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ABSTRACT

Liu, He M��������, Purdue University, August 2016. Image Quality Estimation:
Soft-ware for Objective Evaluation . Major Professor: Amy R. Reibman.

Digital images are widely used in our daily lives and the quality of images is

important to the viewing experience. Low quality images may be blurry or contain

noise or compression artifacts. Humans can easily estimate image quality, but it is not

practical to use human subjects to measure image quality in real applications. Image

Quality Estimators (QE) are algorithms that evaluate image qualities automatically.

These QEs compute scores of any input images to represent their qualities. This

thesis mainly focuses on evaluating the performance of QEs. Two approaches used

in this work are objective software analysis and the subjective database design.

For the first, we create a software consisting of functional modules to test QE

performances. These modules can load images from subjective databases or generate

distortion images from any input images. Their QE scores are computed and analyzed

by the statistical method module so that they can be easily interpreted and reported.

Some modules in this software are combined and formed into a published software

package: Stress Testing Image Quality Estimators (STIQE).

In addition to the QE analysis software, a new subjective database is designed and

implemented using both online and in-lab subjective tests. The database is designed

using the pairwise comparison method and the subjective quality scores are computed

using the Bradley-Terry model and Maximum Likelihood Estimation (MLE). While

four testing phases are designed for this databases, only phase 1 is reported in this

work.
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1. INTRODUCTION

1.1 Background

Image Quality Assessment (IQA) has become an important concept in image pro-

cessing area for decades. In image processing field, IQA are used to detect the artifacts

of the processing chain, such as image and video acquisition and display, encoding

and decoding and re-purposing and enhancement [1]. This assessment can also be

applied in control area such as quality control systems, optimizing the parameters in

image related embedded systems [2] etc. Image quality can be easily determined by

human subjects but the challenge is that we cannot ask human subjects to examine

the quality for every image in every process of imaging systems. For years, researchers

have developed algorithms to solve this problem.

Image Quality Estimators (QEs) are algorithms used in IQA which are designed to

simulate human beings’ judgments on estimating the quality of images. The ideal QE

should have the same response as a human when evaluating the same image. These

algorithms receive images as input and convert them into numbers that represents

image quality. Every QE will compute objective scores based on the provided infor-

mation of images themselves without human viewing. Based on these algorithms, it

is possible to evaluate qualities of large number of images automatically and quickly.

1.2 Three Types Quality Estimators

Based on the information available to QEs, image quality estimators can be di-

vided into three types: Full Reference (FR), Reduced Reference (RR) and No Refer-

ence (NR). The difference between these three types of QEs is whether the algorithm

has a reference available. FR QEs estimate a distorted image using another unim-
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The Mean Square Error (MSE) is the most widely used mathematical tool in ap-

plying FR algorithm without considering the nature of Human Visual System (HVS).

By computing the value differences between every corresponding pixel from both im-

ages, the MSE can clearly show the pixel differences mathematically. Peak Signal to

Noise Ratio (PSNR) is derived from MSE value and PSNR is also a commonly used

FR QE. However, MSE does not accurately predict perceived image quality [3]. Dur-

ing the last 15 years, many new FR QEs have appeared, such as Structure SIMilarity

index (SSIM) [4], Visual Information Fidelity (VIF) [5], Visual Signal-Noise-Ratio

(VSNR) [6], Multi-scale Image Quality Estimation (MIQE) [7], Feature SIMilarity

index (FSIM) [8] and so on. These algorithms use different theories: SSIM consid-

ers the luminance, contrast and structure feature of nature images [4]. VIF applies

information theory and compares the visual information between of two images [5].

VSNR uses wavelet decomposition on images and compare the similarity of different

channels [6]. MIQE takes the viewing distance into account for quality evaluating [7].

FSIM [8] focused on comparing the similarity of extracted features of images.

Considering limitations, most of the QEs are designed for gray scale images; it

is necessary to transform color images into gray images before computing quality.

For this problem, researchers extended the QE working environment to color images.

Gupta [9] designed QE working on color images applying HVS characteristics. Zianou

and Fella [10] applied the color distortion and gradient similarity as an IQA scheme.

Multi-Scale SSIM (MSSSIM) [11] FR QE is improved to work on color images by

comparing the Color Just Noticeable Difference (CJND) in CIELAB color space [12].

FSIM algorithm also includes a FSIM Color (FSIMC) index for color images [8].

1.2.2 No Reference (NR)

However, it is not always possible to have both the original and distorted images

available. This makes FR QE not suitable for many practical applications. For these

kinds of applications, No Reference (NR) images QEs are designed. This type of
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extract the corresponding information from the distorted images before the images

are sent [18]. When images are received, they are compared with available reference

information which is transmitted undistorted. These supporting information or fea-

tures will normally be transmitted in a separate undistorted ancillary channel [19].

Sometimes the features can be transmitted together with distortion images with some

error detection procedures, which saves the cost of one distortion-free channel.

The amount of reference information transmitted, or data rate, influences the

accuracy of quality prediction and there is a trade off between them [3]. Compar-

ing to FR QEs, RR algorithms do not require the full original image and save the

transmission costs. Many researches explored in these algorithms. Wang et al [19]

proposed a wavelet domain nature static image model for RR QE. Abdelouahad et

al [20] applied Bessel K Forms (BFK) Model for Tetrolet Coefficients in this area.

Rehman [21] extended the philosophy of SSIM to RR QE area.

1.3 QE Behaviors and Scores

Different QEs have different working principles and theoretical underpinnings.

Some of the QEs make larger values to represent better quality images, but some of

them do the opposite way. The range of different QE values are also different; some

ranges from 0 to 1 but some are wider. In addition, the distributions of QE values in

their ranges are also different, and most of them are not uniformly distributed. Based

on these situations, it is a challenge to compare different QE algorithms’ behaviors

under different cases. To deal with this problem, one method is mapping different

QE scores into the same domain by using mathematics methods, such as non-linear

fitting [22]. For fitting methods, instead of traditional logistic regression and poly-

nomial regression, Han et al [23] proposed monotonic regression which has a better

performance. For the case of evaluating more than one QE, a strategy was proposed

to jointly test objective scores of different QEs, in order to objectively identify which

kinds of images show different quality scores with others [24].
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When judging the behavior of a QE, several aspects need to be considered, such as

evaluating stability, time consumption and most importantly accuracy. When using

a QE algorithm code, it is important to guarantee the code can run successfully in

different environments, and with different kinds of inputs, for example when feeding

larger sized image on Mac system, or computing two images that are exactly the

same. Algorithms may slow down or fail in some cases. Time consumption is another

key issue because some widely used QEs are quite time consuming especially for high

resolution images. Some may take more than 10 seconds for one image. This will be

a big problem when processing a large number of images in huge image systems.

The accuracy is normally judged by comparing results to subjective databases.

Referring to subjective databases, it can be determined whether the QE make the

same decision as human assessments. The correct and false decisions are defined

in [25], such as false ranking, false tie, false differentiation and correct ranking and

correct tie. However, because the number of subjective databases are limited and

these databases have different drawbacks, researchers try to make judgments purely

based on objective QE data. Instead of applying subjective scores, Xue et al [26]

applied unsupervised learning method called Quality-Aware Clustering (QAC), on

Blind Image Quality Assessment (BIQA) without using human scored images. Cia-

ramello and Reibman [27] also proposed a systematic stress test method by setting

proxy QE to replace subjective values.

1.4 Subjective Databases

The subjective databases are designed for image QE assessments. Most databases

are generated based on reference (high quality) images or source images. Most of

these images are natural photos from daily lives and some databases also include ar-

tificial images. The reference images are purposely impaired by different distortions,

such as blur, noise and so on. For every distortion type, the reference image is im-

paired into several distortion levels, from lightly distorted to heavily distorted. These
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images will be viewed and ranked by human subjects based on their quality. After

processing the participants’ opinions, each image will receive a number which is used

to represent its quality ranking, or subjective ranking. When using the databases,

other researchers can apply different QE algorithms on the distorted images in the

database and compare the QE scores to the subjective ranking for the purpose of

evaluating the QE performance.

There are several key issues about subjective tests: the format of the subjective

test, the quality judging interface and the scoring system. The format of subjective

test governs how the test is processed. It is possible to invite human subjects to

come into the lab (In-lab test) and evaluate the quality of images with supervision.

This allows researchers to guide naive participants to follow the test procedures. But

this format is limited by human factors like time issues, which limits the scale of the

test (small number of subjective viewers involved). Compared to this, crowd-based

quality evaluation [28] is not limited by these factors. Through the Internet, the

number of participants can be large and the speed of the test is much faster. But

researchers cannot control their testing devices and cannot check the test requirements

like viewing distance and test duration. Despite the fact that participants are not

supervised, it has been proved that crowd sourcing subjective can deliver accurate

and repeatable results [29].

About the quality judging interface, when human subjects are viewing images,

some databases show the distorted image only, but some tests present both the dis-

torted image together with its reference image for participants to compare. This will

lead to different results, because participants will feel more confident to compare two

images than to judge one image only. About the scoring system of the test, most of

the subjective tests apply the absolute scoring scheme. The participants are provided

with some choices, from ‘good’ to ‘bad’ or from ‘5’ to ‘1’, and they are required to

pick one choice for each image. This method may cause problems for example dif-

ferent participants have different judging methods [30]. In addition a low confidence

in scores can cause troubles of the test [31]. Paired comparison is another method
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which only requires the participants to choose a better quality image from a pair of

distortion images. These choices can be converted to scores by mathematics models

such as Bradley-Terry and Thurstone-Mosteller [32].

Currently, some widely used databases are LIVE [33], CSIQ [34], TID [35] etc.

These databases have some limitations, for example the image resolutions are limited

to 512*512 and the distortion levels are also limited by only 5 to 7 levels. Apart from

these problems, almost all the databases only present the final Mean Opinion Score

(MOS) to every image, but do not report the ‘raw data’, such as every participants’

opinions of every image or the preferences of every pair of images. Different statistical

models are applied, which makes different raw test data generate different MOS. To

guarantee the diversity of user’s assessment, the Standard deviation Opinion Score

(SOS) and was proposed [36]. If the databases publish the raw data, researchers

who uses the databases can generate their MOS themselves by different methods or

models.

1.5 Image Distortions

Nowadays, when we use images in our daily lives, the images are almost always

impaired. The ‘channel’ from the natural image signal to Human Visual System

(HVS) includes front-end digital processing, communication channel, back-end digital

processing and display [37]. During each process of the channel, impairments occurs,

such as the color loss in taking a picture, bit loss during the transmission, compression

during storage etc. Before studying these distortions, researchers use models and

mathematical tools to analysis natural images [38] and HVS. Some HVS models are

Spatio-Temporal model [39] and ‘Standard model’ proposed in [40]. Based on the

study of image quality and HVS, it is learned that human eyes have different tolerances

for different types of distortions. So it is important to generate different types of

distortions models and impair images purposely to create impaired images as needed.
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Some of the most commonly known and relatively severe distortions are blur, noise,

JPEG compression. Blur may result from the loss focus or unstable cameras when

taking photos. In image quality area, this distortion can be modeled as Gaussian Blur.

Noise often happens in dark region of images or night photos. This distortion can be

modeled by Additive Gaussian White Noise (AWGN). JPEG is the most commonly

used image compression format but sometimes to get a higher compression ratio, the

image will be heavily compressed causing severe heavy distortions.

1.6 Thesis Summary

In this thesis, we present software to evaluate image QEs, and we also create

ground truth subjective scores through subjective tests.

For the purpose of analyzing QE algorithms, some QE evaluating software were

developed, such as IVQUEST [41]. This IVQUEST software is written in MATLAB

and designed to evaluate the performance of not only image QE but also video QEs.

However, IVQUEST is limited by the number of source images and further analysis of

scores. In this work, chapter 2 discusses about a new image QE evaluation software

framework based on the idea of [27]. Our new software is able to load in unimpaired

images and generate distortions purposely on this images. It also supports most

current QE algorithms and any new QE metrics can be added into the system. With

QE scores, the software also provides basic statistical analysis functions.

The most important function of QE algorithms is to make accurate prediction

of image qualities. The ground truth of these algorithms are from subjective data.

Currently, only a few databases are widely used, such LIVE, CSIQ and TID. But

most of them only have small sized images and the number of reference images are

quite limited. In addition, most of the databases do not provide the raw subjective

data but only publish the analyzed data.

Because of the limited subjective data, the objective QE test becomes more im-

portant for QE performance evaluation and developing new QE metrics. In chapter
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3, we present a published software which is designed to purely evaluate the QE per-

formances objectively. Although no subjective data is involved in this software, the

software is still able to report the strength and weakness of QEs in several aspects,

such as separability, invariance and monotonicity.

Although generating objective analysis software is one good method of QE evalu-

ation, it still cannot solve the limited subjective data problem essentially. To directly

solve this, new subjective data are necessary to be built. In chapter 4, a novel sub-

jective image databases is designed and generated. This new databases include 60

images with resolution of 1024*1024. Four main distortion types are applied and each

distortion type is divided into 50 distortion levels. The subjective data is gathered

from an online survey and an in-lab test. Both tests apply paired comparison method

and the ranking results are computed using Bradley Terry model with MLE method.
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2. QE ANALYSIS SOFTWARE

This chapter is focusing on the developed QE analysis software. This software is

designed based on some basic functional software modules. In section 2.1, the five

basic modules are explained and discussed in detail. After that, some testing results

of the software functions are presented in section 2.2.

2.1 Software Basic Modules Description

The software is implemented based on different functional modules. Every module

has its own focus and each of them can be used individually. There are five modules

included in this software: image impairment, QE calculation, subjective database

access, objective QE scores maps and statistical analysis. These five functional mod-

ules are explicitly explained in section 2.1.1, 2.1.2, 2.1.3, 2.1.4 and 2.1.5 respectively.

Every module is saved in a different script file and each script file includes all the

detailed functions used in the module.

Most of the functions in this software are implemented in Python environment.

In the QE computation module, the software uses QE metrics which are developed

by other researchers. Most of published QE metrics are implemented in MATLAB

codes. In order to compute this QE scores, a MATLAB software is necessary, but the

Python functions in QE computation section is able to automatically call and run

MATLAB codes in background. The supported MATLAB QE metric codes are saved

in the sub folder of the software. Also users is also able to add new QE metrics into

this software.

This software is written on Windows platform, with the coding environment of

Python 2.7. The Python and MATLAB connection module is for Windows only so

that this software now only works on Windows platform. Several widely applied
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image processing modules such as PIL [42] and openCV [43] are used in this software.

Apart from Python modules, a third party software called ‘Kakadu’ [44] is called for

JPEG2000 compression.

2.1.1 Image Impair

The goal of the image impairment section is to purposely generate images distor-

tions with a certain distortion type and to a desired distortion level. In this software,

four main supported distortion types are Additive Gaussian White Noise (AGWN),

Gaussian Blur, JPEG compression and JPEG2000 compression. These four distortion

are chosen because they are mostly happened in daily lives. Blur and noise distortion

can be easily generated from camera taking process [45], while JPEG and JPEG 2000

are the most widely applied image compression method currently. Also, most QEs

are only capable for one of these four distortion types [46]. Every distortion has a

certain parameter, in order to control the different distortion levels. The parameter,

or knob values, can be generated purposely with special purposes, such as exponential

distributed knob values may generate equal interval of distortions for certain cases.

AGWN is generated by merging the reference image with a random white noise

image, which is generated by a 2D Gaussian distribution. The mean of the distribu-

tion is set to be zero and its variance is used as the knob value. A larger variance

value provides greater increases of each noise pixel value, and results in a noisier

image. The random seed for each random distribution is recorded for the purpose of

reproducibility.

Gaussian blur is generated by convolving the reference image with Gaussian kernel.

This process is implemented by an openCV function. The size of kernel is set to be

83*83 by default which is designed to suit large sized images. The distortion knob

for blur is determined by the variances of the Gaussian kernel. Different from noise

distortion, the blur kernel is designed based on the size of input images. Comparing

to smaller sized images, large sized images need a relatively larger variance value, in
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order to make same leveled images have same visual quality. We add a ratio of the

knob value in order to control the image size. This ratio is the sum of height and

width of the input image divided by 1024. The 1024 is the sum of 512 by 512 sized

images, which means 512*512 sized images are used as reference to benchmark the

knob value of different sized images.

JPEG compression is implemented by using the saving function from PIL module.

In that function, there is a quality choice before saving JPEG file. The quality value

100 represents the best quality (not compressed) and 1 shows the lowest quality

(heavily compressed).

Kakadu software is used for JPEG2000 compression. This third party software

has a quality choice of bit rate of the output image before saving. Smaller bit rate

provides more compression. However the same bit rate compression causes different

visual experience on different sized images. Larger sized images need smaller bit rate

to be compressed comparing to small resolution images.

Apart from these four distortion types, the impair image function is also able to

compute convolutions of images. The convolution kernels can be defined by the user.

The software also can generate a constant image for specific uses. Besides, some other

helper functions are designed. They are used for repeatedly calling the core impair-

ment function, for the purpose of automatically impairing large number of images.

These helping functions are useful for generating large scaled image databases.

2.1.2 Subjective Database Access

The functions in this module are used to access or grab information or image

from subjective databases. Four database structure are supported in this software,

LIVE [33], CSIQ [47], TID2013 [48] and a self-generated database structure. This

function loads in the directories of databases and outputs a data structure. This

structure is designed as a large matrix. Each row represents one distortion image and

each column represents one attribute of that image. These attributes are designed
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to include all the information provided in the database, such as distortion type,

distortion level, image location, MOS score and so on. Some attributes are specially

added for specific database, such as ‘org’ attribute for LIVE, which represents whether

the image is original and therefore is not distorted. For other databases, these special

attributes are set as ‘N/A’. The image structure generated in this module is the

standard input for further analysis functions in this software.

When doing the statistical data analysis, images from more than one database is

used for one test. For these cases, there are some supporting functions to modify this

data structure, such as adding new images, deleting existing images or merging two

structures. Through these functions, the user may combine all the distortion images

from different databases and generate a testing image pool for further analyzing.

More functions are designed for more advanced selecting data, for example selecting

all the images with blur distortion or with same reference image from an image pool.

2.1.3 QE Calculation

The functions in this module are used to compute different QE values based on

their codes. The software allows users to add their own QE metric codes and the newly

added codes can be either MATLAB codes or Python codes. All these codes need to

be included in a sub-folder inside the software and registered in one ‘py’ file called

‘load QE info’. There are 23 QEs currently supported in this software: ADM [49],

BIQI [50], BRISQUE [13], CORNIA [51], DIVINE [52], FSIM [8], GSM [53], IFC [5],

IL-NIQE [54], IWSSIM [55], MAD [47], MIQE [56], MS-SSIM [11], NIQE [14], PSNR,

PSNR-HVS-M [57], RFSIM [58], SRSIM [59], SSIM [4], UQI [60], VIF [61], VSNR [6],

VSI [62].

The main QE computation function in this module reads in lists of directories of

distorted images (and their corresponding reference images) in order. The input is

the structure that is generated in database access module. When the data are loaded

successfully, the load QE info function is called to give instructions of how the QE is
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computed. The load QE info function stores the detail information about every QE,

such as the directory of algorithm code and the QE’s maximum or minimum values.

For example, some QEs only accept gray images so a RGB- to-gray converting process

is needed before QE computing. A MATLAB engine is called by this function and the

image information is transferred from Python into MATLAB functions which return

the result back to Python. The calculated QE scores are saved in a TXT file in the

same order as the input images list. Some QE algorithms are quite time-consuming

especially when the number of testing images is large or the image resolution is large.

For some QEs, this process sometimes may take several days to finish.

2.1.4 Objective QE Scores Mapping

This goal of this module is to compute the best fitting function based on the scat-

ter points of QE scores and MOS values. The process helps to map all different QE

values into the same domain for further analysis. In every database, each image has

one MOS score but more than one QE objective scores. The mapping process assigns

different objective values to the same subjective score domain based on the best fit-

ting function. In addition, the mapping process is able to merge data from different

databases by projecting subjective scores from different databases to the same QE

domain. There are four standard logistic mapping functions included in this software

logistic 5 (2.1) from Sheikh et al [63], logistic 4 1 (2.2) and logistic 4 2 (2.3) from

J.149 [25] and logistic 4 3 (2.4) from [47].

y = t0

(
1

2
− 1

1 + exp (t1 (x− t2))

)
+ t3x+ t4 (2.1)

y = t0 +
t1

1 + t2 ∗ exp (x+ t3)
(2.2)

y = t0 +
t1 − t0

1 + t2 ∗ exp (x+ t3)
(2.3)
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y = t0 +
t1 − t0

1 + exp (−t2 (x− t3))
(2.4)

Among the four equations above, y represents the value in subjective score domain,

and x represents the objective QE values. The parameter vector t represents the

target values to be trained for each QE algorithm. It can be observed that most of

these equations have 4 parameters involved, except the equation (2.1) which has 5

parameters and it contains one more linear term.

In this module, two kind of functions are included; the training functions and map-

ping function. The training functions apply optimization methods such as curve fit

and fmin from SCIPY module [64]. Every QE value and subjective score pair is fitted

using one of the four equations and result in the parameter vector. After the training

process is finished, the parameters are saved into a TXT file on the local disk. The

mapping function collects the parameters of the specific QE with one fitting function

and scales the QE values to subjective data domain. The scaled QE is also saved into

TXT files.

2.1.5 Statistical Analysis

This part of the software aims to analyze subjective data and objective QE scores,

in order to test the QE behaviors. There are two main analysis tests included, deciding

the agreements between QE scores and subjective values (misclassification analysis)

and resolving power analysis.

Before the analysis program runs, the software needs to find all the difference

values between every possible pair of images. Both subjective data and objective QE

scores are converted into difference vectors for further analysis. The detail steps for

this process are shown in algorithm (4).

1. Suppose there are n images Img1 to ImgN and each image has a MOS score

mosi and its QE value qei
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2. Take one value mosi and subtract all other values in vector mos, and add these

difference values into a new mos diff vector.

3. Take other values in mos and repeat step 2. Store all the difference values in

mos diff vector.

4. Repeat step 2 and 3 for qe vector and update the qe diff vector.

The outputs of this pre-procedure are two difference vectors. Notice the length of

qe diff and mos diff are both n∗(n−1)
2

. The misclassification analyzes the agreement

of the QE and MOS. An ideal QE should have a high agreement rate. The test

compares both the subjective scores and objective QE values for a pair of images and

decide whether they both represent the same quality level. Both subjective scores

and QE values have their own threshold values which are decided by users. These

threshold value represents the range that the program believes two values are in the

same quality level. For example if the QE value threshold is 0.2, then any images

have their QE score difference less than 0.2, are considered to have same quality

level. The program allows more than one QE threshold values but there is only one

subjective score threshold. Based on the comparison between difference vectors and

thresholds, the program does computations of both MOS values and QE scores and

lead to the result of disagreement percentages, or misclassification. Detailed steps are

shown below.

1. Suppose there are vectors qe diff andmos diff of length n∗(n−1)
2

. MOS thresh-

old is a constant MOS T and qe threshold is a vector qe T with length l.

2. Compare every value mos diffi with MOS T and assign 0 if MOS T is larger.

If MOS T is smaller, record the sign (1 or -1) of the difference. Save 0, -1 or 1

in a vector called MOS sign.
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3. Generate a vector D of length 6, six positions represent Correct Decisions (CD),

Correct Rank (CR), Correct Tie (CT), False Rank (FR), False Differentiation

(FD) and False Tie (FT) respectively.

D = [CD,CR,CT, FR, FD, FT ]

4. Take one value qe Ti from qe T vector and compare the difference with vector

qe diff like step 2. This result in a new vector is called qe sign.

5. Take a pair of values qe signi and MOS signi, decide the following situations.

Add 1 to the corresponding position in vector D.

FT: MOS signi equals 0 and qe signi is not 0.

FD: MOS signi is not 0 and qe signi equals 0.

FR: The produce of MOS signi and qe signi is -1.

CT: both MOS signi and qe signi are 0.

CR: the signs of two values are same but not 0.

CD: CT+CR.

6. Normalize 6 values by dividing them by n∗(n−1)
2

, and n ∗ (n− 1) for CD.

7. Repeat step 3 to 6 for every value in qe T vector and combine all the D vectors

into a l by 6 matrix.

The result matrix presents the percentage of misclassification that this QE gen-

erated with specific threshold values. A better QE should have relatively higher CT,

CR and CD values. This function can also focus on images with same distortion

type or same reference image, by selecting all input images within that category. For

example the software can only do this test on images with JPEG distortion or images

generated from the same reference image.

Another statistical test is resolving power of objective QE scores. Resolving power

is defined as the minimum change of QE values to make a significant change in

subjective data and the computation algorithm is published on [65]. This function
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divides the QE difference values into 19 groups or bins, and computes the average

probability based on corresponding subjective scores. By finding the 95% and 90%

probability confidence level, the corresponding resolving power is calculated.

2.2 Testing results

After the software functions are explained, in this section, three main testing

results of the software are presented: the QE versus MOS mapping plots in section

2.2.1, misclassification test in section 2.2.2 and resolving power test 2.2.3.

2.2.1 Subjective Data & QE Score Mapping

The result presented in this paragraph is generated based on module ‘Objective

QE scores mapping’. Two of the mapping plots are shown in Figure 2.1 as examples.

The subjective data in CSIQ database is applied to test RFSIM and CORNIA (all

other plots are shown in appendix). These plots are generated with the help from

subjective database loading module, QE computing module and mapping module. By

loading the subjective database, the distorted images are paired with their reference

image and form an image pair list. Also the MOS scores are loaded with the same

order as the image pair list. Then the QE computing module loads in the list and

outputs in a list of QE values. The red scattered plot is based on the MOS score

list vs the QE value list. Then mapping module applies mapping functions (equation

(2.1)) to generate a best fitting function, which are shown in black dots.

It can be observed from these two plots that the mapping function is almost around

the center of scatter points vertically. In CSIQ database, smaller MOS values (y axis)

represents better quality, and the direction of QE values (x axis) are inverted so that

the image quality increases. As a result, the scatter plot with a proportional trend

shows a better performance of the QE metric. It can be observed that RFSIM shows

a relatively proportional plots and its mapping function is basically able to show

their relations because the variances are limited. However, by observing CORNIA,
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rates for other distortions. This means CORNIA is probably not suitable for analyz-

ing images with contrast and noise distortions. It is still possible to compare these

two QEs with different databases, like LIVE and TID, because there are probably

testing errors inside the CSIQ subjective databases, which influence the accuracy of

subjective scores.

Table 2.1.
Misclassification analysis for RFSIM and CORNIA with CSIQ

QE Distortion CD CR CT FR FD FT

RFSIM noise 0.723 0.723 0.0 0.034 0.243 0.0

RFSIM blur 0.910 0.910 0.0 0.087 0.001 0.002

RFSIM fnoise 0.885 0.885 0.0 0.11 0.0 0.0

RFSIM JPEG 0.896 0.896 0.0 0.099 0.003 0.002

RFSIM JPEG2000 0.907 0.907 0.0 0.082 0.010 0.0

RFSIM contrast 0.906 0.906 0.0 0.092 0.002 0.0

CORNIA noise 0.503 0.475 0.028 0.206 0.216 0.076

CORNIA blur 0.882 0.882 0.0 0.117 0.001 0.0

CORNIA fnoise 0.596 0.596 0.0 0.318 0.001 0.086

CORNIA JPEG 0.842 0.842 0.0 0.105 0.003 0.051

CORNIA JPEG2000 0.817 0.815 0.002 0.098 0.009 0.077

CORNIA contrast 0.602 0.602 0.0 0.396 0.002 0.0

2.2.3 Resolving Power

The resolving power is a metric to determine the accuracy of a QE algorithm.

This value is defined by the difference of QE values which shows to what degree two

images have a statistically difference between each other, normally at 0.95 significance

level [25]. The resolving power function in the software is implemented based on the

method mentioned in [25]. There is an example result in Figure 2.2 showing this

metric, with VIF comparing to JPEG compressed images in CSIQ database. In the

plot, each red point in the figure represents a pair of images compared to other images.

The X axis shows the absolute value of the QE difference of that pair and Y axes

represents the significance level that one image in the pair is better than another.

Two green lines are the separation for 95% of points over the right or lower side, and

the blue line represents the average mean significance level for each region of delta
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3. SOFTWARE OF STRESS TESTING IMAGE QUALITY

ESTIMATORS (STIQE)

This chapter talks about a published QE analysis software STIQE [66] based on the

functional modules from chapter 2. First, we will discuss the software structure of

STIQE and its function modules in section 3.1. Then we will focus on an experiment

of testing QEs with STIQE. The design and generation of testing images are discussed

in section 3.2. Finally the testing experiment procedures and results are presented in

section 3.3.

3.1 Software Design

In this software introduction section, we will first provide its general information

in section 3.1.1. Then two main functional modules are explained in detail: QE

computation module in section 3.1.2 and objective analysis module in section 3.1.3.

3.1.1 General Description

Based on these five modules of programs mentioned in section 2.1, a high level

software is created to focus on specific QE behavior analysis. The following para-

graphs discuss one published software package: Stress Testing Image Quality Estima-

tor (STIQE) which is written based on the modules introduced in section 3.1.1.

This developed software is designed to purely measure the behaviors of image QE

algorithms objectively, which is not based on any subjective databases. This soft-

ware focuses on evaluating the QE behaviors on three aspects: separation between

undistorted and badly distorted images, invariance of pixel shifted images and mono-

tonicity of images with gradually increased distortion levels. The software mainly
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generates its own typed distortion images and do the QE computations separately.

All testing methods are described in detail below.

1. Undistorted image test will not use any distortion images. The input images

are high quality images, it is possible to assume they are undistorted images. Then

the reference images will be regarded as distortion images and are computed for QE

values. Then it compares the QE values to the upper bound of the QEs, if the actually

QE values shows the images have a relative high quality, then this QE have a good

behavior for undistorted images. This test is most used for NR QEs.

2. Badly distorted images test will impair each reference image to the most dis-

torted level for every distortion type. Then the QE values of these badly distorted

images will be computed. If the QE values represents a relative low quality, it is

possible to believe the QE has a good behavior of badly distorted images.

3. For QE invariance test, each reference image is impaired by JPEG and JPEG

2000 with a level of 30. Then both reference image and impaired image are cropped

and forms 9 pairs, with one pixel shift each pair. All 9 pairs are little bit smaller than

original pair and each pair has little difference with others. But generally they are

visually the same. Then these 9 pairs are computed by QEs and each pair results in

one QE value. After that, the software compares the maximum difference value over

9 QE values of cropped pairs to the value of original pair. If the difference is almost

0, it means the QE believes the images are almost the same like humans, and the QE

has a good behavior of invariance test.

4. In QE monotonic test, each reference image is impaired to 50 distortion levels

for one distortion type, with level 50 represents the heaviest. All distortion images will

be computed for their QE values. Among 50 QE values from one reference image,

the software computes the maximum non-monotonic QE difference and maximum

non-monotonic distortion level difference. All the QE difference values and distortion

level difference values are collected. Then their percentile values are computed. Lower

QE difference and lower distortion level difference value shows a better behavior of

monotonicity.
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ration of high and low quality images. The Cumulative Distribution Function (CDF)

of high quality and low quality images are plotted on the same plot. Kolmogorov-

Smirnov (KS) [67] statistical test is also applied, in order to judge whether the dis-

tributions of the QE values are overlapped with each other. For invariance test, the

maximum difference of the QE values of 9 pairs are computed, which shows the QE’s

minimum resolution to distinguish the quality of two images. This means two images

which have the QE value difference smaller than the resolution, are considered to

have the same quality level by this QE. Monotonicity test determines whether the

QE has a monotonic behavior with increasing distortion levels. If not monotonic, a

pair of maximum QE difference and maximum difference level is computed for each

reference image per distortion type.

QE pairwise comparison analysis compares one QE behavior with all other QEs

that are saved in the same P file. This comparison does not provide a ground truth

for judging the behaviors for the target QE because there are no subjective data

involved. However, if one QE disagrees with most of others, it is possible to believe

that there may be some errors for the target QE. The comparison procedure includes

3 steps, pooling, pairing and comparing. Detailed procedure is shown below.

1. Image vector I are loaded into the software for analysis.

2. Based on the pooling choice, I are separated into sub image vectors Isub1,

Isub2, and so on.

3. In side each sub vector Isub i with length n, the function compares the QE value

of each image Isub i a with all other images in Isub i to form pairs Psub i, such

as Psub i(a) = (Isub i(a), Isub i(b)), where 0 < b < n and a �= b. The length

of the pair should be n(n− 1)/2.

4. Repeat step 3 for every sub image vector Isub i and get pairs Psub i. (merge

Psub i(a), where 0 < a < n.)
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5. Merge all pairs Psub i and forms one long pair list P (i) = (A(i), B(i)), where

A and B are lists of images in the pairs.

6. For each QE(k) in the QE list, find which image has a better quality based on

their scores. The result is recorded in a vector R, where R(k i) is either 1 if

A(i) has better quality than B(i), or 0 otherwise.

7. Repeat step 6 for all QEs.

8. Select one target QE(k) and compare R(k) with all other R and compute the

sum of all disagreed pairs with each comparison C(k).

In step 3, the software does the pooling procedure based on user inputs. There are

four choices with whether same or different distortion type, same or different reference

image. For simplification, the software use ‘0’ to represent ‘different’ and ‘1’ for ‘same’.

For example flag ‘01’ is used to represent the pooling case with different reference

image and same distortion. So images with same distortion type are gathered to form

pools, such as ‘noise’ pool and ‘JPEG compression’ pool. Finally the vectors C(k)

shows disagreement percentages for QE(k), and the smaller values in C(k), the less

disagreement that QE has with others.

3.2 Image Preparation

This section mainly focuses on the designing and generating the test images for

the use of testing QEs. First we will discuss the source of images in section 3.2.1.

Then the distortion levels of reference image are explicitly explained in section 3.2.2.

After that we will also cover the method of processing different sized images in section

3.2.3.
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3.2.1 Raw Reference Images

The original images are selected from researchers’ photo collections and they are

taking by normally cameras in daily lives. All the images have a resolution higher

than 2048 pixels both vertically and horizontally. Before the images become refer-

ence images in the database, they are cropped and down-sampled. Based on the

content of the images, different areas (square) are selected and taken out of the im-

age. These cropped image squares all have the resolution with 2048*2048. Then by

down-sampling by 2 and 4, these images become 1024*1024 and 512*512 sized. These

two groups of images form the reference images of the database and all these images

are stored in the lab server, which are publicly assessable. All reference images are

shown in Figure A.1 in appendix.

3.2.2 Image Distortion Levels

For better analysis of the QE behaviors, it is important to generate distortion

images with different distortion levels. As designed in this image data set, each

distortion type has 50 different distortion levels. The 512 sized image data set is

also designed that all level 50 (worst quality) images from distortion types have the

same quality level. This makes human viewers do not have a clear preference that

one distortion typed images are much better than another, for example participants

will not say level 50 JPEG image is better than level 50 blur image. To ensure

this, VIF [61] QE is applied to calculate the quality of the level 50 distorted images

between four distortion types. By changing the distortion knob values (parameters),

the VIF quality scores of four level 50 images are determined to be the same, around

0.1 to 0.2. Then some distortion knob functions are modified from linear equations

to exponential equations, in order to make the quality of four distortion typed image

as linearly distributed as possible.

Figure 3.3 shows the averaged VIF scores of all distorted images in the data set.

It can be observed that four distortion types almost drops to the same VIF value at
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It can be seen from Figure 3.4 that the distortion increases as the level rises.

In addition, some low level images do not have too much obvious distortion. This

happens for a certain distortion type such as JPEG. Some distortion level ranges have

clear separation between each other and others do not. For further analysis, the level

ranges of clear distinguishable images are more studied.

3.2.3 Different Sized Images

All the distortion techniques above are applied for 512*512 sized images only. For

larger sized images, distortion type noise and JPEG compression still use the same

impairment technique, while the knob values of blur and JPEG 2000 compression

increase with image sizes. This increment ratio is determined by using the sum

of the width and height of input image sizes divided by the sum of those in 512

sized images (i.e. 512+512). Figure 3.5 shows one example reference image and

its heaviest distorted images for four distortion types across 3 sizes. Three sized

images with resolution 512*512, 1024*1024 and 2048*2048, are shown with same

viewing angle and all the distorted images are level 50. Comparing these three sized

images, it can be observed that there is little difference in blur distortion, but for

other 3 typed distortion, larger sized images present better qualities. This means

the distortion technique for blur is close to make equal viewing angle while the noise

and JPEG are more close to equal pixel level. JPEG 2000 is designed to have same

quality experience for different sized images but it is still possible to see the quality

differences. This results from the mapping method of the knob values (bit rate) of

JPEG 2000 distortion.

3.3 QE Testing Experiment

This section is about the QE testing experiment using STIQE software with the

images generated in section 3.2. We will first talk about the experiment procedures

and background information of testing QEs. Then we provide the results of three
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Table 3.1.
Summary of FR and NR QEs

Runtime (sec/image)

QE Type 512 1024 2048 Best Worst

ADM FR 0.146 .062 2.7 1 0

FSIM FR 0.34 0.54 1.44 1 0

GSM FR 0.05 0.17 0.65 1 0.8921*

MAD FR 1.52 6.3 29.2 0 184.6603*

PSNR FR 0.036 0.108 0.4 Inf 0

PSNR-HVS-M FR 2.17 8.9 35 Inf 0

RFSIM FR 0.09 0.18 0.65 1 0

SRSIM FR 0.05 0.16 0.64 1 0

SSIM FR 0.046 0.14 0.66 1 0

BIQI NR 0.68 1.06 1.58 0 100

BRISQUE NR 0.24 0.49 1.5 0 100

CORNIA NR 3.5 4.2 7.8 -14.8456* 113.5498*

IL-NIQE NR 9.8 9.8 9.85 0 145.215*

NIQE NR 0.3 1.1 5.02 0 22.9973*

The run time of each QE is tested on the machine and these values may vary

based on other machines. It can be observed that some QEs such as MAD and

PSNR-HVS-M are very time-consuming, especially for 2048 sized images.

3.3.2 Undistorted & Badly Distorted Images Test

For each QE in the table, the software computes the QE values for every reference

image (undistorted images) and its level 50 image (badly distorted images) for in each

distortion type. Then all QE values from 60 reference images generate CDFs and the

CDFs are plotted on the same figure with 3 results from different sized images. One

example plot with IL-NIQE is shown in Figure 3.6.

In Figure 3.6, the black lines show the CDF of the undistorted images which are

on the left hand side of the plot. The thicker lines represent larger sized images. The

line markers of Blue squares, red +, yellow ‘o’ and green triangle represent JPEG,

blur, noise and JPEG-2000 respectively. The largest marker shows 2048 sized, middle

sized is 1024 and smallest is 512. Comparing undistorted images and badly distorted

CDFs, IL-NIQE has a good separation of 512 sized images but it has an overlapping
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behaved QE should have a large positive overlap value. While a smaller value shows

a worse performance. The number of images in overlapping region is also counted.

Apart from the separation test, Kolmogorov-Smirnov (KS) statistical test [67] is

applied to determine the similarities of two distributions. A larger P value generated

from the KS test means that two distributions are more similar. If the QE has more

similar CDF of blur images, it is possible to believe the QE performs on viewing angle

level. If the QE has more similar CDF on noisy image, then the QE is more likely to

be designed based on pixel level.

overlap =
Bmin − Amax

Bmax − Amin

(3.1)

The results of overlap values and KS-test is shown in Table 3.2. It can be seen

from the table that the overlap of high and low quality images (negative values) all

happens in NR QEs since they do not have a reference for comparison. Among 5

NR QEs, BRISQUE has the best separation and BIQI has the worst. MAD has the

largest separation among FR QEs. Based on the analysis of KS analysis, it can be

concluded that among the FR QEs, ADM, FSIM, GSM, SRSIM and SSIM are all

more effective at comparing different-sized images with identical viewing angle, while

PSNR and PSNR-HVS-M are more effective for constant pixel size. Similarly, among

the NR QEs, IL-NIQE is unique, in that it is more effective for identical viewing

angle, while all other NR QEs are more effective for constant pixel size.

3.3.3 Invariance QE Test

Based on the invariance test function, the QE values of all cropped images are

computed and the software finds the maximum differences in every 9 pair of images.

This maximum QE difference value is called the ‘resolution’, which means any two

images with QE difference smaller than this value are considered to have the same

quality level. A good QE should have a small resolution, which means more accurate.

Two distortion JPEG and JPEG 2000 are tested for each reference image, the 95 % of
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Table 3.2.
QE statistics for high & low quality images.

QE name

Overlap range

percentage

Percent of images

in overlap region KS-blur KS-noise

ADM +9.6 0.0 0.0 0.0

FSIM +3.5 0.0 0.477 0.0

GSM +2.2 0.0 0.629 0.0

MAD +42.6 0.0 0.0 0.0

PSNR – 0.0 0.345 0.911

PSNRHVSM – 0.0 0.0 0.16

RFSIM +24.7 0.0 0.239 0.0

SRSIM +3.0 0.0 0.784 0.0

SSIM +2.9 0.0 0.629 0.0

BIQI -48.2 64.2 0.0 0.0

BRISQUE -3.1 1.4 0.0 0.784

CORNIA -10.0 3.6 0.0 0.0

ILNIQE -5.5 4.1 0.629 0.0

NIQE -5.9 4.0 0.0 0.477

maximum QE difference is shown in Table 3.3. The table also includes the theoretical

maximum and minimum of that QE. If the theoretical value is unknown, the software

finds the maximum and minimum among all possible QE values. In Table 3.3, it can

be concluded that for FR QEs, ADM is one QE has a relatively high percentile of this

resolution which reaches almost 20% of its total range. Other FR QEs have relatively

small resolution, which are all smaller than 5%. About NR QEs, the resolution values

are generally larger than FR, but BRISQUE and NIQE have percentages less than

5%. In addition, CORNIA shows negative values in the test, which maybe out of its

original defined range.

3.3.4 Monotonicity QE Test

In this test, the QE values of every distortion level image are computed and

among 50 leveled QE scores, the maximum non-monotonic ΔQE and Δd level [27]

are computed. Then the software counts the number of images with monotonicity

behaviors and plot the ΔQE vs Δd level for non-monotonic images. A well behaved

QE should have all images with monotonic behaviors. The number of monotonicity
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Table 3.3.
QE statistics for invariance test. (Observed best and worst values are
in parentheses when the paper does not indicate best/worst.)

QE name Best Worst

JPEG
95%tile of
ΔQEmax

JPEG-2000
95%tile of
ΔQEmax

ADM 1 0 0.0280 0.1954

FSIM 1 0 0.0031 0.0054

GSM 1 0.8921* 0.0003 0.0003

MAD 0 184.6603* 5.4169 4.6657

PSNR inf 0 0.2552 0.2521

PSNRHVSM inf 0 2.7049 0.3124

RFSIM 1 0 0.0754 0.0273

SRSIM 1 0 0.0016 0.0018

SSIM 1 0 0.0121 0.0321

BIQI 0 100 23.567 44.404

BRISQUE 0 100 14.202 3.9741

CORNIA -14.8456* 113.5498* 19.780 17.810

ILNIQE 0 145.215* 5.7695 9.0333

NIQE 0 22.9973* 0.6052 1.4668

images of 14 QEs are shown in Table 3.4. In this table, the maximum image number

of every cell is 60. It can be observed that almost all FR QEs have very good

monotonicity behavior for noise distortion. However some QEs such ADM and PSNR-

HVS-M perform badly for blur distortion. ADM also does not have good performance

for other two distortion types. NR QEs also have the best monotonicity behavior in

noise distortion with 512 sized images. As size increases, BRISQUE and IL-NIQE

become worse. Apart from noise, BRISQUE and NIQE also have some monotonic

behavior for blur. All QEs does not have good performance on JPEG and JPEG

2000 distortions. CORNIA behaves poorly in this test, since all reference images

show non-monotonic behavior in every case.

For further analysis of monotonicity of NR QEs, the software provides the plots

of ΔQE vs Δd level. The non-monotonicity plot is shown in Figure 3.7. Two lines in

this figure represent the 80% separation of points vertically and horizontally. It can

be observed that the non-monotonic images of blur lies horizontally with QE values

while JPEG points falls more vertically with distortion levels. Blur images in this

cases have larger QE value difference within small distortion levels, which is more
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3.3.5 QE Pairwise Comparison Test

In this test, each QE saved in the P file are compared with all other QEs, in order

to view their preferences in pair of images. For example, given a pair of distorted

images A and B, let QE 1 and QE 2 make judgments for this pair and see if both

QEs agree that A is better than B. The more pairs two QEs agree to each other, they

are more likely to have the same behavior. If one QE does not agree with most of

other QEs with very large percentages, there may be some problems with that QE

itself.

Four different kinds of pairing methods are used, same reference image and same

distortion type (‘11’ case), same reference image but different distortion type (‘10’

case), different reference image but same distortion type (‘01’ case), different reference

image and different distortion type (‘00’ case). These four cases are designed for

specific analysis in the scope of distortion types or reference image contents. Each

case generates different number of image pairs, and the result for all pairs of images

can be computed based on the results of these four cases by weights. Table 3.5 shows

the pairwise comparing percentage for all possible pairs of images. In this table, each

value shows the disagreement percentage between that QE with all others. It can be

observed that most FR QEs agree with each other more than NR QEs. FSIM, GSM

and SRSIM have the least disagreement percentage, while BIQI and CORNIA have

percentage over 20%. In FR QEs, BRISQUE and ILNIQE have good performances

but IL-NIQE fails as size increases.

For more detailed analysis, the CDF plot of disagreement percentage based on

different distortion type and different reference image (case 00) for 512 sized images

is shown in Figure 3.8. Each line in the figure shows the CDF of disagreement

percentage of one QE. If the line is on the left side of the plot, this means the QE

that line represents agrees more to other QEs. The end points of all lines gathered

with others since every two QE are compared and the disagreement contributes to the

CDF line. It can be observed that all FR QEs (solid lines) are on the left side and NR
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4. SUBJECTIVE IMAGE DATABASE

Using the software designed in chapter 2 and 3, an image database is generated in

order to provide subjective data for QE analysis. This chapter mainly focuses on

the designing and implementing subjective tests, together with the raw data process-

ing. First in section 4.1, we will discuss the procedure of subjective test: database

design, image preparation, subjective test and raw data analysis. Then the detailed

information of the online test is explained in section 4.2. Then the in-lab test is

also introduced in section 4.3. After that we are going to talk about the method

and results of analyzing raw subjective data in section 4.4. Finally we make some

discussions and suggestions about the subjective test in section 4.5.

4.1 Subjective Test Preparation

This section covers the preparation work of subjective test. The first section

4.1.1 discusses about the design of the database. Then the four main test phases are

introduced in section 4.1.2.

4.1.1 Database Design

When designing a database, there are several aspects that researchers need to

consider, such as image distortion types, distortion levels and the content of reference

images. Many widely used databases are limited by the number of distortion levels

and the resolution of reference images. For this new database, we focused on more

distortion levels and high resolution reference images. This novel database is designed

to have 60 reference images, 4 distortion types, and each distortion type is divided into

50 distortion levels. The four distortion types are Additive White Gaussian Noise
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(AWGN), Gaussian Blur (GB), JPEG compression (JPEG) and JPEG2000 compres-

sion (JP2K). The reference images will have both 1024*1024 resolution version and

512*512 version. In total there are 24000 distorted images in the database.

Every distorted image in this database can be described by 4 parameters, Ref-

erence image number (R), Distortion type (D), distortion Level (L) and image Size

(S).

Imgi = (r, d, l, s)

i ∈ [
1, 2, 3, .....24000]

r ∈ [
1, 2, 3, .....60]

d ∈ {1, 2, 3, 4} = {AWNG,GB, JPEG, JP2K}

l ∈ [
1, 2, 3, .....50]

s ∈ {1, 2}

In the expression above, i represents the index of all distortion images. r is the

index of reference image and d represents number 1, 2, 3 and 4, which represent four

distortion types, AWGN, GB, JPG and JP2 respectively. l represents the distortion

level, with level 50 indicating the most heavily distorted and 1 representing the least.

Two image size 1024 * 1024 and 512 * 512 are represented in s with numbers 1 and

2 respectively. The image index i can be calculated by four parameters in equation

(4.1):

i = (s− 1) ∗ 12000 + (r − 1) ∗ 60 + (d− 1) ∗ 50 + l − 1 (4.1)

The test is processed in a paired comparison method, which requires human view-

ers to select a better quality image from a pair of images. Since paired comparison

method needs to test each image with all other images, it is not possible to compare

every two images in the database. And because the number of images is large, we

first select representative images and then divide them into 4 testing groups.
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4.1.2 Test Steps

The whole testing processes is designed with 4 phases, with each focusing on one

different image parameter.

In phase 1, parameter D, R and S are fixed for each pair and only the L changes.

This phase only uses 1024 by 1024 sized images. 11 out of 50 different distortion

level images are selected per impair type per reference image. These 11 images have

distortion levels of 1 (lowest distorted), 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 (heavily

distorted). So there are 11*4*60 (2640) images in this testing image pool. Because

the population of this image pool is still large, it is not possible to compare every two

images in this pool. The images are paired if they share the same reference image

and same distortion type. And among each set of 11 images, only images with similar

distortion levels are tested, e.g. level 1 with level 5, level 5 with level 10, level 10

with level 15 and so on. This stage contains 10 pairs. Also images with level 1 and

level 10, level 10 and level 20, till level 40 and level 50 are also included. This stage

gives another 5 pairs. So there are 15 pairs from the same distortion type and the

same reference image. Then in total there are 15*4*60 (3600) pairs of images that

are tested for this phase.

In phase 2, only S and R are fixed, and the Distortion types (D) vary. All images

tested for this phase are 1024 by 1024 sized. We select different distortion Levels for

images in one pair so that they are comparable. For example, we can compare JPEG

level 20 image with Blur level 40 image. The selection of images depend on the result

from phase 1 and their objective QE scores. The number of selected images from

each reference image can vary, but no more than 11, which is the number of selected

levels from phase 1. The paired comparison procedure of this phase is the same as

phase 1.

In phase 3, S, L and D are fixed, and Reference images (R) vary, so that viewers

compare images with different content. Similar to previous phases, we only select

images with resolution of 1024. The distortion level needs to be relatively large,
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so that the distortion can be clearly observed by participants. Since there are 60

reference images in total and each reference image includes 4 distortion types, the

number of these candidate images is quite large. As a result, the image pairs are

constructed, taking into account of the subjective data from the previous phases,

to obtain the most information from the viewers’ inputs. The paired comparison

procedure of this phase is the same as phase 1.

In phase 4, D and R are fixed, and the image size (S) varies. Because there are

only two image sizes in the database, 512 size and 1024 size images are compared

in every pair. The images’ content and distortion type are the same in every pair.

The distortion levels are largely different because for the same distortion level, par-

ticipants normally prefer a high resolution image. To make two different sized image

comparable, lightly degraded 512 image are selected with a heavily degraded 1024

image. The comparison method is the same as in phase 1 and the actual number of

pairs are determined later.

After the test, not all of the images are tested because the 1024 sized images are

the focus of the test. 512 sized images are supporting data and build a connection

from 1024 sized to 512 sized images. This also helps to give a scope of comparing this

new database to currently widely used databases. The overall test plan is ambitions,

therefore in this work, only phase 1 of the test is implemented because of time issues.

4.2 Online Subjective Test

This part mainly discusses about the works of the online subjective test. We first

talk about the platform in section 4.2.1. Then the testing interface is introduced in

section 4.2.2. Finally we summarize the procedures of this online subjective test in

section 4.2.3.
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4.2.1 Online Platform

The preparation of subjective test begins when the images in the database are

generated. The test is performed on Amazon Mechanical Turk (AMT) platform, so it

is required to generate required testing interfaces based on its requirement. Every test

generated on the platform is formed of Human Intelligence Test (HIT) and each HIT

can be done by different participants. Researchers or requesters give the participants

financial rewards based on the number of HITs they finished. Requesters have the

right to reject any results which do not meet the qualification and refuse to pay.

4.2.2 Test Interface

The testing format is based on static web pages and each page corresponds to one

HIT. All these web pages are stored in research lab server, together with all distorted

images. For example in phase 1, 3600 pairs are tested and they are separated into

360 groups randomly and one group has 10 pairs of images. Each group is converted

into one static web page as one HIT. As a result, 360 web pages need be generated

for phase one. To generate these web pages, a template is designed in an HTML file

and the program is used to substitute the image links in every HTML file.

Considering the platform we used in the test, 1024 sized image are presented by

online participants through their own displaying devices. Due to the fact that two

high resolution images cannot be fully displayed on some monitors, one image is

display at a time. The participants cannot view two 1024 sized images at the same

time, however, they are allowed to view a pair of images, by switching back and forth

before they make judgments. There is a one second delay when an image is displayed.

This delay prevents users from switching two images quickly and make unreasonable

choices. Still, a minimum screen resolution of 1440*900 is required participants to

join the test. It is suggested that both images in a pair should be view around five

seconds. Therefore, participants have around 15 to 20 seconds to make judgment for

each pair. An example testing interface is shown in Figure 4.1.
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Figure 4.1. Example testing interface on the web page

It can be seen that one image is shown at a time on the left side, and there are

buttons on the right side. The main button in the center is viewing another image

in the pair, which can be used to switch two images, back and forth. Human viewers

can show preferences by clicking the button: this current image is better or worse

than the other. This testing interface is displayed in full-screen. There is a limit on

the number of participants to view two images in a pair; they can not switch images

more than 8 times. If this happens, images disappears and participants are forced to

choose a better quality image.

Every HIT is designed to include 10 pairs of images for participants to compare

since people can easily get tired after 10 minutes. For ten pairs, every HIT only

requires 3 to 4 minutes. In addition, each HIT is viewed by five different human

subjects and this number does not include the rejected results. The financial reward

of every HIT is set to be $0.04.
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4.3.1 Purpose and Design

The In-Lab subjective test is a complementary test and it is performed after the

online test. The purpose is to gather more data in a shorter time period in a different

testing environment.

The testing images are same as the images used in online subjective test, but

only first 15 reference images are selected for the test, which provides 900 pairs per

view in total. Each pair of images requires 10 seconds at most and after 10 seconds

the images disappear and the participant should make a choice. The waiting time

between two pairs is set to be 1 seconds. On average, each pair costs around 5 to 8

seconds. Based on the concerns of time for each test, 900 pairs are divided into 5 lists

of pairs, with each list consists of 180 pairs, which costs around 15 - 20 minutes. Each

pair of images is set to be compared by 5 people so this test requires 25 people/HIT

in total.

4.3.2 Test Interface

The In-Lab test is based on a two screen testing environment which is shown in

Figure 4.4. The testing software used for this test is PsychoPy [68], which is able

to present two images on two screens. For each time, two 1024*1024 sized images

are displayed simultaneously and the participants are allowed to directly compare the

differences of two images. Two images are positioned in the middle part of the screens

and viewing distance is set to be around 1 meter. The user is asked to press key ‘1’

and ‘0’ from the keyboard to select the left or right image.

Based on this testing environment, the display difference of the two screens may

influence the participant’s choices. The screen is calibrated using Spyder5 [69] before

all the test started. Comparing to online test, the confidence level of in-lab tests are

higher [70].
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Figure 4.4. Testing environment of In-Lab subjective test

4.4 Data Analysis

This section talks about the process of the raw results generated from the test.

Both online and in-lab tests generate data matrices separately and these matrices

include all the preference of human subjects between pair of images. A merged matrix

is generated by summing the online and in-lab matrices together. We will first talk

about the theory of the computation in section 4.4.1. Then we will discuss about the

necessary conditions of this computation method in section 4.4.2. After that, some

example subjective scores are presented in section 4.4.3. In addition, we compare the

generated subjective scores to some QE scores in section 4.4.4.
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4.4.1 Computation Theory

When the paired comparison matrix are available, models are applied to compute

the scores for each image. Bradley Terry model is a linear model [71] used in paired

comparisons. This model is described in equation (4.2).

P (i > j) =
πi

πi + πj

(4.2)

In equation (4.2), the left side shows the probability of object i beats j. On the

right side, πi represents the true ratings of the ith score. If there is a list of objects

numbered from 1 to m, and we want to to compute the parameters π. Then the

Maximum Likelihood Estimation can be applied with the objective function shown

in equation (4.3).

L (−→π ) =
m∑
i,j

w (i, j) log

(
πi

πi + πj

)
(4.3)

Equation (4.3) shows the log-likelihood function, and w (i, j) represents the num-

ber of times that object i beats j.

Theoretically, the image quality scores can be computed follow by this model. In

phase 1, only images with same reference image (R) and same distortion type (D) are

compared. So all 11 images (level 1, 5 ...50) with same R and D generates one block

for an image quality score computation process. The detailed computation algorithm

is below.

1. Grab one block (11*11) out of the whole result matrix.

2. Generate an initial guess −→q vector

3. Optimize the objective function (4.3) and get optimized quality scores −→qopt

4. Compute the error |−→q −−→q opt| and check if the norm is larger than threshold

value (set by 0.1).
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5. If the error is larger than threshold, use −→qopt as initial guess and go back to step

3.

6. If the error is smaller than threshold, the result is log (−→qopt) and the algorithm

terminates.

However, when applying the Bradley Terry model with MLE method, there is

a constrain: every partition of the objects into two nonempty sets, must have some

objects in the second subset that has been preferred to at least once to some objects in

subset one [32]. This condition is also explained in [72] using the concept of graphs:

suppose all objects in a list are the nodes of a graph and the w (i, j) represents a

directed edge from node i to j. Then in this graph, that constrain can be expressed

that there is always a path from any node to other nodes in the graph. The matrix

block is calculable only if it satisfies this requirement.

4.4.2 Matrix Block Analysis

The result matrix generated from the subjective tests is 12000 by 12000. Inside

this matrix, only cells representing images with same reference images and same

distortion type have non-zero entrees. So before doing the computation, the first step

is to separate and analyze the block of matrix. The block of matrix example is shown

in Figure 4.5.

In Figure 4.5, two axises are the distortion levels that shows the distortion levels

of images that are compared in phase 1. The cell of row i and column j stores the

number of how many people prefer the image with distortion level i than level j.

This value is denoted as w (i, j) in equation (4.3). Only cells in green and yellow

store the preference votes and all other values are 0. To check if this block can be

computed by Bradley Terry model and MLE, the block must satisfy the requirement

mentioned in section 4.4.1. From Figure 4.5, it can be observed that one possible

way for the matrix to fit the algorithm is that all green cells have non zero entrees.

Another way to satisfy the requirement is to have one green cell 0 but its adjacent





55

from the 15 are viewed by 11 people while the pair of last 45 reference images are

only viewed by 5 people. It can be concluded that a block matrix with more data

is more likely to be computed. However, comparing the four distortion types, blur

distortion has the least number of satisfied blocks. This indicates that participants

can clearly distinguish blur images with different blur levels, so that all people prefer

one image in a pair than another.

4.4.3 Ranking Data Result

The blocks that are satisfied with the Bradley Terry model requirement can be

computed. Each block will generate individual subjective quality scores for every

image. The algorithm described in section 4.4.1 is applied for this computation. The

subjective data of reference image 1 is plotted in Figure 4.6. The block matrices of

four distortion types from reference image 1 all satisfy the computation requirement.

In Figure 4.6, the X axis shows the distortion level and Y axis represents the

subjective scores. For ideal case, the subjective scores should have a linear relationship

of the distortion levels. From these figures, the noise and blur distortion have plots

that are basic linearly decreasing. While for JPEG and JPEG 2000 distortions, their

lines have a flat start and then dramatically decrease after level 30. Especially for

JPEG distortion, the points before level 30 fluctuates and cause non-monotonicity.

This is because the images in low level ranges of the JPEG and JPEG 2000 are too

close for the participants to tell the difference. The scores of every distortion type

are relative rankings, which only represents the difference between each other. Since

no different reference images or different distortion images are compared, the scores

are only meaningful in their own graphs.

4.4.4 Subjective Scores vs QE Values

The goal of generating subjective database is to benchmark the objective QE

performances. In this section, we use the available subjective scores to test some
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Table 4.2.
Pearson Correction of QEs with subjective data

QE noise blur JPEG JP2K

ADM 0.9 0.955 0.809 0.88

FSIM 0.826 0.889 0.755 0.865

GSM 0.849 0.789 0.77 0.829

MAD 0.888 0.919 0.867 0.921

MIQE 0.861 0.939 0.856 0.896

MSSSIM 0.859 0.865 0.794 0.85

PSNR 0.833 0.744 0.615 0.723

PSNRHVSM 0.837 0.84 0.711 0.811

RFSIM 0.879 0.898 0.86 0.901

SRSIM 0.841 0.863 0.746 0.851

SSIM 0.763 0.866 0.754 0.828

VIF 0.851 0.9 0.848 0.837

VSI 0.849 0.789 0.77 0.829

BIQI 0.83 0.81 0.757 0.698

BRISQUE 0.826 0.926 0.818 0.781

CORNIA 0.727 0.869 0.747 0.791

ILNIQE 0.837 0.879 0.78 0.825

NIQE 0.849 0.939 0.759 0.774

4.5.1 Incalculable Matrix Block

The matrix block checking process is important before computing the subjective

data. The unsatisfied matrices are not able to use the Bradley Terry model with MLE.

To avoid this problem, Tsukida and Gupta discussed about this problem [30]. Instead

of directly process the input matrix, they proposed a related solution by changing 0

entrees into 0.5 and their opposite entrees to m− 0.5, where m is the number of total

number of people who view this pair.

Apart from this, we also find some blocks satisfying the requirements still cannot

converge in this computation process. Two paired comparison matrix blocks are found

with this problem and one of them is shown in Figure 4.9.

The matrix in Figure 4.9 satisfies the computation requirements but the optimiza-

tion process does not converge. Checking the pair of images with level 15 and level

10, 4 people choose level 15 is better than level 10 among 6 viewers. This pair causes

a problem because it disagree with other adjacent pairs and the optimization func-

tion terminates at the maximum number of iteration. This situation also happens on
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But for blur distortion, the participants are able to find the difference by searching

detailed areas on both images for every pair we tested. As a result, when testing blur

distortion, images with closer distortion level should be paired together.

4.5.2 Image Distortion Levels

The image distortion levels are important and hard to control in generating the

image databases. The ideal distortion levels should almost agree with result from hu-

man viewing experiences. This ideal case presents the linear relationship of subjective

scores versus distortion levels. Besides, the worst levels of different distortion types

should provide the same viewing experience for human subjects. However, because

different human viewers may have different opinions, this goal is hard to achieve.

In this test, no subjective viewers are involved in the image generation processes,

because 50 levels are designed and informal subjective test is expensive. Objectively,

the distortion levels are determined with respect to the one widely used QE VIF [61].

The distortion parameters are mapped to levels with carefully computed non-linear

equations to make image with same distortion levels have the same VIF scores. Be-

cause VIF algorithm mainly compares the amount of information difference between

reference image and distorted image, the distortion levels generated using VIF causes

problems for JPEG and JPEG 2000 images. These two compression methods take

advantage of HVS and reduce the information that human eyes are not sensitive to.

This causes the fact that low leveled JPEG and JPEG 2000 images provides very high

viewing experience for human subjects, and when the level reaches the threshold of

human eyes, the viewing experience dramatically decreases. One example is shown

4.10.

As Figure 4.10 shows, before level 35, the subjective scores fluctuates around a

high level, but decreases immediately after level beyond 35. This problem may be

solved by non-linear mapping. The mapping of distortion parameters can reduce the

range of low distortion levels and generate more levels in dramatic decreasing regions.
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The testing time is another problem of online subjective test. In this test, 1800

HIT are posted on AMT and each HIT costs 3 minutes on average. The reward for

each accepted HIT is $0.04. With this testing condition, the process lasts for 1 month

which is beyond our expected testing period. This is mainly based on the financial

reward, but by increasing the testing amount for each HIT may help to decrease the

whole testing period. In addition, the online testing web page should be able to reject

the result automatically if it is unaccepted. This process will help to increase the raw

data processing efficiency.



64

5. SUMMARY

This thesis mainly focuses on the analysis of current image Quality Estimators (QE)

and building new subjective data base. A number of programs are implemented and

saved in several functional modules. Some of the modules are combined to a published

software STIQE. The subjective database is generated based on the data collected

from both the online and in-lab subjective tests.

The QE analysis software includes five main modules, image impair, subjective

database access, QE calculation, objective QE score mapping and statistical anal-

ysis. This software can load subjective databases or generate distortion images as

test cases to evaluate the performance of QEs. The published software STIQE is a

purely objective analysis software, which can use any images as input to test QEs.

STIQE mainly focuses on three testing aspects, the good bad quality separability,

pixel shift invariance and monotonicity of different distortion levels. In software test-

ing experiment, 60 reference images with 4 distortion types are used as input to test

14 QEs.

The subjective database is designed based on the 60 reference images used in the

software testing part. These images are processed to 1024 * 1024 sized and each

reference image is distorted with four distortion types. For each distortion type,

the one reference image is processed to generate 50 distortion leveled images. Pair

comparison method is applied for the subjective test and the whole test is divided

into four phases, but only phase 1 is covered in this thesis. The subjective test is

firstly performed through the online platform and followed by another in-lab test.

The result shows the blur and noise distortion have the most linear ranking scores

while JPEG distortion and JPEG 2000 images do not have a clear separation in low

distortion region of their subjective scores.
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A. APPENDIX FIGURES

A.1 Reference Images

The Thumbnails of all 60 reference images used in the database is shown A.1.

A.2 Subjective Database & QE mapping

The software is able to load information from subjective databases, such as LIVE,

CSIQ and TID2013. The data results will be saved in specific structure and available

for further operations. The current QE metrics are also capable to run by this soft-

ware, with any input images. If the QE is written in MATLAB code, the software will

be able to call MATLAB software for QE computing. With subjective database, the

software can plot the objective QE score vs subjective data, with non-linear fitting

function. Figures below show all the objective QE scores vs subjective Mean Opinion

Scores (MOS) from CSIQ database, together with the non-linear fitting functions.
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Figure A.1. Reference images in the database
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