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ABSTRACT

Singh, Shubham, MS, Purdue University, August 2016. Applications of the Homotopy
Analysis Method to Optimal Control Problems. Major Professor: Michael J. Grant.

Traditionally, trajectory optimization for aerospace applications has been per-

formed using either direct or indirect methods. Indirect methods produce highly ac-

curate solutions but suffer from a small convergence region, requiring initial guesses

close to the optimal solution. In past two decades, a new series of analytical ap-

proximation methods have been used for solving systems of differential equations and

boundary value problems.

The Homotopy Analysis Method (HAM) is one such method which has been used

to solve typical boundary value problems in finance, science, and engineering. In this

investigation, a methodology is created to solve indirect trajectory optimization prob-

lems using the Homotopy Analysis Method. Use of the auxiliary convergence control

parameter to widen the convergence region and increase the rate of convergence have

been demonstrated on multiple optimal control problems. The guaranteed conver-

gence and the ease of selecting the initial guess for trajectory optimization problems

makes the method of high significance. It has been demonstrated that initial guesses

for the optimal control problem can be generated using a simple approach based on

only the initial boundary conditions. The approach has been demonstrated on the

Zermelo’s problem and two cases of a 2D ascent problem. It has been established

that for free final-time boundary value problems, finding the convergence region is

much harder as compared to fixed final-time cases. To validate the approach, results

are compared with those obtained using the MATLAB’s bvp4c function. A number

of new challenges are discovered and listed during the process.
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1. INTRODUCTION

Conventionally, trajectory optimization for conceptual hypersonic mission design ap-

plications has been performed using the direct [1–3] and the indirect methods [4].

Continuous progress has been made over the years which led to more complex and

computationally expensive solvers. However, for most of the current trajectory opti-

mization methods, proving guaranteed convergence of the optimal solution is a very

challenging task.

Direct methods are based on discretizing the non-linear optimal control problem

parameterized by the nodes containing the state and control information. Paramet-

ric optimization techniques are then used to optimize the nodes which satisfy a set

of initial, terminal and path constraints. Current state-of-the-art solvers used in

government and industry are contained in programs like DIDO [5] and GPOPS [6],

implement pseudo-spectral [7] and collocation [8] methods which result in a computa-

tionally intensive Non Linear Programming (NLP) problem. Solvers like SNOPT [9]

are used to handle these large optimization problems.

Indirect methods, on the other hand, are based on Calculus of Variations [10] and

Pontryagin’s Minimum Principle [11]. The optimal control problem is formulated as

a boundary value problem which can be solved using either indirect shooting [12]

or collocation methods. Since indirect methods use the necessary conditions of op-

timality, the trajectories produced are much more accurate as compared to direct

methods, which makes them valuable in the aerospace community. Study in Ref. [13]

found out that, solving optimal control problems using the direct methods resulted

in errors of upto 1% in the minimum functional value. Sometimes, the discretization

of a trajectory leads to “pseudominima”, where the solution is far away from the true

solution which satisfies the necessary conditions of optimality [14]. For hypersonic

vehicles traveling with speeds as high as Mach 5-8, on-board guidance algorithms
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are required to control the vehicle. Minimum human interaction is intended, which

creates a need of highly reliable guidance algorithms. Since, the convergence proper-

ties of a trajectory optimization method is critical for onboard applications, indirect

methods are often discarded due to their poor convergence properties. As an indirect

trajectory optimization problem concludes in solving a boundary value problem, a

search for methods to solve non-linear boundary value problems was done. Analyti-

cal approximation methods are a technique to solve non-linear ordinary and partial

differential equations. They have been applied to problems arising in science and

engineering in the past two decades, but their application to trajectory optimization

problems has not been thoroughly studied. These methods are reported to have good

convergence properties and produce high quality approximate solutions [15]. Some

popular analytical approximate methods developed to solve non-linear ordinary dif-

ferential equations (ODEs), partial differential equations (PDEs) and Boundary Value

problems (BVPs) include the following

1. Variational Iteration Method [16]

2. Adomian Decomposition Method [17]

3. Lyapunov’s Artificial Small Parameter Method [18]

4. δ - Expansion Method [19]

5. Perturbation Methods [20]

6. Homotopy Analysis Method (HAM) [21]

The Homotopy Analysis Method in particular has gained popularity to solve

boundary value problems arising in science, finance and engineering after it was pro-

posed by Dr. Shijun Liao in 1992 [22]. It has been proven that HAM logically contains

the methods 2-5 listed above [23, 24]. Perturbation methods are strongly dependent

on small physical parameters, called perturbation quantities, which are present in the

system of equations. Unfortunately, not every nonlinear problem has perturbation
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quantities, and thus, it is not guaranteed that the perturbation method will converge

to a solution. The Homotopy Perturbation Method (HPM) [25] is an example of a

popular perturbation method used to solve BVPs. Since Homotopy Analysis Method

is independent of any small or large parameters, guarantees convergence [26], and

provides great flexibility in the choice of initial guess, this investigation has assessed

its use to solve indirect trajectory optimization problems. By application on several

optimal control problems, it has been demonstrated that trivial initial guesses based

only on the initial boundary conditions can be used to obtain converged solutions.

An initial framework has been developed to apply the HAM approach on aerospace

applications. A basic review of indirect trajectory optimization is given in the Chap-

ter 2. The application of HAM to optimal control problems is explained in Chapter

3. Zermelo’s problem and two cases based on a 2D Ascent problem are solved using

the HAM approach in Chapter 4. It has been demonstrated that using trivial initial

guesses, HAM is able to successfully solve optimal control problems.
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2. INDIRECT TRAJECTORY OPTIMIZATION

Indirect methods for trajectory optimization are called as such due the fact that the

resulting optimal control problem (OCP) is tackled indirectly by first using Calcu-

lus of Variations and further solving a boundary value problem [27]. However, the

aerospace engineering community is well aware of the challenges associated with in-

direct methods, the majority of which can be summarized as follows:

1. Small convergence domain due to local convergence properties and numerical

instabilities. Sometimes, the solution is hypersensitive to the initial guess due

to the symplectic nature of the Hamiltonian system. This requires an initial

guess close to the optimal solution.

2. Solving the necessary conditions of optimality requires a deep understanding of

the underlying physics of the problem and hence, is a labor intensive process.

2.1 Calculus of Variations

In 1696, John Bernoulli formulated and solved the famous Brachistochrone prob-

lem. He posed the problem as:

“Given two points A and B in a vertical plane acted only by the gravity, what is the

curve traced by a frictionless mass which starts at the point A and reaches point B

in the minimum time.”

A number of mathematicians including, Sir Isaac Newton, Jacob Bernoulli, Leibnitz

and de L’Hôpital solved the problem and submitted their solutions. This led to the

discovery of a whole new field of mathematics known as the Calculus of Variations,

which has lot of important applications. Calculus of Variations is used to find the

extrema of functionals, defined as mappings from a set of functions to real numbers.
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Trajectory optimization problems are often posed as optimal control problems, where

the inputs to the systems are functions, and a particular input function is desired

which minimizes the required performance index. For simplicity, the discussion in

this study is limited to unconstrained trajectory optimization problems only. A typ-

ical unconstrained trajectory optimization problem to minimize a continuous time

cost functional, J, with path cost, L , and terminal cost, η, is given in Eq. (2.1).

Minimize J = η(tf ,x f ) +

∫ tf

to

L (t,x ,u)dt

ẋ = f (t,x ,u)

Φ(t0,x0) = 0

Ψ(tf ,xf ) = 0

u ∈ U

(2.1)

where x is the state vector, f is the set of process or system equations, u is the

control vector, U is the set of admissible controls, Φ and Ψ are the sets of initial and

terminal boundary conditions on the state vector respectively. The Euler-Lagrange

theorem defines a Hamiltonian, H , in Eq. (2.2), and λ is the set of adjoint or costate

variables. ν0 and νf are the sets of unknown parameters used to adjoin the boundary

conditions to the cost functional. The first-order necessary conditions of optimality

given by Eq. (2.3-2.7) results in a Two-Point-Boundary-Value-Problem (TPBVP).

H ≡ L + λT f (2.2)

∂H

∂u
= 0 (2.3)

λ̇
T

= −∂H
∂x

(2.4)

λT (t0) = −νT0
∂Φ

∂x (t0)
(2.5)
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λT (tf ) =
∂Φ

∂x (tf )
+ νTf

∂Ψ

∂x (tf )
(2.6)

(
H +

∂Φ

∂t
+ νTf

∂Ψ

∂t

)∣∣∣∣
t=tf

= 0 (2.7)

Eq. (2.7) is valid only if tf is free to optimize, and is known as the Transversality

Condition. Pontryagin’s Minimum Principle is used to determine the control law at

each point in time. It states that, for a local optimum, the Hamiltonian should lie at

the extremum over the set of admissible controls. Eq. (2.8) gives the formal result for

Pontryagin’s Minimum Principle. This principle also results in the Legendre-Clebsch

Necessary Condition given by Eq. (2.9) which states that the matrix Huu must be

positive semi-definite.

H (x ∗,λ∗,u∗, t) ≤H (x ∗,λ∗,u , t) (2.8)

where x ∗, λ∗ and u∗ are the optimal states, costates, and control law.

Hu = 0, Huu ≥ 0 (2.9)

where H is second-order differentiable in u .

2.2 Methods for Indirect Trajectory Optimization

The TPBVP formulated in the last section can be root-solved to give trajectories

which guarantee the necessary conditions of optimality. The most popular methods

used for indirect trajectory optimization are given as follows:

1. Shooting Methods

In the single shooting method, the Hamiltonian system is propagated in the

forward or the backward direction using the Runge-Kutta 4th order or similar

integration scheme after guessing the unknown boundary conditions at one end

of the time interval. The conditions obtained at the other end are compared with

the required quantities. If the difference between the two sets of conditions is



7

more than a specified tolerance, the unknown initial conditions are adjusted and

the process is repeated. Single shooting method generally suffers from sensitivity

of variables. Small changes early in the trajectory can be propagated till the

end. The Multiple Shooting Method [28] has been developed to overcome this

numerical difficulty of the single shooting method. The time interval of interest,

[t0,tf ] is divided into subintervals and the shooting method is used over each

interval. An additional condition for continuity is also enforced on the ends

of the subintervals, which increases the size of the problem. Due to the issues

caused by the sensitivity of problems, very good initial guess is required for

guaranteed convergence.

2. Collocation Method

In a typical Collocation Method, the state and costate variables are represented

as piecewise cubic polynomials, and the time interval is divided into a mesh.

The differential equations are discretized along the time mesh. The discretized

system and boundary conditions result in a system of nonlinear algebraic equa-

tions. It leads to a root-finding problem, where the unknown coefficients for the

piecewise polynomials are calculated using an appropriate root-finding tech-

nique like the Newton’s iteration method. A very popular solver based on this

method is MATLAB’s bvp4c [29] function. It is well known that if the non-

linearity in the problem is high, bvp4c requires an initial guess close to the

optimal solution for convergence.

In general, indirect methods suffer from a very common issue of, “Singular Ja-

cobian”. It is usually caused by a trajectory optimization problem with no

solution, ill-conditioning of the non-linear problem and invertibility of the Ja-

cobian matrix. To deal with the above mentioned issues, a number of studies

have been conducted to build good initial guesses and improve the convergence

properties of indirect methods.
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2.3 Initial Guess for Indirect Methods

One of the major issues of indirect methods is the construction of an initial guess

for the adjoint variables, which in most cases are non-physical quantities. Homotopy

continuation techniques [30], in which a family of problems is constructed by using an

“embedding parameter” are currently employed to generate good initial guesses. On

progressing the value of the embedding parameter, a homotopy path can be obtained

to solve a difficult problem. The solution to a simpler problem can be used as initial

guess for the next problem in the homotopy chain of problems. The step size for the

embedding parameter is obtained generally by trial and error. In Ref. [31], a modified

approach of homotopy continuation is used to solve for the optimal descent of the

second stage of a space shuttle subjective to reradiative constraints. They selected

the maximum permitted skin temperature as the homotopy embedding parameter and

employed the multiple shooting algorithm to solve the TPBVP. In Ref. [4], a simple

continuation is used to solve highly constrained trajectory optimization problems.

Instead of building an initial guess for the full trajectory, they propagated the states

and costates in the reverse direction for 1 second which resulted in smooth trajectories

for that short interval of time. The short unconstrained trajectory was then used to

seed the problems of interest through a simple continuation process. In Ref. [32], a

self-contained method was developed based on the continuation approach to solve the

shuttle re-entry problem. The approach was based on constructing an auxiliary OCP

in which the costates are zero and then applying a continuation method to reach the

original OCP. One of the continuation parameters, c1 ∈ [0, 1], is used on the both the

path and the terminal cost functions. A second continuation parameter, c2 ∈ [0, 1],

is used on the terminal boundary conditions. First, c1 is increased from 0 to 1 to

obtain the original cost functional following which c2 is increased to 1 to enforce the

boundary conditions. In Ref. [33], an approach based on the homotopy continuation

method for solving an orbit transfer problem was developed. A set of optimal control
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problems based on an embedding parameter, λ, was defined to connect the problem

of minimum energy at λ = 0 to on of minimum fuel consumption for λ = 1.

Research has also attempted to obtain initial guesses using solutions from direct

methods [13,34,35], which resulted in the development of so-called “hybrid methods”.

The most common approach is to estimate the costates using Legendre Pseudospectral

methods. The authors of Ref. [13] employed a hybrid method of direct collocation and

indirect multiple shooting method. Their objective was to combine good convergence

properties of direct collocation methods with the accuracy of the multiple shooting

method. Initial values for the adjoint variables was needed in advance. They discov-

ered that the grid points of the direct method yield a good choice for the positions of

the multiple shooting nodes. The approach was successfully demonstrated on a mini-

mum heat load descent trajectory of the Apollo capsule. They started with the direct

collocation method to generate an initial trajectory at nine equidistant grid points.

Using the direct solution, they generated the positions of the multiple shooting nodes

and the values of the state and costate variables at those nodes. The final converged

solution was obtained by using the multiple shooting method. The Collocation And

Multiple Shooting Trajectory Optimization Software (CAMTOS) [35] was also devel-

oped to leverage the advantages of both classes of methods. The method was also

demonstrated for an Ariane 5 dual payload mission design. The author modeled the

lower stage of the mission, which includes all the atmospheric effects, using the di-

rect multiple shooting method and an indirect method based on a modified Newton

method for the upper stage burns.

Sometimes, using pseudospectral methods to generate initial guess for path con-

strained problems result in abnormalities in the trajectories. If the node spacing is

large, then the dynamics can be ignored in large parts of the trajectories. This might

lead to an improper initial guess for the indirect methods.

Owing to the poor convergence and numerical instabilities of the shooting and

the collocation-based indirect methods, there is a need to explore a different class of

methods for trajectory optimization. Analytical approximation methods provide an
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immense freedom in selection of the initial guess and provide a means to control the

rate and region of convergence. Therefore, they can be a revolutionary approach to

solve nonlinear trajectory optimization problems.
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3. HOMOTOPY ANALYSIS METHOD THEORY

The Homotopy Analysis Method is an analytic approximation method based on the

concept of homotopy in topology to solve non-linear differential equations and BVPs.

It is independent of any artificial parameter, provides great flexibility in the choice

of initial guess, and gives designers the luxury of controlling the convergence region

of the problem. Shijun Liao and other authors have demonstrated the validity of

the Homotopy Analysis Method by solving boundary value problems and ordinary

differential equations resulting from select highly non-linear problems.

To demonstrate the validity of HAM, Shijun Liao solved a series of problems aris-

ing in the area of boundary layer and Blasius flows over flat plates and compared the

analytical HAM solutions with numerical results from other studies [36–42]. Most

of the problems resulted in second and third order boundary value problems with

governing equations in the form of partial differential equations. Since, the problems

he solved were highly sensitive to small differences in the initial conditions, in one

study [36], he found a new branch of solutions which the numerical methods failed

to obtain. In another study, he was able to find a fully analytic solution of Blasius’

viscous flow for the first time [38] and an analytic solution of the temperature distri-

bution of the viscous flow past a semi-infinite flat plat [39]. He also showed how the

convergence region of the power series solution can be increased and, that Blasius’

power series solution is a special case of the solution obtained by HAM. Dr. Liao

also solved the full non-linear Navier-Stokes equation for the incompressible steady-

state laminar flow past a sphere in a uniform stream [42]. The 10th order HAM drag

solution agrees well with the experimental data for Reynolds number less than 30.

Abbasbandy used the HAM approach to solve nonlinear boundary value problems

with multiple solutions [43–46]. In one of the studies, he was able to obtain dual

solutions of a nonlinear reaction diffusion model of a porous catalyst, a problem in
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chemical kinetics by solving a second order boundary value problem. He discovered

that multiple solutions can be obtained through HAM by using the same initial guess

and controlling the convergence region of the problem [43]. Abbasbandy [44] also

used the HAM approach to solve a generalized Hirota-Satsuma coupled KdV system

of equations which is used to represent the interaction of two long waves with differ-

ent dispersion relations. He compared the results with other analytic approximation

methods and obtained improved convergence properties of the series solutions by us-

ing the HAM convergence control parameter. In another study, Abbasbandy [45]

demonstrated the use of HAM to solve the nonlinear equations of the heat radiation

and conduction equations of a cooling fin, which is generally used to transfer large

amounts of heat from surfaces. He validated the approach by comparing the results

with the exact solution and with the ones obtained from the Homotopy Perturba-

tion Method (HPM). He concluded that the HPM results are valid only for a small

parameter in the governing equations and hence established the superiority of HAM

over HPM for obtaining analytical series solutions.

To address the existence of multiple solutions to boundary value problems, Ab-

basbandy and Shivanian [46] developed the Predictor HAM (PHAM) approach to

calculate multiple analytical branches of the solutions simultaneously with a single

initial guess. It must be noted that the use of the convergence control parameter plays

an important role in finding the multiplicity of the solutions for boundary value prob-

lems using HAM. HAM has also been applied to the projectile motion of a sphere

for a quadratic resistance law. The resulting system was a first order initial value

problem with two equations of motion. The HAM solution was shown to match the

solution obtained from a Runge-Kutta solver [47].

HAM has also been used to solve linear and non-linear optimal control prob-

lems. Abbasbandy and Shirzadi [48] used the Homotopy Analysis Method to solve

boundary value problems arising from problems in the Calculus of Variations. They

demonstrated the use of HAM by solving the Euler-Lagrange equation for the Brachis-

tochrone problem given by



13

y′′ − yy′′ − y′2

2
− 1

2
= 0 (3.1)

subject to the boundary conditions, y(0) = 0 and y(1) = -0.5. Shateyi and Nik [49]

applied the HAM approach to solve the Hamilton-Jacobi-Bellman (HJB) partial dif-

ferential equation arising from a non-linear optimal control problem. The authors also

solved three fixed final time nonlinear OCPs and demonstrated the use of multiple

convergence control parameters to adjust the region of convergence. They defined

a so-called “Averaged Squared Residual Error” of the governing equations and de-

veloped the optimal HAM (oHAM) method by minimizing it. Zahedi and Nik [50]

applied the original HAM approach to solve finite time linear OCPs with quadratic

performance index. Since the problems solved were linear, they compared the HAM

results with the exact analytical solutions and found good agreement between the

two solutions.

A hybrid method based on HAM and a spectral collocation technique called

SHAM [51] is widely popular in the area of hyperchaotic systems. These systems

are characterized to show extreme chaotic behaviors due to an infinitesimal change in

the initial state values. Effati, Nik and Jajarmi [52] used a HAM based method called

the Piecewise Spectral HAM (PSHAM) [53] to solve the hyperchaotic Chen system,

the governing equations for which are given by Eq. (3.2)

ẋ = a(y − x) + w + u1

ẏ = dx− xz + cy + u2

ż = xy − bz + u3

ẇ = yz + rw + u4

(3.2)

where state variables are given by x, y, z, w and u1, u2, u3 andu4 are the control inputs.

They used bvp4c to solve the same problem and found a good agreement with the re-

sults obtained from PSHAM. Although, the Chen system is highly sensitive to initial

guess provided, the governing equations does have a high degree of non-linearity. The

authors of Ref. [54] used SHAM to develop an algorithm to solve non-linear optimal
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control problems. They demonstrated the approach by constructing optimal maneu-

vers of a rigid asymmetric spacecraft and compared the solutions obtained with bvp4c

function. The TPBVP solved was a fixed final-time interval problem with a very low

degree of non-linearity. On comparison to the studies mentioned above, the current

investigation discusses free final-time interval optimal control problems with very high

non-linearity embedded in the governing equations. As a part of the contribution,

new challenges related to the application of the HAM approach to optimal control

problems are discovered, and methods to deal with them are suggested.

3.1 HAM Description

A basic idea of the HAM theory [23,55] for a general ordinary differential equation

is given below. The discussion will be extended to solve a general boundary value

problem. Due to tediousness of the approach, the technique is first demonstrated by

solving a simple optimal control problem. Let one of the governing equations be given

by an nth order non-linear ODE

N[u(r, t), t] = 0, t ∈ [0, a] (3.3)

subject to n linear boundary conditions,

Bk[r, t, u] = γk, 1 ≤ k ≤ n (3.4)

where, N is the nth order differential operator, Bk is a linear operator, u(t) is an

unknown smooth function, t is a temporal variable, r is the spatial variable, and a ≥ 0.

For each governing equation N, using an embedding parameter q, Dr. Liao suggested

to construct a zeroth-order homotopy deformation equation given by Eq. (3.5), so

that the Homotopy-Maclaurin series solution for N, given by φ(r, t; q), exists and is

analytic at q = 0. The analytic solution at q = 0 is defined as the initial guess and is

provided by the designer.
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(1− q)L[φ(r, t; q)− u0(r, t)] = coqHaN(t, φ(r, t; q)), co 6= 0 (3.5)

In Eq. (3.5), u0(r, t) is the initial guess, L is a linear operator provided by the

user, co is an auxiliary convergence control parameter, and Ha is a non-zero auxiliary

function. For finite time interval BVPs, where t ∈ [0, a], Ha is simply assigned as

1. Its significance is mostly identified in the BVPs with infinite time interval, i.e

t ∈ [0,+∞], where it is used to ensure convergence. These problems are mostly

characterized by exponentially decaying solutions. For q = 0, Eq. (3.5) becomes,

L[φ(r, t; q)− u0(r, t)] = 0 (3.6)

which is equivalent to

φ(r, t; 0) = u0(r, t) (3.7)

and at q = 1, Eq. (3.5) reduces to,

N(φ(r, t; q), t) = 0 (3.8)

which is the solution for the original Eq. (3.3) provided

φ(r, t; 1) = u(r, t) (3.9)

Thus by Eq. (3.7) and Eq. (3.9), it can be observed that as the embedding parameter,

q increases from 0 to 1, φ(r, t; q) deforms continuously from u0(r, t) to u(r, t), the

solution to the original equation Eq. (3.3). By Taylor’s theorem, the power series

expansion of φ(r, t; q) in the variable q can be written as

φ(r, t; q) = φ(r, t, 0) +
+∞∑
m=1

1

m!

∂mφ(r, t; q)

∂qm

∣∣∣∣
q=0

qm (3.10)

Dr. Liao defined the so called mth order deformation derivative [23] as follows

um(r, t) =
1

m!

∂mφ(r, t; q)

∂qm

∣∣∣∣
q=0

(3.11)
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We can simplify the Eq. (3.10) by using Eq. (3.7) and Eq. (3.11) to obtain

Eq. (3.12)

φ(r, t; q) = u0(r, t) +
+∞∑
m=1

um(r, t)qm (3.12)

We assume that the linear operator, initial guess, the auxiliary convergence control

parameter, and the auxiliary function are chosen such that the solution φ(r, t; q) of

the zeroth-order deformation Eq. (3.5) exists, the mth order deformation derivative

given by Eq. (3.11) exists for all values of m, and the power series given by Eq. (3.12)

converges at q = 1. Substituting q = 1 in Eq. (3.12) and using Eq. (3.9) , the solution

series, u(t) is given as

u(r, t) = u0(r, t) +
+∞∑
m=1

um(r, t) (3.13)

where the unknown um(r, t) is obtained by the so-called mth order deformation equa-

tion. Differentiating the zeroth order deformation equation (Eq. (3.5)) m times with

respect to the embedding parameter q and then dividing it by m!, we obtain the mth

order deformation equation given by Eq. (3.14)

L[um(r, t)− χmum−1(r, t)] = coHaRm(um−1, r, t) (3.14)

subject to the linear boundary conditions,

um(r, 0) = 0 (3.15)

where

χm =

0,m ≤ 1,

1,m > 1

 (3.16)

and Rm(um−1, r, t) is defined as

Rm(um−1, r, t) =
1

(m− 1)!

∂m−1N[φ(r, t; q)]

∂qm−1

∣∣∣∣
q=0

(3.17)
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Substituting Eq. (3.12) and Eq. (3.17) into the mth order deformation Eq. (3.14), we

obtain Eq. (3.18)

L[um(r, t)− χmum−1(r, t)] = coHa

(
1

(m− 1)!

∂m−1N[
∑+∞

m=0 um(r, t)qm]

∂qm−1

)∣∣∣∣
q=0

(3.18)

The new mth order deformation equation (Eq. (3.18)) contains the same initial

guess, linear operator, the auxiliary convergence control parameter and the auxiliary

function as the zeroth order deformation Eq. (3.5). The (m − 1)th order homotopy

derivative operator given by Eq. (3.17) can be applied to any nonlinear operator N and

results in the term um−1, as explained by the properties of the homotopy derivative

operator later in the section. Hence, the right hand side of the mth order deformation

equation (Eq. (3.18)) is only dependent on the term um−1. For each value of m =

1,2,3,..., we obtain a deformation equation in um−1, which can be solved to obtain the

term um. In practice, the series solution given by Eq. (3.13) is truncated to a finite

number of terms. Thus, the resulting M th order approximation is given as:

u(t) ≈ u0(r, t) +
M∑
m=1

um(r, t) (3.19)

For simplicity, the mth order homotopy derivative operator is denoted as δm in

Eq. (3.20)

δm(φ) =

(
1

m!

∂mφ

∂qm

)∣∣∣∣
q=0

(3.20)

3.1.1 Properties of Homotopy Derivative Operator

To deduce the right hand side of Eq. (3.18), the application of the (m− 1)th order

homotopy-derivative operator on the non-linear operator N is required. For majority

of problems, the following set of properties are used (extensive proof for which are

provided in HAM theory [26]). Some of the commonly used properties are given

below. We begin by assuming a non-linear operator N, which depends on the two

states, u and w. The Homotopy-Maclaurin series solutions for the two states are

assumed as φ and ψ where,
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φ =
+∞∑
k=0

ukq
k , ψ =

+∞∑
k=0

wkq
k, (3.21)

φ and ψ are analytic in q ∈
[
0, a
)
. We also assume two smooth functions f(φ) and

g(φ, ψ). The properties of homotopy derivative operator are given as:

1. δm(φ) = um

2. δm(φ̇) = u̇m

3. δm(φ+ ψ) = δm(φ) + δm(ψ)

4. δm(φψ) =
∑m

k=0 ukwm−k

5. δm(φn+1) =
∑m

k=0 um−kδk(φ
n)

6. δm(f(φ)) =
∑m−1

k=0

(
1− k

m

)
um−k

∂
∂u0

(
δk(f(φ))

)
, δ0(f(φ)) = f(u0)

7. δm(g(φ, ψ)) =
∑m−1

k=0

(
1− k

m

)
um−k

∂
∂u0

(
δk(g(φ, ψ))

)
+∑m−1

k=0

(
1− k

m

)
wm−k

∂
∂w0

(
δk(g(φ, ψ))

)
, δ0(g(φ, ψ)) = g(u0, w0)

The use of the properties on an arbitrary nonlinear operator, N is shown below.

Assume a nonlinear governing equation with states u and w.

N : u̇+ u2 + u sin(w) = 0 (3.22)

We assume that u and w have the Homotopy-Maclaurin series solutions given by

φ and ψ respectively. We write the general governing equation by substituting the

states by their Homotopy-Maclaurin series solutions.

N : φ̇+ φ2 + φ sin(ψ) = 0 (3.23)

The application of the 3rd order homotopy derivative operator on the nonlinear equa-

tion is shown below. Using the 3rd property, we obtain:

δ3(φ̇+ φ2 + φ sin(ψ)) = δ3(φ̇) + δ3(φ
2) + δ3(φ sin(ψ)) (3.24)
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The first term on the right hand side of Eq. (3.24) can be calculated by applying the

2nd property mentioned above. Hence we obtain, δ3(φ̇) = u̇3. The 5th property can

be used to calculate the second term on the right hand side of Eq. (3.24) as follows:

δ3(φ
2) =

∑2
k=0 u3−kδk(φ)

⇒ δ3(φ
2) = u3δ0(φ) + u2δ1(φ) + u1δ2(φ) + u0δ3(φ)

⇒ δ3(φ
2) = 2u3u0 + 2u1u2

Since the last term on the right hand side of Eq. (3.24), is a function of two homotopy

series solutions, we use the 7th property as follows:

δ3(φ sin(ψ)) =
∑2

k=0

(
1− k

3

)
u3−k

∂
∂u0

(δk(φ sin(ψ)) +
∑2

k=0

(
1− k

3

)
w3−k

∂
∂w0

(δk(φ sin(ψ))

⇒ δ3(φ sin(ψ)) = u3
∂
∂u0

[
δ0(φ sin(ψ))

]
+ 2

3
u2

∂
∂u0

[
δ1(φ sin(ψ))

]
+ 1

3
u1

∂
∂u0

[
δ2(φ sin(ψ))

]
+

w3
∂
∂w0

[
δ0(φ sin(ψ))

]
+ 2

3
w2

∂
∂w0

[
δ1(φ sin(ψ))

]
+ 1

3
w1

∂
∂w0

[
δ2(φ sin(ψ))

]
⇒ δ3(φ sin(ψ)) = 1

3

[
2w2(u1 cos(w0)−u0w1 sin(w0))

]
−1

3

[
u1
(
1
2

sin(w0)w
2
1−w2 cos(w0)

)]
+

1
3
w1

[
1
2

(
w1u1 sin(w0) + u0w1 cos(w0)

)
− u2 cos(w0) + u0w2 sin(w0) + 1

2

(
u1w1 sin(w0)

)]
+

u3 sin(w0) + u0w3 cos(w0) + 1
3

[
2u2w1 cos(w0)

]
It can be seen that for a non-linear problem, the above-mentioned properties when

applied to the governing equations lead to recursive series expansions. This increases

the size of the mth order deformation equations and results in high computational

requirements.

3.1.2 HAM Solution for an Example Boundary Value Problem

For solving a BVP using HAM, we first formulate the given problem as an initial

value problem. The known initial boundary conditions from Eq. (3.4) are used in

the selection of the initial guess as detailed later in Section 3.2. For the states and

costates with unknown initial boundary conditions, we assume their values to be

finite parameters β1, β2,....βn. After obtaining the series solutions for each state and
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costate, we use the given terminal boundary conditions to obtain corrections for the

values of the finite parameters β1, β2,....βn.

3.1.3 Problem Formulation for a Non-Linear Optimal Control Problem

The process can be understood with the help of a simple optimal control problem

explained below. The objective functional is given by

Min J =

∫ 1

0

(x2 + u2)dt (3.25)

with the governing equation

ẋ = u, x(0) = 1, t ∈ [0, 1] (3.26)

where x is the state and u is the control variable.

On applying the Euler-Lagrange theorem, we obtain the following TPBVP,

ẋ+ λ = 0, λ̇+ x = 0

x(0) = 1, λ(1) = 0
(3.27)

where λ is the costate. The simple optimal control problem has a closed form ana-

lytical solution given by Eq. (3.28)

x(t) =
et + e2e−t

1 + e2

λ(t) = −e
t − e2e−t

1 + e2

(3.28)

Using HAM theory, a Homotopy-Maclaurin series for the state and costate is formu-

lated as:

φ(t; q) = x0(t) +
+∞∑
m=1

xm(t)qm, q ∈ [0, 1]

ψ(t; q) = λ0(t) +
+∞∑
m=1

λm(t)qm, q ∈ [0, 1]

(3.29)

where x0 and λ0 are the initial guesses for the state and costate respectively. xm and

λm can be obtained by integrating the mth order deformation equations given by

L[xm(t)− χmxm−1(t)] = coHaδm−1(N1[t, φ(t; q)])

L[λm(t)− χmλm−1(t)] = coHaδm−1(N2[t, ψ(t; q)])
(3.30)
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subject to

xm(0) = 0

λm(0) = 0
(3.31)

Substituting the state and costate by its Homotopy-Maclaurin series solution in

the governing equations, we obtain:

N1 : φ̇+ ψ = 0

N2 : ψ̇ + φ = 0
(3.32)

We apply the properties (1), (2), and (3) mentioned in Section 3.1.1 on the governing

equations, N1 and N2, to obtain the right hand side of the mth order deformation

(Eq. (3.30)) as follows

δm−1(φ̇+ ψ) = ẋm−1 + λm−1

δm−1(ψ̇ + φ) = λ̇m−1 + xm−1

(3.33)

A M th order series solution for the state and costate variable is represented as

x(t) = x0(t) +
M∑
m=1

xm(t)

λ(t) = λ0(t) +
M∑
m=1

λm(t)

(3.34)

3.2 Selection of Initial Guess, Linear Operator, & Auxiliary Function

Although, there are no conclusive proofs and rigorous theories to select the initial

guess, the linear operator, and the auxiliary function, HAM literature provides sug-

gestions for their selection [23]. Dr. Liao suggests to start by defining a set of basis

functions which can represent the series solution of Eq. (3.3). A typical HAM series

solution can be represented as a power series given by

u(t) =
+∞∑
m=0

amem(t) (3.35)
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where am are the finite coefficients obtained by applying the Homotopy Analysis

Method, and em(t) are the basis functions chosen by the designer to represent the

series solution. Eq. (3.35) is known as the rule of solution expression. The initial

guess, linear operator, and the auxiliary function are chosen in such a way so that

they satisfy the rule of solution expression as explained below.

3.2.1 Initial Guess

HAM literature suggests that the initial guess must be chosen such that it can be

expressed by the sum of the basis functions defined above. Also, the initial guess for

a state must satisfy the maximum possible number of boundary conditions for that

state. Eq. (3.36) shows a typical representation of the initial guess for a state

x0(t) =
n∑

m=0

bmem(t) (3.36)

where n is the number of boundary conditions on the state, bm are the finite coeffi-

cients chosen by the designer to satisfy the boundary conditions, and em(t) are the

basis functions chosen to represent the series solution.

3.2.2 Linear Operator

The linear operator must be chosen such that the solution of Eq. (3.37) is expressed

as the sum of the basis functions chosen earlier and is given by Eq. (3.38)

L[w(t)] = 0 (3.37)

w(t) =

K1∑
m=0

dmem(t) (3.38)

where, dm are the finite coefficients and K1 is a positive integer. There is no strict rule

to select the value of K1, but it is suggested that in most of the problems, it is chosen

as the highest order of derivative of the original Eq. (3.3). As already mentioned in
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Section 3.1, the auxiliary function for the finite interval BVPs is chosen to be 1. A

detailed explanation supporting this assumption is provided later in Section 3.2.

Using Eq. (3.13), the original Eq. (3.3) is converted into an infinite number of

linear subproblems governed by the mth order deformation Eq. (3.18). For each value

of m =1,2,3,...∞, the mth order deformation equation can be solved to give analytical

expressions for um(t). Dr. Liao also defines a rule of solution existence as, “the initial

guess, linear operator, and the auxiliary function should be chosen such that the all of

the higher order(mth) deformation equations are closed and have solutions”. Hence,

the guidelines above play an important role for guiding us to choose the initial guess,

linear operator, and the auxiliary function.

3.2.3 Selection of Initial Guess, Linear Operator, and Auxiliary Function

for the OCP

Since a real function can be represented by different basis functions, there may be

different kinds of rule of solution expressions, and all might give accurate solutions for

the non-linear problem. For the current problem, we use the simplest rule of solution

expression, a polynomial power series for a state x, given by Eq. (3.40) for which the

set of basis functions is the following set em

em(t) = [0, 1, t, t2, t3....] (3.39)

x(t) = a1 + a2t+ a3t
2 + ... (3.40)

where a1, a2, and a3 are the coefficients of the series solution. The approach men-

tioned in Section 3.2.1 is used to select the initial guesses for the state and costate.

For convenience, we decide to select the initial guesses which satisfy only the initial

boundary conditions for both the state and the costate. This assumption results in

n = 1 for the initial guess. Hence, for both the state and costate, we define the initial

guesses as:
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x0(t) =
1∑

m=0

b1mem(t) = b11e1 + b12e2

λ0(t) =
1∑

m=0

b2mem(t) = b21e1 + b22e2

(3.41)

To satisfy the initial boundary condition on the state, we choose b11 = 0 and b12 = 1.

Since the initial boundary condition for the costate is unknown, we assume it to be

some finite value β1 as explained in Section 3.1.2. For the costate, we select b22 = β1

and b21 = 0 to satisfy the initial boundary condition. We obtain the initial guesses

for the state and costate as:

x0(t) = 1

λ0(t) = β1

(3.42)

For the linear operator, we use the approach described in Section 3.2.2 to define w(t)

as shown in Eq. (3.43). The value of K1 is 1 since the highest order derivative for both

the original governing equations is 1. We can now define w(t) described in Section

3.2.1, as

w(t) =
1∑

m=0

dmem = d0e0 + d1e1 = d1 (3.43)

The linear operator is chosen such that it satisfies Eq. (3.37) as follows:

L(w(t)) =
d

dt
(d1) = 0 (3.44)

Using Eq. (3.30) and Eq. (3.33), the mth order deformation equations can now be

written for the state and costate as

xm(t; co) = χmxm−1(t) + co

∫ t

0

Haδm−1(ẋ+ λ)dt+ C1

λm(t, co) = χmλm−1(t) + co

∫ t

0

Haδm−1(λ̇+ x)dt+ C2

m=1,2,3,... (3.45)

C1 and C2 are constants of integration determined by the initial conditions given by

Eq. (3.31). Using the rule of solution expression given by Eq. (3.40) and Eq. (3.45),

the auxiliary function Ha should be of the form tκ. When κ ≤ −1, the solutions of

mth order deformation Eq. (3.45) contain the terms log(t), which disobeys the rule of
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solution expression, and when κ ≥ 1, the basis function tκ disappears in the solution

expression given in Eq. (3.40) so that the coefficient of the term t cannot be modified

even if the order of approximation tends to infinity. Hence, we set κ = 0, resulting in

Ha(t) = 1.

3.3 Auxiliary Convergence Control Parameter

HAM guarantees the convergence of the series solution [26], which counts as one

of the major advantages for using it to solve BVPs. MATLAB’s symbolic toolbox is

used to solve Eq. (3.45). We obtain terms for xm and λm and substitute them into

Eq. (3.34). Upon simplifying Eq. (3.34), we obtain a family of series solutions in co.

The solutions for state and costate are functions of the independent variable t and co.

The Homotopy Analysis Method provides us the freedom to choose the value of the

co to adjust the region and the rate of convergence. Dr. Liao suggested to plot the

curves of physical quantities like ẋ|t=t′ , ẍ|t=t′ with co to study their dependency on

co, where t′ can be any instant of time in the domain of the problem. These curves

are termed the co ∼ curves and are denoted as ẋ ∼ co and ẍ ∼ co for any state or

physical quantity. According to the convergence theorem of HAM [55], all convergent

series of ẋ and ẍ converge to constant values for a specific range (Rco) of co values,

resulting in a horizontal line in the co ∼ curves. Regardless of the initial guess, and

for any value of co in that specific region, we will always obtain the same value of the

physical quantity and the series solution is known to converge.

3.4 Discrete Squared Residual

HAM theory defines the squared residual as a measure of how well the power series

satisfies the governing equations integrated over the whole domain. The squared

residual for any governing equation is defined as
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Em(co) =

∫ a

0

{
N[
∑m

n=1 um(t, co)]
}2

dt (3.46)

where a is the final value of time interval used in Eq. (3.3), Em is the squared residual

error for the governing equation, obtained at mth order series solution. The conver-

gence control parameter, co, plays an important role in determining the residual error

for any series solution. As proposed by Liao [21], once we decide the specific range of

co (described in Section 3.3) for which the series converges, we can find the optimal

value of co within that range by minimizing the squared residual error.

Due to the high computational requirements in Em, theory also defines a discrete

squared residual Emd for the mth order series solution as

Emd =
1

Nstep + 1

Nstep∑
j=0

{
∆m(τj; co)

}2

, τj =
tfj

Nstep

(3.47)

where

∆m(τ ; co) = N(um(τ ; co)) (3.48)

Nstep is the number of time steps used, and tf is the final time of the OCP. For the

current study, Nstep is assumed to be 40. An overall discrete squared residual Emd,total

can be defined by adding the discrete squared residuals for each governing equation

as follows

Emd,total = Emd,N1 + Emd,N2 + Emd,N3 + ... (3.49)

where Emd,N1 is the discrete squared residual for the governing equation N1.

3.5 Results for the Optimal Control Problem

The mth order deformation Eq. (3.45) is solved to obtain the analytical terms for

xm and λm terms in co and β1. First, we assume the value of co to be -1. Then,

we use the final boundary condition on the costate to obtain a non-linear equation

which can be root solved for β1. Using the value of β1, we can obtain mth order series

solutions for both the state and costate.
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Further, we plot the c0 ∼ curves to understand the convergence properties of the

state and costate series solutions. For this test case, we used the quantities x ∼ co,

ẋ ∼ co, ẍ ∼ co for the state and λ ∼ co, λ̇ ∼ co, λ̈ ∼ co for the costate. Since the

curves converge at each instant of time, we chose to plot them at the final time of

1 s. Figs. 3.1(a) and 3.1(b) show the co ∼ curves for the 3rd order and 5th order series

solutions respectively. It was found that for the 5th order solution, a common range

in co could be found for both the state and the costate in which the curves converge

to constant values for all the mentioned physical quantities. This common range was

identified to be [-1.2, 0] for the 5th order solution. The convergence region increases

with an increase in the order of solution, giving designers more freedom in choice of

co.
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ẋ(1)
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Figure 3.1.: co ∼ curves for the simple optimal control problem.

We minimize the total discrete squared residual given by Eq. (3.49), to obtain

the optimal co for the 5th order solution. MATLAB’s fminbnd function based on the

Golden Section Search Algorithm with parabolic interpolation was used to minimize

Emd,total for the range [-1.2, 0]. The optimal value of co for the 5th order solution
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was found to be -0.9567. The optimal co is used again to obtain the series solutions

for the state and costate. β1 is root solved again by using the terminal boundary

condition on the costate. This method of using an updated value of co to obtain the

series solutions is known as “convergence control”.

Since the initial assumed value of co = −1 already lies in the horizontal range

as shown in Fig. 3.1(b), convergence control wasn’t necessary in this simple case.

However, to further reduce the total discrete squared residual, it is good practice to

use the optimal value of co. Table 3.1 shows the difference between the total discrete

squared residual obtained by using an optimal value of co.

Table 3.1: Effect of co on total discrete squared residual.

co Emd,Total

−1 3.17× 10−5

−0.9567 1.27× 10−6

Fig. 3.2(a) shows the total discrete squared residual at several orders of solution

for a very short range of co, in which most of the optimal values of co lie. It can

also be seen that, as the order of solution increases, the optimal co shifts towards

the value of -1. In literature, for a number of boundary value problems solved using

HAM, co = −1 is reported to lie in the horizontal range for the physical quantities,

but this may not be true for boundary value problems in general. The total discrete

squared residual decreases with an increase in order as seen in Fig. 3.2(b). The

computations were performed on the Intel(R) Xeon(R) CPU-E3-1225 v3 3.20 Ghz

(4 CPUs) processor. CPU times increases almost linearly with the order of solution

as seen from Fig. (3.3).

The series solutions for both the state and costate are compared with the ana-

lytical solution as shown in the Fig. 3.4. The series solutions without convergence

control (co = −1) are also compared with the solutions obtained using the optimal co.
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Figure 3.3.: CPU time with order of solution for the simple optimal control problem.

Although, both of the values of co lie in the convergence region, a small improvement

is obtained by using the optimal value of co. The initial guess for the state variable

was chosen to be 0, and does not change with co. For the test case, the 5th order

series solution is represented as

x(t) = 1− 0.76t+ 0.5t2 − 0.12t3 + 0.04t4 − 0.01t5

λ(t) = 0.76− t+ 0.38t2 − 0.16t3 + 0.03t4 − 0.01t5
(3.50)

A number of different initial guesses were also used to compute the HAM series

solution. Table 3.2 shows the total discrete squared residual obtained at 5th order

HAM solution for the initial guesses used. It must be noted that for each of the guess,

initial boundary conditions on both the state and costate are satisfied. The initial

guess given in the last row is based on an exponential rule of solution expression.
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Figure 3.4.: State and costate 5th order HAM solution for the simple optimal control

problem.

Since the analytical solution of the problem (Eq. (3.28)) contains exponential terms,

it can be concluded that using an exponential series rule of solution expression is apt

for this particular problem. This fact is also confirmed by the least value of total

discrete squared residual obtained by using the exponential initial guess as compared

to other initial guesses.

Table 3.2: Flexibility of initial guess on simple control problem.

Initial Guess [x0, λ0] Emd,Total

[1, β1] 1.27× 10−6

[1, β1(1− t)] 1.90× 10−6

[1, β1e
t] 1.37× 10−5

[et, β1e
t] 1.41× 10−8
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3.6 Cook-Book for HAM approach to TPBVPs

A step by step formal approach for solving TPBVPs using HAM is provided below.

1. Formulate the TPBVP with the set of governing equations and the boundary

conditions by using the Euler-Lagrange equations.

2. Check the initial conditions for all the state and costate variables. For all states

and costates with unknown initial conditions, assume those to be unknown

parameters, β1, β2,.. ,βn.

3. For the free final-time TPBVP, assume the final time to be another unknown

parameter, tf .

4. Use the HAM guidelines to build the initial guess, linear operator, and the

auxiliary function for each governing equation and state and costate variables.

5. Solve the mth order deformation equations for each governing equation using a

symbolic computation algebra system to obtain the M th order series solutions

for states and costates in terms of βi, tf and co. Assume co to be initially -1.

6. For the finite time interval problem, apply the n terminal boundary conditions

on the series solutions to obtain a non-linear system of equations in β1, β2,.. ,βn.

For the free time interval problem, use the n terminal boundary conditions on

the state and costate variables as well as the transversality condition to obtain

a nonlinear system of equations in n+1 variables. MATLAB’s Fsolve function

is then used to numerically solve the non-linear system of equations obtained. If

the system results in multiple solutions for the unknown parameters, then series

solutions are constructed for each set of parameters. The set of parameter for

which the objective function is minimum is chosen.

7. Using the series solutions obtained, plot the co ∼ curves for various physical

quantities like ẋ, ẍ for each state and costate variable whose series solution is

not a constant value.
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8. Find a common range of co for which the various physical quantities converge

to constant values. The common range can be identified by horizontal regions

in the co ∼ curves.

9. Select any value of co from that common range. We can also find the opti-

mal value of co by minimizing the total discrete squared residual within that

range. For problems with no common range available, we can minimize the

total discrete squared residual on the real number range, (−∞,+∞), to obtain

the optimal co.

10. Use the updated (optimal) value of co to repeat step 6 and find the final M th

order HAM series solutions for the states and costates.

11. As already explained before, steps 6-10 are referred to as the “convergence

control” in the HAM literature.

12. Visual comparison of the M th order solution is done with the (M − 1)th order

solution. The process is terminated, if significant changes in the state and

costate solutions can’t be observed. If the designer chooses to continue, higher

order HAM solutions are computed.

Fig. 3.5 shows the various steps followed in the HAM approach to solve indirect

trajectory optimization problems in the form of a flow chart.
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Figure 3.5.: Flowchart showing the HAM process

3.7 HAM Based Solver Packages

A number of Homotopy analysis method based packages has been developed in

the past for solving non-linear boundary value problems arising in science and engi-

neering. Some of the popular open source packages like BVPh [56] and APOh [57]

are based on the symbolic algebra system of Mathematica [58] and Maple [59]. Bvph

2.0 provides the flexibility of using multiple convergence control paramters, can han-

dle singularities, and is capable of solving nonlinear multi-point boundary value and

eigenvalue problems. It also gives the flexibility of approximating the right hand side
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of the mth order deformation equations by the use of Chebyshev and hybrid-base

polynomials.
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4. HOMOTOPY ANALYSIS METHOD APPLIED TO

TRAJECTORY OPTIMIZATION PROBLEMS

In this chapter, the HAM approach to solve OCPs described previously is applied to

more realistic optimal control problems. Two optimal control problems are formulated

as indirect trajectory optimization problems, and solutions obtained from the HAM

approach are compared with those obtained from MATLAB’s bvp4c function. The

first part of this chapter discusses Zermelo’s problem while the second part discusses

a classical 2D ascent problem of a lunar ascent vehicle launching from the surface of

the Moon to a circular orbit at 185.2 km. Additionally, a modified fixed final time

2D ascent problem is also investigated to differentiate the solution approach between

the two types of problems. The effect of using the convergence control is found to be

negligible for these problems, and possible reasons that support this observation are

provided. It is also found that the modified fixed final time 2D ascent problem has

better convergence properties as compared to the classical 2D ascent problem since

an extra parameter of optimal final time has to be solved for in the latter case.

4.1 Zermelo’s Problem

Zermelo’s problem [60] consists of minimizing the time required by a boat to cross

a river. Fig. 4.1 shows a schematic of the optimal control problem. θ is the boat

steering angle from the horizontal direction which is varied continuously to reach the

terminal point across the river in the minimum possible time. The boat is assumed

to move with a constant velocity, V of 1 m/s.
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Figure 4.1.: Schematic for Zermelo’s problem [60].

The objective function, J, is defined as

Min J = tf (4.1)

with the dynamics

ẋ = x+ V cos θ

ẏ = y + V sin θ
(4.2)

where, the states x and y are the horizontal and vertical coordinates respectively. It

must be noted that the dynamics are modified to include river currents x and y, both

in the horizontal and vertical directions. The Hamiltonian is defined as

H = λx(x+ V cos θ) + λy(y + V sin θ) (4.3)

where λx and λy are the costates corresponding to the two states. We use the Euler-

Lagrange theorem to obtain the dynamics for the costates given in Eq. (4.4). The

control law is obtained in Eq. (4.5) which can also be written with a negative sign as

shown in Eq. (4.6)

λ̇x = −λx

λ̇y = −λy
(4.4)

tan θ =
λy
λx

(4.5)

tan θ =
λy
λx

=
−λy
−λx

(4.6)
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The boat starts from (0,0) and crosses the river to reach (1,1). The set of boundary

conditions along with the transversality condition obtained for final time are given in

Eq. (4.7).

x(0) = 0, y(0) = 0

x(tf ) = 1, y(tf ) = 1

Htf = −1

(4.7)

Since the control law can have both the positive and negative signs (Eq. (4.6)), it

cannot distinguish the quadrant in which the angle θ resides. Hence, we obtain the

values of cos θ and sin θ in Eq. (4.8)

cos θ =
±λx√
λ2x + λ2y

sin θ =
±λy√
λ2x + λ2y

(4.8)

We use the Legendre-Clebsch condition (Eq. (2.9)) in Eq. (4.9) and Eq. (4.10) to pick

the negative sign for the terms obtained in Eq. (4.8)

Hθθ = −λxV cos θ − λyV sin θ (4.9)

Hθθ = −λxV

 ±λx√
λ2x + λ2y

− λyV
 ±λy√

λ2x + λ2y

 (4.10)

Substituting the terms from Eq. (4.8) into the governing equations, we obtain Eq. (4.11).

ẋ− x+ V

 λx√
λ2x + λ2y

 = 0

ẏ − y + V

 λy√
λ2x + λ2y

 = 0

λ̇x + λx = 0

λ̇y + λy = 0

(4.11)
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4.1.1 HAM Problem Formulation

The Homotopy-Maclaurin series and the mth order deformation equations for the

states and costates are given by Eq. (4.12) and Eq. (4.13).

φx(t; q) = x0(t) +
+∞∑
m=1

xm(t)qm

φy(t; q) = y0(t) +
+∞∑
m=1

ym(t)qm

ψλx(t; q) = λx0(t) +
+∞∑
m=1

λxm(t)qm

ψλy(t; q) = λy0(t) +
+∞∑
m=1

λym(t)qm

(4.12)

L[xm(t)− χmxm−1(t)] = coHaδm−1(N1[t, φx(t; q)])

L[ym(t)− χmym−1(t)] = coHaδm−1(N2[t, φy(t; q)])

L[λxm(t)− χmλxm−1(t)] = coHaδm−1(N3[t, ψλx(t; q)])

L[λym(t)− χmλym−1(t)] = coHaδm−1(N4[t, ψλy(t; q)])

(4.13)

where q ∈[0,1], x0, y0, λx0 and λy0 are the initial guesses, subject to

xm(0) = 0, ym(0) = 0

λxm(0) = 0, λym(0) = 0
(4.14)

The Homotopy-Maclaurin series expansions for the states and costates are substituted

into the Eq. (4.11) to obtain Eq. (4.15).

N1 : φ̇x

√
ψ2
λx

+ ψ2
λy
− φx

√
ψ2
λx

+ ψ2
λy

+ ψλx = 0

N2 : φ̇y

√
ψ2
λx

+ ψ2
λy
− φy

√
ψ2
λx

+ ψ2
λy

+ ψλy = 0

N3 : ˙ψλx + ψλx = 0

N4 : ˙ψλy + ψλy = 0

(4.15)

The governing equations are simplified to avoid square root functions in the de-

nominator. This helps in reducing the effort to apply the homotopy derivative opera-
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tor properties on the equations. We apply the properties of the homotopy derivative

operator on the governing equations, N1 N2, N3 and N4 to obtain the right hand side

of the mth order deformation equation (Eq. (4.13)) as follows

δm−1(N1) = δm−1(φ̇x

√
ψ2
λx

+ ψ2
λy

)− δm−1(φx
√
ψ2
λx

+ ψ2
λy

) + λxm−1

δm−1(N2) = δm−1(φ̇y

√
ψ2
λx

+ ψ2
λy

)− δm−1(φy
√
ψ2
λx

+ ψ2
λy

) + λym−1

δm−1(N3) = λ̇xm−1 + λxm−1

δm−1(N4) = λ̇ym−1 + λym−1

(4.16)

To evaluate the right hand side terms for the first and second mth order deformation

equations, MATLAB based symbolic functions are built which auto-create the terms

at each order for the mth order deformation equations.

4.1.2 Selection of Linear Operator, Initial Guess and Auxiliary Function

for Zermelo’s Problem

A set of polynomial functions as the basis functions and a rule of solution expres-

sion similar to the one used in the previous problem given by Eq. (3.40) is chosen

for Zermelo’s problem. Similar to the process before, for convenience, we select the

initial guesses which satisfy only the initial boundary conditions on the states and

costates. We build the initial guesses for each state and costate as explained in the

Section 3.2.1.

x0(t) =
1∑

m=0

b1mem(t) = b11e1 + b12e2

y0(t) =
1∑

m=0

b2mem(t) = b21e1 + b22e2

λx0(t) =
1∑

m=0

b3mem(t) = b31e1 + b32e2

λy0(t) =
1∑

m=0

b4mem(t) = b41e1 + b42e2

(4.17)
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where em is given by Eq. (3.39). The values of the coefficients chosen for the initial

guess to satisfy the initial boundary conditions are given in the Table (4.1)

Table 4.1: Coefficients and initial guess for Zermelo’s problem.

j state and costate Coefficient bj1 Coefficient bj2 Initial Guess

1 x 0 0 0

2 y 0 0 0

3 λx 0 β1 β1

4 λy 0 β2 β2

To select the linear operator, we follow the same process as used in Section 3.2.3.

Since, the highest order of derivative for all the governing equations is 1, we select

the value of K1 defined in Eq. (3.38) to be 1. The function w(t) can be defined as

w(t) =
1∑

m=0

dmem = d0e0 + d1e1 = d1 (4.18)

Using Eq. (3.44), we can select the linear operator as d
dt

. Following the approach

we used for the previous example, we select the auxiliary function to be 1. Using

Eq. (4.13) and Eq. (4.16), we can now write the mth order deformation equations as

given in Eq. (4.19)

xm(t; co) = χmxm−1(t) + co

∫ t

0

[
δm−1(φ̇x

√
ψ2
λx

+ ψ2
λy

)− δm−1(φx
√
ψ2
λx

+ ψ2
λy

)

+ λxm−1)

]
dt+ C1

ym(t; co) = χmym−1(t) + co

∫ t

0

[
δm−1(φ̇y

√
ψ2
λx

+ ψ2
λy

)− δm−1(φy
√
ψ2
λx

+ ψ2
λy

)

+ λym−1)

]
dt+ C2

λxm(t, co) = χmλxm−1(t) + co

∫ t

0

(λ̇xm−1 + λxm−1)dt+ C3

λym(t, co) = χmλym−1(t) + co

∫ t

0

(λ̇ym−1 + λym−1)dt+ C4

(4.19)
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where, χm is given by Eq. (3.16). C1 ,C2, C3, and C4 are calculated using the boundary

conditions in Eq. (4.14). Since we are also required to calculate the optimal final time

for the problem, another unknown parameter, tf , is used. Following the steps defined

in Section 3.6, we select the value of co to be -1. The terminal boundary conditions

on the states and the transversality condition on the final time parameter, tf , are

applied to formulate a non-linear system of equations in the parameters β1, β2, and

tf . MATLAB’s Fsolve function based on the default Trust-region-dogleg algorithm

is used to numerically solve the non-linear system of equations. Table. 4.2 lists the

settings used for the Fsolve function. Fsolve requires an initial guess for the nonlinear

Table 4.2: Fsolve settings.

Algorithm Trust-region-dogleg

Maximum Function Evaluations 200,000

Maximum iterations 200,000

Finite difference method Forward

Function Tolerance 10−6

Step Tolerance 10−6

Table 4.3: Initial guess for Fsolve function at 1st order HAM solution.

Parameter Guess

β1 0.1

β2 0.1

tf 0.5

system to begin, for which an educated initial guess given in the Table 4.3 is input

to calculate the unknown parameters for the 1st order HAM solution. The values
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obtained for 1st order solution are used as the initial guess by Fsolve for the next

order HAM solution.

4.1.3 Results for Zermelo’s Problem

Fig. 4.2 shows the co ∼ curves of the physical quantities for all the state and

costate variables at the 7th order solution for co ∈ [−2, 0]. For the states, the plots

seem to show a common range of [-1,0] in which the physical quantities converge

to constant values. The common range from the co ∼ curves of costate quantities

is approximated to be [-1,-0.6]. On changing the axes scales, as shown in Fig. 4.3,

the values for state quantities show different convergence behavior for co within the

domain [-1,0]. It was concluded that the convergence behavior for the state quantities

in Fig. 4.2 was misleading. Due to the large magnitude of quantities in the range [-

2,-1.5], the plots couldn’t capture the convergence phenomena in the range [-1,0].

However, for the costate quantities, we could confirm a common convergence region

of [-1,-0.6] from Fig. 4.3. Due to the fact that we couldn’t find a common region of

co for all the state and costate quantities, the use of a convergence control wasn’t

possible for this problem.

Since we couldn’t use convergence control on the problem, we could use the as-

sumed value of co of -1. An optimal co was determined by minimizing the total

discrete squared residual over the range [−1010, 1010]. For the 7th order HAM so-

lution, Table 4.4 lists the total discrete squared residual and the parameters calcu-

lated corresponding to two co values. The optimal tf from bvp4c is calculated to be

0.8814 s. The series solutions for the states and costates are compared with the results

obtained from bvp4c in Fig. 4.4. As seen from Fig. 4.4, almost negligible difference in

the parameters obtained from the two co values result in similar trajectories for the

states and costates. Due to the difference in the optimal final time values obtained

from the two methods, the terminal boundary conditions are not completely achieved

for the solutions obtained using the HAM approach.
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ẋ(tf )
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Figure 4.2.: co ∼ curves for Zermelo’s problem: co ∈ [−2, 0]
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Figure 4.3.: co ∼ curves for Zermelo’s problem: co ∈ [−1, 0]

Fig. 4.5 compares the control history obtained using the two methods. A constant

steering angle of 45 deg is needed to be maintained for the boat to reach the terminal

point. The control history obtained using the HAM method records a higher time as
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Table 4.4: co values and parameter values for Zermelo’s problem (7th order).

co Emd,Total β1 β2 tf [s]

−1 0.00218588 -0.81730068 -0.81730068 0.89946559

−1.0056 0.00218278 -0.81730069 -0.81730069 0.89946559

compared to the one obtained from bvp4c. This is due to the small difference between

the optimal final time values obtained from the two methods. Figs. 4.6(a) and 4.6(b)

show the total discrete squared residual and the CPU-time to solve Zermelo’s prob-

lem. It can be seen that the CPU-time for the next consecutive order is almost double

of the previous order value. This is due to the fact that the mth order deformation

equations for the next higher order consist of all the terms from the previous order

solution.
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Figure 4.4.: State and costate 7th order HAM solution for Zermelo’s problem.
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Figure 4.6.: Computational performance for Zermelo’s problem.

4.2 2D Ascent Launch Problem

The classical 2D ascent problem [60] consists of launching an ascent vehicle from

the surface of the Moon to a circular orbit of 185.2 km in the minimum possible time.

A flat Moon model is assumed as shown in Fig. 4.7.

The assumptions for the optimal control problem are:

1. The instantaneous steering angle α is the only control variable.
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Figure 4.7.: Flat-Moon model for classical 2D ascent problem [60].

2. Acceleration due to gravity by the Moon is assumed to be 1.62 m/s2.

3. The thrust to weight ratio for the ascent vehicle is 3.

4. Constant vehicle mass and a constant thrust force, F is assumed.

5. The final altitude to be achieved is 185.2 km.

6. There is no atmosphere present.

The objective function for the problem is defined in Eq. (4.20)

Min J = tf (4.20)

with the equations of motion given by Eq. (4.21)

Ṙ = vx

ḣ = vy

v̇x =
F

m
cosα

v̇y =
F

m
sinα− g

(4.21)

where g = 1.62 m/s2, the states R and h represent the downrange and altitude of

the vehicle, and vx and vy are the horizontal and the vertical velocities, respectively.

F
m

is the thrust acceleration of the vehicle and is calculated using Eq. (4.22).
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F

m
= (Thrust to weight)(g) = 4.86 m/s2 (4.22)

The Hamiltonian is defined in Eq. (4.23),

H = λR(vx) + λh(vy) + λvx

(
F

m
cosα

)
+ λvy

(
F

m
sinα− g

)
(4.23)

where λR, λh, λvx , and λvy are the costates corresponding to the 4 states defined

above. Using the Euler-Lagrange equations, we derive the dynamics for the costates

in Eq. (4.24)

λ̇R = 0

λ̇h = 0

λ̇vx = −λR

λ̇vy = −λh

(4.24)

The control law is obtained in Eq. (4.25) which can also be written with a negative

sign, as shown in Eq. (4.26)

tanα =
λvy
λvx

(4.25)

tanα =
λvy
λvx

=
−λvy
−λvx

(4.26)

Since the control law obtained for the problem is same as the one derived for Zermelo’s

problem (Eq. (4.6)), we use the same process to obtain the values of the terms cosα

and sinα as shown in Eq. (4.27).

cosα =
±λvx√
λ2vx + λ2vy

sinα =
±λvy√
λ2vx + λ2vy

(4.27)

We use the Legendre-Clebsch condition (Eq. (2.9)) in Eq. (4.28) and Eq. (4.29) to

pick the negative signs for the terms obtained in Eq. (4.27)

Hαα = −λvx
(
F

m

)
cosα− λvy

(
F

m

)
sinα (4.28)
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Hαα = −λvx
F

m

 ±λvx√
λ2vx + λ2vy

− λvy Fm
 ±λvy√

λ2vx + λ2vy

 (4.29)

The updated equations of motion are given by Eq. (4.30)

Ṙ = vx

ḣ = vy

v̇x =
F

m

 −λvx√
λ2vx + λ2vy



v̇y =
F

m

 −λvy√
λ2vx + λ2vy

− g

(4.30)

Using the transversality condition given by Eq. (2.7), we obtain the boundary condi-

tions for the TPBVP in Table 4.5. An additional boundary condition is derived for

the Hamiltonian given by, Hf = −1.

Table 4.5: Boundary conditions - classical 2D ascent problem.

State/Costate Initial condition Terminal Condition

R 0 km free

h 0 km 185.2 km

vx 0 m/s 1.627 km/s

vy 0 m/s 0 m/s

λR free 0

λh free free

λvx free free

λvy free free
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4.2.1 HAM Problem Formulation (Classical 2D Ascent)

Following the set of steps described in Section 3.5, we can begin to formulate the

HAM problem by defining the Homotopy-Maclaurin series in Eq. (4.31) and the mth

order deformation equations in Eq. (4.32) for each state and costate.

φR(t; q) = R0(t) +
+∞∑
m=1

Rm(t)qm

φh(t; q) = h0(t) +
+∞∑
m=1

hm(t)qm

φvx(t; q) = vx0(t) +
+∞∑
m=1

vxm(t)qm

φvy(t; q) = vy0(t) +
+∞∑
m=1

vym(t)qm

ψλR(t; q) = λR0(t) +
+∞∑
m=1

λRm(t)qm

ψλh(t; q) = λh0(t) +
+∞∑
m=1

λhm(t)qm

ψλvx (t; q) = λvx0
(t) +

+∞∑
m=1

λvxm
(t)qm

ψλvy (t; q) = λvy0
(t) +

+∞∑
m=1

λvym
(t)qm

(4.31)

L[Rm(t)− χmRm−1(t)] = coHaδm−1(N1[t, φ(t; q)])

L[hm(t)− χmhm−1(t)] = coHaδm−1(N2[t, φ(t; q)])

L[vxm(t)− χmvxm−1(t)] = coHaδm−1(N3[t, φ(t; q)])

L[vym(t)− χmvym−1(t)] = coHaδm−1(N4[t, φ(t; q)])

L[λRm(t)− χmλRm−1(t)] = coHaδm−1(N5[t, φ(t; q)])

L[λhm(t)− χmλhm−1(t)] = coHaδm−1(N6[t, φ(t; q)])

L[λvxm
(t)− χmλvxm−1

(t)] = coHaδm−1(N7[t, φ(t; q)])

L[λvym
(t)− χmλvym−1

(t)] = coHaδm−1(N8[t, φ(t; q)])

(4.32)
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subject to the boundary conditions,

Rm(0) = 0, hm(0) = 0, vxm(0) = 0, vym(0) = 0

λRm(0) = 0, λhm(0) = 0, λvxm (0) = 0, λvym (0) = 0
(4.33)

Following the approach used in Section 4.1.1, we substitute the Homotopy-Maclaurin

series (Eq. (4.31)) for the states and costates to the governing equations and simplify

to obtain Eq. (4.34), where q ∈ [0, 1], and the right hand side of the Eq. (4.32) can

be obtained by applying the properties of the homotopy derivative operator to the

Eq. (4.34) as shown by Eq. (4.35).

N1 : φ̇R − φvx = 0

N2 : φ̇h − φvy = 0

N3 : ˙φvx

√
ψ2
λvx

+ ψ2
λvy

+
F

m
φλvx = 0

N4 : ˙φvy

√
ψ2
λvx

+ ψ2
λvy

+
F

m
φλvy

√
ψ2
λvx

+ ψ2
λvy

+ g
√
ψ2
λvx

+ ψ2
λvy

= 0

N5 : ˙ψλR = 0

N6 : ˙ψλh = 0

N7 : ˙ψλvx + ψλR = 0

N8 : ˙ψλvy + ψλh = 0

(4.34)

δm−1(N1) = Ṙm−1 − vxm−1

δm−1(N2) = ḣm−1 − vym−1

δm−1(N3) = δm−1

(
˙φvx

√
ψ2
λvx

+ ψ2
λvy

)
+
F

m
λvxm−1

δm−1(N4) = δm−1

(
˙φvy

√
ψ2
λvx

+ ψ2
λvy

)
+
F

m
λvym−1

+ gδm−1

(√
ψ2
λvx

+ ψ2
λvy

)
δm−1(N5) = λ̇Rm−1

δm−1(N6) = λ̇hm−1

δm−1(N7) = λ̇vxm−1
+ λRm−1

δm−1(N8) = λ̇vym−1
+ λhm−1

(4.35)
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4.2.2 Selection of Initial Guess, Linear Operator, and Auxiliary Function

(Classical 2D Ascent Problem)

The choice of the basis functions and the rule of solution expression is the same

as used for the simple control problem given by Eq. (3.40). A same approach is used

for the selection of initial guess as used in the previous problems. Only the initial

boundary conditions are used to build the initial guess. Eq. (4.36) gives the set of

equations for the initial guesses of each state and costate.

R0(t) =
1∑

m=0

b1mem(t) = b11e1 + b12e2

h0(t) =
1∑

m=0

b2mem(t) = b21e1 + b22e2

vx0(t) =
1∑

m=0

b3mem(t) = b31e1 + b32e2

vy0(t) =
1∑

m=0

b4mem(t) = b41e1 + b42e2

λR0(t) =
1∑

m=0

b5mem(t) = b51e1 + b52e2

λh0(t) =
1∑

m=0

b6mem(t) = b61e1 + b62e2

λvx0 (t) =
1∑

m=0

b7mem(t) = b71e1 + b72e2

λvy0 (t) =
1∑

m=0

b8mem(t) = b81e1 + b82e2

(4.36)

where em is given by Eq. (3.39). From Table 4.5, it can be seen that the initial con-

ditions for the costates are not provided. Hence, we can select unknown parameters

for those values. We are also required to find the optimal final time for this case,

which gives us tf as the fifth unknown parameter to be calculated. The values of the

coefficients chosen to build the initial guess are given in Table 4.6

A same approach for the selection of linear operator and auxiliary function are

used as described in the Section 3.2.3. The value of K1 is chosen to be 1, since the
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Table 4.6: Coefficients and initial guess - classical 2D ascent problem.

j state and costate Coefficient bj1 Coefficient bj2 Initial Guess

1 R 0 0 0

2 h 0 0 0

3 vx 0 0 0

4 vy 0 0 0

5 λR 0 β1 β1

6 λh 0 β2 β2

7 λvx 0 β3 β3

8 λvy 0 β4 β4

highest order of derivative for all the governing equations is 1. Using Eq. (4.18), we

obtain the linear operator as d
dt

. The auxiliary function is selected to be 1 by using a

same approach as in section 4.1.2. Using Eqs. (4.32) and (4.35), we write the mth order

deformation equations given by Eq. (4.37), where, χm is given by Eq. (3.16). All the

constants of integration are calculated using the boundary conditions in Eq. (4.33).

Rm(t; co) = χmRm−1(t) + co

∫ t

0

(Ṙm−1 − vxm−1)dt+ C1

hm(t; co) = χmhm−1(t) + co

∫ t

0

(ḣm−1 − vym−1)dt+ C2

vxm(t, co) = χmvxm−1(t) + co

∫ t

0

[
δm−1

(
˙φvx

√
ψ2
λvx

+ ψ2
λvy

)
+
F

m
λvxm−1

]
dt+ C3

vym(t, co) = χmvym−1(t) + co

∫ t

0

[
δm−1

(
˙φvy

√
ψ2
λvx

+ ψ2
λvy

)
+
F

m
λvym−1

+

gδm−1

(√
ψ2
λvx

+ ψ2
λvy

)]
dt+ C4

λRm(t; co) = χmλRm−1(t) + co

∫ t

0

(λ̇Rm−1)dt+ C5

λhm(t; co) = χmλhm−1(t) + co

∫ t

0

(λ̇hm−1)dt+ C6

λvxm (t; co) = χmλvxm−1
(t) + co

∫ t

0

(λ̇vxm−1
+ λRm−1)dt+ C7

λvym (t; co) = χmλvym−1
(t) + co

∫ t

0

(λ̇vym−1
+ λhm−1)dt+ C8

(4.37)
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4.2.3 Results (Classical 2D Ascent Problem)

Using the same approach as discussed previously, we assume co = −1. The 5

terminal boundary conditions on the states, costates, and final time allows us to build

a non-linear system of equations in β1, β2, β3, β4, and tf . 1st order series solutions

are found to be trivial and are unable to capture the non-linearity of the problem.

Therefore, in this problem, we begin with calculating 2nd order series solutions. Using

the previous approach, we use the parameter values obtained for the 2nd order solution

as the initial guess for the 3rd order solution input to Fsolve. Table 4.7 provides the

initial guesses for the 2nd order solution and the values obtained for the consecutive

orders series solutions using Fsolve. It can be observed that for higher order solutions,

the parameter values have started to converge, but the convergence process is slow.

Table 4.7: Parameter values - classical 2D ascent problem.

Order of solution β1 β2 β3 β4 tf [s]

Initial guess for 2nd order 0.1 0.1 0.1 0.1 800

2 1.1554×10−27 -0.0005 0.2450 0.2242 819.1950

3 -2.0175×10−34 -0.0006 -0.1721 -0.2463 806.5123

4 -1.2741×10−31 -0.0006 -0.1541 -0.2388 719.0774

5 1.1392×10−32 -0.0006 -0.1391 -0.2353 670.8889

6 -6.7729×10−32 -0.0006 -0.1295 -0.2309 633.3053

7 -6.5394×10−31 -0.0006 -0.1226 -0.2278 604.9100

8 3.8722×10−31 -0.0006 -0.1176 -0.2258 582.5482

9 2.1616×10−34 -0.0006 -0.1139 -0.2253 564.5248

10 2.4196×10−31 -0.0006 -0.1114 -0.2262 549.6620

11 5.1269×10−32 -0.0006 -0.1100 -0.2290 537.1408

11th order for optimal co -1.5020×10−29 -0.0006 -0.1088 -0.2280 519.7829

Fig. 4.8 shows the co curves for the domain co ∈ [−2, 0] for the 11th order series

solutions. It can be concluded that no common horizontal range can be identified for
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which any of the physical quantities converge. Therefore, it is not possible to apply

convergence a control to this problem.
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Figure 4.8.: co ∼ curves for co ∈ [−2, 0] - classical 2D ascent problem.

The optimal co of -1.0594 is calculated for the 11th order solution by minimizing

the total squared discrete residual over the co range, [−1010, 1010]. The values of

the parameters are recalculated for the optimal co and are provided in the last row of

Table 4.7. Figs. 4.9 and 4.10 provide a comparison of the state and costate trajectories

for the 11th order series solutions with those obtained from bvp4c.

Fig. 4.11 shows the comparison of the control histories from the two methods.

It can be seen from Fig. 4.12(a), that compared to the 2nd order solution, the total

discrete squared residual reduces by almost 3 orders for the 11th order solution. Us-

ing the optimal co, the total discrete squared residual reduces to 901.06 from 1216.73

for the 11th order series solution. Fig. 4.12(b) shows the exponential increase in

CPU-time for higher orders of solution. The time recorded for the 11th order solution

(10175 s) is almost quadruple that of that required by the 10th order solution

(2544 s). Due to these high computation times, it was decided to truncate the solution

at the 11th order.
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Figure 4.9.: States from 11th order HAM solution - classical 2D ascent problem.
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Figure 4.12.: Computational performance - classical 2D ascent problem.

4.3 2D Ascent Launch Problem (Fixed Final-Time Problem)

For the second test case, the 2D ascent problem was modified to a fixed final-time

problem. A vehicle launched from the surface of the Earth must reach an orbit of

185.2 km in 485 seconds to achieve a maximum terminal horizontal component of

velocity. The assumptions for this case are the following:

1. An instantaneous steering angle α is the only control variable.

2. The acceleration due to gravity from the Earth is assumed to be 9.8 m/s2.

3. Thrust to weight ratio for the vehicle is 3.
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4. A constant mass and a constant thrust force F is assumed.

5. Final altitude to be achieved is 185.2 km.

6. There is no atmosphere and no aerodynamic forces on the vehicle.

The objective function for this case is defined by Eq. (4.38)

Min J = −vxf (4.38)

with the dynamics given by Eq. (4.21), where g = 9.8 m/s2. The acceleration is

calculated using Eq. (4.39)

F

m
= (Thrust to weight)(g) = 29.4 m/s2 (4.39)

The expression for the Hamiltonian and the dynamics for costates are the same

as used in the previous case given by the Eqs. (4.23) and (4.24), respectively. Using

Pontryagin’s Minimum Principle, we obtain the control law given by Eq. (4.25) and

the state equations by Eq. (4.30). We use the transversality condition to obtain two

additional terminal boundary conditions on the costates λR and λvx . The boundary

conditions for the fixed final-time problem are given in Table. 4.8.

4.3.1 HAM Formulation (Fixed Final-Time Problem)

As the classical ascent problem is modified, Eqs. (4.31) - (4.37) also describe the

HAM problem formulation for the fixed final time problem as well. The same initial

guess (Table 4.6), linear operator, and auxiliary function as for the classical ascent

case are also used for this case. The final time is provided in this problem, so there is

no need to define the parameter, tf , for this case. The 4 terminal boundary conditions

given in Table. 4.8 are used to build a nonlinear system of equations in the 4 unknown

parameters β1, β2, β3 and β4. Table 4.9 lists the values of parameters obtained at

each order of solution. It is clear that, at higher orders of solutions, the values do not

differ by much. The optimal co is calculated to be -1.0001.
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Table 4.8: Boundary conditions - 2D ascent fixed final-time problem.

state and costate Initial condition Terminal condition

R 0 km free

h 0 km 185.2 km

vx 0 m/s free

vy 0 m/s 0 m/s

λR free 0

λh free free

λvx free -1

λvy free free

Table 4.9: Parameter values - 2D ascent fixed final-time problem

Order of solution β1 β2 β3 β4

Initial guess for 2nd order 0.1 0.1 0.1 0.1

2 0 -0.0002 -1 -0.4143

3 0.0008 -0.0006 -0.9999 -0.5974

4 3.1245×10−30 -0.0006 -1 -0.5133

5 0.0001 -0.0011 -0.9999 -0.6330

6 -1.2526×10−31 -0.0007 -1 -0.5422

7 -7.0779×10−30 -0.0008 -1 -0.5611

8 4.7335×10−27 -0.0007 -1 -0.5500

9 -1.1268×10−26 -0.0008 -1 -0.5547

10 2.1571×10−30 -0.0007 -1 -0.5522

11 1.3146×10−28 -0.0008 -1 -0.5534

11th order for optimal co -2.4329×10−29 -0.0008 -1 -0.5533
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4.3.2 Results (Fixed Final-Time Problem)

Fig. 4.13 shows the co curves for the 11th order series solutions. Similar to the pre-

vious case, no common horizontal region can be found out for which all the physical

quantity converge. We use the same approach and use the optimal co for calculating

the series solutions. Figs. 4.14 and 4.15 depict the series solution with the bvp4c

solution. Fig. 4.16 shows the comparison between the control histories obtained from

HAM and bvp4c methods. Due to the accurate solutions obtained for both states and

costates, the control profiles are in good agreement. Figs. 4.17(a) and 4.17(b) show

the total discrete squared residual and CPU-time for the fixed final-time problem.
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Figure 4.13.: co ∼ curves for co ∈ [−2, 0] - 2D ascent fixed final-time problem.

On comparison of the two ascent cases from Table 4.7 and Table 4.9, it can be

concluded that the presence of an extra parameter, tf in the non-linear system led to

slow convergence rate of the first case. It was also found that the non-linear system

formulated is sensitive to initial guess provided to Fsolve function. Using a negative

value for the final-time parameter tf , resulted in non-physical results.
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Figure 4.17.: Computational performance - 2D ascent free final-time problem.

Table. 4.10 compares the total discrete squared residual and CPU-time for the two

ascent cases at 11th order solution. The lower total discrete squared residual and low

CPU-time for the latter case can be justified by solving for 4 parameters instead of

5 in the previous case. A 6th order HAM solution for the ascent problem results in a

non-linear system consisting of equations with as many as 1730 analytical terms.

The modified fixed final-time ascent case was also tried for the Moon. Following

the same approach as used in the previous ascent cases, a new non-linear system

was generated by using the Gravitational constant for the Moon. The initial guess

for Fsolve was provided using the same approach as described for the ascent cases.
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Table 4.10: Comparison of computational performance for two ascent cases (11th

order solution).

Test-case Emd,Total CPU-time [s]

Free final-time (Moon) 901.06 10175

Fixed final-time (Earth) 2.03 8419

However, as compared to the previous cases, the convergence of parameter values

was not obtained. Based on this observation, there could be a possibility that simply

changing the value of the Gravitational constant resulted in an ill-conditioned system.

To investigate this fact, scaling of the dynamics can be performed prior to solving the

non-linear system. It can be concluded that convergence for HAM based approach

depends highly on the intermediate step of solving the non-linear system. Since this

step employs Fsolve, which depends on the initial guess provided, there is a need of

search for more robust numerical solvers for large non-linear system of equations.

It should be noted that the current HAM based approach uses initial guesses based

on only the initial boundary conditions for the state and costate variables. An initial

framework for solving indirect trajectory optimization has been built, and a working

example of an aerospace application shows the possibility that the approach can be

used to replace the difficult practices used for building initial guesses.
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5. SUMMARY

This study shows use of the Homotopy Analysis Method to solve trajectory opti-

mization problems using the indirect approach. The approach is tested on several

optimal control problems, and specific challenges are discovered in the process. The

boundary value problems generated using the necessary conditions of optimality are

solved using HAM to generate approximate analytical series solutions for the state,

costate, and control variables.

The boundary value problem is converted into an initial value problem by assign-

ing the unknown initial conditions as parameters. Using symbolic computations, the

HAM approach generates analytical series expressions for state and costate variables

in terms of the parameters and the convergence control parameter, co. A non-linear

system of equations is generated by assuming the value of co to be -1. The non-linear

equations are solved numerically for each order to generate the values for the param-

eters. co ∼curves are plotted for physical quantities like x(tf ) ∼ co, ẋ(tf ) ∼ co and

ẍ(tf ) ∼ co to check for horizontal regions, which depict convergence domains. co can

be adjusted to lie in the common convergence domain of the all the physical quantities

corresponding to all the state and costate variables. An optimal co can be calculated

for that range by minimizing the total discrete squared residual, a measure of how

well the series solutions satisfy the dynamics. Using the optimal co, this process is

repeated to calculate the parameters and the adjusted results show an improvement

in the accuracy of the solution.

The process is demonstrated to solve Zermelo’s problem and two test cases of the

2D ascent problem. The convergence properties of various physical quantities for the

states and costates do not allow for the convergence control process, but the optimal

value of co is close to -1. The solution for the free final-time case of the 2D ascent

problem is found to be more difficult to converge to as compared to the fixed final-
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time case. Due to the presence of an extra parameter, tf , in the non-linear system

to be solved, the convergence slows down, and the solutions have to be truncated

due to a high computational cost. The 11th order series solutions for both test cases

show a major difference in accuracy on comparison of the total discrete squared resid-

ual. The current HAM based approach suffers from unreliability in convergence of

the numerical solution for the non-linear system generated. The approach currently

employs the use of MATLAB’s Fsolve function to solve the non-linear system, which

depends highly on the initial guess provided. This was concluded due to the failure

to obtain convergence for the 2D ascent fixed final-time Moon problem.

The high computational cost and lower accuracy of the solutions are compensated

by the ease and convenience of the problem formulation. Two of the major challenges

for conventional indirect methods - the initial guess generation and small domain of

convergence can be addressed using a well-defined approach in HAM. The possibil-

ity of finding a convergence region for a trajectory optimization problem gives more

insight into the problem and can be very beneficial.
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6. FUTURE WORK

6.1 Using Tolerances for Stopping Criteria

As explained in Section 3.6, the HAM process for an indirect trajectory optimiza-

tion problem is terminated by the designer by visual comparison of the results with

the bvp4c solver. This step can be automated by comparing the values of the discrete

squared residual for each governing equation at all orders of the solution, with a tol-

erance defined by the designer. Another metric based on the difference between the

discrete squared residual for two consecutive orders of the solution will give an in-

sight into the improvement with an increase in order. Terminal boundary conditions

can also be compared with a defined tolerance. If any of the metrics do not satisfy

the stopping criteria, then the process will continue to solve for higher orders of the

solution. This is depicted by the flowchart in Fig. 6.1 .

6.2 Parallelizing HAM

High performance computing architectures are moving towards parallel systems based

on single-node, multiple-core systems. The basic requirement for a problem to be

parallelized is the possibility of dividing it into several smaller independent problems.

While implementing the HAM approach to boundary value problems, it has been

found that of all the steps used, the maximum computational resources are required

to obtain the mth order deformation equations. These equations are derived by in-

tegrating large symbolic expressions in multiple variables. Each of the consecutive

deformation equations for a state variable contains terms from the previous order de-

formation equations for multiple variables. This results in recurring terms as shown

in the Section 3.1.1. At the mth order, the deformation equation for a variable de-
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Figure 6.1.: Updated flowchart for the HAM process.

pends only on the terms from the (m−1)th order solution and is independently solved

for each state and co-state variable. This fact makes the HAM approach capable of

being parallelized. For a problem consisting of n state and co-state variables, the

computation time can be reduced by a factor of 2n for each order of solution.
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6.3 Implementing Recurrence Formulae

The authors of Ref. [47,61] used an approach to obtain the higher order terms of the

series solution without integrating the mth order deformation equations for higher

orders. Since, all the state and co-state variables are calculated to be series solutions

in the independent variable, they can directly be represented as Eq. (6.1) for the

simple control problem

xm(t, co) =
m∑
n=0

xm,nt
n

λm(t, co) =
m∑
n=0

λm,nt
n

(6.1)

These series expressions can directly be substituted into the mth order deformation

Eq. (3.45). On the right hand side of the equation, the terms with common powers of t

are collected and the coefficients are compared with the terms on the left hand side of

the equation. Observing the coefficients obtained from the first few orders of solutions,

recurrence formulae can be build for xm,n and λm,n. The major challenge in this

approach arises with manually finding the patterns for the first few order solutions.

Since the dynamics for trajectory optimization problems are highly non-linear, the

resulting first few terms are embedded with multiple unknown parameters (β1, β2, β3,

tf ) and co, which makes the process of finding recurrence patterns extremely difficult.

6.4 Hybrid Methods

Due to good convergence properties and analytical nature of the solution, HAM is

susceptible to less number of numerical failures and singularities as compared to

the conventional indirect trajectory optimization methods. One possible approach

to reduce the uncertainty in convergence of indirect methods is to merge the HAM

method with conventional indirect methods. The good convergence properties of

HAM can be utilized to produce high quality initial guesses to seed the multiple

shooting method. Since HAM is computationally intensive, lower order solutions are

expected to be within the small convergence region of the shooting methods.
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