quality capture distinct 

dimensions of teacher effectiveness (Kane, McCaffrey, & Staiger, 2012).  

Although it appears that teachers benefit their students in a variety of ways, it is not clear 

which types of teachers are most effective at improving particular student outcomes. Observable 

teacher characteristics, such as educational background and credentials, are largely uncorrelated 

with teacher value-added scores (Buddin & Zamarro, 2009; Goldhaber, 2008; Hanushek & 

Rivkin, 2006; Jacob, 2007). Similarly, the research identifying teacher impacts on student non-

cognitive skills has generally not yet pinpointed the observable teacher characteristics that are 

associated with such impacts.  

In this study, we aim to address this gap in the literature by investigating whether a 

teacher’s level of conscientiousness is correlated with teacher effectiveness, particularly whether 

teachers with higher levels of conscientiousness produce improvements on levels of that same 

non-cognitive skill among students. Research has not thoroughly investigated this possibility 

because measures of conscientiousness and other non-cognitive skills are seldom available. One 

exception is Rockoff et al, (2011), who found among a sample of novice teachers that non-

cognitive skills such as self-efficacy, extraversion and conscientiousness are marginally 
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correlated with impacts on student achievement and teacher retention (see also Duckworth et al., 

2009). We aim to improve upon this observational work in two ways. First, we use data from the 

Measuring of Effective Teaching (MET) Project where teachers within the same school were 

randomly assigned to classrooms of students in the second year of the study. This feature allows 

us to account for the bias that arises from the systematic sorting of students to teachers 

(Rothstein, 2011) and then to estimate causal impacts of teachers on their students. Second, we 

rely upon new measures of conscientiousness based upon performance tasks. Following Hitt, 

Trivitt, and Cheng (in press) and Zamarro et al. (2016), we utilize a type of performance-task 

measure of conscientiousness that is based upon levels of engagement and effort that respondents 

exert in completing surveys. We henceforth refer to our measures as survey-effort measures of 

conscientiousness. These survey-effort measures of conscientiousness are readily available in our 

data and address common limitations of the self-reported measures of non-cognitive skills that 

Rockoff et al. (2011) used (e.g., social desirability bias, reference group bias, see Duckworth & 

Yeager [2015]). Furthermore, this same approach enables us to create measures of student 

conscientiousness by studying the effort that students themselves put in their surveys, expanding 

the range of student outcomes for study.  

We first show that our survey-effort measures of teacher conscientiousness are correlated 

with some, though not all, traditional measures of teacher quality, including ratings based upon 

student surveys, formal classroom observation protocols, and subjective principal ratings. We 

then show that teachers with higher levels of conscientiousness are more effective at improving 

conscientiousness but not test scores among their students. These are important findings as prior 

research demonstrates the role that conscientiousness plays in influencing educational 

attainment, job performance, employment, income, health, criminal behavior, and other 
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indicators of well-being in life, above and beyond that of cognitive ability (Almlund et al., 2011; 

Dalal, 2005; Duckworth et al., 2007; Roberts et al., 2007).  

Moreover, we find that not all traditional measures of teacher quality are correlated with 

impacts on student conscientiousness. Specifically, variation in value-added scores and ratings 

based upon some formal classroom observations does not explain variation in teacher impacts on 

student conscientiousness, but variation in other formal classroom observation protocols, 

principal ratings, and student ratings does.2 We interpret these findings to suggest that teacher 

quality is multidimensional: Different teachers affect different student outcomes to varying 

degrees, and an assortment of teacher quality measures are needed to identify distinct effects on a 

set of relevant student outcomes. If policymakers and school leaders wish to improve the quality 

of the teacher workforce and student outcomes, they must think more clearly, holistically, and 

precisely about the multifaceted nature of teacher quality. 

The remainder of the article is divided into four sections. We first review the relevant 

literature associated with teacher quality, emphasizing the ways in which it is currently measured 

and proposing that teacher non-cognitive skills could be relevant to the matter. We also provide 

background information related to our novel survey-effort measures of teacher 

conscientiousness. Next we describe our data, how we construct the variety of measures of 

teacher quality as well as conscientiousness, and our empirical strategy. We then present the 

results and, in the final section, discuss their implications. 

2. Literature Review 

Measuring Teacher Quality 

                                                      
2Using the same dataset as we do here, Kraft and Grace (2016) find a similar result based upon self-reports of grit as 

a student outcome measure. 
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 Teachers play a crucial role in improving student short-run outcomes such as 

achievement as well as longer-run outcomes such as educational attainment and employment 

income (Chetty et al., 2014; Koedel, 2008; Rivkin, Hanushek, & Kain 2005; Rockoff, 2004). 

Despite the importance of identifying, hiring, and retaining effective teachers, policymakers and 

school leaders are largely unable to consistently do so.  

One reason for this difficulty is that many observable characteristics such as educational 

background and certification are generally uncorrelated with a teacher’s ability to raise student 

achievement on standardized tests (Buddin & Zamarro, 2009; Goldhaber, 2008; Hanushek & 

Rivkin, 2006; Jacob, 2007). School leaders cannot use such readily-available information to 

identify and to hire the most effective teachers. Although there is some evidence that teachers 

improve with more years of experience, school leaders cannot use this fact for hiring novice 

teachers. Moreover, the returns to experience appear to attenuate after three to five years 

(Clotfelter, Ladd, & Vigdor, 2006; Hanushek & Rivkin, 2006; but see Wiswall, 2013; Papay & 

Kraft, 2015).  

Due to these limitations, other scholars have alternatively proposed to assess teacher 

quality based upon observing teacher effectiveness after they have started their career and then 

making personnel decisions given this new information (Podgursky, 2005; Kane et al., 2008). 

Typically, this includes estimating how much teachers improve their student test scores, but it is 

not always possible to calculate these value-added measures with validity, especially if multiple 

years of data for a teacher are not available (Rothstein, 2009; Koedel & Betts, 2011). Different 

approaches for isolating causal effects of teachers upon student achievement are available, 

though how suitable each approach is depends on a variety of contextual details (Gaurino, 

Reckase, & Wooldridge, 2014; Zamarro et al., 2015). This is not to mention that value-added 
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scores are sometimes impossible to calculate because students in many grades and subjects are 

not tested. 

But even assuming that value-added scores are valid, approaches that assess teachers 

solely based upon their ability to improve test scores may fail to capture other important 

dimensions of teacher quality. Although raising test scores has been found to be important for 

improving long-run life prospects for students (Chetty et al., 2014), other factors may play a 

large and independent role in influencing the future well-being of students. A growing body of 

research in economics and psychology demonstrates the importance of non-cognitive skills in 

determining outcomes such as educational attainment, employment, income, health, and criminal 

behavior, even after controlling for performance on tests of cognitive ability (Almlund et al., 

2014; Heckman, Stixrud, & Urzua, 2006). Insofar as value-added scores and similar measures 

based upon student test performance do not capture teacher effects on student non-cognitive 

skills, they will misstate the benefits that teachers provide to their students.  

 Alternatives for measuring teacher quality have been proposed, presumably because they 

may capture aspects of effective teaching that value-added scores do not. Formal classroom 

observations and student surveys of teacher performance, for example, potentially provide finer-

grained contextual details about a teacher’s classroom environment and instructional practices 

that may bear upon student outcomes (Pianta & Hamre, 2009). Curiously, however, these 

alternative measures have mainly been validated based upon how strongly they are correlated 

with student performance on standardized tests (Garret & Steinberg, 2015; Kane et al., 2012). 

The underlying assumption is that teacher quality is unidimensional and only concerns a 

teacher’s ability to improve student achievement. That is, measures derived from classroom 

observations and student ratings of teachers are useful insofar as they more fully capture a 
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teacher’s ability to improve test scores than value-added measures alone can. The practical 

implication, then, is to combine alternative measures with value-added scores to form a more 

valid and more reliable composite measure of teacher quality since each measure captures 

independent information about a teacher’s ability to raise test scores (Kane et al., 2012; Mihaly 

et al, 2013).3  

 However, this approach could be misguided if teachers affect their students in meaningful 

and measurable ways that are not captured by test scores. Indeed, this is what the literature of 

teacher impacts on student non-cognitive skills suggests. Emerging research shows that teachers 

who have large effects on test scores do not necessarily have large effects on non-cognitive skills 

that, in turn, contribute to the future well-being of students. Similarly, teachers who have large 

effects on student non-cognitive skills do not necessarily have equally sizable effects on student 

test scores (Blazar & Kraft, 2015; Cheng, 2015; Gershenson, in press; Jackson, 2012; Jennings & 

Diprete, 2010; Koedel, 2008; Ruzek et al., 2014). Failing to consider a variety of student 

outcomes may lead to misclassifications of teacher effectiveness as teachers may benefit students 

on outcomes that are unconsidered or unobserved. Of particular relevance to our work is Kraft 

and Grace’s (2016) analysis of the MET data; they find weak relationships between teacher 

effects on test scores and teacher effects on self-reports of non-cognitive skills like grit, growth 

mindset, and effort. In short, there are reasons to doubt the assumption that different measures of 

teacher quality collectively capture a unidimensional factor of teacher effectiveness. There is not 

                                                      
3 As it turns out, student and formal classroom observation ratings are only modestly correlated with student 

achievement on standardized tests (Kane et al., 2012). In a separate study using data from the MET Project, Garrett 

and Steinberg (2015) find that teacher ratings based on classroom observations that used Danielson’s (2007) 

Framework for Teaching are positively correlated with student test scores but much of this is due to the systematic 

sorting of higher-achieving students to teachers who have higher classroom observation ratings. 



8 

 
 

only variation between teachers in the ability to improve a specific student outcome but also 

variation within a teacher in his or her ability to improve a variety of student outcomes.  

 In related work, several scholars have found that subjective ratings of teachers given by 

principals are only moderately correlated with teacher value-added scores. Although these 

ratings are most strongly correlated with value-added scores among the least and the most 

effective teachers, they are unable to differentiate teachers within the middle of the distribution 

of value-added scores (Harris, & Sass, 2014; Jacob & Lefgren, 2008; Rockoff et al., 2012). 

Notably, Harris, Ingle, and Rutledge (2014) find that principals base their ratings not only upon a 

teacher’s ability to improve test scores but also upon teacher non-cognitive skills, particularly the 

amount of effort they exert in their everyday work.  

The Role of Teacher Non-cognitive Skills 

Harris et al.’s (2014) finding that principals form judgments based upon teacher non-

cognitive skills suggests that teacher non-cognitive skills may be a key component of teacher 

effectiveness. Indeed, research from labor economics and psychology demonstrates an 

association between worker productivity and certain non-cognitive skills. More conscientious 

workers, for example, exhibit better job productivity (Borghans et al., 2008; Dalal, 2005; 

Heckman et al., 2006; Roberts et al., 2007). Different combinations of non-cognitive skills may 

be required to improve worker productivity across different types of occupations (Borghans, ter 

Weel, & Weinberg, 2008). Although it is possible that more conscientious teachers are more 

highly-valued by principals, as Harris et al. (2014) suggest, it remains unclear how a teacher’s 

level of conscientiousness relate to other measures of teacher quality and how it directly affects 

students.  
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There are only a few instances when scholars collected measures of teacher non-cognitive 

skills and studied their relationship to educational outcomes. For example, Duckworth et al. 

(2009), using self-reported measures of teacher non-cognitive skills, have found that teacher self-

reports of grit and life satisfaction are predictive of student test scores among Teach for America 

teachers (Duckworth et al., 2009). In a sample of novice elementary and middle school math 

teachers, Rockoff et al. (2011) demonstrate that self-reports of conscientiousness, extraversion, 

and self-efficacy are correlated with subjective ratings that are given by their mentor teachers but 

are only weakly correlated with student achievement and teacher retention.  

While Duckworth et al. (2009) and Rockoff et al. (2011) focus on how teacher non-

cognitive skills affect student achievement, other work has focused on how teacher non-

cognitive skills affect student non-cognitive skills. For example, Blazar and Kraft (2015) find 

that fourth- and fifth-grade students exhibit more self-efficacy when they have teachers who are 

more adept at lending emotional support to students in their interactions and through fostering a 

safe, positive classroom environment. Presumably, teachers who are more effective at improving 

student self-efficacy engage in certain classroom practices and processes that are conducive to 

realizing these outcomes (Pianta & Hamre, 2009). However, some research indicates that the 

pedagogical practices that teachers utilize and teacher observable characteristics are uncorrelated 

with impacts on student non-cognitive skills (Jennings & Diprete, 2010, but see Bargagliotti, 

Gottfried, & Guarino, 2016).  

Elsewhere, Cheng (2015) uses longitudinal data to show that students receive increases in 

conscientiousness in years when they have teachers who exhibit higher levels of that same skill. 

He draws upon social learning theory to posit that students may learn non-cognitive skills 

through observing role models such as teachers (Bandura, 1977; Bandura & Walters, 1963). This 



10 

 
 

theory explains why teachers with a particular set of non-cognitive skills may be more effective 

at improving the same set of non-cognitive skills among their students. At the very least, students 

appear sensitive to and influenced by teacher behaviors. In fact, Blazar and Kraft (2015) posit 

that teachers who provide more social and emotional support improve student self-efficacy and 

happiness not because of a particular pedagogical approach but because of the behaviors that 

they model in providing such support.  

We extend this line of research by further studying the relationship between teacher 

conscientiousness and other measures of teacher quality and their role in improving student 

cognitive and non-cognitive skills. Furthermore, instead of relying upon self-reported measures 

of conscientiousness, we rely upon newly developed survey-effort measures of 

conscientiousness, which we describe next. 

Measuring of Non-cognitive Skills 

The aim of developing and exploiting innovative measures of conscientiousness based 

upon survey effort is to capture levels of conscientiousness among teachers and students in cases 

where self-reported measures might not be available or might be affected by reporting biases. As 

an alternative to self-reported measures, non-cognitive skills data can be collected via 

performance-task measures. These types of measures begin by asking individuals to complete 

carefully designed task; researchers then observe variation in the individuals’ behaviors as they 

complete it and interpret differences in behaviors as differences on the level of the skill being 

measured. Our novel survey-effort measures of conscientiousness are a type of performance-task 

measure and are constructed by observing how much effort teachers and students exert towards 

responding to a survey. Completing such clerical tasks requires careful attention to detail and 

persistence to avoid skipping or providing thoughtless, inaccurate answers (Hitt et al., in press; 
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Jackson et al., 2010). In other words, we view completing the survey itself as a task that requires 

conscientiousness and use three approaches to parameterize survey effort and to create measures 

of teacher conscientiousness: (a) item nonresponse rate, (b) careless answering patterns, and (c) 

survey omission. 

Item nonresponse rate.  Respondents sometimes demonstrate low effort in surveys by 

altogether skipping items or thoughtlessly providing answers of “I don’t know.” The item 

nonresponse rate is parameterized as the proportion of questions on a survey that an individual 

neglects to answer out of the total number of questions he was supposed to answer. Hitt et al. (in 

press) validate item nonresponse rate as a performance-task measure of non-cognitive skills 

related to conscientiousness. In six nationally-representative, longitudinal datasets of US 

secondary school students, item nonresponse rates are found to be predictive of educational 

attainment, which in turn influence labor market outcomes, in adulthood (see also Cheng, 2015). 

In our data, we use the item nonresponse rate among teachers as a measure of conscientiousness, 

provide validation that it captures meaningful teacher attributes, and explore whether it captures 

a meaningful dimension of teacher quality by investigating whether it is a determinant of student 

outcomes. 

Careless answering patterns. When asked to complete surveys, some individuals begin 

the survey and do not skip items but still exert low effort by hastily providing thoughtless and 

random answers. This behavior results in careless answering patterns, which is a behavior that 

can be detected and parameterized (Hitt, 2015; Meade & Bartholomew, 2012). This measure has 

been validated as a proxy for conscientiousness in two nationally-representative samples — a 

sample of US adolescent school-age children and a nationally-representative sample of US adults 

— and found to be positively correlated with educational attainment, employment income, a 
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greater likelihood of being employed in a high-skilled job, and self-reported measures of 

conscientiousness, even after controlling for cognitive ability (Hitt, 2015; Zamarro et al., 2016). 

We describe the construction of this measure in greater detail in the methods section below.  

Survey omission. Rather than skipping items or responding thoughtlessly, some 

individuals exhibit low survey effort by entirely ignoring a survey even after they are asked to 

complete it. Although there may be numerous reasons for why teachers, in particular, ignore a 

survey despite volunteering to participate in the study that requires its completion, there is no 

reason not to rule out survey omission as a manifestation of low survey effort. In other words, 

while some teachers exert low effort by beginning the survey but skipping items or providing 

inaccurate answers, others do not even begin the survey. Cheng (2015) uses a binary variable of 

whether a teacher completes or does not complete a survey as a measure of teacher 

conscientiousness, but he was not able to provide empirical validation for it because no data were 

available to conduct a validation test. Rockoff et al. (2011), however, shows that among new 

teachers who were invited to fill out a survey, those who did were rated as higher-quality 

teachers by their mentors than those who did not respond. This result suggests that, on balance, 

teachers who overlook surveys which they have been invited to complete may also tend to be of 

lower quality. Our data enable us to provide additional validation of survey omission as a 

meaningful measure of teacher quality. We further explore whether refraining from completing a 

survey that one volunteered to do through prior agreement is systematically related to other 

measures of teacher quality and predictive of student outcomes.   

Why use performance-task measures? It is much more commonplace to rely upon self-

reported measures of non-cognitive skills. Researchers usually execute this approach by 

administering surveys and using responses to a series of Likert-type items. Yet there are some 
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drawbacks; we highlight two. First, self-reported measures are relatively convenient to collect, 

but they are prone to social desirability and reference group bias (Duckworth & Yeager, 2015; 

Dobbie & Fryer, 2015; Paulhus 1991; West et al., 2016). In contrast, our survey-effort measures 

do not face the same threats to validity, especially because respondents typically do not know 

they are being observed on how much effort they exert to complete a survey. Their behavior 

while completing the survey then reveals something about their non-cognitive skills without 

being colored by sources of bias endemic to self-reported measures.4 The second limitation of 

self-reported measures is more practical in nature. Self-reported measures of non-cognitive skills 

are rarely collected for teachers. This is why teacher quality research that uses large scale data 

sets rarely examines the topic of non-cognitive skills. Our data, which come from the MET 

study, is no exception. However, our survey-effort measures of teacher conscientiousness can be 

readily constructed from any dataset that has administered surveys to teachers. Latent 

information about a respondent’s non-cognitive skills can be recovered using our approach 

within any data set, opening new avenues to research in this understudied area. 

Research Questions 

In summary, research has found that educational background, years of experience, and 

other observable teacher characteristics are weak predictors of teacher quality as measured by 

student achievement. There is likewise little understanding of how other observable teacher 

characteristics predict teacher impacts on student non-cognitive skills. After all, researchers have 

only recently begun to study teacher impacts on student non-cognitive skills, finding that the 

                                                      
4 This critique is not intended to call all survey research into question. Self-reported measures of non-cognitive skills 

have been validated in a variety of circumstances and scholars have gleaned much knowledge from this research 

approach. That being said, there are incidences where sources of bias endemic to self-reported measures have 

possibly distorted results (Dobbie & Fryer, 2015; West et al., 2016). All approaches to measurement have unique 

strengths and weaknesses. 
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teachers who are effective at improving them do not necessarily comprise the same group of 

teachers who are effective at improving student achievement.   

This literature, however, has not extensively studied the possibility that teacher non-

cognitive skills explain variation in teacher effectiveness. Teacher non-cognitive skills could be 

related to existing measures of teacher quality and also play an important role in improving both 

cognitive and non-cognitive student outcomes. We address these issues in our study and 

contribute to the understanding of teacher quality by answering two specific research questions 

about teacher conscientiousness.  

First, how are our survey-effort measures of teacher conscientiousness correlated with 

existing measures of teacher quality? Answering this question lends some validity to our 

measures by showing they are meaningful and systematically correlated to established measures 

of teacher quality. It also provides insight into what, exactly, current measures of teacher quality 

are actually capturing. Quite possibly, classroom observation protocols, student ratings, and 

value-added scores may not only provide an accurate account of the practices that teachers use 

for teaching and relating to students but also measure personality traits that are also crucial for 

student outcomes. In other words, we examine the extent, if any, that teacher conscientiousness 

is captured by value-added scores and ratings based upon classroom observations, subjective 

principal opinions, or student surveys of teacher performance. 

Second, how are our survey-effort measures of teacher conscientiousness correlated with 

student cognitive and non-cognitive outcomes? We pay particular attention to whether more 

conscientious teachers are more effective at increasing student achievement and student 

conscientiousness based upon self-reported and survey-effort measures. If so, we may have 

uncovered an observable teacher characteristic that is linked to teacher effectiveness — a result 
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that has largely eluded researchers in teacher quality. As a point of comparison, we also examine 

the extent to which higher-performing teachers, as judged by traditional measures of teacher 

quality (e.g., student ratings, principal subjective ratings, formal classroom observations, and 

value-added scores) affect student conscientiousness as captured by our survey-effort measures. 

Kraft and Grace (2016) have already shown that student ratings of their teachers are positively 

correlated with teacher impacts on student grit, while traditional value-added scores and ratings 

based upon formal classroom observations are uncorrelated with them. Other prior research 

using MET data has already established the predictive power of teacher value-added scores and, 

to a much lesser degree, student ratings and formal classroom observations to forecast student 

achievement outcomes (Kane et al., 2012; Mihaly et al., 2013). Whether traditional measures of 

teacher quality also forecast survey-effort measures of conscientiousness is an unanswered 

question which we address. 

Answers to these two questions provide a more refined picture of teacher quality by 

describing how teacher conscientiousness is linked to a variety of student outcomes. We describe 

our analytical methods next.  

3. Methods 

Data 

 Data for this study come from the MET Project. Six large, urban public school districts 

participated in the MET project, which lasted two school years from 2009-2011. The districts 

involved are New York City Department of Education, Charlotte-Mecklenburg Schools, Denver 

Public Schools, Memphis City Schools, Dallas Independent School District, and Hillsborough 

County Public Schools.  In the second year of the study over 1,500 teachers from nearly 300 

schools were randomly assigned within schools and grades to classrooms of students ranging 
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from fourth to ninth grade (White & Rowan, 2012). We leverage this random assignment to 

estimate the causal effect of teachers on a variety of student outcomes observed at the end of the 

second year.  

Our measures of teacher quality are constructed based on data from the first year of the 

MET study.5 In other words, we assume that teacher quality is captured with validity in the first 

year of the MET study, and then we estimate how teachers of different quality affect a variety of 

student outcomes measured in the second year. This strategy of predicting how teachers will 

affect student performance in a given year based upon performance in other years with a 

different group of students has been used in prior research (Chetty et al., 2014; Jackson, 2012). 

Note too that we assume that teacher conscientiousness is a stable trait – a claim that possesses 

some empirical evidence (Cobb-Clark & Schurer, 2012). 

Survey-Effort Measures of Teacher Conscientiousness 

We begin by describing how we construct our survey-effort measures of teacher 

conscientiousness: item nonresponse rate, careless answering patterns, and survey omission. 

Item nonresponse rate. To compute item nonresponse rates for teachers, we use the 

Teacher Working Conditions Survey that teachers participating in the MET study completed 

during the first year of the study. Teachers were asked to answer 144 items on this survey, and 

                                                      
5 Whenever possible, we prefer to build measures of teacher quality based upon data from the first year of the MET 

study. We refrain from using data from the second year of the MET study as it may confound the causal direction of 

the relationships between measures of teacher quality and student outcomes – the latter which are measured in the 

second year. That is, a teacher's randomly assigned classroom may influence the teacher's behavior and, ultimately, 

measures of teacher quality. In such a case it is unclear to what extent the teacher is affecting student outcomes or 

vice-versa. The only exception is that we use data from both years of the MET study to create teacher value-added 

scores since research has documented that value-added measures based on one year of data are unstable (McCaffrey 

et al., 2009). In contrast, other work suggests that other measures based upon classroom observations or student 

ratings possess greater within-year stability (Polikoff, 2015; Pianta et al., 2008). It is also worth mentioning that 

MET teachers did not receive their teacher quality ratings from the first year of the study so that their behaviors in 

the second year of the study are uninfluenced by any such feedback (Polikoff, 2015).  
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new teachers were asked to answer an additional 39 items. All surveys were administered 

through a confidential online system (Rowan & White 2012). Dividing the total number of 

questions that teachers did not answer by the total number of questions that they were supposed 

to answer yields our first survey-effort measure of teacher conscientiousness, item nonresponse 

rate. On average, teachers skipped or responded “Don’t know” to 9 percent of the items.6  

Careless answering patterns. Our second proxy of teacher conscientiousness identifies 

careless answering patterns to create a measure of survey effort. Methods for building this 

measure can be found in Hitt (2015) and Zamarro et al., (2016), which is a generalization of 

Meade & Bartholomew (2012). We provide a sketch of the method below. In the present study, 

teacher careless answering is derived from the Teacher Working Conditions Survey, which 

contains several scales that are designed to capture unique constructs such as time use, school 

leadership, the management of student conduct, and other aspects of the teacher’s school and 

professional life.  

We use response data from eight scales on the survey to run a series of bivariate 

regressions where the dependent variable is the response to an individual item in a given scale 

and the independent variable is an average of the responses to the remaining items in the scale. 

The residual in this regression captures the deviations between a teacher’s actual response to an 

item and his expected response to the item based upon his as well as the sample’s responses to 

the other items on the same scale. We obtain residuals from regressions for all items from each 

of the eight scales that we use. Then, we average the absolute values of the residuals within each 

scale and standardize each average to have a mean equal to 0 and standard deviation equal to 1. 

                                                      
6Not counting responses of “Don’t know” as an instance of nonresponse does not substantively change the results, a 

pattern consistent with other research validating the use of item nonresponse (see Hitt et al., in press).  
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These values capture levels of careless answering within each of the eight scales. Higher values 

indicate more careless answering as larger residuals, in terms of absolute value, indicate greater 

deviations from expected responses. In other words, higher values on this measure indicate lower 

levels of conscientiousness. Finally, we compute an overall level of careless answering by 

averaging levels of careless answering from each of the eight scales and, once again, 

standardizing these values to have a mean equal to 0 and standard deviation equal to 1. 

Importantly, Cronbach’s alpha for the scales we use range from 0.81 to 0.94. These figures 

suggest a high level of internal consistency within each scale and lend credence to our 

assumption that deviations in expected responses to an item are attributable to a lack of survey 

effort and not random measurement error in the scale. 

As it turns out, the measures based upon careless answering patterns and those based 

upon item nonresponse are uncorrelated (ρ = -0.03). This low correlation does not necessarily 

imply that our measures are capturing distinct latent traits. It could simply indicate that different 

individuals exhibit low survey effort in distinct ways – either by skipping questions or by hastily 

providing thoughtless answers (Zamarro et al, 2016). We return to a discussion about this 

possibility in the final section of this article. 

Survey omission. We also use the Teacher Working Conditions Survey to build our final 

survey-effort measure of conscientiousness: an indicator of survey omission. This variable takes 

on a value equal to 1 if a teacher who volunteered to be in the MET study never submitted nor 

even started the Teacher Working Conditions Survey as asked. This variable equals 0 for 

teachers who responded to the survey as asked. About 27 percent of teachers in our sample failed 

to respond to the Teacher Working Conditions Survey. Because teachers who did not begin the 

survey do not provide responses from which we could construct item nonresponse and careless 
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answering measures, we cannot report correlations between our measure of survey omission and 

our other two measures of teacher conscientiousness. 

Traditional Measures of Teacher Quality 

 Having described the derivations of our survey-effort measures of teacher 

conscientiousness, we now describe the derivations of traditional measures of teacher quality, 

which include value-added scores, scores based upon formal classroom observation rubrics, 

student ratings of their teachers, and subjective ratings made by principals. 

 Value-Added Scores. We use two years of student test scores based upon state 

assessments to compute value-added scores for each teacher. Test scores are standardized by 

district, grade, subject, and year. Our value-added scores are computed by estimating models that 

include teacher fixed effects and then implementing an empirical Bayes adjustment to mitigate 

measurement error due to variation in the number of student observations that are available for 

computing each teacher’s effect. 

 In particular, we estimate 

𝑌𝑖𝑗𝑡 = 𝛼𝑌𝑖(𝑡−1) + 𝑿𝒊𝒕𝜷 + 𝛿�̅�𝑗(𝑡−1) + �̅�𝒋𝒕𝜸 + 𝜽𝒊 + 𝜖𝑖𝑡.  (1) 

In equation (1) Yit is the test score for student i in classroom j during year t, while Yi(t-1) is the test 

score for student i in the prior year. Xit is a vector of demographic characteristics for student i 

including age and indicators for gender, race, free and reduced-priced lunch status, English 

language learner status, gifted status, and special education status. �̅�𝑗(𝑡−1) and �̅�𝒊𝒋𝒕 represent 

measures of prior-year test scores and student demographic characteristics, respectively, 

averaged across all students in classroom j. θj is a vector of teacher fixed effects and ϵijt is the 

error term. Value-added scores for each teacher are computed by taking estimates of θj and, 

following Tate (2004) applying an empirical Bayes adjustment. Let �̂� and �̂�2 be the mean and 
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variance, respectively, of the estimated distribution of teacher value-added scores across the 

sample and let �̂�𝑗
2 be the estimated variance of the estimated value-added score for teacher j. 

Bayes-adjusted teacher value-added scores, 𝜃𝑗
𝐸𝐵 are thus given by: 

𝜃𝑗
𝐸𝐵 = 𝜃𝑗𝜆𝑗 + �̂�(1 − 𝜆𝑗), where λ = �̂�2/(�̂�2 + �̂�𝑗

2).7 

Formal classroom observations. Researchers in the MET Project video-recorded multiple 

lessons for each classroom section that a participating teacher taught during both years of the 

study. These videos were then shown to evaluators trained in the use of one of two classroom 

observation rubrics. Some evaluators were trained to rate lessons based on the Classroom 

Assessment Scoring System (CLASS) developed by Pianta, La Paro, and Hamre (2008). The 

CLASS instrument is designed to capture the extent to which teachers support student learning 

and emotional growth through fostering a safe and positive classroom climate, managing 

classroom time and student behavior, engaging students, and using effective pedagogy. Other 

evaluators were trained to rate lessons based upon Danielson’s (1996) Framework for Teaching 

rubric, hereafter FFT. This rubric is similar to CLASS as it is also designed to capture the extent 

to which teachers cultivate a classroom environment that is conducive to learning and whether 

they use effective instructional techniques that promote student learning. All videos were rated 

by these evaluators, and composite CLASS and FFT scores were created by averaging scores on 

the various components of each respective rubric. A teacher’s overall classroom observation 

                                                      
7The MET study also contained pre-constructed value-added scores that could be used in the analysis. However, we 

preferred to construct our own scores to be sure of the empirical specification used. Correlations between our value-

added scores and the pre-constructed value-added scores are 0.90 for math and 0.88. Replicating our analysis using 

the pre-constructed value-added scores rather than our data does not substantively change the results. 
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score, whether it is based upon the CLASS or the FFT instrument, is constructed by averaging 

his composite scores across all of his raters.8 

Student perceptions. Students of teachers participating in the MET Project were annually 

administered the Tripod survey developed by Ferguson (2012). Based upon the student’s 

responses, the Tripod survey captures seven dimensions of effective teaching. For example, the 

dimension named Care captures the extent to which teachers foster a sense of safety, belonging, 

and support in the classroom for their students. The extent to which teachers push students to 

work hard, exert greater effort to learn, and to think critically or deeply about a topic is captured 

by the dimension named Challenge. Other dimensions capture other instructional practices that 

support student engagement and learning. A teacher’s overall Tripod score is created by 

averaging responses at the individual-student level and then averaging these scores again at the 

classroom-teacher level. 

Principal Subjective Ratings. As part of the original MET study, principals in 

participating schools were asked to rate up to twelve teachers who were also a part of the MET 

study. Principals were asked to rate these teachers on a six-point ordinal scale, which included 

the following categories: Exceptional (top 5%), Very Good (top 25%), Good (top 50%), Fair (top 

75%), Poor (bottom 25%), and Very Poor bottom 5%). In our model specifications, we 

dichotomize principal subjective ratings. The variable takes on a value equal to 1 for teachers 

receiving any of the highest three ratings (i.e., teachers whom principals deemed in the upper 

half of the effectiveness distribution); the variable takes on a value equal to 0 for teachers 

                                                      
8Based on the CLASS instrument a teacher received, on average, 19 ratings with a standard deviation of about 8 
ratings. Based on the CLASS instrument and 5 ratings with a standard deviation of 2 ratings. 
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receiving any of the lowest three ratings as another.9 We elected to dichotomize this variable to 

facilitate the interpretation of our results as well as our estimation techniques, which we now 

describe. 

Empirical Strategy 

Using the aforementioned survey-effort measures of teacher conscientiousness and 

traditional measures of teacher quality, we conduct a series of analyses to answer our two 

research questions. Recall that we first ask how our survey-effort measures of teacher 

conscientiousness are correlated with traditional measures of teacher quality. We then, pertaining 

to our second research question, examine whether our survey-effort measures are correlated with 

student cognitive and non-cognitive outcomes. That is, do more conscientious teachers affect 

students in different ways than less conscientious teachers? 

Relationships between measures of teacher quality. To address our first research 

question, we investigate whether our three survey-effort measures of teacher conscientiousness 

are correlated with other measures of teacher quality. Although prior work has validated our 

survey effort measures as proxies for conscientiousness among adolescents and adults, including 

teachers (see Hitt, 2015; Hitt et al, in press; Rockoff et al., 2011; Zamarro et al., 2016), this 

analysis provides additional evidence of whether our behavioral measures are merely random 

noise or actually meaningful signals of teacher quality. If our survey-effort measures of 

conscientiousness are indeed meaningful signals, this analysis provides a sense of what, exactly, 

our measures capture with respect to other widely-used measures of teacher quality. 

                                                      
9 Interestingly, this categorization approximately divided the teachers into equal halves along the distribution of 

principal ratings. There does not appear to be evidence of a “Lake Wobegon effect” where virtually all teachers 

receive higher ratings (Donaldson, 2009). 
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In this analysis, we run a series of bivariate regressions where the dependent variable is a 

traditional measure of teacher quality (e.g., teacher value-added scores, classroom observation 

scores, student ratings, principal ratings) and the independent variable is one of our survey-effort 

measures of teacher conscientiousness (e.g., item nonresponse rate, survey omission, careless 

answering patterns). We express all variables, except our dichotomous indicators of survey 

omission and principal ratings, in terms of standard deviations for ease of interpretation. 

Teacher impacts on student outcomes. For our second analysis, we examine whether each 

survey-effort measure of teacher conscientiousness is predictive of student outcomes. 

Specifically, we consider teacher impacts on a variety of student cognitive and noncognitive 

outcomes: (a) test scores in math and reading, (b) a student self-reported measure of grit, (c) a 

student self-reported measure of effort, (d) student item nonresponse, and (e) student careless 

answering patterns on a survey. We discuss each of these measures in turn.  

Test scores in math and reading are based upon state-mandated assessments administered 

during the second year of the MET study. All test scores are standardized by district, year, and 

grade to have a mean and standard deviation equal to 0 and 1, respectively.  

During each school year, students also completed the Student Perceptions Survey 

administered by MET researchers. This survey included the Tripod instrument as well as items 

soliciting basic demographic information. In the second year of the MET study, the Student 

Perceptions Survey included the Duckworth and Quinn (2009) Grit Scale and several items 

designed to measure the amount of effort that the student exerts in class.  

Duckworth and Quinn define grit as “perseverance and passion for long-term goals” and 

have found it to be positively correlated with academic outcomes such as retention and grade 

point average in postsecondary students (p. 172). For our data, we create scale scores by 
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averaging each student’s responses to the eight Likert-type items on the Grit Scale, reverse 

coding items when necessary. Scale scores range from 1 to 5, with higher values indicating 

higher levels of grit, and have a mean of 3.56 with a standard deviation of 0.67 in our student 

sample.  

Items for the self-reported measure of student effort are shown in Appendix A. The scale 

consists of five and four Likert-type statements for secondary- and primary-school students, 

respectively, to answer. We reverse-coded items as necessary and then averaged the responses. 

Higher values indicate that the student exerts more effort in class. Scale scores range from 1 to 5 

with an average of 4.07 and a standard deviation of 0.67. 

The remaining measures of student non-cognitive skills are two survey-effort measures of 

student conscientiousness – item nonresponse and careless answering patterns.10 These measures 

are based upon student effort on the Student Perceptions Survey administered in the second year 

of the MET study. Elementary school students were asked to complete 75 items, while secondary 

school students were asked to complete 83 items. The average item nonresponse rate was 2.7 

percent with a standard deviation of 9.0 percent. Values for the careless answering measure are, 

by construction, standardized to have a mean equal to 0 and standard deviation equal to 1. We 

build the measure of student careless answering based upon six of the seven subscales in the 

Tripod Survey administered in the second year of the MET study. We use the Care, Control, 

Clarify, Challenge, Captivate, and Confer subscales.11 These scales have Cronbach’s alphas that 

                                                      
10There is no measure of survey omission for students as they were compelled to complete the survey once 

consenting to participate. Teachers, in contrast, consented to the study but could freely decide whether or not to 

comply with the study by completing their respective survey. 
11 Ferguson’s (2012) Tripod instrument, which is a measure of teacher quality, is also included on the Student 

Perceptions Survey from which we derive several student outcome variables such as self-reported grit, self-reported 

effort, item nonresponse, and careless answering. However, it is important to reemphasize that measures of teacher 

quality are all based upon surveys administered in the first year of the study, while student outcome measures come 

from surveys administered in the second year of the study. Thus, student item nonresponse or careless answering on 
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range from 0.68 to 0.85 for secondary school students and 0.63 to 0.84 for elementary school 

students. The Tripod survey has a seventh subscale named Consolidate but we opted to omit it 

due to its apparent lack of reliability as indicated by a low Cronbach’s alpha value (α = 0.52).12 

Table 1 displays the correlations between each student outcome measure. One can easily 

observe that measures of student non-cognitive skills are, if anything, modestly correlated with 

student test scores. The magnitudes of the correlation coefficients never surpass 0.25. 

Interestingly, the two self-reported measures of student non-cognitive skills (i.e., grit and effort) 

are more strongly correlated with each other than they are to test scores or survey-effort 

measures of conscientiousness. Meanwhile, item nonresponse appears uncorrelated with all other 

measures. As it was the case for teachers, there is essentially no association between item 

nonresponse and careless answering among students. This is expected if leaving answers blank in 

the survey or carelessly answering are substitutive strategies for low effort. On the other hand, 

careless answering seems to be equally correlated with test scores and self-reported measures of 

non-cognitive skills, albeit modestly.13 

                                                      
the Tripod survey during the second year of the MET study does not distort measures of teacher quality, which are 

based upon the Tripod survey administered in the first year of the study. Moreover, students only enter our data if 

they have a teacher participating in MET, and because students in the data typically do not have the same teacher for 

two consecutive years, our measures are not affected by same-source bias. That is, responses on the Tripod 

instrument used to construct measures of teacher quality are not provided by the same students who provide 

responses from which we build our student outcome measures. 

 
12 We are unable to examine whether our survey-effort measures of student conscientiousness are predictive of later-

life outcomes in the MET data as such data are unavailable. Instead, we rely on other research that has documented 

external validity of these measures. Lower item nonresponse rates and lower levels of careless answering as 

measured in adolescence have been found to be associated with greater levels of educational attainment and a 

greater likelihood of employment when measured in adulthood, even after controlling for cognitive ability as 

measured by standardized test scores (Cheng, 2015; Hitt et al., forthcoming; Hitt, 2015). Moreover, other studies of 

schoolchildren demonstrate that conscientiousness is associated with academic and labor-market success 

(Duckworth et al., 2007; MacCann, Duckworth & Roberts 2009; Poropat, 2009; Trautwein et al. 2006; Tsukayama, 

Duckworth & Kim 2013; Kraft & Grace, 2016; Roberts et al., 2007). 
13 It is interesting that correlations between self-reported measures of noncognitive skills are stronger than 

correlations between self-reported and performance-task measures. This is a pattern which other work has also 

found (Zamarro et al., 2016). The higher correlations among self-reported measures could be driven by the common 
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≪Table 1 Here≫ 

As introduced above, in this paper, we leverage the random assignment of teachers to 

classrooms in the second year of the MET Project to estimate causal impacts of teachers, who 

vary in our survey-effort measures of conscientiousness, on each of the student outcomes. We 

compute both intent-to-treat (ITT) estimates and local average treatment effect (LATE) estimates 

using an instrumental variables (IV) strategy.  

For the ITT analysis, we use ordinary least squares to estimate models of the form 

 Yi = β0 + β1Ti
 + β2Xi + ϕi + ϵi,  (2) 

where Yi is one of the outcomes of interest for student i measured in the second year of the MET 

study, Xi is a vector of student demographic characteristics as in equation (1) but now also 

includes prior-year test scores in math and English, and ϵi is the usual error term but clustered at 

the classroom level. Ti is the independent variable of interest and represents one of our survey-

effort measures of conscientiousness for the teacher to whom student i was randomly assigned. 

Again, these measures of teacher characteristics are obtained based upon data in the prior (first) 

year of the MET study. The associated coefficient, β1, captures the magnitude of the effect that 

teachers with varying levels of conscientiousness have on a particular student outcome. To better 

capture the experimental design and randomization process, we include randomization block 

fixed effects, ϕi. In the MET study, teachers teaching in the same school, grade, and subject were 

first placed into blocks and then randomized to classrooms (Rowan & White, 2012). Note, then, 

                                                      
mode in which the measures are collected, namely, through self-reports. Whether this is evidence of bias that is 

common across self-reported measures is unclear. Moreover, magnitudes partial correlations between survey-effort 

and self-reported measures of conscientiousness in the MET data are similar to those found in other work (Zamarro 

et al., 2016; Galla et al., 2014).   
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that the randomization block fixed effect also controls for unobserved characteristics at the 

school by grade by subject level. 

 We employ a two-stage least squares approach to compute our IV estimates. In this 

framework, we use survey-effort measures of teacher conscientiousness for each student’s 

randomly assigned teacher as an instrument for the same measure of teacher conscientiousness 

for the student’s actual teacher. Again, teacher characteristics are measured based on data from 

the first year of the MET study. In particular, we estimate the following two-stage model: 

 𝑇𝑖
𝐴 = γ0 + γ 1𝑇𝑖

𝑅  + γ2Xi + ϕi + μi  (3) 

 Yi= β0 + β1�̂�𝑖
𝐴 + β2Xi + ϕi + ϵi,  (4) 

where 𝑇𝑖
𝑅 is a measure of teacher conscientiousness for the teacher to whom student i was 

randomly assigned and 𝑇𝑖
𝐴 is the corresponding measure of teacher conscientiousness for the 

teacher whom student i actually had during the school year14, and �̂�𝑖
𝐴 represents fitted values of 

𝑇𝑖
𝐴 based upon estimations of Equation 3. The other variables correspond to those presented in 

equation (2).15 These models, together with the random assignment of teachers to students, 

provide causal estimates of how student outcomes are altered when they have teachers with 

varying levels of conscientiousness. Again, standard errors are clustered at the classroom level. 

                                                      
14 MET data that was made available to us contained multiple teacher identification numbers for each student: (a) a 

randomly assigned teacher identifier, (b) an actual teacher in October identifier, (c) an actual teacher in May 

identifier, and (d) a global teacher identifier. However, the global teacher identifier and the identifiers for actual 

teachers in October and May were not always consistent, so it was sometimes unclear which variable represented the 

most accurate information of the teacher a student actually had. In order to test for the effect of these data 

inconsistencies on our results, we ran our analysis using each of these identifiers and found that our results are not 

sensitive to the choice of identifier. Thus, we decided to present results for the specification that uses the identifier 

for the student’s actual teacher in October. 
15 Strictly speaking, it is not absolutely necessary to include variables to control for prior-year measures of our 

student outcome variables because we rely on the random assignment of teachers to students. Including them, 

however, could be useful to improve the precision of our estimated coefficients. However, doing so is not possible in 

the data since we do not observe all students in both years of the MET study. Students are only part of the MET 

study during years where they have MET teachers. The only exception to this rule is the inclusion of prior-year test 

scores for all students because they are provided in the MET data. 
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 As an additional analysis, we estimate the same models substituting our survey-based 

measures of teacher conscientiousness with traditional measures of teacher quality (e.g., value-

added scores, student ratings, scores on formal classroom observations, principal subjective 

ratings16). These models provide a point of comparison for our survey-effort measures. In other 

words, they reveal how well the survey-effort measures of teacher conscientiousness predict and 

explain variation in student outcomes relative to traditional measures of teacher quality, further 

honing similarities and distinctions between each type of measure of teacher quality. At the very 

least, we would like to examine the ability of traditional measures of teacher quality based upon 

data from the first year of the MET study to predict survey-effort measures of student 

conscientiousness in the subsequent year. 

4. Results 

Relationships between Measures of Teacher Quality 

 We begin by presenting relationships between our survey-effort measures of teacher 

conscientiousness with traditional measures of teacher quality. Table 2 lists coefficient estimates 

and standard errors from bivariate regressions where our behavioral measures of teacher quality 

are independent variables and traditional measures of teacher quality are dependent variables. In 

general, our behavioral measures appear to be uncorrelated with value-added scores but are 

correlated to other indicators of teacher quality such as those based upon formal classroom 

                                                      
16Although the principal subjective ratings variable is binary, we use linear probability models in the first stage of 

the IV models to predict ratings that principals gave to students’ actual teachers. Instead of a linear probability 

model, we also ran specifications where we estimate probit models in the first stage. Results whether we use linear 

probability models or probit models do not substantively differ. Moreover, an ITT analysis using a nonlinear 

specification that include dummies for each of the six principal ratings yielded findings similar to those presently 

shown in the results section. 
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observations, student ratings, and principal ratings. Teachers who are less conscientious as 

captured by our survey-effort measures have worse scores on other measures of teacher quality. 

≪Table 2≫ 

For instance, a one standard deviation increase in the item nonresponse rate (i.e., lower 

conscientiousness) is associated with between a 0.05 to 0.10 standard-deviation decrease in FFT 

scores, CLASS scores, and Tripod ratings. Similarly, we observe that teachers who more 

extensively engage in careless answering appear to have lower FFT scores. A one standard 

deviation increase in careless answering is associated with a decrease in FFT scores by 0.05 

standard deviations, though the result is only significant at the 90 percent confidence level (p = 

0.06).  

We finally consider relationships between survey-effort measures of conscientiousness 

and our indicator for whether a teacher overlooks the Teacher Working Conditions Survey. As 

shown in the last row of Table 2, teachers who fail to begin the surveys, on average, have FFT 

and CLASS scores that are lower than teachers who complete the survey. The differences in 

scores based upon these observation protocols are approximately 0.14 and 0.19 standard 

deviations, respectively. Moreover, teachers who fail to complete the survey are about 5 percent 

more likely to receive one of the three lower subjective ratings from their principals rather than 

one of the three higher ratings. However, there are no discernable differences in value-added 

scores between teachers who do or do not begin the survey. 

Teacher Impacts on Student Non-cognitive Skills  

 Turning attention to our second research question, we find that our survey-effort 

measures of teacher conscientiousness are important determinants of certain student outcomes 

but not others. Again, we leverage the randomized assignment of teachers to students to estimate 
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the causal effects that teachers with varying levels of conscientiousness have on student non-

cognitive skills and test scores.  

Post-Randomization and Post-Attrition Covariate Balance. Before presenting results, we 

check if the randomization process yielded covariate balance. If so, this would lend credence to 

the claim that the randomization of teachers to students was properly executed so as to remove 

the bias in our estimates that are attributable to systematic sorting of students to teachers. As can 

be expected, a substantial amount of noncompliance with random assignment occurred in the 

execution of the original MET study (Kane et al., 2013; Rowan & White, 2015). The ITT and 

LATE estimates, described above, would address bias issues due to noncompliance if all no-

compliers continue to stay in our sample. However, students attrite from the sample if they 

transferred districts, switched to non-participating schools in a participating district, or remained 

at the same participating school but transferred to a classroom taught by a teacher who was not 

participating in the MET study. Outcomes for non-complying students are not observed in our 

data. For this reason, our checks for post-randomization covariate balance are based upon data 

that has been collected post-attrition. Detecting covariate balance in this data would lend more 

credence that, despite attrition, our estimates can legitimately be interpreted as causal. 

We check for post-attrition, post-randomization covariate balance in two ways.  First, we 

test to see if classrooms within randomizations blocks differed along student demographic 

characteristics and student prior-year test scores. To do this, we first demean each student 

characteristic or prior-year test score by randomization blocks. We then regress demeaned values 

of a particular student characteristic or a prior-year test score on a vector of dummy variables 

that indicate a student’s randomly assigned teacher. Finally, we conduct an F-test to see if we can 

reject the null hypothesis that the estimated coefficients on the set of teacher dummy variables 
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are jointly equal to each other. Failing to reject the null hypothesis would provide evidence that 

classrooms were balanced across student covariates within randomization blocks and suggest 

that the randomization process occurred appropriately so as to eliminate the systematic sorting of 

students to teachers. Results for these estimates are shown in Appendix Table B1. Although we 

do not find evidence of imbalance along a majority of student characteristics across classrooms 

within the same randomization blocks, there is some evidence of disparity.  For instance, English 

language learners, gifted students, and students with higher test scores are more likely to be 

assigned to particular teachers within the same randomization blocks. To address this issue in our 

empirical strategy, we include controls for a wide range of classroom-level characteristics, 

including but not limited to the average prior-year test scores and proportions of students who 

are classified as gifted or an English-language learners. 

As a second test for covariate balance, we run a series of bivariate regressions where we 

use each observable student demographic characteristic to predict each measure of teacher 

quality from a student’s randomly-assigned teacher. If the randomization process was 

implemented appropriately, we should not observe any explanatory variables attaining statistical 

significance in these regressions. Results are shown in Table B1 in Appendix B. Though we find 

statistically significant differences in student characteristics in a few of our regressions, we 

cannot clearly rule out the possibility that these have occurred by chance given the number of 

statistical tests that were conducted. More precisely, we find 8 statistically significant covariates 

out of 72 tests, when one would expect about 7 to happen just by chance (assuming a 

significance level of α = 0.1). Again, we control for all available observable individual-level and 

classroom-level demographic characteristics and prior-year test scores in our analyses to control 

for any source of bias due to these observable characteristics.  
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Ultimately, given the inclusions of this wide range of covariates together with evidence 

of post-randomization and post-attrition balance across a majority of student covariates, we 

maintain that we have sufficiently eliminated systematic sorting of students to teachers. In other 

words, we have strong reason to believe that our estimates are both causal and valid. 

Teacher Noncognitive Skills and Student Noncognitive Skills. We first present ITT 

estimates in Table 3. Each panel in Table 3 displays coefficients and standard errors that are 

estimated from Equation 2 for one of our three survey-effort measures of teacher 

conscientiousness and each student outcome. For example, the first panel under column 5 

suggests student item nonresponse rate increases by about 2.4 percent of a standard deviation 

when a student is randomly assigned to a teacher who, all else equal, is one standard deviation 

higher on the distribution of teacher item nonresponse. 

 In fact, we find that all three survey-effort measures of teacher conscientiousness are 

predictive of student item nonresponse rates (Column 5) but are not predictive of student 

achievement in math (Column 1) or English (Column 2), student self-reported effort (Column 4), 

and careless answering (Column 6). As shown in column 5, effect sizes range from 2 to 6 percent 

of a standard deviation in item nonresponse. Focusing on results for grit in Column 3, we find 

that students self-report lower levels of grit when they are randomly assigned to teachers who 

fail to start the Teacher Working Conditions survey. In other words, students randomly assigned 

to a less conscientious teacher appear to become less conscientious, primarily according to the 

item-nonresponse proxy and self-reported grit measures. In contrast, student test scores do not 

seem to be affected when they are randomly assigned to teachers of varying levels of 

conscientiousness. 

≪Table 3≫ 
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Results based upon the IV estimates are shown in Table 4 and generally comport with 

results based upon the ITT analysis. As shown in the second panel of Column 5, students 

experience increases in item nonresponse rates when they have teachers who exhibit more 

carelessness while answering surveys. In the third panel under Column 5, one can also see that 

relative to students who have teachers that complete the Teacher Working Conditions Survey, 

students with teachers who do not complete the Teacher Working Conditions Survey have item 

nonresponse rates that are approximately 0.14 standard deviations higher, all else being equal. In 

contrast, the associations between (a) student item nonresponse with teacher item nonresponse 

and (b) student self-reported grit and teacher survey omission, which were significant under the 

ITT models, are no longer statistically significant under the IV models. The coefficient estimates 

are positive and larger than the ITT estimates but imprecisely estimated. Furthermore, the IV 

estimates indicate that students self-report less effort in their classes if they are taught by 

teachers who refrain from responding to the Teacher Working Conditions Survey. Relative to 

students with teachers who do indeed respond to the survey, these students’ self-reported effort 

ratings are about 0.15 standard deviations lower. 

≪Table 4≫ 

Traditional Measures of Teacher Quality and Student Non-cognitive Skills. To shed 

additional light onto our survey-effort measures of teacher conscientiousness, we now present 

estimates of the relationships between student non-cognitive skills and traditional measures of 

teacher quality. ITT results are shown in Table 5 and are displayed in a fashion analogous to 

Table 3 but with traditional measures of teacher quality rather than our survey-effort measures of 

teacher conscientiousness. Findings shown in the first panel demonstrate that teachers who have 

been rated more highly by their students on the Tripod survey during the first year of the MET 
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study are more effective at improving conscientiousness in their subsequent set of students 

during the second year of the MET study. Students who are randomly assigned to a teacher 

whose Tripod rating is one standard deviation higher have self-reported grit scores that are about 

0.03 standard deviations higher, self-reported effort scores that are about 0.05 standard 

deviations higher, and careless answering scores that are 0.09 standard deviations lower. Higher 

quality teachers as judged by student ratings do not appear to have an effect on student item 

response rates.  

In the second panel, one can also observe that students who are randomly assigned to 

teachers who receive higher principal ratings exhibit less careless answering. That is, these 

students appear more conscientiousness. Relative to students assigned to teachers who received 

one of the three lower categories of principal ratings, students assigned to teachers who received 

one of the three higher categories of principal ratings have careless answering scores that are 

almost 10 percent of a standard deviation lower.  

Turning to the third and fourth panels, variation in teacher quality as measured by 

classroom observations protocols sometimes explains variation in teacher effectiveness at 

improving student non-cognitive skills. While FFT ratings are uncorrelated with such impacts, 

CLASS ratings are modestly predictive of student grit and item nonresponse but slightly more 

strongly predictive of careless answering. A one standard deviation increase in a teacher’s rating 

based upon the CLASS protocol is associated with an increase in grit and item nonresponse by 

about 0.03 standard deviations. The corresponding effect size for careless answering is 0.04 

standard deviations.  

Finally, we observe in the last two panels that that teacher value-added scores show no 

association with impacts on student non-cognitive skills. 
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≪Table 5≫ 

Corresponding estimates based upon IV techniques are displayed in Table 6. These 

results are generally consistent with ITT results in Table 5, where teachers who are rated higher 

by their students are more effective at improving student non-cognitive skills as measured by 

student self-reported grit, self-reported effort, and careless answering. Likewise, students exhibit 

less careless answering when they have teachers who receive higher ratings from their principals 

or have higher ratings on the CLASS protocol. There are, however, a few differences between 

the ITT and IV results that are worth highlighting. Teachers rated more highly on the CLASS 

protocol now do not appear more effective at improving student self-reported grit and item 

nonresponse as the ITT results demonstrated. Notably, these relationships were only significant 

at the 90 percent confidence level in the ITT models. Lastly, students taught by higher-

performing English teachers as measured by value-added scores also appear to experience 

decreases in item nonresponse rate, though the result is only significant at the 90 percent 

confidence level.  

≪Table 6≫ 

5. Discussion and Conclusion 

Summary 

 In this article, we have aimed to measure teachers’ levels of conscientiousness and to 

assess how they affect similar non-cognitive skills in students. Little research has investigated 

the role that a teacher’s conscientiousness plays in educational outcomes (Duckworth et al., 

2009; Rockoff et al., 2011). The paucity of research is attributable to the fact that teacher non-

cognitive skills data are rarely collected and available. We overcome this data limitation by 

utilizing three innovative survey-effort-based measures of conscientiousness that can be 
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constructed using data collected from teacher surveys: (a) item nonresponse, (b) careless 

answering, and (c) survey omission. Based upon conceptual reasons from survey methods 

research and empirical evidence, we view these behavioral measures as proxies for non-cognitive 

skills related to conscientiousness (Hitt et al., in press; Hitt, 2015; Krosnick, 1991; Smith, 1982; 

Zamarro et al., 2016). Furthermore, we build survey-effort measures of conscientiousness for 

students, which is typically unavailable in many datasets, to expand the range of student 

outcomes available for analysis, although in this case we did have some self-reported measures 

of non-cognitive skills for students. 

 We summarize our three main findings. First, our survey-effort measures of teacher 

conscientiousness are correlated with some but not all existing measures of teacher quality, 

namely those based upon formal classroom observations, student ratings, and principal ratings 

but not value-added scores. This result provides additional validation for the use of item 

nonresponse, careless answering, and survey omission as proxies for meaningful teacher 

characteristics. These survey-effort measures may represent important observable teacher 

characteristics that can be easily obtained from existing data and used for further research on 

teacher quality. 

Specifically, we maintain that we have captured levels of teacher conscientiousness with 

our survey-effort measures, as other work suggests (Hitt, 2015; Hitt et al, in press, Zamarro et al., 

2016). In fact, findings from prior research suggest that ratings based upon principals, students, 

or other classroom observations may capture teacher conscientiousness. For instance, Rockoff et 

al. (2011) find that novice teachers who have higher self-reported levels of conscientiousness 

also received higher subjective ratings from their mentor teachers. Interestingly, Rockoff et al. 

additionally found that novice teachers who did not complete their survey were rated lower by 
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the mentor teacher than those who completed the survey. The intention of this comparison was 

not a test of teacher conscientiousness but a robustness check to address the issue of missing 

data. It is possible that these researchers, by happenstance, actually uncovered more evidence 

that novice teachers with lower conscientiousness receive lower subjective ratings. The 

proposition that ratings based upon observations of teachers capture personality traits has also 

been raised by Harris et al. (2014) and is worth further investigation. Certainly, it would be 

valuable for scholars and practitioners to reflect upon what, exactly, ratings by principals, 

students, and other observers of teachers in their classrooms actually capture. 

Second, we find that teachers who exhibit more conscientiousness as measured by our 

survey-effort measures are more effective at improving student conscientiousness. Yet we do not 

find evidence that teacher conscientiousness is tied to student achievement as measured by test 

scores. Leaning upon the random assignment of teachers to students in our data, we interpret our 

results as causal. Students exhibit higher item nonresponse rates but not higher test scores when 

they have teachers who exhibit higher item nonresponse rates17, greater levels of careless 

answering, or fail to complete a survey when asked to do so. There is also some suggestive 

evidence that students self-report lower levels of grit when they are assigned to teachers who do 

not complete surveys and self-report lower levels of effort when they are actually taught by those 

teachers.  

Third, we do not find much evidence that teachers with high formal classroom 

observation or value-added scores are effective at improving student conscientiousness. The 

exception to this result is that higher-quality teachers as measured by the CLASS observation 

                                                      
17 Again this result was only significant at the 90 percent confidence level in the ITT analysis and imprecisely 

estimated in the IV analysis. 
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protocol appear to be more effective at improving student conscientiousness as measured by 

careless answering. However, the traditional measures of teacher quality that is most strongly 

predictive of student conscientiousness are student ratings of teachers — similar to what Kraft 

and Grace (2016) have found — and principal subjective ratings.18 Taken together, these results 

indicate that existing measures of teacher quality do not fully capture all the relevant ways in 

which teachers influence their students. In particular, our survey-effort measures of 

conscientiousness capture impacts that teachers have upon student item nonresponse — 

something traditional measures of teacher quality are, according to our analysis, less able to do. 

Overall, we interpret our estimates as lower bounds for the impacts that teachers have 

upon student conscientiousness. Arguably, each of our survey-effort measures capture latent 

traits that are only proxies for conscientiousness. For instance, both conscientiousness and 

problems with survey administration could explain variation in our measure of survey omission. 

A variety of logistical reasons may influence why some teachers did not begin the survey. 

Likewise, variation in careless answering could partially reflect genuine variation in teacher 

response patterns or natural measurement error in the scales (even though we already selected 

scales with higher levels of Cronbach’s alpha) in addition to a lack of conscientiousness. All of 

these issues generate random measurement error and, at worst, cause our results to attenuate. 

Furthermore, while student test scores are arguably mostly influenced by one teacher in a 

particular content area, student non-cognitive skills can be influenced by multiple teachers. For 

secondary students that have more than one teacher, this possibility introduces additional 

                                                      
18 The FFT, CLASS, and Tripod instruments also have a variety of subscales designed to capture different 

dimensions of teacher quality. We estimate models using scores on these subscales in addition to models that use 

scores based on the entire scale. Results when using separate scores from the seven subscales of the Tripod 

instrument all reflect overall results. Results when using separate scores from subscales of the FFT and CLASS were 

mixed with no obvious patterns. 
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attenuation bias in our results.  For these reasons, we interpret our results to be conservative 

estimates. That we find systematic relationships between survey-effort measures of teacher 

conscientiousness and student outcomes, therefore, deserves special attention..  

Although we cannot provide evidence for the mechanisms for why these relationships 

exist, these findings are consistent with social learning theory where students learn to be more 

conscientious by observing their more conscientious role models (Bandura, 1977; Bandura & 

Walters, 1963). These patterns are similar to results in Cheng (2015) where students, over the 

course of their secondary schooling, become more conscientious (as measured by item 

nonresponse) during school years where they have more conscientious teachers (as measured by 

survey omission). It is also possible that more conscientious teachers tend to be more effective at 

implementing certain classroom management or instructional techniques that could be conducive 

to fostering student conscientiousness (Blazar & Kraft, 2015). Indeed, our survey-effort 

measures of teacher conscientiousness are correlated with teacher quality measures based upon 

formal classroom observations by the CLASS instrument. Still, we do not find that measures of 

teacher quality based upon the FFT or value-added scores are predictive of student outcomes in 

conscientiousness. Again, more work investigating what teacher traits, exactly, are captured by 

classroom observation protocols or how classroom interactions between teachers and students 

affect student non-cognitive outcomes will be useful. 

Implications for understanding teacher quality 

Our findings suggest that teacher quality is multidimensional. Some teachers are effective 

at improving student test scores while others are more effective at improving student 

conscientiousness. Moreover, it appears that teachers who are themselves more conscientious are 

more effective at improving student conscientiousness but not necessarily student test scores. 
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This finding tracks with Kraft and Grace (2016) who use MET data to find that teacher effects on 

student non-cognitive skills and achievement are weakly correlated. Indeed, these findings align 

with those from a growing body of teacher quality research (Blazar & Kraft, 2015; Cheng, 2015; 

Gershenson, in press; Jackson, 2012; Jennings & Diprete, 2010; Koedel, 2008).  

This paper joins this body of work studying teacher impacts on student non-cognitive 

outcomes, all of which suggest evaluations of teachers, schools, and other educational 

interventions to consider both student achievement and non-cognitive skills as outcomes. The 

former have been the focus and standard by which educational programs are evaluated, but 

research overlooks impacts on non-cognitive skills by solely relying on cognitive measures as 

outcome variables. Such oversight is not inconsequential because non-cognitive skills have been 

found to be important determinants for later-life outcomes, even after accounting for cognitive 

ability (Heckman, Stixrud, & Urzua, 2006). Without considering impacts on non-cognitive skills, 

the benefits that teachers impart to their students will likely be misstated (Heckman, Pinto, & 

Savelyev, 2013). Teachers that realize large gains in student non-cognitive skills will likely be 

categorized as ineffective if evaluation systems only rely on gains in student achievement 

(Grissom et al., 2016). In fact, it is worthwhile to reiterate that even our survey-effort measures 

of non-cognitive skills are predictive of student educational attainment and labor-market 

outcomes; this finding cannot be replicated in the MET data but has been documented in several 

longitudinal analyses (Hitt et al., in press; Hitt, 2015; Cheng, 2015). 

Our findings also speak to prior research from the original MET study. Kane et al. (2012) 

find that classroom observations, student ratings, and value-added scores are only weakly 

correlated with student test scores and recommend creating a composite score that aggregates all 

these measures to gauge teacher impacts on student achievement. The composite score, as they 
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argue and demonstrate, is more reliable than the each measure alone and is more predictive of 

teacher value-added scores (see also Mihaly et al, 2013). However, the assumption behind Kane 

et al.’s (2012) recommendation is that teacher quality is a unidimensional construct (e.g., the 

ability to improve student achievement) and that different measures of teacher quality capture 

mutually exclusive parts of that construct. Our results provide reason to dispute that assumption. 

Not only is teacher quality multidimensional but different measures of teacher quality capture 

different aspects of teacher quality. For instance, our survey-effort measures of teacher 

conscientiousness clearly predict student conscientiousness but not student achievement, and 

student ratings of teachers are predictive of student grit, effort, and careless answering as well as 

test scores. Aggregating different measures of teacher quality to ascertain their predictive power 

to forecast student achievement may mask teacher effects on other student outcomes and obscure 

the multifaceted ways in which different teachers benefit their students.19  

Implications for Future Research and Practice 

Identifying effective teachers has been elusive. Observable characteristics such as years 

of experience, educational background, and licensure are at best only weakly correlated with 

student achievement outcomes (Buddin & Zamarro, 2009; Goldhaber, 2008; Jacob, 2007). In this 

study, we follow Rockoff et al.’s (2011) approach by first hypothesizing that teacher non-

cognitive skills play an important role in shaping student outcomes. Our innovation, however, is 

                                                      
19 Certainly, one could undergo the empirical exercise of recalculating ideal weights as in Kane et al. (2012) and 

Mihaly et al. (2013) to create composite measures of teacher quality by including our survey-effort measures of 

teacher and student non-cognitive skills. One of the intents behind Kane et al. (2012) and Mihaly et al. (2013) was to 

provide guidance for practitioners who desire to utilize traditional measures of teacher quality in a systematic way. 

However, we caution that our survey-effort measures of teacher quality are currently suitable for research purposes 

only, not for use by schools and policymakers in their everyday operations and practice. 
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to present evidence supporting this hypothesis by capturing a teacher’s level of conscientiousness 

using survey effort measures. 

We view this as our main contribution to the research literature. An increasing number of 

studies find that teachers vary in their effectiveness at improving a variety of student outcomes, 

but it still remains unclear what types of teachers are effective at improving particular outcomes 

(Hanushek & Rivkin, 2006). We are only aware of four other studies that have examined this 

issue. First, Rockoff et al. (2011) provides some evidence that teacher self-efficacy is related to 

student test scores in math, but the correlation is modest. Second, Blazar and Kraft (2015) have 

descriptively shown that teachers who are rated highly on the CLASS rubric appear to be more 

effective at improving self-efficacy among students. Third, Cheng (2015) demonstrates that 

students experience gains in conscientiousness in years when they have more conscientious 

teachers. Fourth, Duckworth et al. (2009) show that teacher grit and life satisfaction are 

predictive of student achievement. More work in the same vein as these studies and this present 

study needs to be undertaken to better understand what kinds of teachers are effective at 

improving both student cognitive and non-cognitive outcomes. Testing for associations between 

teacher personality traits, teaching practices, and student outcomes, as this work and Rockoff et 

al. (2011) have done, could be a more promising avenue to uncovering the elusive observable 

teacher characteristics that are predictive of student outcomes. One additional advantage is that 

these traits could be measured at the moment of hire in contrast with traditional measures of 

teacher quality that only available once teachers are in the classroom. More generally, 
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identifying the kinds of teachers that effectively develop student cognitive and non-cognitive 

skills is a task that warrants additional scholarly attention.20 

For now, this work as well as other studies that find heterogeneity in the ways that 

teachers affect their students, suggests that scholars, policymakers, and practitioners need to 

think more critically about the ways in which they conceptualize teacher quality. It is not wholly 

unreasonable to construe teacher quality as a teacher’s ability to improve student achievement. 

After all, student achievement and cognitive ability are crucial components of human capital 

development and play an important role in determining a student’s future educational attainment, 

employment, earnings, and other long-run life outcomes (Becker, 1964; Chetty et al., 2014). 

However, non-cognitive skills also play their own role in determining the same outcomes, above 

and beyond the role that student achievement plays (Heckman et al., 2006; Almlund et al., 2011). 

It is also unclear to what extent scores on tests of cognitive ability are driven by student effort or 

student content knowledge (Borghans & Schils, 2013; Mendez et al., 2015; Hitt, Zamarro, & 

Mendez, 2016). A conception of teacher quality that only focus on impacts on student 

achievement are therefore incomplete, overlooking the nontrivial ways in which teachers benefit 

students. 

We also view our use of survey-effort measures of teacher and student conscientiousness 

as a key contribution to research. These measures can be readily constructed in most data sets 

that rely on self-reports and provide a viable research strategy to answer questions about student 

and teacher non-cognitive skills – a topic that is receiving increasing attention in several 

                                                      
20 Bargagliott et al., (2016) show that kindergarten teachers who utilize certain pedagogical practices to teach math 

appear to be more effective at improving particular non-cognitive skills in their students. Research investigating 

teaching practices associated with improving student non-cognitive skills is equally important, though some studies 

fail to find a relationship between pedagogical approaches and student outcomes (Jennings & Diprete, 2010). 



44 

 
 

academic fields. More importantly, we have shown in this study that these survey-effort 

measures are not simply random noise. They are related to other traditional measures of teacher 

quality and predictive of student outcomes. Even if one disputes their validity as measures of 

conscientiousness, such relationships demand explanation. 

More study of these survey-effort measures needs to be completed. Little is known, for 

example, about the stability of such measures and how they will behave in different survey 

contexts. Indeed, in other work, we have found that the ways respondents shirk on surveys varies 

depending upon whether the survey is compulsory or voluntary and whether the survey is 

administered via pencil-and-paper, with an interviewer present, or via a computer (Zamarro et 

al., 2016; Hitt et al., in press). In fact, the differences in survey mode may explain why we found 

that our measures of teacher conscientiousness were predictive of student item nonresponse but 

not of student careless answering. Careless answering may have been a more expedient way to 

shirk than skipping items on the particular survey that students were tasked to complete — a 

pattern found elsewhere (Zamarro et al., 2016; Hitt et al., in press). This need for additional 

research also explains why we do not support the use of our survey-effort measures for high-

stakes teacher evaluation. For now, we maintain that these measures provide useful information 

that can be used for research purposes that will enhance the understanding of teacher quality and 

how to improve student outcomes. Different teachers shape their students in many ways that 

affect their long-run life prospects and future well-being. It behooves researchers and 

policymakers to better understand the underlying mechanisms behind these developmental and 

formative processes.  
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Table 1: Student Outcomes Correlation Matrix 

 Math Test 

Scores 

English Test 

Scores 

Self-Reported 

Grit 

Self-Reported 

Effort 

Item 

Nonresponse 

Math Test Scores -     

English Test Scores 0.72 -    

Self-Reported Grit 0.14 0.09 -   

Self-Reported Effort 0.22 0.23 0.44 -  

Item Nonresponse 0.08 0.09 0.04 0.04 - 

Careless Answering -0.25 -0.25 -0.21 -0.23 -0.07 
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Table 2: Relationships between Different Measures of Teacher Quality 

 (1) 

Value-added in 

Math 

 

(2) 

Value-added in 

English 

 

(3) 

FFT Score 

 

 

(4) 

CLASS Score 

 

 

(5) 

Student Tripod 

Ratings 

 

(6) 

Principal 

Subjective 

Ratings 

Item 

Nonresponse 

-0.011 

(0.034) 

N = 813 

0.014 

(0.033) 

N = 904 

-0.059** 

(0.029) 

N = 1,217 

-0.068** 

(0.028) 

N = 1,238 

-0.085*** 

(0.022) 

N = 1,960 

-0.006 

(0.013) 

N = 1,385 

       

Careless 

Answering 

-0.015 

(0.033) 

N = 813 

0.043 

(0.030) 

N = 904 

-0.054* 

(0.029) 

N = 1,217 

-0.037 

(0.028) 

N = 1,238 

-0.001 

(0.022) 

N = 1,960 

-0.022 

(0.013) 

N = 1,385 

       

Survey 

Omission 

0.036 

(0.067) 

N= 1,109 

0.056 

(0.064) 

N= 1,240 

-0.141** 

(0.061) 

N = 1,555 

-0.185*** 

(0.061) 

N = 1,580 

0.017 

(0.046) 

N = 2,597 

-0.046* 

(0.027) 

N = 1,852 

Note: Value-added scores are based upon two years of data. FFT, CLASS, and Student Tripod ratings are based lessons evaluated in 

the first year of the MET study. All measures, except the binary Survey Omission and Principal Subjective Ratings variables, are 

standardized to have a mean equal to 0 and standard deviation equal to 1. Columns 1 through 5 report coefficients from bivariate 

regressions where survey-effort measures of non-cognitive skills are the independent variable. Column 6 reports marginal effects after 

estimating an analogous probit model. Standard errors are in parenthesis and sample sizes are written below. ***p<0.01; **p<0.05; 

*p<0.1. 
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Table 3: ITT Estimates of Teacher Effects (Based on Survey-effort Measures of Conscientiousness) on Student Outcomes  

   Student Outcome 

 (1) (2) (3) (4) (5) (6) 

 
Math Test 

Scores 

English Test 

Scores 

Self-Reported 

Grit 

Self-Reported 

Effort 

Item 

Nonresponse 

Careless 

Answering 

Teacher Item 

Nonresponse 

-0.008 

(0.013) 

-0.008 

(0.010) 

0.021 

(0.013) 

-0.015 

(0.015) 

0.024* 

(0.014) 

-0.010 

(0.017) 

R2 0.70 0.67 0.21 0.14 0.21 0.18 

Observations 5,712 7,247 10,518 10,682 10,706 10,648 

Teacher Careless 

Answering  

-0.013 

(0.010) 

-0.006 

(0.007) 

0.017 

(0.012) 

0.021 

(0.014) 

0.035*** 

(0.012) 

0.017 

(0.014) 

R2 0.70 0.67 0.21 0.14 0.21 0.18 

Observations 5,712 7,247 10,518 10,682 10,706 10,648 

Survey Omission 
-0.051 

(0.033) 

-0.009 

(0.029) 

-0.058* 

(0.035) 

0.084 

(0.037) 

0.064** 

(0.030) 

0.059 

(0.043) 

R2 0.68 0.67 0.20 0.15 0.21 0.18 

Observations 7,003 8,814 12,809 13,022 13,051 12,991 

Note: All regressions control for student gender, race, age, special education status, free or reduce-priced lunch status, gifted status, 

English learner status, prior-year test scores, and randomization blocks, as well as classroom composition (i.e., average prior year test 

scores, proportion students in the class of a particular gender, race, special education status, free or reduce-priced lunch status, gifted 

status, and English learner status).  Standard errors clustered at the classroom level. ***p<0.01; **p<0.05; *p<0.1  
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Table 4: IV Estimates of Teacher Effects (Based on Survey-effort Measures of Conscientiousness) on Student Outcomes  

   Student Outcomes 

 (1) 

Math Test 

Scores 

(2) 

English Test 

Scores 

(3) 

Self-Reported 

Grit 

(4) 

Self-Reported 

Effort 

(5) 

Item 

Nonresponse 

6) 

Careless 

Answering 

Teacher Item 

Nonresponse 

-0.011 

(0.020) 

-0.012 

(0.015) 

0.031 

(0.023) 

0.021 

(0.026) 

0.033 

(0.023) 

-0.019 

(0.028) 

R2 0.70 0.67 0.21 0.14 0.21 0.18 

Observations 5,712 7,247 10,102 10,253 10,277 10,229 

Teacher Careless 

Answering  

-0.023 

(0.017) 

-0.011 

(0.012) 

0.030 

(0.024) 

0.040 

(0.026) 

0.059*** 

(0.022) 

0.026 

(0.027) 

R2 0.70 0.67 0.21 0.14 0.21 0.18 

Observations 5,712 7,247 10,102 10,253 10,277 10,229 

Survey Omission 
-0.086 

(0.055) 

-0.015 

(0.050) 

-0.086 

(0.064) 

-0.146** 

(0.068) 

0.137*** 

(0.052) 

0.134* 

(0.074) 

R2 0.68 0.67 0.20 0.13 0.21 0.18 

Observations 7,003 8,814 12,228 12,425 12,454 12,404 

Note: All regressions control for student gender, race, age, special education status, free or reduce-priced lunch status, gifted status, 

English learner status, prior-year test scores, and randomization blocks, as well as classroom composition (i.e., average prior year test 

scores, proportion students in the class of a particular gender, race, special education status, free or reduce-priced lunch status, gifted 

status, and English learner status). Standard errors clustered at the classroom level. ***p<0.01; **p<0.05; *p<0.1 
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Table 5: ITT Estimates of Teacher Effects (Based on Traditional Measures of Teacher Quality)  

 Student Outcomes 

 (1) 

Self-Reported 

Grit 

(2) 

Self-Reported 

Effort 

(3) 

Item 

Nonresponse 

(4) 

Careless 

Answering 

Student Tripod 

Ratings  

0.034*** 

(0.011) 

0.051*** 

(0.014) 

-0.003 

(0.017) 

-0.091*** 

(0.017) 

R2 0.20 0.13 0.19 0.18 

Observations 12,364 12,563 12,587 12,527 

Received Higher 

Principal Ratings 

-0.030 

(0.032) 

0.024 

(0.034) 

-0.006 

(0.026) 

-0.098*** 

(0.037) 

R2 0.20 0.13 0.25 0.18 

Observations 9,873 10,042 10,064 10,010 

FFT Score  
0.002 

(0.016) 

-0.000 

(0.018) 

0.018 

(0.020) 

-0.009 

(0.021) 

R2 0.21 0.13 0.21 0.18 

Observations 11,786 11,988 12,016 11,956 

CLASS Score 
0.027* 

(0.016) 

-0.010 

(0.017) 

0.027* 

(0.014) 

-0.039** 

(0.020) 

R2 0.21 0.13 0.21 0.18 

Observations 11,786 11,988 12,016 11,956 

Teacher Value 

Added (English)  

0.013 

(0.018) 

0.016 

(0.021) 

-0.020 

(0.019) 

-0.027 

(0.024) 

R2 0.21 0.12 0.24 0.18 

Observations 7,190 7,302 7,324 7,310 

Teacher Value 

Added (Math) 

-0.008 

(0.024) 

0.028 

(0.025) 

0.051 

(0.033) 

-0.001 

(0.034) 

R2 0.22 0.13 0.12 0.18 

Observations 6,762 6,886 6,894 6,844 

Note: Principal ratings is a dichotomous variable where the omitted category represents teachers 

in approximately the lower half of the distribution of principal ratings. All regressions control for 

student gender, race, age, special education status, free or reduce-priced lunch status, gifted 

status, English learner status, prior-year test scores, and randomization blocks, as well as 

classroom composition (i.e., average prior year test scores, proportion students in the class of a 

particular gender, race, special education status, free or reduce-priced lunch status, gifted status, 

and English learner status). Standard errors clustered at the classroom level. ***p<0.01; 

**p<0.05; *p<0.1 
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Table 6: IV Estimates of Teacher Effects (Based on Traditional Measures of Teacher Quality)  

 Student Outcomes 

 (1) 

Self-Reported 

Grit 

(2) 

Self-Reported 

Effort 

(3) 

Item 

Nonresponse 

(4) 

Careless 

Answering 

Student Tripod 

Ratings  

0.054** 

(0.021) 

0.075*** 

(0.025) 

-0.009 

(0.029) 

-0.146*** 

(0.028) 

R2 0.20 0.13 0.19 0.18 

Observations 11,840 12,024 12,048 11,998 

Received Higher 

Principal Ratings 

-0.052 

(0.056) 

0.041 

(0.059) 

-0.011 

(0.044) 

-0.171*** 

(0.064) 

R2 0.21 0.13 0.24 0.18 

Observations 9,873 10,042 10,064 10,010 

FFT Score  
0.008 

(0.027) 

0.019 

(0.030) 

0.013 

(0.033) 

-0.045 

(0.033) 

R2 0.21 0.13 0.21 0.18 

Observations 11,263 11,450 11,478 11,428 

CLASS Score 
0.045 

(0.028) 

0.021 

(0.029) 

0.036 

(0.024) 

-0.077** 

(0.034) 

R2 0.21 0.13 0.21 0.18 

Observations 11,263 11,450 11,478 11,428 

Teacher Value 

Added (English)  

0.024 

(0.042) 

0.033 

(0.050) 

-0.067* 

(0.039) 

-0.081 

(0.049) 

R2 0.21 0.12 0.24 0.18 

Observations 6,895 6,995 7,017 7,011 

Teacher Value 

Added (Math) 

-0.012 

(0.058) 

0.059 

(0.060) 

0.113 

(0.078) 

-0.003 

(0.079) 

R2 0.22 0.13 0.12 0.19 

Observations 6,385 6,504 6,512 6,464 

Note: Principal ratings is a dichotomous variable where the omitted category represents teachers 

in approximately the lower half of the distribution of principal ratings. All regressions control for 

student gender, race, age, special education status, free or reduce-priced lunch status, gifted 

status, English learner status, prior-year test scores, and randomization blocks, as well as 

classroom composition (i.e., average prior year test scores, proportion students in the class of a 

particular gender, race, special education status, free or reduce-priced lunch status, gifted status, 

and English learner status). Standard errors clustered at the classroom level. ***p<0.01; 

**p<0.05; *p<0.1 
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Appendix A 

Items on Student Effort Scale 

 

 

Items for Elementary School Students 

 

1.  In this class, I take it easy and do not try very hard to do my best. (Reverse coded) 

2.  In this class, I stop trying when the work gets hard. (Reverse coded) 

 

3. When doing schoolwork for this class, I try to learn as much as I can and don’t worry about how 

long it takes. 

 

4. I have pushed myself hard to completely understand lessons in this class. 

 

 

Items for Secondary School Students 
 

1.  In this class, I take it easy and do not try very hard to do my best. (Reverse coded) 

2.  In this class, I stop trying when the work gets hard. (Reverse coded) 

3.  When doing schoolwork for this class, I try to learn as much as I can and don’t worry about how 

long it takes. 

4.  I have pushed myself hard to completely understand lessons in this class. 

5.  Overall, between homework, reading, and other class assignments, I work hard.  
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Appendix B: Post-Attrition Baseline Covariate Balance after Randomization 

 

 

Table B1. Post-Attrition Baseline Covariate Balance across Randomly Assigned Teachers within Randomization Block 

 F-Statistic  P-Value 

Student Characteristic   

Age  0.82  1.000 

Male  0.57  1.000 

English-language Learner  1.28  0.000 

Special Education  0.93  0.953 

Gifted   1.55  0.000 

Free or reduced-priced lunch   0.67  1.000 

Black  0.68  1.000 

Hispanic   0.72  1.000 

Asian  0.69  1.000 

White   0.71  1.000 

Prior Year Math Test Scores  1.60  0.000 

Prior Year English Test Scores  1.50  0.000 

Notes: We estimated a model that used teacher fixed effects to predict each student characteristic, while also controlling for 

randomization blocks. This table displays F-statistics and p-values from tests that coefficients estimates for teacher fixed effects are 

jointly equal to zero. **p<0.05; *p<0.1. 
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Table B2. Post-Attrition Baseline Covariate Balance between Student Characteristics and Randomly Assigned Teacher Characteristics 

 Teacher Quality Measure of Randomly Assigned Teacher 

 Tripod 

Score 
 FFT Score  

CLASS 

Score 
 

Survey 

Omission 
 

Item 

Nonresponse 
 

Careless 

Answering 

Student Characteristic           

Age 
 0.022 

(0.020) 

 -0.011 

(0.019) 

 -0.002 

(0.009) 

 -0.018 

(0.014) 

 -0.013 

(0.065) 

 0.008 

(0.005) 

Male 
 0.006 

(0.020) 

 0.030 

(0.019) 

 0.013 

(0.011) 

 -0.003 

(0.012) 

 -0.088 

(0.062) 

 0.011** 

(0.005) 

English-language 

Learner  

 -0.010 

(0.011) 

 -0.025* 

(0.014) 

 -0.005 

(0.007) 

 0.012 

(0.013) 

 0.033 

(0.050) 

 0.003 

(0.003) 

Special Education 
 0.003 

(0.010) 

 -0.006 

(0.010) 

 -0.001 

(0.006) 

 0.007 

(0.008) 

 0.014 

(0.034) 

 0.002 

(0.003) 

Gifted 
 0.004 

(0.011) 

 0.003 

(0.015) 

 0.002 

(0.006) 

 0.021 

(0.009) 

 0.046 

(0.055) 

 -0.008* 

(0.004) 

Free or reduced-

priced lunch (FRL) 

 0.006 

(0.016) 

 -0.014 

(0.020) 

 -0.016* 

(0.009) 

 0.012 

(0.012) 

 0.053 

(0.059) 

 -0.004 

(0.005) 

Black 
 -0.002 

(0.012) 

 0.002 

(0.014) 

 -0.001 

(0.006) 

 -0.018* 

(0.010) 

 -0.023 

(0.042) 

 0.003 

(0.003) 

Hispanic  
 0.010 

(0.014) 

 -0.011 

(0.019) 

 0.001 

(0.001) 

 -0.002 

(0.012) 

 0.039 

(0.052) 

 0.001 

(0.004) 

Asian 
 -0.001 

(0.009) 

 0.014 

(0.014) 

 0.004 

(0.006) 

 0.009 

(0.007) 

 0.029 

(0.023) 

 -0.001 

(0.002) 

White 
 -0.006 

(0.013) 

 -0.007 

(0.014) 

 -0.006 

(0.006) 

 -0.015** 

(0.008) 

 0.034 

(0.044) 

 -0.004 

(0.004) 

Prior Year Math 

Test Scores 

 -0.037 

(0.043) 

 0.067 

(0.047) 

 0.017 

(0.023) 

 0.001 

(0.032) 

 -0.037 

(0.168) 

 -0.030** 

(0.013) 

Prior Year English 

Test Scores 

 -0.059 

(0.044) 

 0.021 

(0.048) 

 -0.006 

(0.023) 

 -0.023 

(0.033) 

 0.111 

(0.156) 

 -0.028** 

(0.133) 

Notes: This table displays coefficient estimates from separate bivariate regressions where the dependent variable is a student 

characteristic and the independent variable is a teacher quality measure. Standard errors are in parenthesis. All regressions control for 

randomization block. **p<0.05; *p<0.1. 
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