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ABSTRACT

Palsdottir, Johanna M.S.M.E., Purdue University, August 2016. Phase Field Damage
Simulations of Debonding between Matrix and Spherical Inclusions. Major Professor:
Marisol Koslowski, School of Mechanical Engineering.

Polymer-bonded explosives (PBX) are complicated composites, and it is important

for practical applications to know how they deform and fracture. PBX consists of

large volume fraction of energetic particles and experiments show that the interface is

a critical region for structural stability since particles are often weakly bonded to the

polymer and cracks initiate there and the composite fractures. This study focuses on

the interface between a particle and a binder and how the particle inclusion starts to

debond from the polymer binder in compressive and tensile loading.

A phase field damage model is used to model the response of a glass bead particle

in a Sylgard 184 binder under compressive loading, and the model is validated with

a Kolsky bar experiment of the same set-up. The comparison between the simula-

tions and the experiment reveals that the damage model should be described with

positive volumetric strain only, and deviatoric strain does not contribute to damage

in compressive loading of Sylgard 184.

In tensile loading, the phase field damage model is used to study cavitation and

debonding, as compared with results from literature. In cavitation the interface is per-

fectly bonded and the fracture initiates slightly away from the interface. In debonding

the interface is weaker than the matrix, and fracture initiates at the interface. Ana-

lytic solution of the critical stress needed for debonding shows good agreement with

the simulations from the model.
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CHAPTER 1. INTRODUCTION

It is important to understand how composite energetic material systems behave in

practical applications, such as how they deform and fracture when an external load

is applied. Energetic materials are a class of material with a high amount of stored

chemical energy that can be released. Explosives would be such an example. Com-

prehensive knowledge of the material properties and the inter-material relationship

for this class of materials is essential and, in particular, the knowledge of the material

property that describes the resistance to fracture, i.e. the energy release rate or Gc.

According to Griffith’s criterion [1], a crack will grow if the surface energy, or the work

done in creating new surface area by the breaking of atomic bonds, is larger than the

energy release rate of the material. Cracks may initiate anywhere in the composite

due to some defects in the material, although they most commonly will initiate at

the interface where the materials are weakly bonded, and the energy release rate is

the lowest in the composite energetic material. Once initiated, the crack can travel

along the interface as it propagates through the material [2]. Therefore, the interface

between materials often remains the critical region, limiting the overall performance

of the composite and as the critical element for structural stability.

1.1 Scope and Objectives

An explosive material is a reactive substance that contains a great amount of

potential energy that can produce an explosion if released suddenly. Explosives are

hazardous materials and highly susceptible to accidental explosion. Working with

explosives can be dangerous and complicated, not to mention difficult and expensive

to secure safe manufacturing, storage and handling of the material. Being able to

evaluate the ignition process by estimating the strength of the interface or the energy
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release rate with simulations would be very beneficial, less time consuming and less

dangerous than traditional experiments [2, 3] with materials such as explosives.

Polymer-bonded explosives (PBX) are of particular interest in this study, but sev-

eral sources affect the ignition process in explosives, such as: crystalline structure of

the material, plasticity, porosity, fracture, friction and grain binder interfacial bond-

ing strength. Therefore, understanding crack initiation and propagation is important

in developing predictive models of initiation in PBX’s.

Polymer-bonded explosives consist of a large volume fraction of energetic particles

in a polymer matrix where the polymer bonds the explosive granules into a solid,

stable mass. The polymer matrix has a high density in particle-matrix interfaces,

therefore the strength of the interface is of key importance to simulate their response.

Experiments have shown that failure in PBX occurs primarily at the polymer binder

particle interface at low strain rates [4] although fracture also occurs in larger particles

[5,6] or by particle-particle contact [7] at high strain rates. To simulate the response of

polymer-bonded explosives, the strength of the interface between a polymeric matrix

and a particle can be measured experimentally [8,9] and used to calibrate parameters

needed in phase field damage model simulations, as discussed in chapter 2 of this

thesis. The simulation is validated with the experiment where the energy release

rate, Gc, at the interface is varied to represent different interfacial strength. The best

fit of Gc to the experimental data and where debonding is observed is selected. Since

literature report different values of Gc for same materials [2, 6, 10, 11] it is necessary

to calibrate our simulations with an experiment.

After the phase field damage model has been calibrated with the experiment, two

failure processes are compared with the literature of Gent et al. [8]. There, see Figure

1.1, failure is studied in a system consisting of a spherical inclusion in a polymer

matrix undergoing deformation. These experiments are used to measure the strength

of the interface between the particle and the polymer and show two different failure

mechanisms: interfacial debonding and cavitation.
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Figure 1.1. Cavitation (left) and debonding (right) in a polymer with
a spherical inclusion. Load is applied in the vertical direction [8].

Gent et al. [8] performed several experiments by varying the Young’s modulus of

the polymer, varying the diameter of the spherical inclusion and by specifying different

methods of how the sphere and the binder where chemically bonded. Ultimately the

critical stress for cavitation and debonding was found to depend on all of these factors.

Results showed that debonding occurs when the matrix-particle interface adhesion is

weak and failure originates at the interface while detachment initiates between the

two materials. Cavitation, on the other hand, occurs near the interface and it is a

failure in the matrix and a small vacuole is formed.

1.2 Thesis Layout

This thesis is divided into four chapters. In chapter 2 the phase field damage

model is described and the numerical scheme algorithm which is used to solve the

structure fracture problems is explained. Finally, the asymmetric damage response

model is explained where damage is driven by volumetric and deviatoric strain.

In chapter 3, numerical simulations with the phase field damage model are val-

idated by comparing to experimental results from a Kolsky bar experiment. The

simulations are performed on a glass bead particle sphere inside a Sylgard 184 binder
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under compression and tensile loading. Stresses from the simulation are compared to

stressed from ABAQUS, and the model is modified to fit the experimental results.

Chapter 4 is a summary identifying the main findings of this research, and the

appendix outlines a summary of how to run the phase field damage model simulation.



5

CHAPTER 2. PHASE FIELD DAMAGE MODEL

2.1 Introduction

Phase field damage model (PFDM) is a model that tracks damage in the material

with a scalar variable, the phasefield [12], and is based on Griffith’s theory for brittle

fracture. Francfort and Marigo [13] introduced the first version of this model in 1998

but Bourdin [12] extended the model to a phase field numerical algorithm and since

then many extensions have been made to the model. The model is a variational

formulation where the phase field and the structural problem are solved concurrently

by the minimization of the total free energy with the constraint of irreversibility to

avoid self-healing. Some extensions to the model include: different material responses,

loading conditions and dynamic brittle fracture [12, 14–20].

In this chapter the phase field damage model is described in detail. Then, the

numerical scheme algorithm used to solve the coupled structure-fracture problems

is explained and lastly the asymmetric damage response model is described where

damage is driven by volumetric and deviatoric strain.

2.2 Damage Response Model

For a body Ω with a crack area Γ the potential energy of the body is the sum of

the elastic energy and the fracture energy. Where the fracture energy is the energy

required to create a crack of area Γ for brittle material according to Griffith’s criteria

[1] and Gc is the energy release rate.

Wpot(ε,Γ) = We(ε) +Wf (Γ) =

∫
Ω

a(ε)dx+

∫
Γ

Gcdx (2.1)
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In the phase field model approach [21] the fracture energy can be approximated with

a volume integral ∫
Γ

Gcdx ≈
∫

Ω

Gc

[
c2

4l0
+ l0|∇c|2

]
dx (2.2)

where c(x) ∈ [0, 1] is the phase field that tracks damage in the material, c = 1 where

the damage has developed into a crack and c = 0 for undamaged material. The model

length scale parameter l0 controls the approximated volume of the damage region.

Higher value of l0 represents a larger width of the crack, see Figure 2.1.

Figure 2.1. (Left) Schematic representation of a solid body with
discontinuous crack. (Right) Approximation of the crack with a phase
field c(x).

The loss of material stiffness in the failure zone is incorporated into the elastic

energy through the phase field with the function (1 − c)2. Experiments have shown

that in many materials damage takes place at lower deviatoric stress when materials

are under dilatational stress than when they are under compression, so the elastic

energy has to be separated into two terms, W
(−)
e for compression and W

(+)
e for tension.

We(ε, c) = W (+)
e (ε, c) +W (−)

e (ε) (2.3)
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Assuming that damage occurs in tension, only the W
(+)
e (ε, c) is affected by damage

and it is

W (+)
e (ε, c) =

∫
Ω

(1− c)2a+(ε)dx (2.4)

and W
(−)
e (ε) has the form

W (−)
e (ε) =

∫
Ω

a−(ε)dx (2.5)

where a+(ε) and a−(ε) are strain energy densities. Miehe [15] and Amor [14] proposed

different approaches on how the strain energy densities are computed and Amor’s

approach will be used in this thesis and discussed in section 2.4

The corresponding elastic strain energy rate can be obtained as

Ẇe[ε, ε̇, c, ċ] =

∫
Ω

(σij : ˙εij − 2(1− c)a+(ε)ċ)dx (2.6)

where the stress is

σij = (1− c)2∂a
+(ε)

∂εij
+
∂a−(ε)

∂εij
(2.7)

The fracture energy dissipation due to the increase in damage can be defined as

Ẇf (c, ċ) =

∫
Ω

Gc

(
c

2l0
+ 2l0∆c

)
ċdx (2.8)

where ∆ is the Laplacian. This energy dissipation should be positive because of the

irreversibility condition of damage. Therefore the two following conditions need to

be satisfied
c

2l0
+ 2l0∆c ≥ 0

ċ ≥ 0

(2.9)

To satisfy the local constrains in Equation 2.9, following Miehe et al. [15], an extended

Lagrangian is defined [15]

L(ε, ε̇, c, ċ, λ) = Ẇe(ε, ε̇, c, ċ) +D(c, ċ, λ) (2.10)

where the extended dissipation functional D(c, ċ, λ) is defined as

D(c, ċ, λ) =

∫
Ω

(2(1− c)a+(ε)ċ− λYcr)dx ≥ 0 (2.11)
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In Equation 2.11, λ is a Kuhn-Tucker coefficient and Ycr is an inequality constrain

function defined as

Ycr = 2(1− c)a+(ε)−Gc

(
c

2l0
+ 2l0∆c

)
≤ 0 (2.12)

The variation of the extended Lagrangian defined in Equation 2.10 with respect to

the four variables, results in the following Kuhn-Tucker Equations

σij,j = 0

ċ = λ ≥ 0

Ycr ≤ 0

ċ · Ycr = 0

(2.13)

The first Equation in 2.13 is the equilibrium condition. In the second Equation, the

rate of damage is positive, so the damage can only increase, therefore Equation 2.9

is satisfied. The last three Equation in 2.13 together with Equation 2.12 form the

governing Equation of the phase field.(
4l0a

+(ε)

Gc

+ 1

)
(1− c)− 4l20

∂2c

∂xi∂xj
= 1 (2.14)

The homogeneous form of 2.14 can be calculated by ignoring spatial derivatives of

the phase field. Then the solution of Equation 2.14 can be obtained for the damage

field as

c =
a0(ε)

a0(ε) + Gc

4l0

(2.15)

This can be useful when comparing simulations and experiments of homogeneous

samples and, as can be easily seen, the damage field approaches to 1 as the elastic

strain energy density, a0(ε), increases.

2.3 Numerical Algorithm

To optimize the energy with the local minima, an alternative minimization algo-

rithm is used [12,14] but it solves series of minimization of sub problems [20]. At each
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step, the displacement u is first solved at a fixed phase field c. Then c is solved at

fixed u with the irreversibility condition. This process is repeated until convergence

is reached. The solution of displacement and damage can be found as follows:

1. Set (u(0), c(0)) = (ui−1, ci−1)

2. Set p=1

• Solve the predictor problem u(p) with c = c(p−1)

• Solve for c(p) with u = u(p) under the constrain c ≥ ci−1

• Repeat until ‖c(p) − c(p−1)‖ ≤ δ or p = p+ 1

3. Set (ui, ci) = (u(p), c(p))

A 3D parallel software cells MEMOSA [22] is used which is based on the cell-centered

finite-volume method.

2.4 Asymmetric Damage Response Model

Amor et al. [14] proposed a asymmetric damage model where the the strain energy

densities are computed from the volumetric and deviatoric strain as follows,

a+(ε) =
1

2
(λ+

2

3
µ)〈εv〉2 + µtr[(εdevij )

2
]

a−(ε) =
1

2
(λ+

2

3
µ)(εv − 〈εv〉)2

(2.16)

where λ and µ are the Lamé constants and

〈x〉 =

x if x > 0

0 if x ≤ 0

(2.17)

The deviatoric and volumetric strain are defined as

εd =

√
1

2
[(ε1 − ε2)2 + (ε1 − ε3)2 + (ε2 − ε3)2] (2.18)

εv = ε1 + ε2 + ε3 (2.19)
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and the deviatoric and volumetric stress are defined similarly

σd =

√
1

2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] (2.20)

σv =
σ11 + σ22 + σ33

3
(2.21)

The strain energy density affected by damage relies therefore on the sign of the local

volume change and the material demonstrates asymmetric behavior in tension and

compression loading where the compressive part doesn’t contribute to damage.
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CHAPTER 3. DAMAGE IN A POLYMER MATRIX WITH A SPHERICAL

INCLUSION

3.1 Introduction

In this chapter simulations, using the phase field damage model from chapter 2, are

validated by comparing to experimental results to gain a better understanding of the

strength of the interface between two materials and parameters needed for the phase

field damage model. As discussed before, PBX contains a large volume of particles

in a binder and therefore it can be difficult to estimate the energy release rate at the

interface. To simplify the geometry, experiments are performed with only one particle

in a binder so the experiment is better controlled and hence easier to simulate and

compare. The simulations are performed on a glass bead particle sphere in a Sylgard

184 binder under compressive and tensile loading. Although these simulations don’t

involve explosive material, the Sylgard 184 binder is often used as a binder in polymer-

bonded explosives, and the glass bead has material properties of similar magnitude

as explosives. This is expected to give good estimate of the parameters needed in the

phase field damage model for polymer-bonded explosives. Section 3.2 describes the

implementation and the result of the experiment where in section 3.3 the simulation

set-up is explained and stresses from the simulation are compared to stresses from

an analysis of the finite element software ABAQUS. The results show that the model

needs to be modified to agree with experimental results of compression loading in

Sylgard 184. Section 3.4 and 3.5 describe the simulation and analysis of the result

when the model has been changed to a pure positive tensile volumetric damage model

and section 3.6 is the same simulation, now in tensile loading.
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3.2 Kolsky Bar Experiment with X-ray Phase Contrast Imaging

At Purdue University, the students Niranjan Parab and Michael Harr [23] in Pro-

fessor Chen’s group, studied the dynamic high strain-rate debonding and fracture of a

glass bead particle in a Sylgard 184 binder using high speed synchrotron X-ray phase

contrast imaging (PCI) synchronized with modified Kolsky bar equipment [24]. The

experimental setup is shown in Figure 3.1.

Figure 3.1. Set-up of the Kolsky bar experiment and relative positions
of the sample and X-ray beam, picture from Niranjan Parab.

The experiment was performed at the beam line at Argonne National Laboratory

using high intensity X-ray PCI measurements. When the X-rays have passed through

the sample of the glass bead in the Sylgard binder, X-ray PCI employs the change in
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the phase of the X-rays to get high edge resolution pictures which is useful for visual-

izing cracks and debonding. To convert the X-ray signal to visible light wavelengths,

when the X-ray has propagated through the sample, a single crystal scintillator is

used. From there it goes through a 45◦ mirror and a 5-X magnification microscope

to the ultra-high speed camera which records the pictures and the resolution was 6.4

µm/px.

The Kolsky bar set-up is often used to describe material behavior at high strain

rates. The modified Kolsky bar used in this experiment, to apply the dynamic com-

pressive loading on the sample, contains a striker bar and an incident bar. Space

was limited in the experiment room and therefore the transmission bar in a conven-

tional Kolsky bar set-up was substituted with a load cell fixed on a heavy aluminum

backstop. The load cell was used to record the force response of the sample to the

incident loading. Strain gauges were attached to the surface of the incident bar to

record the incident and the reflected stress waves. The load signals and the strain

gauges were synchronized and gathered through an oscilloscope. The recorded load

signal was then synchronized with the displacement measurements from the pictures

to obtain the force-displacement plot which will be discussed in section 3.3.

The dimensions of the sample can be seen in Figure 3.2 and the glass bead sphere

inside the Sylgard 184 matrix has the diameter 676 µm. The sample holder was

then placed between the bar end and the load cell, a close up figure of the sample

holder can be seen in Figure 3.3. The experiment started with a manual start signal

which set off the gas gun and launched the striker bar toward the incident bar and a

compressive stress wave was produced in the incident bar as a result of the impact of

the striker bar. The strain gauges sensed the stress wave propagating and the strain

signal was recorded using the oscilloscope. When the stress wave had propagated

through the bar it pushed the plunger onto the sample, where it compressed the

sample at a constant velocity of approximately 6 m/s. The high intensity X-ray

beam passed through the sample as it was being compressed. The deformation and
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Figure 3.2. Geometry of the sample in the experiment, glass bead
sphere in Sylgard 184 binder.

Figure 3.3. Close-up of the sample holder fixed between the bar-
end and the load cell, picture from Niranjan Parab. (1) Bar-end, (2)
Plunger, (3) PMMA-steel confinement fixture, (4) sample, (5) Fixture
to fix the confinement fixture onto the load cell, (6) Load cell.



15

fracture process in the sample was recorded using the scintillator-camera system as

discussed previously.

Figure 3.4 shows frames from the camera at increasing time. The last frame

shows how the particle has debonded from the binder on the bottom of the particle.

Debonding is expected to initiate at this location because of tension there in the

sample but as discussed in the introduction, fracture can initiate anywhere in the

material due to defects. To verify that this debonding is not resulting from a defect

at the interface, another experiment was later performed with another binder material

and debonding initiated at the same location as in Figure 3.4.

Figure 3.4. Six frames at increasing time of the Kolsky bar experi-
ment of a glass bead particle inside a Sylgard 184 binder where the
bar hits the sample horizontally from left. Pictures from Michael
Harr [23].



16

3.3 Simulation Set-Up

Although the experiment is dynamic, the phase field damage model simulations

were performed under quasi-static loading for simplicity. Future work involves dy-

namic simulations with the same set-up which will be a better coherence with the

experiment. The simulation has the same geometry as the experiment in section 3.2

but by using symmetry, only one eighth of the domain is simulated and the geometry

is rotated, so loading is thus applied on top. The geometry can be seen in Figure

3.5. The right and back boundaries are able to expand freely as in the experiments,

all other boundaries are subject to symmetry conditions. The elastic constants and

Figure 3.5. Geometry of the sample in the simulation, one eighth of
the sample in the experiment, Figure 3.2.

properties used in the simulations are shown in Table 3.1. The elastic constants

can be found in literature but Gc and l0 must be calibrated with experiments. It has

been experimentally demonstrated by Johnston et al. [26] that Sylgard 184 has signifi-

cantly different Young’s modulus in tension and compression whereas the compressive

modulus is approximately two orders of magnitude larger than the tensile modulus.

For example, a Sylgard sample cured at 25◦C, has the tensile modulus as E = 1.32
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Table 3.1. Material properties used in the simulation.

Sylgard 184 Glass bead

E - 70 GPa [25]

ν 0.44 [26] 0.3 [25]

l0 10 µm 10 µm

Gc 50 J/m2 400 J/m2

MPa, while the compressive modulus is E = 186.9 MPa. Furthermore, the tensile

modulus is observed to increase with curing temperature while the compressive mod-

ulus decreases with curing temperature. Therefore simulations with different Young’s

modulus of the binder were performed and the best fit to the experiment was found.

The Poisson’s ratio of Sylgard 184 is also not readily available in the literature, with

values ranging from 0.44-0.5 [27]. To avoid computational errors because of infinite

moduli a value of 0.44 was chosen. The elastic constants of glass bead can be found

in Agnolin et at. [25].

The length scale parameter, l0, is determined to be 10 µm according to the size of

the numerical sample to make the simulations feasible. The energy release rate, Gc

is difficult to find in literature but for the glass bead it was given a high value such

that the particle would not break, since the particle did not break in the experiments.

The energy release rate at the interface was given a value of 17J/m2 from Gent et

al. [8] which is on the same order of magnitude as many weakly adhered systems [3].

Due to the big difference in the elastic constants from the particle to the matrix,

the mesh is refined at the interface and varied exponentially to decrease the large

jump in stress across the interface and stress concentrations. The mesh can be seen

in Figure 3.6. It has 123,048 linear hexahedral elements and 131,610 nodes. The size

of an element is 20 µm but at the interface the size is 2 µm.
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Figure 3.6. Mesh used in the simulation of a spherical inclusion in a
polymer matrix, sphere showed in red.

To verify the stress calculations in the model, elastic simulations were compared

to the stress output of the finite element software ABAQUS. The stresses in the mesh

showed good agreement and less than 3% difference between these two models. One

case of comparison of stresses can be seen in Figure 3.7 and 3.8 were the stresses are

plotted along a line from the inclusion in the direction of the applied stress, R0 is

radius of the particle.

Figure 3.7. Comparison of volumetric stress between PFDM and ABAQUS.
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Figure 3.8. Comparison of deviatoric stress between PFDM and ABAQUS.

Simulations were performed with the model described in chapter 2 with the set-up

previously discussed. A contour plot of the stress fields, when 375 µm displacement

has been applied vertically on top, can be seen in Figure 3.9 and 3.10. The stresses

have been normalized with the Young’s modulus of the binder. As can be seen in

these two figures the highest stress is the deviatoric stress at 45◦ angle and therefore

damage is expected to initiate at this location. Figure 3.11 shows contour plot of the

damage field when 375 µm compression loading has been applied vertically on top,

were damage is shown in red. As expected, damage initiates at the 45◦ angle which is

not the same location of debonding as was observed in the experiment in Figure 3.4,

where the arrow is pointing at in Figure 3.11. It is clear from the location of damage,

that the model in chapter 2 does not capture damage well in the positive tensile

volumetric part in Sylgard 184 in compressive deformation. The debonding should

initiate at the location of tension i.e. at the highest positive volumetric stress, as seen

in Figure 3.9. Even though the evolution of the damage field is affected by positive

volumetric deformation, the rate of growth is larger for deviatoric stress damage in

compression, therefor the model needs to be modified. The force-displacement curve

from the simulation was compared to the experimental data. Figure 3.12 shows that



20

Figure 3.9. Contour plot of the distribution of the volumetric stress
normalized with the Young’s modulus of the binder when 375 µm has
been applied vertically on top. Maximum positive volumetric stress
shown in red.

Figure 3.10. Contour plot of the distribution of the deviatoric stress
normalized with the Young’s modulus of the binder when 375 µm has
been applied vertically on top. Maximum deviatoric stress shown in
red.
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Figure 3.11. Contour plot of the damage field when 375 µm com-
pression loading has been applied vertically on top where the Young’s
modulus of the binder is 150 MPa, damage is shown in red.

Figure 3.12. Force-displacement curve from the experiment and the
PFDM simulations with Young’s modulus of the binder as 150 MPa.
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the simulation data does not agree with the experimental data and that the binder

is too stiff, so the Young’s modulus of the binder has to be lower. The curve from

the experiment has fluctuation since the experiment is dynamic, but the simulation

is quasi-static. After 800 µm, more fluctuations were observed in the experiment but

that was due to the continuous move of the plunger after the Kolsky bar stopped

since it was not attached.

3.4 Volumetric Damage Model

Due to the disagreement in the damage nucleation with the experiments discussed

in previous section, the model needs to be modified for this case where the deviatoric

part does not contribute to damage. The strain energy densities in Equation 2.16 are

therefore changed to,

a+(ε) =
1

2
(λ+

2

3
µ)〈εv〉2

a−(ε) =
1

2
(λ+

2

3
µ)(εv − 〈εv〉)2 + µtr[(εdevij )

2
]

(3.1)

Only a+(ε) is affected by damage as was discussed in chapter 2 therefore only the

positive volumetric strain is now contributing to damage. The stress can be calculated

with Equation 2.16 and 2.7.

σij(ε, c) = (λ+
2

3
µ)〈εv〉+ 2µεdevij + (1− c)2((λ+

2

3
µ)〈εv〉) (3.2)

3.5 Damage in Compression

Figure 3.13 shows contour plot of the damage field which is based on the pure

volumetric damage model discussed in the previous section and Equations 3.1. A

800 µm compression displacement has been applied vertically on top and the Young’s

modulus of the binder has been lowered to 75 MPa. The specimen is damaging at

the maximum positive volumetric stress, at the same location as in the experiment.

The particle is also debonding at the bottom of the sample, but since that view of

the specimen was not captured by the camera in the experiment it may also have
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debonded there. Figure 3.14 shows a better comparison of the experiment and the

Figure 3.13. Contour plot of the damage field with the volumetric
damage model when 800 µm displacement has been applied vertically
on top and Young’s modulus of the binder is 75 MPa.

simulation, and the same view of the debonding. The color map of the simulation has

been changed to better fit to the experiment, and due to the symmetry conditions

used, the other half has been added in this figure and the color of the glass bead

particle has been made lighter for visibility in comparison.

The force-displacement curve from the experiment and the simulation with Young’s

modulus of the binder as 75 MPa can be seen in Figure 3.15. These results show bet-

ter agreement, therefor a Young’s modulus of binder as 75 MPa was chosen. It has

therefor been shown that the phase field damage model method can be coordinated

with experiments to obtain key properties needed for simulations in polymer-bonded

explosives.
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(a) Experiment (b) Simulation

Figure 3.14. Comparison of the debonding in the experiment and the
simulation. The sphere in the simulation has been made lighter and
the other symmetric half of the sample has been added.

Figure 3.15. Force-displacement curve from the experiment and the
PFDM simulations with Young’s modulus of the binder as 75 MPa.

3.6 Damage of Spherical Inclusion in Tension

Simulations with the volumetric damage model were also performed with applied

tension loading to compare to experiments reported in literature. In particular, the
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case of cavitation and debonding were studied and compared with the results from

Gent et al. [8] where a glass bead particle in a Sylgard 184 binder, as before, is applied

in tension loading. As discussed in the introduction, chapter 1, debonding initiates

when the interface is weak, i.e. has lower energy release rate, Gc, at the interface.

When the interface is perfectly bonded, cavitation is observed.

Two cases were studied to observe the transition from debonding to cavitation.

The same mesh and set-up were used as in section 3.3. For cavitation the energy

release rate, Gc, at the interface has the same value as the matrix, 50 J/m2, making

the interface perfectly bonded. In debonding the interface is weaker, setting the Gc

at the interface as 17 J/m2. These two simulations were applied in tensile loading

and Figure 3.16 shows the contour plots of the damage when 710 µm tension has

been applied vertically on top.

(a) (b)

Figure 3.16. Contour plot for (a) weak interface, Gc = 17 J/m2 and
(b) strong interface, Gc = 50 J/m2. Damage is shown in red.

The simulation in Figure 3.16(a) with the weak interface shows debonding of the

matrix from the particle interface, the damage is right at the interface boundaries.

When the interface is perfectly bonded, Figure 3.16(b), damage is observed slightly

away from the interface. In this case failure occurs in the matrix, leading to cavitation



26

as observed in the experiments by Gent et al. [8]. Since the interface is weaker in

Figure 3.16(a) more damage has developed.

Gent [28] also derived a theoretical solution of the critical applied stress needed

for debonding of a spherical inclusion within an elastic matrix. He considered a small

area on the surface of the inclusion and assumed that to be debonded from the matrix

initially, see Figure 3.17. The volume ∆V of the debonded region is then given by

Figure 3.17. Sketch of a single inclusion showing debonded area [28].

∆V = k(rsinθ)3 on general dimensional ground, where rθ is the radius of the circular

debonded zone and k is a dimensionless quantity. The area of the debonded region

is 2πr2(1 − cosθ). The loss ∆W in elastic strain energy when the debonded zone

increases in area by ∆A is given by

∆W = U

(
∂(∆V )

∂θ

)(
∂θ

∂A

)
∆A = (3k/4π)(Ursin2θ)∆A (3.3)

where U is the strain energy density. According to Griffith’s fracture criterion [1] as

discussed before, the debonded area will grow if the energy required for debonding,

i.e. Gc∆A, where Gc is the energy required to detach the polymer per unit area of

interface, is less than ∆W . The criterion for debonding is therefore

U ≥ 4πGc

3krsin2θ
(3.4)



27

Since the relation between the applied stress and strain energy density is U = T 2/2E

the applied stress needed for debonding is

T =

√
8πEGc

3dsin(2θ)
(3.5)

where d is the diameter of the sphere, k was evaluated as 2, d = kr = 2r and 2θ

is the angle where initial debonded circular path nucleates, found to be 10◦ ± 5◦ for

spherical inclusions [8].

The critical applied tensile stress when debonding was observed was also obtained

from the simulations for three different Young’s modulus of the matrix. Figure 3.18

shows the applied tensile stress as a function of the Young modulus of the matrix. The

Figure 3.18. Critical debonding tensile stress as a function of the
Young’s modulus of the matrix. For four different development of the
damage fields (DF). DF = 1 equals total fracture.

observation of debonding started when the damage field (DF) had reached a value

of 0.4. DF equals 1 is total fracture and DF equals 0 is no fracture. Higher tensile

stress is needed to observe more debonding, and it depends linearly on the Young’s
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modulus of the matrix. When debonding is first observed in the simulation, it shows a

agreement with Equation 3.5. These results show that the phase field damage model

method gives a good estimate on the tensile stress needed for debonding.



29

CHAPTER 4. SUMMARY

In this work, polymer-bonded explosives (PBX) are studied to see how they fracture

under compressive and tensile loading. Experiments have shown that PBX fracture

at the interface between a particle and the binder, and one of the main goals of the

research was to simulate the same response in the polymer as was observed in a recent

experiment performed by students in Prof. Chen’s group at Purdue University.

The experiment was a Kolsky bar experiment where a glass bead particle was

inserted inside a Sylgard 184 binder, and it observed how the particle started to

debond from the binder. A phase field damage model was used in this research to

simulate the experiment with an asymmetric damage response where volumetric and

deviatoric strain contributed to damage. The comparison to the experiment was used

to obtain important parameters, for example the energy release rate, needed for the

phase field damage model in future simulations on PBX.

Comparison showed that the damage response model simulation did not capture

the damage in the Sylgard 184 as was observed in the experiment. The deviatoric

strain was dominant in comparison to the positive volumetric strain where tension

was developing. The damage response model was then modified to a pure volumetric

strain damage model and then the improved simulation showed fracture at the same

location as in the experiment. A force displacement curve was plotted which was used

to calibrate the elastic constants. To verify that the stresses were calculated correctly

in the model, an elastic simulation was compared to an analysis by the finite element

software ABAQUS. Comparison showed good agreement, or less than 3% difference

between the stresses.

Finally, tensile loading was investigated by simulation, where cavitation and debond-

ing were studied and compared to an experiment in literature. Cavitation was ob-

served when the interface was perfectly bonded and fracture initiated at a slight
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distance from the interface. When the interface was made weaker than the binder,

debonding was observed where fracture initiated right at the interface. An analytic

solution of the critical applied stress needed for debonding was reported from litera-

ture, and the simulation showed good agreement with that solution. However, more

applied stress was needed to see more debonding.

Simulations in this thesis were all based on quasi-static loading for simplicity.

However, the Kolsky bar experiment was applied by dynamic loading and therefore

it is difficult to compare these two in detail. Dynamic simulation work is in progress

and results will be expected soon which will hopefully show a better comparison to

the experiment. It will be interesting to determine if the debonding is due to strain

or strain rate. More simulations have to be performed to get a better estimate of the

energy release rate at the interface since this work only varied the energy release rate

from 17-50 J/m2 at the interface.
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APPENDIX A. INITIALIZING THE PHASE FIELD DAMAGE MODEL

SIMULATION

The steps used to run the phase field damage model simulation are described in this

appendix. The files needed to run a simulation are; a .cas file that contains the

mesh of the structure, a main python script with all the input parameters and the

implementation of the phase field damage model. A .sub file to submit the simulation

to a cluster, which is shown in Appendix B. Two files that write the output files for

visualization in the open-source data analysis application Paraview, the visualization

of the fracture and the visualization of the stresses and strains. Lastly but most

importantly the MEMOSA code with the fracture and structure modules. The input

and output scripts are written in Python but the solver is written in C++. The

following steps explain the procedure on running a simulation.

• Step 1: Create the mesh of the structure geometry

(a) The mesh is created in the finite element software ABAQUS. The boundaries

of the structure are defined as sets and the mesh must be meshed properly

with hexahedral elements to avoid distortion of elements when running the

simulation. ABAQUS is used to run the analysis and the mesh is written

to an input file, used by Fluent

(b) The input file from ABAQUS is used in the ANSYS software Fluent. With

Fluent the ID’s of the boundaries are extracted and the model is scaled to

the appropriate scale since ABAQUS does not have a defined metric scale.

Finally, the file is saved as a .cas file and then it is ready to be used in

MEMOSA for the simulation.

• Step 2: The python script - the main implementation file of the phase field

damage model
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(a) Start by initializing the mesh and setting the material properties for the

matrix and the particle and tolerance values for the simulation.

(b) Initialize boundary conditions; displacement, stress, symmetry boundary

conditions etc.

(c) Define the interface between the particle and the matrix where material

properties are varied exponentially.

(d) Decide the loading increment, stress or displacement loading.

• Submit the .sub file (Appendix B) to run the simulation on a cluster

(a) Choose a cluster to run on, the number of nodes and time needed to run

the simulation.

(b) Source to the location of you env-cluster.sh file

(c) Run the simulation

• Visualization when the simulation has run

(a) The .vtk output files produced are used to visualize the results in Paraview
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APPENDIX B. SUBMISSION FILE TO A CLUSTER

#!/bin/sh -l

# FILENAME: run_py.sub

#PBS -q marisol

#PBS -l nodes=1:ppn=16

#PBS -l walltime=350:00:00

cd $PBS_O_WORKDIR

source /scratch/carter/j/jpalsdot/FVM_Vol_model/fvm/env-carter.sh

pwd

mpirun -np 16 python ./script.py mesh.cas --type hexa > OutputFile.out
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