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ABSTRACT 

Hodde, Whitney. M.S., Purdue University, The Effect of Climate Change on the 
Economics of Conservation Tillage: A Study Based on Field Experiments in Indiana. 
Major Professor: Juan Sesmero 

This study evaluates the economics of conservation tillage (chisel till and no till) 

and examines how climate change will likely affect it. I use data from long-term 

experimental plots in Indiana to estimate how corn and soybean yields respond to 

weather patterns under alternative tillage practices. Yield functions are coupled with 

random draws of weather variables to construct distributions describing the probability 

that conservation tillage will result in higher profits than more intensive tillage, under 

current and future climatic regimes. Results suggest that, in the study area, projected 

climate change will make conservation tillage more attractive. 
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CHAPTER 1: INTRODUCTION 

Adoption of conservation tillage has received considerable attention in the past 

due to its widely promoted environmental benefits (e.g. Karlen et al., 1994a; Omonode et 

al., 2010; Sengupta and Dick, 2015). Concerns about soil erosion and nonpoint source 

pollution of water resources resulted in government support for adoption of conservation 

tillage. The economic performance of conservation tillage operations relative to more 

intensive alternatives is likely to influence farmers’ decisions about which tillage practice 

to adopt (Stonehouse, 1991; Weersink et al., 1992a; Yiridoe et al., 2000; Kurkalova et al., 

2006; Archer and Reicosky, 2009). Tillage practices influence net returns from farming 

through two channels: 1) differences in yields obtained under alternative tillage practices, 

and 2) relative costs associated with tillage operations of varying intensity.  

A key feature of conservation tillage is that its effect on crop yields is influenced 

by weather patterns. For instance, in a given field, intensive forms of tillage have 

traditionally performed better (resulted in higher yields) than conservation tillage if 

beginning-of-season weather is cool and wet (Kovar et al., 1992). Therefore changes in 

weather patterns associated with climate change are likely to affect the relative 

performance of tillage practices. We contribute to the literature on the economics of 

conservation tillage by quantifying the expected effect of climate change on the economic 

performance of conservation tillage relative to more intensive alternatives. 
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To achieve our objective, we estimate expected corn and soybean yields, 

conditional on tillage and weather. We do so by exploiting data from field experiments to 

estimate yield response functions that include interaction terms between weather and 

tillage variables. Estimated yield functions are coupled with current and projected 

probability distributions of weather to characterize the expected effect of climate change 

on yield distributions. Randomly simulated yields are subsequently combined with prices 

and cost estimates to obtain probability distributions of net economic returns. These are 

used to examine the economic attractiveness of conservation tillage under current 

climatic conditions, and how such attractiveness is likely to be affected by climate 

change. 

We consider three tillage practices, in decreasing order of intensity: moldboard 

plow tillage, chisel plow tillage, and no till. Moldboard plow tillage is the most soil 

disrupting practice, leaving less than 15% of crop residue remaining on the field between 

harvest and planting. Tillage using a chisel plow is a form of conservation tillage where 

typically at least 30% residue coverage remains between harvest and planting. No till 

leaves the soil completely undisturbed between harvest and planting; normally about 90% 

of residue cover remains under no till corn, and 75% under no till soybeans. We find that 

a risk neutral farmer, under current climate patterns and a corn-soybean rotation, prefers 

both forms of conservation tillage to a moldboard plow. However, moldboard plow 

dominates conservation tillage practices under continuous corn, especially in high yield 

(i.e. residue) systems on fine-textured soils such as the common dark prairie mollisols in 

the USA.  
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More importantly, we find that changes in weather patterns projected by mid-

century improve the economics of conservation tillage relative to moldboard plow across 

crops and rotation systems. But these changes may or may not be large enough to warrant 

adoption of conservation tillage, absent public policies. We find that projected climate 

change at mid-century for dark prairie soils in the Corn Belt of the USA may induce a 

switch from chisel plow to no till among farmers growing corn in rotation. But 

moldboard plow is expected to continue to dominate conservation tillage practices under 

continuous corn. Finally, the improvement in the economics of conservation tillage 

(sufficient or not to warrant behavioral changes) is positively correlated with the 

magnitude of the change in climate. Consequently, changes in beginning-of-season 

weather under projected climate change enhance the alignment of private economic 

incentives with environmental stewardship, an issue largely overlooked by the extant 

literature.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Conservation Tillage Literature 

Intensive tillage has traditionally been used by farmers due to its many benefits, 

including weed control and seedbed preparation. However, intensive tillage disrupts and 

exposes the soil and leads to greater erosion, soil degradation, structural breakdown, and 

compaction issues (Pagliai et al., 2004). In addition there are concerns about impacts on 

long term soil health and productivity. More importantly, from the perspective of 

environmental policy, intensive tillage leads to sediment and nutrient runoff resulting in 

pollution of surface water.  

An alternative management practice that can mitigate some of the adverse effects 

of intensive tillage is conservation tillage. Conservation tillage includes a number of 

different practices but is generally defined as any type of tillage that 1) leaves 30% or 

more crop residue on the soil surface after planting, or 2) maintains at least 1,000 pounds 

of small grain residue equivalent per acre throughout the critical wind erosion period 

(Natural Resources Conservation Service, 2011; Conservation Technology Information 

Center, 2015). This form of tillage may employ the use of chisel plows, disks, deep 

rippers, field cultivators, shallow vertical tillage implements, or a combination of these 

tools. Under no till the soil is left undisturbed from harvest to planting, except for strips 
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of up to a third of the row width that may involve only residue disturbance or may (under 

strip till) include minimal soil disturbance in the intended crop row area. 

Conservation tillage can alleviate soil erosion, and reduce nonpoint source 

pollution (from nitrogen and phosphorous) and damages to water quality (Karlen et al., 

1997). Additionally, conservation tillage can offset the emission of greenhouse gases like 

CO2 because it increases the amount of atmospheric carbon stored in the soil (Omonode 

et al., 2007; Gál et al., 2007); this is particularly true when crop productivity increases 

with no till (Ogle et al., 2012). Under no till, soil carbon can increase at an average 

annual rate of 48 +/- 13 g C m-2 yr-1 (West and Post, 2002). Reductions to losses of 

another major greenhouse gas, nitrous oxide (N2O), have also received attention in the 

conservation tillage literature (Li, Changsheng et al., 1996; Omonode et al., 2010). 

The environmental benefits from adoption of conservation tillage practices have 

been extensively documented. However, profitability is an important factor influencing 

adoption (Yiridoe et al., 2000, Cary and Wilkinson, 1997). The relative profitability of 

conservation tillage critically depends upon yield differentials under alternative tillage 

practices. It is also influenced by differences in cost of production. Costs of production 

vary across tillage practices due to the cost of tillage operations themselves, but also due 

to changes in application of chemical inputs. Other factors affecting the profitability of 

conservation tillage include the farmer’s planning horizon and degree of risk aversion 

(Epplin et al., 1982; Helms et al., 1987; Williams, 1988; Williams et al., 1990; Krause 

and Black, 1995). Finally, farmers’ subjective perception of the relative performance of 

tillage practices is also an important factor in adoption (Ding, 2009). 
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This study focuses on evaluation of cost differences and yield responses in a 

stochastic environment. Conservation tillage can result in savings in labor, machinery, 

and energy costs due to a reduction in the number of field equipment passes (Weersink et 

al. 1992b). However, it can also result in higher cost of chemical inputs as residue cover 

may increase the prevalence of pests and diseases. Conservation tillage affects yields by 

increasing organic matter and microbial activity in upper soil horizons (Gál et al., 2007; 

Karlen et al., 1994b). It also gives the soil a lower bulk density and better drainage 

capacity. Crop residues left on the soil surface help conserve soil water by reducing 

evaporation and improve water infiltration (Diaz-Zorita et al., 2004). These effects may 

result in increased soil productivity and yields. But conservation tillage can also reduce 

yields by delaying warming and drying up of the soil (possibly delaying planting), and 

slowing plant emergence (Doster et al., 1983).  

Overall, evidence suggests that yields under different tillage scenarios vary by 

cropping system, soil properties, land slope, and climatic conditions (e.g. Toliver, 2012). 

A number of studies found that adoption of no till results in decreased crop yields (Doster 

et al., 1983; Griffith et al., 1988; Vyn and Raimbault, 1993). Corn yield reductions with 

no-till are more likely in continuous corn production than in the common corn-soybean 

rotation (West et al., 1996). However, under favorable conditions, no till can achieve 

profits comparable to conventional tillage methods (Ogle et al., 2012). In some cases 

lower yields and reduced profits may occur in the early years of adoption, but can be 
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overcome once soil nutrients are built up and the soil structure is improved (Grandy et al., 

2006).1 

The important role of agro-climatic conditions in shaping the response of yields to 

adoption of conservation tillage partly explains spatial variability in adoption patterns. 

For instance, in our study area (Indiana), less intensive tillage practices are widely 

adopted in the south where weather is warmer and where soils have a higher percentage 

of sand and higher slopes. This is true for both corn (Figure 1.A) and soybeans (Figure 

1.B), though conservation tillage adoption is much higher throughout the state for the 

latter crop. Overall adoption of conservation tillage in Indiana in 2015 was 40% for corn 

and 80% for soybeans (Indiana State Department of Agriculture, 2015). A majority of 

this is no till. Estimates by the Indiana Conservation Partnership conclude that 36% of all 

corn acreage and about 60% of soybean acreage is under no till or strip-till (Figures 1.A 

and 1.A). 

 

 

 

 

 

 

 

 

                                                           
1 They are also influenced by the degree to which the farmer conducts a proper implementation of 
conservation tillage practices. But our study abstracts away from these considerations as we use field 
experiments that have been implemented by specialists.  
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Figure 1.A. No till corn adoption in Indiana 
 

Figure 1.B. No till soybean adoption in Indiana 
 

As suggested above, weather is an important factor influencing yield response to 

tillage. Moreover, weather is random and distributed according to a pattern that can vary 

over time due to climate change. Therefore, the relative profitability of conservation 

tillage is also random and subject to temporal variation. Previous literature has used the 

concept of stochastic dominance to compare the economic performance of conservation 

tillage relative to more intensive practices (Weersink et al., 1992a; Klemme 1985; 

Yiridoe et al., 2000; Archer and Reicosky, 2009). These studies provide key insights into 

the economics (i.e. risk/return) of conservation tillage by incorporating risk through 

randomness of yields. However, they use unconditional distributions of yield and, thus, 

no systematic link to weather is estimated. This precludes examination of the effect of 
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changes in weather patterns (e.g. due to climate change) on the economics of 

conservation tillage. Our study attempts to fill this gap. 

 

2.2 Policy Background 

The goal of environmental policy is to get polluters to incorporate the value of 

external damages caused by production processes into their private cost (Doering et al., 

1999). There are many external damages associated with agricultural production, but 

water quality is a major area where improvement is both important and feasible. The 

primary source of water quality degradation in the United States (US) is soil erosion and 

runoff of agricultural inputs (Kling, 2011). The US government has targeted the 

agricultural sector for improvements by incentivizing voluntary management practices 

that reduce soil erosion and runoff. 

The Environmental Quality Incentives Program (EQIP) and the Conservation 

Reserve Program (CRP), administered by the Natural Resource Conservation Service 

(NRCS), are perhaps the most influential programs that target non-point source pollution 

(Doering et al, 1999). EQIP was initiated in 1996. This program provides technical and 

financial assistance to help farmers implement conservation tillage and other runoff-

reducing practices. The NRCS pays 75% of the cost to adopt practices such as no till or 

cover cropping. The federal farm bill establishes payment calculations and eligibility, and 

NRCS state offices make funding allocation decisions. A farmer can voluntarily apply for 

funding support from a given program. Payments for adoption of conservation tillage 

practices are done on an annual basis; a maximum of three payments is imposed over the 

duration of a single contract (National Resources Conservation Services, 2016a). Both no 

http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/eqip
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till and mulch till (in this study chisel tillage in continuous and rotation corn can be 

considered mulch tillage) can be covered under the program (Natural Resources 

Conservation Service, 2016b). The type of conservation practice covered and associated 

payment rates vary by state so that programs can meet local needs. 

Despite these efforts, many agricultural watersheds do not meet water quality 

goals set forth in the Clean Water Act (Kling, 2011). A large body of literature has 

attempted to shed light on the causes behind the limited success of existing policies. 

These studies, both theoretical (Shortle and Dunn, 1986) and empirical (e.g. Rabotyagov 

et al. 2010), have deepened our understanding of the relative merits of competing policies 

addressing water quality issues. A number of studies have estimated the magnitude of 

subsidies required to induce adoption of conservation tillage. Some of these studies used 

stated preference methods (Lohr and Park, 1995; Cooper and Keim, 1996; Cooper, 1997), 

others have used revealed preference methods (Kurkalova et al. 2006). The present study 

contributes to the policy debate by examining the effect of climate change on the 

magnitude of the subsidy that would trigger adoption. The use of data from field 

experiments is a key element of our analysis, as it permits quantification of the influence 

of weather and tillage practices on yields. 

 

 

 

 

 

 

http://ajae.oxfordjournals.org/content/93/2/297.short#ref-15
http://ajae.oxfordjournals.org/content/93/2/297.short#ref-15
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CHAPTER 3: METHODS 

 

We model a representative farmer that chooses a tillage practice to maximize 

profits, defined as revenue minus variable production cost. All other production inputs 

are kept constant which allows us to focus our attention on the tillage decision. A profit-

maximizing farmer is likely to adopt a more intensive tillage practice 𝑛𝑛 (e.g. moldboard 

plow tillage) if it results in higher profits relative to a less intensive practice 𝑚𝑚 (e.g. 

chisel tillage), per unit of land: 

𝑃𝑃𝑘𝑘 ∗ �𝑌𝑌𝑘𝑘,𝑗𝑗
𝑚𝑚 �𝑤𝑤� − 𝑉𝑉 − 𝑂𝑂𝑘𝑘𝑚𝑚 + 𝑞𝑞𝑘𝑘,𝑗𝑗

𝑚𝑚 ≤ 𝑃𝑃𝑘𝑘 ∗ (𝑌𝑌𝑘𝑘,𝑗𝑗
𝑛𝑛 |𝑤𝑤) − 𝑉𝑉 − 𝑂𝑂𝑘𝑘𝑛𝑛    (1) 

where 𝑃𝑃𝑘𝑘 denotes price of crop 𝑘𝑘 (𝑘𝑘 = 𝑐𝑐 for corn, and 𝑘𝑘 = 𝑠𝑠 for soybean); 𝑌𝑌𝑘𝑘,𝑗𝑗
𝑚𝑚 |𝑤𝑤 

represents yield of crop 𝑘𝑘, under crop rotation 𝑗𝑗 (𝑗𝑗 = 𝑐𝑐𝑐𝑐 for continuous corn, 𝑗𝑗 = 𝑐𝑐𝑠𝑠 for 

corn/soybean rotation, and 𝑗𝑗 = 𝑠𝑠𝑠𝑠 for continuous soybean) and less intensive tillage 

practice 𝑚𝑚 (𝑚𝑚 = 𝑁𝑁𝑁𝑁 for no till, 𝑚𝑚 = 𝐶𝐶ℎ𝑁𝑁 for chisel till); and 𝑌𝑌𝑘𝑘,𝑗𝑗
𝑚𝑚 |𝑤𝑤 represents yield of 

crop 𝑘𝑘, under crop rotation 𝑗𝑗 and more intensive tillage practice 𝑛𝑛 (and 𝑛𝑛 = 𝑀𝑀𝑃𝑃 for 

moldboard plow, and 𝑛𝑛 = 𝐶𝐶ℎ𝑁𝑁 for chisel till). Yields are conditional on a vector of 

weather variables, 𝑤𝑤. Furthermore, 𝑉𝑉 represents variable costs that do not differ between 

tillage practices (e.g. fertilizer); 𝑂𝑂𝑘𝑘𝑚𝑚 capture operating costs expected to vary by crop and 

tillage practice (machinery, machinery labor time, and chemical costs); and 𝑞𝑞𝑘𝑘,𝑗𝑗
𝑚𝑚  is the 

subsidy obtained by the farmer adopting a conservation tillage practice 𝑚𝑚 which will vary 
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by crop, rotation, and specific tillage practice. Three pair-wise economic comparisons of 

tillage practices can be conducted: no till vs. moldboard plow, no till vs. chisel tillage, 

and chisel tillage vs. moldboard plow. 

The difference between yields under alternative tillage practices is determined by 

weather 𝑤𝑤, which is random. Therefore fulfillment of the inequality (1) is also random. 

All else constant, cooler and wetter weather results in higher yields under more intensive 

tillage practices (Toliver et al., 2012); i.e. cooler and wetter weather decreases 𝑌𝑌𝑘𝑘,𝑗𝑗
𝑚𝑚 − 𝑌𝑌𝑘𝑘,𝑗𝑗

𝑛𝑛 . 

We capture this randomness through a cumulative distribution function (CDF) describing 

the probability that the difference between profits under conservation practice 𝑚𝑚 and 

those under more intensive practice 𝑛𝑛 are lower or equal to some arbitrary number 𝑧𝑧; i.e. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑋𝑋 = 𝑃𝑃𝑘𝑘 ∗ �𝑌𝑌𝑘𝑘,𝑗𝑗
𝑚𝑚 − 𝑌𝑌𝑘𝑘,𝑗𝑗

𝑛𝑛 |𝑤𝑤� + (𝑂𝑂𝑘𝑘𝑛𝑛 − 𝑂𝑂𝑘𝑘𝑚𝑚) + 𝑞𝑞𝑘𝑘,𝑗𝑗
𝑚𝑚 ≤ 𝑧𝑧�. We denote this CDF by 

Φ𝑘𝑘,𝑗𝑗
𝑚𝑚−𝑛𝑛(𝑧𝑧). Note that the CDF evaluated at 𝑋𝑋 = 0 (i.e. Φ𝑘𝑘,𝑗𝑗

𝑚𝑚−𝑛𝑛(0)), denotes the probability 

that less intensive tillage practice 𝑚𝑚 will result in lower profit than more intensive 

practice 𝑛𝑛. 

Let us assume that a farmer considering adoption of a less intensive tillage 

practice requires at least a probability 𝑅𝑅 that such practice will be more profitable (𝑋𝑋 >

0). Then the farmer will implement the following decision structure: 

�
implement tillage practice 𝑚𝑚         if   Φ𝑘𝑘,𝑗𝑗

𝑚𝑚−𝑛𝑛[𝑋𝑋 = 0] < 1 − 𝑅𝑅     
implement tillage practice 𝑛𝑛          𝑃𝑃𝑜𝑜ℎ𝑒𝑒𝑃𝑃𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒                                 

   (2) 

The function Φ𝑘𝑘,𝑗𝑗
𝑚𝑚−𝑛𝑛[𝑋𝑋] is composed of three parts. First, the yield differential 

conditional on weather, �𝑌𝑌𝑘𝑘,𝑗𝑗
𝑚𝑚 − 𝑌𝑌𝑘𝑘,𝑗𝑗

𝑛𝑛 |𝑤𝑤�. Second, deterministic parameters 𝑃𝑃𝑘𝑘, 𝑂𝑂𝑘𝑘𝑚𝑚, 𝑂𝑂𝑘𝑘𝑛𝑛, 

and 𝑞𝑞𝑘𝑘,𝑗𝑗
𝑚𝑚  that combine with yields to determine the profitability of less intensive relative 



13 
 

to more intensive tillage practices. The third part is the probability distribution of weather 

variables in vector 𝑤𝑤. The next section discusses estimation of the yield response to 

seasonal weather conditions. We will subsequently discuss estimation of probability 

distributions of weather variables. Regarding deterministic parameters, the subsidy 𝑞𝑞𝑘𝑘,𝑗𝑗
𝑚𝑚  

will be determined endogenously in our study; i.e. we will calculate the subsidy that 

makes a certain tillage practice 50% (𝑅𝑅 = 0.5) likely to outperform another, more 

intensive, practice. A detailed discussion of how parameters 𝑃𝑃𝑘𝑘, 𝑂𝑂𝑘𝑘𝑚𝑚, and 𝑂𝑂𝑘𝑘𝑛𝑛 are 

calculated is included in Appendix A. 

 

3.1 Yield Function Estimation 

A long-term experiment on different tillage systems spanning 40 years (1975-

2014) was conducted at the Purdue Agronomy Center for Research and Education 

(ACRE) in West-central Indiana (40º28’07”N, 87º00’25”W). The soil at the experiment 

site is Chalmers silty clay loam (4% organic matter). One year (2011) resulted in yield 

anomalies due to hail damage, leaving 39 years of usable experimental data. The 

experiment comprised a block design with 12 split-plots. The study annually tracked crop 

yield differences for three tillage practices (moldboard plow, chisel plow tillage, and no 

till) and three crop rotations (continuous corn, corn-soybean rotation, and continuous 

soybeans) most commonly used in Indiana. Two plots were planted to corn-soybean 

rotation under each tillage practice with one starting with corn and one with soybeans in 

1975. This resulted in a total of 12 split-plot treatment combinations (three continuous 

corn plots, three continuous soybeans, and six corn-soybean rotations with three plots in 

each rotation crop in a given year). Therefore, in any given year, 6 plots produce corn 
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(three continuous corn and three corn after soybeans) and 6 produce soybeans (three 

continuous soybeans and three soybeans after corn). 

Plots in the experiment were 32-feet wide and 150-feet long. The experimental 

area had less than 2% slope and was systematically tile drained at 20-m intervals. All 

primary tillage occurred in the fall. In the spring, one disking and/or one or two field 

cultivation passes aided seedbed preparation. For the experimental plots analyzed, residue 

coverage for the moldboard plow was 5-15% following corn and 2-5% following 

soybeans (West, personal communication, November 16, 2015). The chisel plow 

experimental plots had a residue coverage of 30-40% following corn and 10-20% 

following soybeans (West, personal communication, November 16, 2015). The no till 

plots had a residue coverage of 87-95% following corn, and 70-80% following soybeans. 

As part of the experiments, data on yields, weather, and management practices 

were collected from 1975 to 2014 (except 2011). Weather variables include growing 

degree days (GDD), precipitation, and stress degree days (SDD), recorded at the ACRE 

weather station (West Lafayette 6 NW) over the 39 year length of the experiment 

(Midwestern Regional Climate Center 2015). We use these data to estimate a linear 

regression model and quantify the expectation of yield conditional on weather and tillage 

practices.2 Descriptive statistics of variables included in the regressions are reported in 

Table 1. Values in this table reveal a substantial variability of yields over time and across 

management practices. No till seems to typically result in lower yields as compared to 

moldboard plow and chisel. The greatest discrepancy between no till and alternative 

                                                           
2 Other studies have used crop models to forecast crop yields under climate change. A growing body of 
literature links climate, crop and economic models together. Rosenzweig et al. (2013) reviews some of 
these studies and discusses how such models may be improved. 
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practices occurs under continuous corn. Yields under chisel and moldboard plow are 

similar across cropping scenarios. 

 
Table 1. Descriptive Statistics of Regression Variables 

  
Mean 

 
Median 

Standard 
deviation 

 
Minimum 

 
Maximum 

Yield (bushels per acre)      
Yield, corn in rotation 
under moldboard plow 187 185 33 131 269 
Yield, corn in rotation 
under chisel 188 193 33 138 262 
Yield, corn in rotation 
under no till 183 185 31 128 255 
Yield, continuous corn 
under moldboard plow 180 180 34 120 260 
Yield, continuous corn 
under chisel 175 178 31 122 241 
Yield, continuous corn 
under no till 157 161 34 84 235 
Yield, soybeans in 
rotation under 
moldboard plow 

54 55 7 37 68 

Yield, soybeans in 
rotation under chisel 52 52 6 39 64 
Yield, soybeans in 
rotation under no till 52 52 9 32 71 
 
Weather      
Precipitation April 
(inches) 3.6 3.5 1.9 1.1 9.1 

GDD April 209 206 61 106 337 
Precipitation May 
(inches) 4.4 4.4 2.0 0.9 9.8 
GDD May 419 417 90 286 606 
Precipitation June-
September 15.0 14.2 4.1 7.4 23.5 

GDD June-September 2,465 2,451 147 2,123 2,735 
Stress degree days June-
September 128 107 90 23 382 
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Substantial weather variability is also observed in the study period and exploited 

to estimate regression equations. GDD distributions in April, May, and June-September 

are skewed to the right. Moreover their coefficients of variation (ratio of standard 

deviation to mean) are 0.30, 0.21, and 0.06 respectively, revealing that growing season 

GDD is less variable than early season (April and May) GDD. The April precipitation 

distribution is skewed to the right while May and June-September distributions are less 

skewed following more symmetric distributions. Their coefficients of variation are 0.53, 

0.45, and 0.27 respectively, also revealing less variability over the growing season than at 

the beginning of the season. 

Two strategies are possible to estimate the effect of tillage practice on yields. 

First, separate regressions can be run partitioning the sample by crop and tillage practice. 

In this case, a total of six equations would be estimated (corn yield function under three 

tillage practices, and soybeans yield under three tillage practices), and each equation 

would be estimated based on a sample of 78 observations (2 observations per year -one 

for continuous cropping and one for rotation cropping- for 39 years). Second, a combined 

regression can be run where the sample is partitioned by crop but not by tillage practice, 

and the effect of tillage on yields is captured by inclusion of tillage dummies. Each 

function would be estimated based on a total of 234 observations (6 observations per 

year, for 39 years). 

Estimating a combined regression with dummies results in an increase in degrees 

of freedom (although it may also lead to multicollinearity problems), but it assumes that 

the variances of the residuals from separate regressions are essentially the same (Gujarati, 

2009). Its validity hinges upon fulfillment of this assumption. When the assumption does 
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not hold, running separate regressions for each group is the best strategy. Therefore we 

used the following protocol to define the optimal estimation strategy. First, we run 

separate regressions and save the residuals. Second, we test whether variances of the two 

populations are statistically significantly different. For this, we use an F-test (Snedecor 

and Cochran, 1989). This test (available from the authors upon request) results in a 

failure to reject the null hypothesis of different variances. Therefore, we run a combined 

regression with dummies clustering observations by crop.  

Two functions were estimated, one for corn and one for soybeans. Crop yield is 

the dependent variable in these regressions. The vector of independent variables includes 

dummy variables indicating tillage practices (moldboard plow is excluded as it is the 

baseline practice), crop rotation (a dummy for a crop grown in rotation, leaving 

continuous cropping as the baseline), and interactions between crop rotation and tillage 

dummy variables. In addition, we include variables to account for the planting date 

(dummies for early April, late April, late May, early June, and late June with the most 

common practice, early May, as the baseline), an annual time trend, and a vector of 

weather variables.  

Generally speaking, conservation tillage tends to reduce yields relative to 

moldboard plow due to poorer seedbed conditions, delayed seedling emergence and crop 

development, and (or) more plant-to-plant variability in growth and development 

(Boomsma et al., 2009). Therefore we expect coefficients on standalone conservation 

tillage dummies to be negative. Crops grown in rotation typically attain higher yields 

(Hennessy, 2006), so the coefficient on the rotation dummy is expected to be positive. 

Moreover, conservation tillage performs better under crop rotation than in a continuous 
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cropping system (Lund et al., 1993). This is especially true for corn. Therefore the 

coefficients on the interactions between conservation tillage dummies and the rotation 

dummy are expected to be positive, at least for corn. 

The range of planting dates were divided into two week intervals. Consequently 

we created an early April dummy, which takes a value of one if the crop was planted in 

the first two weeks of April and zero otherwise, late April was equal to one if the crop 

was planted in the last two weeks of April, and so forth. The most commonly 

implemented planting dates for each crop were used as baselines—early May for corn 

and late May for soybeans. Planting dates were decided based on soil moisture conditions 

(especially in the no-till plots) at the beginning of each growing season. Planting dates for 

both corn and soybean were consistently the same among tillage and rotation systems in 

each year of the experiment. There is inter-annual variation in planting dates, but not 

across split-plots in a given year. Earlier planting dates are associated with longer 

growing seasons and higher yields. Therefore, coefficients on planting dates earlier (later) 

than the baseline are expected to be positive (negative).  

The time trend is included to capture increases in yields due to, among other 

things, improvements in hybrid seeds. From 1981 to 1994, the experiment used a single 

corn hybrid, Becks 65X (Boomsma et al., 2009). Since 1994, superior commercial 

hybrids in yield and leaf disease tolerance were used to reflect then-common hybrids 

available to farmers. Modern hybrids have more tolerance to plant density that allows for 

higher plant populations and results in higher yields. Therefore the coefficient of the time 

trend is expected to be positive. The time trend does not interact with weather (tests 

rendered them insignificant), which implies that productivity gains are neutral; they do 
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not affect yield response to weather. It is worth noting that innovations such as drought- 

and heat-resistant hybrids (which were not planted in this experiment) would require 

inclusion of year-weather interaction terms. 

The vector of weather variables includes precipitation, GDD, and SDD. GDD is 

calculated daily as the difference between maximum daily temperature (not to be above 

86° Fahrenheit) and minimum daily temperature (not to be below 50° F). These daily 

figures are added up to calculate monthly GDD. SDD is measured as the number of days 

in which temperature exceeded 86° Fahrenheit. This variable is included to capture 

extreme heat events that can seriously suppress plant growth, even if not affecting GDD 

significantly. Stress degree days capture the adverse reaction that, on average, corn plants 

experience to temperatures above 86 degrees Fahrenheit (Taylor, 2012). Late fall and 

winter rainfall and temperatures have little impact in determining corn yields (which was 

confirmed by preliminary regressions) and so were not used as explanatory variables. 

April and May precipitation and GDD were separated from total precipitation and 

GDD over the June – September months that encompass the growing season. Weather 

occurrences in April and May were separately interacted with dummies for tillage 

practices to capture the fact that the effect of tillage practices on yields is conditioned by 

beginning-of-season weather (see for example Yamoah et al., 1998 and Vetsch and 

Randall, 2004).3 Higher residue cover delays warming and drying of the soil which may 

                                                           
3 April and May were chosen as early season weather variables. These were chosen because a majority of 
actual planting dates for the experiment occurred in April and May. Corn was planted in April or May 33 
times out of the 39 years of data. Soybeans were planted in April or May 36 times. We used separate 
weather distributions for each April and May as opposed to combined weather distributions because we 
found this strategy to increase goodness of fit in addition to allowing for a more accurate picture of the 
beginning-of-season weather effects on yield.  
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affect plants’ early emergence and can impact crop yields (Yamoah et al., 1998; Vetsch 

and Randall, 2004). This can constitute an advantage of conservation tillage in warmer 

weather conditions. Therefore the coefficients of the interaction between GDD in April 

and less intensive tillage dummies are expected to be positive. Abundant precipitation 

quantities in April and May are expected to have a yield-reducing effect under 

conservation tillage. Therefore, the derivative of yield with respect to less intensive 

tillage dummies is expected to become negative at high precipitation levels. However, the 

negative effect of abundant precipitation under conservation tillage is expected to be 

alleviated in our study due to the presence of systematic tile drainage.  

Squared terms of the weather-tillage interactions are included to capture possible 

nonlinearities in the link between tillage, weather, and yields (Schlenker and Roberts, 

2006). For instance, increases in moisture in April can, at first, benefit all plots. But as 

moisture increases beyond some critical threshold, they may negatively affect seedbed 

environment and hamper emergence. However the thresholds need not be the same under 

different tillage practices. In general, and all else constant, it is expected that plots with 

more intensive tillage can better handle excess moisture. Therefore coefficients of 

quadratic terms are expected to be negative, and to vary by conservation tillage practice. 

Linear and quadratic terms for April and May GDD are also included to potentially 

capture decreasing marginal effects of temperature on yields. 

In addition to beginning-of-season weather, the estimation also includes weather 

information for the rest of the growing season. Specifically, GDD and precipitation from 

June to September were included along with quadratic terms to capture decreasing 

marginal effects of GDD, and negative marginal effects of excess precipitation 
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(Schlenker and Roberts, 2009). Therefore the coefficients on the linear terms for growing 

season GDD and precipitation are expected to be positive, while the coefficients on their 

quadratic terms are expected to be negative. Empirical evidence also suggests a negative 

effect of excess heat (temperatures beyond 86 degrees Fahrenheit) on yields (Schlenker 

and Roberts, 2009), so we expect a negative coefficient on SDD. Finally, drought stress 

and heat stress often occur simultaneously (Rosenzweig, 2001), so an interaction term 

between growing season rainfall and SDD was also included to capture the damages 

caused to crop yield when one is exacerbated by the other (De Boeck, 2010).  

 

3.2 Estimation of Probability Distribution of Weather from Projected Data 

The previous section described estimation of the conditional (on weather) 

expectation of corn and soybean yields. Yield responses to weather occurrences vary by 

tillage practice. Our strategy is to take random draws from beginning-of-season (i.e. April 

and May) probability distributions of weather variables and map those occurrences to 

yields, to obtain a probability distribution of yields by tillage practice. Probability 

distributions governing random draws of current weather variables can be approximated 

based on recent history of weather occurrences. These are displayed in Figures B.1-B.4, 

Appendix B. Multiple parametric approximations were fitted to the data and the best one 

was identified based on Akaike and Bayesian Information Criteria. April precipitation is 

best approximated with a Weibull distribution and May precipitation is best 

approximated with a normal distribution. April and May GDD are best approximated 

with triangular distributions. Descriptive statistics of the chosen distributions are reported 

in the figures in Appendix B.    
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These probability distributions cannot be extrapolated into the future. As 

anthropogenic greenhouse gases build up in the atmosphere, they are and will continue to 

impact probability distributions of weather variables. To quantify future probability 

distributions of the same weather variables, we take random draws of GDD and 

precipitation from climate models and fit parametric approximations to such 

observations. The World Climate Change Research Program (WCRP) houses the 

Working Group on Coupled Modelling (WGCM). This group established the Coupled 

Model Intercomparison Project (CMIP), a standard experimental protocol for studying 

the output of coupled atmosphere-ocean general circulation models (AOGCMs). CMIP 

allows for climate model validation and intercomparison. These experiments are 

currently in their fifth phase (CMIP5), and this model output is the basis for the 

Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment Report (IPCC, 

2013a). 

The archived CMIP5 multi-model ensemble dataset that was used for this study is 

available online (Bureau of Reclamation, 2013), and contains gridded climate projections 

over the contiguous United States that were developed using two downscaling 

techniques. The data used are from the 1 degree Bias-corrected GCM projections using 

the Bias-Correction Constructed Analogues (BCCA) downscaling method. The specific 

latitude and longitude of our experimental plots were entered to the system. Using these 

specifications we were able to obtain daily precipitation, minimum daily temperature and 

maximum daily temperature output for the years 2030-2069 for 36 different model/model 

runs. The 2030-2069 period was selected to represent an approximation to “medium 

term” projected climate conditions; i.e. mid-century weather patterns. Also the length of 
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the period is chosen to match the 39 years of observed data used to calculate “current” 

weather patterns. The list of CMIP5 climate models and number of runs used can be 

found in Table C.1 in Appendix C. 

Emission scenarios available from CMIP5 include Representative Concentration 

Pathway (RCP) 2.6, RCP4.5, RCP6.0 and RCP8.5. These represent a range of 21st 

century climates (IPCC, 2013b). In this study we consider RCP2.6 and RCP8.5 

greenhouse gas scenarios. The RCP2.6 represents a Greenhouse Gas (GHG) emissions 

mitigation scenario where atmospheric CO2 concentrations reach 421 ppm by 2100. In 

this scenario, emissions peak in the middle of the century and decrease later on. Under 

this scenario, greenhouse gas concentrations and, therefore, temperature changes show a 

decrease in the second part of the 21st century (Diffenbaugh and Field, 2013). RCP2.6 is 

representative of a scenario that aims to keep global warming below a 2°C increase 

relative to pre-industrial (1850-1900) temperatures (IPCC, 2013b). RCP8.5 represents the 

highest projection of GHG emissions where CO2 concentrations reach 936 ppm by 2100 

and temperatures are likely to exceed a 2°C increase. 

Daily outputs projected by the climate models were consolidated into monthly 

figures to match them to variables in the estimated yield functions. Monthly values of 

weather variables from all climate models (see Appendix C for a description) and all 

years were pooled to create the probability distributions. This means that the distributions 

capture heterogeneity among models, in addition to intra-model climate variability. We 

think this is the most appropriate approach as differences in random draws across models 

are themselves explained by uncertainty in geophysical parameters and, thus, in weather 

patterns. Probability density functions of April precipitation and GDD and May 
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precipitation and GDD under projected climate regime (under alternative emissions 

scenarios) are displayed, alongside the historical distributions, in Figures B.1-B.4, 

Appendix B.  

April and May precipitation are best approximated with gamma distributions 

under a low emissions scenario. A gamma distribution is also a best fit for April 

precipitation under a low emissions scenario, but a log-normal distribution seems more 

appropriate in a high emissions scenario. April GDD is best approximated with a beta 

distribution under a low emissions scenario and a normal distribution in a high emissions 

scenario. May GDD is best approximated with a normal and beta distributions under low 

and high emissions scenarios respectively. April and May precipitation averages and 

standard deviations change only slightly from current climate to alternative climate 

change scenarios. Changes to the April and May GDD distribution induced by climate 

change are more dramatic. Mean GDD increases under climate change, and higher 

emissions trigger a larger change. Variability of April GDD also increases under climate 

change.  
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CHAPTER 4: RESULTS 

 

4.1 Conditional Expectation of Crop Yields 

The R-squared statistics show that our yield response models explain a reasonable 

fraction of yield variability. The R-squared for the corn model is 0.7 (Table 2), while the 

R-squared for the soybean model is 0.6 (Table 3). Moreover, the signs of estimated 

coefficients are largely consistent with prior expectations. As is the case for famers, 

planting dates in the experiment were chosen depending on year-to-year conditions. 

Delayed planting reduces yields; all else constant, yields tend to be higher when seedbed 

conditions are favorable for planting early in the season. The coefficient on the time trend 

indicates that, on average, corn yields have increased by 1.8 bushels a year while soybean 

yields have done so by 0.4 bushels a year. This suggests that genetic and management 

improvements have resulted in higher yields over the course of the 40 years of the 

experiment.  
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Table 2. Corn Yield Function Regression Results 

Variable description Coefficient Standard 
Error P-Value 

Year 1.8 0.2 0.00 
No till dummy -62.3 112.8 0.58 
Chisel dummy 17.6 96.8 0.86 
Rotation dummy 7.6 4.4 0.09 
(No till dummy)*(Rotation dummy) 18.1 6.7 0.01 
(Chisel dummy)*(Rotation dummy) 5.9 6.1 0.33 
Precipitation April 15.8 5.1 0.00 
(Precipitation April)*(No till dummy) 5.0 7.1 0.49 
(Precipitation April)*(Chisel dummy) 1.9 5.6 0.74 
Precipitation April2 -1.0 0.5 0.03 
(Precipitation April)2*(No till dummy) -0.7 0.7 0.34 
(Precipitation April)2*(Chisel dummy) -0.2 0.5 0.70 
GDD April -0.6 0.3 0.05 
(GDD April)*(No till dummy) 0.1 0.4 0.85 
(GDD April)*(Chisel dummy) 0.1 0.4 0.84 
GDD April2 0.002 0.001 0.02 
(GDD April)2*(No till dummy) -0.0001 0.001 0.90 
(GDD April)2*(Chisel dummy) -0.0001 0.001 0.86 
Precipitation May -4.5 4.8 0.35 
(Precipitation May)*(No till dummy) 4.9 6.3 0.44 
(Precipitation May)*(Chisel dummy) -0.5 5.3 0.92 
Precipitation May2 -0.1 0.5 0.91 
(Precipitation May)2*(No till dummy) -0.3 0.7 0.60 
(Precipitation May)2*(Chisel dummy) 0.1 0.6 0.92 
GDD May 0.1 0.3 0.68 
(GDD May)*(No till dummy) -0.01 0.4 0.98 
(GDD May)*(Chisel dummy) -0.2 0.4 0.66 
GDD May2 -0.0002 0.0004 0.56 
(GDD May)2*(No till dummy) 0.0001 0.0005 0.88 
(GDD May)2*(Chisel dummy) 0.0002 0.0004 0.65 
Precipitation June-September 9.7 4.6 0.04 
Precipitation June-September2 -0.2 0.1 0.05 
GDD June-September 1.2 0.3 0.00 
GDD June-September2 -0.0002 0.0001 0.00 
Stress DD June-September 0.1 0.1 0.59 
(Stress DD June-September)* 
(Precipitation June-September) -0.02 0.01 0.00 
Early April plant date  36.9 10.3 0.00 
Late April plant date 7.3 4.5 0.11 
Late May plant date -12.9 5.3 0.02 
Constant YES 

R^2 0.71     
# observations 234     
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The split-plot design of this experiment removes a number of confounding effects 

that typically emerge in observational (i.e. farm-level data) studies. By keeping 

agronomic conditions and other management practices constant, the block design allows 

us to isolate the effect of tillage practices on yields. This removes the risk of omitted 

variable bias, lending credence to our estimate of the effect of tillage on yields. Results 

reveal a concave response of yields to beginning-of-season weather variables under the 

baseline practice (moldboard plow). April and May weather and tillage interaction terms 

represent the deviation from this baseline. Corn production under less intensive tillage 

practices is adversely affected by abundant beginning-of-season rainfall, and favored by 

high temperatures as capture by increased GDD (Table 2).4 Such relationships are much 

weaker for soybeans, which perform better under less intensive tillage for a wide range of 

weather conditions (Table 3).  

Although the role of weather on the response of yields to tillage are consistent 

with our prior expectations, our estimates also reveal considerable imprecision. Standard 

deviations of coefficients are relatively large, reducing the statistical significance of 

individual coefficients. This may be explained by inherent noise in yields, but also by 

multicollinearity given the multiple ways in which beginning-of-season weather and 

tillage dummies enter the regression equation. Further analysis (see discussion in 

Appendix D) reveals a high correlation between interaction terms and their individual 

components, and between linear and quadratic terms. Therefore high standard deviations 

are likely the result of multicollinearity. Fortunately, multicollinearity does not present a 

                                                           
4 This can be readily seen by taking the derivative of yield with respect to rainfall and GDD, evaluating 
them at the mean of the weather variables, and examining the differences across tillage practices. It can also 
be seen through simple plotting of the estimated yield function with respect to rainfall and GDD.  



28 
 

serious challenge to the analysis as we are not interested in marginal effects but the 

overall predictive power of the model; which is not diminished by the presence of 

multicollinearity. Therefore, the objective of our analysis, in combination with 

knowledge of agronomic relationships, warrant inclusion of the entire set of predictors.  
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Table 3. Soybean Yield Function Regression Results 

Variable description Coefficient Standard 
Error P-Value 

Year 0.4 0.1 0.00 
No till dummy -58.0 29.3 0.05 
Chisel dummy -5.4 26.0 0.84 
Rotation dummy 4.5 1.2 0.00 
(No till dummy)*(Rotation dummy) 0.6 1.8 0.75 
(Chisel dummy)*(Rotation dummy) 0.8 1.7 0.65 
Precipitation April 1.3 1.5 0.39 
(Precipitation April)*(No till dummy) 0.39 1.93 0.84 
(Precipitation April)*(Chisel dummy) -0.5 1.7 0.78 
Precipitation April2 0.2 0.1 0.26 
(Precipitation April)2*(No till dummy) -0.1 0.2 0.76 
(Precipitation April)2*(Chisel dummy) 0.05 0.17 0.78 
GDD April -0.3 0.1 0.00 
(GDD April)*(No till dummy) 0.2 0.1 0.13 
(GDD April)*(Chisel dummy) 0.01 0.10 0.90 
GDD April2 0.001 0.000 0.00 
(GDD April)2*(No till dummy) -0.0003 0.0002 0.18 
(GDD April)2*(Chisel dummy) -0.00003 0.0002 0.89 
Precipitation May 1.5 1.3 0.24 
(Precipitation May)*(No till dummy) 2.4 1.6 0.14 
(Precipitation May)*(Chisel dummy) 1.0 1.5 0.51 
Precipitation May2 -0.1 0.1 0.29 
(Precipitation May)2*(No till dummy) -0.2 0.2 0.19 
(Precipitation May)2*(Chisel dummy) -0.1 0.2 0.50 
GDD May -0.2 0.1 0.00 
(GDD May)*(No till dummy) 0.2 0.1 0.16 
(GDD May)*(Chisel dummy) 0.004 0.09 0.96 
GDD May2 0.0003 0.00009 0.00 
(GDD May)2*(No till dummy) -0.0002 0.0001 0.20 
(GDD May)2*(Chisel dummy) -0.000001 0.0001 1.00 
Precipitation June-September 3.4 1.1 0.00 
Precipitation June-September2 -0.1 0.03 0.00 
GDD June-September -0.1 0.1 0.29 
GDD June-September2 0.00002 0.00002 0.26 
Stress DD June-September 0.02 0.02 0.49 
(Stress DD June-September)* 
(Precipitation June-September) -0.003 0.002 0.17 
Late May plant date 2.0 3.8 0.60 
Early May plant date 0.6 1.2 0.61 
Early June plant date -2.9 1.4 0.03 
Late June plant date -18.4 1.4 0.00 
Constant YES 

R^2 0.56   
# observations 234   
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The inclusion of both a rotation dummy alone (as expected, rotation increases 

yields) and rotation-tillage interaction terms reveals that benefits of rotation are largest 

when corn is grown under less intensive tillage practices. This is due to the fact that 

continuous corn generates a substantial amount of residue that keeps the soil cool and wet 

in the beginning of the season, creating less favorable growing conditions. Therefore, 

rotating corn with soybeans reduces residue cover and generates larger yield gains under 

less intensive tillage. Rotating soybeans with corn increases residue coverage relative to 

continuous soybeans and, in combination with conservation tillage, results in lower yield 

gains from the conservation tillage and rotation interaction term. 

 

4.2 Economics of Conservation Tillage 

To obtain probability distributions of the relative profitability of alternative tillage 

practices, we proceed in three steps. First, we take random draws from probability 

distributions of the weather variables (April GDD, May GDD, April precipitation, and 

May precipitation).5 Second, we use these random draws to estimate the difference in 

yields across tillage practices. Third, these predicted yield differentials are combined with 

prices and the respective operating cost budgets to calculate differences in profits 

between tillage practices. Recall that operating costs,  in equation (1), vary by tillage 

practice and crop introducing a difference in profitability, in addition to differences in 

yields. We conduct 5,000 iterations of this procedure and compute a probability 

                                                            
5 Since we are modeling the difference (across tillage practices) in profits under the same set of prices and 
weather observations, all the terms of the yield functions that have the same coefficients across tillage 
practices for a given crop drop out of the relative profitability expression. This includes June-September 
weather and, thus, only random observations of beginning-of-season weather are drawn. 
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distribution of the relative profitability of alternative tillage practices. Three pair-wise 

comparisons of tillage practices are conducted: no till vs. moldboard plow, no till vs. 

chisel, and chisel vs. moldboard plow.  

Combinations of 3 pair-wise comparisons and 4 crop scenarios (continuous corn, 

corn in rotation, soybean in rotation, and continuous soybean) result in 12 relative 

profitability distributions. We present results for all of these combinations except 

continuous soybeans due to low prevalence of this system in the U.S. Corn Belt in 

general, and Indiana in particular. The distributions are plotted in Figures 2-10. Each 

pair-wise comparison for each crop scenario was conducted under three climate regimes: 

current, mid-century low GHG emissions (RCP2.6), and mid-century high GHG 

emissions (RCP8.5). Therefore, each Figure displays three CDF curves comparing the 

effect of climate change on the profitability of conservation tillage.6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                            
6 It is worth noting that prediction of yields under future climate do not imply an out-of-sample prediction 
exercise. This is because most of the random draws of weather are not outside of the range of historical 
weather. Rather, the frequency with which weather observations occur within that range varies relative to 
historical occurrences. 
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Figure A. No till returns versus moldboard plow 

 
 

 
Figure B. No till returns versus chisel 

 
 

  
Figure C. Chisel returns versus moldboard plow 

 
Figure 2. Comparison of Figures A, B, and C for rotation corn 
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Under current weather patterns a risk-neutral farmer growing corn in rotation 

would find chisel plowing more economically attractive than no till (chisel is nearly 62% 

likely to result in higher profit) and moldboard plow (chisel is 98% likely to result in 

higher profit), as indicated by Figures 2.B and 2.C. The farmer would also find no till 

more economically attractive than moldboard plow (moldboard plow is only about 40% 

likely to result in higher profit), as shown in Figure 2.A. Under different climate change 

scenarios a risk-neutral farmer growing corn in rotation will still prefer no till to 

moldboard plow (Figure 2.A) and chisel till to moldboard plow (Figure 2.C).  

Climate change enhances the economics of no till relative to chisel till to the point 

of possibly inducing changes in behavior of a risk neutral farmer. Projected changes in 

climatic conditions reduce the probability that no till will result in lower profits than 

chisel by over half. Specifically, the probability that no till will result in higher profits 

than chisel till increases from about 38% with current climatic conditions to 78% in a 

climate change with low emissions scenario and nearly 85% in a high emissions scenario 

(Figure 2.B). These changes would likely induce a risk neutral farmer growing corn in 

rotation to switch from chisel till (the preferred practice under the current climate) to no 

till by mid-century. 

Projections of future climatic patterns anticipate substantial increases in 

beginning-of-season GDD (Figures B.2 and B.4). In turn, our results indicate that higher 

GDD would favor corn yields under conservation tillage (Table 2). Therefore, the 

improvement in the economics of conservation tillage revealed in Figure 2.B is mostly 

driven by higher temperatures associated with climate change. While climate change is 

also expected to result in more rainfall in April (and mostly unchanged rainfall patterns in 
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May as revealed by Figure B.3), which would harm performance under conservation 

tillage, the projected change is not quantitatively large enough to offset the warming 

effect.  

In contrast to a farmer growing corn in rotation, a risk-neutral farmer growing 

continuous corn would find moldboard plowing more economically attractive than no till 

(moldboard plowing is 100% likely to result in higher profit) and chisel till (moldboard 

plowing is 86% likely to result in higher profit), as revealed by Figures 3.A and 3.C 

respectively. She would also find chisel till more economically attractive than no till 

(chisel till is 100% likely to result in higher profit), as indicated by Figure 3.B. While 

projected changes in climatic conditions improve the economics of less intensive tillage 

practices relative to the current climate, none of these changes are large enough to 

warrant a change in behavior by a risk neutral farmer. In other words, moldboard plow is 

still more than 50% likely to result in higher profits than any form of conservation tillage 

in continuous corn systems (Figures 3.A-3.C).  
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Figure A. No till returns versus moldboard plow 

 
 

 
Figure B. No till returns versus chisel tillage 

 
 

 
Figure C. Chisel returns versus moldboard plow 

 
 

Figure 3. Comparison of Figures A,B,and C for continuous corn 
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Results also indicate that a farmer growing soybeans in rotation would prefer less 

intensive tillage practices (Figures 4.A – 4.C). In fact, no till will almost certainly result 

in higher profits than moldboard plow (Figure 4.A) and chisel till (Figure 4.B). Projected 

climate change is unlikely to change this; i.e. no till performs better than other practices 

under current and projected climate albeit a slight improvement in the economics of more 

intensive tillage practices.  
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Figure A. No till returns versus moldboard plow 
 

 
Figure B. No till returns versus chisel tillage 

 
 

 
Figure C. Chisel returns versus moldboard plow 

 
Figure 4. Comparison of Figures A,B, and C for rotation soybeans 

42.4% 57.6%
25.7% 74.3%
43.0% 57.0%

$0.00 $75.00

No till profit ($ per acre) - Moldboard plow ($ per acre)

0.0

0.2

0.4

0.6

0.8

1.0

Current Climate

Minimum -$157
Maximum $50
Mean $3
Std Dev $27
Values 5000

RCP2.6

Minimum -$260
Maximum $50
Mean $12
Std Dev $30
Values 5000

RCP8.5

Minimum -$328
Maximum $49
Mean -$5
Std Dev $42
Values 5000

29.0% 71.0%
18.8% 81.2%
36.4% 63.6%

$0.00 $75.00

No till profit ($ per acre) - Chisel tillage profit ($ per acre)

0.0

0.2

0.4

0.6

0.8

1.0

Current Climate

Minimum -$114
Maximum $54
Mean $12
Std Dev $23
Values 5000

RCP2.6

Minimum -$226
Maximum $54
Mean $19
Std Dev $27
Values 5000

RCP8.5

Minimum -$273
Maximum $54
Mean $3
Std Dev $39
Values 5000

94.4% 5.6%
92.0% 8.0%
89.5% 10.5%

$0.00 $75.00

-$
10

0

-$
65

-$
30 $5 $4
0

$7
5

Chisel tillage ($ per acre) - Moldboard plow ($ per acre)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Current Climate

Minimum -$64
Maximum $23
Mean -$9
Std Dev $7
Values 5000

RCP2.6

Minimum -$94
Maximum $11
Mean -$7
Std Dev $6
Values 5000

RCP8.5

Minimum -$75
Maximum $13
Mean -$8
Std Dev $8
Values 5000



38 
 

Our results for corn under current climate are only partially consistent with those 

of previous studies. Klemme (1985) using data from Indiana also found that it was more 

profitable to produce continuous corn under intensive tillage practices, but, in contrast 

with our analysis, found intensive tillage to be superior when corn was grown in rotation. 

Yiridoe et al. (2000) found that conventional tillage dominates no till and chisel plow 

tillage in Ontario, while Weersink (1992a) and Archer and Reicosky (2009) found no till 

to be the dominant practice in a wide range of situations and assumptions. Our results 

differ from these in two key ways. First, although we also find that conventional tillage 

dominates other practices under continuous corn, our study finds that, under agro-

climatic conditions in our experiment, less intensive practices are better suited for corn 

and soybeans grown in rotation. Second, our analysis reveals that projected changes in 

climate are expected to favor the less intensive practices.  

 

4.3 Subsidies Supporting Conservation Tillage 

The previous section examined the economics of alternative tillage practices in 

the absence of public policies supporting conservation tillage. In other words, the 

profitability of one form of tillage relative to another, 𝑋𝑋 = 𝑃𝑃𝑘𝑘�𝑌𝑌𝑘𝑘,𝑗𝑗
𝑚𝑚 − 𝑌𝑌𝑘𝑘,𝑗𝑗

𝑛𝑛 |𝑤𝑤� +

(𝑂𝑂𝑘𝑘𝑛𝑛 − 𝑂𝑂𝑘𝑘𝑚𝑚) + 𝑞𝑞𝑘𝑘,𝑗𝑗
𝑚𝑚 , was evaluated when 𝑞𝑞𝑘𝑘,𝑗𝑗

𝑚𝑚 = 0. Under that assumption, our results 

show that a risk-neutral farmer growing soybeans will prefer no till and therefore not 

require a subsidy to adopt conservation tillage.  

Our Monte Carlo analysis revealed that a risk-neutral farmer growing corn in 

rotation would prefer chisel plow tillage and a risk-neutral farmer growing continuous 

corn would prefer moldboard plow. Therefore government intervention seems warranted 
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in these cases if less intensive tillage practices are preferred from a social point of view 

(e.g. if water quality or climate regulation benefits are large enough). But the analysis 

also showed that climate change would favor less intensive practices, possibly reducing 

the subsidy required to induce socially desired behavioral changes. 

 We endogenize the subsidy in this section, and solve for the government payment 

that would make a risk neutral farmer indifferent between adopting a less intensive and a 

more intensive tillage practice. In particular, when corn is grown in rotation with 

soybeans, we calculate the subsidy that makes no till 50% likely to result in equal or 

higher profits than chisel till (the optimal choice without subsidy). In the case of 

continuous corn, we calculate the subsidy that will make chisel plow 50% likely to result 

in equal or higher profits than moldboard plow (the optimal choice without subsidy). We 

also calculate the subsidy that will make no till 50% likely to result in equal or higher 

profits than moldboard plow. Each of these subsidies are calculated under alternative 

climatic regimes.  

The magnitude of subsidy payments can be contextualized by comparing them 

with total expected revenue per acre, as well as current EQIP payments which are geared 

towards incentivizing conservation tillage adoption. Using average yield data from the 

experimental plots and the same crop prices assumed in our analysis, we calculate that 

total revenue is expected to be approximately $620/acre for corn and $465/acre for 

soybeans. EQIP payments for Indiana are $15/acre for no till and $4/acre for mulch till7 

                                                           
7 The EQIP program implements flat payments per acre. They are calculated to be an average of 75% of the 
estimated costs to implement a conservation practice across an economic region. Rates are then adjusted for 
differences in state labor and materials costs. Indiana is located within the Corn Belt region along with five 
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(National Resources Conservation Services, 2016c). Mulch tillage is a form of 

conservation tillage that is comparable to the chisel plow in this experiment. 

We find that a $7/acre subsidy for no till corn grown in rotation will make this 

practice outperform chisel till 50% of the time. This reveals that payments currently 

offered by EQIP should go a long way in incentivizing adoption of no till. It also reveals 

that such payments are unlikely to affect farmers’ general financial situation, as they 

would only amount to about 1.5% of total expected revenue. Under continuous corn, the 

subsidy that would make no till better than chisel plow 50% of the time is $50/acre, while 

the subsidy that would make chisel preferable to moldboard plow 50% of the time is 

$7/acre. Therefore current EQIP payments would be insufficient to trigger adoption of 

conservation tillage under conditions prevalent in our experiments. Our results 

underscore the importance of considering the cropping system when developing and 

evaluating policies to incentivize conservation tillage. Losses in yield with conservation 

tillage (and, in particular, no till) are significant in a continuous corn system, substantially 

increasing the subsidy required to make it breakeven with more intensive practices.  

Subsidies that make conservation tillage competitive with moldboard plow will be 

drastically reduced by changes in weather patterns associated with climate change. These 

changes are demonstrated in Table 4. When corn is planted in rotation, climate change 

will reduce the subsidy that makes no till competitive with chisel from $7/acre to $0/acre 

in a moderate emissions scenario and in a higher emissions scenario. When corn is 

                                                           
other States. The estimated cost to implement no till in the region is $20, which results in a payment of $15 
(75% of $20). 
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planted continuously, the subsidy would decrease from $50/acre to $28/acre under 

moderate emissions, and to $22/acre under high emissions. The subsidy that would make 

chisel plow preferable to moldboard plow 50% of the time decreases from $7/acre to 

around $5/acre in the moderate and $1/acre in the high emissions scenarios.  

 
Table 4. Per acre subsidy projections for conservation tillage under  

alternative climate regimes 
(Current climate RCP2.6 RCP8.5) 

    

 No till over  
chisel 

No till over  
moldboard plow 

Chisel over  
moldboard plow 

Rotation corn $7 $0 $0 $0 $0 $0 $0 $0 $0 
Continuous corn $50 $28 $22 $58 $33 $22 $7 $5 $1 
Rotation soybean $0 $0 $0 $0 $0 $0 n/a* 

 
*The moldboard plow does dominate chisel under rotation soybeans however it is assumed that a risk 
neutral farmer would prefer the least intensive form of tillage (no till) so no subsidy is required. 
  

These results underscore the fact that, while current payments offered by EQIP may 

be insufficient to trigger adoption of conservation tillage in continuous corn systems, they 

may in fact induce behavioral changes as weather patterns evolve due to climate change. 

In other words, climate change may substantially increase the effectiveness of the EQIP 

program, especially in continuous corn systems. The government can then maintain current 

levels of payment and induce greater adoption of conservation tillage, or reduce payments 

and achieve past levels of adoption at a lower cost. 
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CHAPTER 5: CONCLUSIONS 

 

This study uses data from long-term experimental plots on dark prairie soils to 

examine the relative (stochastic) profitability of alternative tillage practices. We find that, 

under current weather patterns and a corn-soybean rotation, a farmer would already have 

the incentive to adopt some form of conservation tillage. Furthermore, adoption of chisel 

plow would be economically preferable to no till. No till is preferred to both chisel plow 

tillage and moldboard plow under soybeans (grown in rotation or continuously). On the 

other hand, moldboard plow would be preferred by a risk-neutral profit maximizing 

farmer growing continuous corn.  

Conservation tillage is more attractive for corn in rotation and soybeans in part 

due to the fact that the yield penalty to adopt conservation tillage under these crop 

scenarios is small, and in part because less intensive tillage implies cost savings. These 

results confirm the importance of considering crop rotation systems in developing 

conservation tillage policies. However, we note that results may only be applicable to 

areas with similar soil types and agro-climatic conditions, and with the appropriate data, 

this study could be easily replicated for other areas.  

Most importantly, our results show that changes in weather patterns projected by 

2030-2069 enhance the economics of conservation tillage relative to moldboard plow. 

Consequently, changes in weather patterns associated with climate change are expected 
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to enhance the alignment between private incentives (i.e. profits) and social objectives 

(i.e. reduction of runoff). Therefore, our analysis points to an offsetting, rather than a 

reinforcing, relationship between market failures. In particular, all else constant, as 

consequences of one market failure intensify (i.e. as climate change unfolds), water 

pollution may be alleviated by an increase in adoption of conservation tillage. We note, 

however, that climate projections considered here do not take into account acute and 

extreme events which may occur in a single day or over a period of a few consecutive 

days, which may increase in frequency and harm crop development (Smith, 2011).  

Our analysis faces limitations. In the long term tillage experiment, planting in all 

plots was performed at the same time, which was when the soil was sufficiently dry to 

successfully plant the conservation tillage plots. This tends to favor conservation tillage 

relative to moldboard plow. This is because intensive tillage allows the soil to dry up 

faster which typically provides an opportunity to plant earlier; an opportunity that was 

not exploited in these experiments. 

Another limitation of our analysis is the inability to incorporate projected 

technical progress. There are unforeseen improvements to no till planting technologies 

that could enhance the performance of crops under conservation tillage. Moreover, 

general increases in yield due to genetic and management improvements will likely result 

in larger amounts of crop residue. Additional residue can have a negative impact on crop 

development for conservation tillage. However, this negative impact may be partially 

offset if decomposition of crop residue speeds up under higher temperatures which are 

expected in the future.  
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In this study it is assumed that the quantity and cost of all inputs remain constant. 

However fluctuations in fuel, fertilizer, and chemical costs are likely to impact our 

results. Climate will impact nutrient content and nitrogen leaching in the soil (Randall 

and Mulla, 2001), possibly affecting fertilizer application. Higher cost of fuel and 

chemicals in the future associated with policies curbing emissions (which are implicit in 

our GHG concentration scenarios) will likely favor conservation tillage. Increases in such 

costs are expected to be higher under more aggressive polices, such as the one underlying 

the RCP2.6 scenario. Finally, different tillage systems sequester carbon at different rates 

(Al-Kaisi and Yin, 2005; Omonode et al., 2007; West and Post, 2002) which means that 

climate policies that adjust subsidies/taxes to sequestration potential will likely affect the 

relative economics of these systems. Overcoming some of the limitations of our analysis 

opens promising avenues for future research. 
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Appendix A. Budgets of Tillage Operations 

Full quantification of the relative profitability of competing tillage practices (

, , | , ) requires (in addition to yield functions, 

probability distributions of weather variables, and the subsidy , ) a quantification of 

crop prices , and differences in operating costs . This appendix describes 

the calculation of these parameters. 

Crop prices were taken from the 2015 Purdue Crop Cost and Return Guide 

(Purdue University Extension, 2015). Price of corn is estimated at $3.50 per bushel and 

the price for soybeans is $9.10 bushels per acre. The 2014 Long Term Tillage Survey 

report discusses the management practices and provides details of the equipment, 

herbicides, and fertilizers used on each experimental plot in each year. We used Michigan 

State’s per acre custom rates for machinery and associated machinery operational costs.8 

These costs are considered to be an estimate of the ownership and operation of 

machinery. These are broken down on a per acre basis and include tractor, fuel cost (at 

$3.60 per gallon), lubricants, repairs, maintenance, labor and overhead costs including 

depreciation. Herbicide costs were obtained from Crop Production Services (Padgett, 

personal communication, September 8, 2015). The only other costs that varied by tillage 

practice were the costs of herbicides. A detailed breakdown of relative expenses as well 

8 These rates include tractor cost, fuel cost, lubricants, repairs, maintenance, labor and overhead costs 
including depreciation. This could be considered as an estimate of the ownership cost and operation of this 
machine on a per acre basis. These rates were found using actual farm survey data and are approximations 
of what would be used on the average corn and soybean operation in Indiana. Rates can vary with different 
assumptions about exact equipment make and model and other financial calculations like use of equipment, 
depreciation and interest. 
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as descriptions of the machinery used in the Purdue University experimental plots are 

outlined in Table A.1.  

The expense breakdown in Table A.1 shows cost savings attained with 

conservation tillage practices. Both reduced tillage practices result in savings on field 

work; No till results in higher herbicide expenditures. Table A.1 shows that chisel till 

results in savings relative to moldboard plow for both corn and soybeans ( = 

$12.24 and = $12.24). In addition, no till results in savings relative to 

moldboard plow in both corn and soybeans ( = $23.23 and = 

$27.29). Finally, no till results in savings relative to chisel till in both corn and soybeans 

( = $10.99 and = $15.05). Management practices that differ by 

tillage alternative remained consistent over time, avoiding the risk of attributing yield 

differences to tillage practices instead of other confounding factors. 
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Table A.1. Breakdown of expenses that vary by tillage practices* 

Equipment used in Purdue 
tillage experiment 

Moldboard plow baseline Chisel plow baseline 
Chisel 
corn 

Chisel 
soybean 

No till 
corn 

No till 
soybean 

No till 
corn 

No till 
soybean 

Field operations 
expenditures 

DMI 7-shank coulter-chisel 
plow equipped with 4-
inch twisted chisel 
points on 15-inch 
centers and a Danish-
tine sweep leveling bar 

(11.14) (11.14) - - - - 

90-foot boom sprayer or a 
30-foot 3-point hitch 
mounted sprayer 

- - (3.70) - (3.70) - 

Moldboard plow savings 23.38 23.38 23.38 23.38 
Chisel plow savings 11.14 11.14 
Field cultivator savings - - 11.75 11.75 11.75 11.75 
Subtotal field operations 

expenditures 12.24 12.24 31.43 35.13 19.19 22.89 

Increased chemical expenditures 
Roundup 25 oz/acre for corn 

and 23 oz/acre for 
soybeans 

- - (4.54) (4.18) (4.54) (4.18) 

2, 4-D ester 1 pt/acre - - (3.25) (3.25) (3.25) (3.25) 
Ammonium sulfate (8 

lbs/100 gallons water) - - (0.41) (0.41) (0.41) (0.41) 

Subtotal increased chemical 
expenditures - - (8.20) - (8.20) - 

Total 𝑂𝑂𝑘𝑘𝑚𝑚−  𝑂𝑂𝑘𝑘𝑛𝑛 $ 12.24 $ 12.24 $ 23.23 $27.29 $ 10.99 $ 15.05 

* Values reported in the table represent cost differences between tillage practices.



55 
 

Appendix B. Probability distributions of weather under current and projected climate 

Figures B.1 - B.4 below display probability density functions of beginning-of-

season rainfall and GDD under current and projected climate regimes. Two scenarios of 

projected climate are considered: 1) low emissions (RCP2.6), and 2) high emissions 

(RCP8.5). The solid line probability distribution is drawn from 5,000 iterations of 1975-

2014 (excluding 2011) monthly weather data. Similarly, the dashed and dotted lines come 

from 5,000 draws of the monthly projected climate change data collected for 2030-2069 

under the RCP2.6 and RCP8.5 scenarios.    
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Figure B.1. Probability distribution of April precipitation- current and projected climate  

 
 
 

   
Figure B.2. Probability distribution function of April GDD- current and projected climate  
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Figure B.3. Probability distribution of May precipitation- current and projected climate 

 
 
 

 
Figure B.4. Probability distribution of May GDD- current and projected climate  
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Appendix C. Description of Climate Models 

Climate models used in this study (described in Table C.1 below) represent a 

number of best-effort attempts to simulate the climate system. Multiple models are used 

in order to capture the wide range of available predictions. Under the CMIP5 framework, 

a “core” set of specifications (e.g. location, greenhouse gas emissions scenario) is 

provided and each modeling center or group contributing to CMIP5 is required to 

generate a complete set of “core” simulations. Random draws are then pulled together to 

generate a multimodel dataset for analysis (Taylor et al., 2012). The multimodel 

framework is intended to account for poorly understood feedbacks associated with the 

carbon cycle and with clouds, among other things. Taylor et al. (2012) provides further 

description on the CMIP5 experiment.
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Table C.1. CMIP5 Models 
Modeling Center (or Group) WCRP CMIP5 

Climate Model ID 
RCP2.6 

runs 
RCP8.5 

runs 
Beijing Climate Center, China Meteorological 

Administration BCC-CSM1.1 1 1 

Canadian Centre for Climate Modelling and 
Analysis BCC-CSM1.1(m) 1-5 1-5 

National Center for Atmospheric Research CCSM4 1-2 1-2 

Commonwealth Scientific and Industrial 
Research Organization, Queensland Climate 

Change Centre of Excellence 
CSIRO-Mk3.6.0 1-10 1-10 

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3 1 1 

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2G 1 1 

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2M 1 1 
Institut Pierre-Simon Laplace IPSL-CM5A-LR 1-3 1-3 
Institut Pierre-Simon Laplace IPSL-CM5A-MR 1 1 

Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and National 
Institute for Environmental Studies 

MIROC-ESM 1 1 

Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and National 
Institute for Environmental Studies 

MIROC-ESM-
CHEM 1 1 

Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology 

MIROC5 1-3 1-3 

Max-Planck-Institut für Meteorologie (Max 
Planck Institute for Meteorology) MPI-ESM-LR 1-3 1-3 

Max-Planck-Institut für Meteorologie (Max 
Planck Institute for Meteorology) MPI-ESM-MR 1 1 

Meteorological Research Institute MRI-CGCM3 1 1 
Norwegian Climate Centre NorESM1-M 1 1 
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Appendix D. Correlation among Predictors 

We run a correlation test between linear, quadratic and interaction terms involving 

conservation tillage dummies. This analysis shows a substantial degree of correlation 

between predictors. For illustration purposes, we portray the case of no till in Table D.1, 

although a similar patterns is observed in the case of chisel tillage. Table D.1 reveals that 

interaction terms are highly correlated with their individual components. Moreover 

quadratic and linear weather variables are also highly correlated. 
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Table D.1. Matrix of correlation coefficients 

 No till Precipitation 
April 

Precipitation 
April*no till 

Precipitation 
April squared 

Precipitation 
April 

squared*no till 
No till 1     

Precipitation 
April 0 1    

Precipitation 
April*no till 0.85 0.35 1   
Precipitation 

April squared 0 0.97 0.30 1  
Precipitation April 

squared*no till 0.60 0.44 0.92 0.46 1 
 
 

As a robustness check, we re-estimated the model with a subset of predictors. In 

particular, the quadratic and singular terms were dropped. Such exercise resulted in 

substantial changes to estimated coefficients of interaction terms, revealing a high 

instability of estimates to the choice of model. This is another symptom of 

multicollinearity. consequently, and given that our objective is to maximize the predictive 

power of the model, it is preferable to include the full set of predictors even at the risk of 

increasing multicollinearity (see Chapter 3 in Wooldridge, 2015 for a discussion). 
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Table D.1. Matrix of correlation coefficients 
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Precipitation 
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Precipitation April 
squared*no till 0.60 0.44 0.92 0.46 1 
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