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ABSTRACT 

Jeong, Jun Young. M.S.E.C.E., Purdue University, August 2016. Analysis of Structural 
and Functional Brain Networks. Major Professor: Zhongming Liu. 
 
 
The brain is a representative example of a network. It consists of numerous spatially 

distributed regions that continuously exchange information through structural connections. 

In the past decade, an increasing number of studies have explored the brain network in both 

structural and functional aspects; they have begun to decipher complex brain wirings, as 

well as elucidate how the rich functionality emerges from this architecture. Based upon 

previous studies, this thesis addresses three critical gaps in the field. (I) Although it is 

known that the community structures of brain network are spatially overlapping, 

conventional studies have focused on grouping brain regions into communities such that 

each region belongs to only one community. Therefore, a recent “link community” concept 

was employed to disentangle those overlapping architectures. (II) Spatial independent 

component analysis (sICA) and k-means clustering are two representative data-driven 

algorithms used to analyze functional networks.  However, it is still unclear how these two 

methods compare to each other in terms of their theoretical basis and biological relevance. 

Hence, the relationship between these two methods were investigated. (III) Despite the 

multi-scale functional organization of the brain, previous studies have primarily examined 

the large-scale networks of the entire brain. Complex neural activity patterns in relatively 

smaller spatial scales have been poorly understood.  Therefore, the fine-scale 

spatiotemporal patterns within visual cortex were explored. The distinguishing results 

obtained in this study may provide new insights regarding the brain's organization, as well 

as a better understanding of mathematical and statistical tools for functional and structural 

network analysis.  
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1. INTRODUCTION 

The human brain is a network. It consists of a large number of spatially segregated 

neural regions that each performs a unique function, and continuously interact with each 

other to support the brain's rich functionality, including perception, cognition, and action. 

As such, they form a complex integrative and segregated network architecture in which 

neuronal information is consistently processed and transported between structurally- and 

functionally- linked brain regions. These are defined as structural and functional 

connectivity, respectively.              

 Structural connectivity indicates physical or structural (synaptic) connections 

linking sets of neural elements. The major pattern of structural connections is stable for 

longer time-scale, but slight change may occur due to plasticity. In animal models, invasive 

tracing methods have been widely used to directly obtain axonal connections [1-3]. In 

contrast, for humans, diffusion weighted imaging techniques, such as diffusion tensor 

imaging (DTI), are able to non-invasively characterize white matter projections linking 

cortical and subcortical regions [4-5]. 

 Previously, an increasing number of studies have analyzed the structural 

connectivity datasets of both human and non-human primates by primarily using graph 

theory, which describes the structural brain network as a graph [6-9], composed of nodes 

denoting neural elements that are interconnected by edges indicating physical connections. 

As a result, a fundamental insight of the topological properties of the complex structural 

network have been revealed, including the small-world property [10], power-law degree 

distribution [6], modularity [11], hierarchy [12], rich-club distribution with a highly 

connected hub regions [13,14], etc.   

 In contrast, with structural connectivity, functional connectivity is more of a 

statistical concept. Since functional connectivity is highly time-dependent, often 
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continuously changing within short time-scale according to different sensory stimuli or 

task contexts, the main analysis of functional connectivity has primarily focused on 

identifying and characterizing representative functional networks from this dynamically 

changing neural information obtained with a variety of recording techniques, including 

electroencephalography (EEG), magnetoencephalography (MEG) and functional MRI 

(fMRI).  

 Specifically, the functional networks can be inferred by focusing on either the 

temporal or spatial characteristics of neural information obtained with fore-mentioned 

neuroimaging techniques. As an example in the former category, cross-correlations of 

neurophysiological timeseries can be calculated to measure the degree of functional 

interactions between different brain regions [15-17]. In contrast, methods with the latter 

aim to infer functional networks by examining the spatial distribution of the images of 

neural activation at different time points. To this end, broad spectra of multivariate 

statistical algorithms have been employed [18-21]. For instance, spatial independent 

component analysis (sICA) has been widely applied to fMRI and MEG datasets to produce 

a set of spatially independent network patterns [18, 22-24]. As another example, k-means 

clustering has been utilized to group instantaneous fMRI activity patterns into so-called 

co-activation patterns [20].     

 By combining various neuroimaging modalities with distinct mathematical and 

statistical algorithms, the network analysis in functional aspect has revealed many 

interesting findings about the functional connections between specific brain regions, as 

well as the overall organization of functional communication in the brain network. A 

number of functional networks in charge of distinct brain functions have been identified, 

including visual, attention, and motor network, etc. [15, 19]. These networks are highly 

reproducible among healthy individuals, different experimental sessions, and even in non-

human primates [25, 26]. In addition, they are also commonly observed in the state with 

and without any explicit task or sensory stimulation [22, 27]. Moreover, these network 

patterns have also been applied to a clinical context, serving as an indicator of different 

neurodegenerative diseases such as Alzheimer’s disease or Traumatic Brain Injury (TBI) 

[28, 29].  
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 In the past decade, many prior theoretical and empirical studies have explored the 

brain network in both structural and functional perspectives. As a result, these long-term 

efforts have begun to decipher extremely complex brain wirings, as well as elucidate how 

rich brain’s functionality emerges from this architecture. Based upon previous brain 

network studies, this thesis try to address three critical questions in the field. The brief 

summary of motivations and the problem-solving process of each question is explained 

below.   

 In chapter 2, the main emphasis was placed on brain network analysis with graph 

theory, especially regarding community structures. Detecting and characterizing these 

structures is particularly important, since this can reveal groups of structurally and 

functionally related regions, which support numerous brain’s functions. [9, 14]. However, 

conventional network studies have primarily focused on grouping brain regions into 

communities such that each region belongs to only one community and thus cannot be used 

to reveal overlapping structures [8, 11, 12, 30]. In order to bypass this problem, a recent 

"link community" concept [31] was applied to various structural and functional network 

datasets of human and non-human primates.                                                                                                 

 In chapter 3, two representative multivariate statistical algorithms of analyzing 

resting-state fMRI: spatial independent component analysis (sICA) and k-means clustering 

were thoroughly explored. Spatial ICA has been widely used to produce spatially 

independent resting-state networks [18, 23, 24]. Recently, k-means clustering has been 

employed to group instantaneous fMRI activity patterns into the so-called co-activation 

patterns (CAPs) [20]. Despite their different naming and interpretation, it is still unclear 

how these two methods were compared to each other in terms of their theoretical basis and 

biological relevance. To address these questions, the resting-state networks extracted by 

either spatial ICA or k-means clustering were compared against the task-based networks 

obtained by applying these two methods to a large set of task activation maps.       

In chapter 4, the complex spontaneous brain activity patterns occurred in visual 

cortex were explored. Despite the multi-scale functional organization of the brain [32, 33], 

most of previous network studies have primarily focused on the whole-brain scale for 

mapping large-scale functional networks [18, 20, 21, 22, 25]. Thus, the complex neural 
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activity patterns in relatively smaller spatial scales remains poorly known and rarely 

explored. Towards filling this gap, the spatiotemporal patterns of spontaneous activity 

within visual cortex were evaluated in three different aspects: spatial organization, inter-

subject reproducibility, and functional relevance to naturalistic visual perception. 
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2. LINK COMMUNITIES REVEAL OVERLAPPING STRUCTURAL 

AND FUNCTIONAL NETWORKS 

2.1 Motivation  
 

In order to account for the rich variety of human brain functions, individual brain 

regions are engaged in multiple neural processes that emerge from extremely entangled 

structural or functional brain networks. The wiring diagram of complex neural architecture, 

defined as the Connectome [34], has been primarily investigated by employing a graph-

theoretical approach. The graph theory approach adopts a formal network description in 

which neural regions are represented by nodes, and their anatomical connections or 

functional associations are represented by edges [7-9, 13, 35]. Consequently, this approach 

has provided deep insights into the large-scale topological features of the brain, including 

the small-world property [10], truncated power-law degree distribution [6], and high 

efficiency with low-wiring cost [13, 14].  

An important feature of the brain connectome that has received a significant 

attention is the detection and characterization of community structure, which represents 

group of densely interconnected neural regions, with only sparser connections between 

different groups [9, 12, 14]. Examining this structure is particularly important, since it 

provides deeper understanding of brain architecture by identifying group of structurally 

and functionally interrelated neural regions that plays a distinct biological role to support 

brain’s complex behaviors, including perception, action and cognition. According to 

previous studies, the presence of community structures was demonstrated in structural and 

functional brain networks of both human and non-human primate models [8, 11, 36]. In 
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addition, it was inferred that these structures may play a central role in supporting efficient 

information processing occurred in the brain [14]. 

By this time, broad spectrum of methodologies and algorithms have been applied 

to objectively detect community structures of brain network [8, 11, 12, 30]. However, 

conventional network studies have entirely focused on grouping brain regions into 

communities such a way that each region belongs to only one community and thus cannot 

be used to reveal overlapping networks. Compared with the conventional view on 

community as a group of nodes, the community structure of complex networks can also be 

revealed by clustering links into the so-called “link communities” [31]. This edge-centric 

perspective is potentially more powerful than the traditional node-centric perspective, since 

this can identify the nodes, which simultaneously belong to multiple communities. A 

number of previous studies using resting-state fMRI have already reported that brain 

network nodes are likely to belong to multiple networks [19-21]. Therefore, the link 

community concept might be a better choice to disentangle complex brain architecture.     

In this study, the applicability of the link community concept to the brain network 

was explored by using different structural and functional network dataset of both human 

and mammalians. As a result, it was demonstrated that brain networks displayed rich and 

diverse link community structures, which were spatially overlapping at multiple brain 

regions. To provide possible biological interpretation of the identified results, the quality 

of link community was first evaluated by examining the functional similarity of brain 

regions with same community membership. Then, as a next step, whether the brain regions’ 

involvement to different link communities was consistent with the function of those 

specific regions was verified. To this end, relevant literatures was thoroughly reviewed.  

2.2 Materials and Methods 

2.2.1 About the link community algorithm 

The link community algorithm is summarized as follows:  

1. First, calculate the link similarity between all connected pairs of links sharing a 

common node (also defined as keystone node in literature). The formula for calculating the 
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link similarity is defined differently for binary and weighted network datasets. In case of 

the binarized networks, link similarity S is defined based on the Jaccard index [37]:    

 
For the link pairs 	and  that share a common node k, the link similarity S is defined 

as:  

																																																								 ,
| ∩ |
| ∩ |

																																											 2.1  

where n+(i) is the set of node i itself and its neighbors. 

In case of the weighted, directed, or signed networks, the above Jaccard index formula is 

generalized to the Tanimoto coefficient [38] which is described as follows:  

Consider a vector ai = ( , … ,  with 

																																																										 	
1

∈

																																										 2.2  

where wij  is the connection strength on edge , n(i) = {j|wij > 0} is the set of all neighbors 

of node i, ki  = |n(i)| is the total number of neighbors, and δ 1 if i = j and zero otherwise. 

Then, the similarity between edges eik and ejk becomes:  

																																																						 ,
∙

| | ∙
																																			 2.3  

       2. After the link similarity is calculated between all pairs of links sharing a common 

node, the single-linkage (average-linkage or complete-linkage can be other options) 

hierarchical clustering algorithm is utilized to discover hierarchical link community 

structures. Initially, each link belongs to its own community; then at each step, the pair of 

links with the largest similarity are chosen, and their respective communities are merged 

into one. The following process is repeated until all the links become members of a single 

cluster. The process of merging steps stated previously is also simultaneously recorded in 

a link dendrogram, which contains all the information about the hierarchical link 

community organization.    

3. In order to discover the most meaningful link communities from the link 

dendrogram structure obtained at previous step, it is necessary to determine the partition 

point. To this end, the link community algorithm employs an objective function called 
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“partition density”, D which is defined as formula (2.5). The partition density essentially 

measures how “clique-ish” or “tree-ish” each link community is. For a network with M 

links, , … ,  is a partition of the links into C communities. Subset  has | | 

links and ⋃ ,
∈

  nodes. Then, they can be used to define  

																																																										
1

1 /2 	 1
																																				 2.4  

This is  normalized by the minimum and maximum numbers of links possible between 

 nodes. The partition density, D, is the average of  weighted by the fraction of present 

links:  

																																																										 	
1

2 1 		
																																				 2.5  

MATLAB implementation for the above link community algorithm is provided in the 

Appendix.  

2.2.2 Structural and functional network datasets information 

This section will briefly discuss the structural and functional network datasets utilized 

throughout this work, including which imaging modalities were used to obtain structural 

or functional information and how the nodes and their interconnections were defined. In 

this study, four structural and one functional network datasets were used. The structural 

datasets include tracer studies of the visual cortex and the cerebral cortex of macaque 

monkey [1, 2], a tracer study of the whole mouse brain [3], and diffusion weighted imaging 

(DTI) of whole human brain. For the functional dataset, the PTN (Parcellation, Timeseries, 

Netmats) dataset was downloaded from the Human Connectome Project (HCP) website 

(http://www.humanconnectome.org/).   

2.2.2.1  Macaque visual cortex  

The structural network dataset of a macaque visual system was obtained from the 

Brain Connectivity Toolbox (BCT) website (https://sites.google.com/site/bctnet/Home). 

This network dataset consists of 32 visual and visual-association cortical regions 

interconnected with 194 binary, undirected links. In specific, different cortical regions were 

identified based on three methodologies: (1) input and output structural connection 
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characteristics for each cortical region, (2) cortical myeloarchitecture using myelin and 

different staining techniques and (3) topographic organization relying on an orderly 

mapping of the visual field in each region. The linkages between different visual regions 

were defined by summarizing all of the pre-existing visual pathway studies which used 

histological tracing technique. See [1] for detail information.  

2.2.2.2  Macaque cerebral cortex 

The structural network dataset of the macaque cerebral cortex was obtained from 

the Brain Connectivity Toolbox website. This network dataset consists of seventy-two 

cortical regions distributed through four different brain subsystems including visual, 

somatosensory-motor, auditory, and frontal-limbic systems. These different regions were 

connected by 438 binary undirected links. The division of different brain regions was based 

principally on the same categorization schemes used in the previously discussed macaque 

visual cortex study. Past neuroanatomical literature was reviewed for connections between 

the 72 regions, and the reported connections were collated together into the single 

connectivity matrix. See [2] for further information.  

2.2.2.3 Whole mouse brain  

For structural analysis of the whole mouse brain, the published dataset used at [3] 

was downloaded (www.nature.com/nature/journal/v508/n7495/full/nature13186.html). 

This dataset was reconstructed based on the Allen Mouse Brain Connectivity Atlas 

(http://www.brain-map.org/), the database containing the brain-wide, cellular-level, 

mesoscale connectome for the mouse. 213 non-overlapping brain regions were chosen 

from the Allen Reference Atlas to comprehensively cover the major structures. Then, the 

axonal connections between two regions were defined by summarizing 469 experiments 

which employed enhanced green fluorescent protein (EGFP)-expressing adeno-associated 

viral vectors. The best-fit model results from a bounded optimization followed by a linear 

regression to determine connection coefficients, assigning a statistical significance (p-

values) to each connection in the matrix. See [3] for detail procedure and information.  

Then, based on this weighted dataset, a binarized, undirected structural connectivity 

matrix was further generated. Two different regions were defined as “connected” if there 
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existed connection coefficients in either direction that were below the predefined 

thresholds. Since the optimized threshold value is unknown, four different p-value 

thresholds (0.001, 0.0001, 0.00001 and 0.000001) were applied further analyzed how the 

different threshold levels affect to the overall link community structures.   

2.2.2.4 Human diffusion weighted imaging 

For structural analysis of whole human brain, diffusion weighted imaging (DWI) 

dataset was acquired from each of three subjects. After defining 184 spatially non-

overlapping brain regions based on the whole-brain parcellations by [39], the method used 

in [8] was employed to obtain white matter axons interconnecting those brain regions. See 

[8] for detail process of mapping the brain structural connectivity with diffusion MRI.    

Then, from each of three subjects' DWI dataset, two percentage thresholds of 40 

and 60 were respectively applied to binarize the specific percentage of top-weighted links. 

By investigating these three different subjects' structural datasets at different thresholds, 

the reproducible link community structures in the human can be demonstrated.                                       

2.2.2.5 HCP parcellation, node time series and network matrices  

The HCP-PTN dataset was the only dataset used in this work to examine the 

applicability of link community concept to functional network. This was not a classic voxel 

by timeseries functional MRI dataset, but was instead mainly preprocessed by spatial 

independent component analysis. The procedure for generating the HCP-PTN dataset is 

briefly summarized below.   

1. Each of 468 subject’s 15-minute resting-state fMRI data was preprocessed with 

the HCP processing pipelines [40], and different artifacts were eliminated by using "ICA-

FIX" algorithm [28]. Then, each dataset was temporally standardized by subtracting its 

mean and dividing by its standard deviation. Based on these 468 subjects' preprocessed 

datasets, group principal components were extracted by using MELODIC’s incremental 

group PCA (MIGP) [29]. Afterward, the following output was fed into MELODIC group-

ICA tool, applying spatial ICA at several different dimensionalities (25, 50, 100, 200 and 

300). A higher dimension typically indicates that the significantly modulated regions 

within the spatial component maps will be smaller.  
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2. Then, the set of group-ICA maps was projected back to each subject's resting-

state fMRI dataset to derive one representative timeseries per ICA component. After 

concatenating all subjects’ time series of each of the ICA components, the N by N group-

level functional connectivity matrix was estimated by calculating the temporal correlation.  

Before applying the link community algorithm to above functional connectivity 

matrix, various threshold levels ranging from 0.1 to 0.3 were filter this network. Then, 

further analyzed how the overall link community structures were reshaped.      

The major weakness of spatial ICA is that this methodology cannot reveal spatially 

overlapping functional networks due to the constraint of statistical independence. However, 

this weakness can be bypassed by using link community algorithm, since it can reveal ICA 

maps, which belonging to multiple communities. Thus, the new pattern of resting-state 

functional networks were established by simply summing up all of the spatial maps with 

same link community memberships.  

2.2.3 Force-directed algorithm 

In this work, several number of link community results were displayed by using 

“Force-directed” algorithm which automatically arranges the two-dimensional locations of 

nodes, so that the crossing edges were as minimized as possible. MATLAB implementation 

of the following algorithm is available at MATLAB BGL toolbox written by David Gleich.      

2.3 Link Community Results  

2.3.1 Macaque visual cortex  

Fig. 2.1.A displays the link community representation of macaque visual cortex by 

using force-directed algorithm. A total of 28 link communities were revealed which are 

depicted in different colors. Among the 28 identified link communities, 21 link 

communities contained less than 5 links (termed as "small link communities").   

The link community outcome clearly reflected a two-stream (dorsal and ventral) 

hypothesis which is the most influential model of neural information processing in visual 

system [43]. The brain regions in the green link community are mostly located in parietal 

lobe. They are known as to be functionally involved in the dorsal stream ("where" pathway), 
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which processes the object's spatial location relative to the viewer’s location. The brain 

regions in red community are mostly located in the temporal lobe, and they are known to 

be functionally related to the ventral stream ("what" pathway), which is involved in the 

recognition, identification, and categorization of visual stimuli. Moreover, the blue link 

community contains the part of the brain regions in both green and red communities that 

may perform a role of exchanging neural information across the dorsal and ventral streams. 

Identification of blue link community is remarkable since the previous node-based 

algorithm could not capture this structure [9]. In addition, from Fig. 2.1.A, two significant 

overlapping architectures nearby green and red link communities were extracted (Fig. 

2.1.B and C). Region 7a (Brodmann region 7) and TF (temporal region) respectively 

interconnects the dorsal and ventral streams through link communities depicted with 

yellow/light-green and dark/sky-blue. These two selective nodes may be involved in the 

integration and segregation of information obtained from dorsal and ventral streams. 

As another means of validating the results, the link community result was overlaid 

in the circuit diagram of macaque visual cortex (Fig. 2.2.A). This circuit diagram represents 

the hierarchical processing of visual information, which implies that the complexity of 

neural representation increases as the information passes from low to high level of 

hierarchy [1]. For instance, neurons in low visual region such as V1 selectively respond to 

a very simple object such as line segment of a particular orientation. In contrast, neurons 

in relatively higher visual region interact together to process more complex objects such as 

human face. This hierarchy theory is generally consistent with the result shown in Fig. 

2.2.B. Global and dense green-colored link community which may in charge of simple 

process dominated the low level of circuit diagram. However, as the level becomes higher, 

multiple link communities with their respective functions were emerged to process 

complex visual information.   

 

 

 

 

 

 



13 
 

 

 

 

       

 
 
 
                                                                                                                                                                          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2 Hierarchical structure of macaque visual cortex with link community results. 
(A) Original circuit diagram of macaque visual cortex. (B) Modified circuit diagram 

of macaque visual cortex overlaid with the link community results. 

A B

Fig. 2.1 Link communities in the structural network of macaque visual cortex. (A) 
Link community representation by using Forced-directed algorithm. (B) Example of 

overlapping architectures around region 7a and TF 
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2.3.2 Macaque cerebral cortex  

Fig. 2.3 shows the link community results of macaque primate cortex, which were 

overlaid on Fig. 3 extracted from [2]. In total, 106 link communities were identified, but 

94 of those were small link communities, which were depicted in gray. Similar to the 

previous macaque visual cortex analysis, more emphasis was placed on the remaining 12 

large link communities. 

Fig. 2.4 displays all of the 12 large link communities, which each contain more than 

5 links. Seven of the 12 communities are confined to specific sensory systems: Map 1, 2 

and 3 contain the brain regions and their connections within the visual system. In specific, 

map 1 is distributed in low visual regions, and map 2 and 3 cover relatively higher visual 

regions. Map 4 and 5 contain link communities in the frontal/limbic system. Map 6 and 

map 7 correspond to the auditory and the somatosensory systems, respectively. The 

distribution of link communities in visual and frontal/limbic systems were dense and large, 

but were relatively sparse and small in the auditory and somatosensory systems. Three 

other communities spanned across different sensory systems: maps 8, 9, and 10 show the 

link communities spanning from visual to frontal/limbic, auditory to frontal/limbic, and 

auditory to somatosensory systems, respectively. Map 11 and 12 show the link 

communities that were formed around specific target regions, A7b and FEF. It was inferred 

that these link communities may be involved in information integration and segregation.  

To provide more insight into the link community results, it would be of interest to 

examine the brain regions that belong to multiple communities. Therefore, the number of 

link community memberships was evaluated for each of brain regions. Consequently, it 

was revealed that a set of 7 top ranked regions (A7b, A6, LIP, A46, A24, A7a, FEF) were 

previously reported as “hub regions”, which may play an important role of integrating and 

segregating neural signals across different functional modules.  

As another means of validating the results, functionally well-analyzed brain regions 

were selected from above list of hub regions and further analyzed how these regions were 

interconnected with four different subsystems. Region LIP (Lateral Intraparietal Cortex) 

was connected to visual, somatosensory and limbic systems via multiple links, which 

belong to different link communities (Fig. 2.5.A). Distinct link clusters were generally 
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consistent with the functions of LIP, which is involved in eye movement and working 

memory of eye movement guidance. In a similar manner, region FEF (Frontal Eye Field) 

was connected to visual, auditory and limbic systems via links depicted with different 

colors (Fig. 2.5.B). The following architecture is also consistent with the function of FEF, 

which is in charge of eye movement and responding to auditory stimuli.      

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.3 Link communities in the macaque primate cortex 
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Fig. 2.4 Twelve selective link communities in the macaque primate cortex. 
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Fig. 2.4 Twelve selective link communities in the macaque primate cortex. 
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2.3.3 Whole mouse brain  

Fig. 2.6 shows the link communities in the structural network of the whole mouse 

brain at four different thresholds (10-3, 10-4, 10-5, and 10-6). Regardless of the threshold 

used, 90% of the identified communities were small link communities, and were thereby 

excluded from this figure. By visual inspection, three reproducible overlapping 

architectures around the selected brain regions (CEA, PRNc and ENTI) were manually 

pulled out and separately displayed in Fig. 2.7.B, C and D.        

The connectivity dataset used in this study also contained additional information 

about the corresponding major brain subdivisions of each of 213 brain regions. Initially, it 

was assumed that the brain regions with same community membership might correspond 

to similar major subdivisions. However, this assumption was not applicable to those 

subnetworks; in fact, the biological significance was difficult to interpret. For example, in 

Fig. 2.7.A, the brain regions in community 1 correspond to various major subdivisions such 

as cerebellar cortex, cerebellar nuclei, and medulla. In a similar fashion, the regions in 

community 5 correspond to the medulla, midbrain, pons, and hypothalamus.   

 
 
 
 
 
 
 
 

Fig. 2.5 Distinct connections from region LIP and FEF to different sensory systems 
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Fig. 2.6 Link communities in the whole mouse brain at four different thresholds.

Fig. 2.7 Examples of overlapping community structures in the mouse brain with 
threshold equals 000001. (B), (C) and (D) Subnetworks around region CEA, PRNC 

and CEA respectively. 
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2.3.4 Human diffusion weighted imaging   

Fig 2.9 and Fig 2.10 show the link community results respectively obtained from 

binarized three subjects’ DWI datasets with 40 and 60 percentage thresholds.  The total 

number of link communities were significantly different across three subjects. At 40 

percent threshold, subjects 1, 2, and 3 contain 298, 305, and 210 link communities, 

respectively, and, at 60 percent threshold, subjects 1, 2 and 3 contain 317, 369 and 325 link 

communities, respectively. Except for the extensive green-colored link community at 

occipital lobe, no reproducible structures was observed.                                                                 

           Similar to the previous analysis, after determining the ranking of brain regions 

according to their link community memberships, it was identified that L.BA 6, L.BA 39 

and R.BA 45 are commonly included in 10 top-ranked brain regions across three different 

subjects. Region BA 6 contains premotor and supplementary motor regions, which are 

involved in motor sequencing and movement planning. BA 39 corresponds to angular 

gyrus, the cortical region coordinates the information from visual, somatosensory and 

auditory system. BA 45 is also known as pars-triangularis, which is engaged in complex 

verbal functions. Based on previous studies, these three nodes were already known as hub 

regions [44].   

                                                                       
 

 
 

Fig. 2.8 Link communities in the three human subjects with threshold equals 60%. 
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2.3.5 HCP parcellation, node time series and network matrices  

Fig. 2.10 displays the link communities derived from group functional connectivity 

matrix with threshold equals 0.25. As mentioned above, node and link on this graph 

respectively represents ICA map and functional connectivity strength. In total, 78 link 

communities were revealed, but 60 contained less than 5 links and they were not shown in 

this figure.  

The ICA maps at same link community cover the brain regions that are functionally 

associated with each other. Maps in community 39 primarily contain lateral occipital cortex, 

lingual gyrus and pericalcarine sulcus, which are regions recognized as part of the low 

visual network. Maps in community 61 contain large regions of the default mode network 

(DMN) as described by, including angular gyrus, anterior cingulate cortex (ACC), 

posterior cingulate cortex (PCC), precuneus and superior frontal cortex, along with some 

of non-DMN regions such as calcarine sulcus and temporal gyrus. Maps in community 67 

can be largely classified as visual-related, motor-related and auditory-related networks. 

Map 2, 5, 6, 7, 10, 13, 14, 16, 38 and 44 involve several visual regions at occipital lobe, 

including calcarine sulcus, cuneus gyrus, lingual gyrus, superior occipital sulcus and 

parieto-occipital sulcus. Map 8, 30, 29, 34 and 46 encompass central sulcus, precentral 

sulcus/gyrus, postcentral gyrus and subcentral sulcus/gyrus, where the primary motor 

Fig. 2.9 Link communities in the three human subjects with threshold equals 40%. 
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cortex and somatosensory cortex are located. Map 45 contains superior temporal gyrus and 

superior temporal sulcus, representing the auditory network.  

Fig. 2.11 displays the selective maps of new functional networks that were based 

on the link community outcomes. Compared with canonical functional networks extracted 

with ICA [18, 25], these maps were more spatially extended and overlapping to each other. 

Map 1 contains occipital pole, lingual gyrus and cuneus gyrus, representing the low visual 

network. Map 2 encompasses the regions of map 1, along with more extended to superior 

parietal gyrus, inferior and superior part of occipital gyrus, which are regions part of the 

high visual network. Map 3 contains the regions of map 2 except part of occipital pole, 

with further extended to interior temporal gyrus and intraparietal sulcus. Map 4 includes 

the brain regions of map 3, with inferior and superior occipital gyrus and postcentral gyrus. 

Map 5 contains large regions related to the DMN, including PCC/precuneus, superior 

frontal gyrus and angular gyrus, along with part of the middle temporal gyrus and superior 

frontal gyrus/sulcus. Map 6 encompasses similar regions as Map 5, but more activation is 

observed at superior and middle frontal gyrus/sulcus. Map 7 involves widespread motor, 

somatosensory regions as well as auditory regions and Wernicke's region. Map 8 includes 

middle frontal gyrus, inferior frontal sulcus, orbital gyrus, suparmarginal gyrus and 

intraparietal sulcus.    
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Fig. 2.10 Link communities in the PTN dataset with threshold equals 0.25.

Fig. 2.11 Selective functional networks based on the link community results. 
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2.4 Discussion 

This work demonstrates that structural and functional brain networks of both human 

and non-human primates contain rich and diverse link community structures. At structural 

network of macaque visual cortex, the link communities correspond to dorsal and ventral 

visual streams as well as the overlapping architectures interconnecting those two streams 

were identified. Furthermore, the distribution of link communities reflected the biological 

property of hierarchical organization of the visual system. With structural network of 

macaque cerebral cortex, distinct link connections formed between selected regions and 

different sensory systems were generally consistent with the functions of those target 

regions. Moreover, at HCP-PTN functional connectivity dataset, the functional networks 

derived based on the link communities showed distinct differences in various brain regions 

with respect to the canonical networks extracted with spatial ICA.      

Complete biological interpretation of all link communities and their pervasive 

overlapping relationships is not immediately clear and be likely opened to scientific debate. 

At many of previous network studies, the relevance of community detection algorithms has 

been primarily evaluated by revealing priori known subsystems or building blocks of the 

networks [7, 9, 11, 12]. In contrast, the full understanding of brain’s architecture is far from 

being completed. From the different link community results, several interesting 

observations were made. For instance, at overlapping architectures around region TF and 

7a of macaque visual cortex, it was inferred that these two regions may be involved in 

integrating and segregating of neuronal information from dorsal and ventral streams. 

Similar inference was also made to region CEA and surrounding modules of whole mouse 

brain. Nevertheless, no previous studies were found to elucidate above relationships. 

Further researches are needed by focusing on exploring more detailed functions of specific 

brain regions and their individual connections.           

A distinguishing feature of link community is that links from multiple communities 

converged at a single node, revealing a brain ‘hub’. Hub regions are densely connected 

brain regions in the network and have been known as involved in the integration and 

segregation of information between different functional modules [9, 10, 13]. According to 

above results, the regions that previously known as hubs tended to participated in more 
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number of communities. Though the interpretation of the resulting link communities is not 

straightforward, this observation may partly support the potential application of link 

community concept to the brain network.  

One apparent limitation of link community algorithm is that the link similarity 

measurement given by Jaccard index or Tanimoto coefficient only considered connected 

pair of links, which share a common node. However, by considering real-world network 

examples, it is easy to realize that the following link similarity formula is oversimplified. 

For instance, it has been known that visual regions V1, V2, V3 and V4 are both structurally 

and functionally connected to process complex visual information. Though, with the 

original formula, the similarity of link V1-V2 and V3-V4 results in 0, which is highly likely 

not to be the case. Quantifying the functional similarity of neuronal connections solely 

based on topological structures must be a challenging question. However, employing more 

biologically and mathematically reasonable formulas may identify more rich and diverse 

community structures in the brain.   

As shown in previous results, link community algorithm tend to generate many 

number of small-sized communities. For instance, among the 106 link communities 

revealed from macaque primate cortex, 91 communities contained less than 5 links. This 

result is strongly contrast with the result obtained by node-based algorithm such as 

modularity, which only extracted 5 node communities from the identical dataset. The same 

phenomenon was also commonly observed at the different datasets used in this study. Since 

the basic principle of link community algorithm is grouping links instead of nodes, it is 

very natural that more number of communities should be extracted. Moreover, as a brain 

network exhibits a highly complex structure, it is likely that many number of communities 

with executing distinct functions should exist. It is difficult to validate whether this 

phenomenon is primarily caused by the link community algorithm itself or really reflects 

the biological characteristics of brain network structure. Further studies are needed to 

examine the potential biological relevance of such an arrangement of structural and 

functional connections.  
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Finally, it should be noted that the current work only focused on the link 

communities obtained at the cutoff point corresponding to maximum partition density. 

Given the previous studies, it has been suggested that both structural and functional brain 

networks exhibit hierarchical organization on multiple topological scales. Investigating the 

brain network as hierarchical organization has revealed several interesting features, 

including greater robustness, adaptivity and evolvability of network function. Until now, 

several methods were employed to explore this network property [33], however, none can 

handle overlap since hierarchical structure almost assumes disjoint community partition. 

Therefore, exploring the link dendrogram at multiple levels will provide more deep insights 

about the organization of brain network by allowing to analyze in both hierarchical and 

overlapping features.     
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3. FUNCTIONAL RELEVANCE OF SPATIAL ICA AND K-MEANS 
CLUSTERING 

3.1 Motivation  

In the absence of any overt task, spontaneous brain activity observed with 

functional MRI (fMRI) exhibits complex, but dynamic and systematic patterns [15, 45, 46]. 

It is increasingly recognized that spatiotemporal analysis of resting-state fMRI data holds 

great potential to uncover the full repository of large-scale intrinsic neural networks 

underlying various brain functions or diseases [17, 22, 28, 47].   

Toward this end, existing network analysis methods are generally classified into 

two categories that focus on either the temporal or spatial characteristics of resting-state 

fMRI. As an example in the former category, cross-correlations of fMRI blood oxygenation 

level-dependent (BOLD) time series can be calculated to measure the degree of neural 

interaction between different brain locations, or the so-called “functional connectivity” [15, 

17, 46]. This terminology aligns with and extends from the conventional concept that 

localized functional information is encoded into the temporal fluctuation in neural activity 

indirectly measured with fMRI. It is thus reasonable to further take the cross-correlation in 

fMRI time series as a putative measure of inter-regional functional relationship that defines 

temporally coherent networks. In contrast, methods in the second category aim to infer 

intrinsic functional networks by analyzing the fMRI spatial distribution at every time point. 

For example, spatial independent component analysis (ICA) has been widely used to 

decompose resting-state fMRI data into a number of spatially independent activity 

components [18, 23]. Despite their methodological and conceptual differences, the 

spatially independent maps obtained with ICA are highly consistent with the temporally 

synchronized networks obtained with time-series correlation analysis. In short, these two 

* 
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popular methods arrive at converging findings about a common set of intrinsic functional 

networks.  

For both temporal correlation and spatial ICA, it is implicitly assumed that 

functional networks are stationary over time. This assumption is perhaps questionable 

given recent findings suggesting that different regions may interact in a dynamic manner 

[48, 49]. In an attempt to capture connectivity dynamics, a common practice is to assess 

the time-dependent correlation by using much shorter time series extracted from a sliding 

window [48-50]. However, the functional interpretation of such dynamic correlational 

patterns is often confounded by the trivial statistical instability due to limited time samples 

in the presence of various noises.   

Bypassing this limitation is a recently proposed notion that spontaneous brain 

activity is dominated by distinct co-activation patterns (CAPs) arising from discrete neural 

events. Applying the k-means clustering to instantaneous, whole-brain fMRI volumes 

serves to extract these CAPs in a data-driven manner [20]. Without assuming temporal 

stationarity or spatial independence, this method is conceptually meritorious and 

potentially allows for the discovery of spatially overlapping and temporally varying 

network patterns. In fact, resting-state CAPs obtained with this method have been shown 

to involve many novel spatial configurations notably different from those obtained with 

conventional methods [18, 22, 25, 51]. These CAPs form an alternative set of intrinsic 

networks that are potentially more informative and indicative of the brain’s functional 

architecture.  

However, it remains unclear whether and what functionally meaningful features 

accounts for the apparently distinct network patterns identified by these different analysis 

methods. It is challenging to address this question, because the precise nature, origin, and 

role of spontaneous brain activity still remain poorly understood. The task-free resting state 

is inherently lack of a specific behavioral or cognitive context. As a result, the naming and 

interpretation of intrinsic networks have been based mostly on their qualitative similarity 

to well-established functional systems, or existing activation or deactivation patterns 

obtained with various task paradigms that are designed to address specific aspects of brain 

functioning. Therefore, an objective and systematic evaluation of any conventional or 



29 
 

 

emerging resting-state fMRI analysis method should benefit greatly from directly 

comparing its resulting network patterns with task activation maps, for which the functional 

interpretation is readily available. Without such comparison, it is difficult, and perhaps 

speculative, to determine whether a resting-state fMRI analysis method would lead to 

insightful network features that truly predict and support a wide range of brain functions.   

To evaluate the functional relevance is of particular importance for those analysis 

methods based on resting-state fMRI spatial characteristics, such as the aforementioned 

spatial k-means clustering and ICA methods. Note that the fMRI signal is indirectly related 

to regional neural activity through the neurovascular coupling, which is widely recognized 

and modeled as a time-domain transfer function. However, there has been no established 

theoretical or empirical relationship between instantaneous fMRI volumes and underlying 

whole-brain neural activity patterns. When the functional relationship between regions is 

defined merely based on the instantaneous image intensity distribution in the whole brain, 

it is worth being cautious in interpreting the so-defined intrinsic networks that support 

spontaneous hemodynamic patterns as those that support neuronal activities and 

interactions. In addition, the k-means clustering and ICA methods are very similar in that 

they both treat instantaneous fMRI volumes as independent high-dimensional input data, 

from which a given number of multivariate features are learned in order to efficiently 

represent (or reconstruct) the input data [52]. As two off-the-shelf learning algorithms, 

these two methods use similarly constrained optimization schemes that both encourage the 

learned features to be sparse. Given these considerations, the theoretical essence of these 

two methods may not be as distinct as is implied by the underlying notion that motivates 

their development and application to resting-state fMRI network analysis.  

In this work, functional relevance of the resting state network patterns revealed by 

using the spatial k-means clustering and spatial ICA was explored. For this purpose, either 

the k-means clustering or spatial ICA was employed to 15 subjects’ resting-state fMRI data, 

and a large and comprehensive set of neuroimaging-based task activation data that have 

been previously published and stored in the BrainMap database. It was attempted to match 

the resulting resting-state CAPs to the corresponding task-based CAPs, and also to match 

the resulting resting-state ICA components to their task-based counterparts in a similar way 
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as in previously published studies. The correspondence of the best paired network patterns 

during rest and task conditions served as a quantitative measure of the functional relevance 

of the different sets of intrinsic network patterns, providing objective evaluation and proper 

interpretation of the methods that gave rise to such networks. 

3.2 Materials and Methods  

3.2.1 Resting-state fMRI  

10-minute resting-state fMRI data were acquired from each of 16 subjects. The pre-

processed resting-state fMRI dataset was resampled from 2 × 2 × 2 mm3 to 3 × 3 × 3 mm3 

spatial resolution which was consistent with the Montreal Neurological Institute (MNI) 

standard brain. After the data was spatially smoothed with a Gaussian kernel (FWHM = 6), 

each voxel’s time series was temporally normalized by subtracting its mean and dividing 

by its standard deviation. Global signal regression was not applied in this work since it may 

force artificial anti-correlation between different brain regions [53]. Finally, all 16 subjects’ 

datasets were reshaped in 2-D (space by time) and temporally concatenated for the 

subsequent multi-subject analysis.   

3.2.2 Task activation maps  

As a means of comparison with the resting-state fMRI, Brainmap database 

(http://www.brainmap.org) was employed, which publicly shares the results of a large 

number of task activation studies. At the time of current analysis, the Brainmap database 

included the results from ~1900 published functional neuroimaging articles, which resulted 

in ~9100 individual activation images. Multiple experimental conditions were employed 

in each study; the spatial distributions of the following activation results were stored as 3-

D foci in Talairach space depicting the statistically-significant local maxima. Then, from 

each of activation images, a set of “pseudoactivation” images were recreated by filling an 

empty brain image with points corresponding to the 3-D foci and spatially smoothed with 

a FWHM 12mm Gaussian kernel. Although the actual spatial information of the original 

activation has not been preserved, this smoothing extent is a reasonably close match to that 

applied as data preprocessing in most FMRI activation studies [54]. Then, the resulting 
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~9100 activation images were concatenated to generate a 2-D dataset so that the first 

dimension is space the second is experiment ID. In case of spatial ICA analysis, the above 

dataset was temporally demeaned and variance normalized since this step was necessary 

to perform principal component analysis [55]. However, in case of k-means clustering, the 

above-mentioned steps were not applied to preserve as much of the original information as 

possible of the dataset itself.    

3.2.3 Extraction of co-activation patterns 

The rest and task co-activation patterns were derived by using the k-means clustering 

algorithm, which had already been implemented at previous work [20]. After the above-

mentioned preprocessing steps were applied to each of rest and task dataset, k-means 

clustering technique was subsequently applied to classify fMRI time points (experiment 

ID in case of Brainmap) into k clusters based on their similarity of spatial activity 

distributions. Then, the maps assigned to the same cluster were simply averaged, resulting 

in k maps which are called co-activation patterns (CAPs) referred to earlier. The number 

of rest and task CAPs, k, was set to 25 in this work.  

3.2.4 Extraction of spatially independent components 

As a means of comparison with spatial CAPs, the procedure of group-level spatial ICA 

with temporal concatenation was implemented [18]. The following analysis was applied 

independently for the identical rest and task datasets utilized in CAPs analysis. After 

reducing the concatenated dataset into n strongest spatial eigenvectors by using PCA, the 

resulting eigenvectors were fed into Infomax ICA to extract the n most representative 

functional networks. At the end, the resulting ICA component maps were spatially 

normalized by dividing its magnitude. The number of ICs, n, was also set as 25 to match 

with the number of CAPs.    

3.2.5 Extraction of temporally constrained resting-state CAPs                                  

Temporal sparsity was constrained to resting-state fMRI dataset by following procedure: 

after temporally normalizing each subject’s resting-state fMRI dataset, a level of threshold 

was defined based on the standard deviation (STD) and identically applied to each voxel’s 
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time series such that the original signal intensities were preserved at the time points in 

which the absolute values exceeded this threshold, while the remaining points were simply 

padded with 0 (Fig. 3.1). Then, same as previous analysis, after temporally concatenated 

all subjects’ datasets, the identical procedure of k-means clustering was employed again to 

the following grouped dataset, which resulted in another set of 25 temporally constrained 

resting-state CAPs (termed as rest tcCAPs). In this analysis, threshold level was 

progressively increased from 0.5 to 2.2 SD, then the resulting rest tcCAPs were compared 

with respect to the rest ICs, task ICs and task CAPs obtained at above procedures.   

 

 

3.2.6 Spatial similarity of different spatial maps  

Based on the above procedures, 5 different sets of spatial maps each with 25 

components were extracted; rest & task ICs, rest & task CAPs and rest tcCAPs. The spatial 

maps from these five different groups were matched with each other based on their spatial 

similarity using Pearson’s correlation of the unthresholded maps. Since all components of 

one set were paired with the only one best match from a second set, there arose a multiple 

pairings problem, in which some of the same spatial maps from the first set may highly 

correlated with two or more spatial maps in the second set. In order to overcome with this 

multiple pairings problem, greedy algorithm was used to discover the optimal pairs 

between different groups. In summary, after randomly permuting the indices of spatial 

maps of the first set, the maps from the first set were sequentially paired with the highest 

correlated map of the second set. In each iteration, the most strongly paired map of the 

second set is removed from consideration for future pairings with the first set. After 300 

Fig. 3.1 Procedure of obtaining temporally-constrained CAPs 
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iterations, one-to-one pairs between any two sets was obtained. Then, the spatial 

correlations between the pairs were summed for each iteration; the set of pairs which 

maximized the sum of spatial correlations were selected as the optimal pairs.   

3.3 Results  

3.3.1 ICs and CAPs from resting-state fMRI and Brainmap  

The sets of rest and task functional networks which were respectively extracted by 

spatial ICA and k-means clustering were shown in Fig. 3.2.A and C. With a naked eye, 

several ICs from rest and task datasets were unambiguously matched to each other, 

showing strong spatial cross-correlations (Fig. 3.2.B), as previously reported [22, 56]. In 

addition, the following rest and task ICs strongly resembled the canonical functional 

networks shown in previous studies [18, 25, 51]. Given several examples, map A contains 

striate and parastriate area, which are areas recognized as part of the visual cortex. In 

comparison with map A, map B covers more lateralized visual areas, including peristriate 

area and lateral and superior occipital gyrus. Map D contains the superior temporal gyrus, 

representing the auditory network. Map E encompasses the thalamus region, a small 

symmetrical structure situated between the cerebral cortex and the midbrain. Map F 

includes prefrontal, anterior cingulate and posterior cingulate cortex (ACC/PCC), inferior 

temporal gyrus, and the superior parietal region, known as the default mode network 

(DMN). Map G contains superior parietal cortex, occipito-temporal and precentral regions, 

representing the visuospatial network.   

In comparison with rest and task ICs, only coarse correspondences were observed 

between rest and task CAPs (Fig. 3.2.C). The resulting rest CAPs showed significant 

differences with the conventional networks extracted with spatial ICA by covering more 

extended brain regions and spatially overlapping to each other (Fig. 3.2.D). In addition, 

these rest CAPs contained both strong co-activation and co-deactivation in one map. In 

contrast, the resulting task CAPs were more confined to specific sets of regions. 

Interestingly, both spatial ICA and k-means clustering produced nearly identical spatial 

patterns for task activation data, showing significant spatial cross-correlations (Fig. 3.3.A 

and B).  
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Brief descriptions of the selective rest CAPs are following: Map A contains low 

and high visual regions with further extended to motor and auditory networks. In specific, 

lateral occipital cortex, pericalcarine sulcus and cuneus, fusiform, precentral and 

postcentral gyrus were included. Map B covers large areas of the DMN, including PCC, 

ACC and angular gyrus, with anti-correlation at regions of low visual, visuospatial and 

ventral networks. Map D contains medial and lateral visual regions, including lateral 

occipital cortex, cuneus and lingual gyrus and pericalcarine sulcus. Map E shows 

particularly global spatial distribution, containing insular cortex, PCC, precentral, 

postcentral, superior frontal and temporal gyrus and paracentral sulcus. Map J contains 

large areas of the motor network, including precentral, paracentral and postcentral gyrus, 

along with several frontal regions. 

3.3.2 Rest tcCAPs at different temporal sparsity levels 

The list of correlation matrices in Fig. 3.4 denoted how the network patterns of rest 

tcCAPs were altered with respect to itself as well as rest ICs and task CAPs at four different 

selective STD thresholds (0, 0.6, 1.2 and 1.8). The correlation matrices at three different 

rows sequentially represent spatial autocorrelations of rest tcCAPs, spatial cross-

correlations of rest tcCAPs and rest ICs, and spatial cross-correlations of rest tcCAPs and 

task CAPs. All of cross-modality correlation matrices were rearranged based on correlation 

strengths.  

At relatively low threshold levels (0 and 0.6 STD), the rest tcCAPs showed global 

autocorrelation with itself, since their network patterns were still spatially extended and 

overlapping to each other. In contrast, at relatively higher threshold levels (1.2 and 1.8 

STD), they were decorrelated with itself, since their extents of co-activation and co-

deactivation were more confined to specific sets of regions. Strong anti-correlations were 

observed at all threshold levels due to the similar rest tcCAPs with reverse polarity, which 

might be occurred due to the methodological property of k-means clustering.  
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 Fig. 3.2 Comparison of ICs and CAPs from resting-state fMRI and Brainmap. 
(A) Network patterns of rest and task ICs. (B) Spatial similarity between rest and task ICs. 

(C) Network patterns of rest and task CAPs. (D) Spatial similarity between rest and task CAPs. 
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In comparison of rest ICs and task CAPs, at low threshold levels (0 and 0.6 STD), 

no strong correspondence was observed with rest tcCAPs. Instead, multiple rest tcCAPs 

showed global spatial cross-correlations with several rest ICs as well as task CAPs, and 

vice versa. However, as threshold levels became higher (1.2 and 1.8 STD), the rest tcCAPs 

progressively achieved strong one-to-one or two-to-one correspondences with both rest ICs 

and task CAPs. As shown in the correlation matrices, the diagonal elements became 

stronger and the off-diagonal became sparser. Two-to-one pairs were achieved, since 

similar co-activation (red) and co-deactivation (blue) patterns were matched with only one 

ICs or task CAPs.  

In this analysis, the temporal sparsity was set to 2 STD after comparing the 

outcomes of ranging from 0 to 2.2 STD. At the range between 0 to 1.2 STD, several rest 

tcCAPs still showed extensive co-activation and co-deactivation patterns which merely 

matched with both rest ICs and task CAPs. In contrast, at range between 1.3 to 2.2 STD, 

the rest tcCAPs were mostly similar to each other, but, threshold with 2 STD led to the 

highest number of matched network patterns with rest ICs as well as task CAPs.   

 

Fig. 3.3 Comparison of task ICs and task CAPs from Brainmap. (A) Network patterns 
of task ICs and task CAPs. (B) Spatial similarity between task ICs and task CAPs.     
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3.3.3 CAPs from temporally constrained resting-state fMRI 

When the temporal sparsity was constrained to resting-state fMRI datasets with 

STD = 2, k-means clustering generated remarkably different CAPs compared to those 

yielded without any constraint conditions (Fig. 3.5.A). The resulting rest tcCAPs were 

more spatially confined to specific sets of regions and the strong co-activation (red) and 

co-deactivation patterns (blue) were disassociated into individual maps. In addition, a 

number of rest tcCAPs showed similar co-activation and co-deactivation patterns with 

reverse polarity. These rest tcCAPs also showed a fair degree of correspondence with both 

rest ICs and task CAPs obtained at previous steps. Between rest tcCAPs and rest ICs, 16 

rest tcCAPs were closely matched with 12 rest ICs, and, between rest tcCAPs and task ICs, 

13 rest tcCAPs showed correspondence with 10 task CAPs. As previously mentioned, the 

similar co-activation and co-deactivation patterns were paired with only one rest IC or task 

CAP.  

Set A to H display network patterns that were commonly shown in rest tcCAPs, 

rest ICs and task CAPs. Set A, C and E are primarily associated with visual processing, 

which correspond to primary visual, visuospatial and high visual network respectively. Set 

Fig. 3.4. Shape alteration of rest tcCAPs at different threshold levels. 
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B contains PCC, ACC and angular gyrus, known as default mode. Set D contains the 

superior temporal gyrus, where the primary auditory cortex is located. Rest tcCAPs also 

contained a network pattern with fine-scale structure such as thalamus, which is shown in 

set F. Set G encompasses medial-frontal areas, which mainly includes anterior cingulate 

and paracingulate cortex. The network patterns in set I to L were commonly shown in rest 

tcCAPs and rest ICs. Set I shows a network pattern that predominantly involves dorsal 

parietal and lateral prefrontal cortex. Set J contains precentral, paracentral and postcentral 

gyrus, where primary somatosensory and motor cortex were located. Set L shows a 

cerebellum, which plays a major role in motor control. Set M shows a network pattern that 

was observed in rest tcCAPs and task CAPs. This map contains rostral and caudal middle 

frontal regions, which are part of the executive control network.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Comparison of rest tcCAPs, rest ICs and task CAPs. (A) Network patterns of rest 
tcCAPs, rest ICs and task CAPs. (B) Spatial similarity among rest tcCAPs, rest ICs and 

task CAPs.
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3.4 Discussion 

In this study, two representative multivariate data-driven analysis of resting-state 

fMRI: spatial independent component analysis (ICA) and k-means clustering were 

thoroughly investigated in order to elucidate their functional relevance and similarity of 

theoretical basis. To this end, these two methods were respectively applied to 15 subjects’ 

resting-state fMRI and a large set of task activation maps published in the BrainMap 

database. Then the sets of resting-state and task-based independent components (ICs) and 

co-activation patterns (CAPs) were compared against to each other. Initially, k-means 

clustering yielded rest CAPs, which showed distinct differences with respect to both rest 

ICs and task CAPs. However, after constraining the temporal sparsity of resting-state fMRI, 

the network patterns of temporally-constraint CAPs (tcCAPs) closely resembled those of 

rest ICs as well as task CAPs. Based on these observations, it was inferred that these two 

algorithms may not distinct from each other, but converge in the discovery of similar 

resting-state networks. 

As mentioned previously, in the field of machine learning, k-means clustering and 

ICA have been considered as conceptually and theoretically closely related methodologies 

[52]. These two methods explicitly or implicitly impose very similar “sparsity” constraint 

to the input dataset, so that the basis function learned by k-means clustering closely 

resemble those obtained with ICA. Consequently, it was not so surprised that both k-means 

clustering and sICA extracted similar functional networks from task activation dataset. In 

contrast, the differences observed in the resting-state fMRI were conflict with the above 

claim.   

In order to investigate the reason why both k-means clustering and spatial ICA 

yielded almost identical functional network patterns from task activation datasets, but not 

from resting-state fMRI, a careful attention was initially paid to the characteristic of task 

activation data itself. As mentioned earlier, this dataset is a “pseudo-fMRI data”, which 

was created based on the 3-D activation foci in a few brain locations with applying a 

Gaussian kernel [54]. Consequently, the data itself implicitly had a strong sparsity 

constraint in a way that only specific regions around the activation points contain strong 

signal intensities. In contrast, resting-state fMRI datasets used in this study showed a 
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certain level of BOLD intensities around all of the regions. Based on this observation, a 

specific level of temporal sparsity was applied to resting-state fMRI by thresholding voxel 

timeseries. This approach was inspired by the notion of point process analysis (PPA) [57], 

which indicates that the co-activation and co-deactivation of functionally related brain 

regions is dominated by instantaneous, discrete neuronal events rather than the result of a 

continuous process. Therefore, the brain activity patterns during resting-state are 

contributed not only by peak activations or deactivations, but also may be contributed by 

the signals occurred during intermediate phases in transition to either activation or 

deactivations. Therefore, removing these intermediate phase signals by thresholding voxel 

time series may be a more reasonable approach for the subsequent k-means clustering 

analysis.  

One obvious difficulty of this work is the selection of a suitable threshold level, so 

that the “unnecessary” signals occurred during the intermediate transition are efficiently 

removed. The current study was initialized from the claim that both spatial ICA and k-

means clustering might yield similar functional networks from the resting-state fMRI [52]. 

Accordingly, the optimized threshold was chosen by comparing the network patterns of 

tcCAPs with those of rest ICs. However, it is hard to decide whether this threshold level 

eliminated the important signals solely caused by the sporadic neuronal events. Focusing 

only on meaningful neural signals may increase the specificity and detailedness of resting-

state fMRI analysis. The enhancement of the proposed method can be achieved through 

the differentiation of those critical signals.  

A main advantage of the presented method is that it requires only few assumptions 

and transformation of the data. The method presented here resembles spatial ICA in the 

sense that both are spatial-domain methodologies, which regard fMRI volumes as the basic 

units of analysis. However, spatial ICA requires additional processing step of the fMRI 

data itself such as whitening, and further assume that component maps are statistically 

independent to each other [55]. In contrast, the classification procedure executed by k-

means clustering does not need any transformation of the input data, and the resulting CAPs 

are just the simple average of fMRI volumes with same cluster memberships. Accordingly, 

the characterization and interpretation of resulting CAPs are more straightforward.  
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An interesting observation made from rest tcCAPs is the similar co-activation (red) 

and co-deactivation maps (blue) with reverse polarity (Fig. 3.5). In case of spatial ICA, 

polarity of component maps does not bear any significant meaning, since the fMRI 

volumes are represented as the weighted combinations of a set of ICs [23, 55]. It is fairly 

obvious that these reverse-polarity maps were primarily caused by the methodological 

property of k-means clustering, since its’ optimization criteria always regarded the 

instantaneous activity patterns with opposite polarity as “very dissimilar” and assigned 

those patterns to different clusters. As shown in Fig. 3.5, some of rest tcCAPs such as 

default mode network (map B) showed both strong co-activation and co-deactivation. In 

comparison, the others such as thalamus network (map F) and motor network (map J) only 

showed either one of them. However, the biological origin of this observation remains 

unclear, and may need further exploration.      

Finally, an obvious difficulty of k-means clustering analysis is a selection of k, a 

number of maps to be extracted from the input fMRI dataset. In this study, the value was 

set arbitrarily as 25 after comparing the tcCAPs obtained with k equals 20, 30, 35 and 40. 

In general, a higher k value means that the significant co-activated and co-deactivated 

regions will be smaller. In order to set k in more objective way, different methods, 

including the Silhouette coefficient and Elbow method were employed, but their suggested 

optimum values were fairly inconsistent with each other. This may be due to the 

dissimilarity among the CAPs is likely to have a skew distribution, with a portion of the 

CAPs being much closer to one another than to others, which increases the difficulty in 

finding a clear division. 
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4. INTRINSIC FUNCTIONAL NETWORKS WITHIN VISUAL 

CORTEX SUPPORTS NATURALISTIC VISUAL PERCEPTION 

4.1 Motivation 

In the absence of sensory stimulation or any overt task, spontaneous brain activity 

observed with functional MRI (fMRI) exhibits a rich and diverse spatiotemporal patterns. 

Specifically, low-frequency (around 0.01 - 0.1 Hz) blood-oxygenated-level-dependent 

(BOLD) signals obtained during resting-state fMRI are temporally coherent across 

spatially distributed brain regions, which are also termed as resting-state networks (RSNs) 

[15, 46]. Although being called as RSNs, these networks show similar patterns as those 

observed during various task activations, including visual, auditory and motor networks 

[22, 56]. In addition, these patterns are reproducible across different experimental sessions, 

healthy individuals and even in non-human primates [25, 26].  

Most previous analyses of resting-state connectivity have primarily focused on the 

large-scale organization of whole brain [13, 18, 19, 20, 21, 22]. However, the growing 

body of evidences have suggested that the spontaneous brain activity can exhibit systematic 

spatiotemporal organizations within the specific sensory systems, and even within 

individual cortical regions [32, 33]. Characterizing this fine-scale connectivity patterns is 

especially important, since this information can provide more rich insights into the 

relationship of the spontaneous activity and the underlying functional architectures that 

support diverse brain’s functions. In consequence, many recent studies have 

comprehensively investigated such patterns of different sensory systems. For instance, 

from experiment using micro-electrocorticography (µEcoG), the correspondence of 

sensory maps and spontaneous field-potential signals was demonstrated in the macaque 

auditory cortex [58]. In addition, a high field 9.4T fMRI study identified the 
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correspondence of spontaneous activity patterns and the somatotopic arrangement of the 

monkeys' somatosensory cortex [59] Moreover, the study with single unit 

electrophysiology reported a high level of correlation in spontaneous spiking activity 

between neurons with similar tuning properties [60].   

A particularly convenient brain sensory system to investigate such fine-scale 

connectivity patterns is the human visual cortex. This is because its functional architecture 

has been widely understood and solidly established with retinotopic mapping [61, 62]. 

After the finding of robust functional connectivity in human visual cortex without sensory 

stimuli [63], recent studies have explored the relationship between spatiotemporal patterns 

of spontaneous activity and those evoked by a standard phase-encoded retinotopic mapping 

paradigm. Accordingly, several studies reported that the spontaneous signals recorded in 

similar receptive fields tend to fluctuate in a correlated manner [64, 65]. In addition, the 

connectivity patterns formed nearby low visual region (V1-V3) followed the eccentricity 

organization [64-66]. Recently, a similar analysis was conducted by using naturalistic 

visual stimuli [66]. Then, it was demonstrated that the connectivity patterns that appear 

during rest better reflected the naturalistic activations than artificially controlled phase-

encoding paradigm.  

However, most of these studies have primarily focused on the spontaneous 

connectivity patterns in low visual region, so that the similar information in high visual 

region is largely missing. Toward filling this gap, the current study characterized the 

complex neural activity patterns within whole visual cortex in three different aspects: 

spatial organization, inter-subject reproducibility and functional relevance to naturalistic 

vision. To this end, two different 3T functional MRI datasets were employed. Dataset 1 

included 45 subjects' resting-state fMRI from the Human Connectome Project (HCP). 

Dataset 2 contained 3 subjects' fMRI obtained under the naturalistic movie stimuli. The 

fine-scale connectivity patterns during resting-state and movie conditions were mainly 

obtained by using spatial independent component analysis (sICA) instead of seed-based 

correlation. This multivariate statistic may potentially provide more in-depth connectivity 

information than univariate analysis by simultaneously identifying the co-activations of 

multiple brain regions.  
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4.2 Materials and Methods   

In this study, two different 3-T fMRI datasets were used. For the dataset 1, the high 

quality, high-resolution resting-state fMRI was downloaded from the Human Connectome 

Project website (HCP; http://www.humanconnectome.org). For the dataset 2, functional 

MRI was acquired from each of three subjects under natural movie viewing. Detailed 

information about above two datasets, including subjects’ information, MRI parameters, 

experimental paradigm and data pre-processing steps will be discussed below.                                       

4.2.1 HCP resting-state fMRI   

Subjects  

From the HCP website, 45 human subjects' resting-state fMRI (26-35 years of age; 

19 males, 26 females) were randomly selected and utilized in the current study [67]. These 

selected participants were unrelated to each other, healthy individuals who doesn't 

experience any significant neurological or psychological diagnosis. All subjects gave 

informed consent as approved by the Washington University in St. Louis institutional 

review board.   

MRI Parameters               

All experiments were conducted in a 3T MRI system (Skyra, Siemens, Germany) 

using a Siemen’s standard 32-channel head coil. T1-weighted structural images were 

acquired with a magnetization-prepared rapid gradient-echo (MP-RAGE) sequence (TR = 

2400 ms, TI = 1000 ms, TE = 2.14 ms, FA: 8°, 0.7 × 0.7 × 0.7 mm voxels and FOV = 208 

× 180 mm). FMRI data were acquired using a gradient-echo EPI sequence (TR = 720 ms, 

TE = 33.1 ms, FA = 52°, 2 × 2 × 2 mm voxels and FOV = 208 × 180 mm).   

Resting-state fMRI acquisition  

For each of a participant, resting-state fMRI were acquired in four runs of 14 

minutes and 33 seconds (1200 time frames) each, two runs in one session and two in 

another session, with eyes open and fixated on a cross-hair presented on a dark background. 

Within each session, oblique axial acquisitions alternated between phase encoding in a 

right-to-left direction in one run and in a left-to-right direction in the other run. In the 



45 
 

 

current study, only the data acquired during the first session with a left-to-right phase 

encoding direction was used.   

Pre-processing  

The resting-state fMRI datasets published by HCP already contained basic, but 

necessary preprocessing steps [40], so these preprocessed datasets were directly used in 

this study. FMRI preprocessing steps included 1) gradient nonlinearity distortion 

correction, 2) FSL’s FLIRT motion correction, 3) FSL’s top up distortion correction, 4) 

registration to the T1-weighted structural MRI scan, 5) spline resampling from the original 

EPI frames to FSL MNI152 2 mm space using FSL FNIRT and vi) image intensity 

normalization to mean of 10000 and bias field correction. Then, the following preprocessed 

fMRI dataset were projected from FSL MNI152 space onto the FreeSurfer surface space 

(1 mm mesh), spatially smoothed using a 6 mm FWHM Gaussian kernel and downsampled 

to a 4 mm mesh. Along with the above steps, the surface-based fMRI dataset was 

temporally de-trended by using a fourth-order polynomial function, band-pass filtered at 

0.01-0.2 Hz, and temporally standardized by subtracting its mean and dividing by its 

standard deviation.     

4.2.2 Natural movie experiment  

Natural Movie Stimuli    

A color natural movie (8-minutes in length) was constructed by temporally 

concatenating multiple video clips (8-12 seconds in length), which were downloaded from 

the Videoblocks website (https://www.videoblocks.com/). The clips used in this 

experiment contain everyday objects, including airplane, bird, car, face, flower, fruit, insect, 

animal, people, ship and various natural scenes. The sequence of stimulus was created by 

randomly drawing up clips from the entire set. For the purpose of this study, no sound was 

inserted into the movie.  
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MRI Parameters   

The experimental protocol was approved by the Institutional Review Board at 

Purdue University. Functional scans were conducted in a 3T MRI system (Signa HDx, 

General Electric, Milwaukee). A 16-channel receive-only surface phase-array coil (NOVA 

Medical, Wilmington) was used throughout every experiment. T1-weighted structural 

images were acquired with a spoiled gradient recalled acquisition (SPGR) sequence (256 

sagittal slices with 1 mm thickness and 1 × 1 mm2 in-plane resolution, TR/TE = 5.7/2ms, 

flip angle: 12°). FMRI data were acquired using a standard single-shot, gradient-recalled 

(GRE) EPI sequence (TR = 2s, TE = 35ms, FA = 78°, 3.5 × 3.5 × 4 mm voxels and FOV 

= 220 × 220 mm).   

FMRI acquisition  

Three human subjects (23-26 years of age; 3 females) who were healthy and had normal 

vision participated in this study. Each subject underwent four repeated sessions of 8-

minutes natural movie presentation per day, in total of 12 sessions were acquired across 

three different days. Every session started with a blank gray screen presented for 12 

seconds, followed by the movie presented for 8 minutes, ended with the blank screen again 

for 10 seconds. The movie was presented using the MATLAB-based Psychophysics 

Toolbox [68, 69], and it was delivered to subjects through a binocular goggle system 

(NordicNeuroLab, Norway) mounted on the head coil. During the movie presentation, all 

subjects were instructed to fixate at a cross-hair (24 pixels in width and height) presented 

at the screen center.           

Pre-processing  

MRI and fMRI data were preprocessed by using FSL [70], AFNI [71] and 

MATLAB functions developed in house. In summary, 1) T1-weighted anatomical images 

were non-linearly registered to the MNI brain template, 2) T2*-weighted functional image 

series were corrected for slice timing, registered to the first volume within each series to 

account for head motion, 3) masked out non-brain tissues, 4) aligned to the T1-weighted 

structural MRI,  5) registered to the MNI template and resampled into 3×3×3 mm3 voxels, 

6) the fMRI data were temporally de-trended by using a third-order polynomial function to 
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model the slow signal drift, and 7) spatially smoothed by using a 3-D Gaussian filter with 

6 mm full width at half maximum (FWHM). Then, fMRI time series were projected from 

FSL MNI152 space onto the FreeSurfer surface space (1 mm mesh) and downsampled to 

a 4 mm mesh. Finally, these projected fMRI time series were temporally standardized by 

subtracting its mean and dividing by its standard deviation.    

4.2.3 Removal the effect of spontaneous activity from movie fMRI                                        

FMRI BOLD signals acquired under natural movie condition might contain the 

neural information not only evoked by the movie itself but also be further contributed by 

the endogenous activity. Therefore, in order to eliminate the effect of this endogenous 

signals for subsequent analysis, each subject's fMRI signals were simply averaged across 

twelve different sessions.    

4.2.4 Spatial independent component analysis  

A cortical mask defined by [72] was used to select the surface region corresponding 

to visual cortex (Fig. 4.1 .A). Then, the fMRI signals within those selected regions were 

temporally concatenated and the following multi-subject dataset was analyzed by using 

spatial independent component analysis (ICA) code developed in house. Following 

analysis was applied independently for three different grouped datasets each with 15 

subjects' resting-state fMRI and the other dataset with three subjects' averaged fMRI under 

natural movie condition. After reducing the concatenated dataset into 70 strongest spatial 

eigenvectors by using principal component analysis (PCA), the resulting spatial 

eigenvectors were inserted into Infomax ICA to obtain the 70 most representative 

functional networks. At the end, all of the ICA component maps were spatially normalized 

by dividing its magnitude. 

4.2.5 Spatial similarity of ICA maps    

To examine the reproducibility of spatial ICA component maps across three 

different datasets of resting-state fMRI and between resting-state and natural movie 

condition, their spatial similarity was first calculated by using simple Pearson correlation 

of the unthresholded, normalized spatial maps. However, in occasion, a few number of 
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pairs showed a fair degree of correlation values even though they were only “partially” 

similar to each other. To avoid this case, the maps matched based on the spatial cross-

correlations were further inspected again by visual.    

4.2.6 Functional parcellation of visual cortex   

After identifying the set of reproducible ICA maps from three different resting-state 

fMRI datasets, k-means clustering was subsequently applied to the resulting ICA weights 

to group cortical locations into 15 parcels. Then, the following functional parcellations 

were visually compared with each other to verify their stability. Moreover, the biological 

relevance of this functional parcellation was evaluated with respect to the classical visual 

areas defined by Destrieux (2010) and Van Essen (2012) [73, 74]. In summary, Destrieux 

(2010) is the anatomical parcellation of cortical sulci and gyri based on the technique that 

automatically allocates a neuroanatomical label to each location on a cortical surface 

according to probabilistic information estimated from a manually labeled training set. Van 

Essen (2012) is a composite cortical parcellation based on architectonic or retinotopic 

fMRI maps that covers only part of the cortical surface. See [73] and [74] for further 

information about above two parcellations.   

4.3 Results   

4.3.1 Reproducible cortical visual networks  

Spontaneous BOLD signals within the human visual cortex (Fig. 4.1.A) were 

decomposed into 70 spatially independent components for each of the three resting-state 

fMRI datasets. A number of components were reproducible across datasets, showing 

significant spatial cross-correlations between the matched components extracted from 

different datasets (Fig. 4.1.B). Fig. 4.1.C displays selective examples of unthresholded 

maps to demonstrate their reproducibility across the different datasets. Based on the spatial 

cross-correlations and visual inspection, total of 19 reliable ICA components were 

identified, as shown in Fig. 4.2 and their spatial information was briefly summarized in 

Table. 4.1. Sixteen components are focal with well-defined borders and the remaining three 

(map 5, 6 and 16) are globally distributed over the visual cortical area. Eight components 
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are bilaterally distributed, whereas eleven are strongly lateralized to either left or right 

surface.                                           

Among the 19 reliable ICA components, a number of maps with focal spatial 

distribution agree with existing visual regions or visual evoked activations previously 

reported in different literatures. To provide more detailed views of these selective maps, 

they were projected onto the inflated surface and shown in Fig. 4.3. Map 2 shows the fovea 

representation of the classically retinotopic region, where low visual regions V1, V2 and 

V3 converge around the occipital pole. Discovery of this map also matches with the result 

of previous studies, which observed topographic connectivity between V1 and V3 in 

absence of visual input [64, 65]. Map 3 and 7 showed almost identical spatial patterns, but 

distributed at left and right hemisphere respectively. These two maps contain V1, V2 and 

V4v regions at the periphery of fovea region. Moreover, some of maps even showed 

interesting network patterns at high visual region. Map 9 shows strong coherence with 

middle temporal (MT) region, which is known as playing a major role in perception and 

processing of visual motion. Map 13 agrees with V7 region, but the activation region on 

the right hemisphere is more global than those on the left.   

Unlike other component maps, map 5, 6 and 16 show widespread spatial 

distribution across the visual cortical region (Fig. 4.4). They are well-organized and show 

bilaterally symmetric distribution. Since they were consistently observed across different 

datasets, they might contain the signals occurred from neurophysiological origin. However, 

it is difficult to distinguish whether there could be some non-neural physiological 

contributions, including cardiac pulsation or breathing effects. These three maps contain 

different brain regions in parietal, medial and temporal sections of occipital lobe. Map 5 is 

largely divided into three sections, which correspond to parietal occipital, medial occipital 

and temporal occipital region respectively. Map 6 shows clear boundary with V1 and fovea 

region. Map 16 is roughly divided into top and bottom section around the fovea region.  
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Fig. 4.1 Reproducibility of ICA components within visual cortex. (A) Cortical 
parcellation of visual cortex. (B) Spatial correlations between 70 components of 

different datasets. (C) Seven selective examples of reproducible components. 

Fig. 4.2 Nineteen reproducible components across three different datasets. 
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Fig. 4.3 Inflated surface representation of five selective components. 

Table 4.1 Spatial information of 19 reproducible components. 
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4.3.2 Functional parcellation of visual cortex   

To generate the functional parcellation of visual cortex, k-means clustering was 

employed to the weights of 19 reproducible maps and grouped the cortical vertices into 15 

different parcels (Fig. 4.5.B). The resulting functional parcellation is highly consistent 

across three different datasets, indicating its robustness. Fifteen parcels marked with 

different colors are well-defined with showing clear borders to each other. Among 15 

parcels, 8 show bilateral symmetric, the others are strongly left or right lateralized and 

some even show top-down symmetric. Furthermore, the following parcellation reflects the 

biological properties of visual system by showing that large parcels exist at low-visual 

region, but relatively minute parcels emerged as the level becomes higher.    

To objectively compare this functional parcellation with Destrieux 2009 (Fig. 4.5.A) 

and Van Essen 2012 (Fig. 4.5.C), their borders are overlaid in white color and shown in 

Fig. 4.5.D. With a naked eye, only coarse correspondence was observed to each other. In 

comparison with Van Essen 2012, parcel 11 shows correspondence with MT region. Parcel 

3 roughly aligns with the border between V1 and V2. The combined area of parcel 1, 2 and 

3 formed confluence region of V1, V2 and V3. Parcel 9 roughly aligns with V7 region. In 

comparison with Destrieux 2009, the combined area of parcel 1, 2 and 3 corresponds to 

occipital pole. Parcel 8 roughly aligns with medial occipito-temporal sulcus and lingual 

sulcus.          

 

        Fig. 4.4 Inflated surface representation of three global components. 
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4.3.3 Visual networks under resting-state and natural visual perception 

As a comparison with intrinsic functional connectivity patterns, three subjects’ 

fMRI datasets obtained under the repeated natural movie sessions were simply averaged 

and also decomposed into 70 independent components. Of the 70 components individually 

generated from rest and movie datasets, 8 maps from each set were unambiguously 

matched to each other, showing significant spatial cross-correlations (Fig. 4.6.A). In 

general, the spatial distribution of movie components is generally more confined than those 

of rest.  

Fig. 4.5 Comparison of functional parcellation with visual regions defined with 
retinotopic mapping and cytoarchitecture. (A) Parcellation of Van Essen 2011.          
(B) Functional parcellation. (C) Parcellation of Destrieux 2009. (D) Functional 
parcellation overlaid with the borders of Van Essen 2011 and Destrieux 2009.   
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Brief descriptions of 8 reproducible maps are provided below. Map 1 includes the 

medial occipito-temporal gyrus which may be involved in the information processing 

occurred at dorsal stream. As previously mentioned, Map 2 and 3 display identical network 

patterns by containing V1, V2 and V4v at the periphery of fovea region. However, the rest 

component of Map 2 is a little bit further extended to the ventral region. Map 4 represents 

the foveal representation of retinotopic mapping, but the rest component is more extended 

to V1, V2 and V3 regions around fovea. Revealing of this pattern during both resting-state 

and naturalistic visual perception also in-line with the results of previous study [64-66]. 

Map 5 and Map 6 are bilaterally symmetric and corresponds to medial temporal (MT) and 

V7 region respectively. Map 7 and Map 8 are strongly left lateralized and distributed at the 

end of V1 and V2 region.                          

 

 

 

 

Fig. 4.6 Comparison of fine-scale networks under resting-state and natural movie 
condition. (A) Spatial similarity between rest and movie component maps. (B) Eight 

reproducible components between rest and movie dataset.  



55 
 

 

4.4 Discussion 

In the current work, it was demonstrated that the spontaneous brain activity at rest 

exhibits reliable network patterns not only in the whole-brain scale, but also in much finer 

scales. Such intrinsic networks in the visual system were reproducible across different 

subjects and showed correspondence with formerly defined visual areas as well as visual-

evoked activations previously reported in different literatures. In addition, these networks 

provide an information basis to divide the visual cortex into small parcels, which showed 

distinct differences compared to the classical visual regions defined with retinotopic 

mapping or cytoarchitecture. Moreover, a number of intrinsic networks at low and high 

visual regions are preserved even during naturalistic visual stimulation, suggesting their 

roles in supporting brain function for vision. 

A number of results obtained from this study were consistent with previous studies, 

which demonstrated that the spontaneous brain activity showed the eccentricity 

organization near the fovea region [64-66, 72]. In addition, this study further extended the 

previous results by demonstrating that the fine-scale connectivity patterns in higher visual 

regions also exhibited exquisite patterns and several of them were even preserved during 

naturalistic visual perception. However, what kind of underlying neural processes trigger 

these specific organizing principles are still unclear. One possibility is that “rest” 

participants were engaged in some kind of visual imagery, which may activate visual 

regions in a retinotopic fashion [75, 76]. Another explanation maybe that retinal ganglion 

cells exhibit spontaneous bursts of action potentials that were spread to the visual system 

[77]. The other is that the connectivity patterns that appear during rest may actually reflect 

the record of habitual past cortical coactivation [66, 78].         

Until now, many of previous studies have spent lots of efforts to establish different 

visual regions of human brain. In specific, those regions were predominantly revealed by 

using functional MRI recorded under specific task condition called phase-encoding [62, 

74]. In comparison, the current study identified visual regions MT and V7 by simply 

applying spatial ICA to resting-state fMRI signals within the visual cortex. In this sense, 

the different ICA component maps (Fig. 4.2) and the functional parcellation (Fig. 4.3.B) 
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shown in this study may provide a future framework to discover unique visual regions 

which have not been explored before.   

Most previous fine-scale connectivity analyses have primarily used seed-based 

correlation analysis to measure the degree of functional interactions between different brain 

regions. Although this bivariate statistic is a reliable method to measure coactivation level 

of two regions, this provides limited information about high-level correlation, such as 

coactivation of more than two regions. To bypass this problem, in this study, spatial 

independent component analysis (ICA) was employed and the applicability of this 

multivariate statistic to fine-scale connectivity analysis was confirmed. In fact, a number 

of results obtained in this study converged into similar findings as those obtained by using 

temporal correlation [63-66]. Applying various multivariate statistics algorithms to 

different subsystems, including auditory and somatosensory systems may potentially 

reveal richer fine-scale connectivity patterns.      

When examining the reproducibility of component maps with resting-state fMRI 

datasets, the proportion of reproducible maps to the total number of maps was not 

significant. This phenomenon may be occurred, since only three datasets were used to test 

their reproducibility. In fact, several maps were commonly included only at two datasets, 

but these maps were simply excluded from reproducible candidates. Increasing the 

statistical sensitivity by using bootstrap method may identify more number of reliable and 

meaningful components. In biological aspect, this observation may imply that the 

spontaneous activity occurred in visual cortex may utilize the set of reproducible fine-scale 

networks as well as those that were uniquely exist at different subjects.  

Similar as above, the number of pairs achieved between rest and movie component 

maps was also not high. As explained previously, the movie fMRI signals were further 

processed by averaging across different sessions. This step might cause unpredictable 

results to subsequent ICA analysis and those resulting components. Moreover, the current 

work only used three subjects’ dataset. Performing the same analysis with more number of 

subjects may increase the reliability of movie component maps. In biological aspect, it 

could be inferred that the functional dynamics occurred in visual cortex during natural 

perception may employ a set of networks exhibited during resting-state as well as those 
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that are uniquely shown in task condition. Further investigating the unmatched components 

across different datasets of resting-state fMRI and between resting-state and natural visual 

perception may elucidate the underlying neuronal bases that trigger the difference during 

behavioral and cognitive states.           

One potential drawback of this work is the visual cortex region (Fig. 4.1.A) used in 

this analysis does not cover enough regions of the temporal and parietal lobes, which are 

also known to be deeply involved in the high-level visual information processing [43]. It 

was inferred that this could be the reason why some component maps such as map 1 and 

18 shown in Fig. 4.2 were somewhat spatially “cropped” at the boundary of analyzed 

region. Performing the similar analysis with further extended visual cortex parcellation 

may potentially provide more valuable fine-scale information.         

Lastly, although spatial ICA is a powerful data-driven method of extracting 

functional networks, this algorithm cannot capture the dynamic changes of resting-state 

fMRI due to the assumption of temporal stationarity. In order to capture these connectivity 

dynamics, different methodologies have been suggested and applied to the resting-state 

fMRI. First, by using a shorter-time sliding window, dynamic functional connectivity can 

be obtained by calculating temporal correlation of the data points within that specific 

window [48-50]. Second, by applying k-means clustering technique to instantaneous fMRI 

volumes, spatially overlapping co-activation patterns (CAPs) was identified [20]. Third, 

by combining the signal processing technique called TA (Total Activation) regularization 

and clustering technique, spatially and temporally overlapping iCAPs (innovation-driven 

co-activation patterns) were extracted [21]. Investigating the fine-scale connectivity pattern 

in dynamic aspects with above-mentioned methodologies may reveal more rich 

spatiotemporal information of intrinsic activity.  
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5. CONCLUSION 

By this time, the analysis of brain network in both structural and functional 

perspectives has provided deep insights into the organization of brain, as well as how the 

brain’s rich functionality emerge from this complex architecture. These findings are 

feasible by the technological developments in various non-invasive neuroimaging 

techniques as well as new powerful tools from graph theory and dynamical systems. Based 

upon previous studies, this thesis tried to answer three critical questions in the field by 

analyzing different structural and functional datasets with distinct mathematical and 

statistical methodologies. The brief summary of results and conclusion of each question is 

explained below.   

In chapter 2, a recent "link community" algorithm was applied to different structural 

and functional network datasets to disentangle complex brain architecture. As a result, it 

was demonstrated that the brain network contains rich and diverse link communities, which 

were spatially overlapping, but biologically significant. However, the full interpretation of 

all link communities is not immediately clear and open to scientific debate. This is because 

the complete understanding of the functional roles of individual brain regions as well as 

their interconnections is far from being clear. Further studies must be needed to elucidate 

the potential biological relevance of such an arrangement of structural or functional 

connections and biological significance of those link communities.  

In chapter 3, two representative multivariate analysis algorithms of resting-state 

fMRI: spatial independent component analysis (sICA) and k-means clustering were 

investigated to elucidate their relationship in terms of functional relevance and theoretical 

basis. This study was originated from the idea of machine learning field that ICA and k-

means clustering are conceptually and theoretically closely related methodologies. Initially, 
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the resting-state network patterns extracted with those two methods showed significant 

differences. However, after removing the signals occurred during intermediate phases by 

constraining the temporal sparsity of resting-state fMRI, k-means clustering yielded similar 

network patterns with rest ICs and task CAPs. Based on this observation, it was inferred 

that these two methods might converge into the similar findings of resting-state networks.    

In chapter 4, the complex spatiotemporal patterns of spontaneous activity within 

the visual cortex were explored by evaluating their spatial organization, inter-subject 

reproducibility and functional relevance to naturalistic visual perception. As a result, it was 

revealed that fine-scale intrinsic connectivity patterns in visual cortex exhibits robust and 

reliable network patterns. In addition, the parcels obtained based on these network patterns 

showed novel configurations compared to those defined with retinotopic mapping and 

cytoarchitecture. Moreover, a number of these patterns were also even preserved during 

naturalistic visual perception, suggesting their functions in supporting visual task.   

Perhaps one of the greatest scientific challenges is to understand the human brain. 

One key aspect to tackle this challenge is to explore the structural and functional networks 

that maintain numerous brain’s functions and behaviors. By complementing the previous 

network studies, the distinguishing results obtained in this thesis may provide new insights 

regarding the brain’s organization, as well as a better understanding of mathematical and 

statistical tools for functional and structural network analysis.  
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APPENDIX 

%% link_community 
% link_community() - apply link community algorithm to network connectivity 
%                    matrix 
% 
% Usage 
%   [edge_cid,linkage,cutoff,max_D,Thr_D] =... 
%                                 link_community(net_mat,'keyword','value') 
% 
% Inputs 
%   net_mat: connection matrix (undirected binary or undirected weighted) 
% 
% Outputs 
%   edge_cid: edge with its' assigned link community ID 
%    linkage: record hierarchical structure of link clustering. 
%     cutoff: the level of cutting dendrogram 
%      max_D: value of a maximum partition density 
%      Thr_D: cutoff level with respect to partition density 
% 
% Keywords 
%      thr: in case of the weighted network, remove out 
%           edges below a threshold {default: 0} 
% 
% Version: 
%   1.02 
% 
% Reference: 
%   Ahn, Yong-Yeol, James P. Bagrow, and Sune Lehmann. 
%   "Link communities reveal multiscale complexity in networks" 
%   Nature 466.7307 (2010) 
  
% CREATED: 
%     2/02/2014 
%     Author: Jun Young Jeong, Haiguang Wen and Zhongming Liu 
  
%% History 
% 1.00 - 2/02/2014: create the file   
% 1.01 - 2/27/2014: add Keywords 'cutoff' and 'threshold' 
% 1.02 - 3/05/2014: change Tanimoto coefficient formula 
  
 
 
 
 
 
function [edge_cid,linkage,cutoff,max_D,Thr_D] =  link_community(W,varargin) 
% if the number of input arguments is less than 1, 
if nargin<1 
    eval('help link_community'); 
    return 
end 
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%% check for errors in input 
% if input is not a matrix format, 
if ~ismatrix(W) 
    error('link_community(): must input a matrix'); 
else 
    % if input is a not square matrix format, 
    if  ~issquare(W)     
        error('link_community(): must input a square matrix'); 
    end 
end 
  
%% default 
flag_threshold = 0; % 0(not given)|1(given) 
flag_directed = ~issymmetric(single(W)); % 0(undirected)|1(directed) 
flag_weighted = isweight(W); % 0(unweighted)|1(weighted) 
  
%% keywords 
for ik = 1:2:size(varargin,2) 
    Keyword = varargin{ik}; 
    Value   = varargin{ik+1}; 
    if strcmpi(Keyword,'thr') 
        flag_threshold = 1; 
        thr = Value; 
    else     
        warning(['link_community: unknown keyword ' Keyword]); 
    end 
end 
  
%% reorganize the node-connectivity matrix as list format 
% let "link" be the connections between every pair of nodes (i,j) 
% link(:,1): ni (starting node) 
% link(:,2): nj (ending node) 
% link(:,3): connection strength between node ni and nj 
  
% if the input matrix is undirected, 
if flag_directed == 0;    
    % in case of the weighted network, filter edges whose strength is below 
    % a threshold     
    if flag_weighted && flag_threshold    
        W(abs(W)<thr)=0; 
    end 
    % starting and ending node 
    [ni,nj] = find(triu(W)~=0); 
    % total number of links 
    nlink = size([ni,nj],1); 
    % [ni,nj,connection strength] 
    link = zeros(nlink,3);    
    link(:,1) = ni; link(:,2) = nj; 
    link(:,3) = W(triu(W)~=0); 
     
% if the input matrix is directed, 
elseif flag_directed == 1; 
    % to be continue 
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end 
  
%% calculate the similarity of links sharing a common (keystone) node   
disp('computing link similarities...'); 
% extract nodes 
N = unique(link(:,1:2)); 
% [link similarity,link1(node1,node2),link2(node3,node4)] 
S_link = zeros(length(N)*(length(N)-1)/2,5);   
  
cnt = 1; % counter 
% if the network is undirected, 
if flag_directed == 0; 
    % knode is a "keystone" node 
    for iN = 1:length(N); 
        knode = N(iN); 
        % inclusive neighbors of a knode 
        inc_ngh_k = unique(link((link(:,1)==knode)|(link(:,2)==knode),1:2)); 
        % non-inclusive neightbors of a knode 
        ngh_k = inc_ngh_k(inc_ngh_k~=knode); 
        if length(ngh_k) > 1; 
            % pair node i and node j using combnk function 
            pair_ij = combnk(ngh_k,2); 
            for jpair = 1:size(pair_ij,1) 
                inode = pair_ij(jpair,1); jnode = pair_ij(jpair,2); 
                % inclusive neighbors of inode 
                inc_ngh_i = unique(link((link(:,1)==inode)|(link(:,2)==inode),1:2)); 
                % inclusive neighbors of jnode   
                inc_ngh_j = unique(link((link(:,1)==jnode)|(link(:,2)==jnode),1:2)); 
                 
                % if the network is binary, 
                if flag_weighted == 0; 
                    % calculate the link similarity using Jaccard index 
                    S = length(intersect(inc_ngh_i,inc_ngh_j))/... 
                                          length(union(inc_ngh_i,inc_ngh_j)); 
                 
 

  % if the network is weighted, 
                elseif flag_weighted == 1; 
                    % calculate the link similarity using Tanimoto coefficient 
                    ai = W(inode,:); 
                    ai(inode) = sum(W(inode,(inc_ngh_i(inc_ngh_i~=inode))))/... 
                                            sum(inc_ngh_i~=inode); 
                    aj = W(jnode,:); 
                    aj(jnode) = sum(W(jnode,(inc_ngh_j(inc_ngh_j~=jnode))))/... 
                                            sum(inc_ngh_j~=jnode); 
                    % Tanimoto coefficient formula 
                    S = (ai*aj')/(norm(ai)^2+norm(aj)^2-ai*aj'); 
                end 
                 
                S_link(cnt,1:5) = [S,min(knode,inode),max(knode,inode),... 
                                        min(knode,jnode),max(knode,jnode)]; 
                % update cnt 
                cnt=cnt+1; 
            end 
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        end 
    end 
 
% if network is directed, 
elseif flag_directed == 1; 
    % continue 
end 
S_link = S_link(any(S_link,2),:); % remove unfilled rows 
% rearrange 'S_link' according to the descend order of link similarity 
[~,I] = sort(S_link(:,1),'descend'); 
S_link = S_link(I,:); 
  
%% sequentially merge links in the order of similarity & calculate partition density    
disp('hierarchical clustering...'); 
% initially, every link is assigned to its' own community 
E = [link(:,1:2),(1:length(link(:,1)))']; 
% record the dendrogram structure 
linkage = zeros(nlink-1,3); 
% at each merging step, record the value of partition density 
D = zeros(nlink-1,1); 
% at each merging step, record the partition density and community id 
D_cid = zeros(nlink-1,nlink+1); 
   
% updated partition density 
tmp_D = 0; 
% updated community id 
tmp_cid = nlink; 
% counter 
cnt = 1;   
 
for kpair = 1:length(S_link(:,1)); 
    link1 = S_link(kpair,2:3); link2 = S_link(kpair,4:5); 
    cid1 = E((E(:,1)==link1(1))&(E(:,2)==link1(2)),3); % cid of link1 
    cid2 = E((E(:,1)==link2(1))&(E(:,2)==link2(2)),3); % cid of link2 
    % cid1 and cid2 are same, they are already merged 
    if cid1 == cid2 
        continue; 
    end 
     
    % partition density of cid1 
    idx1 = (E(:,3)==cid1); 
    m1 = sum(idx1); % number of links at cid1 
    n1 = length(unique(E(idx1,1:2))); % number of nodes at cid1 
    D1 = partdens(m1,n1); 
    % partition density of cid2 
    idx2 = (E(:,3)==cid2); 
    m2 = sum(idx2); 
    n2 = length(unique(E(idx2,1:2))); 
    D2 = partdens(m2,n2); 
     
    % record the merging point     
    linkage(cnt,1:3) = [cid1,cid2,S_link(kpair)]; 
    % update cid 
    tmp_cid=tmp_cid + 1; new_cid = tmp_cid; 
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    % assign a new cid to merged community 
    E((E(:,3)==cid1),3) = new_cid; E((E(:,3)==cid2),3) = new_cid;      
     
    % partition density of merged community 
    idx3 = (E(:,3)==new_cid); 
    m3 = sum(idx3); 
    n3 = length(unique(E(idx3,1:2))); 
    D3 = partdens(m3,n3); 
     
    % update partition density 
    tmp_D = tmp_D + (D3 - D1 - D2)*(2/nlink);     
    D(cnt) = tmp_D; 
     
    % reassign community id 
    D_cid(cnt,1) = tmp_D; 
    tmp_comid = unique(E(:,3)); 
    for icom = 1:length(tmp_comid) 
        D_cid(cnt,find(E(:,3)==tmp_comid(icom))+1) = icom; 
    end 
    % update 
    cnt=cnt+1;   
end 
  
 
 
%% list threshold and corresponding partition density   
S_prev = -1; % predefine S 
S_all = linkage(:,3); % define threshold at each step 
  
Thr_D = zeros(unique(length(S_all)),2); % cutoff and partition density 
for irow = 1:length(S_all); 
    % if next similarity is not identical previous similarity, 
    if S_all(irow) ~= S_prev 
        best_S = S_all(irow); 
        % at first merging point, D is 0 
        if irow == 1 
            best_D = 0; 
        else 
            best_D = D(irow-1); 
        end 
        Thr_D(irow,1:2) = [best_S,best_D]; 
        S_prev = S_all(irow); 
    end 
end 
  
% remove unfilled rows 
Thr_D((Thr_D(:,1)==0),:) = []; 
% when the cutoff value is 0   
Thr_D = [Thr_D;[0,D(end)]];    
  
%% bring the community id at maximum partition density   
max_D =  max(Thr_D(:,2)); % maximum D 
cutoff = Thr_D((Thr_D(:,2)==max_D),1); % cutoff corresponding to max D 
cutoff = cutoff(end); 
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% rearrange according to assigned community ID 
cid = D_cid(D_cid(:,1)==max_D,2:end); 
edge_cid = [link(:,1:2),cid(1,:)']; 
[~,I] = sort(edge_cid(:,3)); 
edge_cid = edge_cid(I,:); 
  
%% draw a dendrogram & plot partition density plot 
disp('display a dendrogram and partition density plot...'); 
% set figure size as screen size 
h = figure(1); 
ss = get(0,'ScreenSize'); % screen size 
set(h,'Position',[0,0,ss(3),ss(4)]); 
  
% dendrogram 
subplot(1,2,1);   
dendrogram([linkage(:,1:2),1-linkage(:,3)],0,'colorthreshold',1-cutoff); 
hold on; 
axis([0,size(link,1),0,1]); 
% overlay cutoff level on the dendrogram 
plot([0,size(link,1)],[1-cutoff,1-cutoff],'k','Linewidth',2,'Linestyle','--'); 
axis off; 
  
% plot partition density vs cutoff 
subplot(1,2,2); hold on; 
plot(Thr_D(:,2),Thr_D(:,1));   
xlabel('Partition Density'); ylabel('Threshold'); 
title('Partition Density vs Threshold'); 
% axis setting 
axis([0,1,0,1]) 
set(gca,'YDir','reverse') 
plot([0,1],[cutoff,cutoff],'k','Linewidth',2,'Linestyle','--'); 
end 
  
%% partition density of link community 
% m: number of links 
% n: number of nodes 
function D = partdens(m,n) 
    if n ~= 2 
        D = (m*(m-n+1))/((n-2)*(n-1)); 
    elseif n == 2 
        D = 0; 
    end 
end 
  
%% check if the matrix A is weighted 
function b = isweight(A) 
    weight = sum(unique(A)); 
    if weight ~= 1 
        b = 1; 
    else 
        b = 0; 
    end 
end 
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%% check if the matrix A is square 
function b = issquare(A) 
    if size(A,1) ~= size(A,2) 
        b = 0; 
    else 
        b = 1; 
    end 
end 

 


	Purdue University
	Purdue e-Pubs
	8-2016

	Analysis of structural and functional brain networks
	Jun Young Jeong
	Recommended Citation


	Blank Page

