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ABSTRACT

Pritchett, Robert E. MSAA, Purdue University, August 2016. Numerical Methods
for Low-Thrust Trajectory Optimization . Major Professor: Kathleen C. Howell.

The spacecraft trajectory design process frequently includes the optimization of

a quantity of importance such as propellant consumption or time of flight. A va-

riety of methods for trajectory optimization are available, however the efficiency of

an approach is dependent on the problem scenario it is applied to. Indirect and

direct trajectory optimization methods are examined in this investigation with the

goal of assessing the characteristics of each approach, and thereby determining the

problem scenarios each is best suited for. Insight is gained from application of each

optimization method to three sample problems; a circular-to-circular orbit transfer

as well as two variants of a halo-to-halo orbit transfer, one that leverages manifold

arcs and one that does not. The analytical theory underlying indirect optimization

methods is presented as is the adjoint control transformation for determining initial

costate values. Results from application of the indirect optimization approach to each

of the sample problems are offered. The framework of a direct optimization scheme

employing collocation is described including a mesh refinement process based on the

de Boor update method. The direct optimization method is applied to the three

sample problems and results are supplied. Quantitative comparisons of the results

of the optimization methods are made based on the categories of accuracy, robust-

ness, and efficiency. Findings from quantitative and qualitative comparisons of the

optimization methods are employed to formulate guidelines on the problem scenarios

each technique is most applicable to.
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1. INTRODUCTION

The recent success of missions employing low thrust propulsion systems has demon-

strated the promise for this technology over a wide array of future applications, from

transportation networks within the Earth-Moon neighborhood, to Mars missions, to

tours of the Trojan asteroids. The high specific impulse of low-thrust engines yields

orders of magnitude more fuel efficiency than their conventional high-thrust counter-

parts. Of course, this decrease in the rate of fuel consumption is offset by increased

times of flight. Nevertheless, low-thrust engines remain an excellent option for many

potential mission scenarios. Only in the last few years, NASA’s Dawn spacecraft

emerged as the first spacecraft to orbit two different extraterrestrial bodies when it

encountered the dwarf planets Ceres and Vesta located in the asteroid belt. This mis-

sion would not have been feasible without the three low-thrust ion engines Dawn was

equipped with. The potential of low-thrust spacecraft has only begun to be realized,

further astrodynamics research will expand the space attainable by these spacecraft,

opening up new regions of space for science and exploration.

Trajectory design for low-thrust propulsion systems presents unique new chal-

lenges to the mission design community. Perhaps not surprisingly, one approach to

addressing these challenges is incorporating optimization methods into the process.

The benefits that optimization methods provide are numerous, but they also bring

with them new challenges. The field is vast with applications far beyond trajectory

design, therefore selecting the appropriate optimization method for a given problem

can be challenging. A complete understanding of both the problem and the potential

optimization approaches is necessary to ensure an efficient design process.
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1.1 Problem Definition and Motivation

Spacecraft motion is governed by a sensitive system of nonlinear differential equa-

tions and, incorporating low-thrust forces into this system, adds a new layer of chal-

lenges in constructing desirable trajectories. Impulsive thrust maneuvers are tra-

ditionally modeled as instantaneous, however the fundamental nature of low-thrust

propulsion systems necessitates an alternative formulation. A single low-thrust ma-

neuver requires continuous thrusting, and therefore, a continuous control history to

define the pointing, and possibly the thrust level, at each instant during the ma-

neuver. This difference in comparison to an instantaneous, impulsive thrust model

results in many more design variables and a less intuitive problem overall.

The new challenges involved in low-thrust trajectory design lead directly to the

frequent introduction of optimization techniques into the design process. Optimiza-

tion methods yield state and control variables along a path that minimize a scalar cost

function. These types of strategies are especially useful in the low-thrust trajectory

design process because they offer guidance in the selection of values for numerous

control variables. To leverage the advantages of optimization techniques, the best-

suited method is sought. But, the field of trajectory optimization is diverse and

expanding. At present, most optimization schemes fall into one of three categories:

indirect methods, direct methods, and evolutionary algorithms. Indirect methods

using Euler-Lagrange theory and direct approaches employing collocation are both

explored for the applications in this investigation.

As with any design process, trajectory design is most efficient and effective when

the proper tools are employed. Each optimization technique, as well as the underlying

numerical algorithm, offers advantages and disadvantages. Two specific optimization

techniques are described and demonstrated; their relative strengths and weaknesses

are highlighted by comparing the results for several sample problems. The process

of comparing and contrasting the techniques should yield a deeper understanding of

them and thus enables mission designers to use these tools appropriately.
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1.2 Previous Work

The benefits of low-thrust propulsion were understood long before the technology

was sufficiently mature for an actual mission. Therefore much literature is available

on the topics of trajectory optimization and low-thrust transfer design. However,

it is first important to understand the context in which it will be applied, i.e., the

dynamical model.

1.2.1 History of the Three-Body Problem

A description of the time-dependent behavior of three gravitationally interacting

bodies was first mathematically formalized in 1687 by Issac Newton in his founda-

tional work PhilosohphæNaturalis Principae Mathematica [1]. Overtime, the formu-

lation of this problem has come to be denoted the three-body problem. The fun-

damentals established by Newton have served as the basis for investigation over the

subsequent centuries by numerous individuals, some motivated by mathematical cu-

riosity and others by engineering necessity. Nearly one hundred years after Newton, in

1772, Leonhard Euler offered further insight into the problem via several simplifying

assumptions leading to the restricted three-body problem. Euler’s principal contri-

butions to the restricted three-body problem included the introduction of a rotating

(synodic) reference frame and the solution for the three collinear equilibrium points.

Mere months after the publication of Euler’s work Joseph-Louis Lagrange identified

the remaining two equilibrium points known as the triangular or equilateral points.

As a part of this work, Lagrange defined all five equilibrium points specifically within

the context of the restricted three-body problem consequently, these five points are

often termed Lagrange points.

The rotating frame introduced by Euler resulted in a formulation that allowed an

integral of the motion which was formally identified by Carl Gustav Jacob Jacobi.

This integral, eventually labelled the Jacobi integral, is extraordinarily useful because

it allows qualitative statements about behavior in the restricted three-body problem
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without the solution to the differential equations. George William Hill leveraged

the qualitative applications of the Jacobi integral in his 1878 work Researches in the

Lunar Theory [2] where he demonstrated that forbidden regions in the Sun-Earth-

Moon system bound the Earth Moon distance for all time and that the geometry

of these regions is dependent on the value of the Jacobi integral. The borders of

these forbidden regions are defined by zero-velocity surfaces, a useful qualitative tool

for investigating the three-body problem. Surfaces of section, introduced by Henri

Poincaré in his three-volume work Methodes Nouvelles [3], have proven another in-

valuable qualitative tool for this purpose. Poincaré’s 1899 magnum opus has proven

foundational to much of modern dynamical systems theory. Subsequently, the math-

ematician George Birkhoff expanded upon the ideas of Poincaré in his article Proof

of Poincaré’s geometric theorem [4]. Finally, in 1967, Victor Szebehely consolidated

much of the fundamental work on the restricted three-body problem in his seminal

1967 work The Theory of Orbits [5].

1.2.2 Optimization Methods

At the current time, astrodynamics is motivated not only to understand the mo-

tion of the heavenly bodies, but also to successfully navigate throughout the solar

system. Any trajectories moving throughout the Earth-Moon neighborhood or fur-

ther into the solar system must satisfy specific constraints. Ideally, such trajectories

minimize parameters such as the propellant consumed or the time in transit. Incor-

porating optimization strategies into the design process enables the identification of

trajectories that extremize parameters such as these. The focus in this investigation

is twofold, i.e., indirect and direct optimization.

Indirect Optimization:

Indirect optimization approaches originate with the calculus of variations. Many

define the origin of the calculus of variations as an intriguing problem posed by Johann
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Bernoulli to the mathematical community in 1696. The objective of this problem,

titled the brachistochrone problem, is to determine a path (function) that minimizes

a scalar function of that path (functional). The brachristochrone problem was solved

after 6 months (and was solved by Newton in one day), however, it continued to

intrigue mathematicians and remains a useful example problem [6]. Early in the 18th

century, a form of this problem inspired Lagrange to develop a method of determining

a function that minimizes a functional; the resulting strategy is, today, the essential

definition of the calculus of variations. After the initial development, the calculus

of variations approach was refined through a correspondence between Lagrange and

Euler that ultimately led to the Euler-Lagrange Theorem.

A recent application of the calculus of variations, i.e., transfer of a satellite between

circular orbits, is similar to the original brachistochrone problem. However, such a

transfer is complicated by the addition of a control variable that determines the

pointing direction of the satellite thrust vector. Moreover, when it is initially posed

as a trajectory optimization problem, some of the final boundary conditions are free.

In his 1963 book Optimal Spacecraft Trajectories [7] Lawden demonstrated that such

problems can be transformed to two-point boundary value problems (TPBVP). Two-

point boundary value problems are often be solved numerically and, in fact, Bryson

and Ho demonstrate the proper application of the Euler-Lagrange theorem to produce

a well defined TPBVP [8]. The same basic methodology is employed to solve more

complex problems such as transfers from the Earth to the Moon [9] as well as transfers

between periodic orbits employing invariant manifolds [10].

Direct Optimization:

Indirect methods have proven effective in solving a variety of continuous opti-

mal control problems by transforming them to two-point boundary value problems,

however, such approaches possess several drawbacks that are addressed by direct op-

timization methods. Direct optimization strategies discretize the continuous optimal



6

control problem thereby reformulating it as a nonlinear programming problem (NLP)

and, thus, making it tractable to a wider range of numerical optimization approaches.

The process of discretizing an optimal control problem is denoted as direct transcrip-

tion, a term coined by Canon et al. in 1970 [11]. While the process was familiar to

mathematicians such as Canon in the 1960s and 1970s, it was not until the mid-1970’s

that the technique gained prominence in the aerospace community originating with a

paper by Dickmanns and Wells [12]. Dickmanns and Wells used direct transcription

to solve optimal control problems, but formulated these problems using analytical

techniques from indirect methods. Over a decade later, Hargraves and Paris [13]

demonstrated that the step of formulating an optimal control problem as a TPBVP

could be skipped all together. This realization was extraordinarily useful as it elim-

inated the sensitive adjoint variables in the process of solving an optimal control

problem. Now, direct solution methods are assumed to be approaches that avoid the

use of adjoint or costate variables. The adoption of direct transcription methods for

solving optimal control problems within the aerospace community increased in par-

allel with computational power. Since its initial introduction, numerous schemes to

implement direct transcription have been proposed; the primary differences between

these various strategies are the type of integration rules employed. One of the most

popular schemes for direct transcription is collocation.

Direct Transcription with Collocation:

Collocation methods are one of the primary techniques for solving direct transcrip-

tion problems. These methods fit piecewise polynomials to a discretized optimization

problem, with the polynomial fit governed by the problem dynamics and other con-

straints. A formulation based on the collocation technique was perhaps first accom-

plished by de Boor in 1966 [14] when he used it to solve boundary value problems

for linear differential equations. Russell and Shampine [15] expanded the application

of the method to boundary value problems with ordinary differential equations in
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1972 and coincident with Richard Weiss demonstrating that collocation can produce

results equivalent to those produced from implicit Runge-Kutta methods [16]. These

developments led directly to Dickmann and Wells [12] application of collocation to

optimal control problems posed as TPBVP.

Initial applications of collocation schemes to optimal control problems primarily

employed cubic polynomials, however, research in the 1990s improved the method’s

robustness by utilizing higher order polynomials and more accurate node placement

rules. Enright and Conway [17] applied a low order Gauss Lobatto rule to define

the discretization of an optimal control problem and this rule yields more accurate

results than simply fitting a polynomial to an equally spaced discretization. Her-

man and Conway [18] demonstrated that the error associated with a discretization

decreased as the order of the polynomial used to fit the discretization increased, of-

fering results up through seventh degree polynomials. Williams then developed an

approach to embed polynomials of any order in a collocation algorithm [19]. Di-

rect transcription can produce nonlinear programming problems involving extremely

sparse matrices, especially as the degree of the polynomial increases. Betts and Huff-

man leveraged this feature in numerical techniques to decrease computation times

[20] and developed a software package to solve optimal control problems [21]. The

increasingly robust approaches to the collocation technique described were incorpo-

rated into a variety of software packages for solving optimal control problems, for

example, Optimal Trajectories by Implicit Simulation (OTIS) [22], used by the US

Air Force and NASA.

1.2.3 Thesis Overview

The focus of this work is a general dynamical model and set of compact colloca-

tion strategies that are subsequently employed to examine several types of spacecraft

trajectory optimization problems.
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• Chapter 2: The dynamical model used throughout the current investigation,

namely, the circular-restricted three body problem, is presented. The differ-

ential equations that govern motion are developed originating with Newton’s

general N -body problem. The assumptions that result in equations of motion

for the three-body problem are summarized and justified. Unique features of

this formulation, such as equilibrium points, the Jacobi constant, and zero ve-

locity surfaces are also discussed. Linear variational equations are constructed

relative to the equilibrium solutions and used to analyze the stability of these

points.

• Chapter 3: Analytical and numerical approaches useful for exploring the dy-

namical model are examined. The linearized variational equations are the basis

to develop the state transition matrix and the differential corrections processes

for single and multiple shooting. A general framework for these strategies is

presented. Differential corrections methods enable the construction of periodic

orbits. The stability of these orbits is analyzed and a continuation method is

developed to compute families of periodic orbits. A procedure for construct-

ing the invariant manifolds associated with the equilibrium points and periodic

orbits is detailed.

• Chapter 4: Indirect optimization as formulated via the Euler-Lagrange theory

is presented. The specific application of Euler-Lagrange theory to low-thrust

transfer design is detailed along with the advantageous adjoint control trans-

formation. Low-thrust circular to circular orbit transfer and halo to halo orbit

transfer problems are included to demonstrate the methodology.

• Chapter 5: The foundational theory for direct optimization methods is briefly

summarized. The primary focus of this chapter is the specific method of direct

transcription with collocation. The implicit integration scheme, i.e., colloca-

tion, is described first, then, its application to an optimization strategy with

direct transcription is demonstrated. Finally, the procedure involving direct
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transcription is demonstrated using two examples: (i) low-thrust circular to

circular orbit transfer and (ii) halo-to-halo orbit transfer problems.

• Chapter 6: The results from low-thrust transfer problems solved using indirect

and direct optimization methods are compared. The sample cases include a cir-

cular to circular orbit transfer and halo-to-halo orbit transfer design. Compar-

isons between solutions are based on the cost function as well as other problem

parameters including accuracy, robustness, and efficiency. The qualitative ad-

vantages and disadvantages of both approached are discussed and a framework

for selecting the method best-suited for a given scenario is proposed.

• Chapter 7: A brief summary of the work is presented, including the applica-

bility of the two optimization strategies to different sample scenarios. Finally,

recommendations for future work are proposed.
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2. DYNAMICAL MODEL

Prior to any analysis and development of trajectory control strategies for the motion

of a spacecraft, a dynamical model must be constructed. A dynamical model offers

a mathematical description of the laws that govern the motion and interaction of

bodies. Over time, mathematicians and physicists have improved the accuracy and

efficiency with which dynamical models describe the motion. However, the purpose

is not always to describe the motion of bodies with the greatest degree of accuracy;

rather, simplified models that roughly approximate the motion of bodies are often

useful because their simplicity allows for greater insight into the essential interactions

occurring within a system. Simplified models, for example the two or three body

problems, are constructed given a set of reasonable assumptions. Once a dynamical

model is available, examination of the system for integrals and equilibrium solutions

is useful for understanding the underlying structure of the solution space.

2.1 The N-Body Problem

The most general dynamical model to incorporate all gravitational forces as point

mass sources is the N -Body problem. This model was formally introduced in 1687

by Issac Newton in his groundbreaking work PhilosohphæNaturalis Principae Mathe-

matica [1]. In Book I, Newton introduced his three laws of motion that serves as the

foundation for much of modern dynamics. The law of motion states that the force

impressed on a body is proportional to, and in the same direction, as the derivative

of the body’s momentum. The law is expressed mathematically in vector form as,

F = mr̈ (2.1)

where F is the vector sum of all forces acting on the particle mass m and r̈ is the

vector acceleration of the mass as observed from an inertial reference frame. Vector
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quantities are always denoted using boldface type; scalar quantities are italic. Note

in equation (2.1), that m is a constant scalar, thus, this relationship applies only to

fixed-mass systems. Elsewhere within the Principia, Newton formulated his Universal

Law of Gravitation.

|F | =
∣∣∣∣−GMmd

d3

∣∣∣∣ (2.2)

This model for the gravitational force on a single particle mass m due to the existence

of mass M when the relative distance between the bodies is d. A single particle mi

is located within a system of N other bodies, as demonstrated in Figure 2.1. Note

that the position of mi relative to particle mj is denoted dji. Thus, the force on mi

due to the existence of particle j is directed as described by the direction −dji/dji.

The total gravitational force acting on particle i is then obtained by summing the

individual gravitational forces. This generalized form of Newton’s Universal Law of

Gravitation is,

Fi = −G
n∑

j=1,j 6=i

mimj

d3
ji

dji (2.3)

where j = i is excluded from the summation because the body obviously cannot exert

a force on itself.

Newton’s model for gravity the law of motion are combined to produce the differ-

ential equation of motion for particle i in a system of N bodies,

mir̈i = −G
n∑

j=1,j 6=i

mimj

d3
ji

dji (2.4)

as appears in Figure 2.1, the vector ri in equation (2.4) is the position vector from

an inertially fixed origin to the mass mi, while the vector dji is the vector extending

from mj to mi. Thus, the relative displacement dji is given by dji = ri − rj.

Collecting differential equations of the form in (2.4) for each particle in an N -body

system can become quickly intractable when N is large. The simplest nontrivial case

of this is the two-body problem, a focus for mathematicians for hundreds of years.

This simple model allows for analytical solutions, some of which were described by

Johann Kepler and his predecessors even before the time of Newton. The closed form
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Figure 2.1.: N -Body System

solutions in the two body problem are readily applicable to celestial mechanics and

render reasonably accurate approximations for the motion of many celestial bodies.

Additionally, these solutions were especially useful when computational capabilities

were much more limited. However, the rapid advancement of computing power over

the last 75 years, has enabled feasible examination of motion in more complex dy-

namical models and a new and diverse set of tools for understanding gravitational

interactions has emerged.

2.2 The Circular-Restricted Three Body Problem

Although the two-body model has proven extraordinarily useful, a primary limita-

tion is a piecemeal approach to mission design. Additionally, the simultaneous effects

of multiple gravitational fields not in the two-body model are typically only included

as perturbations. While this approach is frequently effective and successful in par-
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ticular dynamical regimes, it obscures the impact of these additional forces when

they contribute more than perturbations and can be leveraged to achieve mission

design objectives. Admitting, just one additional gravitational field into the dynam-

ical model yields the three-body problem (3BP). This expanded model possesses no

analytical solution and even by 1900 it was clear that insight and understanding into

the three-body problem requires a fundamental shift in approach. First, the problem

is reduced to its most essential elements, a process that yields the circular restricted

three-body problem (CR3BP). Analysis in the CR3BP has produced a wealth of

dynamical insights that, in turn, have resulted in innovative approaches to mission

design. The CR3BP model is particularly useful for low-thrust trajectory design, and

for this reason, it is the primary dynamical model explored in this investigation.

2.2.1 Assumptions

Derivation of the equations of motion for the CR3BP begins by selecting N = 3

in equation (2.4). This specification limits the number of active gravitational fields

to three, corresponding to three particles P1-P3. Assume that the motion of P3 is the

focus. Then,

m3r̈3 = −Gm3m1

d3
13

d13 −
Gm3m2

d3
23

d23 (2.5)

represents the differential equation to model the behavior of P3. Solving for the mo-

tion of P3 from equation (2.7) requires knowledge of the time histories of P1 and P2

but, since these particles are themselves influenced by the motion of P3, such informa-

tion is generally not available a priori. Therefore, to solve equation (2.7) analytically,

the equations of motion for all three particles must be solved simultaneously. Using

Cartesian coordinates, this integration requires six integrals per particle, three for

position and three for velocity, necessitating 18 total constants of integration. How-

ever, only 10 constants of integration are known to exist in this problem; six are

obtained from conservation of linear momentum, three from conservation of angular

momentum, and one from conservation of energy. Due to the insufficient number of
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integration constants, a time history for the motion of all three bodies is not avail-

able analytically. Nevertheless, several assumptions reduce the problem to a more

tractable form.

Three key assumptions reduce the complexity of the three-body problem. A useful

assumption in the simplification process is that the mass of the third particle, P3, is

infinitesimal compared to the masses of P1 and P2, denoted the “primaries”. This

assumption implies that the motion of the primaries is not influenced by P3. Such

an assumption is reasonable for some important applications, for example, the path

a spacecraft or comet under the gravitational impact of the Sun and a planet. The

resulting assumption allows the primary motion to be modeled in terms of conics.

Finally, from the large set of potential closed conics, assume that the primary system

orbit is closed but also circular. Once again this assumption is reasonable for many

celestial systems of interest such as the Earth-Moon or Sun-Jupiter systems where

the relative orbit eccentricity is very small. Conventionally, the mass of the first

primary is assumed to be greater than that of the second, m1 > m2. Therefore, the

primaries orbit about a common barycenter located near P1 as shown in Figure 2.2.

Together, these assumptions reduce the three-body problem to the circular-restricted

three-body problem (CR3BP) and simplify the dynamical model while reasonably

approximating motion in a three body system.

2.2.2 Coordinate Frames

Motion in a dynamical model is defined relative to a reference frame, and intelli-

gent selection of this frame, rather than an arbitrary choice, produces a more tractable

and intuitive problem definition. Many dynamical models include an inertial refer-

ence frame that is theoretically at rest or moving at a constant linear velocity. Define

an inertial reference frame, I, with origin fixed at the barycenter of the primary sys-

tem and unit vectors X̂ and Ŷ spanning the fixed plane of motion of P1 and P2. A

third unit vector, Ẑ, is defined such that I is a right-handed coordinate system as
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Figure 2.2.: Circular-Restricted Three-Body Problem

illustrated in Figure 2.2. The out-of-plane unit vector, Ẑ, is aligned with the orbital

angular momentum vector of the primary system.

Viewing motion from a reference frame that rotates with the primary system

assists the understanding and analysis of dynamical behavior. Define a rotating

coordinate system, R, one that is initially aligned with the inertial system, I. The

frame R represents a simple rotation about the out-of-plane direction, i.e., ẑ and

through the angle θ. The frame R is defined by the orthonormal triad x̂,ŷ,ẑ. The x̂

axis of R is defined along the the line passing through the primaries and is directed

toward P2; ẑ remains aligned with Ẑ. Finally, ŷ completes the right handed coordinate

system, thus, it is perpendicular to x̂ and in the plane of motion of the primaries. The

time rate of change θ̇, is the magnitude of the angular velocity of the primary system,

IωR = θ̇ẑ. Because the path of the primaries is circular, θ̇ is a constant value. The



17

inertial and rotating coordinate frames are related by the angle θ, therefore vectors

are transformed between frames using a simple direction cosine matrix (DCM).
X

Y

Z

 =


cos(θ̇t) − sin(θ̇t) 0

sin(θ̇t) cos(θ̇t) 0

0 0 1



x

y

z

 (2.6)

For convenience, equation (2.5) is rewritten using the notation of the rotating coor-

dinate frame depicted in Figure 2.2,

m3p̈ = −Gm3m1

D3
D − Gm3m2

R3
R (2.7)

where D = d13 and R = r23 and vectors from the barycenter to P1, P2, and P3 are

denoted D1, D2, and p respectively. Defining the motion of P3 relative to the rotating

frame R simplifies the expression of the equations of motion for the CR3BP.

2.2.3 Equations of Motion

Analytical and numerical analysis in the CR3BP is simplified by nondimension-

alizing the quantities in equation (2.7). Several characteristic quantities are defined,

one for each type of fundamental measurement encountered in the differential equa-

tions. Distance is nondimensionalized using the characteristic length, l∗, defined as

the constant distance between the primaries.

l∗ = D1 +D2 (2.8)

where Di is the scalar distance from the barycenter to the primary Pi. Likewise, the

characteristic mass, m∗, is defined as the sum of the masses of P1 and P2, i.e,

m∗ = m1 +m2 (2.9)

The characteristic time, t∗, is evaluated such that the nondimensional value of the

universal gravitational constant, G̃, is equal to one. Then,

t∗ =

[
(D1 +D2)

G̃(m1 +m2)

]1/2

=

[
l∗

G̃m∗

]1/2

(2.10)
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This choice for the definition of characteristic time also simplifies nondimensional

mean motion. Recall that the motion of P2 with respect to P1 is assumed to be

circular, therefore, the dimensional mean motion, N , is computed as,

N =

(
G̃m∗

l∗3

)
(2.11)

It follows, then, that the nondimensional mean motion, n, is equal to unity,

n = Nt∗ =

(
G̃m∗

l∗3

)(
l∗3

G̃m∗

)
= 1 (2.12)

The period, P , of a circular orbit is related to mean motion as P = 2π/n, thus the

nondimensional period of the primaries in the CR3BP is 2π.

Once all the necessary characteristic quantities are defined, the equations of mo-

tion are nondimensionalized and simplified. The nondimensional mass of P2 is defined

as the mass ratio, µ, and this ratio is also used to express the nondimensional mass of

P1. Nondimensional time is also defined, such that all derivatives are evaluated with

respect to nondimensional time:

µ =
m2

m∗
(2.13)

m1 +m2 = m∗ = m1 + µm∗ → 1− µ =
m1

m∗
(2.14)

τ =
t

t∗
(2.15)

In addition to simplifying the equations of motion, the mass ratio, µ, is useful to

characterize a CR3BP system. The Earth-Moon system, the primary focus of this in-

vestigation, is represented in terms of a mass ratio µ = .01215 which is relatively large

compared to other CR3BP systems, for examples, Saturn-Titan where µ = 0.000237

and Sun-Jupiter with µ = 0.000954. This difference in µ implies that dynamic fea-

tures that appear in the Earth-Moon system may not appear in lower mass ratio

systems and vice versa.
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The equations of motion are simplified by leveraging characteristic quantities in

the expression of vectors. Vector quantities that appear in the equations of motion

are nondimensionalized, i.e.,

di =
Di

l∗
(2.16)

d =
D

l∗
(2.17)

r =
R

l∗
(2.18)

The nondimensional vectors d1 and d2 describe the position relative to the barycenter

of P1 and P2, respectively, from the perspective of the rotating coordinate frame. The

geometry of the system depicted in Figure 2.2 and the definition of the barycenter

indicate that the nondimensional relative positions of P1 and P2 are expressed in

terms of the mass ration; µ, that is,

d = (x+ µ)x̂+ yŷ + zẑ (2.19)

r = (x− 1 + µ)x̂+ yŷ + zẑ (2.20)

The final vector quantity in equation (2.7) is p which is nondimensionalized and

locates the inifnitesimal particle as,

ρ =
p

l∗
= xx̂+ yŷ + zẑ (2.21)

where the time derivative of ρ with respect to the rotating reference frame R is,

dRρ

dt
= ẋx̂+ ẏŷ + żẑ (2.22)

The nondimensional counterparts of the components of equation (2.7) are assembled

into the nondimensional representation of second-order vector equation of motion,

Id2ρ

dτ 2
= ρ′′ = −(1− µ)

d3
d− µ

r3
r (2.23)

Note that equation (2.23) denotes ρ′′ as the acceleration observed relative to the

inertial frame.
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Analysis in the CR3BP is simplified by working in the rotating coordinate frame,

therefore, it is more convenient to express ρ′′ relative to the rotating coordinate frame.

The Basic Kinematic Equation (BKE) relates derivatives relative to two different

coordinate frames. The BKE is applied twice to obtain an expression that relates ρ′′

as viewed in the inertial and rotating frames, i.e.,

Idρ

dτ
=

Rdρ

dτ
+ IωR × ρ (2.24)

Id2ρ

dτ 2
=

Rd2ρ

dτ 2
+ 2IωR ×

Rdρ

dτ
+ IωR × IωR × ρ (2.25)

The angular velocity of the rotating frame relative to the inertial frame reflects the

nondimensional mean motion, n, hence IωR = nẑ with constant magnitude. This

value is substituted into equation (2.25), along with the expression for ρ defined in

equation (2.21), such that

Id2ρ

dτ 2
= (ẍ− 2nẏ − n2x)x̂+ (ÿ + 2nẋ− n2y)ŷ + z̈x̂ (2.26)

Equation (2.26) reflects the inertial acceleration of ρ expressed in terms of rotating

coordinates. This equation is substituted into the left side of equation (2.23) and

equations (2.19) and (2.20) are substituted for d and r, respectively. These substi-

tutions allow the vector equation to be split into its component parts and written as

three scalar equations. Recall from equation (2.12) that the nondimensional mean

motion equals one; it is left as a variable in the following equations for completeness.

ẍ− 2nẏ − n2x = −(1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
(2.27)

ÿ + 2nẋ− n2y = −(1− µ)y

d3
− µy

r3
(2.28)

z̈ = −(1− µ)z

d3
− µz

r3
(2.29)

Equations (2.27)-(2.29) are expressed in rotating coordinates and the scalar accelera-

tion and velocity terms are evaluated relative to the rotating coordinate frame. The

definitions of d and r in equations (2.19) and (2.20) indicate that their magnitudes
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reflect the relative distance from each primary to P3. These magnitudes are evaluated

as,

d =
[
(x+ µ)2 + y2 + z2

]1/2
(2.30)

r =
[
(x− 1 + µ)2 + y2 + z2

]1/2
(2.31)

The motion of P3 under the influence of the primary system is described by the system

of first-order differential equations in (2.27-2.29).

The equations of motion in the CR3BP model can also be represented in terms of

the gravitational potential function. Equations (2.27)-(2.29) are formulated relative to

the rotating frame. These equations allow the introduction of gravitational potential

written as a new pseudo-potential, U∗, i.e.,

U∗ =
(1− µ)

d
+
µ

r
+

1

2
n2(x2 + y2) (2.32)

The newly defined pseudo-potential incorporate terms that accomodate the rotation

of the coordinate frame. The equations of motion are then available in a more succinct

form,

ẍ− 2ẏ =
∂U∗

∂x
(2.33)

ÿ + 2ẋ =
∂U∗

∂y
(2.34)

z̈ =
∂U∗

∂z
(2.35)

This formulation also lends insight into the existence of an integral of motion and

equilibrium solutions.

2.2.4 Jacobi Constant

In theory equations (2.27)-(2.29), supply all of the necessary information to solve

for the motion of P3. But, the equations are coupled and nonlinear; no general closed-

form solution is currently known. Nonetheless, to gain insight into the problem, the
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existence of U∗ suggests the potential for an integral of motion. To derive such a

quantity, the dot product of acceleration with velocity is taken.

Rρ′′ · Rρ′ = ẋẍ+ ẏÿ + żz̈ =
∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż (2.36)

The pseudo-potential, U∗, is autonomous and only a function of position, therefore,

the right side of equation (2.36) equals the total scalar derivative dU∗

dτ
. Consequently,

equation (2.36) is integrated resulting in,

1

2

(
ẋ2 + ẏ2 + ż2

)
= U∗ + integration const. (2.37)

1

2

(
ẋ2 + ẏ2 + ż2

)
= U∗ − C (2.38)

where the integration constant C is defined with a negative sign by convention. Equa-

tion (2.38) is more succinctly expressed as,

V 2 = 2U∗ − C (2.39)

where V is the scalar magnitude of the velocity of P3, V = |Rρ|, as viewed by a

rotating observer. Equation (2.39) is denoted Jacobi’s integral and the integration

constant C labeled the Jacobi constant after the mathematician it Carl Gustav Jacob

Jacobi. This constant represents an energy-like quantity in the CR3BP. The Jacobi

constant has various uses, for example, approximating the energy change necessary

for transfers and as a check on the accuracy of numerical integration. The Jacobi

constant yields powerful insights into behavior within the CR3BP particularly when

combined with particular solutions to the differential equations.

2.2.5 Equilibrium Solutions

Another strategy for gaining insight into the CR3BP is the search for equilibrium

solutions. These particular solutions are determined as the states for which the differ-

ential equations evaluate to zero. Equilibrium states are located by recognizing that

at any equilibrium points the velocity and acceleration of P3 relative to the rotating
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frame equals zero. For the set of scalar differential equations this is equivalent to the

gradient of the psuedo-potential function equaling the zero vector, i.e., ∇U∗ = 0.

Thus applied to equations (2.27)-(2.29),

∂U∗

∂x
= −(1− µ)(xeq + µ)

d3
eq

− µ(xeq − 1 + µ)

r3
eq

+ n2xeq = 0 (2.40)

∂U∗

∂y
= −(1− µ)yeq

d3
eq

− µyeq
r3
eq

+ n2yeq = 0 (2.41)

∂U∗

∂z
= −(1− µ)zeq

d3
eq

− µzeq
r3
eq

= 0 (2.42)

The subscript eq on the state variables indicates that these equations are satisfied at

the equilibrium points. It is clear that equation (2.42) is only completely satisfied

when zeq = 0, indicating that all of the equilibrium solutions are planar. Similarly,

equation (2.41) is satisfied with yeq = 0, therefore, at least one or more of the equilib-

rium solutions are located on the x-axis of the rotating coordinate frame. To locate

these collinear equilibrium solutions, recall that n = 1 and substitute zeq = yeq = 0

into equation (2.40).

0 = −(1− µ)(xeq + µ)

|xeq + µ|3
− µ(xeq − 1 + µ)

|xeq − 1 + µ|3
+ xeq (2.43)

Equation (2.43) yields five solutions for xeq two of which are imaginary and are ne-

glected for the purposes of this evaluation. No closed form solutions exist for equation

(2.43), therefore, the remaining three values of xeq are solved iteratively. This numer-

ical process is aided by reformulating equation (2.43) in terms of the displacement,

γi, from the nearest primary. The three possible values of xeq are defined as follows,

x1 = 1− µ− γ1 (2.44)

x2 = 1− µ+ γ2 (2.45)

x3 = −µ− γ3 (2.46)

These definitions indicate that one equilibrium point, x1, is located between the two

primaries on the x-axis, while x3 and x2 are outside P1 and P2, respectively. Such

a configuration appears in Figure 2.3, where the equilibrium points are numbered
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consistent with the typical NASA convention. Equations (2.44)-(2.46) are substituted

into equation (2.43) yielding three possible scalar equations,

0 = − (1− µ)

(1− γ1)2
+

µ

(γ1)2
+ 1− µ− γ1 (2.47)

0 = − (1− µ)

(1 + γ2)2
− µ(γ2)

(γ2)2
+ 1− µ+ γ2 (2.48)

0 =
(1− µ)

(γ3)2
+

µ

(γ3 + 1)2
+−µ+ γ3 (2.49)

Newton’s method is used, in combination with a reasonably accurate initial guess, to

solve for γi in equations (2.47)-(2.49). The resulting values of γi are substituted into

equations (2.44)-(2.46) to compute the positions of the collinear equilibrium points,

L1, L2, and L3.

Two additional equilibrium points are located for yeq 6= 0 in equation (2.41). When

the equilibrium points are off the x-axis the values of d and r must be equivalent to

satisfy equations (2.40) and (2.41) to be satisfied. When d = r, two possible values

for the location of the equilibrium point exist, i.e.,

x4,5 =
1

2
− µ (2.50)

y4,5 = ±
√

3

2
(2.51)

The points L4 and L5 are located on either side of the x-axis equidistant from the

primaries and, for this reason, they are denoted the equilateral or triangular points.

The locations of these points are also depicted in Figure 2.3, where they are labeled

such that, in an inertial frame, L4 appears to lead P2 by 60◦ while L5 lags by 60◦.

2.2.6 Zero Velocity Surfaces

The Jacobi constant and equilibrium solutions lead to another concept that aids

qualitative understanding of motion in the CR3BP. When C > 2U∗ in equation (2.39),

the magnitude of velocity is an imaginary number and, since an imaginary velocity

is not physically possible, all natural motion in the CR3BP must satisfy C ≤ 2U∗.
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Figure 2.3.: Lagrange Points Configuration

The boundary between the two domains is defined as C = 2U∗ which occurs when

P3 possesses zero speed. Expanded, this expression is,

C = x2 + y2 +
2(1− µ)

d
+

2µ

r
(2.52)

where the values of d and r are evaluated by equations (2.30) and (2.31), respectively.

At a given value of C, an infinite variety of locations, or (x, y, z) combinations, satisfy

equation (2.52), and this infinite set of points defines a three-dimensional surface

termed the zero-velocity surface (ZVS). A cross section of such a zero-velocity surface

is a plane reflecting zero-velocity curves (ZVC). In Figure 2.4, ZVC in the x−y plane

are depicted for several values of C. Some areas in Figure 2.4 are enclosed by the

ZVC and are labeled forbidden regions because, in these zones, C > 2U∗ and P3

cannot enter these regions. As the Jacobi constant value decreases, the energy of P3
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increases, and the ZVS contracts out of the x − y plane. Therefore, the forbidden

regions in Figure 2.4 decrease along with C.

Each equilibrium point possesses an associated Jacobi constant value (CLi
). It

is convenient to track the evolution of the ZVC as C passes through these values.

When C > CL1 the space interior to the forbidden regions is split into two separate

zones surrounding each of the primaries, as evident in Figure 2.4(a). When P3 is

located in one of these interior zones it cannot pass from one region into the other;

alternately, when P3 is located exterior to the ZVC it cannot traverse the ZVC and

enter the zones near the primaries. When the Jacobi constant is decreased to the

range CL2 < C < CL1 , as in Figure 2.4(b), the L1 gateway opens and connects the

regions surrounding the two primaries. Within this range of C values, when P3 is

interior to the ZVC, it can pass between the regions immediately surrounding the

primaries, but it cannot escape the P1 − P2 system. As C is further decreased into

the range CL3 < C < CL2 the L1 gateway widens and a new gateway opens at L2,

e.g., Figure 2.4(c). The new gateway links the interior and exterior regions of the

ZVC enabling P3 to escape the P1 − P2 system entirely. The opportunities for P3 to

escape the system increase as the C value decreases into the range CL4,5 < C < CL3

and the forbidden regions recede toward the L4,5 equilibrium points, as seen in Figure

2.4(d). Finally, when C < CL4,5 the ZVS leave the x−y plane and the ZVC disappear.

The ZVS continue to exist as two distinct three dimensional surfaces, however these

continue to shrink further from the primary plane of motion as C decreases.

The zero velocity surfaces offer a unique type of guidance for mission design in the

CR3BP because they indicate regions of space that allow access of a spacecraft if the

spacecraft state attains a particular “energy level”. For example, a spacecraft enroute

to the Moon must attain a Jacobi constant value less than CL1 or the L1 gateway

is closed and the spacecraft cannot reach the vicinity of the Moon. A spacecraft

can modify its Jacobi constant value via an additional force, e.g., a source of thrust

such as an engine or solar sail. Therefore, without sufficient energy after launch, a

thrusting maneuver is required to reach the intended destination.
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Figure 2.4.: Zero-Velocity Curves in the x− y Plane at Multiple Energy Levels
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2.2.7 Linearized Variational Equations of Motion

Some insight into behavior in the vicinity of a particular solution can be explored

through the variational equations for motion relative to the reference solution. In the

CR3BP, the nonlinear equations of motion are linearized relative to the equilibrium

points to examine motion near these points. The resulting system of linear variational

equations is subsequently analyzed to assess the stability of the equilibrium points.

Recall the complete nonlinear differential equations, i.e., ẋ(t) = f(x, t). Perturba-

tions relative to an equilibrium solution are introduced into the equations of motion

to derive the linear variational equations. The states at equilibrium are defined as

x = xeq, therefore, the states perturbed from equilibrium are,

x = xeq + δxeq (2.53)

Equation (2.53) is substituted into the nonlinear equations of motion,

ẋ = ẋeq + δẋ = f(xeq + δx, t) (2.54)

Then, the right side of equation (2.54) is expanded about the equilibrium solution

using a Taylor series.

ẋeq + δẋ = f(xeq, t) +
∂f

∂x

∣∣∣
xeq

δx+ H.O.T

δẋeq ≈
∂f

∂x

∣∣∣
xeq

δx (2.55)

The higher order terms (H.O.T) in the Taylor series are neglected resulting in a first

order approximation for the derivative of the variation δx, termed the variational

equations. The partials are of course, evaluated on the reference solution; in this

case, the reference solution is the constant equilibrium point. Note that f and x are

n × 1 vector quantities, where n is the number of scalar coordinates. For natural

motion in the CR3BP, n = 6. Thus, the partial derivative ∂f
∂x

represents a n × n

matrix of partials, that is denoted A6 for conciseness, and

δẋeq ≈ A6(t)δx (2.56)
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The matrix A6 consists of partial derivatives of the equations of motion with respect

to the state variables with each evaluated at the equilibrium point. The results of the

partial derivative evaluations are provided when equation (2.56) is expanded into its

matrix representation. The components of the vector δx = {ξ η ζ ξ̇ η̇ ζ̇}T noting the

scalar variations relative to the equilibrium point,

ξ̇

η̇

ζ̇

ξ̈

η̈

ζ̈


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗xx U∗xy U∗xz 0 2 0

U∗xy U∗yy U∗yz −2 0 0

U∗xz U∗yz U∗zz 0 0 0





ξ

η

ζ

ξ̇

η̇

ζ̇


(2.57)

In equation (2.57), U∗ij = ∂2U∗

∂i∂j
represents the second partial derivative of the pseudo-

potential function, first with respect to the variable i and then with respect to j. The

expressions for the second partial derivatives of the psuedo-potential function are,

U∗xx = 1− (1− µ)

d3
− µ

r3
+

3(1− µ)(x+ µ)2

d5
+

3µ(x− 1 + µ)2

r5
(2.58)

U∗yy = 1− (1− µ)

d3
− µ

r3
+

3(1− µ)y2

d5
+

3µy2

r5
(2.59)

U∗zz = −(1− µ)

d3
− µ

r3
+

3(1− µ)z2

d5
+

3µz2

r5
(2.60)

U∗xy =
3(1− µ)(x+ µ)y

d5
+

3µ(x− 1 + µ)y

r5
= U∗yx (2.61)

U∗xz =
3(1− µ)(x+ µ)z

d5
+

3µ(x− 1 + µ)z

r5
= U∗zx (2.62)

U∗yz =
3(1− µ)yz

d5
+

3µyz

r5
= U∗zy (2.63)
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The matrix A6, evaluated at the equilibrium points, is constant and offers stability

information at these points. This information is more easily analyzed when equation

(2.57) is solved to obtain a compact form of the variational equations.

ξ̈ − 2η̇ = U∗xxξ + U∗xyη + U∗xzζ (2.64)

η̈ + 2ξ̇ = U∗yxξ + U∗yyη + U∗yzζ (2.65)

ζ̈ = U∗zxξ + U∗zyη + U∗zzζ (2.66)

The linear variational equations approximate motion near the reference solution, and

this lends insight into the stability of a particular solution.

2.2.8 Stability of the Equilibrium Solutions

The stability information available via the linear variational equations cannot

be properly interpreted unless stability is first defined. The types of motion that

occur when a particle is perturbed from an equilibrium point are characterized by

the concept of stability. Many definitions of stability are available with the best

choice depending upon the objective in a particular problem. It is convenient to

consider an equilibrium point and define it as stable if, when a particle at the point

is perturbed, its subsequent motion remains bounded within a “small” neighborhood

of the equilibrium point. This notion of stability corresponds to the definition of

Lyapunov stability. Mathematically, a solution, ψ(t), is Lyapunov stable if, given any

ε > 0, there exists a δ > 0 such that any solution φ(t) satisfying,

|φ(t0)− ψ(t0)| < δ (2.67)

also satisfies

|φ(t)− ψ(t)| < ε, for t > t0 (2.68)

In short, given a perturbation by an amount δ relative to a reference solution, the

subsequent path will diverge from the reference solution by no more than an amount

ε for all time. Moreover, a solution is considered asymptotically stable if,

|φ(t)− ψ(t)| → 0, at t→∞ (2.69)
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While this definition of Lyapunov stability is useful when an equilibrium point is the

reference solution, it is not as useful when evaluating the stability of an orbit.

The Lyapunov stability of a linear variational system, defined ẋ = Ax, and

assuming that the matrix A is constant, is determined by the roots of the characteristic

equation of A, i.e. the eigenvalues denoted by λ. Clearly, these roots can be of three

types and each lead to different conclusions regarding the stability of the nonlinear,

system.

A. Unstable: If any eigenvalues have a positive real component, that is R(λi) > 0,

the linear system and any corresponding nonlinear system are unstable.

B. Marginally Stable: If all eigenvalues are purely imaginary, that is R(λi) = 0,

the linear system and any corresponding nonlinear system are marginally stable.

A marginally stable solution is bounded but not asymptotically stable. No

conclusions about the stability of a corresponding nonlinear system can be made.

C. Asymptotically Stable: If all eigenvalues have negative real parts, that is

R(λi) < 0, the linear system and any corresponding nonlinear system are asymp-

totically stable.

The three types of stability conclusions are useful classifications that enable the se-

lection of desirable solutions.

The linear variational equations for motion relative to the equilibrium solutions

are employed to assess their stability. Analysis in Section 2.2.5 demonstrated that

all five of the equilibrium solutions in the CR3BP are planar, and when z = 0 in

equations (2.62) and (2.63), then U∗xz = U∗zx = U∗yz = U∗zy = 0. Thus, the linear

variational equations are further simplified, i.e.,

ξ̈ − 2η̇ = U∗xxξ + U∗xyη (2.70)

η̈ + 2ξ̇ = U∗yxξ + U∗yyη (2.71)

ζ̈ = U∗zzζ (2.72)
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Equation (2.72) governing out-of-plane, decouples from equations (2.70) and (2.71)

which govern in-plane motion. Equation (2.60) indicates that, at all five of the equi-

librium points, Uzz < 0; hence, equation (2.72) represents a simple harmonic oscil-

lator. The corresponding scalar characteristic equation yields two eigenvalues, i.e.

λout-of-plane = ±
√
−|U∗zz|. These eigenvalues are always purely imaginary, thus, the

equilibrium points are marginally stable.

The second-order variational equations governing the in-plane motion, equations

(2.70) and (2.71), are examined separately and, ultimately, the characteristic equation

possesses four roots. Based on the form of equations (2.70) and (2.71), the solution

for the in-plane motion is represented as,

ξ =
4∑
i=1

Aie
λit (2.73)

η =
4∑
i=1

Bie
λit (2.74)

where Ai and Bi are constants of integration and λi are roots of the characteristic

equation. The eigenvalues are evaluated from the determinant of the matrix (λI−A4)

as follows,

|(λI −A4)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 −1 0

0 λ 0 −1

−U∗xx −U∗xy λ −2

−U∗yx −U∗yy 2 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= λ4 + (4− U∗xx − U∗yy)λ2 + (−2U∗xy − 2U∗xy)λ+ (U∗xxU

∗
yy − U∗yxU∗xy) = 0

(2.75)

The fourth-order polynomial in equation (2.75) is denoted the characteristic equation.

First, examine the collinear equilibrium points, where yeq = zeq = 0. Equation

(2.61) demonstrates that at these points, Uxy = U∗yx = 0. Thus, equation (2.75)

reduces to,

λ4 + (4− U∗xx − U∗yy)λ2 + U∗xxU
∗
yy (2.76)
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Equation (2.76) is more easily factored when represented as,

Λ2 + 2β1Λ + β2
2 (2.77)

where Λ = λ2, β1 = 2− U∗
xx+U∗

yy

2
, and β2

2 = −U∗xxU∗yy > 0. This simplified representa-

tion is then factored into two roots,

Λ1 = −β1 + (β2
1 + β2

2)1/2 (2.78)

Λ2 = −β1 − (β2
1 + β2

2)1/2 (2.79)

Therefore, the four eigenvalues of this system of equations are expressed,

λ1,2 = ±
√

Λ1 (2.80)

λ3,4 = ±
√

Λ2 (2.81)

Evaluated at the equilibrium points, equations (2.58) and (2.59) indicate that Uxx > 0

and U∗yy < 0, respectively. These relationships ensure that the eigenvalues in equation

(2.80) are real roots with opposite signs while equation (2.81) yields imaginary roots.

The eigenvalues from this analysis supply information concerning the Lyapunov

stability characteristics at each of the collinear equilibrium points. Because the eigen-

values associated with the out-of-plane motion are always purely imaginary, none of

the equilibrium points is asymptotically stable. Two of the eigenvalues correspond-

ing to the in-plane motion are also purely imaginary, while the remaining two are

real with opposite signs. Because one of the eigenvalues associated with the collinear

equilibrium points is positive and real these points are unstable by the definition of

Lyapunov stability. However, the imaginary roots suggest some oscillatory behavior.

When initial conditions are selected carefully to excite only the oscillatory modes

in the linear approximation, motion near the collinear points can appear stable or

oscillatory for some time before diverging.

A similar analysis is conducted for the in-plane motion of the triangular equilib-

rium points. The eigenvalues resulting from this analysis are all purely imaginary

indicating that the linear motion near the equilateral points is marginally stable.
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Other approaches such as higher order analysis or numerical propagation, are neces-

sary to assess the nonlinear motion near the equilateral points. Szebehely [5] offers

extensive linear and some nonlinear analysis to explore the stability of motion near

all of the the equilibrium solutions. Nonlinear analysis concerning the stability of the

equilateral points has been conducted by Leontovic [23].

The linear variational equations derived in Section 2.2.7 approximate motion in

the vicinity of the equilibrium points and supplies some stability information. These

equations can be further developed to provide analytical approximations of periodic

and quasi-periodic motion relative to the equilibrium points. These approximations

serve as convenient initial guesses for numerical strategies that enable nearby motion

to be analyzed and targeted.
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3. DYNAMICAL SYSTEMS THEORY

Once a dynamical model is developed, dynamical systems theory offers a variety of

schemes for analyzing behaviors. The equilibrium solutions associated with the dy-

namical differential equations identified in section 2.2.5, serve as a guide for obtain-

ing periodic orbits that exist relative to the rotating frame. Continuation methods

expand single periodic orbits into branching families that exhibit a wide range of

behaviors. The theory of invariant manifolds is applied to equilibrium solutions as

well as periodic orbits to compute stable and unstable manifolds that indicate natural

flow consistent with the dynamical model. When applied within the context of the

CR3BP, these approaches yield new formulations to be employed in conjunction with

powerful numerical techniques.

Differential corrections methods techniques an understanding of motion in the

CR3BP to produce desired trajectories. The variational equations are assembled into

a matrix that linearly maps changes in the initial states along a trajectory to changes

in the end state. This sensitivity approximation is implemented in a general free-

variable and constraint scheme to iteratively construct trajectories that satisfy desired

constraints. Single and multiple shooting techniques can be numerically formulated

within this framework, and offer different degrees of computational robustness and

accuracy.

3.1 State Transition Matrix

Trajectories within the CR3BP are computed via numerical integration of the

equations of motion as derived in Chapter 2. Given that an infinite number of trajec-

tories exist within the CR3BP it is challenging to identify a set of initial conditions

to produce an orbit or even a trajectory arc with specific desired characteristics. The
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state transition matrix (STM) guides this search by providing sensitivity information

in the form of a linear map that predicts the impact of changes in the initial states

on the final position and velocity states. The STM is employed in combination with

numerical methods to deliver a robust and efficient approach for design and analysis.

3.1.1 Linear Variational Equations Approach

A trajectory arc or orbit within the CR3BP is constructed by numerically inte-

grating the dynamic equations of motion ẋ = f(x0, t) from a set of initial states,

x0, for a specified span of time [t0 t]. When the states are expressed as Carte-

sian coordinates within the rotating frame, the initial state vector has the form,

x0 = {x0 y0 z0 ẋ0 ẏ0 ż0}, and the states at the final time are defined as x(x0, t) =

{x(x0, t) y(y0, t) z(z0, t) ẋ(ẋ0, t) ẏ(ẏ, t) ż(ż0, t)}. If additional dynamical force models

are incorporated, for example, thrust forces from an engine, then extra states are

included in the state vector.

The trajectory design process is initiated with a set of states x∗0 that produce a

reference path, x∗(t). This reference path serves as a first guess in producing a desired

final path. The initial guess rarely exhibits all of the characteristics desired in the final

solution, but, if it is a reasonable approximation, then the states corresponding to the

desired solution are likely nearby. Because simply propagating x∗0 in isolation yields no

information concerning the behavior of nearby trajectories, variational equations are

derived relative to a reference trajectory to obtain insight concerning the behavior

of trajectories nearby the reference. First, to derive the appropriate relationships,

a variation relative to the reference trajectory is introduced and the initial states

corresponding to a nearby trajectory are defined such that,

x0 = x∗0 + δx0 (3.1)

The variation δx0 is assumed to be small and contemporaneous with respect to the

reference, therefore, the reference path and the variation are related as depicted in
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Figure 3.1.: Reference and Variation Trajectory

Figure 3.1. The final state along the trajectory at a later time is then represented in

a similar manner,

x(x∗0 + δx0, t) = x∗(x∗0, t) + δx(t) (3.2)

Because the variation is assumed to be small, a first order Taylor series expansion is

used to reflect the left side of equation (3.2) relative to the baseline path,

x∗(x∗0, t) +
∂x

∂x0

δx0 + H.O.T’s = x∗(x∗0, t) + δx(t)

x∗(x∗0, t) +
∂x

∂x0

δx0 ≈ x∗(x∗0, t) + δx(t)

∂x

∂x0

δx0 ≈ δx(t) (3.3)
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In equation (3.3), x and x0 are n × 1 vector quantities, where n is the number of

states, therefore, the partial ∂x
∂x0

is a n × n matrix of partial derivatives denoted as

the state transition matrix (STM),

∂x

∂x0

= Φ(t, t0) =



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

∂ẋ
∂x0

∂ẋ
∂y0

∂ẋ
∂z0

∂ẋ
∂ẋ0

∂ẋ
∂ẏ0

∂ẋ
∂ż0

∂ẏ
∂x0

∂ẏ
∂y0

∂ẏ
∂z0

∂ẏ
∂ẋ0

∂ẏ
∂ẏ0

∂ẏ
∂ż0

∂ż
∂x0

∂ż
∂y0

∂ż
∂z0

∂ż
∂ẋ0

∂ż
∂ẏ0

∂ż
∂ż0


(3.4)

When t = t0 the partials along the diagonal of the STM are all equal to one while the

remaining elements equal zero; therefore, Φ(t0, t0) = I, where I is the 6× 6 identity

matrix. A compact representation of the 6× 6 STM is,

Φ(t, t0) =

Φrr Φrv

Φvr Φvv

 (3.5)

where r and v represent position and velocity states, respectively. The STM is essen-

tially a linear map that relates a variation in the initial state x(x0, t0) along a path

to the resulting variation at the final state x(x0, t). Thus, the STM is also labelled

the sensitivity matrix. Because the STM is derived using a first order Taylor series

expansion relative to the reference trajectory, the mapping accuracy is dependent

upon the size of the initial variation.

A set of first order differential equations governing the evolution of the STM are

derived that are then integrated along with the dynamical equations of motion for

the position and velocity states. As a result, variational information with respect to
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the propagated trajectory is available at each time step, given the augmented state

vector, the additional differential equations are,

Φ̇(t, t0) =
d

dt

∂x

∂x0

∂

∂x0

x

dt
=

∂f

∂x0

=
∂f

∂x

∂x

∂x0

(3.6)

Recall from the derivation of the linear variational equations, equation (2.56), that

the matrix of partial derivatives ∂f
∂x

is denoted A6. Thus, equation (3.6) is rewritten,

Φ̇(t, t0) = A6Φ(t, t0) (3.7)

When evaluated at the equilibrium points, A6 is a constant matrix but, in general, the

matrix changes with time as the states evolve along a trajectory arc. Equation (3.7)

results in an n×n matrix, therefore, for natural motion in the CR3BP, propagation of

the STM along with the EOM requires the numerical integration of 42 total differential

equations. While the partial derivatives required to compute the STM using equation

(3.7) are relatively straightforward to derive for natural motion, the difficulty increases

as the dynamics grow more complex, leading to the development of alternate strategies

to construct the STM.

3.1.2 Numerical Approximation for Partial Derivatives

Analytically determining the partial derivatives necessary to construct the STM

can be challenging, moreover, modification of the dynamical force models necessitate

an update to the derivation of the partials. Therefore, it is sometimes advantageous to

numerically approximate partial derivatives for the STM because such approximations

are typically straightforward and easily implemented. However, such an approach

warrants caution because the STM is approximated with varying degrees of accuracy.

Additionally, when explicit numerical integration of the EOMs is included in the

process the computation time required to produce the approximation can be large.
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Moreover, insight into relationships between the state vector at different times can

be lost when the user relies solely on numerical approximations. Nonetheless, when

used appropriately, numerical approximation methods for partial derivatives are a

powerful approach.

The first-order central difference approximation is a finite difference method com-

monly employed to numerically approximate partial derivatives. This method is de-

rived by differencing two first order Taylor-series expansions, resulting in

∂fj
∂xi

=
fj(xi + h)− fj(xi − h)

2h
+O(h2) (3.8)

where h is the step size and O(h2) indicates that this method has a truncation error

on the order of h2. A small step size, h, must be selected for a low truncation error.

However, if h is too small, excessive round off error occurs due to the subtraction

step in the numerator. Strategies for selecting a value of h that mitigate these two

sources of error have been developed [24].

Complex step differentiation affords an even more powerful method for numerical

approximation of partial derivatives. This approach is also derived from a Taylor-

series expansion but, in this case, a step is taken along the imaginary axis [25].

f(x+ ih) = f(x) + ihf ′(x)− h2f ′′(x)/2!− ih3f (3)/3! + . . . (3.9)

Focus on the imaginary part of both sides of equation (3.9) and solve for f ′(x).

Im
(
f(x+ ih)

)
= hf ′(x)− h3f (3)/3! + . . .

f ′(x) = Im
(
f(x+ ih)

)
/h+O(h2) (3.10)

The division required in equation (3.10) does not induce round-off error, therefore,

h can be set arbitrarily small. The step size, h is typically selected such that the

truncation error O(h2) is below the numerical precision of the computational tool

in use, i.e. Matlab, rendering the resulting approximation equally accurate to a

numerically implemented analytical method.

A third method approach to numerically computing partial derivatives is auto-

matic (algorithmic) differentiation (AD). While not implemented in this investiga-

tion, such a technique is increasingly applied to trajectory design and optimization
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problems [26]. The term AD describes a variety of techniques for computing deriva-

tives by implementing basic differentiation rules within the source code of a numerical

method. Its primary advantages include the avoidance of truncation errors and auto-

matic computation of the derivatives of a function in parallel with the computation

of the function itself [27]. While this procedure is more complex to implement than

finite differencing approaches, it is less computationally expensive. Automatic differ-

entiation is facilitated by object-oriented programming and has been implemented in

many languages with this capability, including Matlab [28].

3.2 Differential Corrections

Construction of a trajectory within the context of a specific dynamical model that

satisfies a specific set of constraints is typically formulated as a two-point boundary

value problem (TPBVP). Differential corrections strategies are frequently employed

to solve TPBVPs; they employ sensitivity information to render a solution in an

iterative process. These strategies can be implemented in a multitude of ways, but a

general scheme adaptable to a variety of problems is incorporated in this investigation.

3.3 Constraint and Free-Variable Formulation

The constraint and free-variable formulation provides a general framework for

solving TPBVP’s using differential corrections. The framework is popular because of

its simplicity and proven success in accurately solving complex problems. However,

when a general methodology is applied to a particular problem, some insight can be

lost, care to ensure that problem specific details are not obscured is necessary. The

constraint and free-variable formulation is employed in conjunction with the simple,
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yet powerful, Newton’s method in order to iteratively solve a TPBVP. Consider a

design variable vector X of n free-variables,

X =



X1

X2

...

Xn


(3.11)

which is subject to m constraint equations of the form

F (X) =



F1(X)

F2(X)
...

Fm(X)


= 0 (3.12)

In general, the objective is the determination of the design variable vector, Xc, that

satisfies F (Xc) = 0. A simple example of application is the determination of the

initial position and velocity to obtain a periodic orbit. An iterative process to deter-

mine Xc is derived by applying a Taylor-series expansion to F (X0) where X0 is the

initial guess for the design variable vector, i.e.,

F (X) = F (X0) +DF (X0) · (X −X0) +H.O.T.S

0 ≈ F (X0) +DF (X0) · (X −X0) (3.13)

Then, X0 effectively serves as the reference for the variational relationships. Neglect-

ing higher order terms and substituting the definition of F (X) from equation (3.12)

reduces the expansion to equation (3.13). Application of the Taylor-series expansion

does imply that the initial guess X0 is relatively close to the final design variable vec-

tor Xc. The matrix DF (X0) is an m×n matrix typically denoted the Jacobian with
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elements that are partial derivatives of each constraint vector element with respect

to each design variable vector element,

DF (X0) =
∂F

∂X

∣∣∣∣∣
X0

=



∂F1

∂X1

∂F1

∂X2
· · · ∂F1

∂Xn

∂F2

∂X1

∂F2

∂X2
· · · ∂F2

∂Xn

...
...

. . .

∂Fm

∂X1

∂Fm

∂X2
· · · ∂Fm

∂Xn


(3.14)

Note that each particle is evaluated on the reference path. Most useful TPVBP are

nonlinear and iteration based upon equation (3.13) is generally required to produce

a solution, therefore, it is convenient to express the relationship in a general form,

F (Xj) +DF (Xj) · (Xj+1 −Xj) = 0 (3.15)

Solving forXj+1 yields the final form of the update equation, but the actual method of

solution depends upon the dimensions of DF (Xj). If the number of design variables

equals the number of constraints, that is n = m, then one unique solution to equation

(3.15) exists. In such a case, DF (Xj) can simply be inverted to solve equation (3.15).

Xj+1 = Xj −DF (Xj)
−1F (Xj) (3.16)

The solution in equation (3.16) is a multi-dimensional form of the well-known New-

ton’s method. In addition to its adaptability to numerous problems, this approach is

powerful because it achieves quadratic convergence properties.

When there are more design variables than constraints, that is n > m, infinitely

many solutions exist to equation (3.15). Therefore, a unique solution emerges by

isolating the update Xj+1 that is closest to Xj. This choice acknowledges the fact

that gradient searches are more successful when the updated solution is close to

the reference, i.e., when δXj is small. Additionally, seeking a solution nearby Xj

implies thatXj+1 likely inherits some of the characteristics ofXj which is presumably

beneficial, particularly if the initial guess is selected to possess characteristics that
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are desired in the final solution. The unique solution Xj+1 closest to Xj is labelled

the minimum-norm and is determined via the equation,

Xj+1 = Xj −DF (Xj)
T
[
DF (Xj) ·DF (Xj)

T
]−1

F (Xj) (3.17)

Whether equation (3.16) or equation (3.17) is employed as the update equation,

both are applied iteratively given an initial guess X0. In general, at each iteration,∥∥F (Xj+1)
∥∥ < ∥∥F (Xj)

∥∥, and iterations are continued until F (Xj+1) = F (Xc) = 0.

In practice, F (Xj+1) will never equal exactly zero, of course so a tolerance, ε, is set

and the update equation is iterated until
∥∥F (Xj+1)

∥∥ < ε. In summary, the general

structure of the constraint and free variable formulation allows four basic steps:

1. Select free-variables and construct the n× 1 design variable vector, X, with an

initial value X0.

2. Define constraints as equality constraints and formulate the m × 1 constraint

vector, F (X) = 0.

3. Compute the partial derivatives of the constraint vector with respect to each of

the design variables and assemble the results into the m × n Jacobian matrix,

DF (X).

4. Depending upon the relationship between m and n, use either equation (3.16) or

(3.17) to compute Xj+1. The new Xj+1 vector then is defined as the reference

Xj and the process repeats. Iteratively, re-compute Xj+1 until
∥∥F (Xj+1)

∥∥ < ε,

or the number of iterations exceeds a pre-defined limit.

The free-variable and constraint formulation is a convenient framework for numerous

astrodynamics problems and is incorporated in this investigation for shooting and

collocation methods.
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3.4 Single Shooting

The general scheme for the implementation of differential corrections as formulated

in Section 3.3 is applied in a variety of applications including shooting schemes.

Shooting algorithms require repeated propagations to recover one or more trajectory

arcs. After each propagation, the differential corrections scheme adjusts the initial

conditions to satisfy a given set of constraints. This process is repeated until the

constraints are satisfied to within a specified tolerance. A sample single shooting

problem is initiated with a set of initial conditions {r0 v0}T = {x0 y0 z0 ẋ0 ẏ0 ż0}T ,

at time t0. The objective is to determine the change in the initial velocity, v0, that

is necessary to deliver the final point along the path to the specified location, i.e.,

rd = {xd yd zd}, at the fixed time t, as depicted in Figure 3.2. The variables, those

Reference Trajectory 

Target Trajectory 

𝒓0 

𝒗0 

𝒗𝑛𝑒𝑤 
𝒓𝑡(𝒗0) 

𝒓𝑑  𝑇 

𝒓𝑡(𝒗𝑛𝑒𝑤) 

𝑇 

Figure 3.2.: Single Shooting Problem

allowed to be altered, termed the design variables, are the components of the initial

velocity, as collected,

X = v0 =


ẋ0

ẏ0

ż0

 (3.18)
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The objective is satisfied when the position at the end of propagation is equivalent to

the desired position. Therefore, the equality constraints are written such that they

equal zero when the final position states are equal to the target position, i.e.,

F (X) = rd − r(v0) =


xd − x(v0)

yd − y(v0)

zd − z(v0)

 (3.19)

The Jacobian consists of the partial derivatives of the constraints with respect to

the design variables. The chain rule is applied because the constraints are implicitly

dependent upon the design variables,

DF (X) =
∂F

∂r

∂r

∂v0

=


∂F1

∂x
∂F1

∂y
∂F1

∂z

∂F2

∂x
∂F2

∂y
∂F2

∂z

∂Fm

∂x
∂Fm

∂y
∂Fm

∂z

 ·


∂x
∂ẋ0

∂x
∂ẏ0

∂x
∂ż0

∂y
∂ẋ0

∂y
∂ẏ0

∂y
∂ż0

∂z
∂ẋ0

∂z
∂ẏ0

∂z
∂ż0

 (3.20)

The position of the target position is constant, therefore, all partials of the compo-

nents of rd with respect to the states equal zero; the left matrix in equation (3.20)

simplifies to, ∂F
∂r

= −I. The right matrix in equations (3.20) is equal to the upper

right quadrant of the STM in equation (3.5), thus, the Jacobian simplifies to

DF (X) = −I ·Φrv(t0, t) = −Φrv(t0, t) (3.21)

Given the case n = m, the Jacobian is square and equation (3.16) is used as the update

equation. Substituting in the results from equations (3.18), (3.19), and (3.21), the

unique update equation is
ẋ0

ẏ0

ż0


j+1

=


ẋ0

ẏ0

ż0


j

− (−Φrv(t0, t))
−1


xd − x(v0)

yd − y(v0)

zd − z(v0)


j

(3.22)

The update equation is applied iteratively until the norm of the difference between

the target point location and the final position along the propagated path is less than

ε, or
∥∥F (Xj+1)

∥∥ < ε. This example is easily modified to accomodate a variable time
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single shooting problem by adding the propagation time t to the design variable vector

in equation (3.18). This addition results in n = 4, and adding an extra column to

the matrix DF (X) that contains the derivatives of the position states with respect

to time. The Jacobian then becomes a 3× 4 matrix, requiring equation (3.17) as the

update equation.

3.5 Multiple Shooting

Multiple shooting is, fundamentally, a single shooting strategy applied to subarcs

along a path. Figure 3.3 depicts a trajectory subdivided into multiple arcs, ready

for correction via a multiple shooting scheme. Subdividing a trajectory into multiple

subarcs offers several advantages including increased accuracy and robustness. The

errors associated with numerical integration, including approximation and truncation,

increase with time, therefore, decomposing a trajectory into multiple arcs with shorter

propagation times can improve the accuracy of the final converged result. Subdivision

may also improve the convergence properties of a shooting method. The states along

a trajectory arc also change rapidly as it passes near a primary, therefore, trajectories

are particularly sensitive in these areas. Decomposing a path into multiple segments

near a primary reduces the sensitivity of each sub-arc thereby reducing the number

of iterations required to achieve convergence. Finally, subdividing a path allows path

constraints to be applied at specific nodes rather than along an entire trajectory. For

example, an altitude constraint can be applied at nodes that occur near a primary,

but removed from nodes elsewhere.

The design variable vector in a fixed time multiple shooting scheme includes the

initial state vectors for each subarc along a trajectory. In variable time multiple
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Figure 3.3.: Multiple Shooting Problem

shooting, the integration time along each subarc is also added to the design variable

vector,

X =



x1

x2

...

xn−1

xn


(3.23)

In addition to satisfying specific boundary and path constraints, the sub-arcs are also

constrained to be continuous. Therefore, the constraint vector always contains conti-

nuity constraints that link the individual segments. The continuity constraints must

also enforce position continuity for a single feasible trajectory, however, continuity

in velocity can generally be omitted. Any discontinuities in velocity that occur as a

result of this omission are incorporated as ∆v’s along the path,

F (X) =



xt2(x1)− x2

xt3(x2)− x3

...

xt2(xn−1)− xn


(3.24)

The result of a multiple shooting scheme is, a trajectory defined by discrete sub-arcs

that are explicitly propagated from a set of initial state values.
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Numerical methods offer powerful techniques capable of producing trajectories

that can satisfy specific constraints. However, for the most part, these numerical

strategies can only supply information on a specific orbit for a finite time interval.

Initially, the equilibrium solutions in the CR3BP supply insight into fundamental

behaviors in the CR3BP model. It is generally advantageous to seek additional par-

ticular solutions and assess stability to illuminate the CR3BP behavior.

3.6 Generating Periodic Orbits

Because the Hamiltonian in the CR3BP model is not an explicit function of time,

periodic solutions to the differential equations of motion exist. The differential correc-

tions techniques identified in Section 3.2 allow periodic orbits, Poincaré’s [3] “windows

into the R3BP”, to be constructed and investigated. Periodic orbits, of course, sup-

ply information on behavior over infinite time but require only finite integration time.

An infinite amount of periodic orbits exist in the CR3BP, however, these solutions

can be organized into distinct categories based on common characteristics. One of

the simplest type of periodic orbits are the planar Lyapunov orbits that exist in the

vicinity of each collinear equilibrium point.

3.6.1 Planar Lyapunov Orbits

The computation of a periodic orbit is easily posed as a TPBVP where the 6-

D boundary points are equivalent, therefore, symmetry is exploited to simplify the

problem. The EOM in the CR3BP model remain unchanged when time runs back-

wards; this fact permits application of the Mirror Theorem for the computation of

periodic orbits. The theorem states that, if n-point masses are moving under mu-

tual gravitational forces, then their orbits are periodic, if at two separate epochs,

a mirror configuration occurs [29]. In the CR3BP, several types of periodic orbits

exhibit mirror configurations across planes defined by combinations of the coordinate

axes such that, for every trajectory, there is a mirror image path across the plane in
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backwards time. A consequence of this property is a symmetric periodic orbit that

is determined by only integrating for precisely one-half of an orbital period, thus,

reducing the computational time and improving convergence. A Lyapunov orbit is

planar, existing in the x-y plane, and symmetric across the x-axis. Thus, to construct

a Lyapunov orbit, initial conditions are selected to yield a perpendicular crossing of

the x-axis. The target state reflects a similar perpendicular crossing of the x-axis that

occurs after precisely one-half period of integration. Thus, the initial position and

velocity states to represent a perpendicular crossing at the x-axis possess the form

x0 = {x0 0 0 0 ẏ0 0}. To construct the orbit, the initial position is assumed to be

fixed, but the velocity ẏ0 and the propagation time t are design variables and allowed

to vary, thus,

X =

ẏ0

t

 (3.25)

At a later time, a perpendicular crossing on the x axis occurs when y(t) = z(t) =

ẋ(t) = ż(t) = 0. However, because this problem is strictly planar, no out-of-plane

constraints are necessary to include in the constraint vector,

F (X) =

y(t)

ẋ(t)

 (3.26)

Additionally, excluding out-of-plane components from the constraint vector ensures

that the resulting Jacobian matrix is square, thus guaranteeing a unique solution in

the targeting problem. The DF (X) matrix is then comprised of partial derivatives

that are easily computed using the STM and EOM, i.e.,

DF (X) =

 ∂y(t)
ẏ0

∂y(t)
∂t

∂ẋ(t)
ẏ0

∂ẋ(t)
∂t

 (3.27)

Once the problem is formulated consistent with the free-variable and constraint equa-

tion (3.16), iterations continue until the desired tolerance is met. Figure 3.4(a) demon-

strates various iterations of the targeting scheme; note that each subsequent iteration
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Figure 3.4.: Targeting L1 Lyapunov Orbit

shifts closer to satisfying the required condition for a perpendicular crossing. Thus,

the resulting trajectory is one-half of the Lyapunov orbit originating at x0, and the

final time t is precisely one-half of the orbital period. The final converged initial state

is subsequently propagated for 2t to produce the orbit in Figure 3.4(b) which is a

Lyapunov orbit about L1. The same process is also used to compute Lyapunov orbits

about L2 and L3. The family of Lyapunov periodic orbits remain entirely in the x−y

plane, and evolve to large orbits that pass very near the smaller primary.

3.6.2 Three-Dimensional Halo Orbits

Halo orbits represent set of characteristics that define a family of periodic orbits

that exist in the CR3BP. These orbits are three-dimensional but, because they are

symmetric across the x-z plane, they can be targeted using a process very similar

to one exploited for Lyapunov orbits. In this case, the initial conditions reflect a



52

perpendicular crossing at the x-z plane, x0 = {x0 0 z0 0 ẏ0 0}T . Consistent with

the Lyapunov orbits, an initial position state is assumed constant; either x0 or z0

is selected depending on which direction is less sensitive at the given location along

the family. In this example, x0 is assumed fixed. Then, the design variable vector is

expressed,

X =


z0

ẏ0

t

 (3.28)

Because the halo orbit is three dimensional the out-of-plane velocity component must

also be constrained to ensure a perpendicular crossing,

F (X) =


y(t)

ẋ(t)

ż(t)

 (3.29)

Due to the omission of x0 from the design vector, n = m producing a square Jacobian

matrix and a unique solution to the problem exists,

DF (X) =


∂y(t)
ż0

∂y(t)
ẏ0

∂y(t)
∂t

∂ẋ(t)
ż0

∂ẋ(t)
ẏ0

∂ẋ(t)
∂t

∂ż(t)
ż0

∂ż(t)
ẏ0

∂ż(t)
∂t

 (3.30)

Equation (3.16) serves to update the design variable vector until the constraint vector

meets the desired tolerance. Once again, the converged result is precisely half of the

periodic halo orbit; the successful initial conditions are propagated for 2t to construct

the full orbit. Halo orbits also exist in the vicinity of the other two collinear points. In

fact, the symmetric properties of the CR3BP are also exploited to construct orbits in

the axial and vertical families. Periodic orbits also exist about the equilateral points

but these tyoes of trajectories are not symmetric, therefore, targeting algorithms

to numerically determine such orbits must be modified to satisfy different types of

constraints [30].



53

3.6.3 Stability Analysis for Periodic Orbits

Periodic orbits are a particular solution to the CR3BP and the concept of stability

is important in understanding behavior in their vicinity. In Section 2.2.7, a system

of linear variational equations with constant matrix A6 is obtained by linearizing

relative to the equilibrium points. The same linearization process about a periodic

orbit yields a set of linear variational equations, δẋ = A6(t)δx; however the matrix

A6(t) now varies with time since the reference path is a function of time. Application

of Floquet theory, along with the concept of maps, allows the continuous time linear

variational equations along the periodic orbit to be discretized enabling a type of

stability analysis similar to that employed for equilibrium points. The STM after

precisely one revolution of the periodic orbit is denoted the monodromy matrix. This

matrix essentially delivers a linear map that facilitates discretization of the system

differential equations. The new linear variational equations for the discrete time

system emerge as, δx(t) = φ(t, t0)δx0 and, using the monodromy matrix, they evolve

as, δx(T ) = φ(T, t0)δx0. Thus, the monodromy matrix is used to calculate the values

of the linear variational equations at any time along a periodic orbit.

The eigenvalues of the monodromy matrix supply stability information for a fixed

point along a periodic orbit and, thus, the entire orbit. However, because the system

is a discrete time linear system, the eigenvalues correlation with stability differ from

the continuous case that is,

1. If all |λi| < 1 then the system is asymptotically stable.

2. If all |λi| ≤ 1 then the system is marginally stable.

3. If all |λi| > 1 then the system is unstable.

Additionally, systems where some |λi| < 1 and some |λi| > 1 are considered non-

stable, and a non-stable fixed-point is called a saddle point. Thus, the stability

of a periodic orbit is indicated by the combination of eigenvalues yielded by the

monodromy matrix.
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For the set of differential equations and the periodic orbits constructed, thus far,

the monodromy matrix is characterized by predictable types of eigenvalues. First, the

Lyapunov theorem states that an eigenvalue λ of the monodromy matrix, φ(T, t0),

of a time-invariant system also possesses a reciprocal counterpart λ−1 with the same

structure of elementary divisors. Furthermore, because φ(T, t0) is a real matrix,

its eigenvalues are either real or in complex conjugate pairs. The first consequence

of these observations is a set of eigenvalues of φ(T, t0) that only exist in certain

configurations. Complex conjugate pairs are generally not reciprocal, therefore, these

eigenvalues, occur as complex pairs on the unit circle. It is also deduced that, because

the λ occur in reciprocal pairs, any |λ| < 1 that induces stability is accompanied by

a counterpart |λ| > 1 supporting instability. Therefore, a periodic orbit is only ever

marginally stable, and this stability occurs when all of its eigenvalues equal one.

Finally, given the unique eigenstructure of the monodromy matrix, all periodic orbits

possess at least two eigenvalues equal to one. This characteristic is due to the fact

that for a periodic orbit to exist, at least one λ must equal one, and since eigenvalues

of the monodromy matrix come in reciprocal pairs, it follows that a second λ also

equals one.

3.7 Generating Families of Periodic Orbits

The periodic orbits in Sections 3.6.1 and 3.6.2 are single members of larger fam-

ilies of similar periodic orbits. Each orbit along the family is characterized by some

parameter α (for example, x0, T , J , etc.) where α evolves along the family. Thus,

these families are evolved from a single orbit using natural parameter continuation

based on α. This strategy employs a solution at one value α as an initial guess to

construct a solution at another value, i.e., α + ∆α, where ∆α is a step size. In this

manner, new solutions are produced by stepping through values of the single param-

eter α. The value for the step size ∆α is selected so that the initial guess yielded by

each step is sufficiently accurate to deliver a new solution to the problem.
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Each specific parameter α that can be used to continue Lyapunov orbits evolves

the family differently. The simplest and, arguably the most insightful evolution is

based on α = x0. In this formulation, x0 is constant during each evaluation of

the single shooting problem, and a fixed step size is possible. New orbits in the

Lyapunov family are constructed by stepping along the x-axis towards or away from

the Lagrange point. The stability characteristics of the Lyapunov orbits then change

as the family evolves and these changes in stability may necessitate changes in step

size ∆x0. Portions of the L1, L2, and L3 Lyapunov orbit families in the Earth-Moon

system are plotted in Figure 3.5.
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Figure 3.5.: L1, L2, and L3 Lyapunov Families

To apply natural parameter continuation to other families of periodic orbits a

similar or modified choice for α is deliberately specified. Either x0 or z0, for example,

is frequently employed as the continuation parameter to evolve the halo family of
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orbits. At some stages, the evolution of the family may necessitate switching between

x0 and z0 as the continuation parameter. Similar trends occur in the axial and vertical

families of orbits; Figure 3.6 offers examples of selected regions of the halo and vertical

families. The halo family is expanded above and below the x-y plane in Figure 3.6(a),

and the resulting orbits are denoted as northern and southern halo orbits, respectively.

The sub-sets of the families in Figures 3.5 and 3.6 could be extended with further

iterations of the natural parameter continuation process but, eventually, each family

reaches a maximum size. However, each family includes an infinite number of orbits

and Figures 3.5 and 3.6 display sample orbits at discrete intervals.

3.8 Invariant Manifolds

The stability analyses for the equilibrium solutions and periodic orbits in Sections

2.2.8 and 3.6.3 indicate the general behavior of motion near the equilibrium point

or periodic orbit. This behavior is further examined via the concept of invariant

manifolds. The phase portrait of the flow, supplied by the invariant manifolds, is

valuable for designing transfers throughout the P1-P2 region, particularly applicable

for sun-planet or planet-moon systems.

3.8.1 Manifolds Associated with the Equilibrium Points

The eigenvalues used to assess stability in Section 2.2.8 emerge from the matrixA6

corresponding to each of the equilibrium solutions. The matrix is defined consistent

with equation (2.56), a first order variational equation with a solution such that,

δx(t) =
n∑
j−1

cje
λj(t−t0)vj (3.31)

where the coefficients cj are determined from the initial conditions. Because A6 pos-

sesses 6 unique eigenvalues, equation (3.31) is a summation of six distinct terms, or

modes. The form of the eigenvalues determines the behavior of the exponential in

each of these terms and, thus, the overall behavior of the solution. The modes lead to
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converging, diverging, or oscillatory behavior corresponding to stable, unstable, and

marginally stable descriptions, respectively, for solutions to equation (3.31). Assum-

ing a total of n eigenvalues, the λj that lead to these three conclusions are classified

as follows,

n = nS + nU + nC


nS λj with negative real parts

nU λj with positive real parts

nC λj with zero real parts

(3.32)

The subscript ’c’ in nc represents ’center’ because solutions with this type of eigenvalue

evolve on center manifolds. If nc = 0, corresponding to an equilibrium point, then

no center manifold exists and the equilibrium point is described as hyperbolic. The

eigenvectors associated with each λj are linearly independent, therefore, they span

the entirety of the space R6. This six-dimensional space is decomposed into three

linear subspaces corresponding to the three types of eigenvalues, ES, EU , and EC .

The eigenspaces are linear structures with counterparts in the nonlinear system

of equations. The Stable Manifold Theorem states that, if a nonlinear system of

first-order differential equations possesses a hyperbolic equilibrium point, then local

stable, W S
loc(xeq), and unstable manifolds, WU

loc(xeq) exist and are of the same di-

mension nS and nU as that of the linear eigenspaces ES and EU [31]. Furthermore,

the manifolds W S
loc(xeq) and WU

loc(xeq) are tangent to ES and EU , respectively, near

the equilibrium point. It is emphasized that the eigenspaces are structures in the

linear system defined in equation (2.56) while the manifolds are structures in the

corresponding nonlinear system that are tangent to the eigenspaces nearby the equi-

librium solution. These relationships are demonstrated in Figure 3.7 which depicts

the stable and unstable manifolds corresponding to the L1 equilibrium solution. The

stable and unstable manifolds possess global analogs that flow toward and away from

the equilibrium solutions, respectively, and extend far beyond the vicinity of these

points. Therefore, propagating backwards in time along W S
loc(xeq) produces W S while

propagating forwards in time along WU
loc(xeq) results in WU . The manifolds in the

linear and nonlinear problems are invariant, that is, a particle initially placed ex-
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actly on one of the manifolds will not depart from it; rather, the state will follow

the flow indicated by the path of the manifold. Finally, if the equilibrium point

is non-hyperbolic, nC 6= 0, then a similar theorem, the Center Manifold Theorem,

supports the existence of a center manifold tangent to the center eigenspace EC in

the linearized system [31]. The center manifold is not necessarily unique and may

indicate the existence of periodic orbits or quasi-periodic trajectories in the vicinity

of the equilibrium point.

Manifolds corresponding to equilibrium points possess a dimension equal to nS +

nU . The numerical computation of the manifolds consists of two parts, determining

a point on the local manifold and propagating from that point, both forwards and

backwards. Because they are tangent to global manifolds, the eigenspaces are used

to compute an initial point on the manifold. The eigenspaces ES and EU are line

segments along the stable, ±νS, and unstable, ±νU , eigenvectors of A6 respectively.

The eigenspaces extend in the positive and negative directions along the eigenvec-

tors. Both components are necessary to compute a full manifold; a half manifold is

constructed in each direction. The eigenvectors have the form,

νS = {xS yS zS ẋS ẏS żS}T (3.33)

νU = {xU yU zU ẋU ẏU żU}T (3.34)

Only the direction of the eigenvector is required to define the eigenspace, therefore

each eigenvector is normalized by its magnitude,

ν̂S =
νS
|νS|

(3.35)

ν̂U =
νU
|νU |

(3.36)

A point along a manifold is approximated by taking a step away from the equilibrium

point in the direction of one of the eigenspaces. The eigenspaces represent only a

first-order approximation of the manifolds, therefore, a nondimensional step, d, along

the eigenspace that is too large could produce a point far from one on the actual

nonlinear manifold. Conversely, manifolds approach and depart from the equilibrium
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point asymptotically, therefore, choosing a value for d that is too small requires long

propagation times. The sensitivity of the equilibrium point is typically incorporated

in selecting a value of d, however, typically in the CR3BP a dimensional value of

d = 100 is sufficient to achieve accurate results,

xS = xeq ± dν̂S (3.37)

xU = xeq ± dν̂U (3.38)

Once an initial point along a manifold is located, it can serve as an initial condition

for a numerical integration process to that propagate the manifold states forward or

backwards in time. The initial points in both the positive and negative directions

must be located and propagated to produce a full manifold.
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Figure 3.7.: Stable and Unstable Local Manifolds at L1
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3.8.2 Manifolds Associated with Periodic Orbits

Manifold structures also exist for fixed points along periodic orbits and are com-

puted in a manner similar to the manifolds associated with equilibrium points. These

manifolds asymptotically approach or depart a periodic orbit, therefore, such struc-

tures are useful for designing transfers to or from periodic orbits. However, the natural

flow reflected in the evolution of manifolds can also be leveraged for other spacecraft

destinations.

Computation of periodic orbit manifolds follows from the discussion of periodic

orbit stability in Section 3.6.3. The eigenvalues in that analysis signal stable, unstable,

or marginally stable behaviors depending upon the modulus of the eigenvalues. The

number of each eigenvalue type is once again assigned to three different categories

and sum to n, the total number, i.e.,

n = nS + nU + nC


nS |λj| < 1

nU |λj| > 1

nC |λj| = 1

(3.39)

The three eigenvalue types correspond to stable, unstable, and center subspaces, each

with dimensions indicated by nS, nU , and nC , respectively. Analogs of the stable and

center manifold theorems exist for fixed points along periodic orbits. These theorems

support the existence of local stable W S
loc(Γ), unstable WU

loc(Γ), and center WC
loc(Γ)

manifolds associated with a periodic orbit Γ. These local manifolds are then tangent

to the stable, unstable, and center eigenspaces, ES(Γ), EU(Γ), and EC(Γ). The rate

at which manifolds approach or depart a periodic orbit is determined by the stability

of the orbit. When an orbit is highly stable the unstable manifold, defined by a real

eigenvalue with magnitude greater than one, requires a longer time to depart the

orbit while the stable manifold takes longer to approach it. The opposite is true for

highly unstable periodic orbits where the unstable and stable manifolds, respectively,

depart and approach the periodic orbit more quickly.
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The computation of invariant manifolds are initiated from any fixed point along

a periodic orbit and, because the theory is largely analogous, the computation of

periodic orbit manifolds generally follows the same steps as in Section 3.8.1. The

eigenvalues of the monodromy matrix are independent of the fixed point along a pe-

riodic orbit, however, the eigenvectors evolve from one fixed point to the next. These

eigenvectors are computed at each fixed point from the monodromy matrix. Recall

that the monodromy matrix is defined as the STM after one complete revolution.

A new monodromy matrix at each fixed point could be calculated by propagating

over a complete revolution at each fixed point, but such an approach is inefficient.

Rather, a similarity transformation is employed to generate the eigenvectors at any

point “downstream” from the initial fixed point on the periodic orbit through the

following relationship,

νi(t1) = φ(t1, t0)ν(t0) (3.40)

In Equation (3.40), the STM from t0 to t1 advances the eigenvectors from t0 to

t1. The eigenvectors are then nondimensionalized to calculate the directions of the

eigenspaces.

ν̂(t1)S =
νS(t1)

|νS(t1)|
(3.41)

ν̂U(t1) =
νU(t1)

|νU(t1)|
(3.42)

Recall the 6-D eigenvectors are nondimensionalized using their magnitude. When the

directions of the eigenspaces are constructed, an initial point on the manifold surface

is determined by stepping off of the periodic orbit in the direction of one of the

eigenspaces. The value of the step size is sufficiently small such that the first-order

approximation remains valid, but also large enough that the numerical integration

time is reasonable, i.e.,

xS(t1) = xeq(t1)± dν̂S(t1) (3.43)

xU(t1) = xeq(t1)± dν̂U(t1) (3.44)
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Figure 3.8.: Stable and Unstable Manifolds Associated with an L1 Halo Orbit as

Viewed in Configuration Space; the Manifold Structures are Represented by Trajec-

tories Along the Surface

The initial conditions for the stable and unstable manifolds approaching and departing

an L1 halo orbit are constructed and then propagated for t = 5 nondimensional time

units. The resulting 6D paths are projected onto configuration space and the two-

dimensional x-y position history is viewed in Figure 3.8. The invariant manifolds

in position space actually form a three-dimensional invariant surface with a tube-

like structure. The three dimensional velocity space can also be represented but are

not plotted here. The manifolds corresponding to other periodic orbits form similar

surfaces that suggest low-cost structures that may be exploited to transfer between

regions of space in the CR3BP.
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4. INDIRECT OPTIMIZATION

Mission design for spacecraft equipped with low-thrust engines typically requires the

use of optimization techniques; and indirect methods are an approach that has yielded

useful results and significant insights. Indirect optimization methods are generally

based on analytical techniques derived from the calculus of variations and have been

developed since the conception of this field in 1696. Indirect optimization employs the

necessary conditions from the calculus of variations to formulate a two-point bound-

ary value problem (TPBVP) that renders an optimal solution. These techniques

reflect the classical approach to optimization having been employed long before the

ubiquity of computers. However, computational power and numerical methods have

enabled the evaluation of more complex TPBVPs, broadening the scope of problems

for application via indirect optimization techniques.

The theory behind indirect optimization is introduced, and applied to the general

low-thrust variable specific impulse (VSI) problem. One of the primary disadvan-

tages of an indirect approach is the non-physical nature of the costate variables. This

challenge is alleviated by introducing an adjoint control transformation, that is, a

scheme that relates the costates to physical values and, thus, enables a simpler ini-

tial guess. Presentations of indirect optimization techniques and the adjoint control

transformation are found in numerous textbooks, however this content is reviewed to

set up several sample problems that demonstrate the strengths and weaknesses of an

indirect optimization method.

4.1 Euler-Lagrange Theory

The familiar Euler-Lagrange (E-L) theory transforms the problem of optimizing a

cost function into a well-defined two-point boundary value problem (TPBVP). Orig-
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inating from the calculus of variations, Lagrange developed the approach in response

to the challenges of the brachistochrone problem. The E-L Theorem provides a set of

necessary conditions to be satisfied that enable the optimal control, defined in terms

of the control vector, u∗(t), to minimize the scalar cost function, J . The number

of these conditions is sufficient to ascertain a unique local solution to the TPBVP,

thus, it is denoted as “well-defined”. The E-L theorem is an indirect optimization ap-

proach because an optimal solution satisfies a set of boundary conditions rather than

one that directly minimizes the cost function. A solution that satisfies the necessary

conditions of the E-L theorem is guaranteed to be a locally extremal solution, and

additional rules are available to verify that the solution is a minimum or a maximum.

Greater detail on the derivation and application of the E-L theory are available in

the text Optimal Control with Aerospace Applications by Longuski, et al. [6].

An optimization problem is distinguished from a general trajectory design problem

by the inclusion of an objective function, this expression incorporates the quantities

of importance that determine the optimality of a solution. The objective function, or

cost function, produces a scalar value, J , to be minimized,

Min. J = φ(tf ,xf )︸ ︷︷ ︸
Terminal Cost

+

∫ tf

t0

L(t,x,u)dt︸ ︷︷ ︸
Path Cost

(4.1)

The integrand, L, is termed the Lagrangian and is dependent upon m control vari-

ables, compromising the vector u, in addition to n states, that is, x and time, t. The

cost function in equation (4.1) is generally formulated as a problem of Bolza, con-

taining both terminal and path components of the cost. A cost function consisting

only of a terminal cost is in a Mayer form while a cost function with only a path

component is in Lagrange form.

Application of the E-L Theorem to an optimal control problem is divided into a

series of three distinct steps. The first of these steps is forming the Hamiltonian, i.e.,

H = L(t,x,u) + λTf(t,x,u) (4.2)
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where f(t,x,u) = ẋ is compromised of the n system scalar equations and the λ

vector contains Lagrange multipliers also called costates. The second step in the

process of applying the E-L theorem to an optimal control problem is to evaluate

the partial derivatives of the Hamiltonian according to the E-L necessary conditions.

This computation results in both differential and algebraic equations,

λ̇ =
∂H

∂x
= Hx (4.3)

∂H

∂u
= Hu = 0 (4.4)

Equation (4.3) requires a partial derivative with respect to each of the n state vari-

ables, therefore, this necessary condition results in n differential equations for the

costates. Equation (4.4) produces m algebraic equations from the partial derivatives

of H with respect to the control variables. A TPBVP is formed from the application

of the first two steps of the Euler-Lagrange theory to the optimal control problem,

however the resulting problem may be ill-defined due to an insufficient number of

boundary conditions.

The third step in the process of applying the Euler-Lagrange theory to an optimal

control problem supply additional boundary conditions. An optimal control problem

includes a set of p boundary conditions that define necessary initial or final conditions

for the problem, and these are collected into a vector such that,

ψ(t,x) = 0 (4.5)

To pose the optimal control problem as a well-defined TPBVP, a total of 2n + 2

boundary conditions are required. The initial number of boundary conditions rarely

satisfies this requirement, therefore, additional conditions are typically added. The

initial conditions for the state variables and time supply n + 1 conditions; therefore,

the necessary number of additional conditions is 2n + 2 − (n + 1) − p = n + 1 − p.

To derive the n+ 1− p boundary conditions for a well-defined TPBVP, the terminal

boundary constraints are first differentiated, i.e.,

dψ = ψtfdtf +ψxfdxf = 0 (4.6)
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The known boundary conditions are substituted into equation (4.6), producing p inde-

pendent equations expressed in terms of the n+1−p remaining unknown differentials.

The p independent equations are substituted into the transversality condition that

initially includes n+ 1 differential terms,

Hfdtf − λTf dxf + dφ = 0 (4.7)

Following this substitution, the transversality condition contains n+1−p terms. The

coefficients of each term in equation 4.7 are set to zero and these n+1−p expressions

supply the final boundary conditions to complete the required number. The result of

these operations is 2n + 2 boundary conditions that allow a well-defined TPBVP to

be formulated. This method for deriving the additional boundary conditions required

for the TPBVP is termed the un-adjoined method and is one of two approaches. The

alternate method involves the introduction of extra adjoining variables and, hence,

is denoted the adjoined method. The usage of the adjoined technique has increased

since its inclusion in several key texts such as Bryson and Ho [8] in 1969 and it is the

predominate method taught in modern textbooks [32]. However, both methods are

presented by Citron [33] and Longuski [6]. The popularity of the adjoined method

is largely due to the ease with which it is implemented in various types of numerical

methods, which are required to solve all but the most elementary of optimal control

problems.

Application of the E-L theorem alone is sometimes insufficient to fully solve the

optimal control problem. In such circumstances, the minimum principle is also ap-

plied to determine a control law that determines u∗(t) and, thus, minimizes the cost

function, J . The most general form of this condition is Pontryagin’s Minimum Prin-

ciple [34], often simply identified as the Minimum Principle,

H[t,x∗(t),u∗(t),λ(t)] ≤ H[t,x∗(t),u(t),λ(t)] (4.8)

Bryson and Ho [8] offer McShane’s succinct summary of the Minimum Principle as:

“H∗ must be minimized over the set of all admissible u”. Admissible controls for
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equation (4.8) include a control vector that is continuous or piecewise as well as

bounded or unbounded. The Weierstrass necessary condition is a similar, although

more restrictive version of the Minimum Principle that applies only to scenarios with

unbounded continuous control. However, many concepts in spacecraft trajectory op-

timization require piecewise bounded control, for example, the “bang-bang” control

history of a constant specific impulse low-thrust spacecraft, therefore, the general

Minimum Principle is more frequently applied. Finally, if a maximum value of the

cost function is sought, the inequality in equation (4.8) is reversed to produce the cor-

responding Maximum Principle. Application of the Minimum or Maximum Principles

ensures that the desired type of extremal is obtained when the TPBVP is solved.

The E-L algebraic necessary condition in Equation (4.4) is only applicable to

optimal control problems with unbounded control. When the value of a scalar control

variable u is bounded, for example |u| ≤ umax, then the partial derivative of the

Hamiltonian with respect to the control may not be zero, rather,

∂H

∂u
= H1 (4.9)

where the variable H1 corresponds to a Hamiltonian assumed to be linear with respect

to u, that is,

H = H0(t,x,λ) +H1(t,x,λ)u (4.10)

The sign of H1 is employed, in combination with the minimum principle, to determine

a value for u. According to the maximum principle u is such that H is maximized,

thus the following rule guides the choice of u.

u =


−umax if H1 < 0

undetermined if H1 = 0

umax if H1 > 0

(4.11)

If an optimal control problem is formulated to minimize a given objective, then the

minimum principle applies and the first and last elements of equation (4.11) are

reversed. Note that when a bounded control variable is a vector the approach just
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described for scalar control values applies to each component of the vector variable.

Therefore, algebraic equations for the control variables can be derived even when the

control is bounded.

4.2 Application of Euler-Lagrange Theory to the Low-Thrust VSI Trans-

fer Problem

The literature on low-thrust mission design generally focuses on two types of

engine model based upon constant specific impulse (CSI) or variable specific impulse

(VSI). Constant Specific Impulse engines operate at fixed thrust and power levels,

therefore, the impulse is constant. Trajectories delivered via spacecraft with CSI

engines are decomposed into individual thrusting and coasting segments during which

the engine is either turned on or off, respectively. This type of thrusting scheme

results in a “bang-bang” control structure for the engine control variables, and the

optimal pattern for this structure can be difficult to predict a priori. Recent work

on low-thrust mission design utilizing CSI engines has been conducted by Russell

[35], Tang and Jiang [36], as well as Rasotto et al [37]. Variable Specific Impulse

engines allow the thrust and power levels of an engine to vary which eliminates the

need to determine a specific thrust-coast control structure a priori. While an initial

guess for the path is still required, numerical convergence for spacecraft trajectories

incorporating VSI engines is aided by the lack of control discontinuities. Additionally,

Ranieri and Ocampo [38] have demonstrated via simulations that, in some scenarios,

VSI engines offer greater fuel efficiency than CSI. This advantage has spurred further

investigation into development and demonstrations of VSI engines and missions which

employ them. However, to date no spacecraft equipped with VSI engines have yet

been implemented in flight. All low-thrust spacecraft, thus far, have employed CSI

engines with the Hayabusa and Dawn missions being two of many successful examples.

Ultimately, the VSI engine model is employed in this investigation due to its amenable

numerical properties.



71

4.2.1 Framework for the Low-Thrust VSI Optimal Transfer Problem

The indirect optimal control problem for VSI equipped spacecraft is formulated by

applying the Euler-Lagrange theory, detailed in Section 4.1, to the dynamical model

of a VSI spacecraft. When the VSI engine is in operation, a mass state, m, is added

to the six position and velocity states typically associated with natural dynamical

motion, i.e.,

χ =


r

v

m

 (4.12)

Acceleration terms reflecting an engine thrust model are incorporated into the first

order differential equations governing the motion of a particle representing the space-

craft to obtain equations of motion for a thrusting spacecraft.

χ̇ = fT (t,χ,u) =


ṙ

v̇

ṁ

 =


v

fN(r,v) + T
m
uT

−T 2

2P

 (4.13)

Note that five scalar scalar control variables appear in equation 4.13, i.e.,

The natural dynamical vector force term, fN(r,v), is determined based on the

dynamical model employed in the problem, for example, the 2BP or CR3BP models.

Note that up to five scalar scalar control terms appear in equation 4.13, i.e.,

u =


ûT

T

P

 (4.14)

these determine the motion of a low-thrust spacecraft, in addition to the seven states,

χ. Only three of the five control terms are independent for any given optimal con-

trol problem. Relationships between the control terms enable the values of the two

dependent control terms to be determined from the values of the three independent

control variables. The thrust pointing vector, ûT , is a unit vector that defines the
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direction of thrust, thus the components of this vector are related to one another by

the requirement that ûT have unity magnitude. The magnitude of the full thrust

vector is defined by the scalar value T , where,

T =
2P

Ispg0

(4.15)

where g0 is the acceleration due to gravity on the surface of the Earth, approximated

as 9.80665m
s2

. Equation 4.15 relates the control term T to the control term, P , that

defines the engine power level. While T is left unconstrained the power level, P , is

bounded to be within the range, 0 ≤ P ≤ Pmax. Clearly, changes to the values of T

and P in equation (4.15) impact the value of engine specific impulse, Isp. Note that

when the optimal control problem is setup such that dependent control terms are

allowed to vary then additional constraints are included to enforce the relationships

between the control terms. Alternately, these same relationships can be leveraged to

eliminate the dependent control terms form the framework. Together the state and

control variables describe the trajectory of a spacecraft within the dynamical model.

In the optimal control problem for low-thrust spacecraft a trajectory is desired

that extremizes a scalar cost. A common cost, or objective, of low-thrust mission

design is the minimization of fuel consumption over the duration of a transfer, this

corresponds to a cost function in Mayer form.

Max J = m(tf ) (4.16)

The Euler-Lagrange theory from Section 4.1 is applied to the optimal control problem

defined by equation (4.16) to determine the state and control variables that produce

an optimal solution. First, the Hamiltonian is formed, consistent with equation (4.2).

Equation (4.16) includes no path cost term, thus, L = 0 and the Hamiltonian is,

written

H = λT χ̇ = λTr v + λTv

[
fN(r,v) +

T

m
uT

]
− λm

T 2

2P
(4.17)

where H is not an explicit function of time. Because the Hamiltonian is autonomous

with respect to time, H is constant for the duration of the problem; thus the Hamilto-
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nian is a useful value for determining the error in a numerical solution to the optimal

control problem.

The constrained and unconstrained control variables in the optimal control prob-

lem are addressed differently by Euler-Lagrange theory. The thrust pointing vector

ûT is constrained, therefore, the partial derivative of the Hamiltonian with respect

to uT appears as in equation (4.9), i.e.,

∂H

∂ûT
= λTv

T

m
= HûT

(4.18)

where HûT
is analogous to H1 in equation 4.9, but is a vector because the partial of

H is calculated with respect to ûT . The cost function in equation (4.16) reflects a

goal to maximize J , therefore, H must also be maximized and equation (4.11) guides

the choice of ûT . Assuming the thrust magnitude and mass are positive values, the

value of the Hamiltonian is maximized when ûT is parallel to and oriented as λv, i.e.,

uT =
λv

‖λv‖
(4.19)

This observation was first noted by Lawden who termed λv the primer vector due to

its significance [7]. Engine power is also constrained, thus, the partial derivative of

the Hamiltonian with respect to P is,

∂H

∂P
= λm

T 2

2P 2
= HP (4.20)

where HP corresponds to H1 in equation 4.9. If λm is assumed to be a positive value,

then,

P = Pmax (4.21)

maximizes the Hamiltonian. The remaining control variable, T , is unconstrained,

therefore, the partial derivative of the Hamiltonian with respect to T takes the form

of equation (4.4),

λTv
uT
m
− 2λm

2P
= 0 (4.22)

T =
‖λv‖P
λmm

(4.23)
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The values obtained for the control variables uT and P are substituted into equation

(4.22) and the resulting expression is solved for T resulting in equation (4.23). The

relationship λTv ûT = ‖λv‖ is used in this simplification process. Similar to equation

4.15, equation 4.23 demonstrates the relationship between T and P and indicates

that these control terms cannot both be independent variables.

Several observations simplify the setup and analysis of the expressions resulting

from application of the first two steps of the Euler-Lagrange theory. First, the control

variable expressions obtained in equations (4.19), (4.21), and (4.23) aid in reformu-

lating the Hamiltonian in terms of a switching function S,

H = λTr v + λTvfN + S · T (4.24)

S =
‖λv‖
m
− λmT

2Pmax
(4.25)

The switching function is a useful formulation for understanding the total effect of

the control values on the Hamiltonian. Next, the Euler-Lagrange necessary condition

in equation (4.3) indicates that differential equations for the costates are derived from

the partial derivatives of the Hamiltonian with respect to the state variables,

λ̇ = −∂H
∂χ

T

=


−λTv

(
∂fN

∂r

)
−λTr − λTv

(
∂fN

∂v

)
‖λv‖ T

m2

 (4.26)

The differential equation for λm, the final one in equation 4.26, indicates that this

costate is monotonically increasing; moreover, further analysis suggests that the initial

mass costate is equal to one. Thus, the value of λm is always positive. The final

step of applying Euler-Lagrange theory to the optimal VSI problem is to construct

the additional boundary conditions via transversality. The added conditions allow

a well-defined TPBVP to be posed. The selection of boundary conditions is highly

problem-dependent, thus, the final step is reserved for sample problems.
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4.2.2 Example: Circular Orbit Transfer

An efficient transfer between the circular orbits can be posed in terms of op-

timal propellant usage. The form of the optimal propellant transfer between two

circular orbits is dependent upon the type of engine employed. The optimal propel-

lant impulsive transfer between two circular orbits in the 2BP was first developed

by Hohmann in 1925 [39]. This transfer requires two thruster burns assumed to be

instantaneous, however, this assumption does not apply for low-thrust burns, thus,

Hohmann transfers are not practical for application to low-thrust spacecraft. Cir-

cular orbit transfers for low-thrust spacecraft generally employ spiral trajectories for

orbit lowering and raising maneuvers. Spiral transfers can use weeks to months to

accomplish the objective, however, the total propellant consumption may be far less

than the propellant required for impulsive transfers [40]. Clearly, an obvious trade-off

is apparent. Optimal low-thrust circular-to-circular orbit transfer is a useful exam-

ple for a straightforward optimal control problem. Yet, the spiral behavior in this

problem represents non-trivial dynamical and numerical challenges for a variety of

optimization methods.

The framework for the circular-to-circular orbit transfer optimal control problem

for VSI engines is detailed in terms of the formulation from in Section 4.2.1. The

planar circular orbit transfer problem is posed in a two-body dynamical model, thus,

the equations of motion for the natural dynamics are,

χ̇ = fN(r,v)

ρ̇

θ̇

ṗ

q̇


=



p

q
ρ

q2

ρ
− 1

ρ2

−pq
ρ


(4.27)

In this application, rather than than Cartesian coordinates, polar quantities are better

suited for numerical computation. The position components in terms of the polar

coordinate are r = {ρ, θ}, where ρ is the radial distance from the origin and θ is
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the angle measured counter-clockwise from the X̂ axis. The velocity components are

defined as v = {p, q}, where p and q are the radial and tangential components of

velocity, respectively. The transfer is assumed to be entirely planar, thus, no out-of-

plane components are included in the equations of motion. Figure 4.1 illustrates the

configuration variables.

𝑋  

𝑌  

𝑞 
𝜃 𝜌 

𝑡𝑓 

𝑡𝑜 𝜌𝑜 

𝜌𝑓 

𝑝 
𝑢 𝑇 = 𝑇 and 𝑢 𝑇 

Figure 4.1.: Low-Thrust Circular-to-Circular Orbit Transfer Diagram

The boundary conditions for the circular-to-ciruclar orbit transfer problem dis-

tinguish it from the general formulation of the VSI optimal control problem. The
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transfer is constrained to originate on a circular orbit with known initial conditions,

such that,

ψ0 =



ρ0 −R0

θ0

q0 −
√

1
R0

p0

m0 −M0


= 0 (4.28)

where R0 and M0 represent a known initial radius and mass, respectively. The final

circular orbit is fixed, however, the final values of θ and m remain free,

ψf =


ρf −Rf

pf

qf −
√

1
Rf

 = 0 (4.29)

where Rf is a known final radius. Equations (4.28), (4.29), and the fixed initial and

final transfer times,
[
t0 tf

]
, supply 10 boundary conditions. The planar circular orbit

transfer problem possesses five equations of motion, thus n = 5, and 2(5) + 2 = 12

boundary conditions are required to pose a well-defined TPBVP.

Two more boundary conditions are necessary to pose a well-defined TPBVP, and

these conditions are obtained by applying the transversality condition. The general

transversality condition supplied in equation (4.7), is applied to the end of the circular-

to-circular orbit transfer to obtain,

Hfdtf − λρfdρf − λθfdθf − λpfdpf − λqfdqf − λmf
dmf + dmf = 0 (4.30)

The transversality condition is subject to the expression dψf = 0. Therefore, the

differential terms corresponding to the fixed final boundary conditions in equation

(4.30) equal zero, and these terms are removed from the expression to yield,

− λθfdθf +
(
−λmf

+ 1
)
dmf = 0 (4.31)

The terms dθf and dmf are both nonzero because these quantities can vary during

the iterations for solving the optimization problem. Therefore, for equation (4.31)
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to be true, the coefficients of the remaining differential terms must equal zero. The

coefficient expressions provide the final two boundary conditions that are required to

pose a well-defined TPBVP.

The TPBVP is then solved using the single shooting method described in Section

3.4. The 5×1 design vector corresponding to the single-shooting formulation includes

the initial valeus of the costates,

X =



λρ0

λθ0

λp0

λq0

λm0


(4.32)

The corresponding 5 × 1 constraint vector is then comprised of the final boundary

conditions,

F (X) =



ρf −Rf

pf

qf −
√

1
Rf

λθf

λmf
− 1


= 0 (4.33)

Iterating using Newton’s method, convergence to the design variable values that sat-

isfy the constraints, to within a given tolerance, is achieved. The resulting design

variables are employed to propagate and produce the final solutions for a continuous

low-thrust VSI transfer.

4.2.3 Example: Halo to Halo Transfer

A direct transfer between halo orbits in the vicinity of different libration points is

inherently a three-dimensional transfer problem. Additional complexities are intro-

duced in comparison to the circular-to-circular planar transfer problem as formulated

in the 2BP. However, the invariant manifolds associated with periodic orbits in the



79

CR3BP can be leveraged to yield low-energy transfers between different regions in the

primary system. Because manifolds approach and depart from periodic orbits asymp-

totically, these structures are particularly useful for designing transfers to and from

periodic orbits. Invariant manifolds offer heteroclinic and homoclinic connections

between orbits that require no change in energy implying that the originating and

destination orbits possess the same energy level. Alternately, an engine is exploited to

change energy levels and facilitate connections between manifolds associated with a

wide range of initial and final orbits, expanding transfer options. The continuous and

gradual change in energy supplied by low-thrust engines enable this type of propul-

sion and are particularly well suited for attaining efficient transfers using invariant

manifolds.

A low-thrust transfer between periodic orbits leveraging invariant manifolds can

involve any of the infinite number of trajectories along a manifold surface that depart

from a periodic orbit. The specific manifold trajectory selected is designated by a

nondimensional time parameter, τ , that denotes the “time” along a periodic orbit

at which a manifold trajectory is constructed. The efficiency of a transfer may also

benefit from a period of coasting along a departure or arrival manifold trajectory;

this coast time is represented by the nondimensional time parameter, γ. Figure 4.2

illustrates the definition of τ and γ define the manifolds used for a transfer; these

definitions are demonstrated to be very effective by both Stuart and Howell [10] as

well as Haapala and Howell [41]. The variables τ and γ are incorporated into the

problem formulation for a mass optimal transfer between periodic orbits leveraging

manifold arcs. The general formulation detailed in Section 4.2.1 and is posed in the
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Figure 4.2.: Periodic Orbit Transfer Leveraging Invariant Manifolds

CR3BP dynamical model. Therefore, the equations of motion incorporating only

gravitational forces are,

χ̇ = fN(r,v)

ṙ

v̇x

v̇y

v̇z


=



v

2ẏ + ∂U∗

∂x

−2ẋ+ ∂U∗

∂y

∂U∗

∂z


(4.34)

as originally derived in Section 2.2.3. To complete the definition setup of the optimal

control problem boundary constraints, define the following,

ψ0 = x0(t0)− xI(τ0, γ0) = 0 (4.35)

ψf = xf (tTD,x0,λ)− xF (τf , γf ) = 0 (4.36)

A continuous transfer is ensured by constraining the initial and final states along the

thrust segment, i.e., x0(t0) and xf (tTD,x0,λ), to equal the end states corresponding

to the periodic orbit coast phases, xI(τ0, γ0) and xF (τf , γf ). A fixed thrust dura-

tion TD also constrains the transfer. If the thrust duration or a minimum mass

consumption value are not specifically defined, an optimization procedure simultane-
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ously drives TD to infinity and T to zero, producing an impractical result. Therefore,

a fixed TD is typically selected a priori.

The VSI optimal control problem, as posed in the CR3BP, employs seven state

variables, such that n = 7, and thus, 2(7) + 2 = 16 boundary conditions are nec-

essary to pose a well-defined TPBVP. The constraints in equation (4.35) and (4.36)

supply 12 boundary conditions; therefore, the transversality condition, i.e., equa-

tion (4.7), is used to deliver four additional boundary conditions. Differentials of

the boundary constraints are constructed consistent with the form in equation (4.5).

The first derivatives of xI(τ0, γ0) and xF (τf , γf ) with respect to the nondimensional

time parameters, τ and γ, yield differential relationships that are substituted into the

transversality condition producing,

λTrv0

∂xI(τ0, γ0)

∂τ0

= 0 (4.37)

λTrv0

∂xI(τ0, γ0)

∂γ0

= 0 (4.38)

λTrvf

∂xF (τf , γf )

∂τf
= 0 (4.39)

λTrvf

∂xF (τf , γf )

∂γf
= 0 (4.40)

Note that λTrv0
and λTrvf

are six element vectors composed of the initial and final

position and velocity costates, respectively. When a transfer between periodic orbits

does not utilize manifold arcs, equations (4.38) and (4.40) are unnecessary and are

therefore, omitted as constraints. The change in x with respect to the manifold

propagation parameter γ is derived by the chain rule,

∂x

∂γ
=

 v

fN

 ∂t

∂γ
(4.41)

When thrust time, TD, and manifold propagation time, γ, are nondimensionalized

by the same scaling factor, the relationship ∂t
∂γ

is equal to unity. The change in x

with respect to the periodic orbit coast parameter τ is more complex because the
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relationship is dependent upon γ and the manifold step-off calculation through the

step-off quantity d. Senent et al. [42] derived the expression for this differential as,

∂x

∂τ
= Φ(γ, 0)Υ(τ)

= Φ(γ, 0)
[
f(x(τ, 0))± d[I6 − ν̂ν̂T ]A6(x(τ, 0))ν̂(τ)

] dt
dτ

(4.42)

where Φ(γ, 0) is the STM evaluated at the end of the manifold trajectory propagation

arc and Υ(τ) relates a change in τ to a change in the vector that defines the initial

manifold propagation point. The ± in equation (4.42) is determined by the sign used

to define the half-manifold to be used in constructing the transfer.

With the additional boundary conditions supplied by the transversality condition,

the VSI optimal control problem is posed as a well-defined TPBVP. The TPBVP is

solved via the single shooting method from Section 3.4. This formulation is simplified

by noting that the constraint in equation (4.35) is inherently satisfied when the result

of propagation for the coast times τ0 and γ0 is employed to deliver the initial thrust

propagation point, x0(t0). This choice removes six constraints and allows the six

design variables that define the initial point along the thrust arc to be replaced by

two: τ0 and γ0. Similarly, the final point along the thrust arc is represented by τf

and γf rather than six Cartesian coordinates. The resulting design vector contains

ten design variables, i.e.,

X =



τ0

γ0

λrv0

τf

γf


= 0 (4.43)
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The corresponding constraint vector is also 10× 1, thus, the Jacobian is square and,

from Newton’s method, i.e., equation (3.16), is applied to update the design variables.

F (X) =



xf (tTD,x0,λ)− xF (τf , γf )

λTrv0

∂xI(τ0,γ0)
∂τ0

λTrv0

∂xI(τ0,γ0)
∂γ0

λTrvf

∂xF (τf ,γf )

∂τf

λTrvf

∂xF (τf ,γf )

∂γf


= 0 (4.44)

When a satisfactory initial guess is supplied the Newton’s update equation eventually

converges upon design variable values that satisfy the constraints to within a given

tolerance and the resulting design variables are used to propagate the final solution,

producing a continuous low-thrust VSI transfer. This method is employed to ob-

tain continuous transfers for each of the example problems, however results are not

supplied until Section 4.4.

4.3 Adjoint Control Transformation

The sensitivity of nonlinear differential equations can render the convergence and

solution of a TPBVP dependent upon the initial values of the costates. Because the

costates are non-physical variables, it can be challenging to determine a viable initial

guess. The adjoint control transformation (ACT), originally developed by Dixon and

Biggs, alleviates this problem [43] by linking the costates as formulated in the frame of

the system differential equations with physical values in a spacecraft-centered frame.

Consider a spacecraft-centered frame defined such that one axis is in the direction

of the instantaneous spacecraft velocity, another axis is parallel to the instantaneous

angular momentum direction, and the third axis completes the dextral orthonormal

set, i.e.,

V̂ =
v

|v|
, ĥ =

r × v
|r × v|

, b̂ = ĥ× V̂ (4.45)
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The chain rule is applied to evaluate the derivatives of these quantities,

˙̂
V =

v̇

|v|
− vv̇

|v|2
,

˙̂
h =

ḣ

|h|
− hḣ

|h|2
,

˙̂
b =

˙̂
h× V̂ + ĥ× ˙̂

V (4.46)

where the scalar derivatives v̇ and ḣ are defined,

v̇ = v · v̇
|v|

and ḣ = h · ḣ
|h|

(4.47)

Therefore, equations (4.46) and (4.47) offer the rate of change of the spacecraft-

centered frame with respect to time. The spacecraft-centered frame defined by the

unit vectors V̂ ,ĥ, and b̂ is denoted the velocity frame, V . The thrust pointing vector

expressed in the velocity frame, ûTV , is oriented by the spherical angles α and β as

depicted in Figure 4.3. The expression for uTV in terms of these angles is,

𝒉  

𝑽  

𝒃  𝑆 𝐶  

𝒖 𝑇 

𝛼 

𝛽 

Figure 4.3.: Adjoint Control Transformation Velocity Frame

ûTV =


cosα cos β

sinα cos β

sin β

 (4.48)
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The derivative of equation (4.48) is then the rate of change of the thrust pointing

vector as viewed in the velocity frame,

˙̂uTV =


−α̇ sinα cos β − β̇ cosα sin β

−α̇ cosα cos β − β̇ sinα sin β

β̇ cos β

 (4.49)

The Cartesian coordinates that are defined in the CR3BP are typically expressed in

terms of the rotating frame, therefore, a direction cosine matrix is required to trans-

form the thrust pointing vector and its derivative from the velocity to the rotating

frame,

ûTR = DûTV (4.50)

ûTR = ḊûTV +D ˙̂uTV (4.51)

The direction cosine matrix, D, and its associated derivative are defined,

D =


x̂ · V̂ x̂ · b̂ x̂ · n̂

ŷ · V̂ ŷ · b̂ ŷ · n̂

ẑ · V̂ ẑ · b̂ ẑ · n̂

 (4.52)

Ḋ =


x̂ · ˙̂

V x̂ · ˙̂b x̂ · ˙̂n

ŷ · ˙̂
V ŷ · ˙̂b ŷ · ˙̂n

ẑ · ˙̂
V ẑ · ˙̂b ẑ · ˙̂n

 (4.53)

The spherical angles as defined in the velocity frame in Figure 4.3 are related to the

velocity costate values by the definition of the primer vector in equation (4.18), that

is,

λv = λvuTR (4.54)

The time derivative of equation (4.54) is required to relate the spherical angles to the

position costates,

λ̇v = λ̇vuTR + λvu̇TR (4.55)
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To relate the position costates to the spherical angles, the differential equation for the

velocity costates in equation (4.26) is solved for λr and equation (4.55) is substituted

into the resulting expression.

λr = −λ̇vuTR − λvu̇TR −
∂fN
∂v

λv (4.56)

An expression for the magnitude of the rate of change of the velocity costate is

obtained by assuming that the initial value of the Hamiltonian is equal to zero.

λ̇v = − 1

uTTRv

[
λvu̇

T
TR
v + λTv

∂fN
∂v

v − λTvfN
]

(4.57)

Equations (4.54) and (4.56) relate the position and velocity costate vectors to the

values and rates of change of the spherical angles and the magnitude of the velocity

costate vector. These quantities then replace the original six costates as design vari-

ables in the shooting formulation of the optimal VSI control problem, i.e., the new

design variable vector becomes

XACT =



τ0

γ0

α0

α̇0

β0

β̇0

λv0

λ̇v0

γf

τf



(4.58)

Employing the ACT, the determination of an initial guess for the design variables is

linked to the designer’s intuition concerning the initial magnitude and direction of

the thrust vector in the velocity frame.
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4.4 Example Problems:

The framework for sample optimal VSI problems are detailed in Section 4.2.1.

A simple circular-to-circular orbit transfer demonstrates fundamental behaviors in

the VSI optimal control problem, while more complex transfers leverage invariant

manifolds and demonstrate the versatility of the indirect optimization approach. The

transfer path is constructed and the result appears in configuration space below.

4.4.1 Circular Orbit Transfer

An orbit raising maneuver, from an initial parking orbit to a desired final circular

orbit is a common application of the low-thrust circular-to-circular orbit transfer

problem. The scenario here is a transfer from an initial low Earth orbit (LEO)

to a geosynchronous Earth orbit (GEO). These orbits are both well within Earth’s

sphere of influence, thus, the dynamical model includes only Earth’s gravitational

field. Parameters and initial conditions are included in Table 4.1. A transfer time of

75 days is selected consistent with Seywald et al. in an investigation of the efficiency

of VSI for coplanar circular orbit transfers given fixed transfer times ranging from

50 to 100 days [44]. The VSI transfer involves continuous thrusting, thus, the total

transfer time is equivalent to the thrust duration (TD).

Table 4.1.: LEO to GEO Circular-to-Circular Orbit Transfer Parameters

Parameter Value Units

Earth Gravitational Parameter 3.986004418× 105 km3

s2

Initial Orbital Radius 6671 km

Final Orbital Radius 42164 km

Earth Gravitational Acceleration 9.80665 m
s2

Initial Spacecraft Weight 500 kg

Maximum Spacecraft Power 2000 W
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Figure 4.4.: Orbit Transfer from Initial State (cyan) on LEO (blue) to Final State

(magenta) on GEO (red) for TD = 75 days

A single shooting strategy is applied in the problem formulation as detailed in

Section 4.2.2 and the algorithm converges to a local optimal low-thrust transfer, as

plotted in Figure 4.4. This transfer requires 483 revolutions about Earth; over the

interval, the thrust pointing vector is aligned nearly precisely in the anti-velocity

direction as illustrated in Figure 4.5. The converged or final values for the design

variable vector representing the optimal solution appear in Table 4.2. Optimal so-

lutions for longer or shorter transfer times can be constructed using a continuation

process originating with the solution for TD = 75 days. Convergence to the optimal

solution is extremely sensitive to the initial costate values, thus, natural parameter

continuation proved too coarse as a primary methodology, even with a small step

size. A more accurate continuation approach, e.g., pseudo-arc length continuation, is

necessary to successfully employ continuation with respect to the transfer time.

The initial costate values in Table 4.2, along with the known initial orbit condi-

tions, are used to propagate the circular-to-circular orbit transfer. The final spacecraft

mass is mf = 352.6081 kg, thus, roughly 147 kg of propellant is consumed over the
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Figure 4.5.: Circular Orbit Transfer, with ûT

Table 4.2.: Solution to TPBVP for Circular Orbit Transfer

Parameter Solution

λr0 0.69027033

λθ0 0

λp0 −0.00085971

λq0 0.69109078

λm0 0.49733000

course of the transfer. The plot for the total mass as a function of time is plotted

in Figure 4.6 and appears to decrease linearly, however, close examination reveals

oscillations about this linear approximation with a period consistent with the or-

bital revolutions of the spacecraft. All of the time responses plotted in Figure 4.6

display similar oscillations, including thrust and specific impulse that are inversely

proportional, as indicated by equation (4.15). The difference in the Hamiltonian with

respect to its initial value also appears plotted because it serves to assess the numeri-
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cal accuracy of the propagation. The total variations in the value of the Hamiltonian

in Figure 4.6 are consistent with the order of machine precision, thus, the numerical

integration approach to propagate the other quantities is assumed to be reasonably

accurate.
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Figure 4.6.: Key Parameters for Circular-to-Circular Orbit Transfer

The velocity costates are related to the thrust pointing vector by equation (4.18)

therefore, the behavior of this vector in the spacecraft centered velocity frame is

determined by observing the costates trends. Both components of λv appear constant

in Figure 4.7, although closer examination reveals low amplitude oscillations in both

values. The mean values of λv indicate that the thrust pointing vector only has a

significant component in the tangential direction of the spacecraft centered velocity

frame. Therefore, in the inertial frame the thrust vector constantly points in the
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Figure 4.7.: Costates for Circular Orbit Transfer

positive tangential direction of the circular motion, exactly the behavior observed in

Figure 4.5. The consistent oscillatory nature of the costates and transfer spiral of the

low-thrust circular orbit transfer lend themselves to the development of analytical

approximations and control laws for these types of transfers [45]. More complex

transfers incorporating additional dimensions and forces yield transfers less amenable

to description by analytical methods.

4.4.2 Halo to Halo Transfers

Halo to halo orbit transfers add complexity to the optimal control problem by

introducing additional state variables and parameters. While circular orbit transfers

were kept planar, halo to halo orbit transfers possess significant out-of-plane com-

ponents. The manifolds of halo orbits can offer efficient transfer solutions, but it is

not always beneficial to use these structures, especially when the destination orbit is

centered about the same Lagrange point. Whether or not manifold arcs are employed

the approach for obtaining halo to halo orbit transfers is applicable to a broad range
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Table 4.3.: Halo to Halo Orbit Transfer Parameters

Parameter Value Units

Earth Mass 5.97200× 1024 kg

Lunar Mass 7.34600× 1022 kg

Mass Parameter 0.01215 NA

Earth Moon Distance 384400.00 km

Characteristic Time 375208.35 seconds

Initial Spacecraft Mass 500 kg

Maximum Spacecraft Power 2000 W

of similar transfer scenarios. These scenarios, for example transfer from an Earth

parking orbit to a halo orbit [46], often utilize phasing parameters analogous to the

nondimensional time parameters τi and αi. The two halo to halo transfer problems

chosen for this study closely follow those originally examined by Stuart [47]. The

CR3BP model is used to determine these transfers and standard parameters for this

model are provided in Table 4.3.

Halo to Halo Transfer Without Manifolds

A transfer between two nearby northern L1 halo orbits is not significantly aided by

employing a manifold because both orbits are centered around the same equilibrium

point. Therefore, the two periodic orbits are connected only by a transfer arc which

occurs over a fixed thrust duration, TD = 2.388364 days. Because manifolds are not

leveraged, the parameters γ0 and γf are omitted from the single shooting algorithm

used to obtain the optimal transfer. Initial conditions for the selected Northern halo

orbits are provided in Table 4.4.

The single shooting algorithm converges upon a local optimal low-thrust transfer

for a thrust duration, TD = 2.388364 days, shown in Figure 4.8. Euler-Lagrange
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Table 4.4.: Initial Conditions for Halo Orbits in No Manifold Case

Parameter Initial Orbit Final Orbit

x0 (km) 316625.9094 318038.1661

z0 (km) 17304.8239 36521.8311

ẏ0 (km/s) 0.1582 0.2153

Jacobi Constant 3.1577 3.1091

Period (days) 11.9711 12.0892
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Figure 4.8.: Transfer (green) from Initial L1 Halo (blue) to Final L1 Halo (red)

without Manifold, Including Thrust Pointing Vectors (blue)

theory does not guarantee a solution to the TPBVP is a global optimal. Therefore,

other more optimal transfers may exist for the chosen thrust duration and halo orbits,

this is demonstrated by Stuart [47]. Stuart also located optimal solutions for other

thrust durations by performing continuation with respect to the thrust duration.

The continuation process results in a family of locally optimal transfers for a range
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of thrust durations. The sensitivity inherent in longer thrust arcs eventually requires

that a multiple shooting form of the original single shooting algorithm be used to

obtain convergence.

Table 4.5.: Solution to TPBVP for No Manifold Case

Parameter Solution

τ0 1.66824171

λrx0 1.31297242

λry0 −1.22244717

λrz0 −0.25358164

λvx0 0.40087507

λvy0 −0.31836465

λvz0 0.070576740

τf 2.19435230

The design variable vectors converged upon for the optimal solution are provided

in Table 4.5, where the coast times along each periodic orbit, τ0 and τf , are measured

from from the northern crossing of the X − Z plane. This solution to the optimal

control problem is used to propagate the thrust arc for the chosen thrust duration.

The spacecraft mass at the end of the thrust arc propagation is mf = 480.6426 kg,

thus roughly 20 kg of fuel is consumed over the course of the transfer. Figure 4.9

shows that mass is consumed most quickly at the beginning and end of the transfer,

this trend corresponds with the relatively high thrust values used at those times. As

indicated in equation (4.14), the thrust trend line is the inverse of the specific impulse

trend; the maximum specific impulse occurs at the midpoint of the thrust duration

when thrust is at a minimum. The difference in the Hamiltonian with respect to its

initial value is also plotted as a function of thrust duration because it serves as a

check of numerical accuracy. The variations of the Hamiltonian shown in Figure 4.9
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Figure 4.9.: Key Parameters for L1 Halo to L1 Halo Transfer Without Manifold

are close to machine precision, thus the propagation used to obtain the other trends

is once again assumed accurate.

The velocity costates are related to the thrust pointing vector by equation (4.18)

and all of the costates are related to physical angles by the ACT scheme, thus, useful

insight is gained from noting the costates trends. Figure 4.10 shows that over the

duration of the transfer λvx decreases while λvy increases. This trend is consistent

with the thrust pointing vectors plotted in Figure 4.8 which switch direction with

respect to the x and y axes while remaining relatively constant in z.
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Figure 4.10.: Costate Trends for L1 Halo to L1 Halo Transfer Without Manifold

Halo to Halo Transfer With Manifolds

The fuel efficiency of a transfer between periodic orbits surrounding different equi-

librium points is increased by leveraging manifold structures. An unstable manifold is

used to depart the initial orbit while a stable manifold assists insertion into the final

orbit. The coasting period spent on each manifold is governed by the nondimensional

time parameters γ0 and γf , now included in the single shooting algorithm. Initial

conditions for the selected Northern halo orbits are provided in Table 4.6. Note, that

the Jacobi constant values supplied for the selected halo orbits are identical up to four

digits. Initial conditions for halo orbits corresponding to the provided Jacobi con-

stant values are targeted, however the halo orbits produced by the targeting scheme

possess slightly different Jacobi constant values when more decimal places are shown.

If this difference were not present then a heteroclinic connection between the two

orbits would be available.
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Table 4.6.: Initial Conditions for Halo Orbits in Manifold Case

Parameter Initial Orbit Final Orbit

x0 (km) 318014.12 449363.6

z0 (km) 36287.36 37632.76

ẏ0 (km/s) 0.2146 −0.1994

Jacobi Constant 3.1149 3.1149

Period (days) 12.0806 14.4809
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Figure 4.11.: Transfer (green) from Initial L1 Halo (blue) to Final L2 Halo (red)

Employing Unstable (Magenta) and Stable (Cyan) Manifolds

The single shooting algorithm converges upon a local optimal low-thrust transfer

for a thrust duration of TD = .651372 days, shown in Figure 4.11. Once again,

continuation can be used to obtain a family of locally optimal transfers for a range

of thrust durations. The design variable vectors for the optimal solution, provided in

Table 4.7, now include the coast times along each manifold, γ0 and γf , where γf is
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Table 4.7.: Solution to TPBVP for Manifold Case

Parameter Solution

τ0 2.05210772

α0 2.85602244

λrx0 0.12807031

λry0 −0.38761577

λrz0 1.38237663

λvx0 0.22623444

λvy0 −1.18940955

λvz0 −0.63957151

αf −3.80619756

τf 1.47574058

negative because the stable manifold is propagated in reverse time. This solution to

the optimal control problem is used to propagate the thrust arc for the chosen thrust

duration.

The spacecraft mass at the end of the thrust arc propagation is mf = 415.5340 kg,

thus roughly 85 kg of fuel is consumed over the course of the transfer. Figure 4.12

illustrates that the spacecraft mass decreases in a nearly linear manner over the thrust

duration. The thrust magnitude, also presented in Figure 4.12 follows a similar trend

while the specific impulse reflects the reverse trend. The Isp values obtained for this

transfer are relatively low compared to current low-thrust engines, however transfers

with greater Isp and lower T values can be obtained by extending the thrust duration

via continuation. The variations in the Hamiltonian with respect to H0 in Figure

4.9 are once again close to machine precision, therefore, the transfer propagation is

assumed accurate.
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Figure 4.12.: Key Parameters for L1 Halo to L2 Halo Transfer Employing Manifolds

The velocity costates remain relatively constant throughout the thrust duration,

as shown in Figure 4.13. The λvx costate possesses the largest slope and switches sign

during the thrust duration. The relatively steady thrust pointing is reflected in the

unit vectors plotted in Figure 4.14 which all point in the negative y directions.

Euler-Lagrange theory provides a general method that, applied to the low-thrust

VSI optimal control problem, yields a formulation applicable to several transfer sce-

narios that exhibit unique features such as spiraling or coasting periods. The costates

introduced by the Euler-Lagrange theory provide useful control laws for the space-

craft, that allow the results of the TPBVP to be propagated. However the nonphys-

ical values of the costates make determining an initial guess challenging, although

this is alleviated somewhat by the adjoint control transformation. Additionally, the
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Figure 4.13.: Costate Trends for L1 Halo to L2 Halo Transfer Employing Manifolds

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

X

Y

Figure 4.14.: Halo to Halo Orbit Transfer Employing Manifolds with Thrust Vector

transversality condition was used to pose a well-defined TPBVP, however the resulting

boundary conditions had to be rederived for each type of transfer examined. While

solution to the TPBVP formulated using Euler-Lagrange theory is guaranteed to be

a local optimal, changes in the problem require siginificant rederivation. The rigidity



101

of the TPBVP problem formulation and the sensitivity of the non-physical costates

are incentives to explore other methods for solving optimal control problems.
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5. DIRECT OPTIMIZATION WITH COLLOCATION

The indirect optimization approach from Chapter 4 solves the optimal control prob-

lem by transforming it into a TPBVP using the Euler-Lagrange necessary conditions

and the transversality conditions; the solution of this problem is then guaranteed to

be locally optimal. A cost function is used to setup the TPBVP, but direct operation

on the the cost function does not occur in solving the problem. In contrast, direct

optimization methods employ the cost function directly during the computation of an

optimal solution, typically constructing the gradient of the cost function and ensuring

that each iteration shifts the solution in a direction that minimizes the norm of the

gradient. Many direct optimization approaches discretize an optimal control prob-

lem, thus transforming it into a parameter optimization problem that can be solved

using Nonlinear Programming (NLP) methods [48]. Direct optimization schemes are

typically categorized based on the strategy to discretize the optimal control problem

and the type of NLP method. The discretization process is termed direct transcrip-

tion; the size and accuracy of the resulting discretization varies with the particular

transcription scheme [49]. The NLP problem formulated using direct transcription

often involves hundreds or thousands of individual variables. Therefore, NLP algo-

rithms capable of accommodating large, sparse problems, for example, interior-point

methods, are employed to solve direct optimization problems parameterized via direct

transcription.

5.1 General Optimal Trajectory Design Problem

Stating the optimal trajectory design problem in its most general form reflects the

application of direct optimization methods to obtain a solution. A trajectory design
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problem begins, of course, with a set of differential equations that govern the the

system dynamics,

ẋ = f
(
x(t),u(t),κ, t

)
(5.1)

where the dynamics are a function of ns variables x in the state vector, nu control

variables defined as the elements of vector u, and any parameter values included in

the vector κ that are not dependent on time t. Initial and final conditions consistent

with the system equations are defined at times t0 and tf , i.e.,

ψ0l ≤ ψ
(
x(t0),u(t0),κ, t0

)
≤ ψ0u (5.2)

ψfl ≤ ψ
(
x(tf ),u(tf ),κ, tf

)
≤ ψfu (5.3)

A trajectory or trajectory arc is a solution to the set of dynamic equations that govern

motion in the system. This solution or the dynamical flow, is also subject to path

constraints that may apply only at specific times, or along the entire path.

gl ≤ g
(
x(t),u(t),κ, t

)
≤ gu (5.4)

Additionally, the state and control variables corresponding to a particular solution

may be limited by upper and lower bounds,

xl ≤ x(t) ≤ xu (5.5)

ul ≤ u(t) ≤ uu (5.6)

The goal of an optimal control problem is the determination of the control variables

and parameter values that extremize a scalar cost value, J , while also delivering a

path that is consistent with the problem dynamics and satisfies the constraints. The

equation for the cost value, J , is termed the objective function and, expressed in the

Mayer form, is written,

J = φ(x(tf ), tf ) (5.7)

Note, additional variables or parameters can be included in the objective function but,

in this representation, J is dependent upon the final states and time. The general



105

optimal trajectory design problem is continuous in time, therefore, an obvious solution

strategy is the application of Euler-Lagrange theory which transforms continuous

optimization problems into TPBVPs.

This approach is represented by the indirect optimization scheme detailed in Chap-

ter 4. Direct optimization methods offer an alternate solution strategy, however, it is

required that the continuous optimal trajectory design problem be discretized.

5.2 The Nonlinear Programming Problem

The field of mathematical optimization encompasses a diverse array of optimiza-

tion problems along with methods for solving these problems; an excellent overview

of this discipline is offered by Bertsekas [50] as well as Boyd and Vandenberghe [51].

The nonlinear programming (NLP) problem is one of the most basic types of math-

ematical optimization problems and many direct optimization methods use NLP to

solve a parameter optimization problem. The goal of a nonlinear programming (NLP)

problem within the larger field of mathematical optimization, is the determination of

the n variable vector x that minimizes,

min
x

E(x) (5.8)

subject to the m constraints,

cl ≤ c(x) ≤ cu (5.9)

with bounds,

xl ≤ x ≤ xu (5.10)

The constraints in equation (5.9) include equality and inequality constraints, where

the equality constraints, c(x) = 0, appear when cL = cU . Note, the bounds in

equation (5.10) differ from equation (5.5) because, in the former, the variables are no

longer continuous in time. The Lagrangian is introduced to secure a solution to the

NLP, and is a scalar value determined from,

L(x,λ) = E(x)− λTc(x) (5.11)
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Note, though the Lagrangian in the NLP is similar in form to the Hamiltonian,

equation (4.2), the Lagrange multipliers, λ, are not necessarily equivalent to the

costates that are familiar in indirect optimization. The partial derivatives of the

Lagrangian with respect to the variables in x and the Lagrange multipliers λ supply

the necessary conditions for solving the NLP,

∇xL(x,λ) = g(x)−GT (x)λ = 0 (5.12)

∇λL(x,λ) = −c(x) = 0 (5.13)

where g = ∇xE is the gradient of the objective function, and G is the Jacobian of

the equality constraint vector. The system comprised of equations (5.12) and (5.13)

is solved using a Newton method, where the linear system for computing the update

vector, {∆x, ∆λ} is, HL −GT

G 0


∆x

∆λ

 =

−g−c
 (5.14)

The matrix HL in equation (5.14) is denoted the Hessian and is a matrix of the

second derivatives of the equality constraints constructed by,

HL = ∇2
xE −

m∑
i=1

λi∇2
xci (5.15)

The system of equations (5.14) is denoted a Karush-Kunh-Tucker (KKT) system,

because its formation is based on the well known Karush-Kuhn-Tucker conditions.

The general optimal trajectory design problem is discretized to apply the strategy for

solving the NLP that is supplied by the KKT conditions. The discretization process is

frequently denoted direct transcription and collocation methods offer one approach for

implementing this process. The surveys by Betts ([52] and [53]) provide an overview

of the general optimal trajectory, the NLP, and the application of both concepts to

direct transcription. Finally, note that solving the NLP via the KKT conditions is one

of a variety of approaches for solving a mathematical optimization problem. Other

solution strategies fall under the categories of feasible direction methods, Lagrangian
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methods, and penalty function methods, as outlined by Bertsekas [50]. However, not

all of these methods are well-suited for solving the NLP especially the NLP formulated

from the trajectory optimization problem.

5.3 Collocation

Collocation is a method for implicitly integrating differential equations, one that

is frequently employed to transcribe continuous optimal control problems into NLP

problems. The implicit integration approach fits piecewise polynomials into a dis-

cretization framework in a system governed by a set of ordinary differential equations.

In astrodynamics, a discretization is commonly comprised of discrete points in time,

i.e.,

Π : t0 < t1 < . . . < tn = tf (5.16)

where Π is a mesh comprised of n mesh points. Each mesh point, Zi, may have

associated state and control information, i.e.,

Z = {x1,u1, . . . ,xn,un}T (5.17)

The n mesh points define n− 1 segments where the time step along each segment is

defined as ∆ti = ti+1 − ti. For numerical convenience, the time along each segment

is typically normalized such that the time interval along a segment is [−1, 1]. The

conversion to normalized time is then given by,

τ =
2

ti+1 − ti
(t− ti)− 1 (5.18)

where τ represent the normalized time on segment i that is equivalent to the non-

normalized time, t. Computations relevant to a specific segment that are accom-

plished on a normalized time interval, improves the scaling and computational effi-

ciency. The general collocation framework follows a scheme developed by Ozimek et

al. [54] and refined by Grebow and Pavlak [55].
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The fidelity of a collocation scheme is dependent upon the accuracy of the ap-

proximation of the solution to a set of differential equations. The simplest collocation

approach utilizes Euler’s integration rule, i.e.,

xi+1 = xi + ∆tif(ti,xi,ui) (5.19)

where f(ti,xi,ui) represents the system dynamical equations. Equation (5.19) uses

the vector field information, or “slope”, at mesh point i to predict the states at mesh

point i + 1. The discrepancy between the states predicted by Euler’s rule and the

actual states at i+ 1 is defined as the defect.

∆i = xi − xi+1 + ∆tif(ti,xi,ui) = 0 (5.20)

The collocation problem is solved when all defects equal zero to within a predefined

tolerance, thus ensuring state continuity between adjacent segments with a mesh that

abides by the system dynamics. The Euler rule method of collocation is depicted in

Figure 5.16. Euler’s rule provides a simple demonstration of the collocation approach,

however, it only approximates a solution to a set of differential equations with first

order accuracy, O(h). The low accuracy associated with Euler’s method is mitigated

by employing shorter discretization segments, but this approach requires a large num-

ber of segments to produce an accurate solution. Alternatively, higher order methods

typically allow a reduction in the number of segments necessary to accurately solve

a collocation problem. A method based on the trapezoidal rule, illustrated in Figure

5.2, supplies an additional order of accuracy over Euler’s rule, O(h2). The defect

equation based on the trapezoidal rule is,

∆i = xi − xi+1 +
∆ti
2
{f(ti,xi,ui) + f(ti+1,xi+1,ui+1)} = 0 (5.21)

Low order of accuracy schemes for implicit integration, for example Euler’s method

and the trapezoidal rule are useful for demonstrating fundamentals of the collocation

approach, however both schemes are generally considered too coarse for practical

implementation.
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Figure 5.1.: Collocation Using Euler’s Rule
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Figure 5.2.: Collocation Using the Trapezoidal Rule

The accuracy of a particular discretization strategy is influenced by the num-

ber of segments and the order of the implicit integration method. Higher degree

polynomials typically yield greater accuracy, although errors can arise from very high

degree polynomials. The same order of accuracy is achieved by fitting a discretization

scheme containing a few segments with higher order polynomials or by fitting many

smaller segments with lower degree polynomials. The specific approach implemented

to attain a desired degree of accuracy is determined based on problem objectives and
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computational power. A flexible collocation scheme that allows the polynomial degree

N to be easily adjusted to achieve the desired order of accuracy is advantageous, such

a scheme was developed by Williams [19]. Grebow and Pavalk [55] refined Williams’

variable polynomial degree collocation scheme, the method supplied by these authors

that employs only odd degree polynomials is represented here. Grebow and Pavlak

offer a similar formulation for even degree polynomials as well, however, odd degree

polynomials yield the same accuracy with a less complex formulation. Consider an

N th degree polynomial for segment i, i.e.,

pi(τ) = Ci{1 τ τ 2 · · · τN}T (5.22)

where Ci is a matrix of polynomial coefficients with dimensions ls × (N + 1). The

polynomial defining segment i is then a ls × 1 vector that approximates the states at

the normalized time τ . The general formulation offered for representing the polyno-

mials of a collocation scheme accommodates any degree polynomial and an arbitrary

number of state variables.

A variety of schemes are available for constructing the polynomials along each

segment. The matrix of polynomial coefficients, Ci, is constructed using states at one

or more nodes on segment i. Each segment is subdivided into (N+1)/2 variable nodes

and (N − 1)/2 defect points. The index of a variable node or defect point is indicated

by the subscript j = 1, 2, . . . , N , and the variable nodes and defect points occur at odd

and even numbered j, respectively, as demonstrated in Figure 5.3. A node placement

scheme determines the normalized times τj at which the variable nodes and boundary

points are placed. Equally distributing the variable nodes in normalized time is the

simplest scheme, however, higher orders of accuracy are delivered by placing the

nodes at the roots of Legendre or Chebyshev polynomials. Several node placement

schemes prevalent in the literature are listed in Table 5.16, where PN(τ) are degree

N Legendre polynomials, where N is the degree of the polynomial. The collocation

algorithm in this investigation utilizes Legendre-Gauss points. Because LG points do

not lie on the boundaries of a segment, computations associated with each segment

are independent, and this feature is leveraged to improve computational speed.
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Figure 5.3.: Collocation Using a 7th Degree Polynomial

Table 5.1.: Node Placement Schemes

Method Description Order of Accuracy

Legendre-Gauss-Lobatto (LGL)
τj at -1 and 1 and at

the roots of ṖN−1(τ)
2N − 2

Legendre-Gauss-Radau (LG)
τj at the roots of

PN−1(τ) and PN(τ)
2N − 1

Legendre-Gauss (LG) τj at the roots of PN(τ) 2N

A polynomial segment pi approximates states and derivatives at times τj along a

discretization segment. The states and derivatives as evaluated by a polynomial at

each τj are represented as pi,j = pi(τj) and ṗi,j = dpi(τj)/dτ , respectively. These

values are constrained to equal those values at the variable nodes, that is,

pi,j = xi,j, i = 1, . . . , n− 1 (5.23)

ṗi,j = ẋi,j, j = 1, 3, . . . ,
N + 1

2
(5.24)
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where xi,j is the vector state at node j on segment i. The derivatives at these nodes

are computed as,

ẋi,j =
∆ti
2
f
[
τj,xi,j,ui,j

]
(5.25)

Recall ∆ti is the non-normalized time interval of a segment i, thus, the coefficient

∆ti/2 transforms the derivatives to normalized time. Substituting equation (5.22)

into equations (5.23) and (5.24) produces a matrix representation of the variable

node constraints along an entire segment,

Ci [τ τ̇ ] =
[
xi,1,xi,3, · · ·xi,N |ẋi,1ẋi,3 · · · ẋi,N

]
(5.26)

where τ and τ̇ represent the matrices,

τ =



1 1 · · · 1

τ1 τ3 · · · τN

τ 2
1 τ 2

3 · · · τ 2
N

...
... · · · ...

τN1 τN3 · · · τNN


(5.27)

τ̇ =



0 0 · · · 0

1 1 · · · 1

2τ1 2τ3 · · · 2τN
...

... · · · ...

NτN−1
1 NτN−1

3 · · · NτN−1
N


(5.28)

The system of equations in equation (5.26) contains 2N× ls constraints and ls×N+1

unknown coefficient values. The states at the variable nodes are supplied as part of

the initial guess for the collocation problem. The unknown values are then computed

by solving equation (5.26) for Ci.

Ci =
[
xi,1,xi,3, . . . ,xi,N | ˙xi,1, ˙xi,3, . . . , ˙xi,N

]
A−1 (5.29)
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The matrices τ and τ̇ are combined into a single matrix A that is square and non-

singular,

A =



1 1 · · · 1 | 0 0 · · · 0

τ1 τ3 · · · τN | 1 1 · · · 1

τ 2
1 τ 2

3 · · · τ 2
N | 2τ1 2τ3 · · · 2τN

...
... · · · ... | ...

... · · · ...

τN1 τN3 · · · τNN | NτN−1
1 NτN−1

3 · · · NτN−1
N


(5.30)

If first order differential equations are available for any of the control variables, ui,j,

then polynomials can be constructed in the same way for these variables.

Construction of the matrix Ci involves the development of a polynomial for each

state along the segment i, and this polynomial is leveraged to approximate the states

at the defect points. The normalized times at the location of the defect points are

used to create the matrices B and D. Recall that the defect point locations are

determined from the same node placement scheme used to place the variable nodes,

B =



1 1 1 · · · 1 1

−1 τ2 τ4 · · · τN−1 1

−1 τ 2
2 τ 2

4 · · · τ 2
N−1 1

...
...

... · · · ...
...

−1 τN2 τN4 · · · τNN−1 1


(5.31)

D =



0 0 · · · 0

1 1 · · · 1

2τ2 2τ 2
4 · · · 2τN−1

...
... · · · ...

NτN−1
2 NτN−1

4 · · · NτN−1
N−1


(5.32)

The first and last columns of B are included to compute the states at the boundary

nodes along a segment because, depending upon the node placement scheme, the

boundary nodes may not be variable nodes, meaning they are not used to construct
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the segment polynomial. Therefore, it is convenient to compute the boundary node

states as well so that they are available toward the evaluation of other constraints.

Note, because time along each segment is normalized, the step sizes to define τj are

the same along every segment, thus, the matrices A, B, and D are computed only

once, when a collocation problem is initially formulated. The matrix B and the

polynomial coefficients are then employed to construct the states at the defect points

and boundary nodes. [
xi,0 xi,2 xi,4 · · · xi,N−1 xi,f

]
= CiB (5.33)

If a polynomial representation of the control history is employed, then states at the

control points are computed as demonstrated in equation (5.33). Otherwise, control

values at the defect point j are assumed to be equivalent to the values at the variable

node j+ 1. The polynomials constructed in equation (5.29) are also used to compute

the derivatives of the states at the defect points by evaluating CiD. The derivatives

of the states at the defect points are also computed using the dynamic equations in

equation (5.25). The defect equations, also denoted defect constraints, are defined by

the difference between the results obtained from the two approaches for constructing

the derivatives at the defect points,[
CiD −

[
ẋi,2 ẋi,4 · · · ẋi,N−1

]]
W = 0 (5.34)

The diagonal matrix W in equation (5.34) incorporates quadrature weights for each

variable node that enable the chosen node placement scheme to provide a higher

order of accuracy than the same number of unweighted nodes. The values of the

weights are determined by the node placement scheme, for example LG or LGL.

Driving the defect constraints to zero, or some acceptable tolerance, ensures that

the polynomials constructed for each segment sufficiently approximate the system

dynamics. When convergence is obtained, the solution for the collocation problem

yields piecewise polynomials that approximate the state at any point along a solution

arc. The variables node states that cause the defect constraint equations to evaluate

to zero are constructed by posing the collocation problem in terms of differential
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corrections which is implemented with a free-variable and constraint formulation.

The design variables in this framework are the position and velocity states at the

variable nodes, i.e.,

X =


x1,1 x1,3 . . . x1,N

x2,1 x2,3 . . . x2,N

...
...

. . . x1,N

xn−1,1 xn−1,3 . . . xn−1,N


(5.35)

The matrix in equation (5.35) is reshaped into a single column vector for application

with Newton’s method. The defect constraints along each segment are included in

the constraint vector, as are continuity constraints that ensure that the segments

comprising the final trajectory are continuous in position and velocity,

F =



x1,0 − x0,fix

x2,0 − x1,f

...

xn−1,0 − xn−2,f[
C1D −

[
ẋ1,2 ẋ1,4 · · · ẋ1,N−1

]]
W[

C2D −
[
ẋ2,2 ẋ2,4 · · · ẋ1,N−1

]]
W

...[
Cn−1D −

[
ẋn−1,2 ẋn−1,4 · · · ẋn−1,N−1

]]
W



= 0 (5.36)

The vector x0,fix in equation (5.36) is a desired initial state. The constraints that

define the collocation problem are formulated such that computations along each seg-

ment are independent. Therefore, the Jacobian matrix that results from the partial

derivatives of F with respect to x is highly sparse. The sparsity of the Jacobian matrix

is leveraged to implement strategies that reduce the computation times for general

collocation algorithms. These strategies are especially essential when the collocation

problem becomes very large. The procedure for solving a NLP problem by collocation

is illustrated in the flowchart in Figure 5.4. A converged result to a collocation prob-

lem yields the approximation of a solution to a system of differential equations, and



116

this approximation is dependent upon the parameters of the discretization technique

and the implicit integration method. The accuracy of the final solution is improved

by refining the discretization mesh.

Interpolate to 
Obtain Defect 

Constraints 

Update 
Segment 

Times 

Converged 
Solution 

<  𝑡𝑜𝑙 

>  𝑡𝑜𝑙 

Construct 
Polynomials 

Calculate 
Jacobian 

Initial 
Guess 

Figure 5.4.: Procedure for Applying Collocation with Newton’s Method

5.4 Mesh Refinement

The solution of an optimal control problem via collocation produces a set of piece-

wise polynomials that approximate a solution to a system of first-order differential

equations. The accuracy of this solution is highly dependent on the spacing and

number of nodes used in the problem mesh. A variety of methods exist for refining

the mesh such that the error in the converged collocation solution is below a desired

tolerance; some methods also ensure that the total error is equally distributed across

segments. Russell and Christiansen compared several mesh refinement schemes [56],

including the de Boor mesh refinement technique. Originally developed by Carl de

Boor [57], this approach reduces and equally distributes the error among the segments

in the collocation problem; given its computational efficiency, the de Boor method

is leveraged in this investigation. Details concerning the de Boor mesh refinement
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approach follow from a framework employed by Ozimek et al. [54] and then further

honed by Grebow and Pavlak [58].

Mesh refinement implies both potential adjustment in the size of the grid as well

as a guided approach to locating the nodes that define the mesh. The placement of

points that define the mesh is adjusted based on the error predicted for the polynomial

approximations of the states in a converged collocation solution. The error in a

polynomial approximation of order N for a segment i is,

ei = K∆tN+1
i ξi +O(∆tN+2

i ) (5.37)

where the scalar error due to higher order terms, O(∆tN+2
i ), is determined by the

time interval along a given segment, where ξi represents the N th+1 derivative of the

constructed polynomial. The constant K is a dimensionless scalar value that is de-

pendent on the degree of the polynomial. A method for computing K is presented in

the Appendix of Russell and Christiansen [56] and several pre-computed values are

provided in Table 5.2. De Boor states that the variable ξi is estimated by the N th+1

derivative of the solution [57], however, this value cannot be calculated directly from

the polynomial in the collocation solution. As an alternative, the polynomial and

time intervals on the converged collocation solution are used to approximate ξi.

ξi ≈



2max

[ ∣∣∣p(N)
1 −p(N)

2

∣∣∣
∆t1+∆t2

]
, on (t1, t2)

max

[ ∣∣∣p(N)
i−1−p

(N)
i

∣∣∣
∆ti−1+∆ti

]
+ max

[ ∣∣∣p(N)
i+1−p

(N)
i

∣∣∣
∆ti+1+∆ti

]
, on (ti, ti + 1), i = 2, . . . , s− 1

2max

[ ∣∣∣p(N)
s+1−p

(N)
s

∣∣∣
∆ts+1+∆ts

]
, on (ts, ts+1)

(5.38)

Note, s is a new parameter representing the number of segments in a mesh s = n− 1.

The error calculated with equations (5.37) and (5.38) is an approximation of the error

in the polynomial fit to the segment, it is not equivalent to the error that would result

from an explicit propagation of the segment.

The error in the collocation solution for each segment may vary significantly along

a path after it is initially converged. However, equally distributing error along a
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Table 5.2.: Constant Values for Odd Degree Polynomial Error Calculation

Degree K Value

1 1.25

2 8.01875373874480× 10−3

3 5.20833333333334× 10−4

4 2.45076190281488× 10−5

5 1.03339947089947× 10−6

6 3.59267656090070× 10−8

7 1.12915151977652× 10−9

8 3.08927792667408× 10−11

9 7.74907905728965× 10−13

10 1.74408359272640× 10−14

11 3.64148451940432× 10−16

trajectory is desirable because it ensures efficient node placement by locating more

boundary points at times where the solution is rapidly changing and vice versa. The

times at which each boundary point occurs are updated to achieve error equidistri-

bution, and the updated times are identified by,

ti+1 = I−1

[
iI(ts+1)

s

]
, i = 1, . . . , s− 1 (5.39)

where I is determined from the integral,

I(t) =

∫ t

t1

ξi(s)
1

n+1ds (5.40)

Calculation of the integral in equation (5.40) is simplified by the fact that ξi(s) is

approximated by a piecewise constant method. Therefore, equation (5.40) can be

precisely constructed by the rectangle rule of integration. Note, equation (5.39) is

the inverse integral of I, computed at the value indicated by the expression within

the brackets. State and control values at the new boundary node times, computed
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via equation (5.39), are interpolated from the mesh nodes that support the previ-

ously converged collocation solution; the NLP problem is then resolved with these

new values. The process of computing the quantities in equations (5.37)-(5.40) and

re-solving the NLP problem, is iterated until the maximum difference between the

segment errors is less than a predefined tolerance.

After the error of the polynomial approximations is equally distributed along each

segment of the mesh the number of segments is updated as well. The number of

segments in the mesh is updated as,

sj+1 = round

sj (10ei
tol

) 1
N+1

+ 5

 (5.41)

Once the number of segments is updated, both in number and location, the new

boundary point times are calculated from equation (5.39) and the NLP problem

is solved again. The procedure for equally distributing the error and reducing the

total error by adding segments is repeated until the total error is below a desired

tolerance. An schematic of the mesh refinement process appears in the flowchart in

Figure 5.5. Inclusion of a mesh refinement scheme paired with a collocation method

enables solutions to systems of differential equations on the same order of accuracy

as explicit integration methods.

5.5 Nonlinear Programming Problem Setup

A collocation and mesh refinement scheme is employed to transcribe the contin-

uous optimal control problem into a nonlinear programming problem. A variety of

algorithms and software packages exist for solving NLPs, and many are tailored to

efficiently solve specific problem types. Large-scale NLP algorithms, for example, the

interior-point method, are well suited to solving NLP problems with a large number

of variables and constraints. These algorithms leverage the sparsity of the Jaco-

bian and Hessian matrices in large NLP problems to save computation time. Direct

transcription of optimal trajectory design problems often produces large NLPs, thus,
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Figure 5.5.: Procedure for Applying Mesh Refinement with Collocation, Based on

Figure by Grebow and Pavlak [58]

large-scale algorithms are applied. The widely available software package Matlab R©

contains an NLP solver, fmincon, with an interior-point algorithm to solve optimiza-

tion problems. Other common software packages that leverage the sparsity of large

matrices to solve large-scale NLPs are the Sparse Nonlinear OPTimizer (SNOPT)

and the Interior Point OPTimizer (IPOPT) both of which are exploited in trajectory

optimization tools. The interior-point algorithm option in the NLP solver fmincon

was employed in this investigation; the derivation and details of this algorithm are

available in Byrd et al. [59] [60].

Continuity and defect constraints from the collocation scheme are incorporated

into the NLP, however, additional constraints are required to ensure that the NLP

solver converges to a feasible final solution. Constraints on control variables are also

incorporated into the derivation of the TPBVP in the indirect optimization method,

therefore, these constraints are implicitly satisfied in the solution of the problem.

However, in the NLP problem, constraints on the control values must be explicitly

included in the constraint vector. One notable constraint involves the maximum

power value governing the spacecraft engine. It is guided to remain within the range
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0 ≤ P ≤ Pmax. This constraint is incorporated into the NLP problem formulation

using the slack variable σ, i.e.,

Pi − Pmax sin2(σi) = 0 (5.42)

ûTTiûTi − 1 = 0 (5.43)

Ti − η2 = 0 (5.44)

Additionally, as is apparent in equation 5.44 the slack variable η is added to constrain

the thrust magnitude, T , to satisfy T ≥ 0, and the direction of the thrust vector,

ûT , is also constrained to maintain a magnitude equal to one. These control variable

constraints, as formulated in equations (5.42)-(5.43), are applied at each variable node

in the discretized optimal control problem.

Continuity is ensured by enforcing boundary constraints on the initial and final

points along the trajectory. In the circular orbit transfer problem, the boundary

constraints included the initial and final circular orbits; in the halo-to-halo transfer

scenario, the thrust arc is constrained to be continuous through the end of the coasting

segments, or

x1,0 −ψ0 = 0 (5.45)

xs,f −ψf = 0 (5.46)

Finally, the initial mass state is formulated as a boundary constraint, because without

this constraint, the NLP solver increases the initial mass of the spacecraft in an effort

to maximize the mass at the end of the transfer arc, therefore,

m1,0 −M0 = 0 (5.47)

The variable M0 in equation (5.47) represents a fixed mass value equal to the de-

sired initial mass of the spacecraft. These additional boundary and control variable

constraints are combined with constraints associated with the collocation method to

comprise the full constraint vector for the NLP.
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The augmented design variable vector for implementation of the collocation scheme

consists of the state and control values at each variable node. The circular orbit trans-

fer problem is two dimensional and, therefore, requires only five state variables, while

the three dimensional halo orbit transfer problems utilize seven state variables. Sim-

ilarly, the circular orbit transfer employs four control variables while the halo orbit

transfer must employ five because an out-of-plane component is not required for the

thrust pointing vector in the planar case. Additionally, the slack variable constraints

introduced in the constraint equations (5.42) and (5.44), respectively, are incorpo-

rated as design variables. The slack variables are included as design variables at each

variable node, therefore, they introduce 2× (n− 1)× (N + 1)/2 additional variables

to the design vector. Furthermore, the values for nondimensional time defining the

coasting periods, τi and γi, that appear in the halo-to-halo transfer sample problems

are also incorporated in the design vector. Inclusion of these values adds 2 or 4 ad-

ditional design variables, depending on the potential to formulate the transfer with

manifold arcs. In summary, the circular orbit transfer and halo to halo orbit trans-

fers require 11 and 14 design variables per variable node, respectively. If the coasting

parameters are included, these values clearly lengthen the design variable vector.

Once the objective function and the problem constraints are identified, the ap-

propriate relationships that deliver these quantities are supplied to the selected NLP

problem solver along with an initial guess for the design variable values. Upper and

lower bounds on the design variables, as well as the desired tolerances, can also be

introduced as inputs to the NLP solver. Convergence of the solver results in an ap-

proximation for an optimal trajectory. The accuracy of this solution is dependent

upon the order of the polynomial and the number of segments in the collocation

scheme.
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5.6 Example Problems:

A collocation and mesh refinement scheme is employed in conjunction with the

interior-point algorithm option in fmincon to solve the same three sample problems

that appeared in Chapter 4. Solutions emerging from the indirect optimization ap-

proach detailed previously are introduced as initial guesses for the corresponding

direct optimization sample problems. The indirect optimization solutions are dis-

cretized into boundary nodes spaced equally with respect to time, and the associated

variable node locations are computed consistent with the Legendre-Gauss node spac-

ing scheme. The discretized solution to the indirect optimization problem then serves

as the initial mesh for the direct optimization problem that is subsequently solved

using collocation.

5.6.1 Circular Orbit Transfer

A driving factor in the selection of the continuous low-thrust circular orbit transfer

as a sample problem is the expectation that the large number of revolutions seem-

ingly required of this transfer make convergence with a direct optimization method

challenging. The circular orbit transfer examined in Chapter 4 required 75 days of

continuous thrusting and several hundred spirals expanding away from the Earth.

Accurately achieving a similar trajectory using a collocation method, requires a dis-

cretization with many segments; which delivers a large dimensioned NLP comprised of

thousands of discrete state and control values. Such problems can exhibit extraordi-

narily slow convergence rates, with the possible lack of convergence, particularly when

the required gradients are computed numerically. Such is the case when the direct

optimization approach is applied to the 75 day circular orbit transfer. The sparsity

of the large dimensioned NLP problem was leveraged to rapidly produce a solution

using collocation alone, however, when the direct optimization algorithm fmincon is

incorporated into this process, the convergence rate is impractically slow. Figure 5.6

demonstrates the number of segments necessary to achieve an accurate non-optimized
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Figure 5.6.: Circular Orbit Transfer, TF = 75 days; Collocation without Optimiza-

tion

result, with collocation, over the 75 day transfer. The initial discretization of the in-

direct optimization result consisted of 50 segments, as noted in Figure 5.6a, however,

after mesh refinement the converged collocation solution contained 1468 segments,

reflected in Figure 5.6b. Fit with a 5th degree polynomial, the collocation solution

consists of a 48444×1 design variable vector and a 35234×1 constraint vector which,

together, produce a 35234×48444 Jacobian matrix that is 99.97% sparse. A problem

of this size is not tractable by the available computational resources.

Low-thrust orbit transfers, in particular, those employing many revolutions, are

an active area of research and other authors have offered techniques to enable the

application of direct optimization methods to this type of transfer. One approach is

orbital averaging and a hybrid control formulation to reduce the oscillatory behavior

along the many revolution transfer [48] [61]. Such a plan decreases the convergence

time required to obtain a solution. An alternate technique is a Runge-Kutta parallel

shooting scheme that is incorporated into the direct optimization formulation such

that the transfer problem is posed in terms of equinoctial elements that typically vary
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less rapidly with time than other coordinates [62]. Additionally, direct optimization

utilizing psuedospectral methods has been demonstrated to be effective at solving var-

ious many revolution orbital transfer problems [63]. The increase in speed afforded

by these techniques typically outweighs any corresponding decrease in solution ac-

curacy. This investigation is primarily focused on demonstrating direct optimization

approaches, thus, the large dimensioned problem is reduced simply by decreasing the

required transfer time to 2 days. While the engine parameters to achieve this transfer

time are impractical, the process of constructing the minimum fuel transfer path still

provides insight into the characteristics of the optimization methods.

A collocation scheme utilizing 5th order polynomials produces 3 variable nodes per

segment resulting in a total of 150 variable nodes. Each variable node is associated

with 5 state values, 4 control values, and 2 slack variable values yielding an initial

design variable vector with dimensions 1650×1. The direct optimization result, both

before and after mesh refinement, appears in Figures 5.7a and 5.7b, respectively. In

Figure 5.7a, three red variable nodes are located between each boundary point, con-

sistent with the 5th degree polynomials used to obtain the results. Moreover, the

distribution of the variable nodes between the boundary points reflects the Legendre-

Gauss node spacing employed to create the polynomials. The boundary points and

variable nodes in the optimized solution, closely follow the solution characteristics

obtained using indirect optimization and, as expected, the thrust vector is directed

parallel to the circular orbital velocity vector. The congruity of the two solutions

suggests that both optimization techniques identified the same optimal solution. Fol-

lowing mesh refinement, the maximum error of the polynomial approximation along

each segment for the entire solution is less than 1 × 10−8 and the error along each

segment differed by no more than two decimal places.

Further correspondence in comparing the results of the two optimization methods

is apparent in the time histories of the mass and control variables. The position

states of the variable nodes in the direct optimization result are plotted along with

the continuous indirect optimization solutions in Figure 5.8. Recall the spacecraft
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Figure 5.7.: Circular Orbit Transfer, TF = 2 days; Direct Optimization Result
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Figure 5.8.: Circular Orbit Transfer Direct Optimization Mass and Thrust Pointing

Vector Values

centered velocity frame defined in Section 4.3 by the unit vectors of the spacecraft

velocity and angular momentum. The components of the thrust pointing vector, ûT ,

expressed in the velocity frame exhibit oscillatory behavior similar to some results

from the indirect optimization for the same problem. The components of, ûT , are

associated with Cartesian coordinates in the velocity frame, therefore, they are not

constant like the components of λv in Figure 4.7. The mass time history in Figure

5.8a demonstrates that the evolving mass values produced from application of each

optimization method are nearly identical.

Application of direct optimization with collocation to the continuous low-thrust

circular orbit transfer problem initially introduces difficulties due to the problem size,

however, strategies are avilable to make this problem tractable. Including additional

forces and dimensions in the continuous low-thrust transfer problem increases the

practical value of the analysis and inclusion of these effects is simplified with a direct

optimization approach. Therefore, further investigation is warranted.
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5.6.2 Halo to Halo Transfers

Transfer scenarios that do not involve significant spiraling typically require a lower

number of segments to be accurately approximated using collocation methods. Fewer

segments yields a lower dimensioned problem and one more immediately suitable

to solution via direct optimization with collocation. The transfers between periodic

orbits examined in Chapter 4 exhibit a simple geometry, therefore the direct opti-

mization solutions for these problems require far fewer segments than the circular

orbit transfer type of problem. Similar to the previous results, direct optimization

again proved to rernder an accurate optimal solution that closely coincides with the

indirect optimization results.

L1 Halo to L1 Halo Transfer

The thrusting portion of the transfer between L1 halo orbits from Section 4.4.2

is discretized into 6 boundary points and a collocation scheme, utilizing 7th order

Hermite polynomials, is used to approximate the transfer over the corresponding 5

segments. The 7th order polynomial produced 4 variable nodes per segment resulting

in a total of 20 variable nodes, each associated with 7 state values, 5 control values,

and 2 slack variable values. Including the two nondimensional time parameters to

define the coasting phases along the halo orbits, the initial number of design variables

in this problem is 282. The collocation scheme and fmincon converge under this initial

discretization as seen in Figure 5.9a. Then a subsequent mesh refinement produces

a final result comprised of 13 segments, which is plotted in Figure 5.9b. The error

in the polynomial approximations over each segment differs by no more than two

decimal places with a maximum value of 2.928737× 10−9 nondimensional units. The

position states and thrust pointing vector of the final solution supplied by the direct

optimization method agree closely with the result of the indirect optimization method

when both are plotted in configuration space as shown in Figure 5.9b.
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Figure 5.9.: L1 to L1 Halo Transfer Direct Optimization Result
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(b) Pointing Vector Components

Figure 5.10.: L1 to L1 Halo Transfer Direct Optimization Mass and Thrust Pointing

Vector Values

The agreement of the results from application of both optimization methods dis-

played in Figure 5.9 is also exhibited by the time histories of the state and control

values along the transfer. The mass history over the low-thrust transfer obtained

from indirect optimization is matched closely by the direct optimization result and

the final mass values differ by less than a hundredth of a kilogram, as apparent in

Table 5.3. The components of the thrust pointing vector emerging from each opti-

mization strategy also coincide, and the trends observed regarding each component

approximately match those of the costates in Figure 4.10. The correspondence in

both states and control values between the results of the two optimization methods

offers confidence that both approaches converged to the same optimal solution.

All of the state and control variables representing the direct optimization solution

closely match the indirect optimization results. This agreement includes the value cor-

responding to the engine power level. Recall that the direct optimization formulation

constrains engine power to remain within the bounds 0 ≥ P ≥ Pmax, however, power

is not required to equal Pmax as required in the indirect optimization approach. De-

spite this difference, the optimal solution from direct optimization produces a power
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level approximately equal to Pmax over the duration of the transfer, confirming that

this engine power setting corresponds to the optimal result. The differences that do

appear between the results from the two optimization methods are analyzed more

closely in Chapter 6 where the results produced by a direct optimization scheme are

also examined when a less accurate initial guess is introduced.

L1 Halo to L2 Halo Transfer with Manifold Arcs

The majority of the halo to halo transfer leveraging manifold arcs consists of

coasting periods along the periodic orbits and manifolds. The relatively brief dura-

tion of the thrusting portion of the transfer means that it is discretized into only five

segments, s = 5, for the initial guess of the collocation algorithm. Fifth order, N = 5,

polynomials are chosen to fit this discretization, resulting in 15 variable nodes which,

including the four nondimensional time parameters defining the coasting phases, pro-

duces 214 initial design variables. The initial design variable vector is passed into the

direct optimization algorithm which converges without requiring mesh refinement.

The position states of the boundary points and variable nodes of the converged so-

lution are plotted with the continuous results of the indirect optimization method in

Figure 5.11, and appear to closely follow this solution. The thrust pointing vector is

derived from the values of the costates in the indirect optimization method, but is

solved for explicitly in the direct optimization case; Figure 5.11b illustrates that both

techniques produce the same thrust vector results. The close correspondence of the

transfer geometry in Figure 5.11 suggests the direct optimization method accurately

obtains the same optimal solution as the indirect method. The error of the polyno-

mial approximations for each segment differs by no more than three decimal places

and has a maximum value of 8.043262× 10−9 nondimensional units.

The congruity of the results from both optimization methods seen in Figure 5.11

is also evident in the time histories of the state and control values. The mass values at

variable nodes overlay the mass history from the indirect optimization result nearly
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(b) Pointing Vector Components

Figure 5.12.: L1 to L2 Halo Transfer Direct Optimization Mass and Thrust Pointing

Vector Values

exactly in Figure 5.12a, and the final mass values differ by less than a tenth of a

kilogram, Table 5.3. Because the number of segments is not updated between the

initial and final solutions of this transfer the discrepancies between the results of

the two optimization methods are more apparent. Several of the star markers that

denote the mass values at the variable nodes of the direct optimization solution are

off center from the circular markers that denote the mass values at the variable

nodes of the discretized indirect optimization solution. The offset markers indicate

differences between the results of each optimization method, and these variations are

most noticeable in the plots of the components of the thrust pointing vector in Figure

5.12b. However, the solutions from both methods are in general agreement, and once

again the trends of the costates in Figure 4.13 are approximately replicated by the

pointing vector components in Figure 5.12b.

The state and control variables of the direct optimization solution closely match

the indirect optimization results for the halo to halo orbit transfer problem using

manifold arcs. The difference between the final masses obtained with each optimiza-
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tion method for all three sample problems is presented in Table 5.3. The final mass

obtained with each method is identical to within at least hundredths of a kilogram.

This difference is likely due to the approximations inherent in the collocation method

which approximates the low-thrust transfer with piecewise polynomials. If higher

order polynomials, or a greater number of segments are used in each case then the

final mass values might exhibit even greater correspondence. However, for many

practical purposes the mass values in these cases are close enough to be considered

identical. Overall, the close agreement between the results of the indirect and direct

optimization methods observed in each of the sample problems demonstrates the effi-

cacy of both methods for conducting trajectory optimization. The two optimization

methods achieve the same result with dramatically different techniques which may

be best suited for specific types of problems. This fact is seen when the direct op-

timization technique employed in this investigation proves infeasible for solving the

TF = 75 days low-thrust circular orbit transfer. Further comparison of the opti-

mization methods offers insight into the scenarios each method is most applicable

to.

Table 5.3.: Final Mass Values for Every Sample Problem

Problem Type Indirect Optimization Direct Optimization Difference

Circular Orbit Transfer 29.091744 kg 29.091189 kg 0.000554 kg

L1 Halo to L1 Halo 480.642551 kg 480.639555 kg 0.002996 kg

L1 Halo to L2 Halo 415.533967 kg 415.530648 kg 0.003319 kg
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6. COMPARISON OF OPTIMIZATION METHODS

The indirect and direct optimization methods presented in Chapters 4 and 5 respec-

tively produced approximately the same results in each of the three sample problems.

However, each optimization approach possesses distinct advantages and disadvantages

that make it well suited for certain problems and a poor fit for others. Understanding

these tradeoffs enables the optimization technique best suited for a particular prob-

lem to be chosen. Quantitative comparisons of the indirect and direct optimization

results for each sample problem highlight several of the key differences between the

optimization methods. The metrics of accuracy, robustness, and computational per-

formance are used to examine these differences. Qualitative comparisons also yield

insight, the ease of implementation and modification of each optimization technique

is also discussed in this chapter. The two optimization methods inform one another,

thus an understanding of one type is gained by contrasting it with the other.

6.1 Quantitative Comparison

6.1.1 Accuracy Comparison

The transcription of a continuous trajectory into a discrete representation that

is necessary to apply direct optimization methods, results in a loss of accuracy in

the final optimal solution. The solutions produced by direct optimization methods

consist of piecewise polynomials that approximate an optimal trajectory, and the

convergence tolerances set for Newton’s method and mesh refinement determine the

accuracy with which these polynomials satisfy the differential equations of the system,

but not necessarily the optimal solution. The accuracy of the optimal solution ob-

tained with direct optimization methods is dependent upon the number of segments
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and degree of the polynomials because these parameters determine the resolution

with which the discretization approximates the continuous solution. Indirect opti-

mization methods are applied to the continuous optimal control problem, however

when numerical methods are employed to solve the resulting TPBVP error due to

discretization is also inevitably introduced. As with the direct optimization approach

the extent of the error due to discretization is dependent upon the numerical scheme,

however solving the TPBVP with a shooting method that utilizes explicit integration

techniques can substantially reduce error. Explicit numerical integration schemes, for

example the Adams Bashforth Moulton scheme used in Matlab’s ode113 algorithm,

are capable of yielding highly accurate solutions commonly regarded as “truth” when

comparing the results of numerical integration techniques. The accuracy of explicit

integration combined with the assurance of obtaining a locally optimal solution af-

forded by Euler-Lagrange theory tends to make the indirect optimization technique

the most efficient at reliably determining a locally optimal solution, however this is

dependent on the problem formulation.

To assess the difference between the optimal solutions obtained by both methods

the polynomials of the solution from the direct optimization approach were used to

interpolate state variable values at times along the optimal trajectory. At each time

step, including those of the boundary points and variable nodes, the states of the

indirect optimization solution were subtracted from the corresponding states of the

direct optimization solution. The difference between the two solutions indicates the

accuracy with which the direct optimization method computed the locally optimal

transfer. The difference between the two solutions is not necessarily a measure of

accuracy, rather it simply indicates the extend of the difference between the opti-

mal solutions determined by each method, if the difference is substantial it is likely

that one optimization approach has at least converged to a different local optimal

if not produced an erroneous result. The difference between the indirect and direct

optimization results is calculated for ten separate runs of the direct optimization

method, and the average of this difference is plotted for each of the halo to halo
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transfers. Figure 6.1b plots this difference for the transfer between L1 and L2 halo

orbits using manifold arcs and plots of the position and velocity components of the

transfer are offered in Figure 6.1a to provide context for the scale of the difference

between solutions. On average the position and velocity components of the direct

optimization solution differ from the indirect optimization solution by around 1 km

and 10× 10−5 km/s respectively. These discrepancies are approximately four orders

of magnitude less than the scales over which the position and velocity components

of the transfer vary. These differences are not insignificant, however they are small

enough that the results of either method are useful for many applications, or as initial

guesses for more accurate strategies. Table 5.3 indicated that the difference between

the final mass values obtained by the two optimization methods was on the order of

several thousandths of a kilogram, therefore despite position component differences

on the order of 1 km the final value of the objective function is extremely similar in

both cases. The transfer between two L1 halo orbits exhibited differences between the

two solutions with similar orders of magnitude to those seen in the halo orbit transfer

employing manifold arcs, Figure 6.2a and 6.2b. These comparisons demonstrate that

direct optimization methods provide less accurate, but still useful solutions.

The error shown in Figures 6.1 and 6.2 is not a measure of the integration ac-

curacy of the optimal solution. The tolerances used for the explicit integration and

collocation procedures ensure the model dynamics are satisfied with a high degree of

accuracy, however this does not guarantee that either optimization method locates

the exact optimal solution. The exact optimal solution is continuous, thus the con-

trol variables required to obtain this solution are continuous as well. In the both

optimization methods the control values are constant in between integration time

steps or variable nodes, therefore, some precision is lost when applying the control

and the resulting solution is slightly less optimal. The magnitudes of the difference

observed in Figures 6.1 and 6.2 are reduced by increasing the number of nodes used

in the direct optimization method. A greater number of nodes permits more frequent

changes in control, and finer application of control results in a solution that more ac-
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(a) Position and Velocity Components of

Direct Optimization Solution

(b) Difference between Indirect and Direct

Optimization Solutions

Figure 6.1.: Position and Velocity Components and Associated Error for Direct Op-

timization Results of Halo to Halo Orbit Transfer with Manifold Arcs

(a) Position and Velocity Components of

Direct Optimization Solution

(b) Difference between Indirect and Direct

Optimization Solutions

Figure 6.2.: Position and Velocity Components and Associated Error for Direct Op-

timization Results of Halo to Halo Orbit Transfer with Manifold Arcs
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curately approximates the local optimal. Figure 6.3 shows the difference between the

two optimization solutions 30 segments are utilized in the direct optimization scheme,

employing a larger number of segments reduces the error of the optimal solution by an

order of magnitude in this case. These segment numbers are well above what is nec-

essary to satisfy the integration tolerances of the collocation method, however more

segments are necessary to achieve correspondence between the solutions obtained by

both optimization approaches.
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Figure 6.3.: Difference between Indirect and Direct Optimization for L1 to L2 Halo

Orbit Transfer, s = 30

The importance of the number of nodes used in a direct optimization solution is

best highlighted by examining the results of the circular orbit transfer problem shown

in Figure 6.4. Although the direct optimization solution appears to exactly overlay

the indirect optimization result in Figure 5.6, closer examination reveals significant

differences between the two solutions. The circular orbit transfer obtained with the

direct optimization method is slightly out of phase with the transfer from the indirect

optimization transfer, and this difference results in large discrepancies between the

two solutions, shown in Figure 6.4. Inspection of the circular orbit transfer indicates
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Figure 6.4.: Position and Velocity Components and Associated Error for Direct Op-

timization Results of Circular Orbit Transfer

that on average less than 20 variable nodes are used per revolution around the central

body with the number decreasing as the orbital altitude decreases. This low number

of variable nodes per revolution provides too few opportunities to update the control

variables for the same optimal solution to be obtained, typically more nodes per

revolution are used in order to produce a more optimal result. Figure 6.4a indicates

that in the gravity field of a massive central body the position and velocity components

of a spacecraft are rapidly changing, therefore the control must be able to adjust

rapidly as well if a reasonably optimal solution is to be obtained.

In summary, both optimization techniques require discretization when numerical

methods are employed, and this discretization. Generally, the more coarse a dis-

cretization is the less optimal the result of an optimization method will be, because

fewer opportunities to apply control are available. The tolerance associated with the

numerical methods of both optimization approaches can be adjusted such that ei-

ther method supplies poor optimal results, therefore it is not possible to designate

one method as being inherently more accurate. However, the difference between the
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optimal solutions produced by both optimization approaches is a useful indicator of

whether both methods converged to the same local optimal, or if one scheme con-

verged to an incorrect result. The close agreement of the results of the two optimiza-

tion methods applied to the halo to halo transfer scenarios indicates both approaches

converged to approximately the same local optimal. However, the larger difference

between the optimal solutions obtained for the circular-to-circular orbit transfer in-

dicate that the two optimization methods may have converged to different locally

optimal solutions.

6.1.2 Robustness Comparison

One of the greatest strengths of direct optimization methods is the fact that they

exhibit greater robustness than indirect optimization techniques. A robust numerical

method continues to converge to the same solution despite small changes to the initial

guess. Thus, the direct optimization method is considered robust because its conver-

gence to an optimal solution is less sensitive to errors in the initial guess than the

indirect optimization method. This quality is also described as the direct optimiza-

tion method having a wide basin of convergence, where the basin of convergence is the

solution space “surrounding” a locally optimal solution in which an initial guess must

lie for an optimizer to converge to the local optimal. The quality of robustness was

tested by introducing random perturbations to the initial guess of a transfer prob-

lem and using the perturbed initial guess with both optimization methods. Testing

robustness in this manner demonstrates the wider basin of convergence of the direct

optimization method.

The L1 halo to L1 halo transfer problem is used to conduct the robustness test

of each optimization method. The costates and τ coast times that form the initial

guess, X0, for this transfer are perturbed using the relation, X0 = X0(1 +h), where

h is a random vector of the same dimension as X0, and 1 is a vector of ones with

the same dimensions. The range of random values that occur in h is determined
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by the selected perturbation level, if a perturbation of ±10% of the initial guess is

desired then the random values in h are between −.1 and .1. Perturbing the initial

guess for the L1 halo to L1 halo transfer in this manner shifts the transfer insertion

points along each halo orbit and alters the direction and magnitude of the thrust arc.

Perturbing the initial guess for one of the other two transfer scenarios in this way

produces a problem that is either dynamically infeasible with the given parameters

or requires an unreasonably long convergence time. Because these added challenges

obscure the results of the robustness test only the L1 halo to L1 halo transfer problem

is examined. Perturbation levels from ±10% to ±50% with an interval of 10% are

tested, and at each perturbation level ten runs of the sample problem are conducted

with each optimization method employing a different random vector, h, each time.

This method of randomly perturbing the initial guess for the indirect optimization

method within some bounds tested the robustness of each optimization approach

when supplied with a poor initial guess.

The optimal L1 halo to L1 halo transfer converged upon in Chapter 4 requires

approximately 20 kg of propellant, and the ability to re-converge to this solution

after the introduction of a perturbation is used as the measure of robustness in this

test. No check is conducted to ensure that the original transfer is the global optimal,

however no transfer with a smaller ∆m is found in this investigation. The perturbed

initial guess for the indirect optimization method is passed to a single shooting scheme

that solves the associated TPBVP. The single shooting scheme converged to a solution

at all perturbation levels tested, however the solution was not always the same as the

initial transfer produced in Chapter 4 that required 20 kg of propellant. A thrust arc

propagated with an initial guess randomly perturbed by ±40% is shown in Figure

6.5, in configuration space this arc is directed away from the final halo orbit. Despite

the poor initial guess the single shooting scheme converges upon a transfer between

the two L1 halo orbits, also shown in Figure 6.5, however the transfer obtained is

clearly different than the original transfer displayed in Figure 4.8. In addition to the

different configuration space appearance, the L1 to L1 halo transfer obtained with
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the perturbed initial guess required 30 kg of propellant. All of the new transfers

obtained in the robustness test of the indirect optimization method required a larger

propellant mass than the original transfer, and were therefore less optimal solutions.

Out of the ten runs conducted at each perturbation level the number of runs for which

the indirect optimization method converged back to the original, and most optimal,

halo to halo transfer is recorded in Table 6.1.
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Figure 6.5.: Indirect Optimization Solution Following ±40% Perturbation to the Ini-

tial Guess; Perturbed Trajectory (green) and Converged Solution (green with blue

thrust pointing vector arrows)

The results in Table 6.1 provide a general sense of the robustness of the indirect

optimization method. At a perturbation level of ±10% the indirect optimization

method converges back to the original result for nine of the ten runs conducted.
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However, for perturbation levels of ±20% or higher no more than half of the ten

runs converge back to the optimal solution that requires 20 kg of propellant. The

remaining runs out of the ten converge to new transfers that require more propellant,

such as the one shown in Figure 6.5. The broad trend indicated by Table 6.1 is that

the solution obtained with the indirect optimization is fairly sensitive to changes in

the initial guess. Some of this sensitivity could be mitigated by employing a multiple

shooting rather than a single shooting scheme, however even with this approach the

sensitivity of the solution to the values of the costates remains.

Table 6.1.: Optimization Robustness Analysis for L1 Halo to L2 Halo Transfer, Full

Perturbation

Method ±10% ±20% ±30% ±40% ±50%

Indirect Optimization 9/10 4/10 5/10 5/10 5/10

Direct Optimization 10/10 10/10 10/10 10/10 8/10
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Repeating the robustness test with the same perturbed initial guesses but apply-

ing a direct optimization method instead offers a contrast to the test results with the

indirect optimization method. The perturbed initial guess for the direct optimiza-

tion method is created by propagating and discretizing the perturbed initial guess

for the indirect optimization method. The discretized trajectory produced from an

initial guess perturbed by ±40% is shown in Figure 6.6, note that the same perturbed

initial guess used to create Figure 6.5 is employed here. The discretization of the tra-

jectory propagated from the perturbed initial guess is passed into the optimizer and

the NLP formulation is solved. The direct optimization formulation converged to a

solution at all perturbation levels tested, and in nearly every case the solution was

approximately the same as the initial transfer produced in Chapter 4. For example,

the transfer obtained with the direct optimization method when it is supplied with

the initial guess displayed in Figure 6.6 is approximately the same as the original

transfer. The converged transfer is also plotted in Figure 6.6 and requires approxi-

mately 20kg of propellant. The results offered in the final row of Table 6.1 indicate

that the same robust behavior is demonstrated at every perturbation level tested,

with only two runs at the ±50% failing to converge to the original solution. The

general behavior indicated by Table 6.1 is that the final optimal solution obtained

via the direct optimization approach is less susceptible to changes in the initial guess

than the solution produced by the indirect optimization method. Overall, the results

contained in Table 6.1 support the notion that the direct optimization method is more

robust than the indirect optimization approach.

6.1.3 Computational Comparison

Direct optimization methods can be made to provide the same level of accuracy

as indirect optimization methods, but doing so can come with high computational

costs. The accuracy of direct optimization with collocation is increased by the number

of segments in the discretization of the continuous optimal control problem and the
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order of the polynomial approximations. However, increasing these two parameters

also increases the size of the NLP problem, and as a result the necessary computa-

tional time. The benefits afforded by direct optimization are negated if the time and

computational resources required to solve the NLP are impractical. Unsurprisingly

then, adoption of and research on direct optimization methods has increased in par-

allel with developments in computational technology. Widespread access to powerful

computational resources has made direct optimization methods a practical alterna-

tive to indirect optimization, however poor implementation of these techniques can

still lead to inefficient optimizers with steep computational costs.

The high dimensionality frequently encountered in direct optimization methods

can slow down optimization algorithms. This is because the gradients required to ob-

tain a solution are typically computed numerically, and a larger dimensioned problem

requires that more gradients be computed. However, due to the discrete nature of

the NLP many of the necessary gradients are equal to zero leading to highly sparse

gradient matrices. The gradients of the constraint function with respect to the de-

sign variables form the Jacobian matrix, and this matrix for the halo to halo transfer

using manifold arcs is shown in Figure 6.7. The 10 × 10 Jacobian matrix calculated

in the indirect optimization method contains a total of 100 gradients, and only 4 are

equal to zero. The entire matrix is calculated numerically because it has very few

elements equal to zero, however because the dimension of the matrix is low this proce-

dure requires a relatively small amount of computational time. The Jacobian matrix

calculated in the direct optimization method is significantly larger with dimensions

of 214 × 156 and a total of 33384 elements. Only 2820 of the Jacobian elements in

the direct optimization case are nonzero, meaning that 91.55% of the elements in the

matrix equal zero. Matrices where the vast percentage of elements equal zero are de-

noted sparse matrices. The gradients that occur in direct optimization methods tend

to be sparse because many elements along a discretization are independent of one

another. For example, the defect constraints of a segment in the collocation method

are affected only by variables and parameters on that segment, therefore the partial
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derivatives of these constraints with respect to variable on other segments are equal

to zero. The sparsity of the gradients in direct optimization methods is leveraged

to reduce the computational times of these techniques. Algorithms that track the

indices of nonzero elements of gradients are developed so that only the values of these

elements are computed while the remainder of the gradient elements are assumed

to equal zero. When gradient sparsity is not leveraged in this way computational

times for direct optimization methods can increase by several orders of magnitude.

Therefore, leveraging sparsity decreases the number of computations required for large

dimensioned problems, thereby decreasing the required computational time.

Many factors contribute to the computational time required to run a numerical

algorithm. The efficiency of the code, accuracy of the initial guess, and hardware

of the computer, all play a role, therefore it can be difficult to make one-to-one

comparisons between the run times of different numerical algorithms. Nonetheless,

a general comparison of the computational times of numerical methods can offer

insight, especially if the times differ by several orders of magnitude. The average

computational time required for ten runs of each optimization method applied to

every sample problem studied is supplied in Table 6.2. Note, due to the relatively large

computational time required to solve the circular-to-circular orbit transfer problem

via direct optimization the time shown in Table 6.2 is for only one run of this problem.

Table 6.2.: Computational Time Comparison

Problem Type Indirect Opt. (IO) Direct Opt. (DO) DO = IO × x

Circular Orbit Transfer 4 sec 51523 sec IO × 12881 sec

L1 Halo to L1 Halo 9 sec 532 sec IO × 59 sec

L1 Halo to L2 Halo 158 sec 47 sec IO × 0.3 sec

The computational time of the indirect optimization method is less than that of

the direct optimization method in two of the three cases examined, and in the first
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case it is significantly lower. Even when sparsity is leveraged the large dimensionality

of the circular-to-circular orbit transfer problem appears to drastically increases the

computational time. Another possible cause for the large computational time of the

circular orbit transfer is that too few segments were utilized, this made honing in on

an optimal solution more difficult for the optimizer. This possibility is supported by

the results of section 6.1.1, where it was shown that the initial number of segments per

revolution used for this problem was far too low to achieve an optimal solution that

corresponded with the indirect optimization solution. Utilizing an insufficient number

of segments to discretize the low-thrust transfer may create an extremely shallow basin

of convergence, thus, making it difficult for an optimizer to converge to an optimal

solution. Even when the initial state of the circular-to-circular orbit transfer is entirely

fixed in an attempt to mitigate this problem the same behavior occurs, therefore,

further investigation is needed to resolve this issue. However, the computational times

for the other two transfer scenarios demonstrate that direct optimization methods

can at least operate on a reasonable and sometimes even similar time-scale compared

to indirect optimization methods. The small difference between the computational

times for the halo to halo transfer case is almost certainly a result of algorithm

implementation and not due to one method being inherently more efficient for this

scenario. While well implemented indirect optimization methods are nearly always

faster than direct optimization schemes, the latter technique does not necessarily

require significantly more time.

6.2 Qualitative Comparison

Some of the differences between indirect and direct optimization methods are

best captured by qualitative description. Numerous authors have produced surveys

of direct and indirect optimization methods that discuss the advantages and disad-

vantages of each. Betts’ 1997 survey [52] provides a thorough overview of trajectory

optimization methods and is still frequently referenced. More recently authors such
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as Conway [49], Topputo and Zhang [53], and Rao [64] have contributed surveys of the

field that include new trends, for example, discussion of genetic algorithms. The text

Spacecraft Trajectory Optimization [48] provides an excellent primer on this diverse

and expanding discipline.

Convergence of a numerical method does not guarantee an optimal solution has

been identified, and the approach for ensuring the optimality of a solution depends on

the optimization method used. The necessary conditions derived in Euler-Lagrange

theory identify an extremal point and conditions such as Pontryagin’s minimum prin-

ciple, 4.8, determine whether the identified extremal is a minimum or a maximum.

Other necessary conditions have been formulated to assess the optimality of solu-

tions identified by the Euler-Lagrange theory, however generally these methods are

assumed to ‘guarantee’ locally optimal solutions. Direct optimization methods do

not offer this guarantee, thus other strategies to check the accuracy of their solutions

are developed, one approach is to adapt the necessary conditions derived for indirect

optimization methods to apply to direct optimization results. An alternate method

is to perturb and reconverge the initial optimal solution, when the perturbed solution

converges back to the original result this suggests the result is at least locally opti-

mal. The robustness analysis conducted in section 6.1.2 is an example of this kind

of testing, and the results of this test indicate the solution obtained is a local opti-

mal. Therefore, while it is generally more simple to gauge the optimality of results

from indirect optimization, strategies for judging solution optimality exist for both

techniques.

The costates introduced in the derivation of the Euler-Lagrange theory are asso-

ciated with the greatest advantages and disadvantages of the indirect optimization

method. The costates indicate the sensitivity of the cost function to changes in their

corresponding state variables. This information indicates the variables that have the

greatest impact on the objective of an optimization problem, knowledge that is useful

in the design and refinement of an optimal control problem. However, because sensi-

tivity information is not directly associated with physical parameters such as length
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or mass, it can be difficult to determine an initial guess for the values of the costates.

Unfortunately, convergence of the TPBVP formulated by the indirect optimization

method is highly sensitive to the initial provided for the costates. This sensitivity was

demonstrated by the robustness analysis conducted in section 6.1.2. Methods such

as the adjoint control transformation help alleviate the difficulty of determining an

initial guess for the costates by associating these variables with physical parameters.

The challenge of determining an initial guess for the costates is eliminated completely

by direct optimization methods which do not explicitly utilize costates to solve the

optimal control problem. An additional benefit of eliminating the costates is that the

dimension of the problem is reduced by two. The reduced problem size can be lever-

aged to decrease computational time depending upon the direct transcription method

employed. Methods that avoid the use of costates from an optimal control problem

are sought because these variables can complicate the problem setup, however, the

costates can also provide useful insight into the relationships within a problem.

Continuous equations for the control variables are denoted control laws. In Chap-

ter 4 the costates were employed to formulate Lawden’s primer vector, a control law

which indicates the direction of the thrust unit vector in the optimal control prob-

lem. The procedure for formulating the TPBVP in the indirect optimization method

includes derivation of continuous control laws that are functions of the state and

costate variables. Therefore, a solution to the TPBVP includes continuous control

laws, and these equations are useful for assessing the optimal solution as well as

nearby solutions. In contrast, direct optimization solutions provide values for the

control variables at discrete points along a solution. While equations, for example

polynomials, that approximate control values in between these points can be formu-

lated they are not required in order to obtain a solution. It is possible to develop

control laws that estimate the control history of optimal and nearby sub-optimal

solutions, however these approximations can be very rough. When a control law is

known an initial guess for the time history of the control law variables is still required

regardless of the optimization method used. For example, if a control law is known
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for a CSI low-thrust transfer an initial guess for the pattern of thrust and coast arcs

is necessary. Determining control law variables a priori can be challenging, therefore

direct optimzation methods are sometimes preferred in these scenarios due to their

wider basin of convergence. However, despite their disadvantages indirect optimiza-

tion methods provide useful control and sensitivity information, this ensures that

indirect optimization methods remain a viable approach to solving optimal control

problems.

The control laws and costates derived for the setup of the TPBVP in indirect

optimization methods are useful, however the extent of the derivations required to

formulate the problem can be cumbersome, this is regarded as one of the primary

weaknesses of the method. Applying the Euler-Lagrange necessary conditions to

an optimal control problem requires the formulation of the Hamiltonian and the

calculation of the gradient of the Hamiltonian with respect to the state, costate, and

control variables. For relatively simple problems, such as the optimal VSI low-thrust

transfer, these derivations are straightforward, however, they become more involved as

the optimal control problem increases in complexity. Moreover, the TPBVP derived

when the indirect optimization method is applied to an optimal control problem is

specific to that problem. Changes more drastic than altering parameter values often

require that the TPBVP be partially or fully rederived. For example, adding state

and control variables to accommodate different propulsion systems, i.e. a solar sail,

requires changes to the dynamic equations of motion of an optimal control problem.

If indirect optimization is used, gradients for the new variables must be derived and

the transversality condition is reapplied to derive additional boundary constraints.

These alterations to the problem setup are incorporated with less drastic changes

when direct optimization is used; in addition to updating the equations of motion,

the design variable vector is expanded and extra constraints may be required. The

ease of modification of the direct optimization formulation is indicative of the fact that

direct optimization methods are also typically easier to implement. Fundamentally,

the code for a direct optimization method requires functions for the objective and
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constraint equations as well as an initial guess. These three components are passed

to an optimizer which uses them to converge upon an optimal solution. While ease of

implementation is appealing, the apparent simplicity of direct optimization methods

permits them to be applied in a haphazard manner that may ultimately slow down the

process of finding an optimal solution. The ease of implementation and modification of

direct optimization methods makes them a powerful technique, however the additional

insight afforded by indirect optimization can make the method more effective in some

scenarios.

The ease with which path constraints are incorporated is another measure of the

flexibility of an optimization method. Path constraints are bounds applied along the

course of a trajectory, for example a minimum altitude constraint for a planetary

flyby. Tabular data, such as atmospheric conditions as a function of altitude may

also be included in path constraints. Application of the indirect optimization method

formulates a TPBVP, meaning the problem constraints are applied at the trajectories

endpoints, posing the optimal control problem in this way is not conducive to applying

path constraints. Direct optimization methods require the discretization of a contin-

uous trajectory, and constraints can be applied at any of the discrete nodes. The

discrete nature of direct optimization methods simplifies the process of incorporating

constraints anywhere along the path of a trajectory.

One of the most difficult parts of applying any optimization method can be de-

veloping an initial guess, and while each optimization approach, direct and indirect,

has distinct advantages and disadvantages both methods still require an initial guess.

The robustness analysis conducted in Section 6.1.2 indicates that direct optimization

methods generally exhibit a wider basin of convergence, therefore they can tolerate a

less accurate initial guess. This property of direct optimization methods is especially

useful when a solution space is unknown. An additional challenge in the process of

formulating an initial guess is that both optimization techniques tend to converge

towards a solution in the vicinity of the initial guess. The global optimal of a solution

space is the most desirable solution, however the optimal solution nearest an initial
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guess is not necessarily globally optimal. Solution bias introduced by an initial guess

is a challenge for both direct and indirect optimization methods. Techniques and

other optimization methods, for example genetic algorithms, that address this weak-

ness have been developed. And, these can be used in combination with either direct

or indirect solutions to aid the process of locating the globally optimal solution.
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7. CONCLUSION

7.1 Summary

The fundamental background required to pose and solve the optimal control prob-

lem is presented, with a focus on the dynamical features of the circular restricted

three-body problem (CR3BP). Following this, the Euler-Lagrange theory that forms

the basis for the majority of indirect optimization methods is presented. This theory

is applied to the problem of obtaining orbital transfers with a low-thrust variable

specific impulse engine (VSI). Differential and algebraic equations are derived for this

problem and the resulting variables provide control laws that describe the behavior

of control values throughout the transfer. A circular-to-circular orbit transfer in the

two-body problem as well as two types of low-thrust halo to halo orbit transfers in

the CR3BP are produced which maximize the final mass of the spacecraft at the end

of the fixed transfer time. Configuration space plots of each transfer are plotted along

with the histories of key variables and parameters. The background established early

in the document provides the context for understanding the behavior of each locally

optimal transfer obtained.

The low-thrust VSI transfers obtained with the indirect optimization method are

discretized and used as an initial guess to reproduce the same transfers with direct

optimization methods. The direct optimization approach used utilizes collocation

to transcribe the continuous optimal control problem into a nonlinear programming

problem (NLP). The collocation scheme employed uses odd order polynomials with

Legendre-Gauss node spacing along with a mesh refinement technique to approximate

a trajectory with acceptable integration accuracy. The low-thrust transfers obtained

with the direct optimization and collocation approach appear to accurately approxi-

mate the results obtained by the indirect optimization approach. Comparison of the
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final masses obtained by each optimization method demonstrates the similarity of

their results because the percent differences are on the order of thousandths of a per-

cent, and this correspondence supports the conclusion that both methods produced

the same result.

Finally, quantitative and qualitative comparisons of the results of each method

are made to provide additional insight on the characteristics of each method. Quanti-

tative comparisons based on the metrics of accuracy, robustness, and computational

efficiency are made with the result that the indirect optimization method is demon-

strated to be more computationally efficent, although not necessarily more accurate.

However, the direct optimization method proves to posses greater robustness than

the indirect optimization method because convergence is obtained even when larger

perturbations are given to the initial guess. Qualitative assessment of both methods

highlights additional strengths of each approach and stresses the ease of modification

of direct optimization methods. Overall, the comparisons of both methods demon-

strate the key traits of each approach.

7.2 Selecting a Method

Quantitative and qualitative analysis of indirect and direct optimization meth-

ods reveals the strengths and weaknesses of each approach. The strengths of one

technique often address the deficiencies of the other, therefore no clear “best” op-

timization method can be chosen. However, general guidelines can be offered that

guide the process of choosing an optimization strategy to apply to a particular opti-

mal control problem. Formation of these guidelines is informed by the results of the

implementation and analysis of each optimization method.

The speed of indirect optimization methods, demonstrated by the results of Chap-

ter 6, make these methods efficient at quickly determining optimal trajectories within

a specific problem context. Several types of low-thrust VSI transfers are obtained by

the indirect optimization method with relatively minor changes required for each
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transfer scenario. The costate variables introduced by the indirect optimization

method readily offer information on the behavior of the control values throughout

each transfer, and provide dynamical insight on the behavior of trajectories in the

vicinity of the optimal solution. Satisfaction of the Euler-Lagrange necessary condi-

tions and the shooting method utilized to solve the TPBVP together offer confidence

that the solution is an accurately propagated local optimal. For these reasons, the

indirect optimization solution is used as the baseline in Chapter 6’s accuracy compar-

ison. Furthermore, the rapid computational time exhibited by the indirect optimiza-

tion method in comparison with the direct optimization method demonstrates the

relative speed numerical implementations of the indirect method are capable of. For

this reason the software tools initially developed to design and fly low-thrust space-

craft missions were based on indirect optimization methods. The efficiency of the

indirect optimization method makes it an excellent option for solving certain types of

optimal control problems. Specifically, when an optimal control problem is unlikely to

change significantly and some intuition about the problem is known, for example the

circular orbit raising problem, indirect optimization methods offer a powerful solution

approach for spacecraft optimal control problems.

The relative complexity of the derivations required to formulate the TPBVP and

the poor robustness of the indirect optimization method make it a less appealing

option when there is little intuition about an optimal control problem. The strengths

of the indirect optimization method are evident when the optimal control problem

is well formulated and a good initial guess is provided, however the testing in Chap-

ter 6 demonstrates that the method lacks robustness. The efficiency of the method

is only evident when the indirect optimization method converges which is difficult

when the initial guess is perturbed by a significant percentage. The poor robustness

of the indirect optimization method limits its ability to find local optimal solutions

in other basins of convergence, although this capability could be improved by im-

plementing a multiple shooting rather than a single shooting scheme. Additionally,

formulation of the low-thrust VSI optimal control problem using Euler-Lagrange the-
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ory is an involved process and significantly altering the problem, for example adding

new boundary or path constraints, will likely require significant rederivation. The

deficiencies of the indirect optimization method demonstrated in Section 6.1.2 can be

severely limiting, making this approach a poor fit for scenarios where little intuition

about a problem is known.

When a solution space is unfamiliar the robustness and flexibility of direct opti-

mization methods make these schemes effective tools for gaining insight on the range

of possible optimal solutions. The robustness of the direct optimization method is

demonstrated in Section 6.1.2 when convergence is obtained for even very poor ini-

tial guesses. The fact that the direct optimization method can converge to a locally

optimal solution even when the initial guess is directed opposite to the target in con-

figuration space, as shown in Figure 6.6 evidences the versatility of this method and

how it can be applied in problems where good initial guesses are not available. Fur-

thermore, the constraints detailed in Section 5.5 are easily incorporated into the direct

optimization scheme and this ease of modification is also desirable when a problem

is not yet well defined. An example of a less well understood solution space could be

the convergence of low-thrust periodic orbits about artificial equilibrium points. This

problem and others on the frontiers of trajectory design offer excellent opportunities

for the application of robust and adaptable direct optimization methods.

7.3 Future Work

A variety of avenues for further investigation are immediately apparent. Com-

parison of the indirect and direct optimization methods shows that the weaknesses

of one method are often met by the strengths of the other. This complementary

nature suggests that research into strategies for combining the best aspects of both

methods may yield even more profitable optimization schemes. Indeed, Betts [52]

and Conway [48] writing over a decade apart have both noted this potential trend.

Some researchers have already demonstrated how methods such as collocation can
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be utilized to facilitate the process of obtaining an initial guess for the costates [65].

Alternately, the necessary conditions of the indirect optimization method have been

used to verify the optimality of results obtained via direct optimization method. Re-

gardless of the route taken a variety of opportunities for combining the best features

of both approaches are available and may yield even more efficient methods obtaining

optimal trajectories.

The VSI low-thrust engine model utilized in this study is numerically useful,

however the technology readiness level of VSI engines is still low and all low-thrust

spacecraft currently in flight utilize CSI engines. The CSI optimal control problem

is more challenging to solve due to the existence of thrust and coast arcs, and this

is especially true for the indirect method because the desired sequence of thrust and

coast arcs must be a part of the initial guess. The direct optimization method does

not require that a control structure be specified a priori, therefore demonstrating

this difference by the inclusion of a CSI optimal control problem would strengthen

the final assessment of both methods.

Spiral trajectories are ubiquitous in low-thrust mission design problems, there-

fore more efficient direct optimization methods for solving this type of problem must

be developed. In this study polar coordinates were employed to solve the circular-

to-circular orbit transfer problem, however may researchers use alternate coordinate

systems, for example equinoctial elements, in order to solve this type of problem.

Reformulating, the current circular orbit transfer problem in a different coordinate

system and including motion in the out-of-plane direction may improve the conver-

gence properties of the direct optimization approach. Moreover, spiraling trajectories

are often only a phase in the overall flight plan of a low-thrust spacecraft, therefore the

capability to connect each phase and optimize the whole is necessary. Ozimek [54],

among other researchers, has demonstrated solutions to this problem. The ability to

optimize spiraling low-thrust trajectories is an essential part of any comprehensive

low-thrust trajectory design strategy.
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The robustness demonstrated by the direct optimization with collocation method,

will offer a powerful tool for exploring unfamiliar solution spaces for low-thrust trans-

fers. Transfers in the CR3BP utilizing manifold arcs offer a particularly intriguing

and useful area for investigation. The manifolds of natural periodic orbits, or per-

haps of artificial periodic orbits maintained by a low-thrust engine, could unlock a

vast new solution space and enable previously infeasible missions. The first step

towards this goal is to employ the direct optimization method to produce artificial

periodic orbits in the CR3BP. Relatively few solutions for this type of orbit are known

at present, thus the robustness of the direct optimization method makes it well-suited

for addressing this type of problem.

A multitude of challenging optimal control problems are found in the discipline

of spacecraft trajectory design, particularly when the focus is low-thrust spacecraft.

No single trajectory optimization method is capable of solving all of these problems,

rather the unique strengths and weaknesses of a variety of optimization methods

must be brought to bear on the problems each method is best suited for. At times

the complementary nature of different combinations of optimization methods may also

provide unique solutions to optimal control problems. A deep understanding of the

theory and characteristics of each optimization method is necessary, this knowledge

will ensure the efficient application of optimization techniques to any of the many

available intriguing problems.
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