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ABSTRACT 

Vaughn, Brian J. M.S., Purdue University, August  2016. Novel Gain Enhancement Tech-
nique for Microstrip Patch Antennas Based on Multi-Pronged Feed Network Synthesis. 
Major Professor: Dimitrios Peroulis 

 Developing antennas with enhanced gain has always been an important pursuit 

within the antenna community, as a higher gain leads to an increase in the received power 

for any given wireless link. In general, when a higher gain is needed for an application, 

only certain types of antennas can be used. The goal of this thesis project was to develop 

a method for increasing the gain of antennas that already exist by applying modifications 

to them, expanding the design flexibility for wireless applications. In this thesis, a novel 

method for increasing the gain of microstrip patch antennas by synthesizing specialized 

multi-branch feed networks is developed and verified experimentally. A full theoretical 

foundation based on cavity modal and radiation analysis is discussed followed by a de-

tailed explanation of the feed network design, which culminates in the presentation of a 

start-to-finish full design workflow using MATLAB and ANSYS HFSS simulation. Four 

prototypes that were designed using this methodology are also presented, along with re-

sults that demonstrate the method’s efficacy as well as its tradeoffs. In addition, the 

MATLAB codes used in the design process are given, allowing the thesis to be used as a 

design guide.  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1. INTRODUCTION 

1.1.Overview 

 As the importance of  wireless technology in our society grows, so too does the im-

portance of antenna performance. More specifically, the ability of a system to send a suf-

ficient amount of power to a receiver device in all applications ranging from communica-

tions to wireless power transfer depends on the gain of the transmission system’s antenna. 

While the antenna is not the only crucial component of a wireless system, it effectively 

defines the range and received power of of any wireless link, and since free space path 

loss for electromagnetic signals at microwave and radio frequencies is notoriously high 

(even without obstructions or varying transmission media), power efficiency in transmis-

sion systems becomes an essential parameter. For this reason, developing antennas with 

higher gain is a priority in the antenna community. 

 Of course, the gain of an antenna system can usually be improved by choosing larger 

antenna types, or by implementing antenna arrays to increase the gain via superposition 

effects. This, however, comes with the trade-off of raising the size requirements of the 

allotted antenna spacer using specific antenna structures, and in some cases, this may not 

be possible or preferable. This thesis focuses on modifying known antenna topologies to 

enhance their gain without increasing the sizing requirements the same way larger anten-

na types and arrays require. This is accomplished through a novel radiator and feed net-

work design methodology that takes ideas from traditional supergain antenna array theory 

and ultimately yields feasible implementations. The focus here is placed on microstrip 

patch antennas, but the principles developed here can be extrapolated to other antennas 

with similar radiation characteristics. 
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1.2.Thesis Structure 

 This thesis will be split into seven chapters, including the introduction. Chapter 2 

will be a summary of supergain principles. Chapter 3 will narrow the supergain idea to 

patch antennas and define the foundational theory for this work. Chapter 4  will detail the 

feed network design process to obtain enhanced gain characteristics. Chapter 5 will detail 

the start to finish workflow of designing supergain patch antennas. Chapter 6 will show 

the design, fabrication, and testing of the prototypes developed for this project, as well as 

the results and trade-off discussion, and finally, chapter 7 will focus on conclusions 

drawn and future directions for the research. 
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2. SUPERGAIN ANTENNA PRINCIPLES 

 Supergain antenna array theory is not new. In 1943, Schelkunoff showed that the 

gain of an end-fire antenna array has no theoretical limit for a given element spacing [1]. 

Since then, several others have launched their own investigations into the validity and 

feasibility of his claims [2-5]. The point of supergain array design is to take an allotted 

design space for an antenna system (such as the space where the elements of a linear ar-

ray are placed) and modify the excitation scheme to increase the array’s directivity with-

out changing its overall size. This is generally done by raising the number of elements in 

the array, decreasing the spacing between them, and changing the excitations accordingly. 

This does not come without cost, however, as will be detailed below.  

 

2.1.Supergain Methodology 

 Supergain array design is based upon the assumption that normal excitation schemes 

(such as for example, that of a uniform phased array) do not provide the highest directivi-

ty possible for a given total array size. If one is to think of, say, a linear array as a discrete 

sampling of a linear current distribution that yields a certain pattern in space, then design-

ing a supergain array would mean changing the excitations to sample a current distribu-

tion that will give a higher than normal directivity for a given array size. Fig. 2.1. Illus-

trates how this would be done for such a linear array. 
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 How the new excitations are derived is based on the designer. Yaru designed an array 

with λ/32 inter-element spacing using well-documented Chebyshev array theory [2]. It is 

also possible to define an excitation scheme by specifying a desired far-field pattern and 

deriving the current distribution that matches this pattern with algorithms such as the 

method of moments (MoM). Either way, finding the required excitations is is not particu-

larly difficult of novel. However, pursuing this method has significant drawbacks.  

2.2.Detriments of Supergain 

 As noted by Yaru and Haviland, designing a supergain array requires excitations that 

become more and more unfeasible the more elements one adds or the smaller the inter-

element spacing becomes [2,4]. More specifically, the required supergain excitation am-

plitudes become prohibitively large and the required precision in these amplitudes be-

comes prohibitively high when the limits of the directivity are pushed. This results in un-

realizable systems, be it because the required precision cannot be attained, the required 

amplitudes cannot be reached, or because the efficiency of such a system would plummet 

due to ohmic loss if the two former issues were addressed. For these reasons, the problem 

of supergain arrays has not been solved on a large scale. However, this thesis details an 

offshoot of the supergain paradigm that does not have the problems mentioned above, but 

still results in significant gain enhancement. It should be noted that the directivity this 

Fig. 2.1: Modification of linear array to achieve supergain
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offshoot method affords is not limitless like in the supergain case, but it leads to realiz-

able antenna designs. 

2.3.Modification of Supergain Paradigm 

 The novel modifications made to the supergain paradigm in this work are as follows: 

2.3.1.Modification 1: Replacing Arrays With Single Modified Topology 

 The first modification involves straying away from traditional arrays when thinking 

about supergain and replacing them with single radiators with modifications applied to 

them. If this is done, the problem of inter-element spacing now becomes one of structure 

dimensions. This modification allows for increased customization in the antenna design 

and also allows us to circumnavigate the precision and excitation magnitude limitations 

that plague normal supergain design. Instead of designing an array that must compensate 

for reduced spacing or a higher number of elements, the structures developed in this the-

sis will begin with a known topology (i.e., the patch antenna) and simply add to it to tune 

its radiation pattern without forcing the structure to require unfeasible excitations, leading 

to practical topologies. 

2.3.2.Modification 2: Tuned Feed Network Appendage 

 In this work, each antenna design presented will have one feed line to be connected 

to a transmitter, but this feed will split into several lines and connect to the primary radia-

tor in several places. This is analogous to a corporate feed structure, only each branch 

connects to the same antenna and this feed has a role beyond that of a simple feed struc-

ture. The reason for this will become clear in chapter 3, but it involves forcing the radia-

tor to imitate voltage/current distributions needed to increase the gain beyond normal lim-

its. From now on, only rectangular microstrip patch antennas will be specifically consid-

ered and discussed regarding this modified paradigm. In the following chapter, the theory 

behind patch antenna gain enhancement will be developed and discussed. 
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3. ENHANCED GAIN PATCH ANTENNA THEORY 

 This chapter, using the microstrip patch antenna as a basis, will establish the theoret-

ical framework for the proposed gain enhancement method. It will begin by defining the 

modal characteristics of the antennas by examining the cavity model for patches, after 

which, the radiation properties will be derived. From there, the foundation for the modifi-

cations presented in chapter 2 will be built, culminating in a full theoretical model for the 

enhanced gain patch antenna from a modal point of view. 

3.1.Rectangular Patch Antenna Cavity Model 

 According to Balanis, when a thin conductor (i.e., the patch) is placed on a substrate 

above a ground plane and energized, electric forces effectively prevent the majority of the 

currents on the patch to running to patch’s top surface from the patch’s bottom surface 

[6]. While such currents are not exactly zero in reality, they are small enough (given how 

thin the patch conductors typically are) that we may neglect their effects, and since the 

currents are effectively zero under this approximation, we may conclude that the tangen-

tial magnetic fields at the patch edges are approximately zero. This means we may define 

magnetic wall boundary conditions on the patch edges, allowing us to obtain a field solu-

tion from Maxwell’s Equations. What follows is a summary of the derivation of this field 

solution. A more detailed and complete treatment may be found in Balanis 14.2.2 [6]. 
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3.1.1.Wave Equation and Field Solutions 

 Fig. 3.1 illustrates the profile and coordinate system layout to be used for the cavity 

model with patch dimensions L, W, and h.  

 

 

Under this model, it can be shown that the vector potential A within the only has an x-

component and obeys the wave equation given by 

 

Using separation of variables, the general solution for the vector potential takes the fol-

lowing form [6]: 

 

Where An and Bn are amplitude coefficients, x, y, and z are cavity coordinates, and kx, ky, 

and kz are wave number parameters to be defined by the boundary conditions. Given the 

relationships between Ax and the E and H fields that arise from the definition of the vec-

tor potential and Maxwell’s Equations, along with the boundary conditions for the E and 

(3.1)

(3.2)

Fig. 3.1: Cavity model layout diagram
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H tangential components at the cavity walls, it can be shown that Ax, Ex, and the H-fields 

take the final form as follows [6]: 

 

 

 

 

 

with 

 

 

and 

Here, Amnp is a general amplitude coefficient determined by the cavity excitation, ω is the 

angular frequency, ε and µ are the permittivity and permeability of the substrate, respec-

tively, and m, n, p, are constants which can take any integer value greater than or equal to 

0 (though they cannot all be zero at the same time). The latter values denote the index of 

the of the solution or “mode” in question. Note that in general, the y and z components of 

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

(3.4a)

(3.4b)

(3.4c)

(3.5)
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the electric field are nonzero. However, from here on, only modes with m = 0 will be 

considered, and the E-field y and z components drop under this condition, so they have 

been neglected here. Also note that the modes here are transverse magnetic in the x direc-

tion (TMx). 

3.1.2.Custom Mode Excitation 

 From Eqn. 3.5, it can be seen that the single frequency any mode in the cavity can 

sustain is subject to the following condition: 

 

Based on the patch dimensions, the mode with the lowest resonant frequency is referred 

to as the “dominant” mode. For the sake of simplicity in analysis, patches are generally 

designed such that the TMx010 is the dominant mode (since this means that the E-field 

does not vary in the z direction) and all other modes are neglected. However, it will be 

shown through the enhanced gain model presented in this thesis that the modal excitation 

need not be identical to that of the TMx010 or any other individual mode if the right excita-

tion conditions are met, and if enhanced gain is desired, the excited modal distribution 

must differ from any individual mode discussed thus far. However, within the scope of 

this thesis, this new distribution will only deviate from the TMx010 mode in its z depen-

dence, i.e., it will retain the same y dependence as the TMx010 mode, but will not remain 

constant in z (why this is will become clear when the patch radiation is discussed). This z 

dependence will not match any other known individual mode either. The modified mode 

will from now on be referred to as the TMx010’ mode since it will use the TMx010 mode as 

a base and the electric field of this modified mode will take the following form: 

 

 

(3.6)

(3.7)
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Where f(z) is an arbitrary function to be chosen during the design process and A1 and A2 

are amplitude coefficients. Now, to be clear, it is not being claimed that any arbitrary 

electric field distribution can be sustained within the patch cavity alone. In fact, from 

what is known about the boundary conditions and the Uniqueness Theorem of Electro-

magnetics, this cannot be the case. However,  f(z) is essential to the enhanced gain patch 

formulation, and its full function and importance will be highlighted in the following sec-

tions, so we will assume the mode can take this form for now. 

 As a final note, referring to Eqn. 3.6, it is clear that the resonance condition for the 

TMx010 mode only depends on L. Because of this, the frequency of operation may be cho-

sen independently of W, making the patch width a degree of freedom in the design 

process. The TMx010’ mode will share this property, but it should be noted that the patch 

width will affect the distribution of this new mode. The width, however, will remain un-

restricted. Again, more details will be made clear when the design process is further de-

veloped. 

 This concludes the development of the cavity model for the patch antenna. Next, the 

radiation properties of the antenna will be examined given the custom mode excitation. 

3.2.Rectangular Patch Antenna Radiation Properties 

 The development of the radiation properties for the patch antenna relies heavily on 

the Field Equivalence Principle, which states that, given a finite surface region with a de-

fined field distribution, this field may be replaced by an “equivalent” current source (ei-

ther electric or magnetic) in the presence of a perfect electric or magnetic conductor 

without changing the radiated fields outside this region. From there, image theory may be 

used to get rid of the conductor and derive the radiated fields from the remaining current 

element. A full explanation of this process is provided in Balanis 12.2 [6]. The Field 

Equivalence Principle is especially useful when considering radiation from apertures, and 

this principle is used regarding patch antenna radiation because each sidewall (not includ-
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ing the top and bottom electric conductor sidewalls) can be considered an aperture with a 

tangential electric field. This idea will be developed further in the following sections. 

3.2.1.Equivalent Magnetization Currents and Far-Field Radiation Integrals 

 By the Field Equivalence Principle, any electric field tangential to an aperture sur-

face may be replaced by a surface magnetization current Ms via the following relation [6]. 

This is to say that the equivalent magnetization current is -2 times cross product of the 

surface normal unit vector and the tangential E-field. This equation arises from a combi-

nation of surface boundary conditions and image theory. Once this current is known, ex-

pressions for the far field radiation may be derived using the integral solution to the wave 

equation involving the electric vector potential F. In general, solving for the radiated 

electric field would also involve the magnetic vector potential A, but under the assump-

tions of the field equivalence principle in this case, the electric current density Js is 0, so 

the magnetic vector potential drops. 

Given the definition of the electric vector potential with no electric current source 

 

along with the wave equation solution and the coordinate system defined in Fig. 3.1, 

closed form relations can be derived for the far-field radiated electric field from a patch 

cavity aperture. In general, there are four apertures to consider in the patch cavity. How-

ever, as detailed in Balanis 14.2.2, only the apertures with 

y directed normal vectors will radiate in the far field given the type of cavity mode being 

considered here [6]. The reason for this is that the equivalent magnetization currents for 

(3.8)

(3.9)
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the the other two slots are equal in magnitude, but out of phase, so they will thus cancel 

each other out in the most important radiation direction (the x direction) and be negligibly 

small in other directions. This will remain true regarding the TMx010’ mode distribution if 

the corresponding f(z) is chosen to be symmetric with respect to the patch center axis, i.e., 

if f(z) is chosen such that its values at z = 0 and z = W are equal in magnitude and sign. 

 Given that the two radiating slots have y directed normal vectors and the tangential 

electric fields on these apertures only have x components, the equivalent magnetization 

currents will be purely z directed. Knowing this, along with the rest of the information 

discussed, we may derive the electric vector potential and far zone electric field radiated 

from one of the cavity apertures (the one at y = 0 specifically) with respect to the TMx010’ 

mode to obtain the following expressions: 

Where k  is the free space wavenumber, r is the magnitude of the vector running from the 

origin to the point where the field is evaluated, ε is the permittivity of free space, r’ is the 

magnitude of the vector running from the origin to any arbitrary point (x’, 0, z’) on the 

(3.10)

(3.11a)

(3.11b)

(3.11c)
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aperture surface, ψ is the angle between r and r’, and θ and and φ are defined with respect 

to the coordinate system illustrated in Fig. 3.1. Only the φ component of the radiated field 

is considered here. While the r and θ components can be derived, it can be shown that 

they are negligible in the far field for the distributions considered here. 

 In order to proceed, the function f(z) must be defined. For the remainder of the analy-

sis, f(z) will be chosen to be the following: 

 

The utility of this choice will become clear as the analysis is carried out. It should be not-

ed that if the corresponding magnetic field is derived from the electric field distribution 

with this f(z) via Faraday’s Law, the magnetic wall boundary conditions will not be met at 

the cavity sidewalls. However, for the sake of argument, let us consider this distribution 

valid for now. 

 The integral in Eqn. 3.11c can now be carried out to obtain the final far zone electric 

field expression for the aperture. This expression will be split into two parts; E1, the por-

tion of the E-field that arises from the classic TMx010 mode distribution, and E2, the por-

tion of the E-field that arises from the modification that includes f(z). They are as 

follows:  1

 Note these fields arise from a shifted coordinate system wherein the origin is paced in 1

the center of the lower cavity surface. This means that the bounds of integration are from 

-W/2 to W/2 in z and 0 to h in x and f(z) must be changed to cos(πz/W) to retain the same 

shape.

(3.12)
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To get the total E-field that results from two radiating apertures, the fields listed above 

must be multiplied by an array factor derived from the separation, magnitude and phase 

relationships between the equivalent magnetization currents on each radiating aperture. 

Given that the currents on the apertures have equal magnitude and are in-phase, the array 

factor is as follows [6]: 

 

Where Leff is the effective patch length due to fringing electric field effects at the patch 

edges. For the purposes of this thesis, the effective length correction may be neglected, 

but an expression for it may be found in Balanis 14.2.1 [6]. We now have 

 

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

(3.14)

(3.15)
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as the final far zone electric field radiated by two patch antenna apertures. It should be 

reiterated that the other two apertures do not radiate non-negligibly in the far field for the 

TMx010 mode and since f(z) was chosen to be symmetric in amplitude and sign about the 

center of the radiation apertures, this property holds for the TMx010’ mode distribution. 

 Next, the directivity of the enhanced gain patch will be examined with respect to the 

TMx010’ mode excitation. 

3.2.2.Enhanced Gain Patch Directivity 

 Thus far, it has not been shown how any of the analysis choices result in enhanced 

gain over the traditional patch antenna. This will be addressed by deriving the directivity 

of the TMx010’ mode radiation distribution. 

 The directivity of an antenna is defined as the maximum value the antenna’s gain 

takes with respect to the radiated power. It does not take loss effects into consideration. 

The expression for the directivity D and parameters related to it are presented as follows: 
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Here, <|S|> is the time-averaged magnitude of the radiated field Poynting Vector, which 

represents the electromagnetic power density of the fields in W/m2, r is the radial distance 

from the antenna, η is the intrinsic impedance of the radiation medium, and Prad is the 

total power radiated by the antenna, which is found by taking the surface integral of the 

time-averaged Poynting Vector over an arbitrary closed surface in the far field that en-

compasses the antenna. In this case, the most convenient surface to use is a sphere, allow-

ing us to represent the radiated power as 

 

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.16e)

(3.17)
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While the fields radiated by the TMx010’ mode have been solved, the field amplitude coef-

ficients  A1 and A2 are still undefined. To remedy this, we will define a variable q as the 

ratio of A2 to A1 and compute the directivity as a function of this ratio, i.e., 

 

 

 A direction of maximum radiation must also be defined. For normal patch antennas, 

the direction of maximum radiation is the direction where φ=0 and θ=π/2. Since it is de-

sired for the enhanced gain patch radiation pattern to mirror that of a traditional patch as 

much as possible (in all aspects except for the gain and beamwidth, of course), no other 

direction will be considered with respect to the directivity. To be more precise, then, the 

values to be computed will be the antenna gain (neglecting loss) in the direction of a 

normal patch’s maximum gain, and while it may be true that the gain of the TMx010’ mode 

fields may be higher in a different direction for any given value of q, these situations are 

not desirable within the scope of this thesis and will thus be neglected. 

 Now that the groundwork has been completed, the directivity corresponding to the 

TMx010’ mode fields can be computed as a function of the ratio q. This is done using the 

expressions above and MATLAB numerical integration techniques. Below is a plot of the 

directivity in dB as a function of q. 

(3.18)
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 There are several important aspects to this plot. First of all, the directivity at very low 

q values (between approximately 0.1 and 0.4) represents the directivity of the standard 

TMx010 mode without modification, as A2 in these cases is far smaller than A1, so the f(z) 

modification to the modal profile has a negligible effect. This directivity is about 6.6 dB. 

However, starting around q=0.5, the directivity begins to rise until it peaks at approxi-

mately 9.2 dB for q=0.76 and then it falls sharply. What this means is that the f(z) mode 

modification serves to raise the directivity in the direction being considered here for spe-

cific values of q, i.e., our choice for f(z) results in a modified mode that achieves clear 

significant directivity enhancement over the standard mode for these values of q. It can 

also be seen that, if these values are passed, a destructive interference effect arises in the 

radiation direction being considered. The directivity increases again as the value of q con-

Fig. 3.2: Plot of the TMx010’ mode directivity as a function of 
the amplitude ratio q. Design parameters for this case are as 
follows: W=37.5mm, L=35mm, h=3.18mm, εr=3.27, and 
f=2.4Ghz. Note design workflow is defined in chapter 5.
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tinues to rise, but it never attains previous values. This behavior is not problematic, but it 

warrants mentioning. 

 While this result may seem promising, one crucial issue still has not been fully ad-

dressed; the fact that the TMx010’ mode distribution presented technically is not valid un-

der the patch cavity boundary conditions. This issue will be resolved in the following sec-

tion. 

3.3.Modified Mode Approximation Through Voltage Boundary Conditions 

 So far, it has been shown that a cavity mode can be designed in a way that results in 

an improved directivity over normal patch antennas. However, boundary conditions dic-

tate what modes can and cannot be supported by the cavity. Again, the modified mode 

presented above is not a solution to the wave equation under the parameters we have set. 

Despite this, it will be shown that the modified mode distribution can be sufficiently ap-

proached, if not exactly achieved. How this is done is laid out below. 

3.3.1.Cavity Mode Voltage Profile 

 The voltage profile of the modified mode with respect to the cavity upper and lower 

surfaces (i.e., the patch and the ground plane) may be easily derived as the following: 

This is to say that the electric field distribution has a voltage distribution uniquely associ-

ated with it (since the E-field is purely x directed) that is represented through the equation 

above. This is significant because while it may not be possible to control the electric field 

directly through the cavity design, it may be possible to control it by manipulating volt-

ages in and around the cavity. This is, in fact, the approach taken while implementing the 

enhanced gain patch. If a desired voltage distribution is defined, an excitation scheme 

(3.19)
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may be designed that results in this voltage distribution, and if such a scheme is estab-

lished, the voltage values will be absolute to the point where the voltage profile may be 

seen as its own boundary condition. Unlike the cavity magnetic walls, this is a boundary 

condition whose nature can be controlled and the electric field on the aperture surfaces 

will result directly from it. By doing this, we would be somewhat forcing the electric 

field to take the shape we want by defining the voltage profile boundary condition. How-

ever, just because a theoretical voltage distribution results in enhanced gain, does not 

mean the cavity alone would be receptive of such a distribution. After all, the cavity wall 

boundary conditions still exist. There is a way around this, however, that will be detailed 

in the following section. 

3.3.2.Multi-Pronged Feed Network Superposition 

 Recall that it was stated that the feed networks for the designs presented in this thesis 

play a role beyond simple excitation. This role is that they allow for the patterns afforded 

by the modified voltage distributions to be imitated without violating any boundary con-

ditions. Refer to the figure below for an example antenna-feed network pair: 

 

Fig. 3.3: Example enhanced gain structure 
topology where the feed lines are implemented in 
microstrip.
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In the structure pictured above, the primary excitation for the entire circuit would be 

placed at the junction where all three feed lines connect (neglecting the matching net-

work). Knowing this, it is clear that each antenna connection point will have a voltage 

that is different from each adjacent feed point, i.e., the voltages at the outer feed points 

will have a differing voltage from that of the mid feed point. Normally, this would be at 

odds with the patch’s dominant mode voltage distribution. However, the feed network 

connections on the feed plane provide the leeway necessary for the patterns of the modi-

fied voltage distributions to be obtained. To put another way, while the patch itself cannot 

support an arbitrary voltage distribution natively, the patch and the specially designed 

feed network above can be combined to form the enhanced gain pattern predicted by the 

theory.  This is because, given the patch impedance characteristics on the feed plane, the 2

voltages themselves may be thought of as their own boundary conditions, so if the net-

work is designed correctly, the voltage distribution can supersede the magnetic wall 

boundary condition and modified modes may be excited. How this is done exactly will be 

detailed in the following chapter. 

 Further, as will be demonstrated in the design process, the network may be designed 

as if the voltage distribution is being supported by the patch and the patch alone, i.e., the 

feed network lines may be treated like normal transmission lines connected to conven-

tional loads during most of the design process. This is not to say that a final design can be 

fully created using only theory (at least within the scope of this thesis), but the design 

methods to be discussed in later chapters provide a very reasonable starting point and 

empirical tweaking is minimal. 

 Even patterns with the topside gain null illustrated in Fig. 3.2 may be created using this 2

method.
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3.4.Conclusions 

 In this chapter, the theory behind the enhanced gain patch formulation was defined. It 

can be seen that theoretical gain enhancement can be achieved if a custom modal distrib-

ution is created in the patch cavity. It was also claimed that the way to create this distribu-

tion is through applying a specialized feed network to imitate the desired voltage distribu-

tions. Let it be noted that while it is possible that another choice of f(z) would yield simi-

lar results, such cases will not be considered in this thesis, as the chosen f(z) serves our 

purposes. In the next chapter, a detailed analysis of the feed network design process will 

be carried out. 
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4. ENHANCED GAIN PATCH ANTENNA FEED DESIGN 

 This chapter will focus on developing the design techniques for obtaining the desired 

voltage boundary conditions on the enhanced gain patch. It will begin by defining the 

general feed network structure, after which the methods for finding feed network parame-

ters will be discussed. Finally, the integration of an impedance matching network will be 

examined, concluding the feed network discussion. Again, the methods described here 

will assume that the feed network does not radiate and that voltage distributions are cre-

ated directly on the patch apertures. 

4.1.Tuned Transmission Line Network Formulation 

 As stated in chapter 3, multiple feed points must be established in order to realize a 

particular voltage distribution. To accomplish this, three distinct “ports” will be defined 

on the edge of one of the radiating apertures, and three microstrip transmission lines will 

be connected to those ports and to each other at a separate junction away for the patch, 

not unlike a corporate feed. This ensures that the antenna will eventually need only one 

feed source. Fig. 4.1 re-illustrates this concept. 
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The chosen separation between the patch center feed point and the side feed points for the 

formulation presented here is W/3, although other separations could conceivably be effec-

tive and the design methods do not change based on this parameter. 

 Clearly, there are two parameters that must be defined for the network; line lengths 

and characteristic impedances. In order to find the parameters that will result in the de-

sired voltage distribution, Z-matrix and transmission line theory must be invoked. This 

will be done in the following sections. 

4.1.1. Z-Matrix Analysis and Port Parameter Definitions 

 By defining three feed points on the patch, we are essentially creating a 3-port net-

work, and thus, we may use Z-matrix analysis to examine it. The Z-matrix for a 3-port 

network is defined via the following equation [7]: 

Fig. 4.1: General feed network design (without a matching 
network). Three microstrip lines are connected to three points on 
the patch edge and then they are connected to each other.
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Where Vi is the total voltage presented to port i, Ii is the total current presented to port i, 

and Zij is the impedance parameter that describes the voltage present at port i due to a cur-

rent present at port j when the currents at all ports other than port j are 0. Once the feed 

points are defined, the corresponding Z parameters may be computed through computer 

electromagnetic simulation.  3

 Using the expressions above, we may define the driving point impedances (DPIs) at 

each port, which are the total impedances seen at each port when all ports are active. 

These expressions are as follows: 

 

 

 

 All electromagnetic simulations in this thesis were carried out using ANSYS HFSS.3

(4.2a)

(4.2b)

(4.2c)

(4.1a)

(4.1b)
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Where Zid is the driving point impedance at port i. Right away, it should be noted that the 

voltage and impedance seen at any one port depends on the current excitations on all of 

them. The only way to control each port’s voltage independently of the others would be 

to isolate the ports electrically and electromagnetically, which is impossible in the cases 

being considered here. However, as seen above, the driving point impedances of each 

port depends not simply on the port current values, but on the port current ratios. This 

means that if certain current ratios are desired, the driving point impedances correspond-

ing to these current ratios may be found. 

 It has been established that a certain voltage distribution is desired at the feed plane, 

but this distribution need not take a particular amplitude. The total voltage profile may be 

multiplied by any arbitrary constant without changing the gain characteristics of the cor-

responding electric field. Because of this, we may design the feed network with respect to 

the normalized voltage distribution. Given how the modified mode was defined in chap-

ter 3, the voltage on the center feed will have a higher amplitude than the voltage on the 

outer feeds; these “side” voltages (which will from now on be denoted as Vside) will be 

defined to have a voltage of 1 V. The voltage of the middle feed (Vmid) will thus be de-

fined by the following equation: 

 

where q is the same as in Eqn. 3.18. This equation is easily derived from Eqn. 7, Eqn. 12, 

and Eqn. 19 evaluated at y=0 with the side voltages located at W/3 away from the center 

feed point (which is located at z=0). 

(4.3)
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 Once the desired value of q is found via the directivity analysis in 3.2.3, the side an 

middle voltages may be defined. From there, the corresponding currents may be found 

via the following relation: 

 

This equation is obtained simply by inverting the Z-matrix in Eqn. 4.1a. With this infor-

mation, the DPIs that will occur with the desired voltage distribution may be computed. 

These values are essential for the analysis to come. 

 Now that all the initial parameters have been set, we may define a method for defin-

ing the feed network characteristics. This will be done in the following section. 

4.1.2.Voltage Ratio Transformation Analysis and Locked DPI Assumption 

 For the following derivations, let 

 

 

This is to say that the side ports are equivalent to ports 1 and 3 (which are equivalent to 

each other given the symmetry) and the center port is equivalent to port 2. 

 Because all the feed lines connect in a central location, they all share the same volt-

age at that point. We may use this fact, along with the general transmission line voltage 

wave solution to derive the following port voltage relationship: 

(4.4)

(4.5a)

(4.5b)
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Where Γi is the reflection coefficient on the line connected to port i, θi is the electrical 

length of the line connected to port i in radians, Zoi is the characteristic impedance of the 

line connected to port i, and the Zid are the port DPIs as normal. This means that if the 

transmission line parameters are correctly chosen, the following equation must hold: 

 

 

This equation contains at least four unknowns (the transmission line electrical lengths and 

characteristic impedances), so it will be solved through a numerical guess-and-check iter-

ative algorithm implemented in MATLAB. There is an issue, however, in that the Γ val-

ues cannot be used in such an algorithm as they are now. This because they depend on the 

DPIs, which in turn depend on the realized port current ratios, which are unknown for 

any arbitrary set of transmission line parameters because, in a seemingly paradoxical 

manner, given the available information, it is impossible to solve for the current ratios 

without already knowing what they are. To state this another way, the voltage and current 

(4.6a)

(4.6b)

(4.6c)

(4.7)
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transformations that allow us to obtain expressions for the voltages and currents on the 

patch edge require prior knowledge of these voltages and currents in order to be evaluat-

ed, leading to a circular dependence. 

 There is a way around this, fortunately, that hinges on an assumption called the 

“Locked DPI Assumption”. While it may not be known what the port DPIs are for any 

given set of transmission line parameters, it is known what the DPIs would be if the de-

sired voltage distribution were to be realized, i.e., we can solve for the DPI values that are 

linked to the q value of the distribution we wish to implement. Under the Locked DPI As-

sumption, the DPIs take these would-be values regardless of the other equation parame-

ters, i.e., while the other equation parameters are iterated in the algorithm, the DPIs will 

be “locked” at values corresponding to the desired port voltage/current ratios. 

This formulation is effective because of one fundamental truth; if Eqn. 4.7 holds for any 

arbitrary set of transmission line parameters under the Locked DPI Assumption, then this 

assumption also holds for this set and a valid solution has been found. To put it more 

generally, if an assumption is made in a circular problem such as the one presented here, 

and then an analysis is carried out that yields a result that must be true under the assump-

tion, then the assumption is also true. In terms of the guess-and-check algorithm, this 

means that we may define the RHS of Eqn. 4.7 in terms of the locked DPIs and transmis-

sion line parameter “guesses”, and if a guess results in the desired voltage ratio, then a 

valid solution has been reached despite the fact that we have made an assumption about 

the DPIs. In the next section, the details of the algorithm will be highlighted. 

4.1.3.Transmission Line Parameter Definition 

 To determine a solution for Eqn. 4.6a, four parameters (the transmission line electri-

cal lengths and characteristic impedances) must be iterated within a range specified judi-

ciously by the designer. For instance, for microstrip transmission lines, a rule of thumb is 

to only consider lines with a characteristic impedance between 25 and 150 Ω, otherwise, 
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the line implementations will become prohibitively wide or narrow. Further, since the 

lines are connected to the same antenna, the lower bound for the characteristic impedance 

should be significantly more than 25 Ω in order to prevent the formulation presented here 

from breaking down due to unacceptably large coupling effects. For this reason, the lower 

bound for the impedances to be checked by the algorithm should be set between 50 and 

100 Ω. As for the electrical lengths, it is desirable for the lines to be as short as possible, 

so a range from 0 to π/2 radians should be used initially, and the upper bound should be 

increased only if a satisfactory solution cannot be found within this range. 

 Once the parameter ranges are defined, the algorithm, starting with initial parame-

ters, evaluates the RHS of Eqn. 4.6a (using the locked DPIs as well) and determines how 

close the resulting voltage ratio is to the desired value. If the computed value is within a 

user-defined tolerance, the algorithm outputs the set of transmission line parameters that 

results in the accepted value and the algorithm ends. Otherwise, the parameters are iterat-

ed using a nested loop scheme and the process restarts. If no parameter set that gives a 

value within the tolerance is found, the algorithm outputs the set that results in the closest 

voltage ratio to the desired value that can be found within the specified parameter ranges. 

It should be noted that multiple solutions within the tolerance may be found within a cer-

tain range and the algorithm only outputs the first one it finds. Therefore, one may exper-

iment with the parameter range definition to get a result with more desirable characteris-

tics, such as a shorter line or a smaller characteristic impedance. In this sense, the “solu-

tion” to Eqn. 4.6a is not unique, and multiple design variations are possible. The full 

MATLAB code that accomplishes this process is presented in the appendix. 

 Using this set of transmission line parameters, a feed network circuit may be de-

signed in a full-wave computer simulation program such as ANSYS HFSS in order to ob-

serve the radiation characteristics of the patch and feed network combination. It should be 

noted that the feed network derived from the algorithm will often not result in the exact 

radiation characteristics of the desired voltage distribution. This is because the feed net-
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work itself will load the circuit, altering impedance parameters and causing deviations 

from the theory. This means that, using the simulation software, the feed network must be 

tweaked in order to get the desired response. However, the modifications that must be 

made are not major (they simply involve changing the line lengths slightly until the cor-

rect pattern is achieved), so the algorithm presents an effective starting point for the de-

sign. Also note that when line lengths are defined, any multiple of a half wavelength may 

be added to the computed values without changing the voltage distribution on the anten-

na. This is useful logistically as it allows us to make the side excitation feeds long enough 

to connect to the line junction. 

 The algorithm outlined above computes the parameters for the feed network that 

gives a desired voltage distribution, but it does not address the impedance looking into 

feed line junction, which is where the source would be connected. This will be addressed 

in the following section. 

4.2 Matching Network Design 

 Since the feed network must be modified to achieve the desired radiation characteris-

tics, much of the matching network design is empirical. There is, however, an effective 

standard procedure that will be developed here, assuming the network is to be matched to 

a standard impedance like 50 Ω. The matching networks designed for the prototypes to be 

presented in this thesis are all implemented as two-stage transmission line circuits defined 

with respect to the impedance seen at the feed line junction.  These stages are outlined 4

below: 

 Note the MATLAB code also stipulates what junction input impedances are acceptable.4
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4.2.1.Stage 1: High Impedance Line Section 

 Once the impedance of the feed line junction is extracted from simulation software, a 

high-impedance line (typically between 100 and 150 Ω) is connected to the feed junction. 

The purpose of this line is to transform the junction impedance until it is resonant and to 

extend the projected source feed point toward the substrate edge so that the circuit may 

be fed via an edge mount PCB connector. 

 Referring to Fig. 4.1, it can be seen that the side feed lines extend past the feed line 

junction and wrap around to make their way back to it. This was done because the de-

rived line lengths for the side feeds were too short for these lines to make it to the trans-

mission line junction, so an extension (whose length was a multiple of a half wavelength) 

was added to each side line. As such, the first matching network stage will run parallel to 

these lines. This is one reason why higher impedance lines are used for stage 1, as they 

lessen potential coupling effects between the stage and adjacent lines. Once a purely real, 

sufficiently high impedance is realized with the stage 1 line, stage 2 may be implemented. 

4.2.2.Stage 2: Quarter-Wave Transformer 

 The second stage is a standard quarter-wave transformer used to scale the resonant 

impedance created by stage 1 to the desired value. While its width is not subject to the 

same constraints as the stage 1 line, stage 1 should still be designed such that the required 

transformer width is not too large or small. The impedance of the quarter-wave trans-

former can be easily found with the well documented relation: 

 

 

Where Ztrans is the transformer characteristic impedance, Zres is the resonant impedance 

seen looking into stage 1, and Zo is the source impedance. 

(4.8)
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Fig. 4.2 illustrates the full enhanced gain patch circuit. 

 

4.3.Conclusions 

 In this chapter, is has been shown how the feed network needed to achieve enhanced 

gain is designed. The theory and numerical analysis behind the required transmission line 

circuits was also defined and discussed, culminating in methods to implement the en-

hanced gain patch. This completes the foundational development for the design process. 

In the next chapter, a full summary of the design workflow from start to finish will be 

detailed. 

Fig. 4.2: Complete enhanced gain patch 
circuit with impedance matching section
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5.ENHANCED GAIN PATCH DESIGN WORKFLOW 

 In this chapter, a complete design workflow will be defined to allow any designer to 

utilize the methods developed in this thesis. The design process requires a numerical 

computing platform (such as MATLAB) as well as a full-wave EM simulation software 

package (such as ANSYS HFSS). The chapter will be structured in a step-by-step format 

that will detail all crucial design steps.  

 

5.1.Step 1: Substrate and Patch Dimension Definition 

 The chosen substrate for the patch should have mid to high permittivity and should 

be thin enough to mitigate unwanted radiation effects in the feed network. For instance, 

the substrate for the prototypes in this thesis has a thickness of 3.18mm and a relative 

permittivity of 3.27 and these parameters work sufficiently well, as we shall see, although 

the thickness for a substrate with this permittivity should not be increased. With this in 

mind, the substrate choice should be left up to the designer’s discretion as with any other 

application. As for the board dimensions, it is recommended that the board be around two 

substrate wavelengths long and wide. The designer should expect the full circuit to be at 

least 1.5 wavelengths long so the board must be able to accommodate this. Other board 

dimensions are theoretically possible, although the patch’s proximity to the board edges 

affects both the pattern and impedance values, so changing the board dimensions during 

the design process would require the designer to redo steps 3 and on. 

 Patch dimensions that are appropriate for the desired resonant frequency must also 

be chosen. In particular, W and L must be defined. L must be approximately a half wave-

length as is the case with traditional patches, but W is more flexible since the resonant 

frequency of the target mode only depends on L. There are tradeoffs to consider when 
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choosing W, however, that should be taken into account, some of which will come to 

light in following chapters. The prototypes to be presented all have widths between ap-

proximately .5λ and 1.23λ where λ is defined with respect to the effective permittivity of 

the substrate when considering a microstrip line (as oppose to the free space wavelength). 

L is locked at 35mm for these prototypes (note it is slightly shorter than a half wavelength 

to account for fringing field length extension). 

5.2.Step 2: Voltage Profile Definition 

 Once the patch dimensions are chosen, the desired modal amplitude coefficient ratio 

may be defined. This can be done graphically by generating a plot similar to Fig. 3.2 

(note the MATLAB code that accomplishes this is given in the appendix). After the rele-

vant q value is extracted, Eqn. 4.3 may be used to find Vmid when Vside is 1 V. 

5.3.Step 3: Z-Matrix Extraction 

 In this step, the Z-parameters for the three feed ports on the patch edge are computed 

using an EM simulation software. For this thesis, step 3 was completed in HFSS by 

defining three lumped port boundaries and extracting the resulting Z-matrix from the 

simulation. An example of this port definition is pictured below in Fig. 5.1. 

 

Fig. 5.1: Example Z-parameter extraction 
scheme
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Note that the width of these lumped port boundaries correspond to the maximum desired 

microstrip feed width. For instance, in the example above, the minimum characteristic 

impedance considered in the design process was 100 Ω, which corresponds to a width of 

1.85 mm. Note that this is a rough guideline and need not be exact. If, for example, the 

minimum considered characteristic impedance is changed by the designer after this step 

is completed, the step does not explicitly need to be revisited. All that is really required of 

the ports is sufficient spatial isolation. 

5.4.Step 4: Initial Feed Network Definition 

 This step defines a starting point for the feed network implementation using the Z-

parameters and voltage ratios. These parameters are entered into a code like the MAT-

LAB script discussed in section 4.1.3 to compute the initial set of transmission line 

lengths and characteristic impedances that will approximate the desired voltage distribu-

tion. Again, note that any integer multiple of a half wavelength may be added to these 

computed lengths without changing the distribution on the patch. 

5.5.Step 5: Initial Feed Network Implementation and Tweaking 

 After the transmission line parameters are obtained, the initial feed network is mod-

eled in an EM simulation software. At this point, the circuit looks like the one picture in 

Fig. 4.1. For the reader’s convenience, it is pictured again below. 

 

Fig. 5.2: Initial feed network
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An excitation is then placed at the feed line junction and the circuit is simulated to ob-

serve the directivity. Generally, the observed value will not reflect the desired solution 

after the first simulation, so the feed lines must be optimized using a trial-and-error ap-

proach (due to the deviations from the theory resulting from the radiation condition). This 

does not negate the usefulness of steps 1-4 however, as it has been observed that the feed 

network need not be drastically changed to excite a satisfactory distribution. It was found 

that lengthening or shortening the line lengths in 5mm increments (either all together or 

by changing the side line lengths independently of the middle one) and observing the 

trends in the resulting directivity pattern was sufficient to create the desired voltage pro-

file, although changing the characteristic impedances also has an affect, albeit a smaller 

one. 

 It is also important to track the input impedance at the junction to make sure no ex-

treme values are reached. No particular impedance value is required, but the reactance at 

the junction should never exceed the resistance by more than one order of magnitude. 

Additionally, the resistance should be >> 1. Not adhering to these conditions would make 

designing a suitable matching network far less viable. Further, the length of the side feed 

line wraparound (the portion of the line that extends past the junction) should dictate the 

ideal relative position of the junction impedance on a Smith chart for a reference im-

pedance of about 100 Ω and up. This is because the first stage of the matching network 

must be at least as long as this wraparound, so it is desirable for the length required to 

achieve resonance to also equal the wraparound length. Fortunately, a sufficient directivi-

ty pattern can generally be realized while keeping these impedance conditions in mind. 

5.6.Step 6: Matching Network Design 

 Designing the first stage of the network may be done empirically, graphically or nu-

merically. The empirical approach involves simply extending a high impedance line (no 

exact value is required; it is up to the designer) from the junction and observing the im-

pedance at the other end, then iterating the line until resonance is reached. Graphically, 
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this can be done by using a Smith Chart to determine the necessary line length needed for 

resonance with a given line characteristic impedance. Finally, a code can be written using 

transmission line theory to compute the desired line length using a guess-and-check itera-

tive algorithm similar to that used for the initial feed network definition. 

 All the prototype matching networks in this thesis were designed using the empirical 

method, and this is recommended since coupling between the first stage of the matching 

network and the side feed lines has a non-negligible effect on the input impedance of this 

stage (although it does not compromise the ability to obtain resonance). After stage 1 is 

completed, a simple quarter-wave transformer is applied using Eqn. 4.8, after which the 

design is completed.  

 It is worth noting that, if the empirical method is chosen and the board dimensions 

are finite, the patch should not be moved any closer of farther away from the board edges 

during the matching network design process. This is because moving the patch around on 

the board changes the mutual impedances on the ports and thus detunes the patch, leading 

to unexpected impedance effects.  

 Finally, if the junction impedance value does not lead to a favorable network (if the 

stage 1 line extends significantly passed the wraparound for example),  then step 5 should 

be revisited and the circuit should be tuned to lead to better impedance values while re-

taining enhanced gain properties. 

5.7.Conclusions 

 In this chapter, step-by-step instructions for designing an enhanced gain patch from 

beginning to end were presented, providing a full design workflow for the structure. In 

the next chapter, four experimentally verified prototypes that were fabricated for this the-

sis project will be presented and discussed, demonstrating both the efficacy and the 

tradeoffs of the enhanced gain patch antenna. 
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6. PROTOTYPE DESIGNS AND RESULTS 

 This chapter will be devoted to presenting and discussing four prototype structures 

that were designed using the formulations in previous chapters. These structures were 

fabricated and measured to confirm the efficacy of the techniques discussed in this thesis. 

The chapter will begin by illustrating the dimensions of each design, followed by the pre-

sentation of the radiation pattern and return loss results. These results will also be com-

pared to those of an unmodified patch antenna to be used as a reference. Finally, the 

tradeoffs of the prototypes will be discussed. 

6.1.Prototype Dimensions 

 Each prototype was optimized for operation at ~2.4 GHz and was fabricated on a 

150mm x 150mm, 3.18mm thick Rogers TMM 3 substrate with a relative permittivity of 

3.27. Below is a figure illustrating the general dimensional variables of each prototype, 

followed by a table giving the specific values for each individual structure in millimeters. 

They are as follows: 

Fig. 6.1: General patch dimension diagram
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The reference patch design is pictured below: 

Table 6.1: Patch dimension values. All 
values are in mm. 

*upper half of the matching stage is 5mm 
and lower half is 1mm.

Fig. 6.2: Reference Patch Design
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It should be noted that these designs are not unique, i.e., an enhanced gain pattern can be 

obtain using alternate dimensions. These dimensions, however, were found to give the 

desired results. 

6.2.Measurement Results 

 In this section, the radiation pattern, return loss, and bandwidth results for the proto-

types and the reference patch will be presented. They are given in the following subsec-

tions. All pattern measurements were taken using a standard cubicle anechoic chamber 

and a 2-port network analyzer. Note that only relative gain patterns were able to be taken, 

and all absolute gain values are given with respect to the reference patch instead of an 

isotropic radiator. In addition, each pattern has two sidelobes associated with it, as will be 

seen. The lobe in the positive y direction will be labeled the “front lobe” with its own 

“front lobe level” (FLL) and the lobe in the negative y direction will be labeled as the 

“back lobe” with its own “back lobe level” (BLL). 

6.2.1.Prototype 1 Results 

Fig. 6.3: Prototype #1 Implementation
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Fig. 6.5: Prototype #1 Return Loss

Fig. 6.4: Prototype #1 3-D Pattern
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6.2.2.Prototype 2 Results 

Fig. 6.6: Prototype #2 Implementation

Fig. 6.7: Prototype #2 3-D Pattern
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6.2.3.Prototype 3 Results 

Fig. 6.8: Prototype #2 Return Loss

Fig. 6.9: Prototype #3 Implementation
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Fig. 6.10: Prototype #3 3-D Pattern
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6.2.4.Prototype 4 Results 

Fig. 6.12: Prototype #4 Implementation

Fig. 6.13: Prototype #4 3-D Pattern
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6.2.5.Reference Patch Comparison and Additional Results 

Fig. 6.14: Prototype #4 Return Loss

Fig. 6.15: Reference Patch Implementation
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Fig. 6.16: Reference Patch 3-D Pattern

Fig. 6.17: Reference Patch Return Loss
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 The following table details additional results for the prototypes and reference patch. 

The directivity values were measured from the anechoic chamber and they do no account 

for losses (ohmic, mismatch, etc.) The estimated gain values were computed by compar-

ing the EIRP values of each prototype antenna to the reference patch and adding the dif-

ferences to the simulated reference patch gain (which is 6.5 dBi). 

6.3.Results and Design Tradeoff Discussion 

 From the results, it can be seen that the prototypes have a gain of up to 2.5 dB over 

the reference patch, but designing patches this way comes with certain tradeoffs. They are 

as follows: 

1.) Decreasing the width of the patch leads to a narrower but longer required feed net-

work. This in turn leads to larger forward lobes in the resulting pattern. These lobes occur 

because of distribution mismatch between the radiation apertures as well as spurious feed 

Table 6.2: Additional Prototype Results
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network radiation, and as the patch narrows, the pattern begins to be steadily overtaken 

by the unfavorable radiation characteristics. This means that the width of the patch should 

be chosen based on acceptable side lobe characteristics as well as the dimensions needed 

for the application. 

2.) The bandwidth of the enhanced gain patches is less than that of the reference patch, no 

doubt because of the tuning requirements of the feed and matching networks, though, the 

bandwidth of prototype #2 is close to the reference patch bandwidth, but this is not a 

trend among the prototypes. For this reason, the topology is not ideal for applications that 

require a larger bandwidth, and care must be taken to ensure that the patch is tuned to the 

correct frequency of operation, that is, unless a wider band matching network is used. 

Other matching network designs are beyond the scope of this thesis however. 

3.) It should be noted that the proof-of-principle designs here are substantially larger than 

the reference patch design. While this is simply a reality of the designs, methods for cre-

ating more compact versions of the topology can very well be developed in the future. 

However, full formulations for such versions are also beyond the scope of this thesis. 

6.4.Conclusions 

 Here, the results of 4 enhanced gain patch prototypes were presented, confirming the 

effectiveness of the design techniques discussed in previous chapters. It was shown that 

gain enhancement of up to 2.5 dB over a normal patch antenna can be achieved for sever-

al varied designs. The next chapter will summarize the methods discussed in this thesis 

and touch on future research directions. 
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7. CONCLUSIONS AND FUTURE WORK 

 In this thesis, a novel technique for increasing the gain of patch antennas has been 

developed and verified. The process began with the formulation of a theoretical electric 

field distribution that yields a higher gain then the conventional case, and culminated in a 

full design workflow for creating a circuit that mimics this distribution. The process does 

have drawbacks, however, such as the bandwidth of the circuit, the front and back lobes, 

and the extra space needed to implement the designs. This means additional work needs 

to be done to refine the circuit design. This will be addressed in the following section. 

7.1.Enhanced Gain Patch Pattern and Form Factor Refinement 

 The primary drawbacks of the enhanced gain patch design presented in this thesis 

arise from the fact that the patch is edge-fed. This is not explicitly necessary to obtain en-

hanced gain however. Noting this, a simulation prototype has been developed (though not 

yet fabricated) that obtains enhanced gain in a different way. Instead of feeding the patch 

directly from the edge, the source is connected (through a matching section) to a probe 

that excites a shorted half-wave resonator closely coupled to the patch underside. Another 

resonator is also placed on the other side of the patch for pattern symmetry. The some-

what sinusoidal voltage distribution on the resonator forces a similar distribution on the 

patch edge and the two voltage profiles combine at the radiating apertures to give rise to 

the modified radiation modes derived in chapter 3 if the resonators are tuned correctly. In 

this way, a closer representation of the theoretical framework is obtained and a cleaner 

pattern (one with less prominent lobes) is produced from an antenna circuit that has a 

smaller form factor than the ones previously presented. The general design and simulated 

results are pictured below. Again, the design was created for operation at 2.4 GHz: 
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Fig. 7.1: Probe-fed prototype top view

Fig. 7.2: Probe-fed prototype bottom view (quarter wave stub matching section)
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Fig. 7.3: Full design expanded view

Fig. 7.4: Simulated gain pattern
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 As can be seen from the figures, the design above is far more compact than the de-

signs presented thus far. Further, the front and back lobes disappear. There is a lobe fac-

ing downward, however, but this lobe is about -20 dB down from the maximum gain di-

rection, so it is still a step up from the lobes of previous designs. For comparison, the 

simulated peak gain of prototype #4 (which has the same patch dimensions as the proto-

type pictured above) is 8.4 dB and the simulated gain of the reference patch is 6.5 dB, 

meaning the refined design outperforms previous iterations and the reference patch. This, 

however, comes at the cost of fabrication simplicity, as the refined design utilizes vias 

and three separate substrates (one 3.18mm substrate sandwiched between two 0.318mm 

substrates.) It should be noted that the full design process and limitations have not yet 

been defined, but they should be in the near future. In the next section, the concept of us-

ing the techniques of this thesis regarding alternate antenna topologies is discussed. 

Fig. 7.5: Simulated return loss
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7.2.Other Antenna Types 

 Although microstrip patch antennas were the focus of this thesis, other antenna 

topologies could very well be enhanced using the techniques presented here, especially 

ones where alternate modal distributions can be developed and synthesized. The approach 

to be used for other antennas would be based around discovering these modal distribu-

tions that enhance the gain, and then modifying boundary conditions (via applying a spe-

cialized feed network or parasitics) to achieve the corresponding pattern. Although they 

haven’t been formally investigated here, this technique could theoretically be applied to 

waveguide and aperture antennas, and could certainly be applied to any ground-backed 

PCB antenna. The extension of the techniques of this thesis to other antenna types will 

likely dominate future work in this topic, as it would move the idea closer to being gener-

alized. 

7.3.Conclusions 

 This concludes the development of the enhanced gain patch antenna. Within this the-

sis, the theoretical ideology for enhancing patch antenna gain was created, followed by a 

full definition of the design process to achieve this enhanced gain, as well as the fabrica-

tion and measurement of prototypes that verified the theories and design processes dis-

cussed. In the future, it is the goal of the author to refine and generalize the techniques 

discussed here in order to maximize the applicability of these theories to real world ap-

plications from communications to wireless power transfer. Thank you for reading and I 

hope this report was of use to you. 
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A. AMPLITUDE RATIO DIRECTIVITY PLOT CREATION CODE 

theta = linspace(0, pi, 500); %theta angle definition 

t_step = theta(2) - theta(1); %step-size between theta values 

phi = linspace(0, pi, 500); %phi angle definition 

p_step = phi(2) - phi(1); %step-size between phi values 

t = 0; %single theta value 

p = 0; %single phi value 

A010 = 1; 

A010_prime = 1; 

f = 2.4e9; %freq 

lambda = 3e8/f; %wavelength 

w = 2*pi*f; %omega 

W = 3*.0125; %patch width 

L = .035; %patch length 

h = .00318; %height 

ko = w/(3e8); %free space wavenumber 

er = 3.27; %relative permittivity 

e_eff = (er+1)/2 +((er-1)/2)/sqrt(1+12*(h/W)); %effective permittivity 

dL = (.412*h)*((e_eff + .3)*(W/h + .264))/((e_eff-.258)*(W/h + .8)); %electrical length 
correction 
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L = L + 2*dL %effective patch length 

lambda_eff = lambda/(sqrt(e_eff)); %effective patch wavelength 

k = 2*pi/lambda_eff; %effective wavenumber 

%parameter initializations 

Directivity_array = []; %directivity values 

ratio_array = []; %ratio values 

ratio = .1; 

%distance step size initialization 

r_step = 1.9/199; 

sum = 0; %numerical integration parameter 

Prad = 0; %radiated power variable 

D_array_count = 1; %directivity array indexing variable 

Den_max = 0; %power density variable 

eta = 120*pi; %intrinsic impedance of free space 

%no exponentials with r included because they drop out in the power 
%calculation 

%this loop evaluates the directivity for amplitude ratio values between .1 
%and 2 

while ratio <= 2 
     
    %normalized amplitude coefficient initialization 
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    A010 = 1/(h*w); 
     
    A010_prime = A010*ratio; 
     
    %theta and phi integration variables 
     
    t = 0; 
     
    p = 0; 
     
    %this loop numerically computes the radiated power integral using eqns 
    %3.13 a-e 

    while t <= theta(500) 
     
        while p <= phi(500) 
         
         
            Z = .5*ko*W*cos(t); 
             
            %edge case compensation 
             
            if exp(j*ko*h*cos(p)*sin(t)) == 1 
                 
                X = 1; 
                 
            else 

                X = (exp(j*ko*h*cos(p)*sin(t)) - 1)/(j*ko*cos(p)*sin(t)); 
             
            end 

            Y = W*ko*cos(t)/2; 

            AF = 2*cos(ko*L*sin(t)*sin(p)/2); %array factor 

            E010 = ((ko*W*w*A010)/pi)*sin(t)*(sin(Z)/Z)*.5*AF*X; %eqn. 3.13a plus  
 array factor 

            E010_prime = -j*ko*((2*w*A010_prime*sin(t)*j*X)/(W*(    (ko^2)*(cos(t))^2 - 
 (pi^2)/(W^2))))*cos(Y)*AF; %eqn. 3.13b plus array factor  
            %integration kernal and sum iteration 
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            kernal = sin(t)*abs(E010+E010_prime)^2/(2*eta); 
             
            sum = sum + kernal*p_step*t_step; 
             
            p = p + p_step; 
             
        end         
         
        t = t + t_step; 
         
        p = 0; 
         
    end 
         
      
    Prad = sum %radiated power 
     
    sum = 0; 
     
    %computation of power density in desired maximum radiation direction 
     
    p = 0; 
     
    t = pi/2; 
     
    Z = .5*ko*W*cos(t); 

    X = (exp(j*ko*h*cos(p)*sin(t)) - 1)/(j*ko*cos(p)*sin(t)); 

    Y = W*ko*cos(t)/2; 

    AF = 2*cos(ko*L*sin(t)*sin(p)/2); 
     
    E010 = ((ko*W*w*A010)/pi)*sin(t)*.5*AF*X; 

    E010_prime = -j*ko*((2*w*A010_prime*sin(t)*j*X)/(W*((ko^2)*(cos(t))^2 - (pi^2)/  
    (W^2))))*cos(Y)*AF; 
     
    Den_max = abs(E010+E010_prime)^2/(2*eta); 
     
     
    %directivity value computation saved into directivity array 
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    Directivity_array(D_array_count) = 10*log10(4*pi*Den_max/Prad) 
     
     
     
    ratio_array(D_array_count) = ratio; 

    D_array_count = D_array_count + 1; 
     
    t = 0; 
     
    p = 0; 
     
    ratio = ratio + r_step; 
     
end 

%final plot 

plot(ratio_array, Directivity_array); 

%code appendix to be used to quickly compute voltage ratio from the graphically ex-
tracted 
%amplitude ratio value 

ratio = .7; 

V_ratio = (1+ratio)/(1+(ratio/2)) 
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B. FEED NETWORK SYNTHESIS CODE 

%Mutual Impedance Definition 

Z11 = 9.6875  +1.9498.*i; 

Z12 = 8.8658 -51.222.*i; 

Z13 = 7.2193 -51.211.*i; 

Z21 = Z12; 

Z22 = 9.4576 -.32724.*i; 

Z23 = Z21; 

Z31 = Z13; 

Z32 = Z23; 

Z33 = Z11; 

%Desired normalized voltage definition 

V1 = 1;  

V2 = .7; 

V3 = 1;  

%Desired current definition (this step computes the corresponding currents 
%that arise from the Z-Paramters and desired voltages) 

V0 = [V1, V2, V3]; 

Z = [Z11, Z12, Z13; Z21, Z22, Z23; Z31, Z32, Z33]; 
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Z_inverted = inv(Z); 

I = Z_inverted*V0'; 

I1 = I(1); 

I2 = I(2); 

I3 = I(3); 

%DPI definition 

r = I1./I2;  

q = I1./I3; 

m = I2./I3; 

Z1d = Z11 + (Z12)./r + (Z13)./q 

Z2d = Z22 + (Z21).*r + (Z23)./m 

Z3d = Z33 + (Z32).*m + (Z31).*q 

%Additional variable initialization 

step_deg = 90./299; %Electrical length increment step-size 

Zo1 = 100;   %Initial characteristic impedance 

Zo2 = 100; 

Zo3 = 100; 

Z_step = 65/49; %Characteristic impedance step size 
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min_percent = 100; %tolerance variable definition 

%Guess-and-Check loop. Conditions for loop exit: characteristic impedances 
%reach 150 Ohms or minimum percent tolerance (.5%) has been achieved. 
%Electrical lengths varied between 0 and 180 degress 

while Zo2 <= 150 && min_percent >= .5 

     
    while Zo1 <= 150 && min_percent >= .5 

     
    e2 = 0; 

        while e2 <= 180 

        e2_r = pi.*e2./180; %Convert electrical length from degrees to radians 

        gamma = (Z1d-Zo1)./(Z1d+Zo1); %Line reflection coefficient definition 

        gamma2 = (Z2d-Zo2)./(Z2d+Zo2); 

        step = 2.*pi./99; 

        e = 0; 

        min = 100; 

        minlength = 0; 

        checkval = 0; 

            while e >= -pi 
                 
                %evaluation of port current ratio with current parameters 
                %and subtraction of desired current ratio from this value. 
                %if the magnitude of "check" is low, a solution close to 
                %the desired distribution has been found. the equation is a 
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                %direct result of Eqn. 4.6a 
     
                check =  ((1+gamma).*Z2d.*exp(i.*e2_r).*(1+gamma2.*exp(-2.*i.*e2_r)))./ 
      (  Z1d.*exp(-i.*e).*(1+gamma.*exp(2.*i.*e)).*(1+gamma2)   ) - r;  
     
                 
                %statement to save current parameters if they provide the 
                %most optimal solution computed thus far in the iteration 
                %cycle 
                 
                if abs(check) < min 
         
                     abs(check); 
         
                     minlength = e; 
         
                     checkval = check; 
         
                     min = abs(check); 
         
                end 
     
                e = e - step; 
     
            end 

            %outputs for tracking program progress 
             
            min; 

            checkval; 

            electrical_length1 = -180.*minlength./pi; 

            r; 
             
            %computation of percent error for current optimum solution 

            accuracy1 = ((1+gamma).*Z2d.*exp(i.*e2_r).*(1+gamma2.*exp(-2.*i.*e2_r)))./ 
  (  Z1d.*exp(-i.*minlength).*(1+gamma.*exp(2.*i.*minlength)).*(1+gam-
ma2)   ); 
            percent_error1 = 100.*(abs(r-(accuracy1))./abs(r)); 
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            %if the current percent error is the smallest error found thus 
            %far, the input impedance of the circuit is evaluated 

            if abs(percent_error1)  < min_percent 
     
                 e1_rad = pi*electrical_length1/180; 

                 e2_rad = e2_r; 
     
    

                 Zin1 = Zo1*((Z1d + i*Zo1*tan(e1_rad))/(Zo1+i*Z1d*tan(e1_rad))); 

                 Zin2 = Zo2*((Z2d + i*Zo2*tan(e2_rad))/(Zo2+i*Z2d*tan(e2_rad))); 
     
     
                 Zin_tot = ((Zin1/2).*Zin2)/(Zin1/2+Zin2); 
                  
                 %here the input impedance is looked at by the following 
                 %"if" statement. If the resistance and reactance are 
                 %within user-defined ranges, the current transmission line 
                 %parameter set will be saved. otherwise, the current set 
                 %will be ignored. 
     

                 if real(Zin_tot) >= 5 && abs(imag(Zin_tot)) <= 100 && real(Zin_tot) <= 100 
     
                    electrical_length1_final = electrical_length1; 
     
                    electrical_length2_final = e2; 
     
                    accuracy_final1 = accuracy1; 
     
                    Zo1_final = Zo1; 
     
                    Zo2_final = Zo2; 
     
                    min_percent = percent_error1 
     
                    percent_error_final1 = percent_error1; 
     
                    Zin_tot_save = Zin_tot; 
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                 end 
         
   
     
            end 

            e2 = e2 + step_deg; 

        end 

        Zo1 = Zo1+Z_step; 

    end 

    Zo2 = Zo2+Z_step 

    Zo1 = 100; 

end 

%the following statements extract the final parameters 

    e = -pi*electrical_length1_final/180; 

    min_percent = 100; 

    min = 100; 

    e1_r = pi*electrical_length1_final/180; 

    e2_r = pi*electrical_length2_final/180; 
     

    %if statement to account for symmetry 

    if I1 == I3 
     
        Zo1_f = Zo1_final; 
     
        Zo2_f = Zo2_final; 
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        Zo3_f = Zo1_final; 
     
        accuracy_final2 = accuracy_final1; 
     
        percent_error_final2 = percent_error_final1; 
     
        e_length_f1 = 180*e1_r/pi; 
     
        e_length_f2 = 180*e2_r/pi; 
     
        e_length_f3 = e_length_f1; 
         
     
    else 
     
        Zo1_f = Zo1_final; 
     
        Zo2_f = Zo2_final; 
     
        Zo3_f = Zo1_final; 
     
        accuracy_final2 = accuracy_final1; 
     
        percent_error_final2 = percent_error_final1; 
     
        e_length_f1 = 180*e1_r/pi; 
     
        e_length_f2 = 180*e2_r/pi; 
     
        e_length_f3 = e_length_f1; 
     
    end 

%final outputs 

min_percent 

r 

accuracy_final1 

percent_error_final1 
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m 

accuracy_final2 

percent_error_final2 

Zo1_f 
         
e_length_f1 
        
Zo2_f 
         
e_length_f2 

Zo3_f 
         
e_length_f3 

        
Zin_tot_save
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