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ABSTRACT

Hegde, Prajwal Bhaskara, M.S., Purdue University, August 2016. Monitoring DBMS
Activity To Detect Insider Threat Using Query Selectivity . Major Professor: Elisa
Bertino.

The objective of the research presented in this thesis is to evaluate the importance

of query selectivity for monitoring DBMS activity and detect insider threat. We pro-

pose query selectivity as an additional component to an existing anomaly detection

system (ADS). We first look at the advantages of working with this particular ADS.

This is followed by a discussion about some existing limitations in the anomaly detec-

tion system (ADS) and how it affects its overall performance. We look at what query

selectivity is and how it can help improve upon the existing limitations of the ADS.

The system is then implemented using Java on top of the existing query parser used

by the AD mechanism which in itself is written in Java. Towards the end, we look

at how our version of the anomaly detection mechanism using query selectivity fares

against a Relational database management system (RDBMS) query optimizer. With

high accuracy results that closely match the results produced by the underlying query

optimizer, we provide some proof of concept(PoC) for adding query selectivity to the

existing AD mechanism .We conclude that a tool to analyze SQL and evaluate query

selectivity is required to make the anomaly detection mechanism more maintainable

and self-sustained.
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1. INTRODUCTION

Insider threat is often perceived as an act of disloyalty carried out by disgruntled or

old employees from an organization who benefit from causing harm to the organiza-

tion. This insider perpetrator may or may not carry out a full-fledged cyber-attack

on his/her own but can aid malicious activities or actors who possess sufficient re-

sources to engage in such an attack. Cyberattacks are costing companies millions

and millions of dollars despite them trying to safeguard their systems and networks

against hackers. Globally, the insider threat has grown because the value of enter-

prise data has increased significantly in recent years [1]. Accordingly, the challenge

of detecting insider threats has been emerging as a big research topic in the field of

information security over the last few years. Most of the existing defense mechanisms

like intrusion detection systems, firewalls, anti-virus software only protect us against

external facing threats.

One of the main advantages of using Database Management Systems (DBMS) and

RDBMS over file systems was the ability to provide access control. DBMS enables

database administrators to grant users and applications specific roles and privileges

based on their requirements. These access control mechanisms however are not enough

to safeguard our databases because they dont defend against malicious insiders and

compromised applications. Hackers for instance can use some unknown vulnerability

in a privileged application and use it to fire malicious queries. OS and network level

firewalls will not be able to detect such anomalies because they only monitor system

logs and network logs respectively. Moreover, insider threat can be more than just

disloyal and disgruntled employees. Social and political factors that shape an indi-

viduals ethics and morals play a big role in information security policy compliance.
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Given all these reasons, the need for an anomaly detection that detects malicious

activities from previously trusted applications and users is imperative. Some of the

previous work done in this topic demonstrate the integration of a DBMS specific

anomaly detection (AD) mechanism within the core of the DBMS functionality [2].

User actions that are deemed malicious for a DBMS are not identified malicious by

existing OS and network level AD systems. To understand this better, consider an

example from the healthcare industry. Medical records that are not maintained elec-

tronically, are worth more than credit card information because of the possibility of

its abuse. Healthcare professionals like receptionists, nurses and doctors have regular

access to such healthcare records. Consider a receptionist who needs to access the

contact information of a hospitals patients to confirm their daily appointments. She

uses some privileged application with her login credentials and fires a query to obtain

the contact numbers of all the patients listed for a particular day. Occasionally, she

might need to access the patients address or emergency contact information. This

information is part of the hospitals patient database and the receptionist has been

granted privilege to access it. Now, suppose that the residence and office address of a

patient was queried using the receptionists login credentials on a particular day. How

can this activity be flagged? This can be a premeditated attempt to steal the data

or attackers getting access to the privileged application in some manner.

Most of the RDBMS systems which use SQL maintain their logs in forms of SQL

queries which are not parsed by existing OS and network level AD systems. The

approach described by Shebaro, B. et al. [2] in the above paper describes the imple-

mentation of an AD system that parses such SQL query logs and finds anomalies.

In some proceeding work done in [3], we come across DetAnom which is an anomaly

detection mechanism that does the AD work in 2 stages: Profile creation phase and

anomaly detection phase. In the profile creation phase, DetAnom creates a profile

of the application program which can succinctly represent the normal behavior in

terms of its interaction with the database. After a sufficient profile creation, the
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anomaly detection phase is used to detect anomalous queries before it even reaches

the database. One of the main advantages of using this type of AD detection is that it

tightly integrates the AD mechanism with the database. In other words, the anomaly

detection is active and not passive.

However, we found some exceptional cases that can be termed as anomalies but

are not caught by this AD engine. For each query in the profile creation phase, the

corresponding signature and constraints are recorded. This signature is composed of

a tuple representation of the query which is used to depict query features like table

name, selected columns, and filter columns. When the system in anomaly detection

phase, these signatures and constraints are compared with the new query to decide

if the query is anomalous or not. The scope of this research was to identify anomaly

cases that were not handled by this existing AD mechanism. After identifying such

cases, the end result of this research would be to add additional features to the AD

mechanism to deal with such exception cases.

In this thesis, we have proposed and implemented an addition to the DetAnom mech-

anism by adding query selectivity to it. Using query selectivity, we were able to add

more anomaly detection features to the mechanism making it more maintainable and

self-sustained. We built this implementation on some ongoing research in query se-

lectivity [4] to improve anomaly detection. By calculating the selectivity of queries

fired by privileged applications against its database, we get an idea of the volume

of data returned by these queries. Using this volume estimation, we can further fine

tune the exiting AD mechanism in DetAnom.

1.1 Scope

1. Identify queries that are exceptions and not handled by the existing DetAnom

AD mechanism.
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2. Identify additional functionality that should be added to the AD mechanism to

handle these exceptional cases.

3. Evaluate query selectivity and how it will help make the DetAnom AD mecha-

nism more maintainable and autonomous.

4. Using bulk data generation tools, compare the selectivity obtained by this ex-

tended DetAnom mechanism with the selectivity obtained by the underlying

RDBMS query optimizer.

1.2 Assumptions

1. We assume that the user interacts with the database using SQL commands only.

2. We assume that the underlying database has role based access control (RBAC)

where in the users are given privileges based on their roles.

3. The anomaly detection module will work in similar sync after adding additional

query selectivity features to the query parser module.

4. Query selectivity for complex queries can be evaluated similarly and will remain

consistent with the outcome of this thesis.

5. This additional module will improve DetAnom’s anomaly detection accuracy

but it will not make DetAnom foolproof.

6. Other DBMS systems (besides PostgresQL) will produce similar results.

1.3 Limitations

1. No connectivity with the back-end database. We are working only with the

query parser module of the AD mechanism which intercepts every query before

it reaches the database.
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2. Within the scope of this thesis, we limit ourselves to handle mostly simple

queries which use logical operators like AND, OR and NOT alongside condi-

tional operators like <, > and =.

3. Complex queries with subqueries and JOIN operators are not handled by the

existing query selectivity addition.
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2. REVIEW OF RELEVANT LITERATURE

In this section, we review all the existing work done on RDBMS anomaly detection.

We look at the pros and cons of different AD mechanisms that exist and why this

thesis is aimed on DetAnom? We look at the key advantages that separate this

anomaly detection mechanism from other ADS. Lastly, we address the limitations

that exist in DetAnom.

2.1 Existing Anomaly Detection Mechanisms:

As discussed in the introduction section, AD approaches for database systems

came into play after the advent of relational database management systems over tra-

ditional file systems. RDBMS is the basis for the standard query language (SQL)

which in turn is the basis for most database systems like MySQL, PostgreSQL, etc.

These database systems use SQL queries to carry out its functionalities. SQL queries,

unlike system and network level queries cannot be parsed by traditional AD systems

that monitor operating systems or networks. While tools like intrusion detection

systems (IDS), Intrusion prevention systems (IPS) and antivirus software among oth-

ers defend our IT infrastructure from an external attacker trying to penetrate our

systems, they are rendered useless against insider threats. The problem of securing

any and all data from such insider threats is very complicated and requires the right

combination of tools and policies to overcome it. Database based anomaly detection

provide an anomaly detection tool that can parse through SQL queries – used by

the user to interact with the database to flag anomalous behavior. Previous work

suggests that this approach can be both syntactic and semantic.
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Spalka et al. [5] proposed an approach of detecting anomalies using the state re-

lations which depends upon the users behavior and the different data points the user

hits during normal transactions. According to Spalka et al., their ADS is based on

how A user executes syntactically related commands, which place a specific load on

the DBMS. Mathew et al. [6] talks about another approach that models the users

database access using a multidimensional vector and then uses a training phase to

quantify these vectors. Chung et al. [7] propsed distance measure as a variable to

understand the data structure and semantics associated with the given query. This

distance measure is a quantity that explains the frequency of use of a particular

dataset with respect to the currently working scope. Overall, we see that several

syntactic and semantic attributes of SQL queries have been taken into consideration

to establish a baseline that distinguishes between normal and anomalous queries.

2.2 DetAnom

In the PostgreSQL anomalous query detector demonstrated by Shebaro, B. et

al. [2], the AD system is trained by extracting relevant features from the parse-tree

representation of the SQL commands, and then uses the DBMS roles as the classes for

the Bayesian classifier. Every SQL query is intercepted before it reaches the database.

The mechanism is split into two stages: the training phase and the anomaly detection

phase.

In the training phase, the mechanism relies on intrusion free transactions between

authorized users and the database. With every transaction, the underlying access

patterns are associated with user roles using a fine triplet representation. A fine

triplet representation was first introduced by Bertino et. al [8]. Triplets are our basic

unit for viewing the log files and are the basic components for forming user and role

pro- files, since subjects actions are characterized by sequences of such triplets. For

sake of simplicity in the adopted notation, we represent a generic triplet with T (c, R,
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A) 1, where c corresponds to the command, R to the relation information and A to

the attribute information. These fine triplets of SQL queries are then fed to a Nave

Bayes Classifier (NBC) which then outputs a corresponding identifier for every role

of the role based access control.

In the anomaly detection phase, Maximum Aposteriori Probability (MAP) is used

to determine the role associated with a new query. If the role predicted by the classi-

fier is different from the original role associated with the query, an anomaly behavior

is detected and the query execution stops.

DetAnom [3] was built on top of this PostgreSQL anomalous query detector. This

mechanism was designed to carry out concolic execution of a privileged application

program that interacts with the database. Similar to the PostgreSQL anomalous

query detector, DetAnom works in two stages: Profile creation and anomaly detec-

tion. In the profile creation phase, the application program is instrumented in a

concolic execution environment where in different constraints corresponding to dif-

ferent input values are applied. The objective is to cover all paths possible. Thus,

depending on the outcome, new inputs are provided that reverse branch conditions.

All of these generated queries are passed on the profile builder module and then to

the respective database. Once the query reaches the profile builder, corresponding

query signatures are generated that are similar to the triplet representation used in

the above mentioned paper. Queries’ signatures and corresponding constraints are

used to build the profile of the application. Thus, every query in the profile creation

phase gets associated with a query record which is a combination of its constraints

and associated query signature.

The anomaly detection phase of DetAnom involves each new query passing through

the QI (Query interceptor) to the ADE (Anomaly detection engine). Here the first

step is identifying the inputs of the executing application program. Based on the in-
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put parameters, the ADE finds the corresponding constraints and simultaneously the

query records associated with it. The signature generation sub-module then regen-

erates a signature of this received query and forwards it to the signature comparison

sub-module which verifies if the newly generated signature matches with the one in

the accompanying query record. If there is a mismatch, the AD engine raises a flag

and response actions are taken as specified. Strict and Flexible denote two forms of

response action that the ADE can take.

2.3 Advantages of DetAnom over other AD mechanisms

Some of the key advantages of using DetAnom in this thesis over other database

AD mechanism are as follows:

1. The anomaly detection mechanism is active. Every query is intercepted by

the DetAnom mechanism before it reaches the database. This eliminates the

possibility of a back door entry that is observed in other passive AD mechanisms.

2. The anomaly detection mechanism is implemented as an additional feature of

the database which makes the physical location of the underlying database

unimportant. This feature is particularly important in todays day and age as

enterprises are trying to move their data to the cloud or use third party database

services.

3. DetAnom is tightly integrated with the database which makes it handy to do

more than redirect anomalous queries. Several useful additions have been sug-

gested to this mechanism over the years; this research being one of the them.

Database administrators for instance can handle different types of anomalous

queries differently and implement response actions accordingly.

4. Since all SQL based database systems have the same nomenclature, DetAnom

is not restricted to any one form of DBMS and can be used to detect anomalies

in MS SQL, PostgreSQL and Oracle among others.
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2.4 Limitations in DetAnom

The query signature generation mechanism used in DetAnom only keeps track

of the tables and columns names mentioned in the query. Consider the following as

example in [3]:

Query:

SELECT employee id, work experience FROM WorkInfo WHERE work experience >

10;

Query signature:

{1, {{200, 1}, {200, 2}}, {200}, {{200, 2}}, 1}

This query signature is generated using the metrics in Table B.1 in Appendix.

Reading the query signature, we understand that the query is to SELECT (1) em-

ployee id (200, 1) and work experience (200,2) from WorkInfo (200). There where

condition depends on work experience (200, 2) and has 1 constraint (1).

This is a pretty accurate representation; more accurate than some other metrics

used in other database ADS. However, as we can see, the query signature doesnt

keep track of the constraints in the where condition except for the column name and

count. This gives rise to some potential anomalous queries that cannot be detected

by DetAnom.

To understand this limitation more clearly consider the following examples of queries

from Table B.2 in Appendix that will return different results but will be treated the

same by DetAnom.

DetAnom will generate the same query signatures for each of the query pairs shown

in Table B.2 in Appendix. Hence, DetAnom will not raise any flags if a privileged
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user is trying to fire queries that have the same table and column names but differ in

some where condition constraints.
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3. FRAMEWORK AND METHODOLOGY

In the following subsection, we look at:

1. What is query selectivity?

2. How can it be added to DetAnom?

3. How will it improve its overall performance?

3.1 Query Selectivity

Several relational database management systems maintain statistics in system cat-

alogs that are used to estimate the cost of operation and result sizes. These statistics

are maintained in system catalogs are used by query optimizers to estimate the cost

of operations and result sizes. Consider the System R Optimizer [9], which is one

of the most widely used query optimizers that works well for queries with less than

10 join conditions. When the number of joins in the query grows large however, this

can take an enormous amount of time and space. The query optimizers consider a

combination of CPU and I/O costs before deciding the most optimized path to take

to carry out the query functionality. There are innumerable ways to go about this;

the system R optimized only traverses the left-deep plans to find the most optimal

path. Here left deep plans indicate the output of each sub-part of a query is pipelined

to its adjacent left operation without storing it. Some other plans include single-

relation plans and multiple-relation plans. Depending on the underlying query plan,

the query optimizer estimates the CPU, I/O costs as well as the result sizes.

According to PostgreSQL documentation [10], The current PostgreSQL optimizer

implementation performs a near-exhaustive search over the space of alternative strate-
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gies. This algorithm, first introduced in the ”System R” database, produces a near-

optimal join order, but can take an enormous amount of time and memory space

when the number of joins in the query grows large.

While estimating result size, which indicates the maximum number of tuples returned

in a query result, the query optimizer calculates a reduction factor (RF) based on

the where condition. Reduction factor of a term in the WHERE clause is the ratio

of (expected) result size to input size [11]. So consider a query as following:

Query:

SELECT * from students WHERE age > 20;

Here the number of tuples returned by the first part of the query select * from

students; is limited by the conjunct where age > 20;. Thus the reduction factor will

be calculated as the number of tuples returned by the above query divided by the

number of tuples returned by same query without the where clause. Query selectivity

is one of the parameters evaluated by the query optimizer to find the most optimized

access path. Unlike RF, which evaluates each where clause conjunct, query selectivity

is used to compare access paths. To better understand the interdependency between

query selectivity and reduction factor, we say that query selectivity depends upon

the several conjuncts used in the query and the fraction of tuples that satisfy a given

conjunct is defined by the RF. In some cases, (not all), the query selectivity can be

the product of the reduction factors for each of the conjuncts in the where clause.

3.2 How Query Selectivity is evaluated

We refer to the official PostgreSQL documentation [12] to understand how query

selectivity is evaluated by its optimizer. Note that the reference to PostgreSQL is

because the implementation of this thesis was performed on top of PostgreSQL v9.5.

Similar query optimizers exist in almost all SQL based database systems.
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Consider the same query listed above:

select * from students where age > 20;

As per the given documentation, ”The planner examines the WHERE clause con-

dition and looks up the selectivity function for the operator < inpg operator. This

is held in the column oprrest, and the entry in this case is scalarltsel. The scalarltsel

function retrieves the histogram for unique1 from pg statistics.”

Here, the histogram is one of the data structure in pg statistics that divides the range

of values in each column into buckets. For the above query, the planner (query op-

timizer) will retrieve the corresponding histogram by running the following query in

the background:

Query:

SELECT histogram bounds FROM pg stats WHERE tablename =′ students′

AND attname =′ age′;

Result:

histogram bounds

————————————————————————

{0, 5, 25, 50, 60, 100, 160, 172, 220, 400, 995}

Using this histogram bound values, the query selectivity is evaluated as follows:

Selectivity = (1+(20−bucket[2].min)/(bucket[2].max−bucket[2].min))/num buckets

= (1 + (20− 5)/(25− 5))/10

= 0.175

This indicates one whole bucket (0.1) plus a linear fraction of the second bucket

(0.075).

The number of rows returned can be calculated by:

No. of rows = selectivity ∗ cardinalityoftable(students)

= 0.175 ∗ 100

= 17.5
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This indicates that the query optimizer has now evaluated this access path obtain-

ing a selectivity of 0.175 which eventually will return around 18 tuples. Notice that

we have not actually parsed through the database to find out how many students aged

20 exist but are just using the histogram values. These statistics are then compared

against the selectivity of other access paths and the optimal query execution path is

selected.

3.3 Applying Query selectivity to DetAnom

As discussed in the Limitations of DetAnom section, the tuple representation used

in DetAnom does not account for the constraints in the where condition except for its

count and column names. Query selectivity is evaluated using the constraints applied

to a query in the where clause. Thus, in this research, we suggest that we add an

extra component to the query signature that indicates the query selectivity of the

given query.

Lets consider the following two queries as given in Table 2.2:

Legitimate Query:

SELECT * from WorkInfo WHERE salary > 150000

Anomalous Query:

SELECT * from WorkInfo WHERE salary > 0

As discussed in the above section, the selectivity value for the first query will be

calculated based on the logical operator used in the where clause (>) and comparison

value (15000). Similarly, the selectivity for the second query will be based on the

logical operator used in its where clause (>) and comparison value (0). Based on the

formula used in the above section, we understand that the selectivity value for the

anomalous query will be much higher than the legitimate query. In other words, we

now understand the selectivity of queries issued against the database; which indicates

the volume of data returned by that query can be used to differentiate anomalous

queries from legitimate ones. Adding this query selectivity component to DetAnom
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will enable the AD mechanism to detect anomalies in the volume of data return

before even executing the query. Our research is supported by some other ongoing

research [4] that explain how adding query selectivity improves the precision of the

anomaly detection. In this following section, we look at how query selectivity can be

calculated for different types of queries and how it can be integrated with the existing

DetAnom mechanism.

3.4 Implementation

The profile creation phase of DetAnom uses a general SQL parser [13] that is

used to dissect the SQL queries into components as desired by DetAnom. This SQL

parser is written in JAVA and is capable of parsing though a query and separating

out its tokens in a tree type representation. Since we have implemented the query

selectivity functionality on top of this SQL parser, we work though the plan tree of

the processed query from top to bottom in a Recursive-DFS (Depth first search) type

algorithm. We calculate the individual selectivitys for each where clause conjunct

and then based on the operators used, calculate the overall query selectivity. The

formulas for different comparison and expression type of SQL tokens and how their

respective selectivitys are calculated is given below:

3.4.1 Less than ’<’:

Query syntax:

SELECT column1 from table1 WHERE column2 < value;

As indicated in one of the examples above, the PostgreSQL documentation shows

that the selectivity for ’<’ operator is calculated by the ’scalarltsel’ function using its

histogram bounds. We query the underlying database to obtain the histogram of the

respective column and use it in the following formula:
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Optimizer query:

SELECT histogram bounds FROM pg stats WHERE tablename =

table1′ AND attname =′ column2′;

Selectivity = ((i−1)+(value−bucket[i].min)/(bucket[i].max−bucket[i].min))/num buckets

Where,

i : Index of the bucket in which the value lies

bucket[i].min: lower bound of the ith bucket

bucket[i].min: upper bound of the ith bucket

num buckets: total number of buckets

3.4.2 Equal to ’=’:

Query syntax:

SELECT column1 from table1 WHERE column2 = value;

The selectivity of queries with = operator is determined using the function for =,

which is eqsel. The eqsel function in turn looks up the most common values (MCVs),

most common frequencies (MCFs) and number of distinct values (num distinct) data

structures to evaluate its selectivity.

Optimizer query:

SELECT n distinct, most common vals, most common freqs FROM pg stats WHERE

tablename=’table1’ AND attname=’column2’;

Now, if the value exists in the MCVs, its selectivity is the MCF value correspond-

ing to the same index.

If the value does not exist in the MCVs, selectivity is calculated using:

Selectivity = (1− sum(mvf))/(num distinct− num mcv)
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Where,

sum(mvf): sum of all values in the MCF list

num distinct: number of distinct values in column2

num mcv: count of MCVs

3.4.3 Greater than ’>’:

Query syntax:

SELECT column1 from table1 WHERE column2 > value;

The maximum selectivity value of a given query can be 1. We have already dis-

cussed the selectivity for less than (<) and equal to (=).

We evaluate the selectivity of queries with > operator by subtracting the selectivity

of the same query with < and = operator from 1.

Selectivity = 1 - selectivity (SELECT column1 from table1 WHERE column2 <

value;) - selectivity (SELECT column1 from table1 WHERE column2 = value;)

3.4.4 NOT IN:

Query syntax:

select column1 from table1 where column2 NOT IN (value1, value2);

Again, similar to queries with > operator, we use mathematical logic to evaluate

the selectivity of queries with NOT IN operator.

Selectivity = 1 - selectivity (SELECT column1 from table1 WHERE column2 =

value1;) - selectivity (SELECT column1 from table1 WHERE column2 = value2;)
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3.4.5 AND:

Query syntax:

SELECT column1 from table1 WHERE column2 < value1 AND

column3 = value2;

Here, according to PostgreSQL documentation [12], The planner assumes that the

two conditions are independent, so that the individual selectivitys of the clauses can

be multiplied together:

Hence,

Selectivity = selectivity (SELECT column1 from table1 WHERE column2 <

value1;) * selectivity (SELECT column1 from table1 WHERE column3 = value2;)

3.4.6 OR:

Query syntax:

SELECT column1 from table1 WHERE column2 < value1 OR column3 =

value2;

Using properties of set theory, we evaluate the selectivity of queries with OR condition

as,

Selectivity = selectivity (SELECT column1 from table1 WHERE column2 <

value1;) + selectivity (SELECT column1 from table1 WHERE column3 = value2;) -

selectivity (SELECT column1 from table1 WHERE column2 < value1 AND column3 =

value2;)

Now, considering the research purpose of our thesis is to explain that a tool to an-

alyze SQL and evaluate the query selectivity is required to make that project more

maintainable and self-contained, we have not integrated more complex queries involv-
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ing nested queries, JOIN conditions, sub-queries etc. Note that some of the complex

queries can also be simplified into queries which involve the basic set of operators

discussed above.
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4. RESULTS AND ANALYSIS

To evaluate the efficiency of our query selectivity module in DetAnom, we compare

the selectivity and number of rows calculated by our project with the corresponding

value obtained from PostgreSQL and its query optimizer. Note that we can do the

same with other database engines like MySQL and Oracle since the underlying parser

works for all SQL based DBMS systems.

4.1 Setup

Firstly, we need a tool to populate test data and transactions. With sufficient

test data, we aim to expose any potential database performance issues. We looked at

some benchmarking tools like TPC-C and OLTPBench that generate arbitrary tables

and columns and provide a set of queries (in the form of transactions) that can be run

against them. In the end, we decided on using named ’Datanamic Data Generator for

PostgreSQL v6.1.0’ [14]. We found this tool to be quite handy in creating different

types of tables and populating them with meaningful attributes and columns depend-

ing upon our requirements. Several versions of Datanamic data generator exist for

other database systems like Oracle, MS SQL, MS Access, Azure, etc.

After connecting to the PostgreSQL database server, we created a table named stu-

dents and generated data according to specific requirements. In other words, it pro-

vides a well-defined data generation plan. The id column for instance was filled with

sequential integers that start with 1 and increment by 1. The dept column was filled

with a pre-existing list of department names. The departments will repeat 1 in 40

times; this was done so as to check the selectivity of queries that match a specific

department name. Similarly, the name and age columns were also populated with
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specific constraints to aid our calculations. Overall, 1000 tuples were populated as

shown in Fig A.1 in Appendix. The syntax of the table is shown in Fig A.2 in Ap-

pendix.

Similarly, other tables named ’customer’, ’owner’, etc. are created. Some with only

50 tuples while others with around 5000 tuples. and its syntax is shown in Fig A.3

in Appendix.

4.2 Analysis

Now after populating the databases, we calculate the numbers of rows using our

module and then using PostgreSQL try to gauge its accuracy. Before doing so, we

run ANALYZE which populates the statistical columns like pg stats within the Post-

greSQL query generator. Some of the queries along with their selectivitys are given

in Table B.3 in Appendix.

Based on our evaluation of 50 queries, the accuracy of the query selectivity mod-

ule implemented in this thesis is as provided in the Table B.4 in Appendix.

Based on these results, we come to the following observations:

1. The results produced by our query selectivity module (DetAnom using Query

selectivity) is very accurate (> 98%) for logical comparison operators like less

than (<), greater than (>) and equal to (=).

2. These results are accurately replicated by the PostgreSQL query optimizer as

well. Accuracy is approximately 100%
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3. The accuracy of both ’DetAnom with query selectivity’ and the PostgreSQL

query optimizer for the NOT IN condition is almost perfect (100%) for our

sample size.

4. The accuracy of ’DetAnom with query selectivity’ for the queries with AND con-

dition is very high (91.66%) and quite close to the accuracy of the PostgreSQL

query optimizer (94.4%).

5. The accuracy of ’DetAnom with query selectivity’ for the queries with OR

condition is pretty high as well (88.8%) and quite close to the accuracy of the

PostgreSQL query optimizer (92.2%).



24

5. SUMMARY

Overall, the implemented version of DetAnom with query selectivity was found to

be very accurate (Overall accuracy > 88%) in calculating query selectivitys and very

similar to the statistics obtained by the underlying query optimizer.

We started of with identifying anomalies in SQL based DBMS systems to detect

insider threat in an organization. We saw that adding query selectivity as an addi-

tional constraint to the query signature during the training phase will improve its

overall accuracy. After carrying out the research discussed in this thesis, we, we pro-

pose that adding query selectivity to the DetAnom ADS and other similar syntactic

based anomaly detection systems will help us identify further anomalies and thereby

defend against insider threat.
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A. DEMONSTRATE FIGURES

Fig. A.1. Populated Student Table
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Fig. A.2. Student Table Schema

Fig. A.3. Customer Table Schema
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B. DEMONSTRATE TABLES

Table B.1
Table Details

Table ID Table Name Attribute Name Attribute ID Type

100 PersonalInfo
employee id

employee name

1

2

varchar(10)

varhar(50)

200 WorkInfo

employee id

work experience

salary

performance

1

2

3

4

varchr(10)

number

number

varchar(20)

Table B.2
Normal-Anomalous Query Comparison

NORMAL ANOMALOUS

Select * from WorkInfo where salary

>150000

select * from WorkInfo where salary >0

select * from WorkInfo where em-

ployee id = ’x’ AND salary >10000

select * from WorkInfo where em-

ployee id = ’x’ OR salary >10000

select * from WorkInfor where em-

ployee id=’x’

select * from WorkInfo where em-

ployee id <>’x’
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Table B.3
Results Comparison I

Query No. of rows returned

DetAnom using

Query selectiv-

ity

PostgreSQL

Query Opti-

mizer

Actual count

Select * from student where

id <200;

200 199 199

Select * from student where

dept = Facilities;

183 183 183

Select name from student

where age >40;

546 546 546

Select * from

customer where

credit card type NOT IN

(VISA,MASTERCARD);

184 184 184

Select * from customer

where cid >100 AND

first name NOT IN (’Elene’,

’Klara’);

127 139 131

Select * from student where

id <10 OR name = Duncan;

8 13 11

Select * from owner where

age <40 and vehicle = Mas-

rerati;

6 9 7
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Table B.4
Results Comparison II

Query Percentage Accuracy

DetAnom using

Query selectiv-

ity

PostgreSQL

Query Opti-

mizer

Less than operator (<) 98.3 100

Greater than operator (>) 100 100

Equal to (=) 100 100

NOT IN conditions 100 100

AND condition 91.66 94.4

OR condition 88.8 92.2
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