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ABSTRACT

Wu, Yumeng MSME, Purdue University, August 2016. Command Shaping with
Constrained Peak Input Acceleration to Minimize Residual Vibration in a Flexible-
Joint Robot . Major Professor: Peter H. Meckl, School of Mechanical Engineering.

Rapid point-to-point motion is limited when flexibilities exist in the system. In

order to minimize the vibrations related to joint flexibilities, much work has been done,

including modifying the system so that vibrations can be damped out more quickly,

calculating the inverse dynamics of the system and constructing shaped input profiles

that avoid system natural frequencies. In this work, the earlier fixed-time command

shaping method has been extended to a peak-acceleration-constrained approach with

two basis functions, the ramped sinusoid function and the versine function, such

that the maximum acceleration is guaranteed without overconstraining the input

profiles. The approach is developed and then validated with a two-link flexible-joint

robotic arm. The effect of peak input acceleration and weighting factor on residual

vibrations has been studied. A performance metric has been developed to assess

residual vibrations. Input profiles with two basis functions are compared with each

other, as well as the results of a bang-bang profile. All simulations and experiments

have shown the effectiveness of the command shaping method with constrained peak

input acceleration on residual vibration reduction. In addition, the ability to weigh

the trade-off between actuation time and settling time warrants the optimization of



xi

total move time. Lastly, there exists an optimal weighting factor for each peak input

acceleration to minimize the total move time and the total move time decreases with

higher peak input acceleration.
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1. INTRODUCTION

1.1 Motivation

Motion control is the foundation of almost all modern robots. Among them,

many contemporary robotic systems perform rapid point-to-point motion with tight

tolerance on precision. Such systems include industrial robotic arms, disk reader

heads, printer jet heads, chip fabricating systems, etc. While residual vibration is the

least desired feature, it is inevitable with the presence of flexibilities in these systems.

Although such flexibilities cause undesired vibrations, they are natural characteristics

of engineering systems, either unavoidable or designed-in. Flexibilities in such systems

can be ascribed to transmission components, including gears, belts, and chains, or

specially designed, for tolerance, safety, or optimization for human interaction. In

certain cases, flexibility gives a buffer zone for potential collision and reduces the

damage from impact.

While robotic systems are made for various tasks, most of them can be modeled

as start-and-stop operations with focus on resulting motion only, for example, the

disk reader head starts at initial position and stops at the desired coordinates of

data; printer jet head moves to the desired location to print before printing. These

operations are intended to be fast yet precise; however, in the presence of system flexi-

bilities, achieving both tends to be difficult. Rapid motion requires large acceleration,
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which ultimately excites resonance. Such resonance causes undesired vibration, im-

pairing the system’s ability to achieve precise motion control. This issue is significant

if the system is lightly damped, such that residual vibrations lead to longer settling

times.

1.2 Literature Review

Many researchers have aimed to reduce vibrations of flexible systems. Control

strategies to reduce vibrations on flexible systems can be generalized to two categories:

terminal controllers and tracking controllers. Terminal controllers are designed to

take the system from an initial state to a final state while partially satisfying the

desired performance. The control inputs are specified as smooth time functions in

order to minimize excitation of system resonances. Aspinwall shaped a smooth time

function to minimize excitation of system resonance in [1] by selecting the coefficients

of a finite Fourier Series expansion, such that the envelope of the residual response

spectrum is depressed in a desired region. The reduced vibration is at the cost

of longer actuation time. Aspinwall’s method requires twice as long as the time-

optimal bang-bang profile. Various researchers, including Farrenkopf [2], Swigert [3],

Turner and Junkins [4] and Turner and Chun [5], combined performance indices

with Pontryagin’s principle to generate optimal control functions. Hale, et al. [6]

incorporated both the control input and its derivative with constraints of smooth

start and stop transitions on the control input to minimize the excitation of system

resonance.
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Other open-loop approaches include the use of cam profile shapes and the use

of a series of appropriately-timed step inputs to eliminate residual vibrations at the

end of motion, which is also known as posicast control. Sehitoglu and Aristizabal

[7] used such a profile to generate smooth motions without adaptation to system

dynamics to minimize both move time and residual vibrations. Smith [8] presented

the posicast control method for producing dead-beat response in a lightly-damped

oscillatory feedback system. Beyond that, Singer [9] extended this concept to improve

robustness to system parameter uncertainty while demanding less computation.

The controller utilized by tracking control theory is designed, just as its name

implies, to track a reference input. The constant feedback gains are not determined

with terminal states. Gupta [10] presented a ”frequency-shaped cost functional”

that tailors the controller to have less energy at frequencies corresponding to certain

system modes. Balas [11] proposed ”Innovations feedthrough” and output feedback

control to prevent instability due to modes that are not modeled. Meirovitch, et

al. [12] and Balas [13] developed modal controllers for dominant modes of distributed

flexible systems. Heinrichfreise [14] developed a delicate three-joint elastic robot and

constructed an observer to estimate unmeasured states. This technique requires an

exact model of the system to achieve good control and to avoid making the system

unstable.

Although traditional feedback methods can partially achieve the goal, the closed-

loop system does not have enough damping to fully achieve the goal. Sweet and

Good [15] and Futami, et al. [16] have proven that joint flexibilities impair the ability
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of a controller to achieve desired performance. Common methods to address joint flex-

ibilities can be categorized as modifying system dynamics and modifying the inputs.

The first method modifies system dynamics such that the system would be forced to

follow the input and minimize the vibration. The second method modifies the inputs

and uses feedforward control. Readman [17] covered various control approaches for

flexible-joint robots. Tomie [18] used a closed-loop PD controller to control a flexible

system. Tian and Goldenberg [19] used joint torque feedback with robust adaptive

control dealing with uncertainties to control a flexible system.

When dealing with flexible systems, researchers developed two categories of control

strategies. The first one is to model and control the whole system based on the end-

point. This involves the modeling of both rigid and flexible parts at the same time.

Obviously, this is more difficult and the bandwidth is limited because of the flexibility.

The second one is to model the whole system but only control the actuators. Thus, the

dynamics of flexible elements would not be involved in the control effort. Naturally,

the controllers in this method are simpler and the input will be fed into the system

with feedforward control. At the same time, the input is carefully constructed to

reduce vibrations.

Feedforward control can be separated into two categories: forward compensation

and inverse compensation. In forward compensation, a force applied to the system is

constructed before the reference trajectory is derived. Such input forces are designed

to avoid exciting flexible modes of the system. Removing all frequency content at

high frequencies can avoid resonance in a flexible system. This can be achieved by
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making the transition smoother, which is easy to implement as it does not require

the knowledge of system flexibility. In inverse compensation, as explained by Moulin

and Bayo [20], a force is calculated with the inverse dynamics of the system after

the reference trajectory is determined. To compensate for the instability of plant

inverse, Ghosh and Paden [21] presented pseudo-inverse methods; Lin and Hsiao [22]

introduced the inverse adaptive feedforward control. Such alternatives cannot reduce

vibrations without extending move time.

Command shaping methods attenuate the energy at known system natural fre-

quencies to alleviate vibrations caused by flexible modes. Singer and Seering [23]

shaped the input profile with a finite impulse response filter to remove energy at sys-

tem natural frequencies. Bhat and Miu [24] proved the Laplace domain equivalence

between filtering and placing zeros at undesirable system poles. This addresses the

issue when selection of the input profile is limited by zero location. Thus, convolu-

tion of the input with a carefully-designed finite impulse response filter can improve

system performance in terms of vibrations.

Meckl presented a command shaping method in [25] and [26]. This method con-

structs input commands with harmonics of a set of basis functions. Inputs constructed

with such harmonics can minimize the energy at pre-selected frequencies, which nat-

urally would be the system resonance frequencies, to minimize vibrations. Azad, et

al. [27] compared two shaping methods and their experimental results. Beazel [28]

confirmed that the command shaping method is robust to modeling errors and effec-

tive for systems having multiple modes. Chatlatanagulchai, Beazel and Meckl [29]
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and Pao and Lau [30] proved that the command shaping method is also effective for

time-varying systems and systems with configuration-dependent natural frequencies.

1.3 Overview of Thesis

This thesis covers the research on implementation of command shaping methods

for a two-link flexible-joint robotic arm. The command shaping method proposed

in [25] and [26] suggested a time-optimal solution to reduce vibration on a flexible

robot. This method constructs a smooth force input profile by summing harmonics

of sinusoidal basis functions with carefully-selected coefficients. The generated profile

minimizes the energy at a band of frequencies around the system natural frequencies

while at the same time approximating a bang-bang profile with a least square fit.

Instead of generating a time-fixed profile as in [31], [28] and [32], this work presents

the implementation of a profile in which the move time depends on constraints on the

input amplitude.

The command shaping theory and the procedure for generating such profile with

two different basis functions are presented in Chapter 2. With the developed profiles,

validation of such profiles is completed with a specifically-built two-link flexible-joint

robotic arm. This robotic arm has been well-studied and its mathematical model

has been developed to serve as a testbed for shaped vibration-minimization input

profiles. The physical system and its model are presented in Chapter 3. Experimental

results of command shaping implementation with two different basis functions and
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the corresponding performance metric are given in Chapter 4. Lastly, Chapter 5

presents the conclusion and proposes future work to refine this technique.
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2. PEAK-ACCELERATION-CONSTRAINED COMMAND SHAPING

2.1 Background

The command shaping method reduces a system’s residual vibration by shap-

ing the input profile with minimized energy around the system natural frequencies.

Meckl [25] developed the method to generate a profile that minimizes both time and

residual vibrations. The approach approximates a bang-bang profile and avoids en-

ergy around the system natural frequencies. The input function uses the harmonics

of select basis functions. Harmonics are given by characteristic numbers that satisfy

the boundary value problem, which imposes zero magnitude and slope on the desired

waveform. This method was used to design inputs for open-loop systems. Later,

Meckl [26] extended his work to set up a weighted objective fitness function, such

that the input would approximate the time-optimal bang-bang profile and penalize

the energy at frequency bands around system natural frequencies. Such energy is cal-

culated from the Fourier Transform of the basis functions. In order to be implemented

on physical hardware, the command shaped input is incorporated with a feedback con-

troller. With this setup, the plant and the feedback controller are treated as one part,

thus, the input serves as reference to the feedback controller. When the method is

implemented on current hardware, Beazel [28] took one step further and adapted the

command-shaping method to a nonlinear system with configuration-dependent natu-
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Figure 2.1. : Schematic of a Two-Mass System.

ral frequencies. Later, Scheel, et al. [32] refined the technique for the implementation

on the physical robotic arm. In this work, the command shaping method is adapted

to include an input acceleration constraint. As a result, weighting the trade-off be-

tween actuation time and settling time is possible, where actuation time is defined

as the time between the start and the end of the input profile and settling time is

defined as the time between the end of the input profile and the acceleration at the

endpoint staying under a certain threshold level. The detail of settling time will be

defined in Section 4.1.

2.2 Theory of Command Shaping

A two-mass system is shown in Figure 2.1, which is the starting point for analyz-

ing the two-link robotic arm. This model simplified the robotic arm, while keeping

the most important properties. The two-mass model has both a rigid body mode

and a resonant mode. Thus, analyzing the two-mass model helps to understand the

relationship between the residual vibrations and the resonant mode. In this figure,
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M1 represents motor inertia, M2 represents endpoint inertia, and k represents trans-

mission and structural stiffness. Starting with such two-mass system, Meckl [26]

formulated the relationship between residual vibration and the magnitude of the

Fourier Transform of the forcing function at the flexible mode of the system. Al-

though the two-link robotic arm has two resonant modes instead of only one in the

two-mass model, the conclusion from the two-mass model would still apply to the

more complicated two-link robotic arm. The mathematical relationship is given by

A∗ = ωnTf |F ∗(ωnTf )| , (2.1)

where A∗ is the dimensionless residual vibration given in amplitude of acceleration; ωn

is the natural frequency of a two-mass system; Tf is the final move time; |F ∗(ωnTf )|

is the dimensionless Fourier Transform of the forcing function, which is defined in

|F ∗(ωnTf )| =
|F ∗(ωn)|
FmaxTf

, (2.2)

and Fmax is the peak of the forcing function.

In this work, the forcing function has a general form given by

f(t) =
L∑
l=1

BlΦ
∗
l (t), (2.3)
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where L is the total number of harmonics; l denotes the lth harmonic; Bl is the

coefficient for each harmonic and Φ∗l (t) is the forcing function that will be detailed in

Sections 2.3 and 2.4.

The shaped profile, which is the input to the system, is the reference trajectory.

It is built with acceleration and then integrated for velocity and position. The accel-

eration profile has a general form as given by

θ̈ = θ̈d,maxf(t). (2.4)

Since f(t) is normalized to a range between −1 and 1, the acceleration in the shaped

profile ranges between −θ̈d,max and θ̈d,max. Meckl [26] developed an objective function

to measure how well the shaped profile approximates a bang-bang profile with penalty

on energy at system natural frequencies. The general form of the objective function

is given as

Jgen =
1

Tf

∫ Tf

0

[fbangbang(t)− f(t)]2 dt+ ρ
22∑
i=1

(ωiTf )
2|F ∗(ωiTf )|2, (2.5)

where fbangbang(t) and f(t) are the bang-bang profile and commanded profile; Tf is the

profile time, which is defined as the length of one segment of commanded profile. The

summation of 22 terms of the Fourier Transform results from the 22 points around

system natural frequencies, which will be further explained in Sections 2.3 and 2.4.

With this setup, the objective function would cover a sufficiently big window around

the system natural frequencies to give enough tolerance for modeling error. The goal
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is to minimize the objective function Jgen. In order to do so, the derivative of Jgen

with respect to Bl should be 0. This can be given by

∂Jgen
∂Bl

= 0 (l = 1, 2, . . . , L). (2.6)

After coefficients Bl are found, they are normalized with a scale factor SF . The

relationships are shown in

B∗l =
Bl

SF
, SF = max[|f(t)|]. (2.7)

2.3 Ramped Sinusoid

Meckl introduced two basis functions to form a commanded profile in [25] and [26]

to improve the robustness to the modeling error of the system. The first basis function

is formed with a ramped sinusoid profile and its harmonics. This basis function has

smooth transitions throughout the whole period and is odd symmetrical about t =
Tf
2

.

The coefficient of each harmonic of the ramped sinusoid function is specially chosen,

such that the requirement on magnitude of the frequency spectrum will be satisfied.

In order to ensure its robustness to modeling error, this function minimizes energy

at 11 equally-spaced points in a band of ±10% surrounding each system natural

frequency.
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The forcing function for the ramped sinusoid profile has the same form as Equation

2.3, but it has its own harmonic Φ∗l , which is given by

Φ∗l (t) =
1− 2τ

2α
+

sin(αlτ)

α2
l

− cos(αlτ)

2αl
, (2.8)

where τ is the dimensionless time defined as

τ =
t

Tf
, (2.9)

and αl is the characteristic number associated with each harmonic. Such characteristic

number of each harmonic can be calculated with

αl sinαl + 2 cosαl − 2 = 0. (2.10)

The first ten values of α are given in Table 2.1 and the first four harmonics of the

ramped sinusoid functions are plotted in Figure 2.2.

The objective function for the ramped sinusoid function, given by

Jrs =
1

Tf

∫ Tf
2

0

[1− f(t)]2dt+

∫ Tf

Tf
2

[−1− f(t)]2dt

+ρ
22∑
i=1

(ωiTf )
2|F ∗(ωiTf )|2, (2.11)

is derived from Equation 2.5. Minimizing Jrs ensures the minimization of the sum of

error with the bang-bang profile and energy at a 10% band around the system natural

frequencies.
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Figure 2.2. : First Four Harmonics of the Normalized Ramped Sinusoid Function.
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Table 2.1. : Characteristic Number α Associated with First Ten Harmonics of the
Ramped Sinusoid.

lth Harmonic Value

α1 8.9688

α2 15.4505

α3 21.8082

α4 28.1324

α5 34.4415

α6 40.7426

α7 47.0389

α8 53.3321

α9 59.6232

α10 65.9128
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The coefficients of the harmonics Bl are calculated with Equation 2.6. With this

technique, the general form equation can be derived as

L∑
l=1

BlI
′
r,l = I∗l , (2.12)

where Bl, I
′
r,l and I∗l are functions of αr and αl. The relationship between I ′r,l and I∗l

is given by

I ′r,l =I∗r,l + ρ
22∑
i=1

(ωiTs)
2 αr
α2
r − (ωiTf )2

αl
α2
l − (ωiTf )2(

2 sin(
ωiTf
2

)− ωiTf cos(
ωiTf
2

)

(ωiTf )2

)2

,

(2.13)

where I∗r,l can be calculated with

I∗r,l =



(12αrαl)
−1 r 6= l

1

4α4
l

+
5

24α2
l

+

[
1

16α3
l

− 1

4α5
l

]
sin(2αl)

+

[
1

2α3
l

− 2

α5
l

]
sinαl +

1

4α4
l

cos(2αl) +
2

α4
l

cosαl

r = l,

(2.14)

and I∗l can be calculated with

I∗l =
1

α3
l

[
α2
l

4
− 2 cos

αl
2
− αl sin

αl
2

+ cosαl +
αl
2

sinαl + 1

]
. (2.15)

There are two different times that determine the calculations based on Equation

2.11. Ts, given by

Ts = 2

√
yf
amax

, (2.16)
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is the time for a rectangular pulse input that the command shaping method tries to

approximate. amax is the desired peak acceleration, which remains the same in the

generated command shaping profile. yf is the distance that either profile will travel.

Tf is called the profile time, which is defined as the actual time for one command

shaping profile. Since profiles with the ramped sinusoid functions only have one

segment, the actuation time is equal to the profile time.

The relationship between Tf and Ts is given by

Tf = ΓTs, (2.17)

where Γ is a time penalty factor given by

Γ =

√
3SF∑L
l=1Bl

. (2.18)

SF is the normalization factor, which normalizes the peak of the function to 1. Since

the ramped sinusoid profile cannot supply as much energy as a bang-bang profile for

a given peak input acceleration, a longer time is needed to travel the same distance

with the same peak acceleration. As a result, Γ is always bigger than 1.

With a given Tf , the command shaping method would lead to an optimized profile

with limited residual vibrations. The coefficient of each harmonic can be calculated

with a set of linear equations, which can be expressed in a matrix form as

[I∗r,l][Bl] = [I∗l ]. (2.19)



18

Due to the inherent coupling between Γ and Bl, proper Bl cannot be calculated

directly, such that an iteration procedure is necessary to determine the correct Bl and

corresponding Γ. This procedure is listed as follows:

1. Use Equation 2.16 to determine the desired Ts based on amax and yf .

2. Specify an initial guess for Γ.

3. Solve for Bl with Equation 2.19.

4. Normalize the ramped sinusoid function with the scale factor SF .

5. Calculate Γ with Equation 2.18.

6. Use new Γ to update Tf with Equation 2.17.

7. Repeat steps 3 to 6 until Γ converges to acceptable accuracy, which means error

between two values is less than 10−5.

Initial guess can affect the convergence significantly. Based on experience, it could

range between 1 and 100. For this work, the first three initial guesses are 2, 5 and 10.

Although the convergence depends on the combination of ρ and amax, these 3 initial

guesses would lead at least 30% of combinations to convergence. Aitken acceleration,

which updates Γ, written as

Γi+3 =
ΓiΓi+2 − Γ2

i+1

Γi+2 − 2Γi+1 + Γi
, (2.20)

is used for every fourth Γ to improve the rate of convergence.
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2.4 Versine

In real-world applications, the peak velocity is as important as peak acceleration.

Ideally, the acceleration would decrease when the velocity is approaching the system’s

limit, however, this leads to a time-varying forcing function. As one can imagine, this

time-varying function differs between systems, thus, a general approach is hard to

develop. In order to address the issues, implementing a trapezoidal velocity profile

would meet such requirements. With a trapezoidal velocity profile, both acceleration

and deceleration segments will be controlled by a constant force and no force between

two segments when the system operates in an ideal constrained-velocity condition.

Thus, the command shaping method should resemble a trapezoidal velocity profile

instead of a triangular velocity profile to reduce residual vibration in a peak-velocity-

constrained system.

Since the ramped sinusoid cannot assemble either acceleration-only or deceleration-

only profiles, the versine function was introduced by Meckl [26] to form a shaped

profile as the other basis function. This basis function is smooth and has no dis-

continuity at the beginning or end. The versine function can be used to construct a

rectangular pulse of either acceleration or deceleration by adding higher harmonics to

the fundamental. Energy around natural frequencies can be attenuated with a similar

technique to that introduced in Section 2.3. Eleven equally-spaced points in a band of

±5% surrounding each system natural frequency are evaluated for minimizing energy.

This window is narrower than that used in the ramped sinusoid because the versine is
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fine-tuned for each segment, leading to a smaller change of natural frequency between

start and end of each segment.

The forcing function of the versine function shares the same form as Equation 2.3

with its own harmonic Φ∗l (t), which is given by

Φ∗l (t) = 1− cos
2πlt

Tf
l = 1, 2, 3...L. (2.21)

Bl is a specifically chosen coefficient for each harmonic, such that both move time

Tf and magnitude of the frequency spectrum at 22 points surrounding two natural

frequencies are minimized. One important thing differentiating the versine from the

ramped sinusoid is that profiles with the versine functions have two segments. Each

segment has to be evaluated separately, in other words, if both profiles are used to

approximate the same bang-bang profile, Ts for the versine would be half of Ts for

the ramped sinusoid. As a result, the actuation time is the summation of the two

segments and the time of a possible segment with constant velocity.

The first three harmonics of the versine function are shown in Figure 2.3. As pre-

sented in the figure, each harmonic is even symmetrical about half of the period. Just

like the technique used in finding proper Bl for each harmonic of the ramped sinusoid

function, command shaping utilizing the versine as basis function also determines
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Figure 2.3. : First Three Harmonics of the Normalized Versine Function.
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correct Bl for each harmonic with an objective function. This objective function Jv,

given by the following equation

Jv =
1

Tf

∫ Tf

0

[1− f(t)]2dt+ ρ

22∑
i=1

(ωiTs)
2|F ∗(ωiTf )|2, (2.22)

minimizes the sum of error and magnitude at given frequencies. The waveform is

approximated with a least square fit and the magnitude is calculated with the Fourier

Transform of a versine function.

In order to minimize the objective function and solve for Bl, Jv is differentiated

with respect to Bl. The value is set to be zero, which suggests a local minimum. This

can be expressed as:
L∑
l=1

BlI
′
r,l = 1, (2.23)

where I ′r,l is an intermediate variable to simplify the expression. It is given as

I ′r,l = I∗r,l + 64π4ρ
22∑
i=1

(ωiTs)
2 l2

(2πl)2 − (ωiTf )2
r2

(2πr)2 − (ωiTf )2
sin2 ωiTf

2

(ωiTf )
, (2.24)

where

I∗r,l =


1 r 6= l

1.5 r = l

. (2.25)

Bl can be calculated from these equations with given Tf using the following equations

in matrix form:

[I ′r,l][Bl] = [1]20×1. (2.26)
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Because Tf is not known in advance, iteration is required to find a good combina-

tion of Tf and Bl. Since the shaped profile would not supply as much energy as the

square wave profile with the same peak acceleration, the time for a shaped profile has

to be longer. This time penalty is given by

Tf = ΓV Ts, (2.27)

where

ΓV =
SF∑L
l=1Bl

, (2.28)

and

Ts =
vmax
amax

. (2.29)

SF is the scale factor that normalizes the peak of the forcing function to be 1. vmax

and amax are the desired maximum velocity and the desired maximum acceleration

for the square wave.

As Tf and Bl are dependent on each other, the iteration procedure introduced in

Section 2.3 will be used:

1. Use Equation 2.29 to find the desired Ts based on vmax and amax.

2. Specify an initial guess for ΓV .

3. Solve for Bl with Equation 2.26.

4. Normalize the versine forcing function with the scale factor SF .
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5. Calculate ΓV with Equation 2.28.

6. For every 3 iterations, use Equation 2.20 to update the new ΓV

7. Use the new ΓV to update Tf with Equation 2.27.

8. Repeat steps 3 to 7 until ΓV converges to acceptable accuracy, which means

error between two values is less than 10−5.

With this iteration procedure, the profile is guaranteed to be minimized both in

time and magnitude of frequency spectrum at the desired frequencies.
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3. HARDWARE SETUP

A two-link robotic arm is designed with typical flexibilities. This system serves as a

generalized model, thus, better understanding of it is possible after extensive study.

The hardware and its parameters are described in section 3.1, the mathematical model

of the robot is given in section 3.2 and the parameters of this system are included in

section 3.3. All of them serve as the foundation for further work, including controller

design, simulation and implementation, to verify the effectiveness of the shaped input

method.

3.1 Two-Link Robotic Arm

The hardware of the two-link robotic arm is physically located in Ruth and Joel

Spira Laboratory for Electromechanical Systems in the School of Mechanical Engi-

neering at Purdue University. The system is shown in Figure 3.1. It is custom-built

with two sets of links, accelerometers, encoders, permanent magnet DC motors, chains

and sprockets serving as transmission gears, where the two links are usually referred

to as link 1 and link 2. It is designed to be a 2-DOF robotic arm operating in a hor-

izontal plane. The first motor and the first link’s encoder are mounted on the robot

base, providing the inertia frame of reference for the two links. The second motor is

mounted inside the housing at one end of the first link, which prevents interference
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with the robot base. The second link’s encoder and the first link’s accelerometer

are mounted at the other end of link 1. Both links are indirectly driven by cor-

responding motors utilizing transmission gears. The second link’s accelerometer is

mounted at the end of the second link, which also provides the ability to add loads to

change the configuration of the system, such that the load effect can be investigated.

This arm was first designed by Yegerlehner [33] to investigate controlling a rigid-joint

nonlinear system and later modified by Kinceler [34] to study a flexible nonlinear sys-

tem. Chatlatanagulchai programmed and implemented the controller with LabVIEW

in [35]. Details of the hardware are presented in section 3.1.1.

3.1.1 Hardware Parameters

The whole set of experimental equipment includes LabVIEW version 8.5.1 with

added modules in a desktop PC, which has the third-generation Intel Core i5 CPU and

16 GB RAM. The controller is programmed in this PC serving as a bridge between

the user and the field-programmable gate array (FPGA) . The FPGA is National

Instruments PXI-7831R, which has 8 analog inputs, 8 analog outputs and 96 digital

channels with Virtex-II 1M gate. The FPGA provides the ability to deal with large

amounts of data while operating. Although the FPGA supports at least 200 kHz

sampling rate, it is configured to operate at 2 kHz in this implementation. Two

National Instruments SCB-68 Shielded I/O Connector Blocks are connected to the

FPGA, such that one of them is connected to deal with encoder readings and the

other is used for other input signals.
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Figure 3.1. : Physical Setup of Robotic Arm [31].
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A DC motor, model DPP242 made by Electro Craft, with maximum torque of

2.47 Nm at 21.2 A and a torque constant of 0.118 Nm/A is used to drive the first

link. The DC motor driving the second link is an Inland T-3108-A, which has a

maximum torque of 1.35 Nm at about 2 A, a torque constant of 0.61 Nm/A and,

more importantly does not have a frame. Each motor is driven by an Advanced

Motion Control brushless pulse-width-modulated transconductance servo amplifier,

which converts input voltage commands into current commands.

Each link is indirectly connected to the corresponding motor with a torsional

spring and a set sprockets and chain, which sets the gear ratio at 5. The spring

coefficients of the two torsional springs range from 103 Nm/rad to 105 Nm/rad. These

springs are designed to have small spring coefficients, such that the ability of the

control and trajectory algorithm can be tested in a more challenging system.

An incremental optical encoder is used to measure the actual position of each link.

The encoder on the 1st link is Model R80 made by Renco Encoders. The encoder

on the 2nd link is Model RM21 also made by Renco Encoders. The resolution of

each encoder is 4000 counts per revolution. Velocity is calculated by taking finite

differences of the encoder readings with a 4th-order Butterworth filter. A Kistler

model 8315A single-axis accelerometer is used to measure linear acceleration at the

end of each link. This model of accelerometer has a range of ±2 g, sensitivity of 2

V/g, frequency response between 0 and 250 Hz and the resolution of 0.35 mg.
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Figure 3.2. : Schematic of Two-Link Robotic Arm with parameters [36].
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3.2 Mathematical Model of Robot

The physical setup of the two-link robotic arm with name of each component

is shown in Figure 3.1. Notation of physical parameters of the robotic arm, which

are shown in Figure 3.2, helps to interpret the relationship between elements. The

technique utilized to identify these parameters is included in the following subsections.

It is important to note that angles related to Link 1, which are Link 1 angle and Motor

1 angle, θ1 and θ3, are measured in an inertial reference, while angles related to Link

2, which are Link 2 angle and Motor 2 angle, θ2 and θ4, are measured relative to Link

1.

3.2.1 Lagragian Model

Nho [36] derived a Lagragian model for this robotic arm. Both friction and damp-

ing due to motors, links and torsional springs are modeled. The model in [36] included

an intelligent payload estimation system, which is not a focus for this work, thus, the

payload is chosen to be 0 instead. As a result, the payload effect is not analyzed in

either simulation or experiments.

The Lagrangian Model of the robotic arm with notations shown in Figure 3.2 can

be written as

M(θ)θ̈ + V(θ, θ̇) + Cθ̇ + Kθ + D = T, (3.1)

in which θ is the generalized notation of θi.
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M(θ) in Equation 3.1 is the inertia matrix that can be calculated with

M(θ) =



m11 m12 0 m14

m21 m22 0 0

0 0 m33 0

m41 0 0 m44


, (3.2)

wherein mi are the lumped masses and can be calculated with the corresponding

equations:

m11 = m1a
2
1 +m2(l

2
1 + a22) +m4b

2
1 +m6l

2
1 + J1 + J2 + J4 + J6 + 2l1m2a2 cos(θ2), (3.3)

m12 = m21 = m2a
2
2 + J2 + l1m2a2 cos(θ2), (3.4)

m14 = m41 = J4 +
J6
r
, (3.5)

m22 = m2a
2
2 + J2, (3.6)

m33 = J3 +
J5
r2
, (3.7)

m44 = J4 +
J5
r2
, (3.8)

where Ji represents the moment of inertia; li represents the length of the corresponding

link; ai represents the distance between the center of gravity of the link and its joint;

b1 represents the distance between the second motor and the first joint; r represents

the gear ratio resulting from the transmission mechanism with sprockets and chain.
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V(θ, θ̇) is the matrix of Coriolis and centrifugal forces, which can be calculated

with

V(θ, θ̇) =

Vlink

0

 =



−m2l1a2(2θ̇1θ̇2 + θ̇22) sin(θ2)

m2l1a2θ̇
2
1 sin(θ2)

0

0


, (3.9)

where θ̇i represents the angular velocity of the corresponding link.

C is the matrix of viscous damping, which can be calculated with

C =



c1 + c5 0 − c5
r

0

0 c2 + c6 0 − c6
r

− c5
r

0 c3 + c5
r2

0

0 − c6
r

0 c4 + c6
r2


, (3.10)

where ci represents the viscous damping coefficient of the corresponding element.

K is the matrix of stiffness coefficients, which can be calculated with

K =



k5 0 −k5
r

0

0 k6 0 −k6
r

−k5
r

0 k5
r2

0

0 −k6
r

0 k6
r2


, (3.11)

where ki is the stiffness coefficient of the corresponding torsional spring.
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D is the matrix of Coulomb friction, which can be calculated with

D =



d1sign(θ̇1)

d2sign(θ̇2)

d3sign(θ̇3)

d4sign(θ̇4)


. (3.12)

T is the matrix of torque, which can be calculated with

T =

 0

Tmotor

 =



0

0

T1

T2


, (3.13)

in which T1 represents the driving torque from the first motor and T2 represents the

driving torque from the second motor.

3.2.2 Spong Model

While the full model of the robotic arm given in section 3.2.1 presents all features

of the system, it is too complex to design a model-based feedback controller. In order

to address the issue, a practical method is to keep the important characteristics of

the dynamic system and simplify the model. Spong introduced a widely-accepted
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reduced model in [37]. The reduced model is derived from the full Lagrangian model

with the following two assumptions:

1. The damping coefficients of the torsional springs (c5 and c6) are negligible.

2. The kinetic energy of each motor is due only to its own rotation.

Assumption 2 is based on the fact that the rotor angular velocity of the motor

will be significantly larger than the angular velocity of the link when the gear ratio

is big, r >> 1. As a result, Equation 3.2 can be simplified.

Based on Assumption 1, Equation 3.10 will be simplified to

Creduced =



c1 0 0 0

0 c2 0 0

0 0 c3 0

0 0 0 c4


. (3.14)

Equation 3.14 can be further simplified to link damping matrix (Clink) and motor

damping matrix (Cmotor), given by

Clink =

c1 0

0 c2

 , Cmotor =

c3 0

0 c4

 . (3.15)

Thus, Creduced can be further simplified to
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Creduced =

 Clink 0

0 Cmotor

 . (3.16)

Based on Assumption 2, Equation 3.2 can be simplified to

Mreduced(θ) =



m11 m12 0 0

m21 m22 0 0

0 0 m33 0

0 0 0 m44


, (3.17)

which can be further simplified to

Mreduced(θ) =

M1(θ) 0

0 M3

 , (3.18)

with the introduction of M1(θ) and M3, defined as

M1(θ) =

m11 m12

m21 m22

 , M3 =

m33 0

0 m44

 . (3.19)

Equation 3.1 can be rewritten as link part:

M1(θ)θ̈link + Vlink(θlink, θ̇link) + Clinkθ̇link + Ks(θlink −
θmotor

r
) = 0, (3.20)
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and motor part:

M3θ̈motor + Cmotorθ̇motor + Ks(
θmotor

r2
− θlink

r
) = Tmotor, (3.21)

with the introduction of

Ks =

k5 0

0 k6

 , (3.22)

where θ, θlink and θmotor are given by

θ =

 θlink

θmotor

 =



θ1

θ2

θ3

θ4


. (3.23)

Equations 3.20 and 3.21 show that only torsional springs in joints couple the links

and the motors. Thus, equations 3.20 and 3.21 can be expressed as a 4th-order state

space system, given by

ẋ =



ẋ1

ẋ2

ẋ3

ẋ4


=



x3

x4

−M1(θ)
−1[Vlink + Clinkθ̇link + Ks(θlink − θmotor

r
)]

−M−1
3 [Tmotor −Cmotorθ̇motor −Ks(

θmotor

r2
− θlink

r
)]


, (3.24)
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with state variables defined as

x =



x1

x2

x3

x4


=



θlink

θmotor

θ̇link

θ̇motor


. (3.25)

3.3 System Parameters

The essential step before generating command profiles, designing model-based

controllers and developing a simulation model is identifying precise system physical

parameters. This step is even more critical for a robotic arm with nonlinearities

and flexibilities, which violate modeling assumptions. Various approaches have been

implemented to get precise parameter estimates through experiments in the past.

Nho [36] was the first to do system identification on this two-link robotic arm. The

least square fit used by Nho simplifies and linearizes the Lagrangian model by group-

ing certain parameters, which determines all parameters of the two-link robotic arm

simultaneously.

All experiments were conducted with open-loop data before Lee performed the

first estimated system parameters with closed-loop data in [38]. After re-identifying

system parameters with closed-loop data, Lee found that the parameters led to un-

stable simulation. Later, he re-estimated the system parameters with a new system

identification method based on the algorithm he had implemented on a NARMAX
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model of the robot. Although the offsets in torque still remain in the simulation

model, this method improves the simulation with Fourier regularization. With the

offsets in torque signals fixed and the first motor replaced, new system identification

was performed by Scheel, et al. [32]. Instead of estimating all parameters at once, [32]

split the identification procedure into multiple experiments. This approach makes tai-

loring experiments for certain parameters possible and eliminates the propagation of

estimation errors from previous experiments. Scheel separated the procedure into

three parts, which are the identification of two motors, the Link 1 and the Link 2.

Each part was identified with one experiment. This approach identified the important

dynamic behavior of the robotic arm and the parameters gave good agreement with

robot data. As a result, these parameters have been used in this work as well. All

physical parameters of the robotic arm are listed in Table 3.1. p1, p2 and p3 in Table

3.1 are shorthand notation to represent parameters as follows:

p1 = m1a
2
1 +m2l

2
1 +m4b

2
1 +m6l

2
1 + J1 + J4 + J6, (3.26)

p2 = m2a
2
2 + J2, (3.27)

and

p3 = l1m2a2. (3.28)
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Table 3.1. : Identified Parameters of Robotic Arm.

Parameter Value Parameter Value

c1 0.04 Nm·s
rad

k5 2.848 Nm
rad

c2 0.0214 Nm·s
rad

k6 2.848 Nm
rad

c3 1.894 · 10−4 Nm·s
rad

J3 4.157 · 10−5 kg·m2

rad

c4 1.497 · 10−4 Nm·s
rad

J4 7.543 · 10−4 kg·m2

rad

c5 0.005 Nm·s
rad

J5 0.025 kg·m2

rad

c6 8.128 · 10−5 Nm·s
rad

J6 0.025 kg·m2

rad

d1 0.0199 Nm p1 0.140 kg·m2

rad

d2 0.0323 Nm p2 0.0196 kg·m2

rad

d3 0.005 Nm p3 0.0234 kg·m2

rad

d4 0.0271 Nm
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3.4 Computed Torque Controller

Researchers have developed many robot control methods over the years. These

methods include adaptive control, robust control, adaptive robust control [39], learn-

ing control and so on. Computed torque control is a common approach for controlling

rigid-joint robots. Computed torque controller differs from the standard feedback lin-

earization form of nonlinear controllers in that it cancels out the nonlinearities with

estimates of the robot model, thus, linear error equations are decoupled with reduced

nonlinearities. Although the approach has been developed for rigid-joint robots, the

effectiveness of the controller on flexible-joint robots was proved in [29]. As a result,

the computed torque controller is chosen and implemented in this work as well for its

good trajectory tracking, disturbance rejection and insensitivity to modeling error.

The computed torque controller consists of a model-based part and a servo-based

part. The model-based part neutralizes the nonlinearities in the system and the servo-

based part ensures asymptotically stable motor tracking dynamics and the compen-

sation of disturbances. A hybrid of the full Lagrangian Model, Equation 3.1, and

the inertia matrix of the Spong Model, Equation 3.18, is used to design the model-

based part. This implementation is due to the significant effort to compensate the

cross-coupling term in the inertia matrix of the Spong Model, which does not pay

off from the benefit of eliminating the negligible cross-coupling term. Let CH denote

the last two rows of viscous friction matrix Equation 3.10; let Kv and Kp denote the
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diagonal matrices of proportional and derivative gains. Then the model-based part

can be written as

Tmb = CH θ̇ + DM + Ks(
θmotor

r2
− θlink

r
), (3.29)

and the servo-based part can be written as

Tsb = M3

(
θ̈M,d + Kv(θ̇M,d − θ̇motor) + Kp(θM,d − θmotor)

)
. (3.30)

The total torque is the summation of both parts, therefore, it can be written as

Tmotor = Tmb + Tsb. (3.31)

The closed-loop motor dynamics given by

θ̈motor + Kvθ̇motor = θ̈M,d + Kvθ̇M,d + KpθM,d (3.32)

can be developed from the aforementioned equations, assuming a perfect model. Fur-

thermore, with the definition of motor tracking error

emotor = θM,d − θmotor, (3.33)

Equation 3.32 can be simplified to

ëmotor + Kvėmotor + Kpemotor = 0. (3.34)
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Figure 3.3. : Block Diagram of the Computed Torque Controller and the Robotic
Arm [29].

Kp and Kv are chosen so that Equation 3.32 is Hurwitz. Thus, asymptotic tracking

is guaranteed with computed torque and the link subsystem is stable. Figure 3.3 is

the block diagram of the computed torque controller and the robotic arm.

3.5 Configuration-Dependent Frequency

The linearization of the closed-loop system with the feedback controller gives the

varying natural frequencies of the system. With the determined natural frequencies,

the command shaping method can be applied to the robotic arm. The varying natural

frequencies of the robotic arm are due to the varying inertia resulting from the change

of configuration of the two links. The classical method of addressing such issues is by

linearizing at the equilibrium point. Since the inertia matrix M is a function of θ2,

which is shown in Equation 3.2, the natural frequencies of the robotic arm are also a

function of θ2. Thus, the direct relationship between the Link 2 position, θ2, and the

natural frequencies of the robotic arm can be found.
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Substituting T in Equation 3.1 with Tmotor in Equation 3.31 leads to the closed-

loop equations of the robotic arm. In order to obtain the linearized form of the

equations, Taylor expansions are performed on all rows up to the first-order term

for an equilibrium point of both zero velocity and zero acceleration as a function

of θ2. The Coulomb friction is not considered in the linearized equations, since the

derivatives of the Coulomb friction with respect to the velocity are assumed to be

zero. As a result, the linearized closed-loop equation of the robotic arm is obtained

as

Mlinearizedθ̈ + Clinearizedθ̇ + Klinearizedθ = 0. (3.35)

Mlinearized is the linearized inertia matrix and can be represented as

Mlinearized =



mlinearized,11 mlinearized,12 0 m14

mlinearized,21 m22 0 0

0 0 m33 0

m41 0 0 m44


, (3.36)

which has linearized matrix mlinearized,11, mlinearized,12 and mlinearized,21.

mlinearized,11 can be written as

mlinearized,11 =m1a
2
1 +m2(l

2
1 + a22) +m4b

2
1 +m6l

2
1 + J1

+ J2 + J4 + J6 + 2l1m2a2 cos(θlinearized,2)

, (3.37)
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while mlinearized,12 and mlinearized,21 can be written as

mlinearized,12 = mlinearized,21 = m2a
2
2 + J2 + l1m2a2 cos(θlinearized,2). (3.38)

Besides the linearized inertia matrix, viscous damping matrix C and stiffness

matrix K have to be linearized as well, which are given as

Clinearized =



c1 + c5 0 − c5
r

0

0 c2 + c6 0 − c6
r

− c5
r

0 m33Kv,3 0

0 − c6
r

0 m44Kv,4


(3.39)

and

Klinearized =



k5 0 −k5
r

0

0 k6 0 −k6
r

0 0 m33Kp,3 0

0 0 0 m44Kp,4


. (3.40)

With the linearized parameters, the natural frequencies of the linearized closed-

loop system can be calculated by finding the imaginary part of the eigenvalues of the

system matrix A, given by

A =

 0 I

−M−1
linearizedKlinearized −M−1

linearizedClinearized

 , (3.41)
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where I is the identity matrix.

As Mlinearized is a function of θ2, the eigenvalues of matrix A are also functions of

θ2. If the damping of the system is increased, the natural frequencies of the system will

change. More specifically, the resonance peak will be more flattened. Meckl studied

the impact of damping on system response in [26]. The system response degrades if

more inherent damping is not considered in the command shaping method. In [26],

the command shaping method is proved to be successful for lightly-damped systems,

specifically for ζ < 0.3. The command shaping method can be directly applied to the

two-link robotic arm because it meets the requirement as a lightly-damped system.

The configuration-dependent natural frequencies of the robotic arm, ω1 and ω2, have

evident relationship with the position of Link 2, θ2. This relationship is presented in

Figure 3.4.
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Figure 3.4. : Configuration-dependent natural frequencies of the system as a function
of the position of the 2nd link.
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4. APPLICATION TO THE TWO-LINK FLEXIBLE-JOINT ROBOTIC ARM

Since the command shaping method is introduced in Chapter 2 and the two-link

flexible-joint robotic arm is explained in Chapter 3, this chapter will include the

application of command shaping profiles to the two-link flexible-joint robotic arm.

Section 4.1 describes how to rank each profile and compare the results meaningfully.

Section 4.2 includes both the input profiles and the corresponding experimental results

from a bang-bang profile, which is used as a benchmark. Then Section 4.3 discusses

the command shaping method with ramped sinusoid functions, in which the section

is further split to three subsections. Section 4.3.1 includes constructing and analyzing

the input signals with ramped sinusoid functions. Section 4.3.2 gives the simulations

of the application of input profiles with ramped sinusoid functions to the robotic

arm. After that, Section 4.3.3 validates the simulations with the physical robotic

arm. Section 4.4 follows the same logic as Section 4.3 with three subsections, which

are Sections 4.4.1, 4.4.2 and 4.4.3, while the basis function is changed to the versine

function.

4.1 Performance Matrics

With so many types of data collected from the experiments, a proper performance

matrix is required to judge how well each profile can reduce vibrations. The important
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Figure 4.1. : Vector Loop of the Robotic Arm [31].

aspects of residual vibration are amplitude and duration. A common approach to

analyze these two parameters is to fit a dissipation envelope to the response. As

data is measured with respect to its local reference frame and the robotic arm is a

nonlinear system with two modes, the vibration amplitude and settling time can no

longer be analytically derived. This work presents a single parameter to illustrate

the magnitude of residual vibrations in a straightforward way. This parameter is the

magnitude of acceleration at the endpoint of the robotic arm. The rationale behind

this is that any acceleration after the profile stops is undesirable, no matter in which

direction it acts. The endpoint acceleration
−̈−→
OB can be derived with a vector loop,

which is shown in Figure 4.1. The notations in this figure are listed as follows:

• i1 and j1 are the vectors along the 1st link and normal to it.

• i2 and j2 are the vectors along the 2nd link and normal to it.
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• R1 represents the length of the 1st link.

• R2 represents the length of the 2nd link.

• θ1 represents the angle between the 1st link and the inertia frame.

• θ2 represents the angle between the 1st link and the 2nd link.

As can be seen from Figure 4.1, the endpoint of the 1st link and that of the 2nd

link are not in the same reference frame. Therefore, a transformation is needed to

convert either of the links in order to put both links in the same reference frame.

Starting with the 1st link, the position vector is

−→
OA = R1î1 (4.1)

and the velocity vector is

−̇→
OA = R1ω1ĵ1, (4.2)

where ω1 is the angular velocity of the 1st link. As a result, the acceleration at point

A would be
−̈→
OA = R1ω

2
1 k̂1 × ĵ1 +R1ω̇1ĵ1

= −R1ω
2
1 î1 +R1ω̇1ĵ1

= −R1ω
2
1 î1 + a1ĵ1,

(4.3)

where a1 is the acceleration signal collected from the accelerometer at point A.
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The same method is applied to analyze point B at the end of the 2nd link. The

position vector is given as

−−→
OB =

−→
OA+

−→
AB

= R1î1 +R2î2,

(4.4)

and the velocity vector is

−̇−→
OB = R1

d̂i1
dt

+R2
d̂i2
dt

+ Ṙ1î1 + Ṙ2î2. (4.5)

Since both links are rigid, Ṙ1 and Ṙ2 are both 0. As a result,

−̇−→
OB = R1ω1k̂1 × î1 +R2ω2k̂2 × î2

= R1ω1ĵ1 +R2ω2ĵ2.

(4.6)

Then the acceleration vector is given as

−̈−→
OB = R1ω

2
1 k̂1 × ĵ1 +R1ω̇1ĵ1 +R2ω

2
2 k̂2 × ĵ2 +R2ω̇2ĵ2

= −R1ω
2
1 î1 +R1ω̇1ĵ1 −R2ω

2
2 î2 +R2ω̇2ĵ2

= −R1ω
2
1 î1 + a1ĵ1 −R2ω

2
2 î2 + a2ĵ2,

(4.7)

where a2 is the signal measured from the accelerometer at point B. Clearly, if î1 and ĵ1

can be transformed to î2 and ĵ2, the aforementioned equations will be simplified with a
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more straightforward expression. With the knowledge of kinematics, the relationship

between the two reference frames can be derived as

î2 = cos θ2î1 + sin θ2ĵ1

ĵ2 = − sin θ2î1 + cos θ2ĵ1.

(4.8)

Thus,  î1

ĵ1

 =

 cos θ2 − sin θ2

sin θ2 cos θ2


 î2

ĵ2

 . (4.9)

Then, plugging Equation 4.9 into Equation 4.7 gives

−̈−→
OB =

[
−R1ω

2
1 a1

] î1

ĵ1

+

[
−R2ω

2
2 a2

] î2

ĵ2



=

[ −R1ω
2
1 a1

] cos θ2 − sin θ2

sin θ2 cos θ2

+

[
−R2ω

2
2 a2

]
 î2

ĵ2



=

[
−R1ω

2
1 cos θ2 −R2ω

2
2 + a1 sin θ2 R1ω

2
1 sin θ2 + a2 + a1 cos θ2

] î2

ĵ2

 .
(4.10)

Thus,
−̈−→
OB is expressed in terms of the measurements of 2nd link position, angular

velocity of each link from the corresponding encoder, and linear acceleration mea-
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sured normal to each link in the reference frame of î2 and ĵ2. Equation 4.10 makes

calculating the magnitude of translational acceleration possible, which is

|
−̈−→
OB| =

√
|
−̈−→
OB|2i + |

−̈−→
OB|2j . (4.11)

The peak residual acceleration is defined as the maximum
−̈−→
OB after the command

profile ends, which is Tf seconds after the start. Usually the peak residual acceleration

is measured right after the profile endpoint.

A common definition of the settling time is the time required for the system to

settle within a certain percentage of the input amplitude, which is usually either 2%

or 5%. This is not practical in that even 2% of the steady state value is too big to give

a non-zero extra time after the profile stops. If any profile can give the zero-second

settling time, then their performances can no longer be compared. As a result, a new

definition of settling time is proposed for this work. The new settling time is defined

as the time required for
−̈−→
OB to stay below 0.3 m/s2 after the input profile has stopped.

Thus, the sum of actuation time and settling time is total move time. Figure 4.2 gives

a visual illustration of the definition, where the purple dash line is the cutoff level at

0.3 m/s2. The tolerance is selected based on simulations and experiments, such that

the noise does not affect results and the performance of each profile can be ranked

meaningfully. Naturally, the best profile has the least peak magnitude of residual

acceleration and the smallest settling time.
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Figure 4.3. : Bang-bang Profile with amax = 6 rad/s2 running for 2 s.

4.2 Bang-Bang Profile

All commanded profiles will be compared with the traditional bang-bang profile

on settling time and energy attenuation at selected frequencies. A bang-bang profile

has a time-domain profile as shown in Figure 4.3. It consists of a segment of constant

acceleration followed by a deceleration with same time span and magnitude.

This is the most efficient profile in terms of least actuation time with a given peak

input acceleration. The frequency spectrum given in Figure 4.4 indicates that energy
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Figure 4.4. : Frequency Spectrum of a Bang-bang Profile with amax = 6 rad/s2

running for 2 s.

at system natural frequencies is not noticeably attenuated. As a result, this profile

will excite system resonance and lead to significant residual vibrations.

Bang-bang profile has been implemented on the robotic arm in order to give an

idea of how much residual vibrations will be added, as well as to be used as the

benchmark for the command shaping method. The experimental results are shown in

Figure 4.5. The desired link endpoints and motor trajectories are dashed. [a] and [b]

are the desired acceleration profiles of the shoulder and elbow motors, [c] and [d] are

the torque profiles for the 1st and the 2nd motors, [e] and [f] are the angular positions

of the 1st and the 2nd links, [g] and [h] are the actual and desired angular positions
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of the 1st and the 2nd motors, and [i] and [j] are the angular accelerations for the 1st

and the 2nd links. As can be seen from [e] and [f], both links experience oscillation

after the input ends. Acceleration signals in [i] and [j] also present significant residual

vibrations. The settling time is 3.2985 seconds, which is more than 150% of the

actuation time.

4.3 Ramped Sinusoid

The command shaping method is then implemented with a physical robotic arm,

after both the theory and the hardware model have been studied. The desired profile

drives both links to travel 1.2 rad. With a known gear ratio of 5, each motor needs to

travel 6 rad. One essential step before constructing is to define the region of interest

for peak input acceleration (amax), since the input parameters to generate a profile

with the command shaping method are amax and ρ. Based on past experience, a good

range of amax is between 30 rad/s2 and 75 rad/s2. A step size of 5 rad/s2 is chosen

to give details on the effect of amax. Because the objective function is sensitive to ρ,

a step size of 1
200

is used to investigate the effect of ρ.

This secton provides an analysis of the command shaping method with ramped

sinusoid functions. Section 4.3.1 focuses on properties of input profiles; Section 4.3.2

focuses on simulation of the robotic arm with commanded profiles in MATLAB and

Simulink; Section 4.3.3 focuses on experimental validation of simulation results on

the physical system. Section 4.4 also has three subsections as Section 4.3 following

the same logic as discussion on commanded profiles with versine functions.
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Figure 4.6. : Input Profile with amax = 45 rad/s2 and ρ = 1 with Ramped Sinusoid
Functions.

4.3.1 Commanded Profile Analysis

Input profiles with ramped sinusoid functions are constructed with various amax

and ρ. As a general profile shaped with ramped sinusoid functions, Figure 4.6 presents

the input profile with amax = 45 rad/s2 and ρ = 1 utilizing ramped sinusoid functions.

Its frequency spectrum is given in Figure 4.7.

From the objective function Jrs, it is not hard to see that average energy at

selected frequencies would be lower if ρ is higher. Figure 4.7 gives the comparison of
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Figure 4.7. : Effect of ρ when amax is 45 rad/s2 with Ramped Sinusoid Functions.

two profiles with the same amax of 45 rad/s2, but different ρ. Both profiles have dips

at system natural frequencies, indicating the command shaping method is working as

expected. Dips of the profile having ρ = 1 are deeper than those of the profile having

ρ = 0.4. Besides slightly deeper dips at system natural frequencies, the region with

attenuated energy is wider. This leads to more tolerance for potential modeling error.

Figures 4.8 and 4.9 present the relationship between magnitude of frequency spec-

trum of input acceleration profile (|F (θ̈3,4)|) and ρ for all interested amax. Over-

all, |F (θ̈3,4)| decreases with higher ρ for the same peak input acceleration, however,

|F (θ̈3,4)| is not monotonically decreasing with higher ρ. There are multiple local min-
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ima as ρ increases. Such local minima suggest a local optimal profile with less residual

vibrations than other ρ around this point. The effect of such local minima will be

assessed carefully in Section 4.3.2.

Information from Figures 4.8 and 4.9 suggests that higher ρ would improve the

performance, since lower |F (θ̈3,4)| implies less residual vibrations. Figure 4.10 gives

the relationship between actuation time and ρ for each given peak input acceleration.

For each value of peak input acceleration, the actuation time always increases with

ρ, and for each ρ, the actuation time always decreases with peak input acceleration.

Thus, the aforementioned argument is weakened and the trade-off between less resid-
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ual vibrations and shorter actuation time needs to be weighted. This trade-off can

be evaluated with the help of simulations discussed in Section 4.3.2.

4.3.2 Simulation of Robotic Arm

Analysis of input profiles constructed with the command shaping method utiliz-

ing ramped sinusoid functions confirms the command shaping method’s ability to

attenuate energy at selected frequencies. A Simulink model has been built to test the

performance of the command shaping method with ramped sinusoid functions. As

mentioned in Section 4.1, two important factors are amplitude of residual vibrations

and settling time. The amplitude of residual vibrations is defined as the maximum of

|
−̈−→
OB| after the input profile ends. The settling time has been defined in Section 4.1.

The total move time is defined as the summation of actuation time and the settling

time.

Figures 4.11 and 4.12 show the relationship between total move time and ρ for each

peak input acceleration. Total move time decreases with higher ρ for all peak input

accelerations. Interestingly, total move time drops significantly at some ρ, instead of

a smooth trend as for actuation time. After further investigation of the responses,

the reason has been revealed. Since vibrations consist of multiple peaks and such

peaks shift to earlier time and lower magnitude with higher ρ, when the last peak

drops across the cutoff level, settling time will be determined by the earlier peak. As

a result, settling time decreases significantly.
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Among all simulated profiles, there is one optimal combination of amax and ρ

for each amax that gives the shortest total move time. Such profiles have a balance

between good vibration reduction and acceptable time penalty, thus they will be

validated on the physical robotic arm.

4.3.3 Experimental Validation

As simulations from Section 4.3.2 confirm that the command shaping with ramped

sinusoid functions can effectively reduce residual vibrations, such method is worth

validating on the physical robot. Thus, performance on the physical robot can be

evaluated. Based on simulations, for each amax, there is an optimal ρ giving the least

total move time. All of such optimal cases are experimentally validated. Experimental

results are averaged with 6 trials to minimize the effect of noise. Table 4.1 gives the

detailed experimental results of all cases. Figure 4.13 summarizes all experimental

results with total move time and actuation time for each input profile. Just with

one glance, all experimental results outperformed their benchmark, as no case has its

settling time longer than 0.2 seconds. Among these optimal profiles, total move time

decreases with peak input acceleration. The benefit of higher peak input acceleration

gets less significant, in other words, although settling time is decreasing, the amount

of decrease is shrinking as well.

Figures 4.14 – 4.23 show the experimental results with settings included in cor-

responding captions. In each figure, [a] gives the desired input acceleration (θ̈3,4);

[b] shows the frequency spectra of input acceleration; [c] gives the torques of the 1st
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Table 4.1. : Experimental Results of All Ramped Sinusoid Optimal Cases

amax (rad/s2) ρ Actuation Time (s) Settling Time (s) Total Move Time (s)

30 0.24 2.0015 0.1055 2.1070

35 0.305 1.9880 0.0925 2.0805

40 0.37 1.9745 0.0415 2.0160

45 0.435 1.9620 0.0320 1.9940

50 0.51 1.9550 0.0200 1.9750

55 0.58 1.9450 0.0145 1.9595

60 0.65 1.9360 0.0195 1.9555

65 0.73 1.9300 0.0235 1.9535

70 0.815 1.9255 0.0255 1.9510

75 0.905 1.9220 0.0285 1.9505
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motor (T1); [d] gives the torques of the 2nd motor (T2); [e] shows the desired and

actual positions of the 1st link (θ1); [f] shows the desired and actual positions of the

2nd link (θ2); [g] shows the desired and actual positions of the 1st motor (θ3); [h] shows

the desired and actual positions of the 2nd motor (θ4); [i] shows the actual angular

accelerations of the 1st link (θ̈1); and [j] shows the actual angular accelerations of the

2nd link (θ̈2).

In all experimental results, energy around system natural frequencies has been

successfully attenuated; energy around the second mode is attenuated more than

that around the first mode; motors track the input well without steady-state error,

and the 1st link experiences more significant overshoot than the 2nd link.

Looking at Figures 4.14 [a] and 4.23 [a], the peak input acceleration has been

more than doubled, however, [c] and [d] of both figures show that the torques are not

increased proportionally. As the torques are calculated in real time by the computed

torque controller, this discrepancy can be ascribed to the feedback controller. In

addition, input profiles change sharply at the transition between acceleration and

deceleration, however, the actual torques only change a relatively small amount. As

a result, the impact of feedback controller is more significant than expected and the

relationship between actual torques and feedback controller needs to be studied.

Moreover, higher peak input acceleration also impairs the efficiency of the profile.

In comparing the two most extreme profiles, when amax is 30 rad/s2, the acceleration of

the 2nd link only changed sign once, while that for amax = 75 rad/s2 changed sign three

times. As a result, the 2nd link has to decelerate during the course of acceleration.
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This signified inefficiency can be explained by the time penalty factor (Γ). While

the peak input acceleration has more than doubled from 30 rad/s2, actuation time

of these profiles does not vary a lot. As a result, the penalty factor has more than

doubled.

As ρ increases from 0.24 to 0.905, the input profile gets less similar to a bang-bang

profile. This matches the expectation of the higher priority on energy attenuation

than approximating a bang-bang profile.

4.4 Versine

After the command shaping method with ramped sinusoid function has been

proved to work as expected, the same analysis has been performed with versine func-

tions.

4.4.1 Commanded Profile Analysis

This time, the velocity of each input profile is limited to 6 rad/s. This value

is calculated from a 2 s bang-bang profile that has been used as benchmark. As a

result, if two segments alone would not drive the motors to travel to the end-point,

a constant velocity segment would be added between acceleration and deceleration.

Apparently, the constant velocity segment in not needed in all profiles.

Figure 4.24 presents a typical commanded versine input profile with position, ve-

locity and acceleration as reference. This input profile is constructed with amax = 45
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Figure 4.14. : Experimental Data of Ramped Sinusoid Function with amax = 30
rad/s2 and ρ = 0.24.
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Figure 4.15. : Experimental Data of Ramped Sinusoid Function with amax = 35
rad/s2 and ρ = 0.305.
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Figure 4.16. : Experimental Data of Ramped Sinusoid Function with amax = 40
rad/s2 and ρ = 0.37.
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Figure 4.17. : Experimental Data of Ramped Sinusoid Function with amax = 45
rad/s2 and ρ = 0.435.
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Figure 4.18. : Experimental Data of Ramped Sinusoid Function with amax = 50
rad/s2 and ρ = 0.51.
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Figure 4.19. : Experimental Data of Ramped Sinusoid Function with amax = 55
rad/s2 and ρ = 0.58.
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Figure 4.20. : Experimental Data of Ramped Sinusoid Function with amax = 60
rad/s2 and ρ = 0.65.
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Figure 4.21. : Experimental Data of Ramped Sinusoid Function with amax = 65
rad/s2 and ρ = 0.73.



79

Figure 4.22. : Experimental Data of Ramped Sinusoid Function with amax = 70
rad/s2 and ρ = 0.815.
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Figure 4.23. : Experimental Data of Ramped Sinusoid Function with amax = 75
rad/s2 and ρ = 0.905.
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rad/s2 and ρ = 2.5. It has three segments: acceleration, constant velocity and de-

celeration. In order to minimize vibrations, acceleration has to change sign during

either acceleration or deceleration, which shows the inefficiency of the command shap-

ing method over the bang-bang profile. Figure 4.25 shows the frequency spectrum

of the same profile. Since the two segments are independent of each other, they are

plotted separately. The figure shows that the command shaping method has success-

fully attenuated energy around both system frequencies in both segments. Besides

the attenuated energy, the wide region of frequencies with attenuated energy suggests

a good tolerance for modeling error.

Figures 4.26 to 4.28 are the plots of |F (θ̈3,4)| as a function of ρ with corresponding

peak input acceleration. Since each complete versine profile consists of two indepen-

dent segments, one acceleration segment and one deceleration segment, two curves

are plotted in each figure. The black curve is the average of |F (θ̈3,4)| at 22 selected

frequencies during accelerating, while the red curve represents the same parameter

during decelerating. All these plots confirm that the average spectral magnitude of

input profiles at selected frequencies is monotonically decreasing with ρ. In other

words, higher ρ suggests less residual vibration. In addition, these figures also show

that for the same ρ, average energy at selected frequencies would be higher with

higher peak input acceleration. This is due to the higher energy level introduced

with higher acceleration.

For a good profile, residual vibrations need to be minimized, and short time is

preferred as well. Figures 4.29 – 4.31 present the relationship between actuation
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time and ρ for corresponding peak input acceleration. Actuation time monotonically

increases with ρ if the profile has the same peak input acceleration, according to such

figures. As for commanded profiles with ramped sinusoid function, smaller peak input

acceleration guarantees shorter actuation time with same ρ. Thus, trade-off between

less vibrations and shorter time has to be weighted before reaching a decision of good

ρ with given amax.
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4.4.2 Simulation of Robotic Arm

Since the analysis of input profiles constructed with the command shaping method

utilizing versine functions confirms the command shaping method’s ability to atten-

uate energy at selected frequencies, the same procedure as in Section 4.3.2 has been

followed to examine the performance of the command shaping method with versine

functions.

Figures 4.32 – 4.34 show how peak residual vibration amplitude and settling time

are affected by ρ. The range of ρ is part of the complete dataset in that ρ outside

this range gives either not enough attenuation or too much attenuation resulting in

zero settling time. Both peak residual vibration amplitude and settling time decrease

with ρ when peak input acceleration remains the same. Moreover, these figures also

tell the strong correlation between peak residual vibrations and duration of residual

vibrations. As a result, either metric would indicate if a profile gives good perfor-

mance. However, total move time is chosen as the unified parameter for comparing

all profiles, because it takes both residual vibrations and the inefficiency of profiles

into account. In addition, residual vibrations are stronger with higher peak input

acceleration when ρ remains the same.

Figures 4.35 and 4.36 present the relationship between the total move time and ρ

for each peak input acceleration. Total move time drops with higher ρ as expected.

As for simulations with ramped sinusoid functions, the total move does not drop

smoothly with increasing ρ. Thus, an optimal combination of amax and ρ can be
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found to balance between residual vibration reduction and time penalty. Such profiles

will be experimentally validated on the physical robotic arm.

4.4.3 Experimental Validation

The same procedure as for Section 4.3.3 has been followed to validate the command

shaping method with versine functions on the physical robotic arm.

All experimental results of versine optimal cases are given in Table 4.2. Figure

4.37 gives the relationship between total move time, actuation time and peak input
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Table 4.2. : Experimental Results of All Versine Optimal Cases

amax (rad/s2) ρ Actuation Time (s) Settling Time (s) Total Move Time (s)

30 1.1 1.9785 0.0720 2.0505

35 1.35 1.9570 0.0920 2.0490

40 2 1.9410 0.1025 2.0435

45 2.5 1.9265 0.1000 2.0265

50 2.7 1.9130 0.1120 2.0250

55 3.4 1.9025 0.1050 2.0075

60 3.5 1.8910 0.1125 2.0035

65 4.5 1.8825 0.1165 1.9990

70 6 1.8755 0.1230 1.9985

75 8 1.8695 0.1255 1.9950

acceleration. The same trend can be found as that with ramped sinusoid functions.

The total move time of any profile is less than 2.06 seconds, while the benchmarked

bang-bang profile needs 5.2985 seconds to reach the same state. For all experimen-

tal results, the total move time decreases with higher amax, while the settling time

increases a bit. This is due to the unavoidable noise and the way that settling time

is defined. Thus, settling time is very sensitive to the acceleration signals around

the threshold. In addition, total move time of profiles with versine functions has less

variation than that with ramped sinusoid functions.
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Figures 4.38 – 4.47 show the experimental results for the corresponding versine

profiles, which follow the same layout as those with ramped sinusoid functions. Al-

though the constant velocity segment exists in all profiles, the duration of that seg-

ment is very short. The peak acceleration is achieved at the beginning and the end

of one segment, while the accelerations are far away from their limit in between two

peaks. Furthermore, all input profiles present the change of sign in the middle of one

segment, which shows the inefficiency of the command shaping method due to the

focus on vibration reduction.

Even though the input profiles change sharply during the last peak of acceleration

segment and the first peak of deceleration segment, the torque signals do not change

proportionally. This suggests that there are other components affecting torques. Al-

though energy around system natural frequencies has been successfully attenuated, it

is noticeably higher than profiles with the same peak input acceleration using ramped

sinusoid functions. This results from the fundamental difference of ρ in the two basis

functions. The profile with versine functions is the summation of two segments, in

which the frequencies with attenuated energy are slightly different. Although the

energy at the selected frequencies is low, it is then offset by the other segment. As

a result, it looks like the energy in the profiles with versine functions is significantly

higher. However, the ideal range of ρ is different for each basis function to ensure

the same level of energy attenuation. Moreover, the same level of energy attenuation

does not guarantee the same level of performance if the basis functions are different.
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Both motors track input profiles very well without noticeable difference between

actual signals and input signals. The 1st link has more overshoot than the 2nd link,

which is the same as what happens to profiles with ramped sinusoid functions. By

looking at Figures 4.23 and 4.47, the response with ramped sinusoid functions has

higher torques, higher link accelerations and changed direction of acceleration three

times. The benefit of separating acceleration and deceleration is that no backward

motion would exist even with very inefficient profile. The maximum torques on both

links with versine profiles tend to be lower than those with ramped sinusoid profiles.
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Figure 4.38. : Experimental Data of Versine Function with amax = 30 rad/s2 and
ρ = 1.1.
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Figure 4.39. : Experimental Data of Versine Function with amax = 35 rad/s2 and
ρ = 1.35.
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Figure 4.40. : Experimental Data of Versine Function with amax = 40 rad/s2 and
ρ = 2.
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Figure 4.41. : Experimental Data of Versine Function with amax = 45 rad/s2 and
ρ = 2.5.
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Figure 4.42. : Experimental Data of Versine Function with amax = 50 rad/s2 and
ρ = 2.7.
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Figure 4.43. : Experimental Data of Versine Function with amax = 55 rad/s2 and
ρ = 3.4.
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Figure 4.44. : Experimental Data of Versine Function with amax = 60 rad/s2 and
ρ = 3.5.



107

Figure 4.45. : Experimental Data of Versine Function with amax = 65 rad/s2 and
ρ = 4.5.
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Figure 4.46. : Experimental Data of Versine Function with amax = 70 rad/s2 and
ρ = 6.
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Figure 4.47. : Experimental Data of Versine Function with amax = 75 rad/s2 and
ρ = 8.
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5. CONCLUSION AND FUTURE WORK

5.1 Summary and Conclusions

In this work, the command shaping method with constrained peak input acceler-

ation has been developed and implemented on a two-link flexible-joint robotic arm

to minimize residual vibrations. It is based on the command shaping method with

fixed actuation time, which needs a pre-determined actuation time and does not have

control over input accelerations. Previous work proved the ability of the command

shaping method to attenuate energy at selected frequencies, which reduces residual

vibrations of a flexible-system, however, its lack of ability to incorporate motor torque

limitations makes it less desirable. With the extension to the constrained input accel-

eration approach, profiles are determined with the input accelerations and weighting

factor. Thus, less time is required when a more powerful motor has been installed.

This is achieved with iterations of actuation time.

After the fundamental theory has been developed, the command shaping method

with constrained peak input acceleration is tested with both simulations and exper-

iments. The results confirmed that the new command shaping method successfully

attenuates energy at selected frequencies. Both basis functions, ramped sinusoid

and versine, performed as expected. The command shaping method with constrained

peak input acceleration outperformed the bang-bang profile with a significant margin.
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This improvement does not come without a price. The command shaping method

cannot insert energy as efficiently as its comparable bang-bang profile, such that the

actuation time would be longer than for the bang-bang profile. Based on simulations,

the weight factor ρ, is the main parameter to weigh the trade-off between shorter

settling time and less time penalty, which is a natural result of the inefficiency of the

command shaping method, for given peak input acceleration. In addition, the wide

window of frequency band with attenuated energy ensures robustness to modeling

errors.

When comparing results from the two basis functions, profiles with ramped si-

nusoid functions tend to need less time to settle than profiles with versine functions

when the peak input acceleration is above 35 rad/s2. This is because profiles with

versine functions have two separate segments, thus, the transition between acceler-

ation and deceleration segments or acceleration and constant velocity segments or

constant velocity and deceleration segments also has to be smooth to avoid excitation

of system frequencies. On the other hand, since the whole ramped sinusoid profile

is constructed with one segment, profiles with ramped sinusoid functions guarantee

that no extra transition exists. Thus, the ability to limit peak velocity with versine

functions also comes with a price, since actution time is longer.

Besides the differences, profiles generated with two basis functions share some

common properties as well. The 1st link tends to have more overshoot than the 2nd

link; both motors have good tracking on reference inputs without noticeable steady-

state error; peak acceleration only lasts for a short amount of time; when the peak
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input acceleration is doubled, the maximum torque from either motor only increases

a relatively small amount.

This work confirms that the command shaping method with constrained peak

input acceleration can effectively reduce residual vibrations of a two-link flexible-

joint robotic arm without overconstraining the performance with a pre-determined

actuation time.

A designer can take advantage of this work to generate a profile based on the input

accelerations and input velocities and avoid the trial-and-error process on setting

different actuation time in advance while improving the total move time.

5.2 Contributions

The primary contribution of this work is the application of the command shaping

method with constrained peak input acceleration to a two-link flexible-joint robotic

arm for the first time. From there, another benefit is the better understanding of how

the combination of peak input acceleration and ρ impacts the residual vibrations and

weighing the trade-off between actuation time and settling time. Thus, a method of

selecting an optimal ρ for a given amax, which warrants the least total move time, is

given. Among all optimal cases, the total move time tends to be lower with higher

peak input acceleration. In addition, the understanding of the inherent coupling

between two modes and the focus on the endpoint leads to a unified performance

metric to indicate the performance of each input profile.
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There are other findings that suggest future work. The discovery that the relation-

ship between input profile accelerations and actual torques is not exactly as expected

suggests that the feedback controller is playing a significant role with the computed

torque controller.

5.3 Recommendation for Future Work

With confirmed improvement of the command shaping method with constrained

peak input accelerations, some issues during the course of this research suggest that

more work may be valuable to explore.

Firstly, this work only specifies the start and end point regardless of the actual

path on the Cartesian plane. As we all know, path-planning can also help reduce

residual vibrations. For example, if flexibilities are known only to occur along the

x-axis, a path that maximizes the motion along the y-axis would reduce residual

vibrations noticeably. Thus, investigating the method of incorporating the path-

planning with this work is promising to improve the performance.

Although the input profile effectively limits its peak acceleration, the actual profile

reveals that it only requires a small amount of time to operate at its peak. Thus, the

inefficiency of the command shaping method is apparent. Agrawal [31] developed an

approach to address such issue with a new objective function and used a numerical

method to find the solution. Since his approach requires iterations even with a fixed

actuation time, higher demand on computational power would be evident for a simple

combination of his work and this work, which would require two nested iterative
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loops. However, this does suggest that addressing such issue may be possible and

would potentially improve the command shaping method greatly.

Another area that is worthy to be explored is the influence of the feedback con-

troller. As this work makes the command shaping method be able to generate a

vibration-reduced profile with desired input accelerations, the actual motor torques

do not change proportionally. This is mainly attributed to the feedback controller for

the system, which is the computed torque controller in this application. The com-

puted torque controller is nonlinear and does not give a direct relationship between

input profile and torque output, which makes torques unknown when constructing

input profiles. In addition, its nonlinearity also potentially introduces energy around

natural frequencies, such that the ability of the command shaping method to reduce

vibration is impaired.

Lastly, ρ affects the energy attenuation level differently on two different basis func-

tions, which makes the comparison between them less straightforward. Normalizing

the two terms in the objective function would possibly address the issue. In addition,

all 22 points are weighted equally in the current objective function. Instinctively, the

system natural frequencies usually do not have equal effect on residual vibrations.

For example, in this work, the first mode has more impact than the second mode on

residual vibrations. It is worthy to explore a method to weigh system natural fre-

quencies differently, such that the performance can be improved while the inefficiency

is not worsened.
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