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ABSTRACT 

Song, Zhuonan. M.S., Purdue University, August 2016. Mashup Similarity in the Context 
of Open Data Innovation Contest. Major Professor: Sabine Brunswicker. 
 
 

Contests have become an important instrument for fostering the development of 

novel open data mash-ups, in short open data innovations. Literature calls for new 

methods for measuring the similarity of open data mash-ups in order to identify code 

cloning and creative re-use of components of applications. Theoretically grounded 

computationally methods for identifying the similarity of open data contests are lacking. 

This study explores the similarity measurement of data-based mashups in the context of 

an open data innovation contest. Three different dimensions of mashup similarity are 

defined: code similarity, functional feature similarity, and visualized feature similarity. 

The results from the contest, including the source code, the running project and the 

descriptive documents, are collected as the research data for this study. Data analysis is 

based on the design and development of computational approaches to measure 

technology and functional similarity. The findings of this study will be helpful in better 

understanding the similarity of solutions in an open data innovation contest. This study 

contributes to the theoretical and practical approaches for similarity measurement, 

especially in the field of mashup development.  
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CHAPTER 1. INTRODUCTION 

This chapter introduces the phenomenon of open data innovation contests 

addressed in this study. Further, it articulates the scientific problem of measuring 

similarity of open data mashups and presents the research questions. The chapter 

concludes by presenting the assumptions of similarity measurement design, as well as the 

scope and importance of this thesis. 

 

1.1 Background 

The concept of open data has been of increasing significance and regarded a source 

of innovation in the 21st century. Following the principle of open source, the open data 

movement supports the thought that some of the data should be accessible to everybody 

in terms of usage and distribution without any cost, restriction on copyrights or control on 

patents (Auer et al., 2007). Thus, open data is beneficial because it breaks the boundary 

of information and enables the accessibility of valuable data to different individuals and 

groups around the world. It also provides the machine-readable information instead of 

complex text to support data processing in information systems. Open data has become 

an important source of digital innovations (Perkmann & Schildt, 2015).  The data.gov 

website, for example, is an open data platform generated by the United States 

government that offers developers access to over 200,000 datasets, which they can use to 

create digital innovations, such as mobile apps or web applications, that address 
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governmental or civic problems in the areas of health, energy, or safety. To spur open 

data innovations, both governments and firms make use of open innovation contests to 

turn open data into novel and useful applications (Shadbolt et al., 2012). The Google 

Lunar-X contest is an example of how an innovation contest works:  this contest promises 

$20 million to the team that can achieve a successful soft-landing of a specific spacecraft 

on the Moon, move the spacecraft over 500 meters, and transmit images back to Earth. 

Most of the participants in this contest have backgrounds in engineering or physics, 

which are related to the potential required skillset for a spacecraft project. The organizer, 

Google, will provide essential resources, which include the available spacecraft 

techniques, operational APIs on spacecraft hardware and historical data from the 

spacecraft databases, for the individual or teams of participants.  

In the context of open data, challenge.gov is a platform that was launched by the 

U.S. government to leverage the creativity and skills of developers to create novel digital 

software applications for web and mobile applications. In addition, local open data 

hackathons, a particular form of open data contests, have become an important form of 

open data contests to spur digital innovations. Most of the applications developed are 

based on open data and are typically in the web application hybrid style commonly called 

mashups, meaning they utilize data from multiple sources to create an end-user service in 

a single software interface. Mashups are faster and allow for easier integration compared 

with website data portals and they are good at processing multiple data sources by 

accessing open data API’s frequently (Yu et al., 2008). 

Existing literature points out that the design of the open data contests is pivotal for 

the outcome of the contest (Boudreau et al., 2011). Indeed, researchers have identified 
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some initial empirical evidence that transparency about what existing best-practices of 

others’ solutions in a contest are would help the developers to learn from others and 

improve their own solution (Brunswicker et al., 2016). This learning activity will trigger 

reuse, which means the participants duplicate some components from other solutions and 

then their projects become similar (Bildhauer et al., 2009). At the same time, in the field 

of open data contests, transparency is also one of the key elements used to encourage 

participants to provide innovative solutions (Henriques, 2007). The positive part for 

transparency is that it will encourage the transformation of information inside entities. 

The use of transparency in an innovation contest process also will increase the ability of 

participants to address the problems, search for and locate external resources, and create 

better solutions. So generally there are three kinds of reuse activities: the greenfield 

projects, which stands for no reuse and creating novel projects; the cloned projects where 

projects simply copy others’, and the augmented projects where the projects will develop 

some novel ideas based on the reuse of others’ code (Brunswicker et al., 2016). 

However, reuse in a transparent context will cause problems in identifying unique 

solutions created by the participants and distinguishing the components of the solutions 

that are reused by the participants. When the participants decide to learn from or directly 

copy the basic development and ideas from others, it becomes more difficult to determine 

whether or not their developments are because they reuse some code but also 

simultaneously put forth their own efforts. Plagiarism detection among all the project 

solutions is also required in a transparent contest.  
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1.2 Problem Statement 

Given the need for identifying the degree and type of re-use of components of a 

solution in an open data contest, researchers require reliable methodologies for 

conceptualizing and measuring the similarity between two or more open data mashups. 

Higher similarity between two projects implies deeper reuse of development and design. 

Measuring similarities between software is not a new field of research. In the field of 

code similarity measurement, there are multiple ways to find similarities among different 

enterprise software (Yamamoto et al., 2005). However, mashups have a multi-layered 

architecture with different levels and can be different in similarity measurement 

compared with large-scale softwares. Some researchers have the viewpoint that the 

mashup architecture can be separated into three different dimensions: technical function, 

feature and user experience, and user visualization (Rodriguez & Chinea, 1998). The 

technical functions are the fundamentals to make the mashup work; the functional 

features can provide the interfaces to end-users to meet their requirements; the visualized 

feature will also influence the usage of the mashup as well as the decision-making 

process of end-users (Edberg et al., 2012). Thus, the similarity for mashup projects can 

also be measured in these three dimensions. 

As for the level of technical similarity, even though there are sufficient approaches 

for measuring the similarity of source codes in different ways, none of these approaches 

is developed to deal with the specific code similarity in the context of an open data 

contest (Cosma & Joy, 2012). Moreover, because there are three dimensions in the field 

of mashup architecture design, the definition of similarity among mashup projects should 

also cover the dimensions in addition to the code similarity. Functional features and 
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visualized features will also have an effect on the results of mashup evaluation besides 

the source code itself (Cosma & Joy, 2012). More researches are needed to address the 

similarity measurements in different dimensions for mashups. This study will explore the 

similarity of mashup solutions from two of the three different levels, which are the 

technical source code, and functional features. The two levels of measurement in this 

study are supposed to be developed with practical computational methods and theoretical 

supports.  

This study expands the knowledge of mashup similarity measurement. It provides 

researchers and organizers of software-related contests with practical approaches for 

measuring code similarity based on a meta-analysis on the literature about software code 

similarity. Specifically, it focuses on the area of functional feature similarity by building 

the basic framework and methodology for definition and measurement. This study 

contributes to the function similarity in the area of psychology and computer science 

since the existing literature is lacking in this area compared with the one of technology 

similarities. The study also suggests further research on the relationship among the 

different levels of dimensions of similarity.  

 

1.3 Scope 

Mashup application development is a software development activity focused on the 

combination of data, visualization and interaction features. The design of mashup is one 

of the primary objectives of today’s open data contests. It is distinct from other software 

development activities as the open data mashups combine different functions into a single 

interaction page, which requires more frequent data interaction and more personalized 
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functions (Yu et al., 2008). Similarity of mashups will be part of the research field of 

solution evaluation due to the reuse phenomenon in the transparent contest. 

This study will focus on the code and functionality feature similarity among 

mashups in transparent open data contests. The mashup projects studied in this research 

are all developed in the JavaScript coding language, which is the major language for 

web-based application development. The mashups also will follow the best practice of 

JavaScript development provided by w3school. Restricted programming libraries are 

provided to be applied in these mashups. By making such a scope restriction, this study 

will be able to measure the similarities without the interference introduced by the use of 

multiple coding languages as well as other programming concerns such as different 

programming styles and programming library tokens. 

 

1.4 Research Question 

The major questions for this research are as follows: 

Q1: How can similarity be conceptualized for mashups developed in transparent open 

data contests? 

Q2: How can similarity be computationally measured for mashups developed in 

transparent open data contests?  

To answer these research questions, this research adopts a design science approach 

using the following principles: 1) theoretically develop a framework for measuring the 

similarity of mashup designs. 2) develop a computational method for measuring 

similarity of mashups. 3) testing and empirically validating the computational method in 

a test case approach specifically designed for this research (Berndt & Watkins, 2004).    
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By developing the framework, it extends existing frameworks on mashup design.  

The development of the computational methodology will draw upon a structured review 

of established methods of code detection algorithms. Further, it will enhance the existing 

mashup similarity measurement by borrowing from feature detection approaches in the 

area of psychology and decision support system to learn about the feature similarity in an 

information abstraction perspective (Tversky, 1977). 

As for the evaluation of the computational method, this study will ensure the internal 

validity by exploring the existing code similarity measurement approaches and pick the 

one that fits the mashups in the context of open data contest best. The approach for the 

measurement of functional feature similarity is developed on the computation-based 

theories. The external validity in this study is tested for the specific context of the 

transparent open data context with the requirement for open data technics, limited 

programming languages and external libraries. 

 

1.5 Significance 

Different types of software may require different techniques to measure their 

similarities. This study clarifies the definition of similarity of mashup applications in the 

context of transparent open data contests. There is little research focusing on the area of 

code similarity and evaluation. However, in the existing literature about software 

similarity, less attention has been paid to examining specific cases from the functionality 

feature and user visualization perspectives. The two-factor model of software offers a 

different perspective in the area of software evaluation, where researchers could better 

understand the similarity among different software in terms of features (Zhang & Dran, 
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2000). This study will use homology modeling for the similarities measurement of 

functionality features and visualization features, which will provide a new perspective on 

the evaluation of software, especially mashup applications (Rodriguez & Chinea, 1998).  

Rather than only focusing on these two dimensions, this study also will include the 

software similarity judgment and evaluation from the technique perspective. The gap 

between theoretical and analytical approaches is that previous studies are mainly focused 

on the similarity of technology functions rather than the functionality features of the 

mashups. These multiple approaches will help the researchers in the evaluation process 

for feature and user experience to make a fair scoring scale. Based on the similarities, 

judges and organizers can assign the same scores to different solutions with high 

similarity features even if they look different in a coding competition. If the approaches 

for mashup similarity could be identified, the contest organizers can have practical 

methods to evaluate the solutions of participants and detect plagiarism. They also will be 

able to analyze particular behaviors of participants based on machine learning and 

analysis approach in this study. 

From the theoretical perspective, this study will enrich the research on mashup 

similarity in the context of transparent open data contests. Based on the definition of 

multiple dimensions of software mashups, this study will deal with the mashup similarity 

problems in a computational perspective in the different dimensions, which will benefit 

from further research on the correlations among each dimension. Moreover, by looking 

into the particular behaviors of participants in the coding contest using information 

system diagrams, this study also will be helpful to the research on the behavior analysis 

from a psychology perspective (Nickerson et al., 2008). The insights in this study on the 
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software similarity and evaluation will help the in design of software transparency and 

reuse. The analytical definition of the concept and operational measurement process in 

the area of software similarity will benefit the follow-on reuse in the innovation systems 

(Boudreau & Lakhani, 2014). 

 

1.6 Assumptions 

The following assumptions are identified for this study: 

1) All the mashup projects collected for this study are developed in the 

required programming language, which is JavaScript in the selected 

contest. 

2) The external public service to support this study will follow the 

description of its theoretical design of fingerprint approach (Schleimer et 

al., 2003). 

3) The algorithms and interfaces are properly designed to extract, transform 

and process the source code data. 

4) The online dictionaries for JavaScript and other packages will cover all the 

language statements in any scenario. 

 

1.7 Limitations 

The following limitations are identified for this study: 

1) The study will focus on two of the three levels of mashup dimensions: code 

similarity and functional feature similarity. 
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2) The generalizability in this study is limited and only applies to the study with 

104 mashup projects developed during Purdue GreenIronhack. 

3) The validation of the computational approaches will be tested on the designed 

test cases for the mashups in open data innovation contest. 

4) As for the external validity, this study will only focus on the computational 

approaches in similarity measurement for JavaScript programming language 

and limited external programming libraries. 

5) This study has the scalability to the open data context with limited 

programming languages and libraries.  

 

1.8 Definition of Key Terms 

Innovation Contest – An innovation contest is an activity or process of the industrial 

process, product or business development. It will bring participants in a contest 

into the context of competing to solve a specific problem (Piller & Walcher, 

2006). 

Open Data – Some digital information should be available to everybody to access and use 

without any cost, restriction on copyright or control on patents (Auer, 2007). 

Transparency – “Transparency is defined as the perceived quality of intentionally shared 

information from a sender.” It is practiced in companies, organizations, 

administrations, and communities (Schnackenberg & Tomlinson, 2014). 

Mashup Application – “Mashup is a web page, or web application, that uses content from 

more than one source to create a single new service displayed in a single graphical 

interface.” (Yu et al., 2008). 
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Code Similarity – “Code similarity is a computer programming term for a sequence of 

source code that occurs more than once, either within a program or across 

different programs.” (Chilowicz et al., 2009). 

Functional feature similarity – Feature similarity, or functional feature similarity is a 

metric defined to measure the similar components between different programs in 

the perspective of end-user functions (Tversky, 1977). 

Visualized Feature Similarity – “Two geometrical objects are called similar if they both 

have the same shape, or one has the same shape as the mirror image of the other.” 

(Bowman et al., 2012). 
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CHAPTER 2.  LITERATURE REVIEW 

This chapter provides a summary of recent studies in the areas of software 

similarity evaluation in the context of open data innovation contests, providing both a 

basic understanding of the methods in the subject area as well as the new methods for 

code similarity and functional feature similarity measurement. 

 

2.1 Innovation Contest and Transparency 

The definition of an innovation contest, as defined in the first chapter of this thesis, 

is a competition where innovators make use of their background knowledge, talend and 

past experience to create solutions for a specific challenge (Piller & Walcher, 2006). 

Organizers of innovation contests could include individuals, groups or firms, according to 

previous research. Organizers will design the innovation contests around a certain topic 

or context. The expected outcomes of these contests may vary based on the aim of the 

activities. The solutions or end products could be as simple as a prototype, an idea or a 

textual description, or they could be as complex as creating a practical working project. 

The organizer will circumscribe the target group of participants by defining the topic and 

degree of elaboration (Buillinger, Neyer, Rass & Moeslein, 2010). The organizer has to 

deal with the target of the population and the satisfaction issues, where the participants 

are more willing to enter the contests with better development supporting system and 

evaluation process, to involve more participation. Motivation is another factor 
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contributing to one’s willingness to take part in an innovation contest. It generally could 

be affected by introducing incentives such as rewards (Ogawa & Piller, 2006).  After the 

process of participants solving the problems, the organizer has to find a method to 

determine the ranking of the solutions, which is called the evaluation process. Different 

evaluation methods may lead to different results in determining the best solutions. The 

methods used to rank the solutions also will have an impact on the outcomes of the whole 

contest in the field of further influence and promotion effects.  

The degree of transparency is important to an innovation contest. The ideas behind 

transparency are about the issues on information processing and information technology 

(Sampaio, 2010). In the context of an innovation contest, transparency means the 

accessibility of the internal resources and other information such as the scores or source 

code of others to the participants. Looking at software development transparency, for 

example, Meunier (2008) states that software development transparency is the condition 

where all the internal programming parts are available to the users and other 

programmers. It could be through well-defined documentation or a highly commented 

project with source code. By making the source code open to other programmers, 

modules and functions in the original project can be reused to build new features, which 

will increase efficiency of development. A high level of transparency in an innovation 

contest will encourage the participants to more deeply engage in the contest and learn 

from each other about not only the approach of developing a certain feature but also to 

create novel ideas during development. 
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2.2 Code Similarity Detection  

Previous researches have reported that approximately 5% to 10% part of source 

code in the large computer programs is duplicated code (Lague & Proulx, 1997). 

Programmers will reuse others’ code by brute-force copying fragments when their 

projects have similar requirements to the developed ones. Especially in the objected-

oriented programming languages, the reuse of code is more common because the code is 

well structured and easy to be used in a different programming context (Becker, 1995). 

There are several reasons and benefits for reusing the code from other projects. First, it 

would be easier for developers to make a copy of a code fragment compared with 

building the basic logic and variables for the program (Ducasse, Rieger & Demeyer, 

1999). Second, the code in an existing software project is more likely to be robust and 

well-tested. When in terms of time and efficiency, programmers are also tending to reuse 

code fragments from existing projects to maintain high performance of their own project 

process (Ducasse, Rieger & Demeyer, 1999). Moreover, in some system development 

processes, the reuse of code is an essential strategy for the developing team to develop in 

a well-structured work arrangement (Baxter & Yahin, 1998).  

Scholars have identified at least three approaches for detecting code clone and 

measuring the similarity of software in different perspectives and situations. First, the 

code similarity can be measured based on lexical unit, which includes strings and words 

in the context of software source codes. It will not use any textual transformation method 

on the source code before measuring the similarity and the source code will be delivered 

to the similarity calculating program directly in most cases. In this kind of approach, 

hashing is widely used for presenting the lexical units in the source code. Ducasse (1999) 
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used hash data structures to store the strings in the source code in lines. Followed with 

internal textual comparison, Ducasse got the percentage of similar source code lines and 

then calculate the overall similarity among different softwares. The hashing of strings 

could also be used in generating dot plots, which supports the visual comparison among 

different files. In addition to the string-based lexical units, researchers have also 

developed token-based structures to act as a supplementary to the comparison. After the 

normalization of tokens in strings, suffix trees could be generated for tokens per line, 

which supports the similar units searching between two textual structures (Baker, 1995). 

Thus, without knowing the overall structure of the source code, textual units are helpful 

for measuring similarity directly in an efficient way. However, the accuracy of this 

approach is not guaranteed and varies in different coding styles and architectures of 

source code.  

Second, from a structural perspective, people can use abstracted content structures 

to measure the similarities among different softwares. Abstract syntax tree (AST) is 

commonly used for building abstracted tree or graph structures in this approach. An 

abstract syntax tree, or syntax tree, is a concept in computer science using a tree data 

structure to represent the abstracted syntax structure in the source code in a particular 

programming language. It will capture the essential structure of the source code in a tree 

form, while omitting the syntactic details at the meantime. The idea of abstraction was 

raised by Baker in 1995, when the area was focusing on the large maintenance systems. 

Baxter and Yahin (1998) implemented the structure of abstract syntax tree in a practical 

approach to detect the code duplications in regular programs regardless of the language 

for developing. The basic problem in the code duplication and similarity detection is that 
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different arrangement of fragments may lead to the same outcomes, which means that by 

modifying the orders or variable names of original code, the new program will be able to 

perform the same function in a different coding format. In AST, each node of the tree will 

represent a construct component in the source code. All the syntaxes are abstracted 

regardless of the real definition of names and arrangements. With the main idea of 

maintain the original logic in the tree, AST will store the conditions and judgment bodies 

in paths and the variables in the leaf nodes. The order in the paths will also represent the 

logic flow in the source code. In this way, the study will be able to detect both the 

duplication and the similarity using a few parameters. In the research of Baxter and 

Yahin (1998), the similarity is defined as the matching of two sub trees in ASTs for 

different source code. The similarity between two abstract syntax trees is defined in the 

following formula:  

Similarity = 2 * S / (2 * S + L + R) 

where S represents the number of shared nodes in the two ASTs; L represents the number 

of different nodes in the left AST; R represents the number of different nodes in the right 

AST. An example of generating and structure of the AST is shown in Figure 2.1. 



 

 
 

17 

 

Figure 2.1 An example of generating AST 
 

While the similarity of source codes in different softwares can also be measured in 

a metric-based approach. Researchers could cluster the vector of features to represent the 

procedures using neural net comparing metrics (Antoniol et al., 2002). Antoniol studied 

the code duplication detection in Linux kernel, which is a large, open source software 

system. By taking advantage of the neural network and the information distance in the 

source code, this kind of similarity measurement approach could easily be applied to 

different types of programming languages regardless of the difference in grammar and 

structure. Besides, it could also be used to locate specific code fragments during 

comparison, which will benefit the code revising process. On the other hand, the metric-

based approach relies too much on the algorisms and is hard to be tested or verified all 

automatically. When it comes to website, the metric will detect begin-end blocks in the 

source code as basic fragments, which makes it hard to cover all the attributes stored in 

XML format. 
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In addition to these commonly-used approaches, the code similarity measurement 

could also be measured in the machine learning method. This approach will be able to 

deal with multiple types of similarities in different programming languages in high 

accuracy and efficiency (Basit & Jarzabek, 2009). The only significant prerequisite is to 

obtain enough existing results from successful similarity detection for the algorithm to 

learn. 

 

 

 

 

 

 

 

The advantages and disadvantages of different approaches for calculating the code 

similarity could be summarized in the Table 2.1.  

 

2.3 Functional Feature Similarity Detection 

The feature similarity is based on the similarity of signals, views and interactions. 

Rothkopf (1957) tried to research on the signal similarity based on the 598 subjects 

recognizing Morse Code signal pairs. The pairs were presented in a randomized order and 

the result would be compared in the percentage of agreement of the subjects. The idea of 

this kind of similarity detection is kind quite old, but some of the major fields are built 

based on this the subjective approach. Law, Roto and Hassenzahl (2009) developed a 

Table 2.1 Code Similarity Measurement Features 
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survey-based approach for understanding, scoping and defining the user experience and 

product features, especially in the area of software. The main aim of their survey was for 

the promotion of active discussions in the area of user experience, which would be 

explored by a group of people who were active in the community. Statements, 

Definitions and Background were the three sections in the questionnaire used in the 

survey. With the result of this research, researchers would be able to learn about the 

definitions on a certain level of agreement and in different perspectives. They could also 

have reflections on the defined features to other experiences.  

Tversky (1977) provided an approach to measure the feature similarity in a set 

theory perspective. In his research, features were resented in distinctive clusters. Each 

cluster was a subset of a group of features that were learned. The similarity between 

objects was presented as a measurement of their common and functional features. There 

would be overlapping among the different clusters in the research. Moreover, he tried to 

present the feature structures in a form of generated tree. There were no overlaps in 

different sub trees and each leaf was unique in the tree structure. The feature tree could 

be interpreted as a horizontal graph or hierarchical clustering scheme. The length of arc 

represented the weight of the cluster that was followed by a certain feature. 

A process was developed by on Tversky (1977), Holzmann and Smith (2000) on 

feature verification of software. Their research was to develop features as properties 

which could be handled within a defined logic. There would be a lookup table for the 

logic requirement checking and system verification. The features were also divided into 

different subgroups without violation. Nikerson and Corter (2008) also developed a 

diagram approach for the feature detection in the information system design. The 
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diagrams were used to represent the logical structure (Figure 2.3) and content of feature 

groups (Figure 2.2). They could show the result of spatial information in diagrams, which 

would be able to present both the logical connections and content of the features. 

 

Figure 2.2 Clustering of the nodes (features) in a logical form (Nikerson & Corter, 2008) 

 

Figure 2.3 The logic structure of the features (Nikerson & Corter, 2008) 

 

There is existing research on the measurement of functional feature similarity for 

softwares. However, most of them are based on human coding or some other subjective 

approaches, which would be inefficient for the measurement process (Branson et al., 
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2014). Feature of softwares is well defined in the field of computer science. Researchers 

also want to find computational approaches to measure the functional feature similarity 

and make use of the source code. Deep learning, for example, is a machine learning 

method which will be able to measure the function similarity based on source code 

(Weston et al., 2012). But it will not address the requirements and interactions from end-

users. In order to do that, this study needs to learn from the psychological design and find 

the clusters of nodes for the end-user functions. In the theory of decision support system 

(DSS), functionality could also be defined based on the decision parameters provided in 

the system (Özacar, 2016). Özacar used structured data and parameters to define the 

function, which was designed to meet the requirement of the users on a data-related 

website tool. The variables were defined prior to the experiment and were filled with 

practical parameters in a subjective approach. The DSS relies largely on the case data and 

the example procedures, which means that the study can ran a scenario-based checking to 

list all the significant parameters before starting the real experiment (Sharda et al., 1988). 

The results showed that the functionality of decision support system could be well 

developed by defining the basic units of decision parameters properly, which can be 

applied to the computational matching of parameters for similarity measurement. 
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CHAPTER 3. FRAMEWORK AND METHODOLOGY 

The research framework, sample set, testing methodology and the specific nature of 

data collection are introduced in this chapter. First, the purpose of this study and the 

detail methodology with the reasons of why those approaches are chosen for the research 

are described in this chapter. Second, this chapter contains the detail of the data collection 

process during the research followed by a plan of data analysis. At the end, this chapter 

presents the results of a pilot test to ensure the validity of the whole methodology and 

analysis plan. 

 

3.1 Research Design Background and Settings 

The project implements a design science approach to develop algorithms for 

mashup similarity measurement based on the project data collected from the open data 

contest at Purdue University. 1There will be at least three sessions for this competition 

and this study collected data of project source codes from one of these sessions. Students 

are only allowed to participate in one of these sessions. An online community will be 

built for participants to communicate and interact with each other. There will be four 

phases in each session (Brunswicker et al., 2016). Participants will be required to submit 

their current iterations of the project at the end of each phase, which include the source 

                                                
1 This study is designed based on the NSF grant with the grant number 107673 sponsored 
by the Science of Science and Innovation Policy (SciSPI) program of SNF, which is 
developed by the research center of open digital innovation at Purdue University.  
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code, documentation and project package ready to be built. The goal of this study is to 

apply the practical computational approach for defining and measuring the similarity of 

mashup applications in the open data contest in the dimensions of technology, 

functionality feature and visualized feature. All the participants should be the students at 

Purdue University in West Lafayette. 

A student sample size of approximate 30 students from a Purdue graduate class will 

be encouraged in our coding contest in the selected session. All students in these 

activities have the opportunity to participate in this study regardless of age range, gender, 

or ethnicity. During the coding contest, all the participants are required to develop a 

mashup application based on open data to solve local practical problems. The mashups 

should use JavaScript as their major programming languages and Google Map API is 

required to be enrolled during the development process. The mandatory requirements also 

include that participants should make use of at least one of the three JavaScript data 

visualization packages, which are D3.js, Arbor.js and Sigma.js. During each hacking 

phase, participants will get their feedback scores at the end of that phase and the running 

projects and source codes will be available to all the participants. They can learn from 

each other’s code and ideas as well as reusing some outstanding development segments 

in the source code.  

 

3.2 Research Design and Framework 

The original data collected from the research would be the source code of the 

projects, the running projects and the descriptive documents for the projects. It would be 

challenging to maintain these data before the analysis section. In this study, the three 
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dimensions of data will be operated separately to get the processed data. There will be 

specific approaches for dealing with the data in each dimension. 

 

3.2.1 Code Similarity 

The advantages and disadvantages of different approaches for calculating the code 

similarity has been developed in the literature review section (Table 2.1).  

As the aim of this study is to find practical computational approaches to define 

similarity, the selected method should be able to go through the source codes in different 

structures, semantically and textually. It should also be efficient and accurate enough to 

support the final evaluation of the projects without human support and pre-request. When 

taking about the mashup development and the context of open data contest into 

consideration, the solutions in the competition would not be large scale software projects 

but small scale web-based applications. In order to accomplish these requirements, this 

study will use MOSS, which is a web-based plagiarism detection tool developed by 

Stanford University, to measure the similarities among different mashups in the contest. 

The MOSS system will use local algorisms to calculate the fingerprinting among 

documents (Schleimer et al., 2003). The basic strategy of the algorism in MOSS system 

will cover both the semantic and structural approaches to detect similar fragments in the 

source code (Cosma & Joy, 2012). It could also be learned from the features of different 

similarity measurement approaches in Table 2.1 that MOSS will be able to meet all the 

requirements for this study by combining structural and semantic approaches together. 

Compared to other plagiarism detection tools available online, MOSS is also better at 
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dealing with specific languages such as Java and JavaScript, which is required as the 

major language for the selected mashups in this study (Hage et al., 2011). 

The MOSS system will first develop an abstract syntax tree (AST) generating 

method to build ASTs from different mashups. While processing the mashup projects 

collected from Purdue Ironhacks, an AST tree will be built for each mashup project. The 

MOSS system will recognize the similar ASTs between two projects and apply the 

semantic similarity measurement in the similar AST blocks (Cosma & Joy, 2012). The 

measurement of similarity between two projects will be based on the semantic matching 

in lines in each node structure in the ASTs. And the formula for code similarity in MOSS 

system is defined as: 

Similarity = 2 * S / (2 * S + L + R) 

The semantic measurement would be based on the matching algorism of textual, which is 

the number of lines in MOSS system. This study will develop an interface (Figure 3.1) 

program to pre-wash the data and send source codes to the MOSS server and get 

feedback reports from the server. The similarity will be calculated by crawling and 

analyzing the data from the feedback reports. 
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Figure 3.1Algorithm to wash data and upload to MOSS 

 

 

Figure 3.2 Algorithm for MOSS matching lines detection 

 

3.2.2 Functional feature similarity  

Based on the literature review of feature similarity, this study uses the method of 

set theory and the decision support system theory to measure the functional feature 

similarity. The functions of the solutions should be divided into separate sets with 

different characteristics. The weight of matched sub-features will be the similarity result 
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between two projects. This study will go through a scenario-based checking to find out 

all the related requirement components in mashups and find decision parameters by 

figuring out the specific tokens in the source code. These components will be used for 

building structured clusters to support the computational measurement and an overall 

score for the whole mashup. The parameters will be used to calculate the sub-similarities 

for different components. 

In order to operate the feature separating process automatically instead of 

subjectively, this study will use the pattern matching based on user interface tokens in the 

source code for each project. By learning from the theme and requirements of the 

competition, there will be three major components in each mashup: Google Map 

interfaces, data visualization graphs and interaction HTML forms (Figure 3.3). For each 

major component, parameters will be collected to perform the whole functionality for the 

component. A dictionary for all the potential parameter tokens is built to support the 

functionality parameter matching in the computational approach. The dictionary is built 

based on all the user interface tokens for Google Map, three required data visualization 

JavaScript libraries in the contest and 5 other commonly used front-end development 

JavaScript libraries (see appendix). 
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Figure 3.3 Ironhack mashup components 

 

A program will be developed to parse all the JavaScript and HTML contents in 

those structured mashups to find out the matching of patterns among different projects. 

The result of feature similarity between two projects will be shown as the percentage of 

matched patterns in the decision parameters. As the parameters all come from web 

programming languages, they could be equally weighted in the same kind of web 

applications or mashups based on the software engineering theory. By learning from the 

Tversky index measurement (1977) for equally weighted parameters, the formula could 

be defined as: 

Similarity = 2 * S / (2 * S + L + R) 
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S represents the total amount of decision variables in two projects, L represents the 

number of different variables in the first project and R stands for the number of different 

variables in the second project. 

To ensure the validity of this practical approach, this study will enroll example 

test cases (see Appendix) on the algorithm to measure the basic functionality parameters 

in the source code. The 10 test cases cover most of the potential development cases in 

mashup development in Ironhack including the map development, visualization design 

and other basic user interactions. Human coding is used for detecting all the matching 

parameters in these cases and the results would be compared with the parameters detected 

by the computational algorithm.  

 

Figure 3.4 Algorithm for functionality feature matching 

 

3.3 Data Analysis Plan 

The processed data is collected from the data collection process by applying 

different evaluation approaches to evaluate the different dimensions. In the measurement 
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of code similarity, the accuracy and validity of results are guaranteed by the previous 

researches on the MOSS system. And in the functional feature similarity measurement, 

we use all the test-case approach to ensure the triangulation and validation of the 

algorithm.  

 

3.4 Pilot Testing 

Before running the research design iteration, there was a pilot test on the research 

design methodology with pilot data of 22 participants enrolled in the competition to help 

improving the overall process of the algorithms design. Ten of the participants finally met 

all the requirements of the contest and became eligible to be considered for the final 

prizes. This study collected their project source codes in the ends of the four different 

phases and did a pilot testing on the algorithms developed for the similarity measurement. 

 

3.4.1 Technical Similarity 

The MOSS interface developed in this study worked well with the MOSS system 

server and similarity data were collected in Figure 3.5. To ensure the validity of the 

technical similarity measurement approach, the data washing process will strictly follow 

the pre-conditions of MOSS system, which is proven to be a validated public service 

according to the literature review section. The maximum number of lines in a single file 

is 270, which means that all of the target files could be regarded as small scale files. 

According to Figure 3.1, since the external libraries have been removed, the projects 

should be read to be processed by both the code similarity program and the functional 

feature similarity program. 
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Figure 3.5 Histogram for code similarity – pilot 

 

Figure 3.5 presents the results of similarity calculated based on MOSS system 

response for the data collected from BlueIronhack. The tested data group size is 10 and 

pairwise scores are collected. We can learn from the results that the highest similarity 

score is 0.40 between hacker5 and hacker8. The lowest score is less than 0.01between the 

mashup projects of hacker1 and hacker5. Among all the technology similarity results, 

hacker1 and hacker10 has the first two lowest average pairwise similarity scores with the 

others which means these two participant did not reuse others’ code or get reused by 

others. Hacker8 receives the highest average similarity scores which means his project is 

most reused by others. The mean of the similarity scores is 0.10815 and the median is 
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0.077737, where it can be found that the result is a right-skewed distribution. Most of the 

participants have low code similarity scores with others since they are developing their 

own souce code to complete their projects. The standard deviation is 0.106067, which 

means most of the similarity scores are located below 0.4. 

 

3.4.2 Functional Feature Similarity  

In the pilot test, this study also performs measurements on the functional feature 

similarity among mashups in three major components. In Figure 3.6, three major 

components are equally weighted as they are all top-level components in the mashups in 

the Ironhack. 

To assess the validity of the functional feature similarity measurement algorithm, 

this study enrolls a test-case approach to test the matching algorithm with well-design test 

cases. Test cases are developed based on all the scenarios estimated to happen during the 

life circle of a specific software or information system (Tung & Aldiwan, 2000). If test 

cases are passed in a significant level, the target software could be regarded as valid in 

the scenarios of test cases (Zhu et al., 1997). As discussed in Section 3.1, the context for 

this open data contest is developing map and visualization graph together as mashups to 

assist end-users. Ten test cases are designed to all the common usage situations and 

ensure the validity of the algorithm. The result from test cases processing shows that the 

algorithm is valid for all the scenarios covered by the test cases (Table 3.1). 
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Table 3.1 Results of test cases processing 

 

 

Figure 3.6 Histogram for functional feature similarity - pilot 

 

Figure 3.6 presents the results of overall functional feature similarity scores for 

the data collected from BlueIronhack. The tested data group size is 10 and pairwise 

scores are collected. We can learn from the results that the highest similarity score is 0.66 
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between participants “Hacker9” and “Hacker8”. Among all the functional feature 

similarity results, participant “Hacker10” has the lowest average pairwise similarity 

scores with the others which means this participant did not reuse others’ code or get 

reused by others. Participant “Hacker9” receives the highest average similarity scores 

which means his project is most reused by others. The mean of the similarity scores is 

0.21250 and the median is 0.18519, where it can be found that the result is a right-skewed 

distribution. Most of the participants have low functional feature similarity scores with 

others since they are developing their own end-user functions to complete their projects. 

The standard deviation is 0.14743, which means most of the similarity scores are located 

below 0.65. 

 

  



 
 

 
 

 

 

CHAPTER 4. RESULTS AND FINDINGS  

In this chapter, this study first reviews the statement of problem to start the data 

collection and analysis process. All the data for supporting the computational approaches 

is collected from the open data contest called Green Ironhack based on the specific 

experiment settings. Before data analysis, data washing is applied and there is a 

description of the collected data. The similarity measurement approaches for both 

technology and functionality feature are defined in chapter three and tested in the pilot 

testing section. The technology similarity is measured using MOSS public service, which 

is discussed as a fit for the algorithm design methodology in this study. The functional 

feature similarity is measured based on the decision parameters in each ontology 

component in the mashups and calculated under the formula of Tversky Index similarity. 

At the end, this chapter presents the conclusions on the similarity results in the open data 

innovation contest and describe the further research areas after this study. 

 

4.1 Review of the Problem 

Given the fact that the term of “reuse” is becoming more and more important in 

open data contests with a transparent context, this study is looking forward to an 

approach to figure out the reuse status by measuring how similar are two mashups in the 

contest. Rodriguez and Chinea (1998) declared that there are three different dimensions 

in the evaluation of mashups: technology, functionality feature and visualized feature, 
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which provides the guideline for similarity measurement dimensions. Although there is 

abundant amount of designs for measuring technology similarity in terms of the source 

code, no one is proved to be appropriate to the code similarity of data-oriented mashups. 

One of the goals of this study is to find a specific approach to measure the code similarity 

in the context of open data contest. The typical features for the most common code 

similarity measurement approaches are listed in chapter three. In order to fit in the 

characteristics of the source code in the mashups from the collected project data, this 

study will choose an open service for code plagiarism detection developed by Stanford 

University. At the mean time, this study needs also to find out a computational approach 

to measure the functional feature similarity among different mashups in the open data 

contest. Human coding, or subjective judging, is the most common method for 

functionality evaluation and measurement. However, it would benefit more if there is a 

computational approach to save human cost and provide technical supports. The logic 

model to measure the functional feature similarity is based on the decision support 

system. By linking decision parameters in mashups to the tokens in the source code, this 

study would be able to analyze the functionality in different components based on the 

parameters found there. Based on the diagram developed by Nikerson and Corter (2008), 

this study could measure the similarities for different ontology components and finally 

combine them as an overall similarity score. The aim of this study is to find working 

computational methods in the specific research settings. 
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4.2 Research Design Background and Data Overview 

The contest that is used to support this study is called “Green Ironhack”. There are 

26 participants in the contest and all of them are eligible for the final prize evaluation 

after four rounds of submissions. After checking into the structures and source code of 

the projects, it shows that all of the 26 projects are using JavaScript as their major 

language as required by the design methodology. They all use Google Map API as the 

interface to create map view in their applications and they use one of the three 

recommended libraries to add visualization graphs into their applications. As for the 

interaction form developed in HTML language, some of the participants are using 

external libraries such as bootstrap or angularJS, whose tokens are all included in the 

dictionaries for functional feature similarity measurement. The external libraries 

themselves should be removed before analyzing to prevent code overlapping on those 

libraries. 

JavaScript file (.js) and HTML file (.html) are the only two types of file to be used 

for analysis on similarities. When using file parsing scripts to check into these files, it is 

found that generally each project will contain two to twenty such files in total. The 

maximum number of lines in a single file is 354, which means that all of the target files 

could be regarded as small scale files. According to Table 2.1, since the external libraries 

have been removed, the projects should be read to be processed by both the code 

similarity program and the functional feature similarity program. 
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4.3 Code Similarity Measurement 

Figure 4.1 presents the results of similarity calculated based on MOSS system 

response for the data collected from GreenIronhack. The tested data group size is 26 and 

pairwise scores are collected. We can learn from the results that the highest similarity 

score is 0.38 between participant “Hacker11” and participant “Hacker13”. Among all the 

technology similarity results, participant “Hacker21” and participant “Hacker22” has the 

first two lowest average pairwise similarity scores with the others which means these two 

participant did not reuse others’ code or get reused by others. Participant “Hacker21” 

receives the highest average similarity scores which means his project is most reused by 

others. The mean of the similarity scores is 0.01488 and the median is 0.001068, where it 

can be found that the result is a right-skewed distribution. Most of the participants have 

low code similarity scores with others since they are developing their own souce code to 

complete their projects.The standard deviation is 0.036591, which means most of the 

similarity scores are located below 0.12.
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Figure 4.1 Histogram for code similarity 
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When look into the two participants with the highest pairwise similarity score, we 

can get the feedback of code similarity from MOSS system (Figure 4.2). The code 

similarity measurement report shows that the two participants are using the same source 

code fragments to develop Google Map components, which leads to high similarity in 

technology dimension. The only part where they are different is the basic geolocation 

data of map. 

 

Figure 4.2 Code similarity result from MOSS system 

 

4.4 Functional feature Similarity Measurement 

Figure 4.3 presents the results of overall functional feature similarity scores for the 

data collected from GreenIronhack. The tested data group size is 26 and pairwise scores 

are collected. We can learn from the results that the highest similarity score is 0.3 

between participant “Hacker12” and “Hacker13”. Among all the results for functional 

feature similarity, participant “Hacker22” has the lowest average pairwise similarity 

scores with the others which means this participant did not reuse others’ code or get 

reused by others. Participant “Hacker21” receives the highest average similarity scores 

which means his project is most reused by others. The mean of the similarity scores is 
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0.123984 and the median is 0.117484, where it can be found that the result is a right-

skewed distribution. Most of the participants have low functional feature similarity scores 

with others since they are developing their own end-user functions to complete their 

projects.The standard deviation is 0.046787, which means most of the similarity scores 

are located below 0.26
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Figure 4.3 Histogram for map components similarity
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Figure 4.4 Histogram for visualized graph components similarity
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Figure 4.5 Histogram for interaction form components similarity
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Figure 4.6 Histogram for overall functional feature similarity 
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When look into the two participants with the highest functional feature similarity 

score, we can find there are several similar sub-components for end-user functions 

(Figure 4.4). It shows that for the google map components, the two participants are both 

developing a basic map for a certain city: one is San Francisco and the other is Chicago. 

They are also using the same markers and layout strategies to show the location 

information on the maps, which leads to high similarity in functional feature dimension.  

 

Figure 4.7 Projects with highest functional feature similarity score 
 

4.5 Discussion 

In this study, the framework has been developed that there are three-level 

dimensions in the field of mashup evaluation and similarity measurement (Rodriguez & 

Chinea, 1998). The problem has been raised in the beginning of the study that measuring 

the reuse activity is significant for both practical and theoretical progress in the context of 

transparent open data contest (Nickerson, 2014). We have also developed novel 

approaches for mashup similarity measurement in both source code level and the 

functionality feature level.  
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The proposed method for technical similarity between the source codes of two 

mashups is based on the structure and semantic matching approaches in the field of 

computer software. That is, the algorithm uses both abstract syntax tree (AST) and 

semantic meaning of statements. The AST that provides local-level structural view is 

included in the parse tree (Baxter et al., 1998). In order to compare the parse trees and 

process the semantic meaning, this study enrolled the open public service called MOSS to 

detect the matching results. MOSS is validated as the tool to complete the similarity 

matching for the context of open data contest (Schleimer et al., 2003). Finally, the 

proposed method will collect data from MOSS results and calculate the pairwise 

similarity scores (Baxter et al., 1998). 

The method for functional feature similarity measurement is based on the 

parameter matching in two target projects (Özacar, 2016). Supported by decision system 

theory, a dictionary has been built to cover all the potential parameters and tokens for a 

target software and the algorithm will calculate the numbers of matching items in two 

mashup projects. After getting all the matching numbers from the projects, the algorithm 

will apply a Tversky similarity measurement formula to calculate the final pairwise 

similarity (Tversky, 1977). 

In the pilot test case of BlueIronhack and the practical case of GreenIronhack, it is 

shown that the proposed measurement methods could work properly with the given 

source codes from the mashup projects. In particular, the algorithms also passed all the 

designed test cases and worked well with all the pairwise scores for participants in a 

contest (Tung & Aldiwan, 2000). 
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One advantage of the algorithms designed in this study is that they are designed for 

the specific context of open data contest and could achieve higher accuracy (Yamamoto 

et al., 2005). The algorithms are all focusing on JavaScript projects with small scale of 

source code files and can get rid of the effect of external libraries. Since the MOSS 

system can support multiple different programming languages, the code similarity 

measurement method could easily be transformed to detect other kinds of programming 

languages other than JavaScript. Once the parameter dictionary is changed for a specific 

language, the functionality feature measurement method is also suitable to multiple 

programming languages.  

 

4.6 Contributions and Limitations 

This study makes three major contributions. First, it presents a theoretically 

grounded conceptualization of similarity for mashups in open data contest that extends 

the existing literature on code similarity in software engineering (Yu et al., 2008). Instead 

of the original similarity definitions for large-scale or enterprise softwares, this study 

raises three different dimensions, technical similarity, functional feature similarity and 

visualized feature similarity for the similarity measurement for mashups developed in 

open data contest (Yamamoto et al., 2005).  

Second, it theoretically develops a computational code similarity measurement 

approach for mashups in the context of open data contest. Based on the literature review, 

the study chooses MOSS system to perform both structural and semantic matching for 

similarity measurement, which have been developed already for general software 

similarity measurement, to fit all the key characteristics of the open data innovation 
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contest (Hage et al., 2011). The third contribution of this study is to define the theoretical 

conceptualization of functional feature similarity as well as develop the computational 

method for it. It advances the literature on cognitive psychology by providing 

computational approach to the conceptual methodology. Instead of focusing on the 

source-code functions in the field of computer science, this study is more focusing on the 

end-user functions with a user perspective by linking code with end-user features. The 

concept of functional feature similarity is developed based on the ontology components 

theory of Beydoun (2014). And the components are generated by finding the scenario-

based parameters and cluster of parameters (Nikerson & Corter, 2008). This study also 

involves the theory of decision support system to introduce the concept of decision 

parameters, which is supported by the literature and can provide the weighting strategy 

for parameters in calculation. The DSS theory is used to support the similarity 

measurement algorithm (Özacar, 2016). 

As for the limitations, this study is currently focusing on two of the three 

dimensions of mashup similarity measurement, which are code similarity and the 

functional feature similarity. The generalizability in this study is limited and only applies 

to the study with 100 mashup projects developed during Purdue GreenIronhack. The 

validation of the computational approaches for functional feature similarity is only tested 

on the designed test cases for the mashups in open data innovation contest. The design 

settings for this study is restricted to the specific web programming language of 

JavaScript with limited external libraries for the mashups developed in the open data 

contest. 
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4.7 Future Research 

Upon the conclusion of this study, several areas of future research can be 

addressed. The future research should cover the measurement of visualized feature 

similarity, which is another important dimension of similarity for mashups in open data 

contest (Yamamoto et al., 2005). The information visualization feature can be beneficial 

to the process of learning and decision making (Zhang & Whinston, 1995). The 

correlations of similarities between different dimensions can also be worth further 

analysis and discussion. The result of correlations would be helpful to learn the reuse 

activities and transparency in different dimensions.  

In order to measure the amount of reuse, we should have further development on 

the similarity measurement algorithms to get the actual reuse of participants in a 

transparent open data contest. In the context of Purdue Ironhack project, we assume that 

project A is the first stage solution for participant X, project B is the first stage solution 

for participant Y and project C is the second stage solution for participant X (Figure 4.1). 

The current similarity measurement algorithms in this study is measuring the overlapping 

field: A ∩ B = 2AB/(A+B+2AB) = AB + ABC. The actual reuse of X reuse Y’s code is 

the field of: (C-A) ∩ B = BC. Instead of doing a pairwise similarity measurement, further 

study needs to get the normalized similarity result to find the intersection part of ABC to 

get the actual reuse amount in a reuse activity. 
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Figure 4.8 Mashup reuse in Purdue Ironhack 

 
4.8 Summary and Concluding Remarks 

In this chapter, I apply the designed computational methods for similarity 

measurement to the data collected from Purdue GreenIronhack to calculate the code 

similarity and functional feature similarity of the mashups in that contest. This chapter 

also presents the discussions to the primary research questions posted in the first section. 

It summaries the conceptualization on the similarity of mashups developed in open data 

contest. It also reviews the design and validation test of the computational approaches for 

similarity measurement. In conclusion, this research sets the stage for future research on 

open data contests. There is much tremendous opportunity to create novel applications 

from open data that re-use existing components, and I hope that others will build upon 

this research to advance theory and practice. 
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Appendix A List of Libraries 
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Appendix B Dictionary for Google Map  
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Appendix C Dictionary for Graph-style Visualization Libraries 

 

  



 

 
 

59 

Appendix D Examples from the Dictionary for D3 Library 

The entire library can be found at: https://github.com/mbostock/d3/wiki/API-Reference 
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Appendix E Examples from the Dictionary for JavaScript 

The entire library can be found at: https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference 
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Appendix F Examples from the Dictionary for HTML 

The entire library can be found at: http://www.w3schools.com/tags/ 
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Appendix G Examples from the Dictionary for Semantic-ui 

The entire library can be found at: http://semantic-ui.com/kitchen-sink.html#/modules 
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Appendix H Examples from the Dictionary for BootstrapJS 

The entire library can be found at: http://getbootstrap.com/javascript/ 
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Appendix I Function similarity for map components 

  

H
acker1 

H
acker2 

H
acker3 

H
acker4 

H
acker5 

H
acker6 

H
acker7 

H
acker8 

H
acker9 

H
acker10 

H
acker11 

H
acker12 

H
acker13 

Hacker1 1.0000 0.1386 0.1808 0.1742 0.0615 0.0986 0.0694 0.3113 0.2208 0.1104 0.2159 0.0386 0.1709 
Hacker2   1.0000 0.1643 0.0176 0.1194 0.0968 0.0796 0.0725 0.0899 0.1380 0.1149 0.1513 0.1000 
Hacker3     1.0000 0.0309 0.0179 0.0919 0.1345 0.0250 0.0426 0.1503 0.0679 0.1079 0.0384 
Hacker4       1.0000 0.0860 0.1328 0.1788 0.1730 0.1051 0.1929 0.0453 0.0078 0.0656 
Hacker5         1.0000 0.0594 0.1561 0.0272 0.0968 0.1642 0.0110 0.2098 0.0695 
Hacker6           1.0000 0.1481 0.1003 0.0262 0.0864 0.1033 0.1605 0.0840 
Hacker7             1.0000 0.1214 0.2088 0.1417 0.2085 0.1062 0.1039 
Hacker8               1.0000 0.1539 0.0330 0.1434 0.0942 0.1672 
Hacker9                 1.0000 0.0981 0.0973 0.1936 0.0580 
Hacker10                   1.0000 0.4768 0.1329 0.1740 
Hacker11                     1.0000 0.0427 0.2099 
Hacker12                       1.0000 0.1349 
Hacker13                         1.0000 
Hacker14                           
Hacker15                           
Hacker16                           
Hacker17                           
Hacker18                           
Hacker19                           
Hacker20                           
Hacker21                           
Hacker22                           
Hacker23                           
Hacker24                           
Hacker25                           
Hacker26                           
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H
acker14 
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acker15 

H
acker16 

H
acker17 

H
acker18 

H
acker19 

H
acker20 

H
acker21 

H
acker22 

H
acker23 

H
acker24 

H
acker25 

H
acker26 

Hacker1 0.1790 0.2106 0.1722 0.1728 0.1169 0.2266 0.0527 0.0818 0.1909 0.0093 0.2623 0.1760 0.0861 
Hacker2 0.0562 0.0264 0.1164 0.0091 0.1241 0.0339 0.1130 0.1791 0.0248 0.0124 0.1781 0.0555 0.0856 
Hacker3 0.0482 0.1453 0.2018 0.0465 0.1492 0.1210 0.0191 0.1620 0.1684 0.1676 0.1440 0.1799 0.2358 
Hacker4 0.0038 0.1263 0.1201 0.1820 0.0547 0.1738 0.1349 0.1862 0.0752 0.1309 0.1246 0.0756 0.1238 
Hacker5 0.1811 0.0346 0.1667 0.1212 0.1669 0.1559 0.0866 0.2138 0.1476 0.0427 0.0316 0.0807 0.1979 
Hacker6 0.0906 0.0464 0.1741 0.1257 0.1094 0.0573 0.0941 0.2116 0.0918 0.0213 0.0999 0.1461 0.1011 
Hacker7 0.1955 0.1846 0.0569 0.1413 0.1149 0.1304 0.1562 0.1182 0.1607 0.1106 0.0939 0.2573 0.1837 
Hacker8 0.0452 0.1398 0.0355 0.1232 0.0625 0.1403 0.1576 0.1009 0.1617 0.0179 0.1309 0.1593 0.0132 
Hacker9 0.2243 0.1434 0.1221 0.1393 0.0757 0.0977 0.1936 0.0802 0.1598 0.1339 0.0826 0.0544 0.0085 
Hacker10 0.1856 0.1994 0.1258 0.1896 0.1738 0.1121 0.0422 0.0784 0.1609 0.0339 0.0599 0.0427 0.0528 
Hacker11 0.0275 0.1856 0.1097 0.0282 0.0309 0.1835 0.0569 0.0101 0.0335 0.1986 0.0829 0.0210 0.0079 
Hacker12 0.1835 0.0673 0.1560 0.1002 0.0361 0.1951 0.2159 0.1357 0.2007 0.1473 0.0493 0.0492 0.1482 
Hacker13 0.0141 0.1537 0.0665 0.0530 0.0089 0.1929 0.1795 0.0424 0.1865 0.1176 0.0655 0.0816 0.0626 
Hacker14 1.0000 0.1340 0.1537 0.0756 0.1066 0.1246 0.2119 0.0401 0.0639 0.1911 0.1661 0.0780 0.0785 
Hacker15   1.0000 0.0483 0.1036 0.1441 0.0233 0.0839 0.1910 0.2771 0.1784 0.0779 0.1720 0.0226 
Hacker16     1.0000 0.0443 0.0290 0.0473 0.1524 0.0158 0.1225 0.1963 0.1176 0.0904 0.1300 
Hacker17       1.0000 0.0355 0.1053 0.1598 0.1662 0.1644 0.0625 0.1354 0.1472 0.0327 
Hacker18         1.0000 0.1422 0.0674 0.1384 0.1018 0.0468 0.0947 0.2141 0.1260 
Hacker19           1.0000 0.1265 0.0873 0.0453 0.1449 0.1418 0.1062 0.1123 
Hacker20             1.0000 0.0581 0.0715 0.0735 0.2087 0.0354 0.0463 
Hacker21               1.0000 0.1967 0.0868 0.2184 0.1224 0.1131 
Hacker22                 1.0000 0.0513 0.1314 0.1961 0.0446 
Hacker23                   1.0000 0.0314 0.2030 0.1925 
Hacker24                     1.0000 0.1974 0.0605 
Hacker25                       1.0000 0.2056 
Hacker26                         1.0000 



 
 

 
 

 66 

Appendix J Function similarity for visualized graph components 
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Hacker1 1.0000 0.0383 0.0769 0.0783 0.0701 0.0582 0.1153 0.2577 0.1282 0.1926 0.0725 0.1248 0.0144 
Hacker2   1.0000 0.0247 0.0856 0.0108 0.0483 0.0697 0.1071 0.0755 0.1991 0.0666 0.1574 0.1067 
Hacker3     1.0000 0.1439 0.0167 0.2174 0.1832 0.0431 0.1031 0.0831 0.2023 0.1279 0.0326 
Hacker4       1.0000 0.2196 0.0234 0.1936 0.2017 0.1745 0.0656 0.1397 0.2098 0.0338 
Hacker5         1.0000 0.0931 0.1121 0.0892 0.0897 0.1977 0.0514 0.1985 0.0635 
Hacker6           1.0000 0.0955 0.0362 0.0550 0.0536 0.0046 0.2113 0.2038 
Hacker7             1.0000 0.1091 0.0356 0.0669 0.0412 0.0063 0.0819 
Hacker8               1.0000 0.0560 0.0625 0.0856 0.1774 0.0263 
Hacker9                 1.0000 0.0133 0.0814 0.0825 0.0349 
Hacker10                   1.0000 0.2343 0.0950 0.0742 
Hacker11                     1.0000 0.0390 0.0159 
Hacker12                       1.0000 0.1113 
Hacker13                         1.0000 
Hacker14                           
Hacker15                           
Hacker16                           
Hacker17                           
Hacker18                           
Hacker19                           
Hacker20                           
Hacker21                           
Hacker22                           
Hacker23                           
Hacker24                           
Hacker25                           
Hacker26                           
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H
acker22 

H
acker23 

H
acker24 

H
acker25 

H
acker26 

Hacker1 0.1378 0.1767 0.1296 0.0973 0.0882 0.2368 0.0568 0.0910 0.1482 0.0528 0.2316 0.1308 0.1035 
Hacker2 0.0311 0.0684 0.2155 0.0713 0.0044 0.0737 0.0430 0.1321 0.0696 0.0701 0.0667 0.0984 0.0914 
Hacker3 0.0673 0.1038 0.1963 0.0485 0.0753 0.0540 0.0930 0.1170 0.0806 0.1057 0.1345 0.1217 0.2298 
Hacker4 0.0151 0.1237 0.1640 0.2094 0.0071 0.0592 0.2146 0.1854 0.0141 0.0766 0.1319 0.1703 0.0953 
Hacker5 0.1207 0.0081 0.1816 0.1050 0.0863 0.0881 0.2031 0.1020 0.0932 0.0816 0.1103 0.1005 0.1834 
Hacker6 0.0857 0.0256 0.0282 0.0840 0.0190 0.0025 0.0665 0.1432 0.0166 0.0537 0.1741 0.0960 0.0917 
Hacker7 0.0228 0.0894 0.0143 0.0162 0.0622 0.0581 0.0961 0.1155 0.0532 0.0283 0.1082 0.1049 0.1593 
Hacker8 0.0386 0.0078 0.2022 0.0784 0.1162 0.0988 0.1054 0.1118 0.0734 0.0501 0.2186 0.1167 0.0674 
Hacker9 0.0726 0.1179 0.1709 0.0715 0.0929 0.0942 0.1199 0.0461 0.0505 0.0204 0.0533 0.0685 0.0463 
Hacker10 0.0133 0.0082 0.0283 0.0704 0.0490 0.2060 0.0366 0.1499 0.0507 0.1945 0.0379 0.0310 0.1182 
Hacker11 0.0930 0.1329 0.0485 0.2094 0.1646 0.1544 0.1192 0.2188 0.0472 0.0555 0.0639 0.0437 0.2127 
Hacker12 0.0193 0.1912 0.0526 0.0156 0.0327 0.2073 0.1169 0.0693 0.1305 0.1106 0.0388 0.0172 0.1837 
Hacker13 0.0712 0.0985 0.0984 0.0987 0.0909 0.2334 0.1075 0.0707 0.1284 0.0706 0.0374 0.1077 0.0118 
Hacker14 1.0000 0.1165 0.1394 0.1059 0.0586 0.0821 0.0886 0.0523 0.1029 0.1136 0.1437 0.0560 0.0126 
Hacker15   1.0000 0.2021 0.1041 0.0955 0.0265 0.0881 0.2097 0.2093 0.1499 0.0313 0.0985 0.0213 
Hacker16     1.0000 0.0527 0.0019 0.1647 0.1893 0.0570 0.0330 0.0919 0.1433 0.2145 0.0696 
Hacker17       1.0000 0.0441 0.0730 0.0092 0.0571 0.0308 0.0831 0.0967 0.1297 0.0296 
Hacker18         1.0000 0.0065 0.1828 0.1164 0.0029 0.1443 0.1071 0.1475 0.0723 
Hacker19           1.0000 0.1555 0.0978 0.1216 0.0899 0.0982 0.0829 0.1578 
Hacker20             1.0000 0.1757 0.1066 0.0685 0.1510 0.0454 0.1525 
Hacker21               1.0000 0.2109 0.0713 0.0865 0.0506 0.0534 
Hacker22                 1.0000 0.0776 0.0942 0.1273 0.0890 
Hacker23                   1.0000 0.0816 0.0866 0.0987 
Hacker24                     1.0000 0.1700 0.0901 
Hacker25                       1.0000 0.1437 
Hacker26                         1.0000 
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Appendix K Function similarity for interaction form components 

  

H
acker1 

H
acker2 

H
acker3 

H
acker4 

H
acker5 

H
acker6 

H
acker7 

H
acker8 

H
acker9 

H
acker10 

H
acker11 

H
acker12 

H
acker13 

Hacker1 1.0000 0.1030 0.1540 0.0969 0.2357 0.1293 0.1572 0.2717 0.3416 0.1736 0.2058 0.0720 0.0479 
Hacker2   1.0000 0.1766 0.3173 0.1535 0.2365 0.2525 0.2521 0.1445 0.2533 0.0954 0.3020 0.1201 
Hacker3     1.0000 0.1093 0.1431 0.1097 0.2776 0.0910 0.0667 0.0189 0.1577 0.0698 0.1524 
Hacker4       1.0000 0.1733 0.1064 0.2782 0.2449 0.0821 0.2599 0.0257 0.1582 0.1684 
Hacker5         1.0000 0.0445 0.1326 0.0778 0.1227 0.0911 0.2747 0.2153 0.2438 
Hacker6           1.0000 0.1872 0.0756 0.1764 0.2439 0.2447 0.3034 0.1596 
Hacker7             1.0000 0.1508 0.1202 0.3274 0.2122 0.0110 0.1714 
Hacker8               1.0000 0.1015 0.0908 0.1393 0.0730 0.0532 
Hacker9                 1.0000 0.1017 0.0801 0.0649 0.0385 
Hacker10                   1.0000 0.2635 0.2916 0.1434 
Hacker11                     1.0000 0.1388 0.2527 
Hacker12                       1.0000 0.2943 
Hacker13                         1.0000 
Hacker14                           
Hacker15                           
Hacker16                           
Hacker17                           
Hacker18                           
Hacker19                           
Hacker20                           
Hacker21                           
Hacker22                           
Hacker23                           
Hacker24                           
Hacker25                           
Hacker26                           
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H
acker14 

H
acker15 

H
acker16 

H
acker17 

H
acker18 

H
acker19 

H
acker20 

H
acker21 

H
acker22 

H
acker23 

H
acker24 

H
acker25 

H
acker26 

Hacker1 0.0692 0.2995 0.0741 0.1855 0.1928 0.1729 0.2540 0.2117 0.1882 0.2496 0.2940 0.2669 0.1142 
Hacker2 0.1667 0.1837 0.1945 0.0128 0.1717 0.1380 0.1196 0.0284 0.0962 0.1672 0.1443 0.1651 0.0861 
Hacker3 0.2672 0.1052 0.3143 0.0766 0.1402 0.0989 0.1767 0.0127 0.2482 0.0000 0.3147 0.1967 0.2750 
Hacker4 0.0734 0.1131 0.0283 0.0669 0.2696 0.0334 0.2443 0.1998 0.3232 0.3245 0.3191 0.1354 0.1712 
Hacker5 0.0957 0.0789 0.0012 0.0168 0.1254 0.1753 0.2426 0.2733 0.0279 0.1975 0.0062 0.2775 0.2257 
Hacker6 0.1083 0.3275 0.0056 0.0449 0.2814 0.2075 0.0308 0.2540 0.1452 0.0481 0.2998 0.1519 0.1140 
Hacker7 0.2255 0.0315 0.2799 0.2303 0.2285 0.1029 0.0525 0.1007 0.1258 0.2785 0.0402 0.2713 0.1570 
Hacker8 0.0638 0.1098 0.1899 0.0482 0.1148 0.1278 0.2226 0.3285 0.0318 0.0539 0.2892 0.2253 0.2388 
Hacker9 0.1303 0.1272 0.0132 0.0068 0.0334 0.1697 0.2563 0.2567 0.2447 0.0447 0.1286 0.2724 0.1882 
Hacker10 0.1891 0.3073 0.1738 0.2914 0.0754 0.1550 0.2488 0.0685 0.1310 0.0487 0.0245 0.1882 0.2847 
Hacker11 0.1248 0.0507 0.1602 0.2560 0.0901 0.2371 0.0927 0.0411 0.1794 0.3128 0.0529 0.0228 0.1235 
Hacker12 0.2329 0.0977 0.2374 0.1692 0.1993 0.2572 0.0236 0.2878 0.0442 0.3101 0.1559 0.1056 0.2038 
Hacker13 0.1886 0.1857 0.3083 0.1198 0.1519 0.2167 0.2321 0.3220 0.1510 0.0495 0.2465 0.0596 0.1499 
Hacker14 1.0000 0.3154 0.2412 0.2272 0.1074 0.1913 0.1957 0.1418 0.2491 0.2062 0.2490 0.1901 0.2654 
Hacker15   1.0000 0.0491 0.2618 0.2162 0.1087 0.1422 0.1427 0.3085 0.0610 0.0255 0.0354 0.1454 
Hacker16     1.0000 0.3157 0.0204 0.1530 0.2677 0.0112 0.2277 0.2947 0.1866 0.2572 0.3094 
Hacker17       1.0000 0.1668 0.0791 0.2280 0.0397 0.1697 0.1372 0.0200 0.3305 0.0059 
Hacker18         1.0000 0.0302 0.1680 0.0912 0.0527 0.1900 0.1067 0.1417 0.0229 
Hacker19           1.0000 0.0281 0.2716 0.0377 0.1450 0.0744 0.0723 0.0376 
Hacker20             1.0000 0.1950 0.0973 0.1328 0.1645 0.2110 0.1014 
Hacker21               1.0000 0.1140 0.0788 0.1609 0.2040 0.0942 
Hacker22                 1.0000 0.1220 0.0940 0.2426 0.0907 
Hacker23                   1.0000 0.2997 0.2465 0.0389 
Hacker24                     1.0000 0.1054 0.2032 
Hacker25                       1.0000 0.1892 
Hacker26                         1.0000 
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Appendix L Overall function similarity 

  

H
acker1 

H
acker2 

H
acker3 

H
acker4 

H
acker5 

H
acker6 

H
acker7 

H
acker8 

H
acker9 

H
acker10 

H
acker11 

H
acker12 

H
acker13 

Hacker1 1.0000 0.0933 0.1373 0.1165 0.1224 0.0954 0.1139 0.2802 0.2302 0.1589 0.1647 0.0785 0.0777 
Hacker2   1.0000 0.1219 0.1402 0.0946 0.1272 0.1339 0.1439 0.1033 0.1968 0.0923 0.2035 0.1090 
Hacker3     1.0000 0.0947 0.0592 0.1397 0.1984 0.0530 0.0708 0.0841 0.1426 0.1019 0.0745 
Hacker4       1.0000 0.1596 0.0875 0.2168 0.2065 0.1206 0.1728 0.0702 0.1252 0.0892 
Hacker5         1.0000 0.0657 0.1336 0.0647 0.1031 0.1510 0.1124 0.2079 0.1256 
Hacker6           1.0000 0.1436 0.0707 0.0858 0.1280 0.1175 0.2250 0.1491 
Hacker7             1.0000 0.1271 0.1215 0.1787 0.1540 0.0412 0.1191 
Hacker8               1.0000 0.1038 0.0621 0.1228 0.1149 0.0823 
Hacker9                 1.0000 0.0710 0.0863 0.1137 0.0438 
Hacker10                   1.0000 0.3249 0.1732 0.1305 
Hacker11                     1.0000 0.0735 0.1595 
Hacker12                       1.0000 0.1801 
Hacker13                         1.0000 
Hacker14                           
Hacker15                           
Hacker16                           
Hacker17                           
Hacker18                           
Hacker19                           
Hacker20                           
Hacker21                           
Hacker22                           
Hacker23                           
Hacker24                           
Hacker25                           
Hacker26                           
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H
acker14 

H
acker15 

H
acker16 

H
acker17 

H
acker18 

H
acker19 

H
acker20 

H
acker21 

H
acker22 

H
acker23 

H
acker24 

H
acker25 

H
acker26 

Hacker1 0.1287 0.2289 0.1253 0.1519 0.1326 0.2121 0.1212 0.1282 0.1758 0.1039 0.2626 0.1912 0.1013 
Hacker2 0.0846 0.0929 0.1755 0.0311 0.1001 0.0819 0.0919 0.1132 0.0635 0.0832 0.1297 0.1064 0.0877 
Hacker3 0.1275 0.1181 0.2375 0.0572 0.1216 0.0913 0.0963 0.0972 0.1657 0.0911 0.1977 0.1661 0.2469 
Hacker4 0.0308 0.1210 0.1042 0.1528 0.1105 0.0888 0.1979 0.1904 0.1375 0.1773 0.1919 0.1271 0.1301 
Hacker5 0.1325 0.0405 0.1165 0.0810 0.1262 0.1398 0.1774 0.1964 0.0896 0.1073 0.0494 0.1529 0.2024 
Hacker6 0.0949 0.1332 0.0693 0.0849 0.1366 0.0891 0.0638 0.2030 0.0845 0.0410 0.1913 0.1313 0.1023 
Hacker7 0.1479 0.1019 0.1170 0.1293 0.1352 0.0972 0.1016 0.1114 0.1132 0.1392 0.0808 0.2111 0.1667 
Hacker8 0.0492 0.0858 0.1426 0.0833 0.0979 0.1223 0.1619 0.1804 0.0890 0.0406 0.2129 0.1671 0.1065 
Hacker9 0.1424 0.1295 0.1021 0.0725 0.0673 0.1206 0.1899 0.1277 0.1517 0.0663 0.0882 0.1318 0.0810 
Hacker10 0.1294 0.1716 0.1093 0.1838 0.0994 0.1577 0.1092 0.0989 0.1142 0.0924 0.0408 0.0873 0.1519 
Hacker11 0.0818 0.1231 0.1062 0.1645 0.0952 0.1916 0.0896 0.0900 0.0867 0.1890 0.0666 0.0292 0.1147 
Hacker12 0.1453 0.1188 0.1487 0.0950 0.0894 0.2199 0.1188 0.1643 0.1251 0.1894 0.0814 0.0573 0.1786 
Hacker13 0.0913 0.1460 0.1577 0.0905 0.0839 0.2143 0.1730 0.1450 0.1553 0.0792 0.1165 0.0830 0.0748 
Hacker14 1.0000 0.1886 0.1781 0.1362 0.0909 0.1327 0.1654 0.0780 0.1387 0.1703 0.1862 0.1080 0.1188 
Hacker15   1.0000 0.0999 0.1565 0.1519 0.0528 0.1047 0.1811 0.2650 0.1298 0.0449 0.1020 0.0631 
Hacker16     1.0000 0.1376 0.0171 0.1217 0.2031 0.0280 0.1278 0.1943 0.1492 0.1874 0.1697 
Hacker17       1.0000 0.0821 0.0858 0.1323 0.0877 0.1217 0.0943 0.0840 0.2025 0.0227 
Hacker18         1.0000 0.0596 0.1394 0.1153 0.0524 0.1270 0.1028 0.1678 0.0737 
Hacker19           1.0000 0.1034 0.1522 0.0682 0.1266 0.1048 0.0871 0.1026 
Hacker20             1.0000 0.1429 0.0918 0.0916 0.1747 0.0973 0.1001 
Hacker21               1.0000 0.1738 0.0790 0.1553 0.1257 0.0869 
Hacker22                 1.0000 0.0836 0.1065 0.1887 0.0748 
Hacker23                   1.0000 0.1376 0.1787 0.1101 
Hacker24                     1.0000 0.1576 0.1179 
Hacker25                       1.0000 0.1795 
Hacker26                         1.0000 
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