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ABSTRACT

Wang, Xiao M.S.E.C.E., Purdue University, August 2016. Fast Voxel Line Update
For Time-Space Image Reconstruction. Major Professors: Samuel P. Midkiff and
Charles A. Bouman.

Recent applications of model-based iterative reconstruction(MBIR) algorithm to

time-space Computed Tomography (CT) have shown that MBIR can greatly improve

image quality by increasing resolution as well as reducing noise and some artifacts.

Among the various iterative methods that have been studied for MBIR, iterative

coordinate descent(ICD) has been found to have relatively low overall computational

requirements due to its fast convergence. However, high computational cost and long

reconstruction times remain as a barrier to the use of MBIR in practical applications.

This disadvantage is especially prominent in time-space reconstruction because of

the large volume of data. This thesis presents a new data structure, called VL-

Buffer, for time-space reconstruction that significantly improves the cache locality

while retaining good parallel performance. Experimental results show an average

speedup of 40% using VL-Buffer.
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1. INTRODUCTION

Synchrotron based X-rays are used for 3D imaging of material samples in a wide range

of disciplines, including biology [1] and materials science [2]. In synchrotron based

X-ray CT tomography, there are two general categories of reconstruction methods:

direct methods such as filtered back projection (FBP) and iterative methods such

as MBIR [3]. MBIR results in better reconstruction quality and fewer artifacts than

FBP [4]. However, MBIR has a much higher computational cost than direct methods

[3], and this high computation requirement has been a barrier to the widespread use

of MBIR.

There are two approaches to implement the MBIR optimization: simultaneous

methods and coordinate descent methods. Simultaneous methods [5–8] work by pro-

jecting and back-projecting the entire image to the sinogram space. The advantage

of simultaneous methods is that they can update all voxels simultaneously which

facilitates parallelism, but the disadvantage is that they have relatively slower con-

vergence [5]. Techniques, such as preconditioning [7] and ordered subsets [9], are used

to speed up the convergence. However, preconditioning methods can be sensitive to

geometry and ordered subset methods generally slow down global convergence.

Among iterative methods, ICD [10–12] has been shown to have rapid and robust

convergence for a wide variety of geometries, applications and image models. Instead

of hundreds of iterations required in the simultaneous methods [5], ICD [12] typically

converges in 3 to 6 iterations [10, 12]. However, while ICD has rapid convergence,

it requires operations that are more difficult to parallelize [13–15]. Moreover, ICD

exhibits poor cache locality because the data layout requires memory to be accessed

in sinusoidal patterns [16,17], as shown in Sec.2.1.

Typically, high performance CT image reconstruction can be summarized into

two competing challenges: (1) increasing the cache locality, and (2) increasing the
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parallelism [17]. In this paper, we call voxels that are far away from each other as

“loosely coupled” and neighboring voxels as “strongly coupled”. Loosely coupled

voxels have fewer measurements in common and fewer dependencies in the voxel

updates, enabling good parallel performance. However, loosely coupled voxels also

suffer from poor cache locality. On the other hand, strongly coupled voxels have

higher cache locality and more measurements in common. But they suffer from poor

parallel performance due to the data dependencies. Therefore, the best solution is

to find certain voxels that allow increased cache locality without negating parallel

performance. In this paper, we propose a new data structure, the voxel line memory

buffer (VL-Buffer), to meet both goals.

We make the following contributions:

1. We describe the performance issues inherent in voxel lines.

2. We propose the idea of the VL-Buffer to increase cache locality and prefetching.

In addition, VL-Buffer reads non-coalesced measurements in a coalesced way.

3. We show experimental results that VL-Buffer leads to an average 40% speedup

on each core. In addition, VL-Buffer does not worsen parallel performance.

In Sec. 2.1, we provide background information and we review the concept of voxel

line. In Sec. 2.2, we present the mathematical formulation of MBIR. In Chapter 3,

we describe how the VL-Buffer enables fast voxel line updates. Finally in Chapter 4,

we implement the VL-Buffer in MBIR to reconstruct a real data set collected by

synchrotron based X-ray CT scanner.
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Fig. 1.1.: (a) Illustrates the forward projections of the red voxels and the yellow
voxels on a synchrotron based X-ray CT scanner. (b) Shows how the measurement
data collected from the CT scanner is organized into the sinogram.
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2. BACKGROUND

2.1 SYNCHROTRON BASED X-RAY CT SYSTEM

Fig. 1.1(a) illustrates how a typical parallel beam synchrotron based X-ray CT

system operates. We let h1, h2 and h3 denote the coordinate vectors of a right-

handed coordinate system, where vectors h1 and h2 are perpendicular to the axis of

the rotation. Vector h3 points along the axis of rotation. The object to be imaged is

mounted on a rotating stage. As the object rotates about h3, the CT system takes a

set of measurements at each view angle, θ, from all the elements of the detector array.

These measurements from each array element, r (or channel), are used to estimate

pθ(r), the integral density of the object along the path from the X-ray source to the

detector.

Typically, the data collected from the scanner is organized into a sinogram indexed

by the view θ, channel r and row z (or slices), as illustrated in Fig. 1.1(b). As

we project the source X-rays through individual voxels, the intersecting detector

channels, r, at different views, θ, trace out sine wave patterns. For example, the red

voxel and the yellow voxel in Fig. 1.1 have sine wave patterns in the sinogram, shown

as the thin red line and the thin yellow line.

To update a voxel value by the ICD algorithm, it is necessary to access this

voxel’s corresponding measurements in the sinogram following these sine wave pat-

terns. Modern processors access main memory by first transferring blocks of local

memory onto cache lines. These cache lines, shown as short blue lines in Fig. 1.1(b),

will only partially overlap the red line or yellow line of memory entries of the sino-

gram. This means that most of the space in the cache is used to hold data not needed

for the current voxel update.
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One way to avoid the cache line issue is to update voxels along h3 axis. We call this

set of voxels a voxel line and these voxels share the same geometry calculations [12].

By allowing voxels on a voxel line to update in a sequential manner, a cache line,

shown as a short white line in Fig. 1.1(b), can hold more data because the access

pattern along the row is linearized.

Nevertheless, when a voxel line is updated in parallel, only non-neighboring voxels

can be updated simultaneously. Although different voxels’ traces, belonging to the

same voxel line, do not have any intersection in the sinogram space, there are still

dependencies in calculating the prior function if voxels are neighbors (see Sec. 2.2).

For example, in Fig. 1.1, red and yellow voxels on the voxel line have the same

sinusoidal path in the sinogram space and their voxel traces have no intersections.

Neighboring red and yellow voxels, however, can not be updated in parallel. As the

consequence, voxel updates in parallel need separated cache line for separated voxels

and each cache line fits in less useful data.

Another issue is that the sinusoidal path access along view direction is still si-

nusoidal even though a cache line reads in linearized data. This makes predicting

needed measurements in the near future impossible for the hardware prefetcher.

2.2 MATHEMATICAL MODEL AND OBJECTIVE FUNCTION

To better understand the key novelties of this paper, the underlying mathematical

and algorithmic concepts of MBIR must first be briefly reviewed. MBIR is based on

the numerical solution to an optimization problem described by

û = argmin
u≥0

{
1

2
(v − Au)TD(v − Au) + S(u)

}
(2.1)

where we consider the image u as a vector of size N whose elements are called voxels.

The data v is a vector of size M equal to the total number of measurements for all

voxels. A is the M×N forward system matrix of the scanner geometry, D is a diagonal

weighting matrix of size M ×M containing the inverse variance of the scanner noise,

and S(u) is the regularizing prior function which depends upon voxels only. The ith



6

diagonal entry of the matrix D, denoted by di, is proportional to the photon rate,

while inversely proportional to an estimate of the variance in the measurement vi.

To solve the above optimization problem, the ICD algorithm updates each voxel

in sequence to minimize the overall cost function, while keeping the remaining voxels

fixed. Formally, the update of the selected voxel uj is given by

ûj = argmin
uj≥0

{
1

2
(v − Au)TD(v − Au) + S(u)

}
(2.2)

To simplify its computation and potentially speed up the ICD algorithm, we use a

variable e = v − Au to replace the term v − Au. In addition, we also need the first

derivative and the second derivative of the cost function with respect to uj, denoted

by θ1 and θ2 respectively, to compute ûj. They can be expressed by using the following

equations:

θ1 = −
M∑
i=1

diAijei, θ2 =
M∑
i=1

diA
2
ij (2.3)

where ei is the ith element in the error term. By using Eqn. (2.3), we can further

simplify Eqn. (2.2) as:

uj ← argmin
r≥0

{
θ1r +

θ2(r − ũj)2

2
+ f(r, u∂j)

}
(2.4)

Where ũj is the jth voxel’s value before the update and f(r, u∂j) is a function of the

26 neighbors of the voxel uj in three dimensional space.

After the jth voxel is updated, we then update the error term required for the ICD

algorithm in the following way:

e← e+ A∗j(uj − ũj) (2.5)
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3. EXTENTION

A good single core performance is essential for high performance computing. In this

section, we discuss how a voxel line and VL-Buffers can meet the competing goals of

good cache locality and good parallel performance.

A voxel line is a special group of voxels that is both strongly coupled and loosely

coupled, meeting both goals of cache locality and parallelism. A voxel line is strongly

coupled because voxels are grouped together along h3 axis, sharing the same access

pattern. A voxel line is loosely coupled because its voxel traces belong to different
ch
an
ne

l	(
r)

VL-Buffer	
(odd	rows)

parallel	updates’	
cache	line

sinusoidal	path	in	
VL-Buffer	is	
straightened	out

A

At

cache	line

voxel	line

h1

h2h3

Sinogram	Space

sinusoidal	path

VL-Buffer	(even	
rows)

Fig. 3.1.: Measurement data in a voxel line is copied into VL-Buffer so that a cache
line (shown in white arrows) can fit more useful data and sinusoidal voxel traces
(shown in blue line) are straightened out. In addition, non-coalesced measurements
are read in a coalesced way into VL-Buffers.
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rows in the sinogram with no or little intersection among them.1 Previous research [4],

has shown that multicores can work in parallel efficiently on non-neighboring voxels

of a voxel line.

Contrary to the well-studied parallelism on a voxel line, also known as inter-

slice parallelism [17], the voxel line’s cache locality advantage has never been studied

because of the issues mentioned in Sec. 2.1. To recapture the discussion, there are

two inherent issues. First of all, the cache line might not be used efficiently if multiple

computing cores update a voxel line in parallel. As shown in Fig. 1.1, non-neighboring

voxels can be updated in parallel. Nevertheless, since voxels are not neighbors, there

have to be two independent cache lines reading their measurements and each cache

line holds much unneeded data.

The other issue is that the sinusoidal path for voxel traces makes computer hard-

ware prefetching impossible. A computer prefetcher can predict data needed in the

near future and prefetch these data into cache ahead of time if the data access pattern

follows a linearized pattern. Although the data access pattern in the same view in the

sinogram space follows a linearized pattern, the data access pattern across different

views follows a sinusoidal path, making prefetching impossible and leading to a high

cache miss rate.

To address the above issues, we introduce a new data structure, called the VL-

Buffer. In creating VL-Buffers for each computing core, the memory accesses in

the voxel line in Fig. 3.1 are copied to two localized memory spaces, namely VL-

Buffers, shown as aquamarine color rectangles in the same figure. One VL-Buffer

stores measurements for the voxel traces of odd number rows and the other stores

measurements for the voxel traces of even number rows. Therefore, each row of a

VL-Buffer consists of linearized and coalesced data in a view angle, θ, of odd number

rows or even number rows.

In Fig. 3.1, white arrows show the cache line in the sinogram space and in the

VL-Buffer. We can see that by creating VL-Buffers, non-coalesced measurements of

1The actual number of intersections depends on the voxel size and the projector model.
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the sinogram becomes coalesced. In addition, red voxels’ measurements (or yellow

voxels’) need only one cache line and more useful measurements will fit into this cache

line. Thus the spatial locality significantly improves. In addition, the VL-Buffer lays

out in a way that the sinusoidal path can follow a complete straight line pattern that

is ideal for hardware prefetching. In Fig. 3.1, the blue line in the sinogram space

shows the sinusoidal path in the sinogram space. This sinusoidal path is straightened

out in the VL-Buffer and thus increases computer hardware prefetching.

A major difficulty of VL-Buffers comes from the update of the error term in

Eqn. 2.5. We can see from this equation that ICD requires an update to the sinogram

space after each voxel update. It means that we need to copy an updated VL-Buffer

to the full sinogram space after each voxel update. This overhead in copying can be

significant when the number of cores is large. Since the measurements among different

voxels on the same voxel line have no intersection at all, Eqn. 2.5 can be postponed

until the entire voxel line is updated. After that, all measurements in the VL-Buffers

are purged out and the VL-Buffers are ready for other voxel lines. By doing this,

a full sinogram is updated exactly once for a voxel line. At the same time, all of

the measurement data needed for a voxel line are accessed from the localized VL-

Buffers. Intuitively, this mechanism allows better cache locality and lower memory

copy overhead because we collect all local changes in VL-Buffers and apply a global

change to the full sinogram.
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4. EXPERIMENTS

In this section, we will compare MBIR reconstructions with and without the VL-

Buffer data structure. To compare the reconstruction speed, we define the baseline

TIMBIR method as the single core conventional time-interlaced model-based iterative

reconstruction (TIMBIR) [4], and TIMBIR-VL as the equivalent but with the addition

of the VL-Buffers.

To demonstrate the performance gains achieved by VL-Buffer in a real physical

system, we reconstruct an Al-Cu alloy in 4D with 16 sub-frames in the interlaced

view sampling, the same data set used in [18]. The detector width is 1600 pixels

in the cross-axial direction and 2080 pixels along the axial direction with a pixel

resolution of 0.65 µm × 0.65 µm. In addition, each voxel line has 24 voxels in the

axial direction and each slice has 2080×2080 voxels in the cross-axial direction with a

voxel resolution of 0.65×0.65×0.65 µm3. Therefore, the reconstructed image volume

has size 24×2080×2080 voxels. Each slice in this data set has (1) 2000 views interlaced

between 0 and 180 degrees, and (2) 2080 channels uniformly sampled over the region

of interest. The exposure time of the detector is set to 4 ms. The regularization

parameters are chosen to provide the best visual reconstruction quality.

In prior extensive experimentation, we have found that a root-mean-squared error

(RMSE) of less than 10 Hounsfield Unit (HU), with respect to a fully converged

volume, consistently results in a high quality reconstruction with little or no visible

convergence artifacts. Therefore, all reconstructions are converged to reach less than

10 HU of RMSE. All computing performance data in this section was collected on

multiple standard 2.6 GHz clock rate Intel Processors Xeon-E5 2660 v2 with 8 cores

in each processor. Each core has a L1 data cache of size 32 KB and a shared L2 data

cache of 256 KB. Each core also has a shared L3 cache of 20 MB.
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of cores. The red curve shows TIMBIR-VL speedup at different numbers of cores.
Notice that we achieve an average speed up of 40% by using the VL-Buffers. (b)
TIMBIR and TIMBIR-VL’s strong scaling parallel efficiency at different numbers of
cores.
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Fig. 4.1(a) shows the speedup of TIMBIR and TIMBIR-VL over the baseline TIM-

BIR at different number of cores. TIMBIR-VL has a performance increase of 12.6%

over TIMBIR at 16 cores. This is a direct result of VL-Buffer design to reduce cache

misses and prefetching misses. Overall, TIMBIR-VL has a better performance when

the number of cores is large. At 96 cores, TIMBIR reaches a speedup of 45X while

TIMBIR-VL reaches a speedup of 60X, which is a performance increase of 31.5%.

As explained before in Sec. 3, TIMBIR-VL’s efficiency will be more prominent with

large number of cores because VL-Buffers allows more non-coalesced measurements

to be read coalescedly.

The parallel performance is also a point of interest in discussion. Fig. 4.1(b)

illustrates the strong scaling parallel efficiency in using TIMBIR and TIMBIR-VL. In

general, VL-Buffer does not worsen the parallel efficiency. At 96 cores, TIMBIR has a

parallel efficiency of 48% while TIMBIR-VL has a parallel efficiency of 63%. It is also

interesting to note that TIMBIR-VL has a super-linear speedup at 32 cores because
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of the reduced cache misses. However when the number of cores further increases,

the synchronization overhead becomes more prominent.

Fig. 4.2 shows the cache miss rate of TIMBIR (1 core) and TIMBIR-VL (1 core)

at different levels of data cache. The L2 cache miss rate decreases from 90% to 75%.

However the L3 cache miss rate mildly increases from 5.6% to 7% because of the

memory copy operations in using VL-Buffer. It is interesting to note that Fig. 4.2

has a triangle shape, namely, high L2 cache miss rate but low L1 and L3 cache miss

rate. This is an indication that a VL-Buffer is too large for L1 cache but fit squarely

in L2 cache. Therefore, most of the data accesses are from L2 cache. In addition,

the VL-Buffer’s linear access pattern also contributes to increased prefetching and

decrease of L2 cache misses. The L2 prefetching hit rate increases from 0% to 6%

when using VL-Buffer.
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5. SUMMARY

While MBIR provides high quality reconstructions, it is considered impractical in

some applications because of its long running time. Voxel line updates have been

demonstrated to allow efficient parallel operations and significantly reduce running

time. In spite of that, each core’s performance remains low. In this work, we have

introduced VL-Buffer to use cache much more efficiently. Our experimental results

have shown a speedup of 40% on average by using VL-Buffer.
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