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ABSTRACT 

Singla, Ankush. M.S., Purdue University, August 2016. Hardware Accelerated 
Authentication System for Dynamic Time-Critical Networks. Major Professor: Elisa 
Bertino. 
  
   
The secure and efficient operation of time-critical networks, such as vehicular networks, 

smart-grid and other smart-infrastructures, is of primary importance in today’s society. It 

is crucial to minimize the impact of security mechanisms over such networks so that the 

safe and reliable operations of time-critical systems are not being interfered.  

 

Even though there are several security mechanisms, their application to smart-

infrastructure and Internet of Things (IoT) deployments may not meet the ubiquitous and 

time-sensitive needs of these systems. That is, existing security mechanisms either 

introduce a significant computation and communication overhead, or they are not 

scalable for a large number of IoT components. In particular, as a primary authentication 

mechanism, existing digital signatures cannot meet the real-time processing requirements 

of time-critical networks, and also do not fully benefit from advancements in the 

underlying hardware/software of IoTs. 

  

As a part of this thesis, we create a reliable and scalable authentication system to ensure 

secure and reliable operation of dynamic time-critical networks like vehicular networks 
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through hardware acceleration. The system is implemented on System-On-Chips (SoC) 

leveraging the parallel processing capabilities of the embedded Graphical Processing 

Units (GPUs) along with the CPUs (Central Processing Units). We identify a set of 

cryptographic authentication mechanisms, which consist of operations that are highly 

parallelizable while still maintain high standards of security and are also secure against 

various malicious adversaries. We also focus on creating a fully functional prototype of 

the system which we call a “Dynamic Scheduler” which will take care of scheduling the 

messages for signing or verification on the basis of their priority level and the number of 

messages currently in the system, so as to derive maximum throughput or minimum 

latency from the system, whatever the requirement may be. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

According to National Highway Traffic Safety Administration (NHTSA) there were 

32,479 highway fatalities in the year 2011 (Harding, et al., 2014). Another NHTSA study 

which accesses the readiness of Vehicle-to-Vehicle (V2V) communication technology for 

practical application, estimates that just two of the many possible V2V applications 

Intersection Movement Assist (IMA) and Left Turn Assist (LTA) can save 49 to 1,083 

lives by preventing these kind of accidents. These kind of applications can harness 

vehicular networks to communicate with other vehicles as well as control-centers through 

roadside infrastructure. 

 

The secure and efficient operation of time-critical networks, such as the aforementioned 

vehicular networks as well as smart-grid and other smart-infrastructures, is of primary 

importance in today’s society. It is crucial to minimize the impact of security mechanisms 

over such networks so that the safe and reliable operations of time-critical systems are not 

being interfered. For instance, if the delay introduced by the crypto operations negatively 

affects the time available for braking the car before a collision, a car may not be able to 

safely stop in time. Similarly, smart-grid networks require phasor measurement units to 

authenticate security sensitive measurements with a very high throughput (e.g., 1000-

2000 messages per second). Finally, the security mechanisms for time-critical networks 
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must be highly scalable, since these systems have very large numbers of connected 

components. 

Even though there are several security mechanisms, their application to smart-

infrastructure and Internet of Things (IoT) deployments may not meet the ubiquitous and 

time-sensitive needs of these systems. That is, existing security mechanisms either 

introduce a significant computation and communication overhead, or they are not 

scalable for a large number of IoT components. In particular, as a primary authentication 

mechanism, existing implementations of digital signatures cannot meet the real-time 

processing requirements of time-critical networks, and also do not fully benefit from 

advancements in the underlying hardware/software of IoTs.  

The goal of this research is to identify a suite of extremely fast digital signatures and 

implement them using hardware-acceleration, to ensure delay-aware authentication in 

time-critical networks. This project analyzes and implements real-time digital signature 

schemes, and then pushes the performance to the edge via cryptographic hardware-

acceleration. 

The end result of this research would be to show significantly better throughput and 

lower latency of the accelerated authentication algorithms when compared to existing 

implementations, along with an ability to handle and schedule messages according to 

their priority level. 
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1.2 Scope 

The scope of this thesis includes the following: 

 

1. Identify viable authentication mechanisms for hardware-acceleration and 

implement these algorithms on server-grade GPUs using their parallel processing 

capabilities. 

2. Implement these algorithms on System-On-Chips containing GPUs. 

3. Create a Dynamic Scheduler to schedule and manage incoming messages and 

more importantly leverage the processing capabilities of both CPUs and GPUs at 

the same time. 

4. Create graphs and charts showing performance comparisons of these 

implementations with state-of –the art authentication implementations. 

 

1.3 Assumptions 

For successful implementation of our system in the real world we are assuming the 

following:  

1. There exists a working fault-tolerant and high-bandwidth wireless network for 

these authentication messages and signatures to travel from one node to others.  

2. There exists a fully functional and reliable key distribution mechanism already in 

place and the nodes have their respective private-public keys in place before our 

system starts working. 
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3. The authentication system is the highest priority program running on the system. 

All other programs, for e.g. entertainment or other communication systems can 

take a back-seat when the authentication program needs the hardware. 

 

1.4 Limitations 

In addition to relying upon the above assumptions to be in place before our system is 

operational, it suffers from the following limitations: 

1. We do not focus on encrypting the messages while in transit, so as to protect them 

from the eyes of a malicious adversary. 

2. The receiving nodes may not have a way to get the public keys of the transmitting 

nodes while they are moving at a fast speed.  

3. Fault tolerance needs to be built into the system. There is no way now for 

knowing whether the message was received by the intended node and passed 

verification or not.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE 

 

2.1 Introduction 

In the following sections, we give an understanding of the state-of-the art authentication 

algorithms being used and a preliminary analysis including the benefits and the 

shortcomings of the same. In the section 2.3, we describe the existing hardware-

accelerated implementations of various cryptographic mechanisms. 

 

2.2 Existing Authentication Mechanisms 

We outline the advantages and limitations of authentication mechanisms that are most 

relevant to our work. 

 

Message Authentication Codes and Standard Digital Signatures: Symmetric crypto based 

authentication mechanisms rely on Message Authentication Code (MAC) (Menezes, 

Oorschot, & Vanstone, 1996). Despite their simplicity and computational efficiency, 

MAC-based methods are not practical for broadcast authentication in large-scale 

distributed systems [ (Luk, Perrig, & Whillock, 2006), (Boneh, Lynn, & Shacham, 

2004) ], as they require a pairwise key distribution requirement among all the signers and 

verifiers. These methods also cannot achieve non-repudiation and public verifiability. 

Digital signatures (e.g., RSA (Rivest, Shamir, & Adleman, 1978), ECDSA (American 
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Bankers Association, 1999)) rely on Public Key Infrastructures (PKIs) (Menezes, 

Oorschot, & Vanstone, 1996), which make them publicly verifiable and scalable for large 

systems. Hence, they are considered as a primary authentication mechanism for large-

scale delay-aware systems such as vehicular networks and smart-grid systems. For 

instance, the vehicular WAVE architecture mandates (IEEE, 2014) the use of PKI 

mechanisms to digitally sign critical messages [ (IEEE, 2013), (Vinel, Campolo, Petit, & 

Koucheryavy, 2011), (Mammeri, Petit, & Zoubir, 2013)]. Smart-grids require 

ubiquitously deployed phasor measurement units to authenticate sensitive measurements 

with a very high throughput (e.g., up to 120 messages per second) [ (Robin Berthier, 

2013), (IEEE, 2011)]). Despite their scalability, standard digital signature schemes 

require several expensive operations such as modular exponentiation and pairing (e.g., 

BLS (Boneh, Lynn, & Shacham, 2004)). Therefore, they are not suitable for time-critical 

authentication. It has been shown that they introduce significant delays which for safety 

reasons are unacceptable in time-critical networks such as vehicular networks 

[ (Mammeri & Zoubir, 2010), (Mammeri, Petit, & Zoubir, 2013), (Vinel, Campolo, Petit, 

& Koucheryavy, 2011)].  

 

Delayed Key Disclosure and Amortized Signatures: Delayed key disclosure methods 

[ (Perrig, Canetti, Song, & Tygar, 2000) , (Perrig, Canetti, Song, & Tygar, 2001), (Perrig, 

Canetti, Song, & Tygar, 2002)] are efficient and compact as they introduce an asymmetry 

between signer and verifier via a time factor. However, these methods require packet 

buffering, and therefore cannot achieve immediate verification (which is vital for delay-

aware authentication). Signature amortization methods (e.g.,  
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(Song, Zuckerman, & Tygar, 2002), (Lysyanskaya, Tamassia, & Triandopoulos, 2004), 

(Wong & Lam, 1999),  (Miner & Staddon, 2001)) compute a signature over a set of 

messages instead of individual message. Hence, the cost of signature generation and 

verification is amortized over multiple messages. However, these methods require packet 

buffering and introduce packet loss risk due to the use of hash-chains.  

 

Cryptographic Hardware Acceleration with GPUs: Symmetric ciphers and RSA for SSL 

have been implemented, accelerated and benchmarked using General Purpose GPUs 

(GPGPUs) [ (Gilger, Barnickel, & Meyer, 2012), (Jang, Han, Han, Moon, & Park, 

2011)]. AES related GPU based acceleration techniques have been investigated in the 

CUDA framework [ (Li, Zhong, Zhao, Mei, & Chu., 2012), (Iwai, Kurokawa, & 

Nisikawa, 2010)]. There are numerous other studies that leverage Graphic Processing 

Units (GPU)s, but we limit the discussion because of space constraints. Discrete GPUs 

have several limitations such as high operating power usage and size, hence they have not 

been deployed in cars. NVIDIA, as a major GPU manufacturer and our collaborator in 

this work, has moved towards implementing the Tegra SoCs, which are being deployed 

in newer Audi and Tesla models. In [ (Yan, Shi, & Fei, 2009), (Mane, Judge, & 

Schaumont, 2011)], modular arithmetic accelerations with embedded Digital Signal 

Processing (DSP) cores in SoC have been developed. In (Pabbuleti, Mane, Desai, Albert, 

& Schaumont, 2013), an ECC implementation for the Venom (NEON) co-processor in 

Qualcomm’s Scorpion (ARM) Central Processing Unit (CPU), with Streaming SIMD 

Extensions (SSE2) instruction-set in Intel’s Atom CPU, was developed. However, none 

of these studies has explored the collaboration between GPU and CPU in modern SoC 
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co-processor architectures. To the best of our knowledge, only the work in (Wang, 

Xiong, Yun, & Cavallaro, 2013), which is outside of the crypto domain, has explored the 

GPU/CPU coordination. In (Glas, Sander, Stuckert, M¨uller-Glaser, & Becker, 2011), an 

ECDSA acceleration on reconfigurable hardware has been proposed, which offers some 

performance improvements. However, such approaches do not incorporate the ARM-

based hardware design architecture of a SoC. Our proposed methods in SoCs are built 

using systems already existing in cars, and also show better performance. 

 

In (Singla, Mudgerikar, Papapanagiotou, & Yavuz, 2015), we describe Hardware-

Accelerated Authentication (HAA) derived from RA (Rapid Authentication) scheme 

(Yavuz, 2014) and showed its application to vehicular networks. HAA significantly 

improves the performance of offline-online constructions. That is, HAA-2048 (GPU) is 

x18, x6, and x3 times faster than the current CPU implementation of RSA, ECDSA and 

RA (Yavuz, 2014), respectively, for the same level of security. Figures 3, 4 and 5 indicate 

results when these optimizations are performed on an Nvidia Tegra K1 SoC with 192 

Nvidia CUDA Cores on its GPU. Figures 6, 7 and 8 indicate results when these 

optimizations are performed on an Nvidia Tesla K40c server-grade GPU containing 2880 

Nvidia CUDA Cores. Figure 9 illustrates the results when the CPU cores and GPU are 

used in conjunction to divide the processing workload. 

 

2.3 Cryptographic Hardware Acceleration with GPUs 

Symmetric ciphers and RSA for SSL have been implemented, accelerated and 

benchmarked using General Purpose Graphic Processing Units (GPGPUs) [30, 43]. AES-



9 
 

  

 

related GPU-based acceleration techniques have been investigated for the Compute 

Unified Device Architecture (CUDA) framework in (Li, Zhong, Zhao, Mei, & Chu., 

2012) and (Iwai, Kurokawa, & Nisikawa, 2010). Discrete GPUs have several limitations 

such as high operating power usage and size, hence they have not been deployed in cars. 

NVIDIA, as a major GPU manufacturer, has moved towards implementing the Tegra 

SoCs, which are being deployed in Audi and Tesla models. None of these prior studies 

have explored the collaboration between GPU and CPU in modern SoC co-processor 

architectures. To the best of our knowledge, only the work in (Wang, Xiong, Yun, & 

Cavallaro, 2013), which is outside of the crypto domain, has explored the GPU/CPU 

coordination in an older version of SoC. In (Glas, Sander, Stuckert, M¨uller-Glaser, & 

Becker, 2011), an ECDSA acceleration on reconfigurable hardware has been proposed, 

which offers some performance improvements. 
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CHAPTER 3. FRAMEWORK AND METHODOLOGY 

 

The proposed authentication system involves a network of individual nodes 

communicating among each other and with a central command-center. The authentication 

algorithm will be processed on System-On-Chips (SoC) installed inside the nodes. For 

the purposes of this section, we will talk about the vehicular networks, but any similar 

dynamic and time-critical network can replace them. We also discuss the parallelization 

techniques used in our recent paper describing Hardware Accelerated Authentication 

(Singla, Mudgerikar, Papapanagiotou, & Yavuz, 2015) using Rapid Authentication 

(Yavuz, 2014) 

 

3.1 The Network Nodes 

The authentication apparatus described is perfectly suitable for deployment in real-time 

and critical networks, such as Vehicular Networks. The vehicles will serve as individual 

nodes in the vast peer-to-peer internetwork of vehicles, command-centers, traffic lights 

and other relevant Internet of Thing devices in the immediate vicinity. The vehicles will 

have to obtain some kind of a cryptographic certificate for identification of an authorized 

user. This will be provided by some existing Public Key Infrastructure (PKI) authority, 

the details of which are outside the purview of this thesis.  
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The vehicles in the network are expected to generate messages at a really high rate due to 

the advanced sensing technologies and latest interconnected services being 

mainstreamed. As and when the autonomous capabilities are increased in these vehicles, 

the reliance on these sensors will increase manifold to navigate the roads and highways 

safely and quickly. This will introduce algorithms, which rely on the spatial positioning 

of the vehicles relative to each other, so as to avoid any collisions, bottlenecks in traffic 

and minimize the journey duration. This will further increase the rate of generation of 

messages and will burden any authentication schemes deployed to process such huge 

number of messages, almost in real-time. 

 

3.2 System-on-Chip requirements 

Big car manufacturers like Audi, Volkswagen, and BMW have already started rolling out 

car models with Graphics Processing Unit (GPU) enabled System-on-chip (SoC) 

capabilities. The most noted SoCs being used for providing automotive solutions are the 

Nvidia Jetson (with Nvidia Tegra GPU) and Qualcomm Snapdragon (with Adreno GPU). 

These are currently being used for various services like interactive HUD displays, 

navigation map services, entertainment services and much more. 

We will particularly focus on the Nvidia Tegra K1 SoC for the purposes of this research. 

Nvidia Tegra is the most logical first choice due to its easy to program CUDA API, 

development tools integration into Visual Studio and Eclipse, results visualizer to locate 

the performance bottlenecks and widespread availability. These SoCs have added 

benefits of being energy efficient, having a small form factor and quite sturdy.   
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3.3 Hardware Accelerated Rapid Authentication Scheme  

The Hardware Accelerated Authentication scheme a.k.a. HAA (Singla, Mudgerikar, 

Papapanagiotou, & Yavuz, 2015) is derived from RA (Rapid Authentication) scheme 

(Yavuz, 2014). RA exploits already existing structures in the vehicular communication 

messages to enable pre-computation for signature schemes like RSA. The main idea of 

RA is to leverage the fact that the numbers of possible sub-messages in a command and 

control message are limited. Hence, it is possible to pre-compute and store a RSA 

signature on each of those sub-messages during the offline phase. When a message is to 

be signed in the online phase, the signer combines individual RSA signatures of relevant 

sub-messages via Condensed-RSA (Tsudik & Mykletun, 2006), which requires only a 

few modular multiplications. The verification of this signature is also efficient, as it 

requires a standard RSA signature verification plus a few modular multiplications.  

The Rapid Authentication scheme is modified in order to be implemented on GPUs to 

produce the faster and more scalable HAA. Various optimizations in both the RA scheme 

and the RSA algorithm have been made to maximize the number of parallel operations, in 

order to harness the power of the GPUs.   

The other optimization techniques used in the implementation are described as follows:  

 

3.3.1 Inter Message Parallelization 

In our HAA scheme, message components are processed in batches both in the online and 

offline phase. Each message as defined in the RA scheme is processed in parallel. This 

means that multiple threads perform the signing and verifying operations for multiple 

messages at once concurrently in the GPU. 
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3.3.2 Intra Message Parallelization 

Besides processing messages in batches, RSA signature and verification algorithms are 

optimized to improve performance in GPUs by using the Chinese remainder theorem 

(only signing) and other optimizations like Montgomery multiplication and Sliding 

Window techniques. These optimizations have been implemented in (Jang, Han, Han, 

Moon, & Park, 2011) for RSA encryption and decryption. These techniques form the 

building blocks for the HAA implementation.  

 

3.3.3 Restoring depleted random masks using Offline Stage while signing 

In (Yavuz, 2014) and most of the online/offline schemes, it is assumed that the messages 

generated in the offline stage are pre-computed and it will not affect the performance of 

the online stage. This is not true for a real world scenario where the pre-computed 

random masks included with each message might get exhausted really quickly which will 

then have to be generated in real time in the online phase. The HAA scheme addresses 

this problem by generating the pre-computed messages (offline stage) on the GPUs in 

batches in real time using GPU acceleration. This will significantly improve the 

performance of the scheme in real world scenarios where the number of messages 

generated per unit time is pretty high. 

 

3.3.4 Other Hardware Acceleration Techniques 

To accelerate the RA, we leveraged the parallel processing and optimization capabilities 

of GPUs both on server and embedded in the SoCs. We have made several optimizations 
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to parallelize the individual steps of RA algorithm. We also used optimizations specific to 

the architecture of the GPU to realize the full potential of the available cores. 

 

Batch Processing: Message components are processed in batches. That is, the crypto 

operations for multiple messages are performed concurrently in the GPU. This requires 

that a batch of messages be passed to the GPU, instead of a single message, for signing or 

verification. 

 

Breakup of components into words: To optimize the throughput on the GPU, each 

message component is divided into words of size 32/64 bit, depending on the GPU 

capabilities. Each operation being run on a single thread is run over words rather than 

entire message components. We use standard multi-precision algorithms~\cite{mp} to 

represent and perform operations between large integers. 

 

GPU warp size utilization: Warps are set of threads (generally 32) that are considered as 

one single execution unit inside a CUDA block. To gain maximum throughput from the 

GPU, it is necessary to attain the maximum number of active warps per streaming 

multiprocessor, which is 64 in our case. We achieve this by adjusting the number of 

threads per block to the optimal value. 

 

Memory latency vs GPU Occupancy: The size of the shared memory can limit the 

number of active warps on the GPU at a particular point in time by reducing the 

occupancy of the Streaming Multiprocessors (SM). The other limiting factor in the 
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performance output is the number of reads and writes on the global memory on the 

device. 

We attain an optimum balance between the SM occupancy and the Global memory 

read/write latency through testing various permutations of memory allocations among the 

shared and global memory. 

 

Constant Length Non-Zero Window Technique: We scan the bits of the exponent from the 

least significant to the most significant. At each step, we compute a zero window or a 

non-zero window (Koç, 1995). With the binary square-and-multiply method, we can 

process these windows and reduce the number of modular multiplications, making the 

exponentiation algorithm faster. 

 

3.4 Dynamic Scheduler 

We propose a “Dynamic Scheduler” prototype, which is a system capable of 

authenticating messages on-the-fly according to the priority requirements of the 

individual messages. The components of the prototype are detailed below: 

 

3.4.1 Message Structure 

SAE J2735, published in November 2009 specifies Basic Safety Message (BSM) as a 

standard message structure for vehicular networks.  

According to a recent NHTSA report on readiness for V2V technology (Harding, et al., 

2014) “the BSM is used to exchange safety data regarding vehicle state. The message is 

broadcast routinely to surrounding vehicles with a variety of data content. The BSM is 
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split into two parts to guarantee that the core information for vehicle safety (Part I) has 

priority and is transmitted more often. It also minimizes the amount of data 

communicated (most of the time) between devices, helping to reduce channel 

congestion”. A message structure is shown in the Fig. 2 in Appendix. 

  

3.4.2 Concurrent Priority Queue  

A Concurrent Priority Queue will be created for storing the messages as they come and 

feed them to the scheduler when ready. The queue would be a FIFO (First-in-First-out) 

queue but dependent on the priority levels of the respective messages. Since there will be 

a huge number of messages generated per second in a real-time vehicular network, there 

will still be certain latency (however small) introduced by the authentication operations. 

Some kinds of messages like a certain vehicle crash, losing steering control, brake failure 

cannot afford being buffered and waiting for being processed. While some other not so 

critical messages like location updates, weather details, news services can afford a certain 

minimal amount of latency without affecting any safety of the vehicle.  

So, a priority queue is being proposed which will contain the messages according to their 

priority. The queue as described in Figure 1 will be a First-in-First-out (FIFO) data 

structure where the processor(s) just pick up the next message from the front of the queue 

and run the authentication algorithm on it. The incoming messages however get inserted 

at their respective positions in the priority queue according to their priority. The messages 

will contain a priority field inside the definition which will be predefined. The immediate 

messages will have priority assigned as 0. The other non-immediate messages can be 
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assigned priorities according to their urgency. The lower the priority number the higher 

the priority.  

As and when the messages are generated the system will look for the suitable location to 

insert the message. The messages will be inserted after the messages of priority equal to 

its own but before the messages having priority lesser than it. This will allow non-pre-

emptive preferential processing of the messages according to their urgency and critical 

nature. The queue should be able to: 

a. Take messages from multiple sources. 

b. Keep a count of the number of messages. 

c. Keep a count of immediate/non-immediate messages. 

d. The queue should put in messages according to their priority level. The highest 

priority messages should be added in the front. 

 

3.4.3 Scheduler 

We define a scheduler for the process, which will decide which processor CPU/GPU will 

process the messages in the queue and the amount of messages to be fed to the GPU at 

once. We identify a threshold value \tau as the minimum number of messages fed to the 

GPU at once, when it starts outperforming the CPU in terms of the throughput obtained 

while cryptographically processing the messages. This threshold value will be different 

for each model of a SoC because the different CPUs and GPUs embedded into those will 

give different performance results according to their computing capabilities. Once the 

threshold value is generated, it will be fixed for the lifetime of that SoC, as this will not 

change.  
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The dynamic scheduler proposed will check the number of the non-immediate (priority ≠ 

0) messages in the queue. If it comes out to be greater than \tau, the scheduler will hand 

over all of these to the GPU to authenticate these messages in a batch. This decision will 

be required to be made on 2 occasions: 

1. When the GPU has processed the message batch assigned to it and has just 

become idle. 

2. Whenever a new non-immediate message is inserted. 

There are a few things to consider here. The CPU no matter what will always process the 

immediate messages. We assume that the immediate messages, for e.g., vehicle crash, 

losing steering control, brake failure will be a rare occurrence and never exceed the \tau 

value at one time even under extreme circumstances. The other thing to consider is that 

the length of the queue will have to be defined so as to accommodate any number of 

messages that may be generated in a certain period of time. This will also depend on the 

execution speed of the processors deployed in the vehicle but it can be taken as a fairly 

huge constant value. A scheduler capable of taking the messages from the queue and 

should be able to: 

a. Make a decision on the appropriate processor to feed them to the e.g. CPU, GPU 

based on an optimum decision tree. 

b. Keep in view the minimum number of messages after which the GPU starts 

giving faster throughput than the CPU. 

c. Schedule the immediate messages for minimum latency. 

d. Schedule the messages on the basis of priority level. 
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e. Schedule the messages for Signature or Verification algorithm based on the 

requirement. 

 

3.4.4 Network Sender/Receiver 

A Network Sender/Receiver for sending and listening the messages over the network. It 

should be able to: 

a. Take messages from the scheduler and send the messages to the desired recipient. 

b. Listen to the messages over a designated port and pass it along to the priority 

queue for signature verification. 

c. Scale for the type of networks it is in i.e. should be able to handle high volume of 

messages at a given time without any loss. 



20 
 
 
 
  
 
 

CHAPTER 4. RESULTS AND ANALYSIS 

We compare our scheme with some standard signature schemes such as RSA (2048-bit 

with e = 216 + 1) and ECDSA (256-bit ECC-based signature) in terms of the end-to-end 

crypto delay in Table 1. According to BSI standards (ECRYPT, II, 2007), 2048-bit RSA 

provides the same level of security as 256-bit ECDSA. We assume that we can pre-

compute and store 4096 signatures. If the number of messages exceeds 4096 then the 

offline tokens are replenished. This is a fair assumption in vehicular networks, which 

have an average message throughput of 3000 messages per sec. For the processing of 

8192 messages, RSA incurs an end-to-end delay of 4 msec/message while ECDSA with 

pre-computation incurs an end-to-end delay of 1.18 msec/message (Shamus, MIRACL). 

HAA outperforms both these schemes, x18 times better than RSA and x6 times better 

than ECDSA, respectively, with an end-to-end delay of 0.21 msec/message seconds. 

 

We focus on comparing the delay and throughputs between HAA and RA, as we found 

out that RA is the best scheme among the existing alternatives in terms of end-to-end 

delay (0.69 msec/message). Each component size is fixed to be 512 bytes for our 

experiments. We have used two configurations for our experiments, server and SoC 

settings. We have shown the evaluation results by comparing the GPU results to their 

CPU counterparts for the offline sign, online sign and verify stages of RA. We present 
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the results in Figures: 3 – 8, both on the server and the SoC configuration with 

parameters a = 32, e =216 + 1 and |n|=2048. 

 

Test Infrastructure: One is a server configuration with Nvidia Tesla K40c GPU with 

2880 cores and a Base clock rate of 745 Mhz. It has an Intel i7-5930K CPU with a clock 

rate of 3.50 GHz. The Tesla K40c has the Kepler architecture and a CUDA compute 

capability of 3.5. 

 

The other is a System-On-Chip (SoC) configuration with the Nvidia Jetson TK1 

development kit, which has an Nvidia Tegra K1 chipset. The Tegra K1 chipset has an 

embedded Kepler GPU with 192 CUDA cores and a base clock rate of 852 Mhz. It also 

has a 4-Plus-1 quad-core ARM Cortex A15 CPU with clock rate of 2.3 Ghz. The GPU in 

the Tegra is based on the Kepler architecture, which is the same architecture as the Tesla 

K40c used for the server configuration. It has a compute capability of 3.2. 

TABLE 1: Average end-to-end crypto delay comparison (signature generation plus verification time). 

Scheme End-to-end Crypto Delay (msec) 

RSA-2048 (CPU) 4 

ECDSA-256 (CPU) 1.18 

RA-2048 (CPU) 0.69 

RA-2048 (CPU on SoC) 7.1 

HAA-2048 (GPU) 0.21 

HAA-2048 (GPU on SoC) 2.6 
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4.1 HAA (Server) 

In the offline sign stage, for 8160 messages, we achieve x3 times more throughput with 

our GPU optimizations compared to CPU only implementations. In the online sign stage, 

we achieve high throughput gains up to x7 times. In the verify stage, the gain is around 

x1.3 times. These results are outlined in Figures: 6, 7 and 8 respectively. 

 
In terms of execution time, the GPU can process a message in 0.337, 0.021, 0.024 

milliseconds for the offline, online and verify stages of the algorithm respectively. This is 

approximately x2.91, x7.67, x1.28 times faster than the corresponding CPU execution 

times. The GPU gives a worse performance than the CPU if we are processing a very 

small number of messages. This is mainly due to the low clock speeds of the GPU cores 

as compared to the CPU and also due to the time taken to copy the data to the GPU 

memory from the CPU memory and back. We find that all the three stages Online, 

Offline and verify perform faster in GPU than CPU for message batches greater than 32, 

224 and 900 respectively. 

 

4.2 HAA (SoC) 

In the offline sign stage, for 8160 messages, we achieve x3.1 times more throughput with 

our GPU optimizations compared to CPU only implementations. In the online sign stage, 

we achieve high throughput gains up to x4.1 times. In the verify stage, the throughput of 

the GPU implementation hovers around the CPU throughput albeit a little less than it. 

The reason is explained later in the section. These results are outlined in Appendix 

Figures: 3, 4 and 5. 
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In terms of execution time, the Tegra GPU can process a message in 3.40, 0.33, 0.53 

milliseconds for the offline, online and verify stages of the algorithm respectively. This is 

approximately x3.09, x4.16, x0.86 times the corresponding CPU execution times. We 

find the stages Online sign and Offline sign perform faster in GPU than CPU for message 

batches greater than 96 and 32 respectively. The GPU verify stage performs worse than 

the CPU on the Tegra for all message batch sizes. The reason for the lower gains in the 

verify stage for the GPU optimizations are as follows. 

 

• Double the copy operations in verify stage: In the verify stage, two GPU kernels 

(units of execution in GPU) are being executed, modular multiplication and 

modular exponentiation, as opposed to the online and offline stages where there is 

only a single GPU kernel being executed. Due to two GPU kernel being executed 

one after the other, there is a waiting time between memory copy operations from 

host memory to device memory and then back. This adversely impacts the overall 

execution time of the verify stage in GPU. 

 

• Modular exponentiation with public key exponent: RSA public key exponent is 

generally selected small (e.g., e=216 + 1) to enable fast signature verification. In 

this case, since e<<d, the optimizations made in GPUs for speeding up modular 

exponentiation are less significant. 
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4.3 Dynamic Scheduler (Server) 

In the offline sign stage, for 4096 messages, we achieve x4 times more throughput with 8 

CPU threads instead of 1. For 16 CPU threads we get around x5 times the throughput as 

compared to just 1 CPU thread. This is expected, as we are using an Intel i7-5930K CPU 

with 6 physical and 12 logical cores. Multithreading allows us to put all of those cores to 

use. This performance gain almost plateaus after 16 threads, as there are only so many 

CPU cores for processing. In the online sign stage, we achieve similar throughput gains 

of x4 and x5 for 8 and 16 CPU threads respectively as compared to just a single CPU 

thread. The verification stage results are also similar. These results are outlined in 

Figures: 9, 10 and 11 respectively. 

 
Moving on to the results where we use CPU and GPU at the same time we gain more 

performance benefits as expected. At its highest level i.e. when using 16 CPU threads and 

GPU together we get x9 times the performance as compared to a single CPU thread and 

x3 times the performance when compared to only GPU in the offline stage. We get 

almost similar results for the online signing and the verification stage.
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Fig 1: Concurrent Priority Queue
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Fig 2. Part 1 of Basic Safety Message (SAE) 
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Fig 3. Verification Results for HAA-SOC 
 

 
Fig 4. Sign-online results for HAA-SOC 
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Fig. 5: Sign Offline results for HAA-SOC 

 

Fig. 6: Sign Online results for HAA 
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Fig. 7: Sign Offline results for HAA 
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Fig. 8: Verification results for HAA 

Fig. 9: Offline Stage results for DS (CPU+GPU) 

 



36 
 

  

 

Fig. 10: Online Stage results for DS (CPU+GPU) 

Fig. 11: Verification Stage results for DS (CPU+GPU) 
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Fig. 12: Depiction of the vehicular network structure 
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