
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

8-2016

Measuring mashup similarity in open data
innovation contests
Zhounan Song
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Song, Zhounan, "Measuring mashup similarity in open data innovation contests" (2016). Open Access Theses. 1009.
https://docs.lib.purdue.edu/open_access_theses/1009

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/1009?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Zhuonan Song

MEASURING MASHUP SIMILARITY IN OPEN DATA INNOVATION CONTESTS

Master of Science

Sabine Brunswicker
Chair

John A. Springer

Kathryne A. Newton

Sabine Brunswicker

Michael Dyrenfurth 06/06/2016

MEASURING MASHUP SIMILARITY

IN OPEN DATA INNOVATION CONTESTS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Zhuonan Song

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2016

Purdue University

West Lafayette

ii

ACKNOWLEDGEMENTS

I have received supports, helps and directions from so many people, and it is hard

for me to summarize all of them in a single paragraph. First, I would like to say thank you

to Dr. Sabine Brunswicker for accepting me as her advisee and guide me during my two-

year studying as a Master student at Purdue University. She opened the door of open

digital innovation for me and lead me to explore some inspiring research areas on

innovation and computational thinking. Dr. Brunswicker helped me to breakthrough the

mindset in studying and researching and start to focusing on making practical

contributions to the work I was working on. I would thank my committee members, Dr.

John A. Springer and Dr. Kathryne A. Newton, for their help during my progressing on

thesis and advises on the questions I met during the research.

Thanks to my friends in the RCODI research group, Albert Armisen, Allison C.

Lamb, Chien-Yi Hsiang, Eonyoung Cho and Bjorn Jensen. They helped a lot on my work

in the research team and encouraged me to overcome any challenge I met during my

research process. It is also enjoyable and inspiring to work with them, both personally

and professionally. Thanks to the department of Technology Leadership and Innovation,

which provides well-designed program for international graduate students and helps them

to smooth the study experience at Purdue University, as well as get used to the cultural

difference in a different country.

iii

Special thanks to my girlfriend, Yuning. Without the encouragement and supports

from her, I could never process multiple challenging tasks all together and finally make it

happen to defense my thesis. Her understanding, which touches my soul deeply, allows

me to be the person I want to be and reach to the dream that I should follow.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. ii	

TABLE OF CONTENTS ... iv	

LIST OF FIGURES ... vi	

LIST OF TABLES .. vii	

ABSTRACT ... viii	

CHAPTER 1.	 INTRODUCTION .. 1	

1.1	 Background ... 1	

1.2	 Problem Statement .. 4	

1.3	 Scope ... 5	

1.4	 Research Question ... 6	

1.5	 Significance ... 7	

1.6	 Assumptions .. 9	

1.7	 Limitations .. 9	

1.8	 Definition of Key Terms ... 10	

CHAPTER 2.	 literature review .. 12	

2.1	 Innovation Contest and Transparency ... 12	

2.2	 Code Similarity Detection ... 14	

2.3	 Functional Feature Similarity Detection ... 18	

CHAPTER 3.	 FRAMEWORK AND METHODOLOGY ... 22	

3.1	 Research Design Background and Settings ... 22	

3.2	 Research Design and Framework .. 23	

3.2.1	 Code Similarity ... 24	

3.2.2	 Functional Feature Similarity .. 26	

3.3	 Data Analysis Plan .. 29	

v

Page

 3.4	 Pilot Testing .. 30	

3.4.1	 Technical Similarity .. 30	

3.4.2	 Functional Feature Similarity .. 32	

CHAPTER 4.	 RESULTS AND FINDINGS .. 35	

4.1	 Review of the Problem .. 35	

4.2	 Research Design Background and Data Overview ... 37	

4.3	 Code Similarity Measurement ... 38	

4.4	 Functional feature Similarity Measurement .. 40	

4.5	 Discussion ... 46	

4.6	 Contributions and Limitations ... 48	

4.7	 Future Research ... 50	

4.8	 Summary and Concluding Remarks .. 51	

LIST OF REFERENCES .. 1	

APPENDICES	

Appendix A	 List of Libraries ... 56	

Appendix B	 Dictionary for Google Map ... 57	

Appendix C	 Dictionary for Graph-style Visualization Libraries 58	

Appendix D	 Examples from the Dictionary for D3 Library .. 59	

Appendix E	 Examples from the Dictionary for JavaScript ... 60	

Appendix F	 Examples from the Dictionary for HTML ... 61	

Appendix G	 Examples from the Dictionary for Semantic-ui .. 62	

Appendix H	 Examples from the Dictionary for BootstrapJS .. 63	

Appendix I	 Function similarity for map components .. 64	

Appendix J	 Function similarity for visualized graph components 66	

Appendix K	 Function similarity for interaction form components 68	

Appendix L	 Overall function similarity ... 70

vi

LIST OF FIGURES

Figure Page

Figure 2.1 An example of generating AST ... 17	

Figure 2.2 Clustering of the nodes (features) in a logical form (Nikerson & Corter, 2008)

... 20	

Figure 2.3 The logic structure of the features (Nikerson & Corter, 2008) 20	

Figure 3.1Algorithm to wash data and upload to MOSS .. 26	

Figure 3.2 Algorithm for MOSS matching lines detection ... 26	

Figure 3.3 Ironhack mashup components ... 28	

Figure 3.4 Algorithm for functionality feature matching ... 29	

Figure 3.5 Histogram for code similarity – pilot .. 31	

Figure 3.6 Histogram for functional feature similarity - pilot .. 33	

Figure 4.1 Histogram for code similarity .. 1	

Figure 4.2 Code similarity result from MOSS system .. 40	

Figure 4.3 Histogram for map components similarity .. 42	

Figure 4.4 Histogram for visualized graph components similarity 42	

Figure 4.5 Histogram for interaction form components similarity 42	

Figure 4.6 Histogram for overall functional feature similarity ... 42	

Figure 4.7 Projects with highest functional feature similarity score 46	

Figure 4.8 Mashup reuse in Purdue Ironhack ... 51

vii

LIST OF TABLES

Table Page

Table 2.1 Code Similarity Measurement Features .. 18	

viii

ABSTRACT

Song, Zhuonan. M.S., Purdue University, August 2016. Mashup Similarity in the Context
of Open Data Innovation Contest. Major Professor: Sabine Brunswicker.

Contests have become an important instrument for fostering the development of

novel open data mash-ups, in short open data innovations. Literature calls for new

methods for measuring the similarity of open data mash-ups in order to identify code

cloning and creative re-use of components of applications. Theoretically grounded

computationally methods for identifying the similarity of open data contests are lacking.

This study explores the similarity measurement of data-based mashups in the context of

an open data innovation contest. Three different dimensions of mashup similarity are

defined: code similarity, functional feature similarity, and visualized feature similarity.

The results from the contest, including the source code, the running project and the

descriptive documents, are collected as the research data for this study. Data analysis is

based on the design and development of computational approaches to measure

technology and functional similarity. The findings of this study will be helpful in better

understanding the similarity of solutions in an open data innovation contest. This study

contributes to the theoretical and practical approaches for similarity measurement,

especially in the field of mashup development.

1

CHAPTER 1. INTRODUCTION

This chapter introduces the phenomenon of open data innovation contests

addressed in this study. Further, it articulates the scientific problem of measuring

similarity of open data mashups and presents the research questions. The chapter

concludes by presenting the assumptions of similarity measurement design, as well as the

scope and importance of this thesis.

1.1 Background

The concept of open data has been of increasing significance and regarded a source

of innovation in the 21st century. Following the principle of open source, the open data

movement supports the thought that some of the data should be accessible to everybody

in terms of usage and distribution without any cost, restriction on copyrights or control on

patents (Auer et al., 2007). Thus, open data is beneficial because it breaks the boundary

of information and enables the accessibility of valuable data to different individuals and

groups around the world. It also provides the machine-readable information instead of

complex text to support data processing in information systems. Open data has become

an important source of digital innovations (Perkmann & Schildt, 2015). The data.gov

website, for example, is an open data platform generated by the United States

government that offers developers access to over 200,000 datasets, which they can use to

create digital innovations, such as mobile apps or web applications, that address

2

governmental or civic problems in the areas of health, energy, or safety. To spur open

data innovations, both governments and firms make use of open innovation contests to

turn open data into novel and useful applications (Shadbolt et al., 2012). The Google

Lunar-X contest is an example of how an innovation contest works: this contest promises

$20 million to the team that can achieve a successful soft-landing of a specific spacecraft

on the Moon, move the spacecraft over 500 meters, and transmit images back to Earth.

Most of the participants in this contest have backgrounds in engineering or physics,

which are related to the potential required skillset for a spacecraft project. The organizer,

Google, will provide essential resources, which include the available spacecraft

techniques, operational APIs on spacecraft hardware and historical data from the

spacecraft databases, for the individual or teams of participants.

In the context of open data, challenge.gov is a platform that was launched by the

U.S. government to leverage the creativity and skills of developers to create novel digital

software applications for web and mobile applications. In addition, local open data

hackathons, a particular form of open data contests, have become an important form of

open data contests to spur digital innovations. Most of the applications developed are

based on open data and are typically in the web application hybrid style commonly called

mashups, meaning they utilize data from multiple sources to create an end-user service in

a single software interface. Mashups are faster and allow for easier integration compared

with website data portals and they are good at processing multiple data sources by

accessing open data API’s frequently (Yu et al., 2008).

Existing literature points out that the design of the open data contests is pivotal for

the outcome of the contest (Boudreau et al., 2011). Indeed, researchers have identified

3

some initial empirical evidence that transparency about what existing best-practices of

others’ solutions in a contest are would help the developers to learn from others and

improve their own solution (Brunswicker et al., 2016). This learning activity will trigger

reuse, which means the participants duplicate some components from other solutions and

then their projects become similar (Bildhauer et al., 2009). At the same time, in the field

of open data contests, transparency is also one of the key elements used to encourage

participants to provide innovative solutions (Henriques, 2007). The positive part for

transparency is that it will encourage the transformation of information inside entities.

The use of transparency in an innovation contest process also will increase the ability of

participants to address the problems, search for and locate external resources, and create

better solutions. So generally there are three kinds of reuse activities: the greenfield

projects, which stands for no reuse and creating novel projects; the cloned projects where

projects simply copy others’, and the augmented projects where the projects will develop

some novel ideas based on the reuse of others’ code (Brunswicker et al., 2016).

However, reuse in a transparent context will cause problems in identifying unique

solutions created by the participants and distinguishing the components of the solutions

that are reused by the participants. When the participants decide to learn from or directly

copy the basic development and ideas from others, it becomes more difficult to determine

whether or not their developments are because they reuse some code but also

simultaneously put forth their own efforts. Plagiarism detection among all the project

solutions is also required in a transparent contest.

4

1.2 Problem Statement

Given the need for identifying the degree and type of re-use of components of a

solution in an open data contest, researchers require reliable methodologies for

conceptualizing and measuring the similarity between two or more open data mashups.

Higher similarity between two projects implies deeper reuse of development and design.

Measuring similarities between software is not a new field of research. In the field of

code similarity measurement, there are multiple ways to find similarities among different

enterprise software (Yamamoto et al., 2005). However, mashups have a multi-layered

architecture with different levels and can be different in similarity measurement

compared with large-scale softwares. Some researchers have the viewpoint that the

mashup architecture can be separated into three different dimensions: technical function,

feature and user experience, and user visualization (Rodriguez & Chinea, 1998). The

technical functions are the fundamentals to make the mashup work; the functional

features can provide the interfaces to end-users to meet their requirements; the visualized

feature will also influence the usage of the mashup as well as the decision-making

process of end-users (Edberg et al., 2012). Thus, the similarity for mashup projects can

also be measured in these three dimensions.

As for the level of technical similarity, even though there are sufficient approaches

for measuring the similarity of source codes in different ways, none of these approaches

is developed to deal with the specific code similarity in the context of an open data

contest (Cosma & Joy, 2012). Moreover, because there are three dimensions in the field

of mashup architecture design, the definition of similarity among mashup projects should

also cover the dimensions in addition to the code similarity. Functional features and

5

visualized features will also have an effect on the results of mashup evaluation besides

the source code itself (Cosma & Joy, 2012). More researches are needed to address the

similarity measurements in different dimensions for mashups. This study will explore the

similarity of mashup solutions from two of the three different levels, which are the

technical source code, and functional features. The two levels of measurement in this

study are supposed to be developed with practical computational methods and theoretical

supports.

This study expands the knowledge of mashup similarity measurement. It provides

researchers and organizers of software-related contests with practical approaches for

measuring code similarity based on a meta-analysis on the literature about software code

similarity. Specifically, it focuses on the area of functional feature similarity by building

the basic framework and methodology for definition and measurement. This study

contributes to the function similarity in the area of psychology and computer science

since the existing literature is lacking in this area compared with the one of technology

similarities. The study also suggests further research on the relationship among the

different levels of dimensions of similarity.

1.3 Scope

Mashup application development is a software development activity focused on the

combination of data, visualization and interaction features. The design of mashup is one

of the primary objectives of today’s open data contests. It is distinct from other software

development activities as the open data mashups combine different functions into a single

interaction page, which requires more frequent data interaction and more personalized

6

functions (Yu et al., 2008). Similarity of mashups will be part of the research field of

solution evaluation due to the reuse phenomenon in the transparent contest.

This study will focus on the code and functionality feature similarity among

mashups in transparent open data contests. The mashup projects studied in this research

are all developed in the JavaScript coding language, which is the major language for

web-based application development. The mashups also will follow the best practice of

JavaScript development provided by w3school. Restricted programming libraries are

provided to be applied in these mashups. By making such a scope restriction, this study

will be able to measure the similarities without the interference introduced by the use of

multiple coding languages as well as other programming concerns such as different

programming styles and programming library tokens.

1.4 Research Question

The major questions for this research are as follows:

Q1: How can similarity be conceptualized for mashups developed in transparent open

data contests?

Q2: How can similarity be computationally measured for mashups developed in

transparent open data contests?

To answer these research questions, this research adopts a design science approach

using the following principles: 1) theoretically develop a framework for measuring the

similarity of mashup designs. 2) develop a computational method for measuring

similarity of mashups. 3) testing and empirically validating the computational method in

a test case approach specifically designed for this research (Berndt & Watkins, 2004).

7

By developing the framework, it extends existing frameworks on mashup design.

The development of the computational methodology will draw upon a structured review

of established methods of code detection algorithms. Further, it will enhance the existing

mashup similarity measurement by borrowing from feature detection approaches in the

area of psychology and decision support system to learn about the feature similarity in an

information abstraction perspective (Tversky, 1977).

As for the evaluation of the computational method, this study will ensure the internal

validity by exploring the existing code similarity measurement approaches and pick the

one that fits the mashups in the context of open data contest best. The approach for the

measurement of functional feature similarity is developed on the computation-based

theories. The external validity in this study is tested for the specific context of the

transparent open data context with the requirement for open data technics, limited

programming languages and external libraries.

1.5 Significance

Different types of software may require different techniques to measure their

similarities. This study clarifies the definition of similarity of mashup applications in the

context of transparent open data contests. There is little research focusing on the area of

code similarity and evaluation. However, in the existing literature about software

similarity, less attention has been paid to examining specific cases from the functionality

feature and user visualization perspectives. The two-factor model of software offers a

different perspective in the area of software evaluation, where researchers could better

understand the similarity among different software in terms of features (Zhang & Dran,

8

2000). This study will use homology modeling for the similarities measurement of

functionality features and visualization features, which will provide a new perspective on

the evaluation of software, especially mashup applications (Rodriguez & Chinea, 1998).

Rather than only focusing on these two dimensions, this study also will include the

software similarity judgment and evaluation from the technique perspective. The gap

between theoretical and analytical approaches is that previous studies are mainly focused

on the similarity of technology functions rather than the functionality features of the

mashups. These multiple approaches will help the researchers in the evaluation process

for feature and user experience to make a fair scoring scale. Based on the similarities,

judges and organizers can assign the same scores to different solutions with high

similarity features even if they look different in a coding competition. If the approaches

for mashup similarity could be identified, the contest organizers can have practical

methods to evaluate the solutions of participants and detect plagiarism. They also will be

able to analyze particular behaviors of participants based on machine learning and

analysis approach in this study.

From the theoretical perspective, this study will enrich the research on mashup

similarity in the context of transparent open data contests. Based on the definition of

multiple dimensions of software mashups, this study will deal with the mashup similarity

problems in a computational perspective in the different dimensions, which will benefit

from further research on the correlations among each dimension. Moreover, by looking

into the particular behaviors of participants in the coding contest using information

system diagrams, this study also will be helpful to the research on the behavior analysis

from a psychology perspective (Nickerson et al., 2008). The insights in this study on the

9

software similarity and evaluation will help the in design of software transparency and

reuse. The analytical definition of the concept and operational measurement process in

the area of software similarity will benefit the follow-on reuse in the innovation systems

(Boudreau & Lakhani, 2014).

1.6 Assumptions

The following assumptions are identified for this study:

1) All the mashup projects collected for this study are developed in the

required programming language, which is JavaScript in the selected

contest.

2) The external public service to support this study will follow the

description of its theoretical design of fingerprint approach (Schleimer et

al., 2003).

3) The algorithms and interfaces are properly designed to extract, transform

and process the source code data.

4) The online dictionaries for JavaScript and other packages will cover all the

language statements in any scenario.

1.7 Limitations

The following limitations are identified for this study:

1) The study will focus on two of the three levels of mashup dimensions: code

similarity and functional feature similarity.

10

2) The generalizability in this study is limited and only applies to the study with

104 mashup projects developed during Purdue GreenIronhack.

3) The validation of the computational approaches will be tested on the designed

test cases for the mashups in open data innovation contest.

4) As for the external validity, this study will only focus on the computational

approaches in similarity measurement for JavaScript programming language

and limited external programming libraries.

5) This study has the scalability to the open data context with limited

programming languages and libraries.

1.8 Definition of Key Terms

Innovation Contest – An innovation contest is an activity or process of the industrial

process, product or business development. It will bring participants in a contest

into the context of competing to solve a specific problem (Piller & Walcher,

2006).

Open Data – Some digital information should be available to everybody to access and use

without any cost, restriction on copyright or control on patents (Auer, 2007).

Transparency – “Transparency is defined as the perceived quality of intentionally shared

information from a sender.” It is practiced in companies, organizations,

administrations, and communities (Schnackenberg & Tomlinson, 2014).

Mashup Application – “Mashup is a web page, or web application, that uses content from

more than one source to create a single new service displayed in a single graphical

interface.” (Yu et al., 2008).

11

Code Similarity – “Code similarity is a computer programming term for a sequence of

source code that occurs more than once, either within a program or across

different programs.” (Chilowicz et al., 2009).

Functional feature similarity – Feature similarity, or functional feature similarity is a

metric defined to measure the similar components between different programs in

the perspective of end-user functions (Tversky, 1977).

Visualized Feature Similarity – “Two geometrical objects are called similar if they both

have the same shape, or one has the same shape as the mirror image of the other.”

(Bowman et al., 2012).

12

CHAPTER 2. LITERATURE REVIEW

This chapter provides a summary of recent studies in the areas of software

similarity evaluation in the context of open data innovation contests, providing both a

basic understanding of the methods in the subject area as well as the new methods for

code similarity and functional feature similarity measurement.

2.1 Innovation Contest and Transparency

The definition of an innovation contest, as defined in the first chapter of this thesis,

is a competition where innovators make use of their background knowledge, talend and

past experience to create solutions for a specific challenge (Piller & Walcher, 2006).

Organizers of innovation contests could include individuals, groups or firms, according to

previous research. Organizers will design the innovation contests around a certain topic

or context. The expected outcomes of these contests may vary based on the aim of the

activities. The solutions or end products could be as simple as a prototype, an idea or a

textual description, or they could be as complex as creating a practical working project.

The organizer will circumscribe the target group of participants by defining the topic and

degree of elaboration (Buillinger, Neyer, Rass & Moeslein, 2010). The organizer has to

deal with the target of the population and the satisfaction issues, where the participants

are more willing to enter the contests with better development supporting system and

evaluation process, to involve more participation. Motivation is another factor

13

contributing to one’s willingness to take part in an innovation contest. It generally could

be affected by introducing incentives such as rewards (Ogawa & Piller, 2006). After the

process of participants solving the problems, the organizer has to find a method to

determine the ranking of the solutions, which is called the evaluation process. Different

evaluation methods may lead to different results in determining the best solutions. The

methods used to rank the solutions also will have an impact on the outcomes of the whole

contest in the field of further influence and promotion effects.

The degree of transparency is important to an innovation contest. The ideas behind

transparency are about the issues on information processing and information technology

(Sampaio, 2010). In the context of an innovation contest, transparency means the

accessibility of the internal resources and other information such as the scores or source

code of others to the participants. Looking at software development transparency, for

example, Meunier (2008) states that software development transparency is the condition

where all the internal programming parts are available to the users and other

programmers. It could be through well-defined documentation or a highly commented

project with source code. By making the source code open to other programmers,

modules and functions in the original project can be reused to build new features, which

will increase efficiency of development. A high level of transparency in an innovation

contest will encourage the participants to more deeply engage in the contest and learn

from each other about not only the approach of developing a certain feature but also to

create novel ideas during development.

14

2.2 Code Similarity Detection

Previous researches have reported that approximately 5% to 10% part of source

code in the large computer programs is duplicated code (Lague & Proulx, 1997).

Programmers will reuse others’ code by brute-force copying fragments when their

projects have similar requirements to the developed ones. Especially in the objected-

oriented programming languages, the reuse of code is more common because the code is

well structured and easy to be used in a different programming context (Becker, 1995).

There are several reasons and benefits for reusing the code from other projects. First, it

would be easier for developers to make a copy of a code fragment compared with

building the basic logic and variables for the program (Ducasse, Rieger & Demeyer,

1999). Second, the code in an existing software project is more likely to be robust and

well-tested. When in terms of time and efficiency, programmers are also tending to reuse

code fragments from existing projects to maintain high performance of their own project

process (Ducasse, Rieger & Demeyer, 1999). Moreover, in some system development

processes, the reuse of code is an essential strategy for the developing team to develop in

a well-structured work arrangement (Baxter & Yahin, 1998).

Scholars have identified at least three approaches for detecting code clone and

measuring the similarity of software in different perspectives and situations. First, the

code similarity can be measured based on lexical unit, which includes strings and words

in the context of software source codes. It will not use any textual transformation method

on the source code before measuring the similarity and the source code will be delivered

to the similarity calculating program directly in most cases. In this kind of approach,

hashing is widely used for presenting the lexical units in the source code. Ducasse (1999)

15

used hash data structures to store the strings in the source code in lines. Followed with

internal textual comparison, Ducasse got the percentage of similar source code lines and

then calculate the overall similarity among different softwares. The hashing of strings

could also be used in generating dot plots, which supports the visual comparison among

different files. In addition to the string-based lexical units, researchers have also

developed token-based structures to act as a supplementary to the comparison. After the

normalization of tokens in strings, suffix trees could be generated for tokens per line,

which supports the similar units searching between two textual structures (Baker, 1995).

Thus, without knowing the overall structure of the source code, textual units are helpful

for measuring similarity directly in an efficient way. However, the accuracy of this

approach is not guaranteed and varies in different coding styles and architectures of

source code.

Second, from a structural perspective, people can use abstracted content structures

to measure the similarities among different softwares. Abstract syntax tree (AST) is

commonly used for building abstracted tree or graph structures in this approach. An

abstract syntax tree, or syntax tree, is a concept in computer science using a tree data

structure to represent the abstracted syntax structure in the source code in a particular

programming language. It will capture the essential structure of the source code in a tree

form, while omitting the syntactic details at the meantime. The idea of abstraction was

raised by Baker in 1995, when the area was focusing on the large maintenance systems.

Baxter and Yahin (1998) implemented the structure of abstract syntax tree in a practical

approach to detect the code duplications in regular programs regardless of the language

for developing. The basic problem in the code duplication and similarity detection is that

16

different arrangement of fragments may lead to the same outcomes, which means that by

modifying the orders or variable names of original code, the new program will be able to

perform the same function in a different coding format. In AST, each node of the tree will

represent a construct component in the source code. All the syntaxes are abstracted

regardless of the real definition of names and arrangements. With the main idea of

maintain the original logic in the tree, AST will store the conditions and judgment bodies

in paths and the variables in the leaf nodes. The order in the paths will also represent the

logic flow in the source code. In this way, the study will be able to detect both the

duplication and the similarity using a few parameters. In the research of Baxter and

Yahin (1998), the similarity is defined as the matching of two sub trees in ASTs for

different source code. The similarity between two abstract syntax trees is defined in the

following formula:

Similarity = 2 * S / (2 * S + L + R)

where S represents the number of shared nodes in the two ASTs; L represents the number

of different nodes in the left AST; R represents the number of different nodes in the right

AST. An example of generating and structure of the AST is shown in Figure 2.1.

17

Figure 2.1 An example of generating AST

While the similarity of source codes in different softwares can also be measured in

a metric-based approach. Researchers could cluster the vector of features to represent the

procedures using neural net comparing metrics (Antoniol et al., 2002). Antoniol studied

the code duplication detection in Linux kernel, which is a large, open source software

system. By taking advantage of the neural network and the information distance in the

source code, this kind of similarity measurement approach could easily be applied to

different types of programming languages regardless of the difference in grammar and

structure. Besides, it could also be used to locate specific code fragments during

comparison, which will benefit the code revising process. On the other hand, the metric-

based approach relies too much on the algorisms and is hard to be tested or verified all

automatically. When it comes to website, the metric will detect begin-end blocks in the

source code as basic fragments, which makes it hard to cover all the attributes stored in

XML format.

18

In addition to these commonly-used approaches, the code similarity measurement

could also be measured in the machine learning method. This approach will be able to

deal with multiple types of similarities in different programming languages in high

accuracy and efficiency (Basit & Jarzabek, 2009). The only significant prerequisite is to

obtain enough existing results from successful similarity detection for the algorithm to

learn.

The advantages and disadvantages of different approaches for calculating the code

similarity could be summarized in the Table 2.1.

2.3 Functional Feature Similarity Detection

The feature similarity is based on the similarity of signals, views and interactions.

Rothkopf (1957) tried to research on the signal similarity based on the 598 subjects

recognizing Morse Code signal pairs. The pairs were presented in a randomized order and

the result would be compared in the percentage of agreement of the subjects. The idea of

this kind of similarity detection is kind quite old, but some of the major fields are built

based on this the subjective approach. Law, Roto and Hassenzahl (2009) developed a

Table 2.1 Code Similarity Measurement Features

19

survey-based approach for understanding, scoping and defining the user experience and

product features, especially in the area of software. The main aim of their survey was for

the promotion of active discussions in the area of user experience, which would be

explored by a group of people who were active in the community. Statements,

Definitions and Background were the three sections in the questionnaire used in the

survey. With the result of this research, researchers would be able to learn about the

definitions on a certain level of agreement and in different perspectives. They could also

have reflections on the defined features to other experiences.

Tversky (1977) provided an approach to measure the feature similarity in a set

theory perspective. In his research, features were resented in distinctive clusters. Each

cluster was a subset of a group of features that were learned. The similarity between

objects was presented as a measurement of their common and functional features. There

would be overlapping among the different clusters in the research. Moreover, he tried to

present the feature structures in a form of generated tree. There were no overlaps in

different sub trees and each leaf was unique in the tree structure. The feature tree could

be interpreted as a horizontal graph or hierarchical clustering scheme. The length of arc

represented the weight of the cluster that was followed by a certain feature.

A process was developed by on Tversky (1977), Holzmann and Smith (2000) on

feature verification of software. Their research was to develop features as properties

which could be handled within a defined logic. There would be a lookup table for the

logic requirement checking and system verification. The features were also divided into

different subgroups without violation. Nikerson and Corter (2008) also developed a

diagram approach for the feature detection in the information system design. The

20

diagrams were used to represent the logical structure (Figure 2.3) and content of feature

groups (Figure 2.2). They could show the result of spatial information in diagrams, which

would be able to present both the logical connections and content of the features.

Figure 2.2 Clustering of the nodes (features) in a logical form (Nikerson & Corter, 2008)

Figure 2.3 The logic structure of the features (Nikerson & Corter, 2008)

There is existing research on the measurement of functional feature similarity for

softwares. However, most of them are based on human coding or some other subjective

approaches, which would be inefficient for the measurement process (Branson et al.,

21

2014). Feature of softwares is well defined in the field of computer science. Researchers

also want to find computational approaches to measure the functional feature similarity

and make use of the source code. Deep learning, for example, is a machine learning

method which will be able to measure the function similarity based on source code

(Weston et al., 2012). But it will not address the requirements and interactions from end-

users. In order to do that, this study needs to learn from the psychological design and find

the clusters of nodes for the end-user functions. In the theory of decision support system

(DSS), functionality could also be defined based on the decision parameters provided in

the system (Özacar, 2016). Özacar used structured data and parameters to define the

function, which was designed to meet the requirement of the users on a data-related

website tool. The variables were defined prior to the experiment and were filled with

practical parameters in a subjective approach. The DSS relies largely on the case data and

the example procedures, which means that the study can ran a scenario-based checking to

list all the significant parameters before starting the real experiment (Sharda et al., 1988).

The results showed that the functionality of decision support system could be well

developed by defining the basic units of decision parameters properly, which can be

applied to the computational matching of parameters for similarity measurement.

22

CHAPTER 3. FRAMEWORK AND METHODOLOGY

The research framework, sample set, testing methodology and the specific nature of

data collection are introduced in this chapter. First, the purpose of this study and the

detail methodology with the reasons of why those approaches are chosen for the research

are described in this chapter. Second, this chapter contains the detail of the data collection

process during the research followed by a plan of data analysis. At the end, this chapter

presents the results of a pilot test to ensure the validity of the whole methodology and

analysis plan.

3.1 Research Design Background and Settings

The project implements a design science approach to develop algorithms for

mashup similarity measurement based on the project data collected from the open data

contest at Purdue University. 1There will be at least three sessions for this competition

and this study collected data of project source codes from one of these sessions. Students

are only allowed to participate in one of these sessions. An online community will be

built for participants to communicate and interact with each other. There will be four

phases in each session (Brunswicker et al., 2016). Participants will be required to submit

their current iterations of the project at the end of each phase, which include the source

1 This study is designed based on the NSF grant with the grant number 107673 sponsored
by the Science of Science and Innovation Policy (SciSPI) program of SNF, which is
developed by the research center of open digital innovation at Purdue University.

23

code, documentation and project package ready to be built. The goal of this study is to

apply the practical computational approach for defining and measuring the similarity of

mashup applications in the open data contest in the dimensions of technology,

functionality feature and visualized feature. All the participants should be the students at

Purdue University in West Lafayette.

A student sample size of approximate 30 students from a Purdue graduate class will

be encouraged in our coding contest in the selected session. All students in these

activities have the opportunity to participate in this study regardless of age range, gender,

or ethnicity. During the coding contest, all the participants are required to develop a

mashup application based on open data to solve local practical problems. The mashups

should use JavaScript as their major programming languages and Google Map API is

required to be enrolled during the development process. The mandatory requirements also

include that participants should make use of at least one of the three JavaScript data

visualization packages, which are D3.js, Arbor.js and Sigma.js. During each hacking

phase, participants will get their feedback scores at the end of that phase and the running

projects and source codes will be available to all the participants. They can learn from

each other’s code and ideas as well as reusing some outstanding development segments

in the source code.

3.2 Research Design and Framework

The original data collected from the research would be the source code of the

projects, the running projects and the descriptive documents for the projects. It would be

challenging to maintain these data before the analysis section. In this study, the three

24

dimensions of data will be operated separately to get the processed data. There will be

specific approaches for dealing with the data in each dimension.

3.2.1 Code Similarity

The advantages and disadvantages of different approaches for calculating the code

similarity has been developed in the literature review section (Table 2.1).

As the aim of this study is to find practical computational approaches to define

similarity, the selected method should be able to go through the source codes in different

structures, semantically and textually. It should also be efficient and accurate enough to

support the final evaluation of the projects without human support and pre-request. When

taking about the mashup development and the context of open data contest into

consideration, the solutions in the competition would not be large scale software projects

but small scale web-based applications. In order to accomplish these requirements, this

study will use MOSS, which is a web-based plagiarism detection tool developed by

Stanford University, to measure the similarities among different mashups in the contest.

The MOSS system will use local algorisms to calculate the fingerprinting among

documents (Schleimer et al., 2003). The basic strategy of the algorism in MOSS system

will cover both the semantic and structural approaches to detect similar fragments in the

source code (Cosma & Joy, 2012). It could also be learned from the features of different

similarity measurement approaches in Table 2.1 that MOSS will be able to meet all the

requirements for this study by combining structural and semantic approaches together.

Compared to other plagiarism detection tools available online, MOSS is also better at

25

dealing with specific languages such as Java and JavaScript, which is required as the

major language for the selected mashups in this study (Hage et al., 2011).

The MOSS system will first develop an abstract syntax tree (AST) generating

method to build ASTs from different mashups. While processing the mashup projects

collected from Purdue Ironhacks, an AST tree will be built for each mashup project. The

MOSS system will recognize the similar ASTs between two projects and apply the

semantic similarity measurement in the similar AST blocks (Cosma & Joy, 2012). The

measurement of similarity between two projects will be based on the semantic matching

in lines in each node structure in the ASTs. And the formula for code similarity in MOSS

system is defined as:

Similarity = 2 * S / (2 * S + L + R)

The semantic measurement would be based on the matching algorism of textual, which is

the number of lines in MOSS system. This study will develop an interface (Figure 3.1)

program to pre-wash the data and send source codes to the MOSS server and get

feedback reports from the server. The similarity will be calculated by crawling and

analyzing the data from the feedback reports.

26

Figure 3.1Algorithm to wash data and upload to MOSS

Figure 3.2 Algorithm for MOSS matching lines detection

3.2.2 Functional feature similarity

Based on the literature review of feature similarity, this study uses the method of

set theory and the decision support system theory to measure the functional feature

similarity. The functions of the solutions should be divided into separate sets with

different characteristics. The weight of matched sub-features will be the similarity result

27

between two projects. This study will go through a scenario-based checking to find out

all the related requirement components in mashups and find decision parameters by

figuring out the specific tokens in the source code. These components will be used for

building structured clusters to support the computational measurement and an overall

score for the whole mashup. The parameters will be used to calculate the sub-similarities

for different components.

In order to operate the feature separating process automatically instead of

subjectively, this study will use the pattern matching based on user interface tokens in the

source code for each project. By learning from the theme and requirements of the

competition, there will be three major components in each mashup: Google Map

interfaces, data visualization graphs and interaction HTML forms (Figure 3.3). For each

major component, parameters will be collected to perform the whole functionality for the

component. A dictionary for all the potential parameter tokens is built to support the

functionality parameter matching in the computational approach. The dictionary is built

based on all the user interface tokens for Google Map, three required data visualization

JavaScript libraries in the contest and 5 other commonly used front-end development

JavaScript libraries (see appendix).

28

Figure 3.3 Ironhack mashup components

A program will be developed to parse all the JavaScript and HTML contents in

those structured mashups to find out the matching of patterns among different projects.

The result of feature similarity between two projects will be shown as the percentage of

matched patterns in the decision parameters. As the parameters all come from web

programming languages, they could be equally weighted in the same kind of web

applications or mashups based on the software engineering theory. By learning from the

Tversky index measurement (1977) for equally weighted parameters, the formula could

be defined as:

Similarity = 2 * S / (2 * S + L + R)

29

S represents the total amount of decision variables in two projects, L represents the

number of different variables in the first project and R stands for the number of different

variables in the second project.

To ensure the validity of this practical approach, this study will enroll example

test cases (see Appendix) on the algorithm to measure the basic functionality parameters

in the source code. The 10 test cases cover most of the potential development cases in

mashup development in Ironhack including the map development, visualization design

and other basic user interactions. Human coding is used for detecting all the matching

parameters in these cases and the results would be compared with the parameters detected

by the computational algorithm.

Figure 3.4 Algorithm for functionality feature matching

3.3 Data Analysis Plan

The processed data is collected from the data collection process by applying

different evaluation approaches to evaluate the different dimensions. In the measurement

30

of code similarity, the accuracy and validity of results are guaranteed by the previous

researches on the MOSS system. And in the functional feature similarity measurement,

we use all the test-case approach to ensure the triangulation and validation of the

algorithm.

3.4 Pilot Testing

Before running the research design iteration, there was a pilot test on the research

design methodology with pilot data of 22 participants enrolled in the competition to help

improving the overall process of the algorithms design. Ten of the participants finally met

all the requirements of the contest and became eligible to be considered for the final

prizes. This study collected their project source codes in the ends of the four different

phases and did a pilot testing on the algorithms developed for the similarity measurement.

3.4.1 Technical Similarity

The MOSS interface developed in this study worked well with the MOSS system

server and similarity data were collected in Figure 3.5. To ensure the validity of the

technical similarity measurement approach, the data washing process will strictly follow

the pre-conditions of MOSS system, which is proven to be a validated public service

according to the literature review section. The maximum number of lines in a single file

is 270, which means that all of the target files could be regarded as small scale files.

According to Figure 3.1, since the external libraries have been removed, the projects

should be read to be processed by both the code similarity program and the functional

feature similarity program.

31

Figure 3.5 Histogram for code similarity – pilot

Figure 3.5 presents the results of similarity calculated based on MOSS system

response for the data collected from BlueIronhack. The tested data group size is 10 and

pairwise scores are collected. We can learn from the results that the highest similarity

score is 0.40 between hacker5 and hacker8. The lowest score is less than 0.01between the

mashup projects of hacker1 and hacker5. Among all the technology similarity results,

hacker1 and hacker10 has the first two lowest average pairwise similarity scores with the

others which means these two participant did not reuse others’ code or get reused by

others. Hacker8 receives the highest average similarity scores which means his project is

most reused by others. The mean of the similarity scores is 0.10815 and the median is

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Hacker1 Hacker2 Hacker3 Hacker4 Hacker5 Hacker6 Hacker7 Hacker8 Hacker9 Hacker10

32

0.077737, where it can be found that the result is a right-skewed distribution. Most of the

participants have low code similarity scores with others since they are developing their

own souce code to complete their projects. The standard deviation is 0.106067, which

means most of the similarity scores are located below 0.4.

3.4.2 Functional Feature Similarity

In the pilot test, this study also performs measurements on the functional feature

similarity among mashups in three major components. In Figure 3.6, three major

components are equally weighted as they are all top-level components in the mashups in

the Ironhack.

To assess the validity of the functional feature similarity measurement algorithm,

this study enrolls a test-case approach to test the matching algorithm with well-design test

cases. Test cases are developed based on all the scenarios estimated to happen during the

life circle of a specific software or information system (Tung & Aldiwan, 2000). If test

cases are passed in a significant level, the target software could be regarded as valid in

the scenarios of test cases (Zhu et al., 1997). As discussed in Section 3.1, the context for

this open data contest is developing map and visualization graph together as mashups to

assist end-users. Ten test cases are designed to all the common usage situations and

ensure the validity of the algorithm. The result from test cases processing shows that the

algorithm is valid for all the scenarios covered by the test cases (Table 3.1).

33

Table 3.1 Results of test cases processing

Figure 3.6 Histogram for functional feature similarity - pilot

Figure 3.6 presents the results of overall functional feature similarity scores for

the data collected from BlueIronhack. The tested data group size is 10 and pairwise

scores are collected. We can learn from the results that the highest similarity score is 0.66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hacker1 Hacker2 Hacker3 Hacker4 Hacker5 Hacker6 Hacker7 Hacker8 Hacker9 Hacker10

Hacker1 Hacker2 Hacker3 Hacker4 Hacker5

Hacker6 Hacker7 Hacker8 Hacker9 Hacker10

34

between participants “Hacker9” and “Hacker8”. Among all the functional feature

similarity results, participant “Hacker10” has the lowest average pairwise similarity

scores with the others which means this participant did not reuse others’ code or get

reused by others. Participant “Hacker9” receives the highest average similarity scores

which means his project is most reused by others. The mean of the similarity scores is

0.21250 and the median is 0.18519, where it can be found that the result is a right-skewed

distribution. Most of the participants have low functional feature similarity scores with

others since they are developing their own end-user functions to complete their projects.

The standard deviation is 0.14743, which means most of the similarity scores are located

below 0.65.

CHAPTER 4. RESULTS AND FINDINGS

In this chapter, this study first reviews the statement of problem to start the data

collection and analysis process. All the data for supporting the computational approaches

is collected from the open data contest called Green Ironhack based on the specific

experiment settings. Before data analysis, data washing is applied and there is a

description of the collected data. The similarity measurement approaches for both

technology and functionality feature are defined in chapter three and tested in the pilot

testing section. The technology similarity is measured using MOSS public service, which

is discussed as a fit for the algorithm design methodology in this study. The functional

feature similarity is measured based on the decision parameters in each ontology

component in the mashups and calculated under the formula of Tversky Index similarity.

At the end, this chapter presents the conclusions on the similarity results in the open data

innovation contest and describe the further research areas after this study.

4.1 Review of the Problem

Given the fact that the term of “reuse” is becoming more and more important in

open data contests with a transparent context, this study is looking forward to an

approach to figure out the reuse status by measuring how similar are two mashups in the

contest. Rodriguez and Chinea (1998) declared that there are three different dimensions

in the evaluation of mashups: technology, functionality feature and visualized feature,

36

which provides the guideline for similarity measurement dimensions. Although there is

abundant amount of designs for measuring technology similarity in terms of the source

code, no one is proved to be appropriate to the code similarity of data-oriented mashups.

One of the goals of this study is to find a specific approach to measure the code similarity

in the context of open data contest. The typical features for the most common code

similarity measurement approaches are listed in chapter three. In order to fit in the

characteristics of the source code in the mashups from the collected project data, this

study will choose an open service for code plagiarism detection developed by Stanford

University. At the mean time, this study needs also to find out a computational approach

to measure the functional feature similarity among different mashups in the open data

contest. Human coding, or subjective judging, is the most common method for

functionality evaluation and measurement. However, it would benefit more if there is a

computational approach to save human cost and provide technical supports. The logic

model to measure the functional feature similarity is based on the decision support

system. By linking decision parameters in mashups to the tokens in the source code, this

study would be able to analyze the functionality in different components based on the

parameters found there. Based on the diagram developed by Nikerson and Corter (2008),

this study could measure the similarities for different ontology components and finally

combine them as an overall similarity score. The aim of this study is to find working

computational methods in the specific research settings.

37

4.2 Research Design Background and Data Overview

The contest that is used to support this study is called “Green Ironhack”. There are

26 participants in the contest and all of them are eligible for the final prize evaluation

after four rounds of submissions. After checking into the structures and source code of

the projects, it shows that all of the 26 projects are using JavaScript as their major

language as required by the design methodology. They all use Google Map API as the

interface to create map view in their applications and they use one of the three

recommended libraries to add visualization graphs into their applications. As for the

interaction form developed in HTML language, some of the participants are using

external libraries such as bootstrap or angularJS, whose tokens are all included in the

dictionaries for functional feature similarity measurement. The external libraries

themselves should be removed before analyzing to prevent code overlapping on those

libraries.

JavaScript file (.js) and HTML file (.html) are the only two types of file to be used

for analysis on similarities. When using file parsing scripts to check into these files, it is

found that generally each project will contain two to twenty such files in total. The

maximum number of lines in a single file is 354, which means that all of the target files

could be regarded as small scale files. According to Table 2.1, since the external libraries

have been removed, the projects should be read to be processed by both the code

similarity program and the functional feature similarity program.

38

4.3 Code Similarity Measurement

Figure 4.1 presents the results of similarity calculated based on MOSS system

response for the data collected from GreenIronhack. The tested data group size is 26 and

pairwise scores are collected. We can learn from the results that the highest similarity

score is 0.38 between participant “Hacker11” and participant “Hacker13”. Among all the

technology similarity results, participant “Hacker21” and participant “Hacker22” has the

first two lowest average pairwise similarity scores with the others which means these two

participant did not reuse others’ code or get reused by others. Participant “Hacker21”

receives the highest average similarity scores which means his project is most reused by

others. The mean of the similarity scores is 0.01488 and the median is 0.001068, where it

can be found that the result is a right-skewed distribution. Most of the participants have

low code similarity scores with others since they are developing their own souce code to

complete their projects.The standard deviation is 0.036591, which means most of the

similarity scores are located below 0.12.

 39

Figure 4.1 Histogram for code similarity

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

40

When look into the two participants with the highest pairwise similarity score, we

can get the feedback of code similarity from MOSS system (Figure 4.2). The code

similarity measurement report shows that the two participants are using the same source

code fragments to develop Google Map components, which leads to high similarity in

technology dimension. The only part where they are different is the basic geolocation

data of map.

Figure 4.2 Code similarity result from MOSS system

4.4 Functional feature Similarity Measurement

Figure 4.3 presents the results of overall functional feature similarity scores for the

data collected from GreenIronhack. The tested data group size is 26 and pairwise scores

are collected. We can learn from the results that the highest similarity score is 0.3

between participant “Hacker12” and “Hacker13”. Among all the results for functional

feature similarity, participant “Hacker22” has the lowest average pairwise similarity

scores with the others which means this participant did not reuse others’ code or get

reused by others. Participant “Hacker21” receives the highest average similarity scores

which means his project is most reused by others. The mean of the similarity scores is

41

0.123984 and the median is 0.117484, where it can be found that the result is a right-

skewed distribution. Most of the participants have low functional feature similarity scores

with others since they are developing their own end-user functions to complete their

projects.The standard deviation is 0.046787, which means most of the similarity scores

are located below 0.26

 42

Figure 4.3 Histogram for map components similarity

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 43

Figure 4.4 Histogram for visualized graph components similarity

0

0.05

0.1

0.15

0.2

0.25

0.3

 44

Figure 4.5 Histogram for interaction form components similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

 45

Figure 4.6 Histogram for overall functional feature similarity

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

46

When look into the two participants with the highest functional feature similarity

score, we can find there are several similar sub-components for end-user functions

(Figure 4.4). It shows that for the google map components, the two participants are both

developing a basic map for a certain city: one is San Francisco and the other is Chicago.

They are also using the same markers and layout strategies to show the location

information on the maps, which leads to high similarity in functional feature dimension.

Figure 4.7 Projects with highest functional feature similarity score

4.5 Discussion

In this study, the framework has been developed that there are three-level

dimensions in the field of mashup evaluation and similarity measurement (Rodriguez &

Chinea, 1998). The problem has been raised in the beginning of the study that measuring

the reuse activity is significant for both practical and theoretical progress in the context of

transparent open data contest (Nickerson, 2014). We have also developed novel

approaches for mashup similarity measurement in both source code level and the

functionality feature level.

47

The proposed method for technical similarity between the source codes of two

mashups is based on the structure and semantic matching approaches in the field of

computer software. That is, the algorithm uses both abstract syntax tree (AST) and

semantic meaning of statements. The AST that provides local-level structural view is

included in the parse tree (Baxter et al., 1998). In order to compare the parse trees and

process the semantic meaning, this study enrolled the open public service called MOSS to

detect the matching results. MOSS is validated as the tool to complete the similarity

matching for the context of open data contest (Schleimer et al., 2003). Finally, the

proposed method will collect data from MOSS results and calculate the pairwise

similarity scores (Baxter et al., 1998).

The method for functional feature similarity measurement is based on the

parameter matching in two target projects (Özacar, 2016). Supported by decision system

theory, a dictionary has been built to cover all the potential parameters and tokens for a

target software and the algorithm will calculate the numbers of matching items in two

mashup projects. After getting all the matching numbers from the projects, the algorithm

will apply a Tversky similarity measurement formula to calculate the final pairwise

similarity (Tversky, 1977).

In the pilot test case of BlueIronhack and the practical case of GreenIronhack, it is

shown that the proposed measurement methods could work properly with the given

source codes from the mashup projects. In particular, the algorithms also passed all the

designed test cases and worked well with all the pairwise scores for participants in a

contest (Tung & Aldiwan, 2000).

48

One advantage of the algorithms designed in this study is that they are designed for

the specific context of open data contest and could achieve higher accuracy (Yamamoto

et al., 2005). The algorithms are all focusing on JavaScript projects with small scale of

source code files and can get rid of the effect of external libraries. Since the MOSS

system can support multiple different programming languages, the code similarity

measurement method could easily be transformed to detect other kinds of programming

languages other than JavaScript. Once the parameter dictionary is changed for a specific

language, the functionality feature measurement method is also suitable to multiple

programming languages.

4.6 Contributions and Limitations

This study makes three major contributions. First, it presents a theoretically

grounded conceptualization of similarity for mashups in open data contest that extends

the existing literature on code similarity in software engineering (Yu et al., 2008). Instead

of the original similarity definitions for large-scale or enterprise softwares, this study

raises three different dimensions, technical similarity, functional feature similarity and

visualized feature similarity for the similarity measurement for mashups developed in

open data contest (Yamamoto et al., 2005).

Second, it theoretically develops a computational code similarity measurement

approach for mashups in the context of open data contest. Based on the literature review,

the study chooses MOSS system to perform both structural and semantic matching for

similarity measurement, which have been developed already for general software

similarity measurement, to fit all the key characteristics of the open data innovation

49

contest (Hage et al., 2011). The third contribution of this study is to define the theoretical

conceptualization of functional feature similarity as well as develop the computational

method for it. It advances the literature on cognitive psychology by providing

computational approach to the conceptual methodology. Instead of focusing on the

source-code functions in the field of computer science, this study is more focusing on the

end-user functions with a user perspective by linking code with end-user features. The

concept of functional feature similarity is developed based on the ontology components

theory of Beydoun (2014). And the components are generated by finding the scenario-

based parameters and cluster of parameters (Nikerson & Corter, 2008). This study also

involves the theory of decision support system to introduce the concept of decision

parameters, which is supported by the literature and can provide the weighting strategy

for parameters in calculation. The DSS theory is used to support the similarity

measurement algorithm (Özacar, 2016).

As for the limitations, this study is currently focusing on two of the three

dimensions of mashup similarity measurement, which are code similarity and the

functional feature similarity. The generalizability in this study is limited and only applies

to the study with 100 mashup projects developed during Purdue GreenIronhack. The

validation of the computational approaches for functional feature similarity is only tested

on the designed test cases for the mashups in open data innovation contest. The design

settings for this study is restricted to the specific web programming language of

JavaScript with limited external libraries for the mashups developed in the open data

contest.

50

4.7 Future Research

Upon the conclusion of this study, several areas of future research can be

addressed. The future research should cover the measurement of visualized feature

similarity, which is another important dimension of similarity for mashups in open data

contest (Yamamoto et al., 2005). The information visualization feature can be beneficial

to the process of learning and decision making (Zhang & Whinston, 1995). The

correlations of similarities between different dimensions can also be worth further

analysis and discussion. The result of correlations would be helpful to learn the reuse

activities and transparency in different dimensions.

In order to measure the amount of reuse, we should have further development on

the similarity measurement algorithms to get the actual reuse of participants in a

transparent open data contest. In the context of Purdue Ironhack project, we assume that

project A is the first stage solution for participant X, project B is the first stage solution

for participant Y and project C is the second stage solution for participant X (Figure 4.1).

The current similarity measurement algorithms in this study is measuring the overlapping

field: A ∩ B = 2AB/(A+B+2AB) = AB + ABC. The actual reuse of X reuse Y’s code is

the field of: (C-A) ∩ B = BC. Instead of doing a pairwise similarity measurement, further

study needs to get the normalized similarity result to find the intersection part of ABC to

get the actual reuse amount in a reuse activity.

51

Figure 4.8 Mashup reuse in Purdue Ironhack

4.8 Summary and Concluding Remarks

In this chapter, I apply the designed computational methods for similarity

measurement to the data collected from Purdue GreenIronhack to calculate the code

similarity and functional feature similarity of the mashups in that contest. This chapter

also presents the discussions to the primary research questions posted in the first section.

It summaries the conceptualization on the similarity of mashups developed in open data

contest. It also reviews the design and validation test of the computational approaches for

similarity measurement. In conclusion, this research sets the stage for future research on

open data contests. There is much tremendous opportunity to create novel applications

from open data that re-use existing components, and I hope that others will build upon

this research to advance theory and practice.

LIST OF REFERENCES

52

LIST OF REFERENCES

Antoniol, G., Villano, U., Merlo, E., & Di Penta, M. (2002). Analyzing cloning evolution
in the Linux kernel. Information and Software Technology, 44(13), 755–765.
http://doi.org/10.1016/S0950-5849(02)00123-4

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007).
DBpedia: A Nucleus for a Web of Open Data. In K. Aberer, K.-S. Choi, N. Noy,
D. Allemang, K.-I. Lee, L. Nixon, … P. Cudré-Mauroux (Eds.), The Semantic
Web (pp. 722–735). Springer Berlin Heidelberg. Retrieved from
http://link.springer.com/chapter/10.1007/978-3-540-76298-0_52

Baker, B. S. (1995). On finding duplication and near-duplication in large software
systems. In , Proceedings of 2nd Working Conference on Reverse Engineering,
1995 (pp. 86–95). http://doi.org/10.1109/WCRE.1995.514697

Basit, H. A., & Jarzabek, S. (2009). A Data Mining Approach for Detecting Higher-Level
Clones in Software. IEEE Transactions on Software Engineering, 35(4), 497–514.
http://doi.org/10.1109/TSE.2009.16

Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., & Bier, L. (1998). Clone detection
using abstract syntax trees. In , International Conference on Software
Maintenance, 1998. Proceedings (pp. 368–377).
http://doi.org/10.1109/ICSM.1998.738528

Berndt, D. J., & Watkins, A. (2004). Investigating the performance of genetic algorithm-
based software test case generation. In Eighth IEEE International Symposium on
High Assurance Systems Engineering, 2004. Proceedings (pp. 261–262).
http://doi.org/10.1109/HASE.2004.1281750

Bildhauer, D., Horn, T., & Ebert, J. (2009). Similarity-driven Software Reuse. In
Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of
Software Models (pp. 31–36). Washington, DC, USA: IEEE Computer Society.
http://doi.org/10.1109/CVSM.2009.5071719

Boudreau, K. J., Lacetera, N., & Lakhani, K. R. (2011). Incentives and Problem
Uncertainty in Innovation Contests: An Empirical Analysis. Management Science,
57(5), 843–863. http://doi.org/10.1287/mnsc.1110.1322

Boudreau, K. J., & Lakhani, K. R. (2015). “Open” disclosure of innovations, incentives
and follow-on reuse: Theory on processes of cumulative innovation and a field
experiment in computational biology. Research Policy, 44(1), 4–19.
http://doi.org/10.1016/j.respol.2014.08.001

Brown, R. B. K., Beydoun, G., Low, G., Tibben, W., Zamani, R., García-Sánchez, F., &
Martinez-Bejar, R. (2014). Computationally efficient ontology selection in
software requirement planning. Information Systems Frontiers, 18(2), 349–358.
http://doi.org/10.1007/s10796-014-9540-3

53

Bullinger, A. C., Neyer, A.-K., Rass, M., & Moeslein, K. M. (2010). Community-Based
Innovation Contests: Where Competition Meets Cooperation. Creativity and
Innovation Management, 19(3), 290–303. http://doi.org/10.1111/j.1467-
8691.2010.00565.x

Cheng, C. C. J., & Huizingh, E. K. R. E. (2014). When Is Open Innovation Beneficial?
The Role of Strategic Orientation. Journal of Product Innovation Management,
31(6), 1235–1253. http://doi.org/10.1111/jpim.12148

Chesbrough, H. W. (2006). Open Innovation: The New Imperative for Creating and
Profiting from Technology. Harvard Business Press.

Chilowicz, M., Duris, E., & Roussel, G. (2009). Syntax tree fingerprinting for source
code similarity detection. In IEEE 17th International Conference on Program
Comprehension, 2009. ICPC ’09 (pp. 243–247).
http://doi.org/10.1109/ICPC.2009.5090050

Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5),
603–619. http://doi.org/10.1109/34.1000236

Cosma, G., & Joy, M. (2012). An Approach to Source-Code Plagiarism Detection and
Investigation Using Latent Semantic Analysis. IEEE Transactions on Computers,
61(3), 379–394. http://doi.org/10.1109/TC.2011.223

Ding, L., DiFranzo, D., Graves, A., Michaelis, J. R., Li, X., McGuinness, D. L., &
Hendler, J. A. (2010). TWC Data-gov Corpus: Incrementally Generating Linked
Government Data from Data.Gov. In Proceedings of the 19th International
Conference on World Wide Web (pp. 1383–1386). New York, NY, USA: ACM.
http://doi.org/10.1145/1772690.1772937

Ducasse, S., Rieger, M., & Demeyer, S. (1999). A language independent approach for
detecting duplicated code. In IEEE International Conference on Software
Maintenance, 1999. (ICSM ’99) Proceedings (pp. 109–118).
http://doi.org/10.1109/ICSM.1999.792593

Edberg, D., Ivanova, P., & Kuechler, W. (2012). Methodology Mashups: An Exploration
of Processes Used to Maintain Software. Journal of Management Information
Systems, 28(4), 271–304. http://doi.org/10.2753/MIS0742-1222280410

Frank T. Piller, D. W. (2006). Toolkits for Idea Competitions: A Novel Method to
Integrate Users in New Product Development. R&D Management, 36(3), 307
– 318. http://doi.org/10.1111/j.1467-9310.2006.00432.x

Galambos, C., Kittler, J., & Matas, J. (2001). Gradient based progressive probabilistic
Hough transform. IEE Proceedings - Vision, Image and Signal Processing, 148(3),
158–165. http://doi.org/10.1049/ip-vis:20010354

Hage, J., Rademaker, P., & van Vugt, N. (2011). Plagiarism Detection for Java: A Tool
Comparison. In Computer Science Education Research Conference (pp. 33–46).
Open Univ., Heerlen, The Netherlands, The Netherlands: Open Universiteit,
Heerlen. Retrieved from http://dl.acm.org/citation.cfm?id=2043594.2043597

Henriques, A. (2007). Corporate Truth: The Limits to Transparency. Earthscan.

54

Lague, B., Proulx, D., Mayrand, J., Merlo, E. M., & Hudepohl, J. (1997). Assessing the
Benefits of Incorporating Function Clone Detection in a Development Process. In
Proceedings of the International Conference on Software Maintenance (p. 314–).
Washington, DC, USA: IEEE Computer Society. Retrieved from
http://dl.acm.org/citation.cfm?id=645545.853273

Law, E. L.-C., Roto, V., Hassenzahl, M., Vermeeren, A. P. O. S., & Kort, J. (2009).
Understanding, Scoping and Defining User Experience: A Survey Approach. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(pp. 719–728). New York, NY, USA: ACM.
http://doi.org/10.1145/1518701.1518813

Leite, P. J. C. S. do P., & Cappelli, C. (2010). Software Transparency. Business &
Information Systems Engineering, 2(3), 127–139. http://doi.org/10.1007/s12599-
010-0102-z

March, S. T., & Smith, G. F. (1995). Design and natural science research on information
technology. Decision Support Systems, 15(4), 251–266.
http://doi.org/10.1016/0167-9236(94)00041-2

Mende, T., Koschke, R., & Beckwermert, F. (2009). An Evaluation of Code Similarity
Identification for the Grow-and-prune Model. J. Softw. Maint. Evol., 21(2), 143–
169. http://doi.org/10.1002/smr.v21:2

Nickerson, J., Corter, J., Tversky, B., Zahner, D., & Rho, Y. (2008). The Spatial Nature
of Thought: Understanding Systems Design Through Diagrams. ICIS 2008
Proceedings. Retrieved from http://aisel.aisnet.org/icis2008/216

Nickerson, J. V. (2014). Collective Design: Remixing and Visibility (SSRN Scholarly
Paper No. ID 2424866). Rochester, NY: Social Science Research Network.
Retrieved from http://papers.ssrn.com/abstract=2424866

Nickerson, J. V., Corter, J. E., Tversky, B., Zahner, D., & Rho, Y. J. (2008). Diagrams as
Tools in the Design of Information Systems. In J. S. Gero & A. K. Goel (Eds.),
Design Computing and Cognition ’08 (pp. 103–122). Springer Netherlands.
Retrieved from http://link.springer.com/chapter/10.1007/978-1-4020-8728-8_6

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D., & George, J. F. (1991).
Electronic Meeting Systems. Commun. ACM, 34(7), 40–61.
http://doi.org/10.1145/105783.105793

Özacar, T. (2016). A tool for producing structured interoperable data from product
features on the web. Information Systems, 56, 36–54.
http://doi.org/10.1016/j.is.2015.09.002

Perkmann, M., & Schildt, H. (2015). Open data partnerships between firms and
universities: The role of boundary organizations. Research Policy, 44(5), 1133–
1143. http://doi.org/10.1016/j.respol.2014.12.006

Ping Zhang, G. M. Y. D. (2000). Satisfiers and Dissatisfiers: A Two-Factor Model for
Website Design and Evaluation. Journal of American Society for Information
Science, 51(14), 1253–1268. http://doi.org/10.1002/1097-
4571(2000)9999:99993.0.CO;2-O

Rodriguez, R., Chinea, G., Lopez, N., Pons, T., & Vriend, G. (1998). Homology
modeling, model and software evaluation: three related resources. Bioinformatics
(Oxford, England), 14(6), 523–528.

55

Schleimer, S., Wilkerson, D. S., & Aiken, A. (2003). Winnowing: Local Algorithms for
Document Fingerprinting. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data (pp. 76–85). New York, NY,
USA: ACM. http://doi.org/10.1145/872757.872770

Shadbolt, N., O’Hara, K., Berners-Lee, T., Gibbins, N., Glaser, H., Hall, W., & schraefel,
m c. (2012). Linked Open Government Data: Lessons from Data.gov.uk. IEEE
Intelligent Systems, 27(3), 16–24. http://doi.org/10.1109/MIS.2012.23

Terwiesch, C., & Xu, Y. (2008). Innovation Contests, Open Innovation, and Multiagent
Problem Solving. Management Science, 54(9), 1529–1543.
http://doi.org/10.1287/mnsc.1080.0884

Tung, Y.-W., & Aldiwan, W. S. (2000). Automating test case generation for the new
generation mission software system. In 2000 IEEE Aerospace Conference
Proceedings (Vol. 1, pp. 431–437 vol.1).
http://doi.org/10.1109/AERO.2000.879426

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.
http://doi.org/10.1037/0033-295X.84.4.327

Weston, J., Ratle, F., Mobahi, H., & Collobert, R. (2012). Deep Learning via Semi-
supervised Embedding. In G. Montavon, G. B. Orr, & K.-R. Müller (Eds.), Neural
Networks: Tricks of the Trade (pp. 639–655). Springer Berlin Heidelberg.
Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-35289-8_34

Yamamoto, T., Matsushita, M., Kamiya, T., & Inoue, K. (2005). Measuring Similarity of
Large Software Systems Based on Source Code Correspondence. In F. Bomarius
& S. Komi-Sirviö (Eds.), Product Focused Software Process Improvement (pp.
530–544). Springer Berlin Heidelberg. Retrieved from
http://link.springer.com/chapter/10.1007/11497455_41

Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Understanding Mashup
Development. IEEE Internet Computing, 12(5), 44–52.
http://doi.org/10.1109/MIC.2008.114

Zhang, P., & Whinston, A. (1995). Business Information Visualization for Decision-
Making Support - A Research Strategy. iSchool Faculty Scholarship. Retrieved
from http://surface.syr.edu/istpub/15

Zhu, H., Hall, P. A. V., & May, J. H. R. (1997). Software Unit Test Coverage and
Adequacy. ACM Comput. Surv., 29(4), 366–427.
http://doi.org/10.1145/267580.267590

APPENDICES

56

Appendix A List of Libraries

57

Appendix B Dictionary for Google Map

58

Appendix C Dictionary for Graph-style Visualization Libraries

59

Appendix D Examples from the Dictionary for D3 Library

The entire library can be found at: https://github.com/mbostock/d3/wiki/API-Reference

60

Appendix E Examples from the Dictionary for JavaScript

The entire library can be found at: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference

61

Appendix F Examples from the Dictionary for HTML

The entire library can be found at: http://www.w3schools.com/tags/

62

Appendix G Examples from the Dictionary for Semantic-ui

The entire library can be found at: http://semantic-ui.com/kitchen-sink.html#/modules

63

116

116

Appendix H Examples from the Dictionary for BootstrapJS

The entire library can be found at: http://getbootstrap.com/javascript/

 64

Appendix I Function similarity for map components

H
acker1

H
acker2

H
acker3

H
acker4

H
acker5

H
acker6

H
acker7

H
acker8

H
acker9

H
acker10

H
acker11

H
acker12

H
acker13

Hacker1 1.0000 0.1386 0.1808 0.1742 0.0615 0.0986 0.0694 0.3113 0.2208 0.1104 0.2159 0.0386 0.1709
Hacker2 1.0000 0.1643 0.0176 0.1194 0.0968 0.0796 0.0725 0.0899 0.1380 0.1149 0.1513 0.1000
Hacker3 1.0000 0.0309 0.0179 0.0919 0.1345 0.0250 0.0426 0.1503 0.0679 0.1079 0.0384
Hacker4 1.0000 0.0860 0.1328 0.1788 0.1730 0.1051 0.1929 0.0453 0.0078 0.0656
Hacker5 1.0000 0.0594 0.1561 0.0272 0.0968 0.1642 0.0110 0.2098 0.0695
Hacker6 1.0000 0.1481 0.1003 0.0262 0.0864 0.1033 0.1605 0.0840
Hacker7 1.0000 0.1214 0.2088 0.1417 0.2085 0.1062 0.1039
Hacker8 1.0000 0.1539 0.0330 0.1434 0.0942 0.1672
Hacker9 1.0000 0.0981 0.0973 0.1936 0.0580
Hacker10 1.0000 0.4768 0.1329 0.1740
Hacker11 1.0000 0.0427 0.2099
Hacker12 1.0000 0.1349
Hacker13 1.0000
Hacker14
Hacker15
Hacker16
Hacker17
Hacker18
Hacker19
Hacker20
Hacker21
Hacker22
Hacker23
Hacker24
Hacker25
Hacker26

 65

H
acker14

H
acker15

H
acker16

H
acker17

H
acker18

H
acker19

H
acker20

H
acker21

H
acker22

H
acker23

H
acker24

H
acker25

H
acker26

Hacker1 0.1790 0.2106 0.1722 0.1728 0.1169 0.2266 0.0527 0.0818 0.1909 0.0093 0.2623 0.1760 0.0861
Hacker2 0.0562 0.0264 0.1164 0.0091 0.1241 0.0339 0.1130 0.1791 0.0248 0.0124 0.1781 0.0555 0.0856
Hacker3 0.0482 0.1453 0.2018 0.0465 0.1492 0.1210 0.0191 0.1620 0.1684 0.1676 0.1440 0.1799 0.2358
Hacker4 0.0038 0.1263 0.1201 0.1820 0.0547 0.1738 0.1349 0.1862 0.0752 0.1309 0.1246 0.0756 0.1238
Hacker5 0.1811 0.0346 0.1667 0.1212 0.1669 0.1559 0.0866 0.2138 0.1476 0.0427 0.0316 0.0807 0.1979
Hacker6 0.0906 0.0464 0.1741 0.1257 0.1094 0.0573 0.0941 0.2116 0.0918 0.0213 0.0999 0.1461 0.1011
Hacker7 0.1955 0.1846 0.0569 0.1413 0.1149 0.1304 0.1562 0.1182 0.1607 0.1106 0.0939 0.2573 0.1837
Hacker8 0.0452 0.1398 0.0355 0.1232 0.0625 0.1403 0.1576 0.1009 0.1617 0.0179 0.1309 0.1593 0.0132
Hacker9 0.2243 0.1434 0.1221 0.1393 0.0757 0.0977 0.1936 0.0802 0.1598 0.1339 0.0826 0.0544 0.0085
Hacker10 0.1856 0.1994 0.1258 0.1896 0.1738 0.1121 0.0422 0.0784 0.1609 0.0339 0.0599 0.0427 0.0528
Hacker11 0.0275 0.1856 0.1097 0.0282 0.0309 0.1835 0.0569 0.0101 0.0335 0.1986 0.0829 0.0210 0.0079
Hacker12 0.1835 0.0673 0.1560 0.1002 0.0361 0.1951 0.2159 0.1357 0.2007 0.1473 0.0493 0.0492 0.1482
Hacker13 0.0141 0.1537 0.0665 0.0530 0.0089 0.1929 0.1795 0.0424 0.1865 0.1176 0.0655 0.0816 0.0626
Hacker14 1.0000 0.1340 0.1537 0.0756 0.1066 0.1246 0.2119 0.0401 0.0639 0.1911 0.1661 0.0780 0.0785
Hacker15 1.0000 0.0483 0.1036 0.1441 0.0233 0.0839 0.1910 0.2771 0.1784 0.0779 0.1720 0.0226
Hacker16 1.0000 0.0443 0.0290 0.0473 0.1524 0.0158 0.1225 0.1963 0.1176 0.0904 0.1300
Hacker17 1.0000 0.0355 0.1053 0.1598 0.1662 0.1644 0.0625 0.1354 0.1472 0.0327
Hacker18 1.0000 0.1422 0.0674 0.1384 0.1018 0.0468 0.0947 0.2141 0.1260
Hacker19 1.0000 0.1265 0.0873 0.0453 0.1449 0.1418 0.1062 0.1123
Hacker20 1.0000 0.0581 0.0715 0.0735 0.2087 0.0354 0.0463
Hacker21 1.0000 0.1967 0.0868 0.2184 0.1224 0.1131
Hacker22 1.0000 0.0513 0.1314 0.1961 0.0446
Hacker23 1.0000 0.0314 0.2030 0.1925
Hacker24 1.0000 0.1974 0.0605
Hacker25 1.0000 0.2056
Hacker26 1.0000

 66

Appendix J Function similarity for visualized graph components

H
acker1

H
acker2

H
acker3

H
acker4

H
acker5

H
acker6

H
acker7

H
acker8

H
acker9

H
acker10

H
acker11

H
acker12

H
acker13

Hacker1 1.0000 0.0383 0.0769 0.0783 0.0701 0.0582 0.1153 0.2577 0.1282 0.1926 0.0725 0.1248 0.0144
Hacker2 1.0000 0.0247 0.0856 0.0108 0.0483 0.0697 0.1071 0.0755 0.1991 0.0666 0.1574 0.1067
Hacker3 1.0000 0.1439 0.0167 0.2174 0.1832 0.0431 0.1031 0.0831 0.2023 0.1279 0.0326
Hacker4 1.0000 0.2196 0.0234 0.1936 0.2017 0.1745 0.0656 0.1397 0.2098 0.0338
Hacker5 1.0000 0.0931 0.1121 0.0892 0.0897 0.1977 0.0514 0.1985 0.0635
Hacker6 1.0000 0.0955 0.0362 0.0550 0.0536 0.0046 0.2113 0.2038
Hacker7 1.0000 0.1091 0.0356 0.0669 0.0412 0.0063 0.0819
Hacker8 1.0000 0.0560 0.0625 0.0856 0.1774 0.0263
Hacker9 1.0000 0.0133 0.0814 0.0825 0.0349
Hacker10 1.0000 0.2343 0.0950 0.0742
Hacker11 1.0000 0.0390 0.0159
Hacker12 1.0000 0.1113
Hacker13 1.0000
Hacker14
Hacker15
Hacker16
Hacker17
Hacker18
Hacker19
Hacker20
Hacker21
Hacker22
Hacker23
Hacker24
Hacker25
Hacker26

 67

H
acker14

H
acker15

H
acker16

H
acker17

H
acker18

H
acker19

H
acker20

H
acker21

H
acker22

H
acker23

H
acker24

H
acker25

H
acker26

Hacker1 0.1378 0.1767 0.1296 0.0973 0.0882 0.2368 0.0568 0.0910 0.1482 0.0528 0.2316 0.1308 0.1035
Hacker2 0.0311 0.0684 0.2155 0.0713 0.0044 0.0737 0.0430 0.1321 0.0696 0.0701 0.0667 0.0984 0.0914
Hacker3 0.0673 0.1038 0.1963 0.0485 0.0753 0.0540 0.0930 0.1170 0.0806 0.1057 0.1345 0.1217 0.2298
Hacker4 0.0151 0.1237 0.1640 0.2094 0.0071 0.0592 0.2146 0.1854 0.0141 0.0766 0.1319 0.1703 0.0953
Hacker5 0.1207 0.0081 0.1816 0.1050 0.0863 0.0881 0.2031 0.1020 0.0932 0.0816 0.1103 0.1005 0.1834
Hacker6 0.0857 0.0256 0.0282 0.0840 0.0190 0.0025 0.0665 0.1432 0.0166 0.0537 0.1741 0.0960 0.0917
Hacker7 0.0228 0.0894 0.0143 0.0162 0.0622 0.0581 0.0961 0.1155 0.0532 0.0283 0.1082 0.1049 0.1593
Hacker8 0.0386 0.0078 0.2022 0.0784 0.1162 0.0988 0.1054 0.1118 0.0734 0.0501 0.2186 0.1167 0.0674
Hacker9 0.0726 0.1179 0.1709 0.0715 0.0929 0.0942 0.1199 0.0461 0.0505 0.0204 0.0533 0.0685 0.0463
Hacker10 0.0133 0.0082 0.0283 0.0704 0.0490 0.2060 0.0366 0.1499 0.0507 0.1945 0.0379 0.0310 0.1182
Hacker11 0.0930 0.1329 0.0485 0.2094 0.1646 0.1544 0.1192 0.2188 0.0472 0.0555 0.0639 0.0437 0.2127
Hacker12 0.0193 0.1912 0.0526 0.0156 0.0327 0.2073 0.1169 0.0693 0.1305 0.1106 0.0388 0.0172 0.1837
Hacker13 0.0712 0.0985 0.0984 0.0987 0.0909 0.2334 0.1075 0.0707 0.1284 0.0706 0.0374 0.1077 0.0118
Hacker14 1.0000 0.1165 0.1394 0.1059 0.0586 0.0821 0.0886 0.0523 0.1029 0.1136 0.1437 0.0560 0.0126
Hacker15 1.0000 0.2021 0.1041 0.0955 0.0265 0.0881 0.2097 0.2093 0.1499 0.0313 0.0985 0.0213
Hacker16 1.0000 0.0527 0.0019 0.1647 0.1893 0.0570 0.0330 0.0919 0.1433 0.2145 0.0696
Hacker17 1.0000 0.0441 0.0730 0.0092 0.0571 0.0308 0.0831 0.0967 0.1297 0.0296
Hacker18 1.0000 0.0065 0.1828 0.1164 0.0029 0.1443 0.1071 0.1475 0.0723
Hacker19 1.0000 0.1555 0.0978 0.1216 0.0899 0.0982 0.0829 0.1578
Hacker20 1.0000 0.1757 0.1066 0.0685 0.1510 0.0454 0.1525
Hacker21 1.0000 0.2109 0.0713 0.0865 0.0506 0.0534
Hacker22 1.0000 0.0776 0.0942 0.1273 0.0890
Hacker23 1.0000 0.0816 0.0866 0.0987
Hacker24 1.0000 0.1700 0.0901
Hacker25 1.0000 0.1437
Hacker26 1.0000

 68

Appendix K Function similarity for interaction form components

H
acker1

H
acker2

H
acker3

H
acker4

H
acker5

H
acker6

H
acker7

H
acker8

H
acker9

H
acker10

H
acker11

H
acker12

H
acker13

Hacker1 1.0000 0.1030 0.1540 0.0969 0.2357 0.1293 0.1572 0.2717 0.3416 0.1736 0.2058 0.0720 0.0479
Hacker2 1.0000 0.1766 0.3173 0.1535 0.2365 0.2525 0.2521 0.1445 0.2533 0.0954 0.3020 0.1201
Hacker3 1.0000 0.1093 0.1431 0.1097 0.2776 0.0910 0.0667 0.0189 0.1577 0.0698 0.1524
Hacker4 1.0000 0.1733 0.1064 0.2782 0.2449 0.0821 0.2599 0.0257 0.1582 0.1684
Hacker5 1.0000 0.0445 0.1326 0.0778 0.1227 0.0911 0.2747 0.2153 0.2438
Hacker6 1.0000 0.1872 0.0756 0.1764 0.2439 0.2447 0.3034 0.1596
Hacker7 1.0000 0.1508 0.1202 0.3274 0.2122 0.0110 0.1714
Hacker8 1.0000 0.1015 0.0908 0.1393 0.0730 0.0532
Hacker9 1.0000 0.1017 0.0801 0.0649 0.0385
Hacker10 1.0000 0.2635 0.2916 0.1434
Hacker11 1.0000 0.1388 0.2527
Hacker12 1.0000 0.2943
Hacker13 1.0000
Hacker14
Hacker15
Hacker16
Hacker17
Hacker18
Hacker19
Hacker20
Hacker21
Hacker22
Hacker23
Hacker24
Hacker25
Hacker26

 69

H
acker14

H
acker15

H
acker16

H
acker17

H
acker18

H
acker19

H
acker20

H
acker21

H
acker22

H
acker23

H
acker24

H
acker25

H
acker26

Hacker1 0.0692 0.2995 0.0741 0.1855 0.1928 0.1729 0.2540 0.2117 0.1882 0.2496 0.2940 0.2669 0.1142
Hacker2 0.1667 0.1837 0.1945 0.0128 0.1717 0.1380 0.1196 0.0284 0.0962 0.1672 0.1443 0.1651 0.0861
Hacker3 0.2672 0.1052 0.3143 0.0766 0.1402 0.0989 0.1767 0.0127 0.2482 0.0000 0.3147 0.1967 0.2750
Hacker4 0.0734 0.1131 0.0283 0.0669 0.2696 0.0334 0.2443 0.1998 0.3232 0.3245 0.3191 0.1354 0.1712
Hacker5 0.0957 0.0789 0.0012 0.0168 0.1254 0.1753 0.2426 0.2733 0.0279 0.1975 0.0062 0.2775 0.2257
Hacker6 0.1083 0.3275 0.0056 0.0449 0.2814 0.2075 0.0308 0.2540 0.1452 0.0481 0.2998 0.1519 0.1140
Hacker7 0.2255 0.0315 0.2799 0.2303 0.2285 0.1029 0.0525 0.1007 0.1258 0.2785 0.0402 0.2713 0.1570
Hacker8 0.0638 0.1098 0.1899 0.0482 0.1148 0.1278 0.2226 0.3285 0.0318 0.0539 0.2892 0.2253 0.2388
Hacker9 0.1303 0.1272 0.0132 0.0068 0.0334 0.1697 0.2563 0.2567 0.2447 0.0447 0.1286 0.2724 0.1882
Hacker10 0.1891 0.3073 0.1738 0.2914 0.0754 0.1550 0.2488 0.0685 0.1310 0.0487 0.0245 0.1882 0.2847
Hacker11 0.1248 0.0507 0.1602 0.2560 0.0901 0.2371 0.0927 0.0411 0.1794 0.3128 0.0529 0.0228 0.1235
Hacker12 0.2329 0.0977 0.2374 0.1692 0.1993 0.2572 0.0236 0.2878 0.0442 0.3101 0.1559 0.1056 0.2038
Hacker13 0.1886 0.1857 0.3083 0.1198 0.1519 0.2167 0.2321 0.3220 0.1510 0.0495 0.2465 0.0596 0.1499
Hacker14 1.0000 0.3154 0.2412 0.2272 0.1074 0.1913 0.1957 0.1418 0.2491 0.2062 0.2490 0.1901 0.2654
Hacker15 1.0000 0.0491 0.2618 0.2162 0.1087 0.1422 0.1427 0.3085 0.0610 0.0255 0.0354 0.1454
Hacker16 1.0000 0.3157 0.0204 0.1530 0.2677 0.0112 0.2277 0.2947 0.1866 0.2572 0.3094
Hacker17 1.0000 0.1668 0.0791 0.2280 0.0397 0.1697 0.1372 0.0200 0.3305 0.0059
Hacker18 1.0000 0.0302 0.1680 0.0912 0.0527 0.1900 0.1067 0.1417 0.0229
Hacker19 1.0000 0.0281 0.2716 0.0377 0.1450 0.0744 0.0723 0.0376
Hacker20 1.0000 0.1950 0.0973 0.1328 0.1645 0.2110 0.1014
Hacker21 1.0000 0.1140 0.0788 0.1609 0.2040 0.0942
Hacker22 1.0000 0.1220 0.0940 0.2426 0.0907
Hacker23 1.0000 0.2997 0.2465 0.0389
Hacker24 1.0000 0.1054 0.2032
Hacker25 1.0000 0.1892
Hacker26 1.0000

 70

Appendix L Overall function similarity

H
acker1

H
acker2

H
acker3

H
acker4

H
acker5

H
acker6

H
acker7

H
acker8

H
acker9

H
acker10

H
acker11

H
acker12

H
acker13

Hacker1 1.0000 0.0933 0.1373 0.1165 0.1224 0.0954 0.1139 0.2802 0.2302 0.1589 0.1647 0.0785 0.0777
Hacker2 1.0000 0.1219 0.1402 0.0946 0.1272 0.1339 0.1439 0.1033 0.1968 0.0923 0.2035 0.1090
Hacker3 1.0000 0.0947 0.0592 0.1397 0.1984 0.0530 0.0708 0.0841 0.1426 0.1019 0.0745
Hacker4 1.0000 0.1596 0.0875 0.2168 0.2065 0.1206 0.1728 0.0702 0.1252 0.0892
Hacker5 1.0000 0.0657 0.1336 0.0647 0.1031 0.1510 0.1124 0.2079 0.1256
Hacker6 1.0000 0.1436 0.0707 0.0858 0.1280 0.1175 0.2250 0.1491
Hacker7 1.0000 0.1271 0.1215 0.1787 0.1540 0.0412 0.1191
Hacker8 1.0000 0.1038 0.0621 0.1228 0.1149 0.0823
Hacker9 1.0000 0.0710 0.0863 0.1137 0.0438
Hacker10 1.0000 0.3249 0.1732 0.1305
Hacker11 1.0000 0.0735 0.1595
Hacker12 1.0000 0.1801
Hacker13 1.0000
Hacker14
Hacker15
Hacker16
Hacker17
Hacker18
Hacker19
Hacker20
Hacker21
Hacker22
Hacker23
Hacker24
Hacker25
Hacker26

 71

H
acker14

H
acker15

H
acker16

H
acker17

H
acker18

H
acker19

H
acker20

H
acker21

H
acker22

H
acker23

H
acker24

H
acker25

H
acker26

Hacker1 0.1287 0.2289 0.1253 0.1519 0.1326 0.2121 0.1212 0.1282 0.1758 0.1039 0.2626 0.1912 0.1013
Hacker2 0.0846 0.0929 0.1755 0.0311 0.1001 0.0819 0.0919 0.1132 0.0635 0.0832 0.1297 0.1064 0.0877
Hacker3 0.1275 0.1181 0.2375 0.0572 0.1216 0.0913 0.0963 0.0972 0.1657 0.0911 0.1977 0.1661 0.2469
Hacker4 0.0308 0.1210 0.1042 0.1528 0.1105 0.0888 0.1979 0.1904 0.1375 0.1773 0.1919 0.1271 0.1301
Hacker5 0.1325 0.0405 0.1165 0.0810 0.1262 0.1398 0.1774 0.1964 0.0896 0.1073 0.0494 0.1529 0.2024
Hacker6 0.0949 0.1332 0.0693 0.0849 0.1366 0.0891 0.0638 0.2030 0.0845 0.0410 0.1913 0.1313 0.1023
Hacker7 0.1479 0.1019 0.1170 0.1293 0.1352 0.0972 0.1016 0.1114 0.1132 0.1392 0.0808 0.2111 0.1667
Hacker8 0.0492 0.0858 0.1426 0.0833 0.0979 0.1223 0.1619 0.1804 0.0890 0.0406 0.2129 0.1671 0.1065
Hacker9 0.1424 0.1295 0.1021 0.0725 0.0673 0.1206 0.1899 0.1277 0.1517 0.0663 0.0882 0.1318 0.0810
Hacker10 0.1294 0.1716 0.1093 0.1838 0.0994 0.1577 0.1092 0.0989 0.1142 0.0924 0.0408 0.0873 0.1519
Hacker11 0.0818 0.1231 0.1062 0.1645 0.0952 0.1916 0.0896 0.0900 0.0867 0.1890 0.0666 0.0292 0.1147
Hacker12 0.1453 0.1188 0.1487 0.0950 0.0894 0.2199 0.1188 0.1643 0.1251 0.1894 0.0814 0.0573 0.1786
Hacker13 0.0913 0.1460 0.1577 0.0905 0.0839 0.2143 0.1730 0.1450 0.1553 0.0792 0.1165 0.0830 0.0748
Hacker14 1.0000 0.1886 0.1781 0.1362 0.0909 0.1327 0.1654 0.0780 0.1387 0.1703 0.1862 0.1080 0.1188
Hacker15 1.0000 0.0999 0.1565 0.1519 0.0528 0.1047 0.1811 0.2650 0.1298 0.0449 0.1020 0.0631
Hacker16 1.0000 0.1376 0.0171 0.1217 0.2031 0.0280 0.1278 0.1943 0.1492 0.1874 0.1697
Hacker17 1.0000 0.0821 0.0858 0.1323 0.0877 0.1217 0.0943 0.0840 0.2025 0.0227
Hacker18 1.0000 0.0596 0.1394 0.1153 0.0524 0.1270 0.1028 0.1678 0.0737
Hacker19 1.0000 0.1034 0.1522 0.0682 0.1266 0.1048 0.0871 0.1026
Hacker20 1.0000 0.1429 0.0918 0.0916 0.1747 0.0973 0.1001
Hacker21 1.0000 0.1738 0.0790 0.1553 0.1257 0.0869
Hacker22 1.0000 0.0836 0.1065 0.1887 0.0748
Hacker23 1.0000 0.1376 0.1787 0.1101
Hacker24 1.0000 0.1576 0.1179
Hacker25 1.0000 0.1795
Hacker26 1.0000

	Purdue University
	Purdue e-Pubs
	8-2016

	Measuring mashup similarity in open data innovation contests
	Zhounan Song
	Recommended Citation

	Blank Page

