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ABSTRACT

Panuganti, Chaitanya M.S.M.E., Purdue University, August 2016. Control-Oriented
Modeling, Validation, and Analysis of a Natural Gas Engine Architecture. Major
Professor: Gregory M. Shaver, School of Mechanical Engineering.

In order to improve performance and meet increasingly tight emissions regulations,

engine manufacturers must improve algorithms used to control the engine. One pos-

sible strategy is to utilize centralized control algorithms that take into account the

coupled interactions between inputs and outputs. Implementing a centralized con-

trol strategy often requires some kind of dynamic model of the system, which is a

primary motivation for modeling e↵orts in this thesis. In a methodical fashion, this

thesis derives a control model for a natural gas engine architecture and validates this

control model against reference data in simulation. Additionally, this thesis performs

control-oriented analysis on a state-space model provided by Caterpillar to determine

the engine’s suitability to decentralized control. Based on the results of the control-

oriented analysis, the thesis demonstrates how a decentralized control framework can

be implemented.

The first study declares a set of seven state variables that characterize the oper-

ation of the engine. The engine of interest runs on natural gas and is used in power

generation applications. Additionally, this study models all mass flow rates and power

terms as functions of the selected state variables. These models are then validated

against truth-reference data. This study also explicitly states the assumptions and

simplifications that correspond to each of the models.

The second study derives dynamic equations for each of the seven state variables

via a first-principles approach. The dynamic state equations contain expressions for

mass flow rates and power that were modeled in the first study. This study then

numerically validates the entire state-space model by exercising control inputs from



xv

reference data on it. Together, the seven state equations e↵ectively serve as a control

model that can be used for controller synthesis. The goal of the first two studies is

to demonstrate a procedure for obtaining a control model for an engine architecture,

not to obtain a high-fidelity simulation model.

The third study demonstrates control-oriented analysis on a state-space model

provided by Caterpillar. The relative gain array (RGA) is used to show that the sys-

tem is well-suited is for decentralized control. This study implements a decentralized

control structure on the state-space model provided by Caterpillar and validates, in

simulation, its ability to achieve reference tracking for desired outputs.
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1. INTRODUCTION

The applications of internal combustion engines are vast and serve various aspects of

society’s needs. Both consumers and retailers rely upon these engines in areas ranging

from transportation to power generation. There are various fuels that power internal

combustion engines including gasoline, diesel, natural gas, and blends of these fuels.

No matter what kind of fuel is used in an engine, its chemical potential energy can

only be harnessed by combustion, and to do so there are two main types of combustion

engines. Compression ignition (CI) engines rely upon high pressures to auto-ignite a

fuel-air mixture, while spark ignition (SI) engines rely upon a spark plug to initiate

the combustion process. Fuels such as diesel and dual-fuel blends have lower octane

numbers and are easier to auto-ignite, so they are often used in CI engines. Fuels such

as gasoline and natural gas have higher octane numbers and are harder to auto-ignite,

so they are used in SI engines.

Other considerations for engine manufacturers are constraints imposed by con-

sumer demand and governmental agencies. Consumers demand engines that perform

well but are fuel-e�cient so that they save money on fuel costs. Governmental agen-

cies set emissions regulations that a manufacturer must meet. Natural gas is often

regarded as a “clean fuel”. Its advantages include high energy density compared to

gasoline, and cleaner combustion properties from an emissions standpoint. The stor-

age and availability of natural gas are issues from a consumer perspective, but not in

stationary o↵-highway applications like power generation.

1.1 Motivation

In power generation applications, two important requirements are generating

enough power to meet electricity needs and ensuring the engine speed is maintained
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to produce current at the mains frequency, as mentioned in [1]. The controllers in an

engine must be able to meet those requirements but also abide by respective federal

emissions requirements. Control problems in the engine are often multifaceted. As

mentioned in [2], a control problem that focuses on governing engine speed may have

to meet lower level control constraints such as air-fuel ratio (AFR) targets. This

means engine control problems that have a primary objective may very well feature

secondary goals.

For example, in a throttle-governed automobile driven by a consumer, the driver

pushes down on the gas pedal with the goal of increasing speed. Inside the engine,

there are many secondary objectives that must be met to facilitate acceleration. There

are also constraints that impose limits on how the engine operates while accelerating.

This simple example illustrates the importance of control algorithm design in the

context of vehicles, and more specifically engines. A primary motivation for this

thesis is control-oriented modeling and analysis of a natural gas engine architecture

with the high-reaching goal of control algorithm design.

1.2 Background Literature

Engine control problems are often multiple-input multiple-output (MIMO) in na-

ture. Inputs are actuators that an engine control module (ECM) has direct control

over, and outputs are control objectives. In MIMO systems, there can be a great deal

of coupling between inputs and output as mentioned in [3]. The degree of coupling

can often influence the type of control strategy that is selected. The three main cat-

egories of control structures include decentralized controllers, decoupling controllers,

and coupled controllers. This section explains the control structures in detail and

highlights the various engine control strategies used in academia and industry for the

following control problems: managing air-handling, regulating fueling, and engine

speed control.
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1.2.1 Control Structures

Decentralized Controller

In decentralized control frameworks, each input is used to independently control

one target output [4]. Such control structures feature an independent controller on

every input-output pair, as shown in Figure 1.1. This works well for plants with

minimal coupling interaction. In such plants, every input primarily a↵ects one output,

and has minimal e↵ect on other outputs. The advantage of decentralized controllers is

that they are easier to tune, particularly in industrial applications. In [5], researchers

design a feedback-based spark timing controller. It is considered decentralized in the

sense that spark timing is solely used to maximize fuel e�ciency. Traditional spark

timing controllers use an open-loop map to generate the maximum brake torque spark

timing, but this paper uses five combustion phase indicators and a PI controller to

optimize the spark timing.

Figure 1.1. Example of decentralized control structure.

Decoupling Controller

Decoupled control frameworks use a decentralized control structure after mathe-

matically decoupling plant dynamics, as shown in Figure 1.2. The plant dynamics
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of a transfer matrix, G(s), can sometimes be decoupled by means of a decoupling

matrix. There are three main types of decoupling strategies discussed in [4]:

1. Dynamic decoupling: G(s) is decoupled at all frequencies, s = j!.

2. Steady-state decoupling: The plant is decoupled at a frequency of zero.

3. Approximate decoupling: The plant is decoupled at a selected frequency, often

the bandwidth frequency.

While appealing in theory, decoupling controllers can be di�cult to implement.

Figure 1.2. Example of decoupled control structure with pre-compensator W1.

Reference [6] summarizes a patent on a decoupling control framework for air-

handling in a diesel engine. The engine architecture of this reference features an

exhaust throttle valve, exhaust-gas recirculation (EGR), and a variable-geometry

turbocharger (VGT). In diesel engines, the EGR and VGT are often key features

of the air-handling system. The EGR valve allows exhaust gases to go back into the

cylinders, which lowers combustion temperatures and reduces nitrous-oxide (NOx)

emissions. In a turbocharger, a turbine is driven by exhaust gases and causes the

compressor to induct more air on the intake side. A VGT can be altered geometri-

cally, e↵ectively allowing for control over charge flow into the boost manifold. For a

fixed EGR valve position in the engine architecture of [6], a controller would ideally
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use the exhaust throttle valve to control EGR mass flow and use the VGT to con-

trol charge flow. In reality, the air-handling system is quite coupled. The exhaust

throttle valve position can a↵ect charge flow, and the VGT can a↵ect EGR mass flow

rate. Figure 1.3 is a schematic from [7], and it shows an example of an engine ar-

chitecture with high pressure EGR and a turbocharger. Researchers in [6] e↵ectively

Figure 1.3. Engine architecture of reference [7] with turbocharger and EGR.

design a transformed coordinate system in which, for a given EGR valve position,

transformed EGR fraction is decoupled from VGT position and transformed charge

flow is decoupled from exhaust throttle position. Controller design is then done in

this transformed coordinate system to allow for the implementation of a decentralized

controller. Figure 1.4 shows a block diagram from the patent that is representative

of the coordinate transform manager within the controller.
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Figure 1.4. EGR-VGT transform manager of reference [6].

Coupled Controller

In coupled control structures, a central controller take into the account the inter-

actions of various input-output pairs to coordinate the actuators, as represented by

Figure 1.5. In the engine, air-handling systems are often quite coupled and may bene-

fit from control strategies that can handle interaction between input-output channels.

For example, in reference [3], a sliding mode controller is utilized to control EGR and

boost pressure by taking into account the coupling between input-output channels.

Coupled control structures such as optimal controllers and sliding mode controllers

may be necessary to capture the physics of a highly coupled system during steady-

state and transient operation. However, coupled controllers are more di�cult to tune

in the field and may not be as intuitive as a decentralized controller that features

independent controllers for each input-output channel.
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Figure 1.5. Example of centralized control structure.

1.2.2 Air-Handling Control

Air-handling control involves regulating charge flow past valves and pressures in

manifolds. Key architectural components seen in engines, particularly diesel engines,

include turbochargers and EGR systems. There can also be throttle valves on the

intake and exhaust side, bypass valves for the compressor, and wastegate valves for

the turbocharger. As mentioned in [8], the EGR mass flow has a significant impact

on the turbocharger operation. This is because EGR mass flow bypasses the turbine

and flows towards the intake manifold, thus lowering the boost pressure di↵erential.

EGR flow also lowers turbocharger speed because less exhaust gases are routed to

drive the turbine. It is clear that the air-handling problem features highly coupled

dynamics, therefore academic literature often features decoupling or coordinated con-

trol strategies rather than directly applying decentralized control.

In reference [9], researchers design a controller to manage air-handling in a diesel

engine architecture that features a fixed geometry turbocharger, EGR system, and

intake throttle. The target outputs in this paper are the intake manifold pressure

and total air mass flow rate into the compressor. The control inputs are the EGR

valve and throttle valve. Since there is inherent coupling between these inputs and

outputs, decentralized control strategies may not be optimal. The researchers use

model predictive control (MPC), an optimal control method that can deal with various
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output targets and is suitable for MIMO systems as mentioned in the paper. Before

controller synthesis, the researchers obtain a black box input-output ARX model via

system identification and transform it to a state-space form. The researchers then

synthesize the MPC and also include a disturbance observer to account for modeling

error. The researchers claim their MPC controller, which takes into account the

coupled dynamics of the system, achieves target values for the output 2.5 to 8 times

faster than a conventional controller.

Reference [7] utilizes a decoupling control strategy to manage EGR rate and boost

pressure in a turbocharged diesel engine. The researchers implement a decoupling ma-

trix, W (s), which allows them to pair VGT to boost pressure and EGR valve to EGR

fraction. Quantitative feedback theory (QFT) is then applied to obtain a diagonal

controller for the compensated plant, P (s) = G(s)W (s). The diagonal controllers

are expressed in PI form using QFT. The researchers find that the decoupled con-

troller achieves superior reference step tracking for EGR rate and boost pressure when

compared to a coupled controller.

1.2.3 Fueling Control

Fuel mass flow is often used as a control input to regulate targets such as AFR for

emissions purposes. A lower level controller manipulates actuators such as valves or

injectors to achieve a desired fuel flow rate. Researchers in [10] utilize a PID compen-

sator for fueling control in a retrofitted compressed natural gas (CNG) engine. The

engine of interest in this paper was originally a gasoline engine, but it has been con-

verted to run on natural gas. The engine control unit (ECU) uses a model predictive

feed-forward controller to regulate AFR with a fuel pulse-width signal intended for a

gasoline engine. The retrofitted PID controller converts the gasoline fuel pulse-width

signal generated by the ECU to an equivalent pulse-width for CNG. This application

is considered decentralized because fueling is used to control AFR via a map based

strategy, and feedback control is used for pulse-width conversion.
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In direct injection systems, injection pressure is used as a proxy for fuel mass flow

metering. Researchers in [11] use a model predictive controller for a novel electronic

CNG injection system. The researchers first use a physics-based approach to obtain

nonlinear state equations for rail pressure and control chamber pressure. They then

linearize and discretize the nonlinear state equations about various operating points

and synthesize a model predictive controller. The input to the controller is a reference

pressure and the output is the solenoid valve lift. The control system in the paper

reduces pressure of the CNG stored in the tank and delivers it to a common rail where

it is injected into the cylinders.

Physics-based approaches to fueling control require knowledge of fuel flow dy-

namics in the engine. Black box approaches are one way of obtaining input-output

relationships for a plant. Researchers in [12] utilize neural networks to obtain a model

for the fuel control system of a CNG engine. AFR is the primarily control objective

in this paper, and fueling is the control input used to regulate it. There are two con-

trollers used in the paper, one is a feed-forward map-based controller and the other

is a neural network based PI controller. Both controllers generate a fuel pulse signal

as their outputs. The feed-forward controller takes throttle and engine speed data

as inputs, while the feedback controller takes the error between reference and actual

AFR as an input. The researchers find success in AFR reference tracking during

throttle and torque transients. Researchers in [13] utilize auto-regressive artificial

neural networks (ANN) to obtain a complete model for input-output relationships

on emissions, manifold dynamics, and actuator dynamics. They then apply a non-

linear model predictive controller (MPC) and achieve better performance and fewer

emissions when compared to a feed-forward controller.

In reference [14] a model predictive controller (MPC) is developed to regulate

lambda, or AFR. In this case, the control model is obtained via system identification.

More specifically, pseudo-random binary signals (PRBS) are applied to obtain a black

box model between fuel injection duration and lambda. During MPC formulation,

the throttle valve is treated as a disturbance variable, and there are constraints on
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weighted control inputs and outputs. When step disturbance changes in the throttle

are exercised, the researchers find that the MPC maintains reference lambda better

than a PI controller.

1.2.4 Engine Speed Control

Engine speed control is of particular interest to natural gas engines used in power

generation applications. As mentioned in [1], during power generation, engine speed

must be maintained such that current is produced at the mains frequency. In such

applications, engine speed is a primary control objective along with meeting the power

demanded by the grid, but secondary control objectives such as AFR and emissions

requirements should be met as well. For example, researchers in [1] design a speed

controller for a natural gas power supply engine. The architecture features a fixed

geometry turbocharger with a compressor bypass valve, indirect fueling upstream

of the compressor, intake throttle valve, and spark ignition. The authors employ

a physics-based approach to modeling, and utilize a mean-value engine model to

express the system in linearized state-space form. They then synthesize an H-infinity

controller based on the state-space formulation. The goal of the H-infinity controller is

to find a controller that minimizes the H-infinity norm, meaning it is a controller that

relies on optimization. The researchers find that the H-infinity controller maintains

engine speed better than a PID controller during transient changes in power load.

Researchers in [15] also take a model-based approach to tackling the engine speed

control problem. Unlike in [1] where a physics-based approach is used to obtain a

control model, researchers in this paper utilize system identification (harmonic gener-

ation) on their engine architecture which features a throttle valve and spark ignition.

They use the system identification process to develop a truncated Volterra series,

a type of model used to capture nonlinear behavior. They then obtain a nonlin-

ear model-based controller by inverting the nonlinear plant dynamics of the Volterra

series in the frequency domain. The inversion is done based on an approximate for-
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mula for nonlinear plants. Additionally, they augment this model-based controller

with an adaptive component that utilizes an instrumental variables approach. The

researchers of [15] express their controller design in the frequency domain and utilize

additional poles and filters on the controller to ensure closed-loop stability. Because

voltage to the throttle valve is the only input that the nonlinear model-based con-

troller controls a↵ects, it is implied that this engine is throttle-governed, meaning

fueling is dependent on throttle position. The researchers validate their nonlinear

model-based adaptive controller on a 4.6 L 8-cylinder Ford engine. They find that

the nonlinear model-based adaptive controller tracks step changes in desired engine

speed well with comparable performance to a similarly design linear model-based con-

troller. This paper highlights the fact that in a throttle-governed engine, an engine

speed controller can be formulated by managing air-handling and having a lower level

controller provide the desired fueling.

1.2.5 Literature Review Takeaway

This literature review highlights various approaches to di↵erent control problems

present in an engine. For engines used in power generation, there are higher level

control problems such as controlling engine speed and meeting load-torque demand.

There are also lower level control problems such as managing air-handling to achieve

a desired EGR fraction and boost pressure. The key takeaway is that while there

are numerous coupled control strategies, they are model-based and require some kind

of model that captures dynamics between inputs and outputs. More specifically, a

linear state-space model of an engine is required to formulate some of the coordinated

control strategies mentioned in the literature review. Therefore, a primary motivation

of this thesis is deriving a state-space model of an engine so that there is the capability

to synthesize coordinated control strategies.
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1.3 Application of Interest

The application of interest is a Caterpillar G3500 series natural gas engine. This

SI engine architecture features a twin-turbocharger and a passive wastegate valve.

The actuators that an ECU can control directly are throttle valve position, bypass

valve position, fuel injection, and spark timing. Since this engine is used in power

generation applications on electrical grids, it is imperative that the desired engine

speed is maintained at steady-state and maintained as well as possible during transient

load-torque changes. Figure 1.6 shows a schematic provided by Caterpillar for the

G3500 engine architecture, while Figure 1.7 shows a representative picture of the

G3500 engine and generator set.

Figure 1.6. Schematic of the Caterpillar G3500 engine architecture.

Figure 1.7. Caterpillar G3500 engine generator set.
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1.4 Thesis Contributions

The specific contributions of this thesis pertain to physics-based modeling and

control-oriented analysis of the Caterpillar G3500 engine architecture and are dis-

cussed in the subsections below. Note that the subsections below also represent an

outline of the thesis.

1.4.1 Power and Mass Flow Modeling Validation

The power and mass flow modeling and validation e↵orts of this thesis consist of

the following:

1. Declare state variables that are later used in the formulation of a complete

state-space model that characterizes engine dynamics.

2. Model engine torque gain (Ctrq) as a function of state variables and validate

this expression using reference data.

3. Model cylinder mass flow (Wcyl) as a function of state variables and validate

this expression using reference data.

4. Model compressor mass flow (Wcomp) as a function of state variables and validate

this expression using reference data.

5. Model turbine mass flow (Wturb) as a function of state variables and validate

this expression using reference data.

6. Model wastegate mass flow (Wwg) as a function of state variables and validate

this expression using reference data.

7. Model compressor power (Pcomp) as a function of state variables.

8. Model turbine power (Pturb) as a function of state variables.
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1.4.2 State-Space Modeling Validation

The state-space equation formulation and validation e↵orts of the thesis consist

of the following:

1. Derive a dynamic equation for engine speed (x1) by using a physics-based ap-

proach.

2. Derive a dynamic equation for intake manifold pressure (x2) by using a physics-

based approach.

3. Derive a dynamic equation for boost manifold pressure (x3) by using a physics-

based approach.

4. Derive a dynamic equation for exhaust manifold pressure (x4) by using a physics-

based approach.

5. Derive a dynamic equation for turbocharger speed (x5) by using a physics-based

approach.

6. Derive a dynamic equation for wastegate valve lift (x6) by using a physics-based

approach.

7. Derive a dynamic equation for wastegate valve velocity (x7) by using a physics-

based approach.

8. Formulate a nonlinear state-space model with all flow and power terms expressed

as nonlinear functions of state variables.

9. Formulate a simplified nonlinear state-space model with all flow and power

terms (except Wcyl) expressed as linear functions of state variables.

10. Linearize the simplified nonlinear model about an equilibrium point to obtain

a linear engine model in conventional state-space form.

11. Validate and compare all three models against truth-reference data obtained by

performing a closed-loop GT-Power/Simulink simulation.
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1.4.3 Control-Oriented Analysis

The control-oriented analysis e↵orts of this thesis consist of the following:

1. Transfer matrix formulation of a linearized state-space model provided by Cater-

pillar.

2. Relative gain array (RGA) formulation on the model provided by Caterpillar.

3. RGA number analysis versus frequency to determine the best input-output con-

figuration for decentralized control.

4. RGA element magnitude and phase analysis versus frequency.

5. PI controller analysis based on intuition gained by RGA analysis.
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2. PHYSICS-BASED MODELING AND VALIDATION OF THE NATURAL GAS

ENGINE

As discussed in the previous chapter, coordinated control strategies are of potential

interest because they take into account the coupling between all inputs and outputs

of a system. However, in order to utilize coordinated control strategies, it is often

necessary to obtain a control-oriented model for the system, which in this case is the

natural gas engine. While a control-oriented model does not need to be as accurate

as a high-fidelity simulation model, it should capture transient behavior of the system

fairly well. One way of obtaining a control-oriented state-space model is by means

of system identification, such as in [7]. In this method, state variables may or may

not represent physical quantities, and the model derivation is “data driven”. Another

option is utilizing first-principles to obtain a physically-based model. This study

focuses on a first-principles approach to obtain a state-space model. More specifically,

this chapter explicitly defines all state variables, input variables, and disturbance

variables. Additionally, this chapter models all relevant terms as functions of the

state-space variables and validates the individual expressions against GT-Power truth-

reference data.

2.1 GT-Power truth-reference Data

Before any modeling e↵orts were undertaken, truth-reference data was obtained

via a co-simulation on a closed-loop GT-Power/Simulink model for the Caterpillar

G3500 natural gas engine. Caterpillar provided Purdue University with both the GT-

Power model of the engine and the Simulink engine controller. Since the engine is

used in power generation applications, the disturbance it encounters is varying load

factor. The load factor is a fraction of the maximum load-torque demand. A closed-
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loop simulation was performed consisting of load factor step changes from 0 to 1.0

and back down to 0 in increments of 0.1. The Simulink controller determined control

inputs to maintain engine speed and other control targets during the simulation.

During this simulation all pertinent engine data was collected into a MATLAB work

space. The data consisted of various mass flows, pressures, temperatures, speeds,

e�ciency values, and thermophysical properties of gases.

2.2 State-Space Variable Nomenclature

In order to obtain a control model in state-space form, state variables, control

inputs, and disturbances must be explicitly denoted for the engine of interest. Cater-

pillar provided a set of dynamic equations describing the engine, and these equations

are the basis for state-space model formulation.

2.2.1 Original Dynamic Equations

The initial set of equations provided by Caterpillar includes di↵erential equations

for engine speed, intake manifold pressure, boost manifold pressure, and exhaust

manifold pressure. The equations are shown below.

!̇ =
1

J

[CtrqPim � TrqL] (2.1)

Ṗim =
RimTim

Vim

[Wthr �Wcyl] (2.2)

Ṗbm =
RbmTbm

Vbm

[Wcomp �Wthr �Wbyp] (2.3)

Ṗem =
RemTem

Vem

[Wcyl �Wturb �Wwg] (2.4)

While this model serves as a foundation for formulation of the state-space equations,

there are several components that it lacks, including:

• A model for compressor mass flow, Wcomp.

• A model for turbine mass flow, Wturb.
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• A model of volumetric e�ciency, ⌘v.

• A model of gas temperature in the exhaust manifold, Tem.

• A model of thermal e�ciency, ⌘therm, as a function of spark timing.

• An equation for wastegate valve dynamics.

• An equation for turbocharger dynamics.

The locations of the mass flow terms and the manifold volumes are shown in Figure

1.6.

2.2.2 Addressing Missing Model Components

The operating range of interest for controller design corresponds to load factors

between 0.7 and 1.0. A load factor is the fraction of the maximum load that the engine

must generate to meet the demand set by the electrical grid. Table 2.1 summarizes

how missing model components are addressed:

Table 2.1. Strategy for addressing missing model components

Missing Components Min. Value Max. Value Strategy

Wcomp - - - - - - - - - - fcn(Pbm,!tc)

⌘comp 0.7794 0.7937 ⌘comp = const.

Wturb - - - - - - - - - - fcn(Pem)

⌘turb 0.7539 0.7840 ⌘turb = const.

⌘v 0.7223 0.7575 ⌘v = const.

⌘therm N/A N/A ⌘therm = const.

Tem 910.68K 943.98K Tem = const.

As shown in Table 2.1, the strategy for compressor mass flow is to make it a

function of boost pressure and turbocharger speed based on previous work at Purdue
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University in [16]. The strategy for turbine mass flow is to make it a function of

exhaust manifold pressure based on turbine map data. In the operating range of

interest, the truth-reference data values of compressor e�ciency, turbine e�ciency,

and volumetric e�ciency do not vary significantly. Therefore, in the control model

the e�ciency values are set to their averages in the operating range: ⌘comp = 0.79,

⌘turb = 0.77, and ⌘v = 0.74. The GT-Power truth-reference data does not contain

information on thermal e�ciency, so a value of ⌘therm = 0.4 is selected for this natural

gas engine. The value of exhaust manifold temperature does not vary significantly in

this operating range, so it is set to the average truth-reference value of Tem = 933.6K

in the control model. More generally, all temperature parameters that do not vary

significantly in the operating range of interest are set to their respective mean values

in the truth-reference data:

• Intake manifold temperature: Tim = 340.2K

• Boost manifold temperature: Tbm = 445.0K

2.2.3 State-Space Variables

Seven state variables, three control inputs, and one disturbance variable are chosen

to create a state-space model for the engine. The state variables are selected to

characterize the physics of the engine and include x1 := engine speed (rad/s), x2

:= intake manifold pressure (Pa), x3 := boost manifold pressure (Pa), x4 := exhaust

manifold pressure (Pa), x5 := turbocharger shaft speed (rad/s), x6 := wastegate valve

lift (mm), and x7 := wastegate valve velocity (m/s). The input variables are u1 :=

throttle valve mass flow (kg/s), u2 := bypass valve mass flow (kg/s), and u3 := fuel

mass flow (kg/s). The single disturbance in the state-space model is w := load factor.

Figure 2.1 shows a schematic of the engine provided by Caterpillar with locations of

state and inputs variables.



20

Figure 2.1. G3500 engine schematic with state and input variables.

It is important to note that the modeling e↵orts in this study assume direct control

over mass flows for the three control inputs. In reality, an engine controller would

have direct control over valve positions, so a lower level controller for target mass

flows may be required depending on the control strategy. Assuming direct control

of flows, however, is a common practice. When this assumption is made, a higher

level controller determines a mass flow input to control a target variable, and a lower

level controller works to provide the desired mass flow input. Balekai, et al. design a

closed-loop EGR controller for a diesel engine in [19]. They utilize an outer control

loop to control EGR fraction with EGR mass flow rate and an inner control loop

to control the EGR mass flow rate with EGR valve position. Figure 2.2 below is

representative of a nested control structure with inner and outer control loops that

would be necessary when assuming direct control over mass flows.
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Figure 2.2. Example of nested controller with inner and outer control loops.

Before formulating a set of nonlinear state equations and linearizing them about

an equilibrium point, all terms in the original dynamic equations are made explicit

functions of state, input, and disturbance variables. This includes the following mass

flow terms from the original di↵erential equations: Wcyl, Wcomp, Wturb, Wwg, Wthr,

and Wbyp. These mass flow terms are expressed as functions of state variables and

validated in the following sections of this chapter. The engine torque gain, Ctrq,

is also made a function of state and input variables. Additionally, the compressor

and turbine power terms are expressed as functions of state variables, because the

final set of state-space equations takes into account turbocharger speed and wastegate

dynamics. The load-torque term, TrqL, in Equation (2.1) is a straightforward function

of load factor and maximum expected load-torque:

TrqL = Tmaxw (2.5)

2.3 Cylinder Mass Flow Modeling

The cylinder mass flow rate term appears in Equation (2.2) and Equation (2.4) in

the dynamic equations for intake manifold pressure and exhaust manifold pressure.

It is modeled using the speed density equation [17]. Assumptions for the cylinder

mass flow equation in this model include constant intake manifold temperature and

constant volumetric e�ciency, per Table 2.1.
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2.3.1 Cylinder Mass Flow Equation

The cylinder mass flow equation is based on the speed density equation and is

expressed as follows:

Wcyl(!, Pim) =
!Pim⌘vVD

2RTim

(2.6)

This can be written explicitly in terms of state variables x1 and x2:

Wcyl(x1, x2) =
x1x2⌘vVD

2RTim

(2.7)

2.3.2 Cylinder Mass Flow Equation Validation

The cylinder mass flow expression is validated by substituting GT-Power values

of x1 and x2 into Equation (2.7) and comparing it with GT-Power value of Wcyl at

every time step. There is a maximum steady-state error of 3.3% in the operating

range of interest, which is load factors between 0.7 and 1.0.

Figure 2.3. Cylinder mass flow expression validation.
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2.4 Engine Torque Gain Modeling

The engine torque gain term appears in the dynamic equation for engine speed,

Equation (2.1). Multiplying the engine torque gain by the intake manifold pressure

gives the gross torque generated by the engine. When the total engine torque is

greater than the load-torque, the engine speed will be increasing. Assumptions for the

engine torque gain equation include constant volumetric e�ciency, constant thermal

e�ciency, and constant intake manifold temperature.

2.4.1 Engine Torque Gain Equation

The equation for engine torque gain was provided by Caterpillar and is expressed

as:

Ctrq =
⌘v⌘thermQLHV VD

4⇡RTim(AFR + 1)
(2.8)

The air-fuel ratio (AFR) in the cylinder can be approximated by the following equa-

tion,

AFR =
Wcyl �Wf

Wf

(2.9)

which assumes the fueling transport delay for this engine architecture is negligible.

Keeping in mind that cylinder mass flow is a function of x1 and x2, and that fuel mass

flow is the input u3, AFR is a function of states and inputs, AFR = fcn(x1, x2, u3).

The engine torque gain equation can therefore be written explicitly in terms of state

variables and inputs:

Ctrq(x1, x2, u3) =
⌘v⌘thermQLHV VD

4⇡RTim(AFR(x1, x2, u3) + 1)
(2.10)

2.4.2 Engine Torque Gain Equation Validation

The engine torque gain expression is validated against reference data correspond-

ing to load factors between 0.7 and 1.0. Validation is done by substituting truth-

reference GT-Power values of x1, x2, and u3 into Equation (2.10) and comparing it

with the truth-reference value of Ctrq at every time step, as shown in Fig. 2.4.
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Figure 2.4. Engine torque gain expression validation.

In Fig. 2.4, the load factor on the engine begins at 0.7 and undergoes step changes

in increments of 0.1 until it reaches 1.0. The load factor then undergoes step decre-

ments of 0.1 until it is back to 0.7. The engine torque gain model matches the reference

data better when load factor is higher. At a load factor of 0.7, there is less than 16%

steady-state error and at a load factor of 1.0 there is less than 8% steady-state error.

A likely source of this error is the assumption of constant thermal e�ciency in the

operating range of interest. Based on the validation results, the engine torque gain

model of Equation (2.10) is not considered satisfactory and instead a constant value

of Ctrq = 0.0256 is assumed. This constant-value assumption has a maximum of 2.9%

steady-state error with respect to the reference data. In e↵ect, this simplification

means assuming a constant AFR, which means there must be a low level controller

that can manage fueling (u3) to maintain the constant AFR value.
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2.5 Compressor Mass Flow Modeling

The compressor mass flow rate term, Wcomp appears in Equation (2.3) and is

not defined as an explicit function of state variables in the original set of equations

provided by Caterpillar. Compressor mass flow rate can be modeled as a function

of boost manifold pressure (x3) and turbocharger speed (x5) [16]. As the exhaust

gases drive the turbine, the turbocharger speed increases and the compressor inducts

more airflow thereby increasing boost pressure. Assumptions for the compressor

mass flow rate model include constant ambient air density, constant ambient air

temperature, constant ambient air pressure, constant specific heat ratio for ambient

air, constant specific heating value (constant-pressure) for ambient air, compressor

inlet pressure equal to ambient air pressure, an approximated compressor blade tip

diameter, isentropic compression, and constant compressor e�ciency.

2.5.1 Nonlinear Compressor Mass Flow Equation

The compressor mass flow equation from [16] is highly nonlinear and is written in

terms of state variables as:

Wcomp(x3, x5) = 2 ⇤ [⇡
4
⇢ad

2
c(

1

�RTa

)
��1
2� (

⇡

60
dcx5)

2��1
� ]⇤

(a1X
3 + a2X

2 + a3X + a4)

(2.11)

where the term X is,

X(x3, x5) =
cp,aTa((

x3
P
a

)
��1
2� � 1)

1
2(

⇡
60dcx5)2

(2.12)

The regression coe�cients in the Equation (2.11) are obtained by regression on the

compressor map provided by Caterpillar. The equation from the reference is multi-

plied by a factor of two to account for the twin turbochargers in the G3500 engine

architecture.
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2.5.2 Nonlinear Compressor Mass Flow Equation Validation

The compressor mass flow term of Equation (2.11) is validated against reference

data corresponding to load factors between 0.0 and 1.0. The operating range of inter-

est for present modeling purposes is for load factors between 0.7 and 1.0. However,

the nonlinear compressor mass flow is validated against the entire operating range

since it is based on compressor map data. Validation is done by substituting truth-

reference values of x3 and x5 into the nonlinear compressor mass flow expression and

comparing it with the GT-Power truth-reference value of Wcomp at every time step,

as shown in Fig. 2.5.

Figure 2.5. Nonlinear compressor mass flow expression validation.

In Fig. 2.5 the load factor on the engine starts at a value of 0.0 and undergoes step

changes in increments of 0.1 until it reaches 1.0. The engine then experiences step

decrements in load factor down to a value of 0.7. Overall the nonlinear compressor

mass flow model of Equation (2.11) matches the reference data well in steady-state,
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with a maximum of 16.1% steady-state error in the operating range of interest. The

nonlinear compressor mass flow model also captures transient behavior well at most

load factor step changes, except at the beginning of the simulation where the model

displays significant transient spikes compared to the reference. A possible cause of this

is inaccuracy of Equation (2.11) for low turbocharger speeds during engine start-up.

Despite this inconsistency, the nonlinear compressor mass flow model is considered

satisfactory because of its acceptable steady-state error in the entire operating range

and accurate transient behavior particularly for load factors between 0.7 and 1.0.

2.5.3 Linear Compressor Mass Flow Equation

By using a physics-based approach, compressor mass flow was expressed as a

highly nonlinear function of boost manifold pressure and turbocharger speed. Though

the expression is an accurate one, it makes it more challenging to solve for an equilib-

rium point when linearizing a set of nonlinear state equations. Therefore, compressor

mass flow is made a linear function of x3 and x5 as follows:

Wcomp = g1x3 + g2x5 + g3 (2.13)

The coe�cients g1, g2, and g3 are obtained by means of regression on the truth-

reference data in the operating range of interest. To be clear the linear expression is

valid in the operating range of interest, while the nonlinear expression is valid for the

whole operating range.

2.5.4 Linear Compressor Mass Flow Equation Validation

The linear compressor mass flow model of Equation (2.13) is validated in the same

way as the nonlinear model, except now the model is only tested against reference

data corresponding to load factors between 0.7 and 1.0. The validation of the linear

compressor mass flow model is presented in Fig. 2.6. As shown, the linear compressor

mass flow equation captures transient behavior very well and has minimal steady-state
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error (ess < 1.5%) in the specific operating range of interest. Note that ess denotes

steady-state error. Both linear and nonlinear equations accurately capture transient

behavior during load factor step changes. The linear model has lower steady-state

error in the relevant operating range. This is because the nonlinear model is based

on first-principles where compressor mass flow is expressed as a function of x3 and

x5, while the linear model is based on a regression fit.

Figure 2.6. Linear compressor mass flow expression validation.

2.6 Turbine Mass Flow Modeling

The nonlinear turbine mass flow equation is obtained via regression on the turbine

map data provided for the turbocharger in the Caterpillar G3500 natural gas engine.

Assumptions for the turbine mass flow model include constant turbine e�ciency,

constant exhaust manifold temperature, constant ambient air pressure, turbine inlet
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pressure equal to exhaust manifold pressure, constant thermodynamic properties for

gases, and an approximated turbine blade tip diameter.

2.6.1 Nonlinear Turbine Mass Flow Equation

The turbine mass flow equation is a polynomial function of exhaust manifold

pressure, x4, and is expressed as:

Wturb(x4) =
2x4

Te
0
m

.5
(b1PR

7
t + b2PR

6
t + b3PR

5
t + b4PR

4
t

+b5PR

3
t + b6PR

2
t + b7PRt + b8)

(2.14)

where,

PRt(x4) =
x4

Pa

(2.15)

The turbine map data used to obtain the nonlinear relationship above between PRt

and Wturb is distinct from the truth-reference data obtained by co-simulation of the

GT-Power/Simulink model.

2.6.2 Nonlinear Turbine Mass Flow Equation Validation

The nonlinear turbine mass flow term of Equation (2.14) is validated against

reference data that spans all load factors between 0.0 and 1.0. Validation is done by

substituting truth-reference values of x4 into the nonlinear turbine mass flow equation

and comparing with the GT-Power simulation data for Wturb at each time step as

shown in Fig. 2.7. The nonlinear turbine mass flow model matches the truth-reference

data very well during transient load factor changes and steady-state, with a maximum

of 2.0% steady-state error in the operating range of interest.
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Figure 2.7. Nonlinear turbine mass flow expression validation.

2.6.3 Linear Turbine Mass Flow Equation

The turbine mass flow equation is a nonlinear function of exhaust manifold pres-

sure. To simplify the control model, it is made a linear function of x4 as follows:

Wturb(x4) = C1x4 + C2 (2.16)

The coe�cients C1 and C2 are obtained via regression on the truth-reference data

corresponding to the operating range of interest (LF = 0.7 - 1.0). Though this

linearization method relies on the truth-reference data, it was by means of first-

principles that turbine mass flow was made a function of x4 in the first place.

2.6.4 Linear Turbine Mass Flow Equation Validation

The linear turbine mass flow model is validated in the same manner as the non-

linear model, except that it is only compared to truth-reference data in the operating
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range of interest (LF = 0.7 - 1.0). Fig. 2.8 shows that the linear mass flow model

matches the reference data for Wturb very well in both transient load factor step

changes and in steady-state (ess < 0.2%). Therefore, Equation (2.16) is considered a

satisfactory model of turbine mass flow in the engine.

Figure 2.8. Linear turbine mass flow expression validation.

2.7 Wastegate Valve Mass Flow Modeling

The wastegate valve featured in this engine architecture is passive. When the

boost pressure reaches a threshold value, the wastegate valve opens. This causes the

exhaust gases to bypass the turbine. Assumptions for the wastegate valve mass flow

model include constant thermophysical properties for exhaust gases, constant exhaust

manifold temperature, and constant ambient air pressure. A schematic of the passive

wastegate is shown in Figure 2.9.
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Figure 2.9. Passive wastegate schematic.

The purpose of the wastegate is to reroute exhaust gases so they bypass the

turbine. This is important to prevent compressor surge which happens when boost

pressure gets too high and all compressor blades stalls. Compressor surge can result

in reverse flow through the compressor. When the pressure in the boost manifold

reaches a threshold value, the diaphragm in the wastegate housing is pushed down

with enough force to overcome pretension force in the springs and open the wastegate

valve.

2.7.1 Wastegate Mass Flow Equation

The wastegate mass flow equation is highly nonlinear and is composed of several

terms which are explained later. The equation itself is a function of exhaust manifold

pressure (x4) and wastegate valve lift (x6):

Wwg(x4, x6) = CD ⇤ Awg ⇤ ⇢is ⇤ Uis (2.17)

The term CD is the coe�cient of discharge for the wastegate valve, and a linear

coe�cient of discharge relationship is derived based on the raw engine model data for
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this particular engine. The equation for CD is a linear function of wastegate valve

lift:

CD = 4.0821(
x6

dwg

) (2.18)

The term ⇢is is the gas density at the throat and is expressed by the following equation:

⇢is = (
x4

RexhTem

)(
Pa

x4
)

1
�

ex

h (2.19)

The term Uis is the isentropic velocity at the throat and its equation is:

Uis =
p

RexhTem ⇤ ( 2�exh
�exh � 1

[1� (
Pa

x4
)
�

ex

h

�1
�

ex

h ])
1
2 (2.20)

Geometric data for the wastegate (Awg, dwg, etc.) is provided by Caterpillar for

this particular engine. The source of the equations for wastegate mass flow, coe�cient

of discharge (CD), density at the throat (⇢is), and isentropic velocity (Uis) are all

directly taken from the documentation on flow past an orifice from the GT-Power

model of the engine provided by Caterpillar. To be clear, the raw engine data used

for the CD regression is not the same as the truth-reference data obtained by running

the GT-Power co-simulation.

2.7.2 Wastegate Mass Flow Equation Validation

The nonlinear wastegate mass flow model is validated against the reference data

for load factors between 0.7 and 1.0. This is done by substituting truth-reference

values of x4 and x6 into Equation (2.17) and comparing that with truth-reference

GT-Power values of Wwg at every time step, as shown in Fig. 2.10. During real engine

operation, the passive wastegate valve only opens at the highest load factor (LF =

1.0). The model presented in Equation (2.17) is quite accurate as it predicts near zero

mass flow through the wastegate valve at lower load factors. In the reference data,

however, the wastegate valve leaks at lower load factors and wastegate valve mass

flow is non-trivial. At the highest load factor, nonlinear model values and reference

data values of wastegate mass flow are similar. Therefore, the nonlinear wastegate
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mass flow model is considered satisfactory because of its physical accuracy at lower

load factors and similarity to reference values at a load factor of 1.0 (ess < 6.3%).

Figure 2.10. Nonlinear wastegate mass flow expression validation.

2.7.3 Linear Wastegate Mass Flow Equation

The wastegate mass flow expression is linearized to simplify the linearization pro-

cess of the nonlinear state equations. The linear function is expressed as:

Wwg = f1x6 (2.21)

While the nonlinear expression is a function of x4 and x6, the linear function is made

solely a function of x6 because the contour graph for Wwg in the operating range

of interest suggests a stronger dependency on wastegate valve lift. Note that the

nonlinear expression is valid for the entire operating range while the linear function

is only valid for the operating range of interest.
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2.7.4 Linear Wastegate Mass Flow Equation Validation

The linear wastegate mass flow model is validated against GT-Power reference

data in Fig. 2.11. Unlike the nonlinear model, the linear wastegate mass flow model

is only a function of x6. At lower load factors when the wastegate valve should

be closed in the actual engine, the linear mass flow function is more realistic than

the reference data because it predicts flow values of approximately zero. At a load

factor of 1.0, the linear mass flow model matches the truth-reference mass flow almost

perfectly (ess < 0.4%). In fact, the linear mass flow model matches the reference data

better than the nonlinear mass flow model at the highest load factor. This is because

the nonlinear mass flow model is based on first-principles while the linear mass flow

model is based on regression in the operating range of interest.

Figure 2.11. Linear wastegate mass flow expression validation.
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2.8 Compressor Power Modeling

A term for compressor power output (Pcomp) does not appear in the original dy-

namic equations for the engine, but it is necessary in deriving a di↵erential equation

for turbocharger speed, one of the state variables. The strategy for modeling com-

pressor power output is based on the approach taken in [17]. Assumptions for the

compressor power output model are the same as those for the compressor mass flow

rate model.

2.8.1 Compressor Power Equation

The compressor power equation is a function of intake manifold pressure (x2) and

compressor mass flow rate. The compressor mass flow rate is a function of states x3

and x5, which means compressor power is a function of three state variables: x2, x3,

and x5.

Pcomp(x2, x3, x5) =
Wcomp(x3, x5)cp,aTa

⌘comp

[(
x2

Pa

)
�

��1 � 1] (2.22)

2.8.2 Compressor Power Equation Validation

The GT-Power/Simulink model that was used to obtain truth-reference data does

not have compressor power measurements built into the model. Therefore, the ex-

pression in Equation (2.22) can not be validated directly with truth-reference data.

Compressor power does play a role in turbocharger speed dynamics, so if the com-

pressor and turbine power modeling strategies are accurate, the state equation for

turbocharger speed should match the reference data for x5 in steady-state.

2.8.3 Linear Compressor Power Equation

The compressor power equation is highly nonlinear and so it is linearized in the

operating range of interest to make it easier to eventually linearize the state-space

model. Reference [17] provided the physical intuition to make Pcomp a function of
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Wcomp and x2. Using the previously linearized compressor mass flow expression in

Equation (2.13), compressor power is linearized as:

Pcomp(x2, x3, x5) = h1x2 + h2Wcomp + h3 = h1x2 + h2(g1x3 + g2x5 + g3) + h3 (2.23)

2.8.4 Linear Compressor Power Equation Validation

Since compressor power is not a logged quantity in the GT-Power/Simulink model,

the linear compressor power equation can not be validated against reference data. It

can, however, be validated against the original nonlinear expression for compressor

power as shown in Fig. 2.12. In this figure the nonlinear compressor power term is

expressed by Equation (2.22), where it is a function of x2 and the nonlinear Wcomp

model shown in Equation (2.11). The linear compressor power term is expressed

by Equation (2.23), where it is a function of x2 and linear Wcomp model shown in

Equation (2.13). During transient load factor step changes, both the linear and

nonlinear models display very similar transient behavior. In steady-state, percent

di↵erence between the nonlinear and linear models is approximately 15% at all load

factors. The nonlinear and linear compressor power models are therefore considered

very close.
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Figure 2.12. Compressor power expression validation.

2.9 Turbine Power Modeling

A term for turbine power generation (Pturb) does not appear in the original dy-

namic equations for the engine, but it is necessary in deriving a di↵erential equation

for turbocharger speed (x5), one of the state variables. The strategy for modeling

turbine power generation is based on the approach taken in [17]. Assumptions for the

turbine power generation model are the same as those for the turbine mass flow rate

model.
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2.9.1 Turbine Power Equation

The turbine power equation is a function of exhaust manifold pressure and turbine

mass flow rate. Since turbine mass flow rate is a function of x4 in this study, turbine

power is strictly a function of x4 in this model.

Pturb = Wturb(x4)cp,exh⌘turbTem[1�
Patm

x4
]
�

exh

�1
�

exh (2.24)

2.9.2 Turbine Power Equation Validation

As with compressor power, the GT-Power/Simulink model that was used to obtain

truth-reference data does not have turbine power measurements built into the model.

Therefore, the expression in Equation (2.24) can not be validated directly with truth-

reference data. However, if the compressor and turbine power modeling strategies are

accurate, the state equation for turbocharger speed should match the reference data

for x5 in steady-state.

2.9.3 Linear Turbine Power Equation

The turbine power equation is linearized in the operating range of interest as

follows:

Pturb(x4) = e1x4 + e2 (2.25)

This is done to simplify the linearization process of the state-space model.

2.9.4 Linear Turbine Power Equation Validation

The linear turbine power function of Equation (2.25) is validated against the

original nonlinear turbine power expression of Equation (2.24) in Fig. 2.13. Both

models display nearly identical transient and steady-state behavior. At the lowest

load factor of LF = 0.7, there is approximately a 3% di↵erence in steady-state value.
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Figure 2.13. Turbine power expression validation.

2.10 Summary

This chapter accomplished the following tasks with regard to physics-based mod-

eling of mass flow and power terms of the engine model:

1. Declared state variables that are later used in the formulation of a complete

state-space model that characterize engine dynamics.

2. Used first-principles to model engine torque gain (Ctrq) as a function of state

variables and compared this expression against reference data.

3. Ultimately chose a constant value of Ctrq which e↵ectively enslaves fueling con-

trol to air mass flow due to the assumption of constant AFR.

4. Used first-principles to model cylinder mass flow (Wcyl) as a nonlinear function

of state variables and validated the expression against reference data.
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5. Used first-principles and compressor map data to model compressor mass flow

(Wcomp) as both a nonlinear and linear function of state variables and validated

both expressions against reference data.

6. Used turbine map data to model turbine mass flow (Wturb) as both a nonlinear

and linear function of state variables and validated both expressions against

reference data.

7. Used first-principles to model wastegate mass flow (Wwg) as both a nonlinear

and linear function of state variables and validated both expressions against

reference data.

8. Modeled compressor power (Pcomp) as a function of state variables.

9. Modeled turbine power (Pturb) as a function of state variables.
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3. STATE-SPACE EQUATION FORMULATION AND MODEL VALIDATION

DURING STEADY-STATE AND TRANSIENT OPERATING CONDITIONS

The previous chapter focused on modeling individual mass flow rates and power terms

as functions of state-space variables and validating them. This chapter derives a

dynamic equation for each of the seven state variables via a physics-based approach.

Starting from the fully nonlinear state equations, simplifications are applied until

the equations are fully linearized state-space equations. The three modeling cases

presented in this chapter are intended to be representative of the actual iterative

modeling process that was completed for this engine architecture, and they are all

validated in simulation and compared with reference data.

As a reminder, the truth-reference data was obtained in a closed-loop simulation

on a GT-Power/Simulink engine model provided by Caterpillar. During the simula-

tion, the Simulink controller works to select control input values that maintain the

desired engine speed and other control targets in the presence of step changes in load

factor. Load factor is increased from 0.0 to 1.0 in increments of 0.1 and subsequently

decreased back down. The system is allowed to reach steady-state with each load

factor change. The time interval of interest is the period when load factors are be-

tween 0.7 and 1.0. Validation is done by exercising the truth-reference control input

data for u1 and u2 on the state-space models during the entirety of the time interval

of interest. Truth-reference values of the state variables at the first time step in the

time interval of interest are used as initial conditions for the state-space models dur-

ing validation. Fueling (u3) is no longer considered an independent control input to

the model due to the constant AFR assumption of the engine torque gain term. The

state-space model predictions of x1 to x7 are compared with truth-reference data for

these state variables in the time interval of interest.
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3.1 Dynamic Equations Derivation

There are seven dynamic equations, one for each state variable. A physics-based

approach is taken to derive each of these equations. The derivation for each of these

dynamic equations is shown in the following subsections.

3.1.1 x1 State Equation Derivation

The di↵erential equation for engine speed is based on a torque balance of the

crankshaft of the natural gas engine, as shown in Equation (3.1).

J↵ = Trqeng � TrqL (3.1)

The torques acting on the crankshaft are the torque generated by combustion in the

engine and the load-torque demand from the electrical grid. J is the moment of

inertia of the engine, while ↵ is the angular acceleration of the engine, which can be

written as ↵ = !̇. The engine torque can be expressed as a product of engine torque

gain and intake manifold pressure.

Trqeng = CtrqPim (3.2)

Engine torque gain was assumed to have a constant value of 0.0256, as discussed in

Chapter 2. Load torque was defined as a function of the disturbance variable, w, in

Equation (2.5). By substituting Equation (2.5) and Equation (3.2) into the torque

balance of Equation (3.1), the dynamic equation for engine speed can be written as:

ẋ
1

=
1

J
[C

trq

x
2

�T
max

w] (3.3)

Equation (3.3) is the same as the dynamic equation for engine speed provided by

Caterpillar in Equation (2.1), except that all terms are written explicitly as state-

space variables or as functions of state-space variables. As a reminder, x1 is the state

variable for engine speed, x2 is the state variable for intake manifold pressure, and w is

the disturbance variable for load factor. The fuel mass flow, u3, is no longer considered
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an input in this model because of the constant engine torque gain assumption. This

means a lower level controller is assumed to control fueling to maintain a constant

AFR.

3.1.2 x2 State Equation Derivation

The derivation of the state equation for x2 begins with applying the ideal gas law

to the intake manifold. The ideal gas law is normally written as PV = MRT , and if

both sides of the equation are divided by volume it can be written as P = RT
V
M . For

the intake manifold, the ideal gas law is:

Pim =
RimTim

Vim

Mim (3.4)

Taking the time derivative of Equation (3.4) yields the dynamic equation for intake

manifold pressure, Pim.

dPim

dt

= Ṗim =
RimTim

Vim

dMim

dt

(3.5)

Intake manifold volume, Vim, is fixed and the values of Rim and Tim are assumed

constant in the operating range of interest. The only remaining term of Equation

(3.5) is the derivative of the intake manifold mass term, dM
i

m

dt
which can be written

as:
dMim

dt

= Ṁim = Wthr �Wcyl (3.6)

Equation (3.6) is found by performing a mass balance on the intake manifold. Flow

into the intake manifold is throttle mass flow while flow out of the intake manifold

is cylinder mass flow. Substituting Equation (3.6) into Equation (3.5) yields the

original dynamic equation for intake manifold pressure of Equation (2.2). In the state-

space, throttle mass flow corresponds to control input u1 and cylinder mass flow was

expressed as a function of state variables x1 and x2 in Equation (2.7). Therefore, the

state equation for intake manifold pressure is found by writing all terms in Equation

(2.2) as state-space variables or functions of state-space variables:

ẋ
2

=
R

im

T
im

V
im

[u
1

�W
cyl

(x
1

,x
2

)] (3.7)
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3.1.3 x3 State Equation Derivation

To derive a state equation for x3, the ideal gas law is applied to the boost manifold

control volume as follows:

Pbm =
RbmTbm

Vbm

Mbm (3.8)

Taking the time derivative of Equation (3.8) yields the following di↵erential equation

for Pbm:
dPbm

dt

= Ṗbm =
RbmTbm

Vbm

dMbm

dt

(3.9)

The boost manifold volume is fixed and the values of Rbm and Tbm are assumed

constant in the operating range of interest. The mass time derivative term of Equation

(3.9) is derived via a mass balance in the boost manifold.

dMbm

dt

= Ṁbm = Wcomp �Wthr �Wbyp (3.10)

Flow into the boost manifold is represented by the term Wcomp. When the tur-

bocharger operates, the compressor inducts fuel-air mixture into the boost manifold.

Flow out of the boost manifold is accounted for by the terms Wthr and Wbyp. When

the throttle valve is open, mass flows out of the boost manifold and into the intake

manifold. When the bypass valve is open, flow leaves the compressor and goes back

to the compressor inlet. The compressor bypass valve in this engine architecture is

utilized when the turbocharger is operating near the surge margin and opening it

reduces the boost pressure. Substituting Equation (3.10) into Equation (3.9) yields

the original dynamic equation for boost pressure in Equation (2.3). Wthr corresponds

to input u1 and Wbyp corresponds to input u2 in the state-space. Additionally, the

compressor mass flow term, Wcomp was made a function of x3 and x5 in Equation

(2.11). The state equation for boost manifold pressure is then found by writing all

terms in Equation (2.3) as state-variables or functions of state-space variables:

ẋ
3

=
R

bm

T
bm

V
bm

[W
comp
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,x
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)� u
1

� u
2

] (3.11)
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3.1.4 x4 State Equation Derivation

The ideal gas law is applied to the exhaust manifold control volume to derive a

state equation for x4:

Pem =
RemTem

Vem

Mem (3.12)

A di↵erential equation for Pem is obtained by taking a time derivative of Equation

(3.12) as follows:
dPem

dt

= Ṗem =
RemTem

Vem

dMem

dt

(3.13)

The exhaust manifold volume, Vem, is fixed. The terms Rem and Tem are assumed

constant in the operating range of interest. The term dM
em

dt
is derived via a mass

balance in the exhaust manifold.

dMem

dt

= Ṁem = Wcyl �Wturb �Wwg (3.14)

Flow into the exhaust manifold is represented by Wcyl because charge mixture goes

into the exhaust manifold after undergoing combustion in the cylinders. Flow out

of the exhaust manifold is represented by the terms Wturb and Wwg. Exhaust gases

that flow into the turbine are represented by the term Wturb, and they power the

turbine causing the compressor to induct more air. Since this engine architecture

features a passive wastegate valve, when the boost pressure reaches a threshold value

the wastegate valve opens causing gases represented by the term Wwg to bypass the

turbine.

Substituting Equation (3.14) into Equation (3.13) results in the original dynamic

equation for Pem given by Equation (2.4). Cylinder mass flow was made a function of

state variables x1 and x2 in Equation (2.7). Turbine mass flow was made a nonlinear

function of x4 in Equation (2.14) and a linear function of x4 in Equation (2.16).

Wastegate mass flow was made a nonlinear function of x4 and x6 in Equation (2.17)

and a linear function of only x6 in Equation (2.21). Therefore, there are two possible

expressions for the state equation of exhaust manifold pressure depending on the

wastegate mass flow relationship that is used.



47

The state equation for exhaust manifold pressure obtained by substituting state-

variables into Equation (3.13), and using the nonlinear function for wastegate mass

flow is:

ẋ
4

=
R

em

T
em

V
em

[W
cyl

(x
1

,x
2

)�W
turb

(x
4

)�W
wg

(x
4

,x
6

)] (3.15)

The state equation for exhaust manifold pressure obtained by substituting state-

variables into Equation (3.13), and using the linear function for wastegate mass flow

is:

ẋ
4

=
R

em

T
em

V
em

[W
cyl

(x
1
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2

)�W
turb

(x
4

)�W
wg

(x
6

)] (3.16)

Note that the turbine mass flow term in Equation (3.15) and Equation (3.16) can be

either nonlinear or linear, but in either case Wturb is solely a function of x4.

3.1.5 x5 State Equation Derivation

The first step in obtaining a dynamic equation for x5, is performing a torque

balance on the turbocharger shaft as follows:

X
Ttc = Itc↵tc = Trqturb � Trqcomp (3.17)

In Equation (3.17), Itc is the turbochargers shaft inertia, ↵tc is the angular accelera-

tion of the turbocharger shaft, Trqturb is the torque produced by gases flowing through

the turbine, and Trqcomp is the torque produced by the compressor. The turbine and

compressor torque terms can be written out in terms of power and angular velocity.

Trqturb =
Pturb

!tc

(3.18)

Trqcomp =
Pcomp

!tc

(3.19)

Substituting Equation (3.18) and Equation (3.19) into Equation (3.17) and dividing

both sides by Itc yields an expression for angular acceleration of the turbocharger

shaft.

↵tc =
Pturb � Pcomp

Itc!tc

(3.20)
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In reality, not all of the power generated by exhaust gases flowing through the turbine

are transmitted to the compressor, so a turbocharger mechanical e�ciency term is

introduced into Equation (3.20) as ⌘mech.

↵tc =
⌘mechPturb � Pcomp

Itc!tc

(3.21)

In addition to the mechanical e�ciency between the turbine and the compressor,

there is also inherent damping in a turbocharger. Damping is proportional to angular

velocity, so as the turbocharger shaft rotates faster damping increases. Damping is

accounted for by adding a term, btc to Equation (3.21).

↵tc =
⌘mechPturb � Pcomp

Itc!tc

� btc

Itc

!tc (3.22)

Both turbocharger mechanical e�ciency and turbocharger damping values were not

explicitly provided for the turbocharger in this engine architecture, so they were

estimated. Turbine power was made a nonlinear function of x4 in Equation (2.24)

and a linear function of x4 in Equation (2.25). Likewise, compressor power was made

both a nonlinear and linear function of x2, x3, and x5 in Equations (2.22) and (2.23)

respectively. Therefore, the state equation for turbocharger speed can be found by

substituting state-space variables into Equation (3.22) and writing out the power

terms as functions of state-space variables.

ẋ
5

=
⌘

mech

P
turb

(x
4

)�P
comp

(x
2

,x
3

,x
5

)

I
tc

x
5

� b
tc

I
tc

x
5

(3.23)

3.1.6 x6 State Equation Derivation

The state equation for wastegate valve lift is found by taking the time derivative

of wastegate valve lift:
dLwg

dt

= 1000Vwg (3.24)

The units of Lwg are mm and the units of Vwg are m/s, which is why velocity is

multiplied by one-thousand in Equation (3.24). Substituting x6 for wastegate valve
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lift and x7 for wastegate valve velocity in Equation (3.24) results in the state equation

for x6.

ẋ
6

= 1000x
7

(3.25)

3.1.7 x7 State Equation Derivation

The dynamic equation for wastegate valve velocity is derived via a force balance on

the wastegate diaphragm. Since this engine architecture features a passive wastegate,

the displacement of the diaphragm dictates the lift of the wastegate valve. The forces

acting on the diaphragm are the spring displacement force, spring pretension force,

damping force, and forces resulting from pressures acting on the wastegate diaphragm

area. The following equation describes force balance on the wastegate diaphragm:

X
Fwg = mwgawg =

Ad

10
(Pbm � Pa)� kwgLwg � Fp � bwgVwg (3.26)

Figure 3.1 shows a zoom-in of the wastegate valve and diaphragm housing. FP
bm

is the force resulting from boost pressure, FP
a

is the force resulting from ambient

air pressure, FP is the pretension force from the springs, FS is the resulting force

from compressing the wastegate springs, and Fdamp is the damping force when the

wastegate valve moves.
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Figure 3.1. Wastegate schematic zoom-in.

In Equation (3.26) Ad is the diaphragm area, kwg is the wastegate valve spring

constant, and bwg is the wastegate valve damping constant. The equation above can

be rearranged by dividing both sides by the wastegate diaphragm mass.

awg = V̇wg =
1

mwg

[
Ad

10
(Pbm � Pa)� kwgLwg � Fp � bwgVwg] (3.27)

Boost pressure, wastegate valve lift, and wastegate valve lift velocity are all variables

in the state-space domain, so the state equation for x7 is found by substituting state

variables into Equation (3.27).

ẋ
7

=
1

m
wg

[
A

d

10
(x

3

�P
a

)� k
wg

x
6

� F
p

� b
wg

x
7

] (3.28)

Note that when the wastegate valve is closed shut, the right hand side of Equation

(3.28) becomes zero and both states x6 and x7 have values of zero. Therefore by
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applying steady-state conditions to the dynamic equation for x7, the threshold boost

pressure to open the valve can be expressed symbolically:

Pbm,crit =
10Fp

Ad

+ Pa (3.29)

Despite being a linear dynamic equation, the state equation for x7 is conditional in

reality. In the actual engine, the valve only opens when the boost pressure reaches

the threshold value of Equation (3.29) and stays closed otherwise. Wastegate valve

lift can not be negative, even when boost pressure is really low in the real engine.

3.2 Model Case Definitions

This section defines the three physics-based modeling cases that are validated

against the GT-Power engine model. The first case consists of a set of nonlinear state

equations whose mass flow and power terms are nonlinear functions of state variables.

The second case consists of a simplifying the nonlinear state equations by linearizing

most of the mass flow and power expressions. The third case shows how the simplified

nonlinear state equations are linearized about an equilibrium point and expressed in

a true state-space form, which is the ultimate goal of control-oriented modeling.

3.2.1 Case A Model Definition: Nonlinear Expressions

In this modeling case the state equations are as follows:

ẋ1 =
1

J

[Ctrqx2 � Tmaxw] (3.30)

ẋ2 =
RimTim

Vim

[u1 �Wcyl(x1, x2)] (3.31)

ẋ3 =
RbmTbm

Vbm

[Wcomp(x3, x5)� u1 � u2] (3.32)

ẋ4 =
RemTem

Vem

[Wcyl(x1, x2)�Wturb(x4)�Wwg(x4, x6)] (3.33)

ẋ5 =
⌘mechPturb(x4)� Pcomp(x2, x3, x5)

Itcx5
� btc

Itc

x5 (3.34)
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ẋ6 = 1000x7 (3.35)

ẋ7 =
1

mwg

[
Ad

10
(x3 � Pa)� kwgx6 � Fp � bwgx7] (3.36)

The value of Ctrq is assumed to be 0.0256, and Equation (2.7) expresses Wcyl as a

function of state variables. The mass flow terms Wcomp and Wturb are defined in

Equations (2.11) and (2.14), respectively, while the power terms Pcomp and Pturb

are defined in Equations (2.22) and (2.24), respectively. Wastegate mass flow, Wwg,

is defined by Equation (2.17). All mass flow terms and power terms are nonlinear

expressions in this modeling case.

3.2.2 Case B Model Definition: Linearized Mass Flow and Power Terms

The di↵erence between this case and the previous case A (Equations (3.30) -

(3.36)) is that the terms Wcomp, Wturb, Wwg, Pcomp, and Pturb are simplified to be

linear functions of state variables. Compressor mass flow, Wcomp, is now a linear

function of x3 and x5 as defined in Equation (2.13). Turbine mass flow, Wturb, is a

linear function of x4 as defined in Equation (2.16). Wastegate mass flow, Wwg, is

a linear function of x6 as defined in Equation (2.21). Compressor power is a linear

function of x2, x3, and x5 as defined in Equation (2.23), and turbine power is a linear

function of x4 and defined in Equation (2.25). Cylinder mass flow (Wcyl) is still a

nonlinear function of states x1 and x2 as per Equation (2.7).

The state equations for this case are simplified and written out in expanded form,

where a constant value of 0.0256 is substituted for Ctrq, Equation (2.13) is substituted

for Wcomp, Equation (2.16) is substituted for Wturb, Equation (2.7) is substituted for

Wcyl, Equation (2.21) is substituted forWwg, Equation (2.23) is substituted for Pcomp,

and Equation (2.25) is substituted for Pturb:

ẋ1 =
1

J

[0.0256x2 � Tmaxw] (3.37)

ẋ2 =
RimTim

Vim

[u1 �
⌘vVD

2RTim

x1x2] (3.38)

ẋ3 =
RbmTbm

Vbm

[g1x3 + g2x5 + g3 � u1 � u2] (3.39)
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ẋ4 =
RemTem

Vem

[
⌘vVD

2RTim

x1x2 � C1x4 � C2 � f1x6] (3.40)

ẋ5 =
⌘meche1

Itc

x4

x5
+

⌘meche2 � h2g3 � h3

Itc

1

x5
� h1

Itc

x2

x5
� h2g1

Itc

x3

x5
� h2g2

Itc

� btc

Itc

x5 (3.41)

ẋ6 = 1000x7 (3.42)

ẋ7 =
Ad

10mwg

x3 �
kwg

mwg

x6 �
bwg

mwg

x7 �
AdPa + 10Fp

10mwg

(3.43)

For simplicity of notation, lengthy expressions that are of a constant value in

Equations (3.37) - (3.43) can be substituted with a single constant value as shown in

Equations (3.44) - (3.50).

ẋ1 = f1 = m1x2 +m2w (3.44)

ẋ2 = f2 = m3u1 +m4x1x2 (3.45)

ẋ3 = f3 = m5x3 +m6x5 +m7 +m8u1 +m9u2 (3.46)

ẋ4 = f4 = m10x1x2 +m11x4 +m12 +m13x6 (3.47)

ẋ5 = f5 = m14
x4

x5
+m15

1

x5
+m16

x2

x5
+m17

x3

x5
+m18 +m19x5 (3.48)

ẋ6 = f6 = m20x7 (3.49)

ẋ7 = f7 = m21x3 +m22x6 +m23x7 +m24 (3.50)

The simplification constants are written out in Equations (3.51) - (3.74):

m1 = 0.0256 (3.51)

m2 = �Tmax

J

(3.52)

m3 =
RimTim

Vim

(3.53)

m4 = �⌘vVD

2Vim

(3.54)

m5 =
RbmTbmg1

Vbm

(3.55)

m6 =
RbmTbmg2

Vbm

(3.56)

m7 =
RbmTbmg3

Vbm

(3.57)
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m8 = �RbmTbm

Vbm

(3.58)

m9 = �RbmTbm

Vbm

(3.59)

m10 =
⌘vVD

2Vem

(3.60)

m11 = �RemTemC1

Vem

(3.61)

m12 = �RemTemC2

Vem

(3.62)

m13 = �RemTemf1

Vem

(3.63)

m14 =
⌘meche1

Itc

(3.64)

m15 =
⌘meche2 � h2g3 � h3

Itc

(3.65)

m16 = �h1

Itc

(3.66)

m17 = �h2g1

Itc

(3.67)

m18 = �h2g2

Itc

(3.68)

m19 = �btc

Itc

(3.69)

m20 = 1000 (3.70)

m21 =
Ad

10mwg

(3.71)

m22 = � kwg

mwg

(3.72)

m23 = � bwg

mwg

(3.73)

m24 = �AdPa + 10Fp

10mwg

(3.74)
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3.2.3 Case C Model Definition: Fully Linearized Case

In case B, most mass flow and power terms were made linear function of state

variables, but the state equations were still nonlinear. In this case, the nonlinear state

equations of case B (Equations (3.44) - (3.50)) are linearized about an equilibrium

point. It is important to note that once linearized, the state variables and input

variables are perturbations of the states and inputs from equilibrium values. After

linearization, the model is expressed in the standard state-space form:

ẋ = Ax+Bu

The schematic in Figure 3.2 shows a block diagram representation of the linearized

physics-based state equations.

Figure 3.2. Block diagram representation of linearized physics-based engine model.

The symbolic A and B matrices are obtained by taking partial derivatives of the

nonlinear state equations as follows:

A7⇥7 =

2

6664

df1

dx1

df1

dx2
· · · df1

dx7

... · · · . . . ...

df7

dx1

df7

dx2
· · · df7

dx7

3

7775
B

7⇥3

=

2

6664

df1

du1

df1

du2

df1

dw

...
...

...

df7

du1

df7

du2

dfn

dw

3

7775

Because there are 7 state variables and 3 input variables (2 control inputs and 1

disturbance variable), A is a 7 ⇥ 7 matrix and B is a 7 ⇥ 3 matrix. The functions

f1 through f7 in the matrices above refer to Equations (3.44) - (3.50). Element (a, b)
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in A is found by symbolically di↵erentiating fa with respect to state xb. Matrix

B is found by di↵erentiating f1 through f7 with respect to the inputs symbolically,

and element (a, b) in B is found by symbolically di↵erentiating fa with respect to ub.

In this case, the disturbance variable, w, is treated as an input variable so the last

column of matrix B corresponds to f1 through f7 being di↵erentiated with respect to

w.

Numeric A and B matrices are found by substituting equilibrium point values of

states and inputs into the symbolic matrices. The equilibrium point is the values of

states (x1 - x7) that cause all the dynamic equations given by f1 through f7 to equal

zero. The equilibrium point values depend on the point of linearization. In this case,

the linearization point is chosen to correspond to a load factor of 0.85 (w = 0.85).

Since the GT-Power model is never actually run at a load factor of w = 0.85, the

equilibrium point input values of u1 and u2 are found by averaging their respective

steady-state values in the truth-reference data at load-factors of 0.8 and 0.9. After

the equilibrium input and disturbance values are substituted into f1 through f7, the

equilibrium point values of the states are found algebraically by setting f1 through

f7 equal to zero so there are seven equations and seven unknowns (x1 - x7). These

numeric matrices are shown below.

ASS =

2

6666666666666664

0 2.6e� 4 0 0 0 0 0

�4.9e4 �4.3 0 0 0 0 0

0 0 �17 0 2e4 0 0

3e5 26 0 �28 0 �2.7e5 0

0 �0.23 0.14 1.1 �488 0 0

0 0 0 0 0 0 1.0e3

0 0 5e� 3 0 0 �28 �699

3

7777777777777775
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BSS =

2

6666666666666664

0 0 �88

7.4e5 0 0

�3.2e6 �3.2e6 0

0 0 0

0 0 0

0 0 0

0 0 0

3

7777777777777775

3.3 State-Space Model Validation: x1

This section compares the engine speed responses of Models A, B, and C against

the GT-Power reference data during the time interval of interest. Models A and B

match the reference values for x1 quite well throughout the time interval, with steady-

state error increasing with load factor. Model C tends to match the reference data

for engine speed better with increasing load factor. Table 3.1 highlights steady-state

error at each load factor for each of the Models A, B, and C compared to the reference

data for x1.

Table 3.1. Steady-state error of x1 in Models A, B, and C

x1 Deviation from Reference Model A Model B Model C

Error (%) for LF = 0.7 1.9 1.9 14.8

Error (%) for LF = 0.8 3.3 3.3 11.7

Error (%) for LF = 0.9 4.0 4.0 8.9

Error (%) for LF = 1.0 4.6 4.6 6.2
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Figure 3.3. x1 vs. time.
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(a) Step from LF = 0.7 to 0.8 (b) Step from LF = 0.8 to 0.9

(c) Step from LF = 0.9 to 1.0 (d) Step from LF = 1.0 to 0.9

(e) Step from LF = 0.9 to 0.8 (f) Step from LF = 0.8 to 0.7

Figure 3.4. Zoom-ins for x1 vs. time.
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Figure 3.3 shows the engine speed responses for Models A, B, and C compared to

the truth-reference GT-Power data for x1. Subfigures 3.4(a) - 3.4(f) show zoomed-

in views of transient behavior during load factor step changes. The fully linearized

Model C shows higher steady-state error than Models A and B, which have an identical

engine speed response. The zoomed in subfigures show that Models A, B, and C tend

to have exaggerated initial peaks for x1 compared to the truth-reference GT-Power

data. Additionally the transient x1 responses of Models A, B, and C have a slightly

di↵erent phase than that of the reference data.

3.4 State-Space Model Validation: x2

This section compares the intake manifold pressure responses of Models A, B,

and C against the GT-Power reference data during the time interval of interest. The

nonlinear Models A and B tend to match the reference data very well, with the highest

steady-state error being under 3% at the highest load factor. The linearized Model

C tends to underestimate x2 particularly at load factors of 0.7 and 0.8. Table 3.2

highlights steady-state error at each load factor for each of the Models A, B, and C

compared to the reference data for x2.

Table 3.2. Steady-state error of x2 in Models A, B, and C

x2 Deviation from Reference Model A Model B Model C

Error (%) for LF = 0.7 1.9 1.9 17.0

Error (%) for LF = 0.8 0.3 0.3 13.7

Error (%) for LF = 0.9 0.6 0.6 11.4

Error (%) for LF = 1.0 2.8 2.8 8.2
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Figure 3.5. x2 vs. time.
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(a) Step from LF = 0.7 to 0.8 (b) Step from LF = 0.8 to 0.9

(c) Step from LF = 0.9 to 1.0 (d) Step from LF = 1.0 to 0.9

(e) Step from LF = 0.9 to 0.8 (f) Step from LF = 0.8 to 0.7

Figure 3.6. Zoom-ins for x2 vs. time.
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Figure 3.5 shows the intake manifold pressure responses for Models A, B, and

C compared to the truth-reference GT-Power data for x2. Subfigures 3.6(a) - 3.6(f)

show zoomed-in views of transient behavior during load factor step changes. Models

A and B are nearly identical in their transient response. All three models have a

slightly di↵erent phase than the reference x2 response.

3.5 State-Space Model Validation: x3

This section compares the boost manifold pressure responses of Models A, B,

and C against the GT-Power reference data during the time interval of interest.

All of the state-space models tend to overestimate boost pressure at steady-state,

especially at the lower load factors of 0.7 and 0.8. This is most likely because of

the overestimation of turbocharger speed, x5. The compressor mass flow term that

appears in the dynamic equation of x3 in Equation (3.11) is a function of both x3 and

x5. The boost pressure is highly sensitive to turbocharger speed dynamics because

the highest steady-state error for x5 is under 11% whereas the highest steady-state

error for boost pressure is over 30%. Table 3.3 highlights steady-state error at each

load factor for each of the Models A, B, and C compared to the reference data for x3.

Table 3.3. Steady-state error of x3 in Models A, B, and C

x3 Deviation from Reference Model A Model B Model C

Error (%) for LF = 0.7 30.8 31.2 32.7

Error (%) for LF = 0.8 19.94 19.2 20.6

Error (%) for LF = 0.9 10.6 9.2 10.2

Error (%) for LF = 1.0 5.0 3.5 4.7
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Figure 3.7. x3 vs. time.
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(a) Step from LF = 0.7 to 0.8 (b) Step from LF = 0.8 to 0.9

(c) Step from LF = 0.9 to 1.0 (d) Step from LF = 1.0 to 0.9

(e) Step from LF = 0.9 to 0.8 (f) Step from LF = 0.8 to 0.7

Figure 3.8. Zoom-ins for x3 vs. time.
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Figure 3.7 shows the boost manifold pressure responses for Models A, B, and C

compared to the truth-reference GT-Power data for x3. Subfigures 3.8(a) - 3.8(f) show

zoomed-in views of transient behavior during load factor step changes. Models A, B,

and C display very similar transient behavior, though they have a slightly di↵erent

phase than the reference x3 response.

3.6 State-Space Model Validation: x4

This section compares the exhaust manifold pressure responses of Models A, B,

and C against the GT-Power reference data during the time interval of interest. All

of the state-space models tend to underestimate exhaust manifold pressure when

compared to the reference. Table 3.4 highlights steady-state error at each load factor

for each of the Models A, B, and C compared to the reference data for x4.

Table 3.4. Steady-state error of x4 in Models A, B, and C

x4 Deviation from Reference Model A Model B Model C

Error (%) for LF = 0.7 1.1 5.1 8.3

Error (%) for LF = 0.8 5.2 6.5 9.2

Error (%) for LF = 0.9 8.7 8.1 10.6

Error (%) for LF = 1.0 8.9 7.9 10.2
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Figure 3.9. x4 vs. time.
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(a) Step from LF = 0.7 to 0.8 (b) Step from LF = 0.8 to 0.9

(c) Step from LF = 0.9 to 1.0 (d) Step from LF = 1.0 to 0.9

(e) Step from LF = 0.9 to 0.8 (f) Step from LF = 0.8 to 0.7

Figure 3.10. Zoom-ins for x4 vs. time.
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Figure 3.9 compares the exhaust manifold pressure response of Models A, B, and

C with the truth-reference GT-Power data for x4. Subfigures 3.10(a) - 3.10(f) show

zoomed-in views of transient behavior during load factor step changes. The phases of

all three models match that of the GT-Power truth-reference well. There is steady-

state error in all three models which was addressed in Table 3.4.

3.7 State-Space Model Validation: x5

This section compares the turbocharger speed responses of Models A, B, and C

against the GT-Power reference data during the time interval of interest. Models A,

B, and C tend to overestimate turbocharger speed but match reference data better

at higher load factors. Table 3.5 highlights steady-state error at each load factor for

each of the Models A, B, and C compared to the reference data for x5.

Table 3.5. Steady-state error of x5 in Models A, B, and C

x5 Deviation from Reference Model A Model B Model C

Error (%) for LF = 0.7 10.7 8.5 9.0

Error (%) for LF = 0.8 6.1 5.6 6.0

Error (%) for LF = 0.9 2.2 3.1 3.4

Error (%) for LF = 1.0 0.6 1.4 1.8
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Figure 3.11. x5 vs. time.
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(a) Step from LF = 0.7 to 0.8 (b) Step from LF = 0.8 to 0.9

(c) Step from LF = 0.9 to 1.0 (d) Step from LF = 1.0 to 0.9

(e) Step from LF = 0.9 to 0.8 (f) Step from LF = 0.8 to 0.7

Figure 3.12. Zoom-ins for x5 vs. time.
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Figure 3.11 compares the turbocharger speed responses for Models A, B, and C

with the truth-reference GT-Power data for x5. Subfigures 3.12(a) - 3.12(f) show

zoomed-in views of transient behavior during load factor step changes. At the be-

ginning of load factor step changes, the physics-based models tend to have slightly

exaggerated dips that are not prominent in the truth-reference GT-Power data for

x5. Models A, B, and C do however match the oscillatory phase of the reference data

quite well except at the load step from LF = 1.0 to LF = 0.9.

3.8 State-Space Model Validation: x6

This section compares the wastegate valve lift responses of Models A, B, and C

against the GT-Power reference data during the time interval of interest. In general,

the wastegate valve lift is highly sensitive to boost pressure error. All three models

tended to overestimate boost pressure, so the same is true of wastegate valve lift.

Figure 3.13. x6 vs. time.
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Figure 3.13 compares the wastegate valve lift responses of Models A, B, and C

with the truth-reference GT-Power data for x6. The steady-state error is due to

overestimated boost pressure, which is why Models A, B, and C predict the wastegate

opening even when it does not open in truth-reference GT-Power data. However,

when the reference data shows the wastegate valve opening at LF = 1.0, all three of

the physics-based models capture the nature of the transient behavior accurately.

3.9 State-Space Model Validation: x7

This section compares the wastegate valve velocity responses of Models A, B, and

C against the GT-Power reference data during the time interval of interest. The

wastegate valve moves when the net force on the diaphragm is non-zero. As shown in

Figure 3.14, Models A, B, and C tend to underestimate x7 compared to the reference

data during the load factor change from LF = 0.9 ! 1.0 and LF = 1.0 ! 0.9.

Figure 3.14. x7 vs. time.
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3.10 Summary

This chapter accomplished the following tasks pertaining to state-space model

formulation and validation:

1. Derived a dynamic equation for engine speed (x1) by performing a torque bal-

ance on the crankshaft.

2. Derived a dynamic equation for intake manifold pressure (x2) by applying the

ideal gas law to the intake manifold and performing a mass balance.

3. Derived a dynamic equation for boost manifold pressure (x3) by applying the

ideal gas law to the boost manifold and performing a a mass balance.

4. Derived a dynamic equation for exhaust manifold pressure (x4) by applying the

ideal gas law to the exhaust manifold and performing a mass balance.

5. Derived a dynamic equation for turbocharger speed (x5) by performing a torque

balance on the turbocharger shaft.

6. Derived a dynamic equation for wastegate valve lift (x6) by using a physics-

based approach.

7. Derived a dynamic equation for wastegate valve velocity (x7) based on a force

balance on the wastegate valve.

8. Formulated a nonlinear state-space model with all flow and power terms ex-

pressed as nonlinear functions of state variables.

9. Formulated a simplified nonlinear state-space model with all flow and power

terms (except Wcyl) expressed as linear functions of state variables.

10. Linearized the simplified nonlinear model about an equilibrium point to obtain

a linear engine model in conventional state-space form.
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11. Compared the state trajectories of all three models against truth-reference data

obtained by performing a co-simulation with GT-Power/Simulink.
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4. CONTROL-ORIENTED ANALYSIS OF THE NATURAL GAS ENGINE

STATE-SPACE MODEL

Chapters 2 and 3 comprehensively covered the physics-based modeling, linearization,

and validation e↵orts that go into obtaining a state-space model that is amenable to

controller design. A model in such a form is often necessary to apply some of the

decoupled and coordinated control algorithms discussed in the introductory chapter.

The physics-based models of the previous chapters assume a constant engine torque

gain (Ctrq) and AFR. Therefore, fueling was not an independent control input, and

it was bound by air mass flow in those models. The term-by-term simplification

and overall linearization of the nonlinear state equations in Chapters 2 and 3 is

representative of how a physics-based control model is obtained. However, the final

state-space model of Chapter 3 is not used in this chapter. Instead, Caterpillar

provided a new linearized state-space model for the same engine architecture, and

the new model is analyzed in this chapter. The state variables, input variables, and

output variables for the new state-space model are summarized below.

• The state variables are: x1 - engine speed, x2 - intake manifold pressure, x3

- boost manifold pressure, x4 - exhaust manifold pressure, x5 - turbocharger

speed, x6 - wastegate valve lift, x7 - wastegate valve velocity, x8 - fuel-air ratio

(FAR).

• The control inputs are: u1 - throttle valve mass flow, u2 - bypass valve mass

flow, and u3 - fuel mass flow.

• The disturbance variable is: w - load torque.

• The outputs are: y1 - engine speed, y2 - pressure di↵erential across the throttle

valve, and y3 - FAR.
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The linearized state-space model provided by Caterpillar is expressed as follows:

ẋ = Ax+Bu+ V w

y = Cx+Du

where,

x = [x1 x2 x3 x4 x5 x6 x7 x8]T

u = [u1 u2 u3]T

The block diagram in Figure 4.1 represents the system corresponding to Caterpillar’s

state-space model. Note that the D matrix is a zero matrix which is why it is not

shown in the block diagram.

Figure 4.1. Block diagram representation of Caterpillar’s state-space model.

The A matrix captures internal state dynamics, the B matrix captures the e↵ect

of control inputs on the state dynamics, while the V matrix captures the e↵ect of the

disturbance on state dynamics. The C and D matrices describe the output variables

in terms of states and control inputs. For this particular model, the numeric A, B,

V , C, and D matrices provided by Caterpillar are:
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A =

2

66666666666666666664

0 2.9e� 4 0 0 0 0 0 2.8e3

�9.9e3 �3.9 0 0 0 0 0 0

0 0 �42 0 6.2e3 0 0 0

5.9e4 23 0 �29 0 �1.7e8 0 0

0 0 0.049 0.076 �12 0 0 0

0 0 0 0 0 0 1.0 0

0 0 5.0e� 3 0 0 �2.8e4 �699 0

0 �5e� 11 9.9e� 7 0 �1.5e� 4 0 0 �3.9

3

77777777777777777775

B =

2

6666666666666666664

0 0 0

7.2e5 0 0

�3.4e6 0 0

0 0 0

0 0 0

0 0 0

0 0 0

9.4e� 6 0.079 2.4

3

7777777777777777775

V =

2

6666666666666666664

�0.01

0

0

0

0

0

0

0

3

7777777777777777775
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C =

2

6664

1 0 0 0 0 0 0 0

0 �1 1 0 0 0 0 0

0 0 0 0 0 0 0 1

3

7775

D =

2

6664

0 0 0

0 0 0

0 0 0

3

7775

4.1 Transfer Matrix Formulation

State-space equations are in the time-domain, but analysis in the frequency do-

main can provide useful information regarding the input-output relationships of the

plant. A state-space system can be converted to a transfer matrix, G(s), in the fol-

lowing manner: G(s) = C(sI � A)�1
B +D. Rows of the transfer matrix correspond

to output variables, while columns of the transfer matrix correspond to input vari-

ables. Element (i, j) of the transfer matrix is the transfer function between input j

and output i. The transfer matrix is used in relative gain array (RGA) analysis.

4.2 Relative Gain Array

As mentioned in [4], the relative gain array is a way of quantifying coupling inter-

action in a MIMO system such as an engine. For a square transfer matrix the RGA

is defined as:

RGA(G) = G(s)⇥ (G(s)�1)T

The symbol, ⇥, denotes element-by-element multiplication between the matrices.

While the RGA for this particular engine plant is only a 3⇥ 3 matrix, it features ele-

ments that are 28th degree polynomials, so the symbolic RGA matrix is not shown in

this thesis. Individual elements are, however, plotted against frequency in subsequent

subsections.
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The elements of the RGA are functions of frequency, !. RGA rows correspond to

outputs and its columns correspond to inputs, so the (i, j) element of the RGA is the

RGA element between input j and output i. At a particular frequency, !, a plant

is considered an ideal candidate for decentralized control if the RGA matrix can be

made an identity matrix or some permutation of the identity matrix. RGA elements

that have a value of approximately 1 correspond to input-output pairings that should

be used for decentralized control.

Take for example the steady-state RGA matrix for Caterpillar’s state-space model,

RGA(0) =

2

6664

�0.0346 0 1.0346

0 1 0

1.0346 0 �0.0346

3

7775
(4.1)

The matrix of Equation (4.1) can be made an approximate identity matrix by swap-

ping the first and third rows, meaning the model is suitable for decentralized control at

steady-state (! = 0 rad/s). Consequently, the ideal input-output pairings at steady-

state would be: u1 ! y3, u2 ! y2, and u3 ! y1. Since RGA analysis is done on a

linearized state-space model of a plant, its usefulness is contingent upon an accurate

plant model. If the plant model does not accurately capture the dynamics of the

real plant, the real system may not be suitable for decentralized control even if RGA

analysis suggests it to be.

4.3 RGA Number

For square plants, the RGA number provides a single metric for how suitable a

specific configuration of input-output pairings is for decentralized control. As per [4],

the RGA number is a measure of diagonal dominance and is found as follows:

RGAN = ||RGA� I||sum (4.2)

To compute the RGA number, the identity matrix is subtracted from the relative

gain array and the sum norm is taken. The sum norm of a matrix is calculated by
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summing the absolute values of all its elements. RGA numbers close to zero indicate

that the chosen input-output pairings are suitable for achieving decentralized control

of the plant. Reference [4] says that RGA numbers between 5 to 10 or greater are

considered high, and decentralized control of the plant may not be feasible for input-

output configurations that yield such RGA number values. There are two important

notes to make regarding the calculation of the RGA number:

1. The relative gain array is a function of frequency. Therefore, the RGA number is

a function of frequency. This means that a plant that has very minimal coupling

interaction at one frequency can be highly coupled at another frequency.

2. For a plant with n inputs and n outputs, di↵erent permutations of the identity

matrix can be used for the RGA number calculation in Equation (4.2). Using

the conventional identity matrix is akin to seeing how suitable a plant is for

decentralized control assuming the input-output pairings are: u1 ! y1, u2 ! y2,

· · · , un ! yn. Conversely, using an o↵-diagonal identity matrix in RGA number

calculations is akin to testing the plant’s suitability to decentralized control for

the following input-output pairings: u1 ! yn, u2 ! yn�1, · · · , un ! y1.

Caterpillar’s state-space model describes an engine architecture that features three

control inputs and three target outputs of interest. For a 3-input 3-output plant there

are six possible input-output configurations for which an RGA number can be com-

puted as a function of frequency. Each of the six possible input-output configurations

for Caterpillar’s state-space model is listed explicitly below.

1. Configuration 1: u1 ! y1, u2 ! y2, u3 ! y3. The identity matrix used in the

RGA number calculation of Equation (4.2) is:

I1 =

2

6664

1 0 0

0 1 0

0 0 1

3

7775

2. Configuration 2: u1 ! y1, u2 ! y3, u3 ! y2. The manipulated identity matrix

used in the RGA number calculation of Equation (4.2) is:
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I2 =

2

6664

1 0 0

0 0 1

0 1 0

3

7775

3. Configuration 3: u1 ! y2, u2 ! y1, u3 ! y3. The manipulated identity matrix

used in the RGA number calculation of Equation (4.2) is:

I3 =

2

6664

0 1 0

1 0 0

0 0 1

3

7775

4. Configuration 4: u1 ! y3, u2 ! y1, u3 ! y2. The manipulated identity matrix

used in the RGA number calculation of Equation (4.2) is:

I4 =

2

6664

0 1 0

0 0 1

1 0 0

3

7775

5. Configuration 5: u1 ! y2, u2 ! y3, u3 ! y1. The manipulated identity matrix

used in the RGA number calculation of Equation (4.2) is:

I5 =

2

6664

0 0 1

1 0 0

0 1 0

3

7775

6. Configuration 6: u1 ! y3, u2 ! y2, u3 ! y1. The manipulated identity matrix

used in the RGA number calculation of Equation (4.2) is:

I6 =

2

6664

0 0 1

0 1 0

1 0 0

3

7775

Figure 4.2 shows the RGA number versus frequency plots for each of the six input-

output configurations. The RGA numbers are plotted from 0 to 5 Hz, which is the
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Figure 4.2. RGA number vs. frequency.

frequency when the engine becomes less responsive to control inputs. From Figure 4.2,

it is apparent that configuration 6 has the lowest RGA number across all frequencies.

The RGA number for configuration 6 is approximately zero at steady-state (! = 0

rad/s) and stays below a value of 4 in the entire frequency range. This means that the

engine is best suited for decentralized control when using input-output configuration

6.

4.4 RGA Element Magnitude and Phase Analysis

RGA elements are functions of frequency in the Laplace domain (s = j!). There-

fore, they are complex numbers that have a magnitude and phase. An RGA element

with a phase between �90o and +90o has a positive real part, while an RGA element

with a phase less than �90o or more than +90o has a negative real part. A phase of
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±90o indicates the real part is zero. For a 3-input 3-output system, there are nine

RGA elements. As mentioned in [4], RGA elements close to a value of +1 are good

for decentralized control. Therefore, if element (i,j) of the RGA is +1, using input j

to control output i is recommended. Additionally, [4] mentions that if RGA element

(i,j) has a negative real part, then using input j to control output i is not recom-

mended, as this leads to closed-loop instability. The RGA element magnitudes and

phases are plotted against frequency for every input-output pair in Figures 4.3 - 4.5.

Figure 4.3. Y1 RGA elements magnitude & phase vs. frequency.

Figure 4.3 features the magnitude and phase of the RGA elements between every

input channel and output 1 (engine speed). It is clear that in Figure 4.3, the RGA

element between u3 ! y1 has a magnitude of approximately +1 and a phase of 0

degrees throughout the frequency range. This means that output 1 is best controlled

by input 3 (fuel mass flow). From this same figure it is also clear that at high enough

frequencies, input 1 (throttle valve mass flow) becomes the second best control input
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Figure 4.4. Y2 RGA elements magnitude & phase vs. frequency.

to pair with output 1. At high enough frequencies, the RGA element between u1 ! y1

has a phase of less than +90o, meaning it has a positive real part.

Figure 4.4 features the magnitude and phase plots for RGA elements between every

input channel and output 2 (throttle valve pressure di↵erential). It is clear from the

figure that in the frequency range of interest, only the RGA element between u2 ! y2

has a magnitude of +1 at all frequencies and phase of about 0 degrees. Therefore,

input 2 (bypass valve mass flow) should be used to control output 2 for best results in

a decentralized control framework. So far for this state-space model, it has been clear

which inputs should be used to control to which outputs, but in more complex plants

this is not always the case. In a non-square plant with more inputs than outputs,

one input may be better suited to control an output in one frequency range, while

another input may be better suited to control the same output in another frequency

range. This kind of information, along with information regarding phase, is not very
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Figure 4.5. Y3 RGA elements magnitude & phase vs. frequency.

transparent in the RGA number analysis, but it is in RGA element magnitude and

phase plots.

Figure 4.5 shows the magnitude and phase plots for RGA elements between every

input channel and output 3 (FAR). At lower frequencies, it is clear that output 3

is best controlled by input 1 (throttle valve mass flow), because the RGA element

between u1 ! y3 has a magnitude of about +1 and a phase of approximately 0

degrees. At frequencies above 3.25 Hz, however, this plot shows that input 2 (bypass

valve mass flow) may in fact be a better control input to pair with output 3, because

the RGA element between u2 ! y3 has a magnitude of about +1 and a phase of less

than +90o. Solely designing a controller between u2 and y3 may lead to instability,

particularly at lower frequencies when the RGA element between u2 ! y3 has a

negative real part. However, in fast transient operations, input 2 may be a preferred

way of controlling FAR, which is an important consideration in controller design.
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4.5 Intuition from RGA Element Analysis

This section discusses how RGA element analysis can be used to make informed

decisions regarding sequential loop closure in a decentralized control framework. The

RGA element magnitude and phase plots of the previous section show that the input-

output pairing u2 ! y2 is the most well-suited for decentralized control because its

corresponding RGA element has a magnitude of +1 and a phase of 0 degrees at

all frequencies. Pairings u1 ! y3 and u3 ! y1 are the other optimal input-output

control loops for decentralized control, but neither of the pairings has an RGA element

magnitude and phase as good as that of u2 ! y2.

Reference [18] states than an RGA element (�ij) is the ratio between the “process

gain for the pairing uj ! yi in an isolated loop and the process gain when the rest of

the system is under integral feedback control”. This means that if an RGA element

is +1 at all frequencies, like that of u2 ! y2, the transfer function between u2 ! y2

should have an identical frequency response in both the open-loop and closed-loop

cases. The closed-loop case assumes good feedback control for the pairings u1 ! y3

and u3 ! y1, while u2 ! y2 is left uncontrolled. Figures 4.6 and 4.7 show the

open-loop and closed-loop cases respectively, as they pertain to the analysis of this

subsection.

Figure 4.6. Plant in open-loop case.

Since the RGA element of input-output pairing u2 ! y2 has a value of +1 at all

frequencies, the relationship between u2 and y2 should be una↵ected by implementing

good feedback controllers on loops u1 ! y3 and u3 ! y1. To test this, the frequency
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Figure 4.7. Plant in closed-loop case (controllers on two input-output pairs).

response of the transfer function between u2 ! y2 is plotted for the open-loop case

(as in Figure 4.6) and two closed-loop cases (as in Figure 4.7). The two closed-loop

cases are as follows:

1. Good Proportional-Integral (PI) Controllers: The control gains are KP,u1 =

�30, KI,u1 = �10, KP,u3 = 0.75, KI,u3 = 0.05. These control gains achieve

good reference tracking for y1 and y3. Negative PI gains are necessary for the

loop u1 ! y3 because throttle mass flow (u1) inversely a↵ects FAR (y3). Positive

PI gains are necessary for the loop u3 ! y1 because increasing fuel mass flow

(u3) increases engine speed (y1).

2. Bad PI Controllers: The control gains are KP,u1 = �1000, KI,u1 = �5, KP,u3 =

�5e � 4, KI,u3 = �5e � 5. These control gains do not achieve good reference

tracking on y1 and y3.

The results of Figure 4.8 confirm that implementing good feedback controllers on

u1 ! y3 and u3 ! y1 does not a↵ect the transfer function between u2 ! y2. The

implication of this is that when performing sequential loop closure in a decentralized

control framework, the input-output loop which has an RGA element value closest

to +1 at all frequencies should be tuned first. For this engine model provided by

Caterpillar, the control loop that should be tuned first is between u2 ! y2.
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Figure 4.8. Closed-loop vs open-loop comparison of u2 ! y2 transfer function.

4.6 Decentralized PI Controller Design

RGA number analysis on Caterpillar’s state-space model suggests that the engine

is fairly well suited for decentralized control. RGA element analysis suggests that

when doing sequential loop-closure, the input-output loop whose RGA element value

stays closest to +1 throughout the frequency range should be tuned first, followed

by the other loops. In this section, a decentralized controller is designed with the

following PI gains on the input-output control loops:

• u1 ! y3: KP,u1 = �30, KI,u1 = �10

• u2 ! y2: KP,u2 = �10, KI,u2 = �0.5

• u3 ! y1: KP,u3 = 0.75, KI,u3 = 0.05
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Figure 4.9 is representative of how the decentralized control structure with 3 PI

compensators looks for the plant.

Figure 4.9. 3 decentralized controllers on plant.

4.6.1 Nonlinear State-Space System Augmentation

Before implementing PI controllers on the linearized state-space model, the non-

linear state equations provided by Caterpillar (not shown due to their complexity)

must be augmented to include integral error states. The following states and inputs

are added to the nonlinear model:

• x9: Integral error for y1 (engine speed).

• x10: Integral error for y3 (FAR).

• x11: Integral error for y2 (throttle valve pressure di↵erential).

• û1: Reference FAR, y3,ref .

• û2: Reference throttle valve pressure di↵erential, y1,ref .

• û3: Reference engine speed, y1,ref .
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The dynamic equations for the new integral error states are:

ẋ9 = û3 � x1 (4.3)

ẋ10 = û1 � x8 (4.4)

ẋ11 = û2 � (x3 � x2) (4.5)

Additionally, the control inputs (u1: throttle valve mass flow, u2: bypass valve mass

flow, u3: fuel mass flow) must be redefined for a closed-loop system. In Equations

(4.6) - (4.8), the control inputs are expressed as functions of the following: PI gains,

output reference values, and state variables. Doing so turns the nonlinear state-

equations provided by Caterpillar into a closed-loop nonlinear model with feedback

controllers on all three input-output loops:

u1 = KP,u1(û1 � x8) +KI,u1 ⇤ x10 (4.6)

u2 = KP,u2(û2 � [x3 � x2]) +KI,u2 ⇤ x11 (4.7)

u3 = KP,u3(û3 � x1) +KI,u3 ⇤ x9 (4.8)

After being augmented with the integral error state dynamics of Equations (4.3) -

(4.5), the new set of nonlinear state equations is linearized about an equilibrium

point to obtain closed-loop linear state-space equations. These new closed-loop linear

state-equations represent the addition of three PI compensators to Caterpillar’s linear

state-space model. Reference-tracking tests are done on this closed-loop linear state-

space model in the following subsections.

4.6.2 Reference Engine Speed Steps

As a reminder, the three target outputs of interest are the engine speed (y1),

pressure di↵erence across the throttle valve (y2), and FAR (y3). The first test of

the decentralized controllers involves step increments in the reference value of engine

speed, y1,ref . The values of y2,ref and y3,ref are held constant.
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Figure 4.10. Closed-loop system with Y1 reference steps.

As shown in Figure 4.10, the decentralized control structure is able to track step

changes in desired engine speed while maintaining constant reference values for throt-

tle valve pressure di↵erential and FAR. The reference values of throttle valve pressure

di↵erential and FAR are set to equilibrium values near the point of model lineariza-

tion. Additionally, the reference engine speed steps are fairly small and stay near

the point of linearization. Therefore, the decentralized control structure is only being

tested for reference tracking in operating conditions near the point of linearization.

4.6.3 Reference Throttle Valve Pressure Di↵erential Steps

The second test of the decentralized controllers involves step increments in y2,ref .

The values of y1,ref and y3,ref are held constant. As shown in Figure 4.11, the de-

centralized control structure is able to track step changes in desired throttle valve
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Figure 4.11. Closed-loop system with Y2 reference steps.

pressure di↵erential while maintaining constant reference values for engine speed and

FAR. The engine speed and FAR reference values are set to equilibrium values near

the point of model linearization. Additionally, the reference throttle valve pressure

di↵erential steps are fairly small and stay near the point of linearization. Therefore,

the decentralized control structure is only being tested for reference tracking in an

operating region near the point of linearization.

4.6.4 Reference FAR Steps

The third test of the decentralized controllers involves step decrements in the

reference value of FAR, y3,ref . The values of y1,ref and y2,ref are held constant.

As shown in Figure 4.12, the decentralized control structure is able to track step

changes in desired FAR while maintaining constant reference values for engine speed
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Figure 4.12. Closed-loop system with Y3 reference steps.

and throttle valve pressure di↵erential. The engine speed and throttle valve pressure

di↵erential reference values are set to equilibrium values near the point of model

linearization. Additionally, the FAR steps are fairly small and stay near the point of

linearization. Therefore, the decentralized control structure is only being tested for

reference tracking in operating conditions near the point of linearization.

4.7 Summary

This chapter accomplished the following tasks pertaining to control-oriented anal-

ysis of a state-space model provided by Caterpillar:

1. Declared the state variables, input variables, and output variables of the new

state-space model.
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2. Defined the A, B, V , C and D matrices of the state-space equations for the

linearized model provided by Caterpillar.

3. Showed how the linearized state-space model is converted to a transfer matrix.

4. Showed how a transfer matrix can be used to calculate the relative gain array

(RGA) of the plant.

5. Performed RGA number analysis to determine which input-output pairings are

best for a decentralized control framework.

6. Supplemented RGA number analysis with RGA element analysis and decided

the ideal input-output pairings for decentralized control are: u1 ! y3, u2 ! y2,

and u3 ! y1.

7. Utilized intuition gained from RGA element analysis to make an informed deci-

sion on which order to perform loop closure in a decentralized control framework.

8. Designed a set of PI controllers that achieve good reference tracking during

simulation on the closed-loop version of the Caterpillar’s linear engine model.
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This thesis presents a method of deriving, simplifying, and ultimately linearizing a

set of state equations for the purpose of control development on an engine. The Cater-

pillar G3500 series engine was the system of interest, and the selected state variables

were engine speed (x1), intake manifold pressure (x2), boost manifold pressure (x3),

exhaust manifold pressure (x4), turbocharger speed (x5), wastegate valve lift (x6),

and wastegate valve velocity (x7). For each state variable, a first-principles approach

was taken to find its corresponding dynamic equation. Additionally, a physics-based

approach was taken to express terms in the nonlinear dynamic equations as functions

of state variables, including the engine torque gain, mass flow rates, and power expres-

sions. Overall, the nonlinear physics-based mass flow models matched the reference

data very well. The nonlinear mass flow models also gave an insight on what state

variables each mass flow term depended on. Using that insight, the mass flow models

of compressor mass flow (Wcomp), turbine mass flow (Wturb), and wastegate mass flow

(Wwg) were made linear functions of state variables by performing regression on ref-

erence data. The nonlinear compressor and turbine power terms were also linearized,

and the linear models matched the nonlinear models very well.

In the state equations developed in this thesis, the model for engine torque gain,

Ctrq, had satisfactory steady-state error with respect to the truth-reference data and

captured transient oscillations well. However, the physics-based torque gain model

showed Ctrq decreasing with load torque, while the truth-reference torque gain values

increased with load torque. Therefore, Ctrq was fixed to a constant value of 0.0256,

because in truth-reference data it did not vary much in the time interval of interest.

This simplification implied that the engine controller must maintain a constant AFR,
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e↵ectively making the fuel control input (u3 = Wf ) dependent upon air mass flow.

Despite this assumption, the thesis still presents a procedure representative of deriving

a control-oriented model for an engine architecture.

Following the control-oriented modeling e↵orts, three representative state-space

models were validated against the truth-reference data in simulation. This was done

by exercising each of the three models with truth-reference simulation values of the

control inputs (u1 = Wthr, u2 = Wbyp). The first model (Model A) consisted of the

nonlinear set of dynamic equations for x1 to x7, with all mass flow and power terms

expressed as nonlinear functions of state variables. The second model (Model B)

was a simplification of the first model and consisted of the nonlinear set of dynamic

equations for x1 to x7, with most mass flow and power terms expressed as linear

functions of state variables. The third model (Model C) was obtained by linearizing

the second model about an equilibrium point and expressing the engine model in a

true state-space form with A, B, C, and D matrices. Models A and B matched the

reference data fairly well, with low steady-state errors for x1, x2, and x4. There were

some minor issues with the phase of transient oscillations in all three models. Model

C generally deviated more from the truth-reference reference data with regards to its

predictions for x1, x2, and x4, which is expected since it is a fully linearized state-

space model. Wastegate valve lift (x6) dynamics are extremely sensitive to the boost

pressure dynamics, and all three state-space models tended to overestimate wastegate

valve lift. This is because all three models overestimated boost pressure. Boost

pressure dynamics appear to be sensitive to turbocharger speed dynamics because of

the compressor mass flow term in the dynamic equation for x3. All models slightly

overestimated turbocharger speed, particularly at lower load factors. This highlights

the fact that in a model where state dynamics are highly coupled with each other,

small errors in prediction can propagate and cause large deviations from reference

data.

Following control model development, control-oriented analysis was performed on

a new state-space model provided by Caterpillar for the G3500 series engine. To
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understand the feasibility of decentralized control for this new engine model, the

thesis extensively used the frequency-valued RGA as a tool. Through RGA number

analysis, it was found that certain input-output configurations of this engine model

were fairly well-suited for decentralized control, with the ideal configuration consisting

of the following pairings:

• u1 ! y3: Control fuel-air ratio with throttle valve mass flow.

• u2 ! y2: Control throttle pressure di↵erential with bypass valve mass flow.

• u3 ! y1: Control engine speed with fuel mass flow.

The intuition gained from the RGA element magnitude and phase analysis was used

to formulate guidelines on which control loops to tune first in a decentralized control

framework.

5.2 Future Work

The scope for future work is extensive within the realm of physics-based model-

ing and state-space equation formulation. Because many e�ciency and temperature

terms varied only slightly in the truth-reference data, the thesis assumed constant

values for them in modeling e↵orts. For example, the engine torque gain term is

a function of volumetric e�ciency, thermal e�ciency, and intake manifold tempera-

ture, all of which were assumed constant because they did not vary significantly in

the truth-reference data. Adding new state variables for e�ciency and temperature

terms would allow a state-space model to capture more physics of the engine and pos-

sibly allow for a more accurate control model. On a similar note, during the modeling

e↵orts of Chapters 2 and 3, there were many parameters that had to be estimated

such as thermal e�ciency, compressor blade diameter, turbine blade diameter, and

turboshaft e�ciency. Obtaining more data on all unknown parameters would allow

for the development of a more accurate control model.
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There is also the potential for future work in control-oriented analysis and con-

troller development. The RGA analysis conducted on the model provided by Cater-

pillar can also be performed for other engine architectures to make informed decisions

regarding controller design. The engine that was investigated in this thesis had a pas-

sive wastegate valve. In some engines, however, there is an active wastegate valve,

which would mean a fourth control input. In a 4-input 3-output plant, RGA analysis

can yield useful information on what control inputs are best at certain frequencies.

This type of intuition is useful in the development of cascaded control structures,

where more than one control input is paired to an output and the controller decides

which control inputs to use based on frequency. Additionally, some of the coordinated

control strategies that were mentioned in Chapter 1 can be applied to the model pro-

vided by Caterpillar to investigate the benefits and drawbacks of centralized control

strategies in simulation and ultimately in an experimental test cell.
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