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ABSTRACT 

Chan, Kevin J. M.S., Purdue University, August 2016. The Effects of Scarring on a Face 

Recognition System. Major Professor: Stephen Elliott. 

 

 

The focus of this research is the effects of scarring on face recognition. Face recognition 

is a common biometric modality implemented for access control operations such as 

customs and borders. The recent report from the Special Group on Issues Affecting Facial 

Recognition and Best Practices for their Mitigation highlighted scarring as one of the 

emerging challenges. The significance of this problem extends to the ISO/IEC and 

national agencies are researching to enhance their intelligence capabilities. Data was 

collected on face images with and without scars, using theatrical special effects to 

simulate scarring on the face and also from subjects that have developed scarring within 

their lifetime. A total of 60 subjects participated in this data collection, 30 without 

scarring of any kind and 30 with preexisting scars. Controlled data on scarring is 

problematic for face recognition research as scarring has various manifestations among 

individuals, yet is universal in that all individuals will manifest some degree of scarring. 

Effect analysis was done with controlled scarring to observe the factor alone, and wild 

scarring that is encountered during operations for realistic contextualization. Two 

environments were included in this study, a controlled studio that represented an ideal 

face capture setting and a mock border control booth simulating an operational use case. 
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CHAPTER 1. INTRODUCTION 

Face recognition is a routine social interaction that has been increasingly automated 

(Li & Jain, 2005). Technological developments create new opportunities and new 

challenges for the future, which means that face recognition as a science will have an 

ever-changing landscape. This chapter defined one of the recent additions to the body of 

knowledge of face recognition, the impact of scaring (ISO/IEC JTC 1/SC 37, 2010). This 

problem, and the purpose of this study will also be defined, along with associated 

limitations and scope of research. This study examined the scarring problem and 

overcame comparison factors with the use of theater arts to replicate scarring on the face, 

and create a realistic dataset for performance analysis. By analyzing the impact of scaring 

with realistic recreation, solutions can be developed in future research. This chapter also 

presents the framework of this thesis, which comprises of the following: Statement of the 

Problem, Significance of the Problem, Statement of Purpose, Research Questions, 

Assumptions, Limitations, Delimitations, and Definitions. 

 

1.1 Statement of the Problem 

Scarring of the face have an effect on face recognition performance and image 

quality (ISO/IEC JTC 1/SC 37, 2015). With the advent of the machine-to-machine 

interface for border control, human operators are being replaced, or reduced in number 



2 

 

(Foster, 2016). This border control operational setting creates challenges for face 

recognition systems; problems such as pose, illumination, and expression need to be 

systematically addressed to ensure proper identification (Jain, Ross, & Nandakumar, 

2014). The face is a social organ and the way humans contextualize the face allows for a 

certain robustness in recognition capabilities (Delac & Grgic, 2004; Landis, 1929). The 

human visual system can make adjustments to visual stimuli that allow correction of 

processed images. These adjustments and corrections lead to the invariance of factors 

such as isometric deformations, texture changes, and even occlusions (Landis, 1929; 

Proctor & Van Zandt, 2008). Machines have performance issues when it comes to this 

robustness to face changes, and ongoing research is done along all avenues of potential 

variance (Li, 2012). Research in image manipulation in machine interface in face 

recognition include pre-processing (Hsu, Shah, & Martin, 2006; Sang, Lei, & Li, 2009), 

cosmetic makeup (Dantcheva, Chen, & Ross, 2012), plastic surgery (Dantcheva & 

Dugelay, 2011; Singh, Vatsa, & Noore, 2009), occlusion (Samal & Iyengar, 1992), 

expression (Bronstein, Bronstein, & Kimmel, 2003), and illumination (Jain, Klare, & 

Park, 2011). The presence of scarring on the face, one would intuitively conclude that 

there would be an impact; the physical changes would transcend into performance 

changes. However, there is currently no information regarding the pre- and post-scarring 

of faces on a face recognition system. Jain and Park (2009) presented evidence that 

scarring can be detected and used as a soft biometric (Jain & Park, 2009), but have yet to 

study the effects of matching between pre and post scarring. Factors such as standardized 

pre and post scarring images, general information, and performance analysis of scarring 

effects limit this development.  



3 

 

1.2 Significance of the Problem 

Face recognition is a popular and widely used modality of biometric authentication 

(Jain, Ross, & Nandakumar, 2014). The effects of facial scarring have unknown effects 

on machine interfaced face recognition (Jain & Park, 2009); testing pre- and post- 

scarring has not been done yet, but was classified as “potential issues” by the Special 

Group on Issues Affecting Facial Recognition, also known as SG-IFR (ISO/IEC JTC 

1/SC 37, 2015). Scarring has been used as an auto-detect soft biometric within face 

recognition (Jain & Park, 2009). Due to the constant and social use of the face as an 

identifier, human to the human interface is not degraded by scarring unless the scarring is 

extreme (Samal & Iyengar, 1992). Scarring occurs commonly and in varying magnitudes, 

almost all individual will have some scarring on their body (Bayat, McGrouther, & 

Ferguson, 2003), making it a particularly hard to control as a variable. Furthermore, 

scarring is further factored in three types: atrophic, hypertrophic, and keloid scarring. 

Scarring, like all physical changes, is hypothesized to cause matching performance 

changes (Gao, Li, Liu, & Zhang, 2007). 

On the surface, ISO/IEC JTC 1/SC 37 is a technical group within the ISO; a typical 

subcommittee of technical professionals representing their various national standards 

organization (ISO/IEC JTC 1/SC 37, 2010). ISO/IEC members write, report, and vote on 

various standards; acting as an extension of intent for national bodies (ISO General 

Secretariat, 2015). However, membership of the SG-IFR report, the participants came 

from Australia, Canada, New Zealand, the United States, and Italy. Also, the Australia 

and New Zealand SmartGate referral rate only had five countries listed: Australia, 

Canada, New Zealand, the United States, and the United Kingdom (ISO/IEC JTC 1/SC 
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37, 2015). It is apparent the Five Eyes intelligence community, known as FVYE, are 

making advancements to improving their network. It would not be outlandish to assume 

that the FVYE are taking careful consideration of ISO/IEC standards on face recognition, 

as standards information can help bolster their intelligence integrity between their 

alliance members. The FVYE have previously done such data and network-centric 

activities, even activities of covert and espionage nature (Parson, 2015). This exclusive 

intelligence sharing alliance was born out of Cold War and has remained significant to 

the national interest of member countries. The dynamic nature of terrorism and the new 

adaptive policy initiatives by governments has placed increasing reliance on the FVYE 

(Cox, 2012). With the presence of the FVYE countries in the SG-IFR report, this research 

would have an impact on future national interests that include but not limited to security 

implications, intelligence gathering and sharing, and counter-terrorism applications. 

 

1.3 Statement of Purpose 

This study collected face image data that is ISO-19795-5 compliant, with the factor 

of scarring for biometric research. Scarring will be simulated using liquid latex in a 

theater arts application. The preliminary investigation will statistically compare both 

image quality and performance metrics using Detection Error Tradeoff Curves. Biometric 

stability analysis was also done with the Dunstone and Yager Zoo Menagerie and will be 

used as supplemental analysis to add granularity and context to the overall performance 

analysis. 
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1.4 Research Question 

What is the impact of scarring in image quality and performance of a face 

recognition? 

 

1.5 Assumptions 

The assumptions for this research will include the following: 

 The matching algorithm of Megamatcher 9.0 was in good working order 

 The image quality analysis algorithm of PreFace 4.2 was in good working order 

 Image capturing hardware met industry standards of shutter speed between 1/60th 

to 1/250th of a second 

 Image capturing hardware met industry standards of at least two pixels per 

millimeter 

 The 18% gray background was subject to typical shadow and reflectance 

variations from subjects 

 Liquid latex scars applied to the subject were identically constructed from the 

same mold 

 The color of liquid latex is sufficiently different from subject skin pigmentation 

 Scars that subjects have before the data collection were uncontrolled and 

developed uniquely 

 

1.6 Limitations 

The limitations for this research will include the following: 

 The study was limited to using only Megamatcher 9.0 
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 The study was limited to using only Aware Preface 4.2 

 The study was limited to controlled full frontal lighting scheme specific ISO/IEC 

FCD 19794-5 photo studio, operational use case scenarios will not be controlled 

 The data collection was limited to 60 subjects that do not reflect the population at 

large, due to collection from local participants 

 The data collection was done with non-occluded face images 

 The data collection was limited to a Boolean style, yes or no, factor of scarring 

 

1.7 Delimitations 

The delimitations for this research will include the following: 

 Testing different locations of face scarring was beyond the scope of this study 

 Testing different shapes of scars was beyond the scope of this study 

 The study did not include keloid scarring, raised scars that spread beyond wounds 

 The study did not include high definition makeup techniques, which utilizes 

illumination manipulation in tandem with makeup effects 

 The study did not include airbrushing or facial tattooing techniques of makeup 

application, which are permanent changes to subject skin characteristics 

 The study will not include the use of Kryolan Tuplast scar polymer, a relatively 

new and unconventional method for prosthetic scar construction 
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1.8 Terms & Definitions 

The following key terms for this research are defined as: 

- Atrophic Scars: “are flat and depressed below the surrounding skin.” (Bayat, 

McGrouther, & Ferguson, 2003, p. 89) 

- Biometrics: "is the automatic identification of an individual based on his or her 

physiological or behavioral characteristics." (Dunstone & Yager, 2008, p. 99) 

- Biometric System: “a pattern recognition system that operates by acquiring 

biometric data from an individual, extracting a feature set from the acquired data, 

and comparing this feature set against the template set in the database.” (Jain, 

Ross, & Prabhakar, 2004, p. 4) 

- Detection Error Trade-off (DET) Curves: “summarizes system performance by 

plotting false match rate vs. false non-match rate pairs for a range of match 

thresholds.” (Dunstone & Yager, 2008, p. 105) 

- Equal Error Rate (EER): “The error rate at which the false accept rate equals the 

false reject rate. The EER can be used to summarize the performance of a system, 

as it contains both false match and false non-match information.” (Dunstone & 

Yager, 2008, p. 104) 

- False Acceptance Rate (FAR): “proportion of verification transactions with 

wrongful claims of identity that are incorrectly confirmed” (ISO/IEC 19795-

1:2006) 

- False Rejection Rate (FRR): "proportion of verification transactions with truthful 

claims of identity that are incorrectly denied" (ISO/IEC 19795-1:2006) 
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- Genuine match: “A match between two instances of the same biometric 

characteristic from the same person.” (Dunstone & Yager, 2008, p. 101) 

- Hypertrophic Scars: “are raised scars that remain within the boundaries of the 

original lesion, generally regressing spontaneously after initial injury” (Bayat, 

McGrouther, & Ferguson, 2003, p. 89) 

- Impostor match: “A match between two different biometric characteristics. This is 

usually a match between two different people, but also includes a match two 

different characteristics of the same person, such as matching between the left iris 

and right iris.” (Dunstone & Yager, 2008, p. 101) 

- Keloid Scars: “are raised scars that spread beyond the margins of the original 

wound and invade the surrounding normal skin in a way that is site specific.” 

(Bayat, McGrouther, & Ferguson, 2003, p. 89) 

- Performance: “which refers to the achievable recognition accuracy and speed, the 

resources required to achieve the desired recognition accuracy and speed, as well 

as the operational and environmental factors that affect the accuracy and speed.” 

(Jain, Ross, & Prabhakar, 2004, p. 4) 

- Sample: “user’s biometric measures as output by the data capture subsystem” 

(ISO/IEC 19795-1:2006) 

- Scars: “wound healing is evolutionarily optimized for speed of healing under dirty 

conditions, where a multiple redundant, compensating, rapid inflammatory 

cascades allow the wound to heal quickly to prevent infection and future wound 

breakdown.” (Bayat, McGrouther, & Ferguson, 2003, p. 88) 
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1.9 Chapter Summary 

This chapter introduced the research question of the effects of scarring on face 

recognition. The purpose, assumptions, limitations and delimitations, as well as pertinent 

definitions,  were conferred to establish the research boundaries. This chapter provided an 

overview of this research and secured a foundation for its significance and importance. 
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CHAPTER 2.  LITERATURE REVIEW 

2.1 Biometrics 

Biometrics is a multidisciplinary field that incorporates natural sciences, 

mathematics, and humanities. The magnitude of biometrics can span from a simple house 

door to vast national borders (Dunstone & Yager, 2008). Biometrics uses physiological 

and biological characteristics for automated recognition and is selected for their 

universality, distinctiveness, permanence, and collectability (Jain, Ross, & Prabhakar, 

2004).  

Biometric measurements should be universal in that the general population can be 

included in the system. The measurements of between one another are distinct and 

discernable and practically invariant over time. Biometrics should also account for 

collection methodology for consistent and effective extraction as complicated methods 

can be time-consuming or uncomfortable to the users. Many modalities are offered for 

biometrics, with the three dominant ones being iris, fingerprint, and face recognition 

(Dunstone & Yager, 2008). 

Secret and token based identification systems rely on a representation of identity, 

such as PIN numbers or credit cards. Secrets and tokens have the risk of being lost, 

stolen, or acquired by impostors. Biometrics is a natural alternative because biometric 
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characteristics are inherently possessed by the user. The risk of forgetting and stealing 

identifiers are lower compared to secrets and tokens (Jain, Ross, & Nandakumar, 2014). 

 

2.2 Face Recognition 

Face recognition is using the unique characteristics and features of the face to 

identify an individual’s identity. Located on the frontal portion of the head, the face is the 

foremost part of personal interactions with the outside world, making it a very social 

organ that is engaged in daily use (Jain, Ross, & Nandakumar, 2014). Humans perform 

face recognition routinely and effortlessly many times a day. The digital boom created a 

means of computerizing this innately human process. Face recognition is non-intrusive, 

natural, can be collected at a distance, and the face is always apparent (Li & Jain, 2005).  

The first use of the face as an identifier was a comparison of photographs in an 

1871 British Court hearing (Jain, Klare, & Park, 2011). In 1882, Dr. Alphonse Bertillon 

created the first set of metrics for the face during his tenure at the Parisian Prefecture de 

Police (Bertillon, 1896). The Bertillon system would be implemented across the world, 

and becoming the first de facto face recognition standard (Finn, 2009). 

The first automated face recognition system was by Takeo Kanade in 1973, in 

research for his doctorate dissertation (Li & Jain, 2005). Since then, research in 

automated and computerized face recognition systems have spread to answer many 

challenges of face recognition. Face recognition developed into one of the most common 

modalities in biometrics and having highly visible implementation in border security and 

law enforcement.  
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Face recognition does have its roots in law enforcement with the Bertillon system, 

and its automation widened the scope of application. In addition to mugshots and 

photographic evidence, face recognition evolved into operations such as missing person 

identification (Park & Jain, 2005), forensics (Jain, Klare, & Park, 2011), surveillance, and 

watchlists (Li & Jain, 2005). A result of globalization and technological advances is 

increased traffic through customs and borders (Woodward, 1997). Automated face 

recognition has found operational use in global entry programs and machine readable 

travel documents (Li & Jain, 2005).  

 

2.3 Face Recognition Algorithms 

Being the primary focus of attention in social intercourse, the identity and emotion 

of individuals are conveyed with the face (Landis, 1929). The human ability to recognize 

and analyze faces is robust, adjustable, invariant to factors such as aging or environment, 

and can even filter out distractions and uneven conditions. The face is a complex and 

multi-dimensional stimuli, thus developing algorithms for automated face recognition is 

complicated (Turk & Pentland, 1991). 

 

2.3.1 Principle Component Analysis 

Principle Component Analysis, commonly referred to as PCA, is one of the most 

commonly used face recognition algorithms. The algorithm decomposes the face into 

small sets of characteristics called eigenfaces and is analyzed separately. PCA has earned 

favor among many biometric researchers for its speed, simplicity, learning capacity, and 

invariance to minor changes (Turk & Pentland, 1991).  
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2.3.2 Linear Discriminant Analysis 

There are many other face recognition algorithms, some having evolved from PCA 

while others evolved as a compliment to it. Linear Discriminant Analysis, referred to as 

LDA, uses class discrimination to minimize intra-class variations and maximize 

interclass variations. Variation of differences between the face enrollments of an 

individual is minimized while the variation of the difference between two individual is 

maximized (Li, 2012). LDA can be expected to provide improved accuracy over PCA 

because of this class discriminant learning. The accuracy improvement does require 

sufficient face enrollments into the system. Whereas PCA can be deployed more rapidly, 

LDA will have more enrollment requirements (Jain, Ross, & Nandakumar, 2014). 

 

2.3.3 Independent Component Analysis 

Independent Component Analysis, abbreviated as ICA, is a more generalized 

version of PCA (Jain, Ross, & Nandakumar, 2014). ICA aims to make resulting 

components as independent as possible, instead of looking at the face components 

interdependently like PCA or LDA (Li, 2012). This lack of dependence on components 

allows ICA to make recognition processes with independent source components (Liu & 

Wechsler, 1999). Liu and Wechsler would continue to improve ICA with the inclusion of 

Gabor Feature Analysis as a supplemental process. Gabor wavelets capture the properties 

of spatial localization, orientation, and dimensions making it a good approximation to 

filter images for decomposition of discriminating features (Liu & Wechsler, 2003). 
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2.3.4 Local Binary Pattern and Texture-Based Algorithms 

PCA, LDA, and ICA are appearance-based face recognition algorithms. Another 

type of face recognition algorithm is texture based. A popular texture based algorithm is 

Local Binary Pattern, abbreviated as LBP, due to its success not only in face recognition 

but object recognition as well. LBP works by extracting features from a localized pixel 

area and making matching comparisons to neighboring localized pixel areas. LBP 

encodes pixels of the face image in 8-bit binary strings and outputs a histogram of local 

binary patterns. Though the encoding and binary pattern histograms are localized, they 

will be put together to generate a global histogram in a final normalized vector. This 

normalized vector is then used for matching, by computing the distance between the local 

feature vectors (Jain, Ross, & Nandakumar, 2014). This process is similar to PCA, but 

the analysis is done on a pixel basis rather than a component basis. PCA, LDA, and LBP 

offer a holistic representation of the face and are sensitive to changes such as occlusions 

and topographical variance. The compartmentalized process allows these algorithms to 

sort through features or localized areas, as some are considered redundant or irrelevant to 

overall matching process (Li, 2012). Li refers to these redundancies and irrelevancies to 

as “junk features”. 

 

2.4 Image Quality 

Face image quality has a systematic effect on the enrollment and reliability of face 

recognition performance. If poor quality images enroll into the system, then the result 

would be poor quality performance. Standards for scenery, photographic aspects, and 

digital requirements are established by ISO/IEC-19794-5 (Sang, Lei, & Li, 2009). 
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Due to the multitude of use cases and operational settings of face recognition, there 

are many standards enacted for face image quality. The benefit of ISO/IEC-19794-5 is 

the comprehensive measurement of many different metrics. The ISO Frontal Best 

Practices profile measures face image quality along 23 image quality metrics. ISO 

Frontal Best Practices profile is used to ensure passport photos comply with a certain 

image quality. Though NIST Mugshot Best practices use 24 image quality metrics, most 

of which overlaps with ISO Frontal Best Practices, the use case is specific to law 

enforcement mugshots (Chan & Elliott, 2015). Ergo compliance to such stringent 

standards may not apply to general use of face recognition. 

Image quality analysis, as a preprocess face recognition, can supplement the overall 

system and solicit better discrimination from the processing algorithms. Gao et al. (2007) 

describe the quintessential example, where some image quality preprocessing occurs 

before the matching, thereby normalizing the face image before feature extraction, and 

then the matching algorithm can set appropriate threshold based on the preprocessing 

quality assessment (Gao, et al., 2007). Figure 2.1 show Gao et al.’s framework for 

integrating image quality to supplement biometric recognition. 
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Figure 2.1: Gao et al.’s framework of biometric recognition with image quality 

assessment (Gao, et al., 2007) 

 

2.5 Biometric Performance 

In biometric recognition systems, the Detection Error Tradeoff curve referred to as 

DET curve, is used to represent performance. The DET curve is used to great effect in 

biometrics because of its presentation using tradeoff of error types. In biometrics, single 

or finite performance indicators will not reflect the overall capabilities of a system. 

Biometric recognition system can operate on a vast scale of thresholds and security 
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parameters, ergo biometric system performance is best represented by a curve (Martin, et 

al., 1997; Schuckers, 2012). 

 

2.5.1 Receiver Operating Characteristic Curves 

Traditionally, the Receiver Operating Characteristics curve, abbreviated as ROC 

curve, is used for performance analysis with error ratings (Martin, et al., 1997). ROC 

curves have been used in a wide array of fields including biometrics, image processing, 

data mining, machine learning, and human factors (Dunstone & Yager, 2008). The 

principle operation behind the ROC and DET curves is the optimization of tradeoffs 

across system performance. If the response criterion, which is match threshold in the case 

of biometrics, increases or decreases then the tradeoff curve will change. The ROC and 

DET curves help represent all possible combinations of tradeoffs at different response 

criterion, and can indicate acceptable operational characteristics (Dunstone & Yager, 

2008). ROC curves are commonly plotted by correct detection rate over false alarm rate; 

biometric applications will occasionally use true accept rate over false accept rate 

(Schuckers, 2012), within a variable response criterion or threshold set at τ.  

𝑇𝐴𝑅 =  ∫ 𝑓1(𝑥)𝑑𝑥
∞

𝜏
   (Equation 2.1) 

𝐹𝐴𝑅 =  ∫ 𝑓0(𝑥)𝑑𝑥
∞

𝜏
   (Equation 2.2) 

 

ROC curves provide information regarding system sensitivity (Proctor & Van 

Zandt, 2008). The response criterion is dependent on the system, ranging from generic 

aspects like background noise level to biometric specific criterion like false match rates. 
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Though the ROC is utilized for biometric performance analysis, the DET curve has 

become the preferred and common practice in biometrics. 

2.5.2 Detection Error Tradeoff Curves 

The DET curve is a variant of the ROC curve that plots errors on both axes, giving 

uniformed treatment to both error types. Scaling both error types gives the DET curves 

more discriminating presentations of different systems, not only showing better-

performing systems but also in which error scale the performance is better (Martin, et al., 

1997). The DET curve is a plot of False-Match Rate over False-Non Match Rate.  

𝐹𝑀𝑅𝑙(𝜏) = ∫ Ψ𝑙(𝑥)𝑑𝑥
𝜏

0
   (Equation 2.3) 

𝐹𝑁𝑀𝑅𝐶(𝜏) = ∫ Ψ𝐶(𝑥)𝑑𝑥 = 1 − ∫ Ψ𝐶(𝑥)𝑑𝑥
𝜏

𝑐

∞

𝜏
  (Equation 2.4) 

 

Based on the above equations, we can compute the DET curve as shown below. 

From the FMR and FNMR, we can construct genuine and impostor distributions based on 

derivatives from the gathered matching results (Adler & Schuckers, 2005).  

𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟(𝑥̂) = −
𝑑𝐹𝑀𝑅𝑙

𝑑𝑥̂
   (Equation 2.5) 

𝑔𝑒𝑛𝑢𝑖𝑛𝑒(𝑥̂) =
𝑑𝐹𝑁𝑀𝑅𝐶

𝑑𝑥̂
   (Equation 2.6) 

 

The clearer differentiation of performance makes the DET curve preferable as a 

biometric performance analysis tool; the DET curve can show the overall compromise of 

the system in regards to the combination of error rate tradeoffs (Schuckers, 2012). Figure 

2.2 shows the differences between DET and ROC curves. The Equal Error Rate, 

abbreviated as EER, is shown on the DET curve as the point where both error rates are 

equal. At the EER, where both error rates are equally frequent, the tradeoff is considered 
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optimal, and the combination represents the most balanced system response criterion 

(Kajarekar, et al., 2008). The EER is significant because, from that point, the threshold 

can be set for decreasing certain error rates while assessing the cost of the other. The 

mathematical elaboration for the EER is as follows (Dunstone & Yager, 2008). 

𝜏1 = max
𝜏

{𝜏|𝐹𝑁𝑀𝑅(𝜏) ≤ 𝐹𝑀𝑅(𝜏)}  (Equation 2.7) 

𝜏2 = 𝑚𝑖𝑛𝜏(𝜏|𝐹𝑁𝑀𝑅(𝜏) ≥ 𝐹𝑀𝑅(𝜏))  (Equation 2.8) 

[𝐸𝐸𝑅𝑙𝑜𝑤, 𝐸𝐸𝑅ℎ𝑖𝑔ℎ] = {
[𝐹𝑁𝑀𝑅(𝜏1), 𝐹𝑀𝑅(𝜏1)]

[𝐹𝑁𝑀𝑅(𝜏2), 𝐹𝑀𝑅(𝜏2)]
 (Equation 2.9) 

 

 

Figure 2.2: Comparing DET curve on the left and ROC curve on the right 

 

As a result of the DET curve’s distinguishing characteristics, Martin et al.’s report 

concluded that the DET curve should be standard for performance reporting in biometric 

speaker recognition. The DET curve has been used in a variety of biometric systems 

testing across many modalities (Fierrez & Ortega-Garcia, 2008; Himaga & Kou, 2008; 

Kajarekar, et al., 2008).  

When overlaying ROC or DET curves, a way to compare different systems is 

analyzing the Area Under the Curve, abbreviated as AUC. The AUC gives an overall 
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performance indicator but is not specific on which facet of performance is better or worse 

(O'Connor, et al., 2015). O'Connor et al. (2015) described the curve as simply a 

"snapshot" (O’Connor, et al., 2015, p. 46) of system performance, but performance 

variability can be attributed to many factors not seen from a general point of view. For 

this research, the DET curve will be used to assess overall performance between baseline 

and scar datasets. The performance curves of the two datasets will be overlaid to observe 

how the curves behave and the general AUC of the datasets. The application will be 

similar to Martin et al.’s example in Figure 2.2, where the AUC of the DET shows the 

system behavior in more detail than the ROC. 

 

2.5.3 Zoo Menagerie 

Zoo Menagerie has the advantage of showing performance on an individual user 

basis while ROC and DET curves show the system tradeoff in its entirety (O'Connor, et 

al., 2015). Inherent differences in recognizable features between individuals create intra-

class variation. Individual performance ergo is dependent on individual behavior within 

the biometric system (Doddington, et al., 1998).  

 

2.5.3.1 The Doddington Zoo 

Doddington et al. (1998) noticed a “striking performance inhomogeneity” (p. 1) 

among users. Poor performance by an individual can manifest itself in overall system 

performance. Doddington et al.’s Zoo Menagerie are important for generalization and 

overall system robustness across a wide population, as it adds granularity to individual 
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performance effects in the system performance. Doddington’s zoo classifies users in four 

animals: sheep, goats, lambs, and wolves. Sheep are the default user type, those who are 

observed to behave normally within the biometric system. Goats are particularly difficult 

to recognize and account for a statistically disproportionate amount of failed detections. 

Goats as biometric system users are not reliably accepted. Lambs are users who are easy 

to impersonate and account for a statistically disproportionate amount of false alarms. 

Lambs reveal compromises in the system, like vulnerability through trial and error 

attacks or biometric characteristics that are subject to algorithmic anomalies. Wolves are 

users who are successful in impersonation and are exceptionally likely to be accepted as 

someone else. Wolves, like lambs, account for a statistically disproportionate amount of 

false alarms. Unlike lambs, wolves reveal potential system threats as they possess 

features and characteristics that can defeat security measures (Doddington, et al., 1998).  

The Doddington et al. method analyzed verification performance when users 

matched against themselves and with others. Dunstone and Yager (2007) presented 

another method for the zoo menagerie based on a user’s relationship between genuine 

and impostor match score. Like the Doddington et al. method, the Dunstone and Yager 

zoo seeks to answer performance consistency problems by observing the user (Dunstone 

& Yager, 2007). For the Dunstone and Yager model, consistently poor performance is 

key. It is not enough that a user suffers poor performance, but also has to suffer it outside 

random variation (Dunstone & Yager, 2007). 
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2.5.3.2 The Dunstone and Yager Zoo 

The Dunstone and Yager zoo menagerie looks at the relationship between genuine 

and impostor scores and classifies users in fours animals: chameleons, phantoms, doves, 

and worms. Chameleons appear similar to others, hence the classification name, and have 

high match scores in both genuine and impostor. Chameleons have very generic features 

that weigh heavily by matching algorithms. Phantoms have low match score in both 

genuine and impostor. Doves are the best users of biometric systems with high genuine 

scores and low impostor scores, and they match well with themselves and poorly with 

others. Suffering little verification error, Doves can have uncommon or very distinctive 

characteristics that are easily discerned (Dunstone & Yager, 2007). The antithesis to 

Doves, worms has low genuine scores and high impostor scores, making them the worst 

users for a biometric system. Dunstone and Yager (2007) calls them “lowly creatures” (p. 

3), due to their few distinguishing features. Worms cause a disproportionate number of 

system errors. The effect on worms on the biometric system performance is described as 

parasitic, as their poor performance can improve other users when matched against them. 

Worms are important as they expose flaws in matching algorithm (Dunstone & Yager, 

2008). An example of this zoo methodology is shown below in Figure 2.3. 
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Figure 2.3: An example of a Zoo Plot using the Dunstone & Yager Methodology 

 

2.5.3.3 Schucker’s Critique and the Existence of Zoo 

Doddington et al. do not conclude that individual users are within a zoo 

classification by virtue of their biometric qualities and characteristics. Users manifest 

certain wolf-ish or lamb-ish qualities with certain causal dependencies (Doddington, et 

al., 1998). A weakness of this zoo method is presented by Dunstone and Yager (2007), 

calling attention that isolated instances of failed verification does not warrant 

classification. Some users will have more matching difficulty while others less so, all in 

part of normal variation (Schuckers, 2012). Schuckers (2012) describes this phenomenon 

as “the nature of any measurement process with noise” (p. 300). Noise and variation, 

being integral to signal process in both human and machine (Proctor & Van Zandt, 2008), 

can bring doubt to the existence of the zoo menagerie (Schuckers, 2012). Schuckers 
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(2012) asked if a goat is a goat for all systems or just one particular one, which brings to 

question the universality of animal classifications. This changes the dependency 

dynamics from individual based on a system based, and also calls into question several 

issues such as human factors and environmental effects (Schuckers, 2012). 

Zoo analysis can be used as a method to find the cause of weakness in biometric 

systems. A change in the number of worms can cause algorithmic bugs to the surface as 

the system population will always have a certain number of worms that should not 

deviate beyond statistical normality. Environmental and human factor issues could be 

revealed through poor quality results from poor quality captures. Data integrity issues 

such as ground truthing and duplicate enrollments can also be revealed in the zoo 

(Dunstone & Yager, 2007). For this study, zoo menagerie will be used for analysis of 

user stability across the factor of scarring. The Stability Score Index, referred to as SSI, 

was coined to address movement from one animal classification to another. User 

movement tendencies cannot be seen in an aggregate graphical analysis, but is apparent 

when comparing two or more zoo plots of the same population. Stability score is scaled 

from 0 to 1, where 0 is stable and does not move at all (O'Connor, Elliott, Sutton, & 

Dyrenfurth, 2015).  

𝑆𝑆𝐼𝑖 =  
√(𝑥𝑖2−𝑥𝑖1

)
2

+(𝑦𝑖2−𝑦𝑖1
)

2

√(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)2+(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)2
   (Equation 2.10) 

 

2.6 Challenges to Face Recognition Performance 

The quintessential problems with face recognition are described with the acronym 

PIE: Pose, Illumination, and Expression (Li & Jain, 2005). Though as the technology 
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developed, new problems are encountered. Aging (Park & Jain, 2005), image quality 

(Gao, Li, Liu, & Zhang, 2007), and processing artifacts such as printing and scanning 

(Ferrara, Franco, Maltoni, & Sun, 2013) are all being researched to find solutions for the 

face recognition shortcomings. Research in occlusions; such as glasses, hair, and head 

wear; have been researched, but are still being actively explored (Li S. Z., 2012). 

 

2.6.1 Pose and Illumination 

Face recognition can be on par with a fingerprint regarding performance within 

given controlled conditions (Phillips, et al., 2003). What stands as an obstacle is pose and 

illumination, which have become standardized through ISO/IEC frameworks (Gao, et al., 

2007; ISO/IEC 19795-1:2006, 2006; ISO/IEC JTC 1/SC 37, 2010). Algorithms have been 

researched to provide geometric alignment between images being matched. Research 

done by Beymer showed evidence of 98% recognition rate on a database of 62 

individuals with geometric alignment, consisting of 930 modeling views and 620 test 

views of varying poses (Beymer, 1994). Template based matching has already achieved 

success during Beymer’s research, to which Beymer extended to a multi-dimensional 

template matching model (Brunelli & Poggio, 1993). Poses ranged from -30°to 30° yaw 

and from -20° to 20° pitch. Beymer achieves success by taking a feature locating model 

to correlate with templates for the best match result. This method of feature selection and 

matching is similar to PCA by Turk & Pentland using eigenface as a matching algorithm 

for face recognition (Turk & Pentland, 1991). 

The three-dimensional structure of the face creates shadows of varying intensity, 

which can accentuate or diminish face features used for matching. Shadowing is what 
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leads to pose and illumination problems being analyzed in tandem, as both contribute to 

the direction and intensity of light impacting the face (Gross, et al., 2005). Shadowing 

variation from pose and illumination can cause a drop in face recognition performance. 

Adini, Moses, and Ullman (1997) conducted 107 different face matching operations, such 

as edge mapping and Gabor filtering, under illumination variance. Every operation 

missed and failed at least 20% of matching; missed being the system could not recognize 

and failed being the system confused one face for another (Adini, Moses, & Ullman, 

1997). Adini, Moses, and Ullman’s research would continue into Zhao and Chellappa’s 

work on shape-from-shading algorithms for illumination invariance in face recognition 

(Zhao & Chellappa, 1999). 

Despite the ongoing research for pose and illumination, there is still one aspect of 

photometry that lies at the root of pose and illumination variance. Lambertian reflectance, 

a property which gives an object a matte look, is assumed for face recognition systems 

(Zhao & Chellappa, 1999; Jacobs, Belhumeur, & Basri, 1998). Lambertian reflection of 

light off an object or face, the system perceives and treats the lighting conditions as equal 

through all components (Jacobs, Belhumeur, & Basri, 1998), or purposefully ignores 

certain shadows cast by facial features (Basri & Jacobs, 2005). We know this intuitively 

as not true, as the human vision system may receive the information similar to automated 

machine systems, the human perception can process metadata on the spatial dimensions 

of the face and adjust the recognition process accordingly (Patterson & Baddeley, 1977). 

Ergo pose and illumination can create variance on shadowing and reflectance, yet the 

machine system cannot adjust to a person’s vision system. 
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2.6.2 Expression 

Following on from Landis (1929) and Patterson and Baddeley (1977), the human 

vision system also can discern identity with expression. Expressions cause isometric 

deformation, which with a Lambertian reflectance input in face recognition, can cause 

problems for matching performance (Bronstein, Bronstein, & Kimmel, 2003). Isometric 

deformations created from expressions have a similar effect to pose and illumination on 

the face, being that it can create strong shadowing and illumination inequalities. 

Bronstein, Bronstein, and Kimmel (2003) utilized three-dimensional face recognition to 

achieve expression invariance for matching. The algorithm proposed by Kimmel allowed 

for the extraction of intrinsic geometric features and applied PCA type composition 

(Bronstein, Bronstein, & Kimmel, 2003). The results from Bronstein, Bronstein, and 

Kimmel (2003) showed that the three-dimensional models outperformed the traditional 

two-dimensional approach, but this still left to question the expression invariance of two-

dimensional face recognition in common use.  

The human visual system is robust to expressions as noted by Samal and Iyengar 

(1992), and it is proving quite challenging to incorporate this human robustness into 

machine-based recognition. Pose, illumination, and expression cause shadowing and 

reflectance variance that may trouble machine base recognition face recognition can still 

generate good performance with sufficient enrollments and template updating (Samal & 

Iyengar, 1992). Multiple inputs and repetitive visual contact on a face build familiarity, 

and it is even observed in the human visual system enhance performance (Samal & 

Iyengar, 1992; Patterson & Baddeley, 1977).  
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2.6.3 Aging 

Aging creates complications for face recognition; as we age our bodies undergo a 

change which undoubtedly includes the face. The intra-class variations caused by aging is 

challenging for age invariance face models as it manifests itself differently across 

demographics (Park & Jain, 2005). Genders (Koehler, et al., 2006), ethnicities 

(Shirakabe, Suzuki, & Lam, 2003), different age groups (Sugata, et al., 2011), and even 

nutrition will change age manifestations (Cosgrove, et al., 2007); the derivative of the 

change magnitude is more dynamic than other variables. 

Aging creates challenges for many face recognition applications such as missing 

children identification, law enforcement watch lists (Park & Jain, 2005), and image 

retrieval (Ling, Soatto, Ramanathan, & Jacobs, 2007). A study conducted by Ling et al. 

(2007), showed evidence that aging reduced face recognition performance where the age 

difference of enrollments is greater than four years. Ling et al. (2007) also tested face 

recognition using gradient orientation pyramid algorithms instead of the traditional 

Bayesian techniques and presented evidence of improvement by 0.1% EER. Park, Tong, 

and Jain (2010) also tested three dimensional age invariant face recognition and found 

that cumulative accuracy can increase by as much as 10%. Three-dimensional face 

recognition has the capability to compensate for aging (Park, Tong, & Jain, 2010), in a 

similar method to expression invariant modeling (Bronstein, Bronstein, & Kimmel, 

2003). Though Park et al. and Ling et al. have both showed evidence of performance 

deterioration effects of aging in biometrics, the effects of illumination and expressions till 

surpass regarding effect magnitude (Park, Tong, & Jain, 2010). 
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2.6.4 Image Manipulation and Cosmetics 

A growing concern for face recognition is image manipulation, both digitally and 

physically (ISO/IEC JTC 1/SC 37, 2015). Digital pre-processing have been studied 

before (Sang, Lei, & Li, 2009), and is a regular aspect of face recognition for improving 

image quality and performance (Gao, et al., 2007). Physical alterations such as cosmetic 

makeup and plastic surgery remains a challenge for researchers to investigate (ISO/IEC 

JTC 1/SC 37, 2015).  

 

 

Figure 2.4: Subjectivity and variance of makeup across individuals (See Appendix C). 

 

Scholarly investigation of cosmetic makeup is difficult due to its prevalence in 

certain demographics, its subjectivity in metrics, and its variance dependencies by 

individual users. Figure 2.4 shows six different individuals and their different 

applications of cosmetic makeup. Even the human visual system is affected by cosmetic 

makeup changes (Ueda & Koyama, 2010). Dantcheva et al.’s research showed evidence 

of increasing EERs with the addition of makeup across four datasets and three algorithms 
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(Dantcheva, Chen, & Ross, 2012). Guo, Wen, and Yan (2014) performed correlation 

mapping on makeup and no makeup faces using a local binary approach. It was 

concluded that makeup effects have variation in and of itself, where different components 

of makeup can vary the performance effect for a multitude of factors (Guo, Wen, & Yan, 

2014). Among the two researchers the only definitive conclusions are eye makeup, such 

as eye shadow and mascara, have the greatest contributors of error and obfuscate identity 

the most (Dantcheva, Chen, & Ross, 2012; Guo, Wen, & Yan, 2014). Within Ueda & 

Koyama, Dantcheva et al., Guo et al., the discrepancy in metrics and factorization of 

makeup makes quantification of this subject difficult. 

Cosmetic plastic surgery also stands as a similar challenge for face recognition 

(Singh, Vatsa, & Noore, 2009). Singh et al.’s preliminary findings show that face 

recognition cannot handle global facial plastic surgery like skin resurfacing and face lifts. 

Any change in one region can affect the performance overall, especially for texture based 

algorithms like LBP. Texture based algorithms yield lower accuracy for cases involving 

cheek and forehead changes. Surgeries like liposhaving or facial sculpting severely 

degrade performance of any algorithm, because it removes fat from facial regions and 

significantly changes appearance (Singh, Vatsa, & Noore, 2009). Overall, non-surgery 

dataset performed 30-35% better in identification accuracy than their surgery 

counterparts across six algorithms (Singh, et al., 2010). While the convention of PCA is 

performing with error rates lower than 10% in controlled settings (Gross, Baker, 

Matthews, & Kanade, 2005), plastic surgery can deteriorate this performance down to 

30% EER (De Marsico, et al., 2011). 
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The subjectivity that affects cosmetic makeup is also apparent in plastic surgery. 

Plastic surgery creates changes in geometry and texture to varying magnitudes, ergo 

gathering pre- and post-surgery data is problematic (Singh, et al., 2010). Exacerbating the 

data problem is medical confidentiality; surgery data is secured under law, which adds an 

additional obstacle to the investigating (Singh, et al., 2010). Plastic surgery also shares a 

problem similar to aging, where repeat face captures will not enhance the system 

performance. This creates a special challenge different from the other uncontrollable 

settings; occlusion, pose, illumination and expression can be corrected and standardized 

(De Marsico, et al., 2011). 

 

2.6.5 The Emerging Challenge of Scarring 

Scarring is a normal function of mammalian tissue repair, optimized to heal wounds 

quickly under less sanitary conditions (Bayat, McGrouther, & Ferguson, 2003). There are 

three types of scarring: atrophic, hypertrophic, and keloid. Atrophic and keloid are less 

common compared to hypertrophic. Atrophic may occur as frequently as hypertrophic, 

but most often a result of acne (Alster & West, 1996). Keloid scarring is similar to 

hypertrophic scarring as they are a response to cutaneous injury, but the repair tissue 

grows beyond the confines of the original wound area (Tanriverdi-Akhisaroglu, 

Menderes, & Oktay, 2009). Keloid scarring is also not apparent in all humans, as it 

predominantly affects darker skinned ethnicities and between the ages of 10 to 30 years 

(Alster & West, 1996). 

Scarring and facial marks have been used within biometrics as a soft form of feature 

detection (Jain & Park, 2009), which presents evidence that scarring may have an effect 
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on performance and image quality. Face scarring can change the texture and color of the 

skin (Bayat, McGrouther, & Ferguson, 2003), both of which can affect face recognition 

algorithms as they are common factors analyzed in machine vision (Martinkauppi, Hadid, 

& Pietikäinen, 2005).  

Color sensitivity is often interlinked with illumination problems. Machine vision 

algorithms used in face recognition aim to cancel out the effect of illuminant color and 

defining skin color as a function of reflectance (Martinkauppi, Hadid, & Pietikäinen, 

2005). The human visual system still has the advantage over automated systems as the 

human eye and brain processes can associate light stimuli with context (Martinkauppi, 

Hadid, & Pietikäinen, 2005; Patterson & Baddeley, 1977; Proctor & Van Zandt, 2008). 

The challenges of scarring in face recognition are multifaceted; color, illumination, 

texture, and metric variances create uncontrollable settings for face recognition operation. 

A universally accepted method of measurement for scarring has yet to emerge, as Alster 

& West noted that the Vancouver scar scale and the Manchester Scar Proforma are still 

widely used, but not interchangeable. Both scaling methods are dependent on observer 

subjectivity for calculating the characteristics of the scarring. 

 

Table 2.1: An example of Vancouver scarring metrics (Draaijers, et al., 2004). 

Vancouver Scar Scale    

1. Vascularity  2. Pigmentation  
Normal 0 Normal 0 

Pink 1 Hypopigmentation 1 

Red 2 Mixed 2 
Purple 3 Hyperpigmentation 3 

    

3. Pliability  4. Height  
Normal 0 Flat 0 

Supple 1 <2mm 1 

Yielding 2 2-5mm 2 
Firm 3 >5mm 3 

Ropes 4   

Contracture 5   



33 

 

Table 2.1, there are quantifiable numbers associated with the characteristics of 

scarring metrics, but interpretations of these metrics are still subject to observer 

perspectives. The Vancouver scar scale still has the weakness of being qualitative in 

nature (Alster & West, 1996). Though converted to a numerical scale, the measurability 

is depended on human observation, things like surface texture and pliability may differ 

between observers. At best, the current scar scaling paradigm provides a description 

rather than a measurement of scarring, which suits its intention as a subjective evaluation 

of the effectiveness of scar therapies (Draaijers, et al., 2004). 

 

2.7 The Face in Theater Arts 

In both theater arts and biometrics, the face is identified and based on the 

measurement of various characteristics. In the theater concept of Prosopon, the Greek 

word for person/face/mask is a common theme where a mask or makeup is applied to the 

face to identify and give qualities to certain characters (Zeitlin, 1985). The three-

dimensional dynamics and the relationship of lighting and shadow require makeup artists 

and theater technicians to design and develop solutions around a controlled 

environmental setting (Corson & Glavan, 2001), similar to biometric scientists. Makeup 

artists design around the face and environment to create certain effects; color hues, 

texture changes, and feature size. 

The use of makeup could be used by biometric researchers to simulate changes to 

the face with hyper-realistic results (Corson & Glavan, 2001). The use of liquid latex for 

the simulation of scarring can provide face recognition systems with a way to uniformly 

assess scarring while controlling various natural factors. Liquid latex can be cast into a 
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silicone mold (Corson & Glavan, 2001); scars that are identical in texture, size, 

topography, and reflectance can be constructed for a controlled study. Application to the 

face can be done with liquid latex, spirit gum, or Pros-Aide®, and would be secured on 

the face with realistic appearance (Corson & Glavan, 2001). Additional powdering and 

color blending can be done to create the realistic natural appearance, only noticeable on 

extreme sensitivity levels (Sartor & Pivovarnick, 2001). The use of liquid latex for both 

realistic and fantasy effects have been successfully implemented in film and media. Oscar 

winner Tami Lane used liquid latex techniques for her work in Lord of the Rings, The 

Hobbit, and The Chronicles of Narnia: The Lion, the Witch, and the Wardrobe for which 

she won her Academy Award for (Debreceni, 2013). 

 

2.8 Literature Review Summary 

This literature review summarized the current knowledge that was significant to the 

field of biometrics and the face as a modality of recognition. It reflects on the different 

face algorithms used by contemporary industry professionals and progresses made by 

researchers past and present. It also reflects on the significance of image quality as a 

factor to recognition system quality and health. Performance metrics and methodologies, 

both historical and au courant, are exhibited. Finally, the challenges of face recognition 

are conferred and how the inclusion of fine arts could provide innovative solutions. By 

assimilating the current research and conclusions, there is context and justification for 

this research. Furthermore, this literature review conveys how this research on scarring 

effects is salient to the current knowledge base. 
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CHAPTER 3. METHODOLOGY 

This chapter gives an overview of the different procedures for this research. 

Sequential details of data collection and statistical analysis methods will be elaborated. 

  

3.1 Data Collection 

The first half of this research was the data collection procedure. The data collection 

was comprised of three parts: participants and recruitment, subject characteristics 

recording, and face image capture.  

 

3.1.1 Participants & Recruitment 

Test subjects were recruited for this research. A total of 60 test subjects were 

recruited through self-selection, volunteer efforts, or through advertising response. A 

group of 30 test subjects had no facial scarring, and the second group of 30 had 

preexisting. The second group with preexisting facial scarring supplements the data 

collection with scarring from a wild and uncontrolled source. As scarring develops 

differently between individuals (Bayat, McGrouther, & Ferguson, 2003), an absolute 

controlled dataset will have a little inference to the population.
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3.1.2 Subject Characteristics 

Subject demographics were recorded at the beginning of each subject data capture. 

The four demographics recorded are age, race, ethnicity, and gender 

 

3.1.3  Face Image Capture 

The last part of the data collection was the face image capture. The face capture 

adhered to standards set by ISO/IEC JTC SC 37 in the 3rd FDC for 19794-5. Each subject 

had three baseline face images captured, and then three face images with prosthetic 

scarring makeup applied. This was done in two environments, a controlled studio and a 

mock booth simulating the operational environment. For subjects with facial scarring, no 

prosthetic makeup will be needed. 

 

3.1.3.1 Prosthetic Scar 

The prosthetic makeup scar was made of simple latex construction. For the purpose 

of uniformity and universality, the scars were cast in the same linear hypertrophic mold. 

The scars were made by applying liquid latex to a silicone mold. The liquid latex dried 

and develops a solid yet soft flesh like texture. When dried, the latex scar is ready for 

application to the face (See Appendix A). 

 For sanitation and health purposes, each molded scar was considered disposable, 

and discarded after use with a single subject. For allergen and dermatological sensitivity 

purposes, subjects were asked if they have latex allergies. Two options of bonding agents 

are offered to subjects: liquid latex as the typical adhesive, or hypoallergenic Pros-Aide® 

adhesive (See Appendix B). 
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As scarring manifestations are subject to many factors, this study only analyzed 

scarring in a yes or no Boolean scheme. For uniformity, all latex scars were directly 

applied to the subject’s left cheek. This set scar location was chosen for being rich in face 

features (Ding & Wang, 2005). Face feature points are as shown in Figure 3.1. Since the 

subject was not required to remain expressionless for long periods of time, the risk of the 

prosthetic scar falling off was low. 

 

 

Figure 3.1: Map of face features for biometric recognition (See Appendix C). 

 

3.1.3.2 Standards for Face Image Capture 

Outlined are imperative specifications for an ISO/IEC JTC SC 37 compliant face 

image capture (ISO/IEC JTC 1/SC 37, 2010): 
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 B.2.3 – Frontal pose off with head rotation not more than ±5° in any direction 

(roll, pitch, and yaw) 

 B.2.4 – Neutral expression (non-smiling) 

 Not raised eyebrows, smiling, looking away, squinting, frowning 

 B.2.6 – If normally wear glasses, then keep glasses on. Should be photographed 

without tint or and lighting artifacts (avoided by increasing angle between lighting 

for 45° or more) 

 B.3.1.1 – Optimal human examination and permanent storage, preferred minimum 

of spatial sampling of full image of at least: 

 240 pixels for head width 

 120 pixels in between eye centers 

 Max width of 420 pixels and Max height of 525 pixels 

 C.2.1.1 - Camera-to-subject distance within 1.2-2.5 meters 

 C.2.1.3.1 – light source places 35° above line of sight of camera-to-subject, and 

45° horizontally, reflector panels used to softly and uniformly reflect light onto 

subject 
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Figure 3.2: ISO/IEC JTC SC 37 compliant face image capturing arrangement (ISO/IEC 

JTC 1/SC 37, 2010) 

 

3.1.4 Testing Procedure 

The testing procedure followed the two sequences listed below. The first sequence 

was for the non-scarred subjects that participated in this study. The second sequence was 

for subjects that had preexisting face scarring before the time of the study. 

 

3.1.4.1 Subjects Without Preexisting Scars 

1. Subject entered the face data capturing studio and was be briefed by test 

administrator 

2. Consent form was provided for subject to read and sign 

3. Once the consent form was signed the test administrator saved it and recorded the 

subject’s demographic information 

4. Test administrator began video recording of the data capture session 
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5. Subject took a seat in front of the gray background, and the test administrator 

made any height and angle adjustments necessary to identify the Centerline 

Location using the iPhone wireless camera controller 

6. Test administrator also adjusted the camera position within the 1.2 - 2.5m 

boundary to ensure 120 pixels between the subject’s eyes 

7. Subject removed any occlusions from the face (such as glasses or hair) 

8. Test administrator captured three images of the subject’s face 

9. Test administrator applied a small amount of face powder for data capture 

preparations (pretreat the face for liquid latex application and negate specular 

reflectance) 

10. Test administrator captured three images of the subject’s face with face powder 

11. Test administrator applied the prosthetic scar on the subject’s left cheek with 

liquid latex adhesive and foundation blending (if needed) 

12. Test administrator captured three images of the subject’s face with a prosthetic 

scar 

13. Subject moved to the mock border control booth and had three images captured 

with a prosthetic scar in a booth setting 

14. Test administrator then removed the prosthetic scar and captured three additional 

baseline images in the booth environment 

15. Test administrator recorded the subject’s participation in the human subject log 

and asked the subject for one last signature 

16. Once the subject signs the human subject log, the subject was paid for their 

participation a sum of $10 and exited the face image capture area 
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3.1.4.2 Subjects With Preexisting Scars 

1. Subject entered the face data capturing studio and was be briefed by test 

administrator 

2. Consent form was provided for subject to read and sign 

3. Once the consent form is signed the test administrator saved it and recorded the 

subject’s demographic information 

4. Test administrator began video recording of the data capture session 

5. Subject took a seat in front of the gray background, and the test administrator 

made any height and angle adjustments necessary 

6. Test administrator also adjusted the camera position within the 1.2 - 2.5m 

boundary to ensure 120 pixels between the subject’s eyes. 

7. Subject removed any occlusions from the face (such as glasses or hair) 

8. Test administrator captured three images of the subject’s face 

9. Test administrator applied a small amount of face powder 

10. Test administrator captured three images of the subject’s face  

11. Subject moved to the mock border control booth and had three images captured in 

a booth setting 

12. Test administrator recorded the subject’s participation in the human subject log 

and asked the subject for one last signature 

13. Once the subject signed the human subject log, the subject was paid for their 

participation a sum of $10 and exited the face image capture area 
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3.1.5 Equipment 

Table 3.1: Equipment Density List outlines the equipment used for face image data 

collection and statistical analysis: 

 

Table 3.1: Equipment Density List 

Description Type Quantity 

18% Gray ABS Plastic Background Scenery 1 

Canon PowerShot SX600 HS Digital Camera Photographic 1 

iPhone 5 Photographic 1 

Logitech 920 Webcam Photographic 1 

Ben Nye Liquid Latex Makeup 16 oz 

MiniTab 17 Software 1 

Windows 8.1 Enterprise Software 1 

Ben Nye Theatrical Crème Kit TK3 Makeup 1 

Impact SP-UM Lighting System Scenery 1 

Plane deflector Scenery 2 

Microsoft Power BI Software 1 

Oxford Wave Research Bio-Metrics 1.5 Software 1 

Megamatcher 9.0 Software 1 

Aware PreFace 4.2 Software 1 

VeriLook 8.0 Software 1 

 

3.1.6 Confidentiality 

Name and personal information of the subject were recorded for payment purposes. 

Subjects remained anonymous, and were identified throughout the research with an 

issued subject identification number. Subject demographic information was the only 

personal information used for statistical analysis. Other information such as contact 

phone number, full name, and email were not be used for research. All records were 

stored in a local database using secure cloud server. A consent form outlying the human 

subject confidentiality can be found in Appendix F. 
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3.1.7 Data Cleaning and Segregation 

Upon completion of face image data collection, the data was cleaned and segregated 

for subsequent statistical analysis. The raw face image data was stored on the digital 

camera’s SD card, and extracted into the database for segregation into two samples. Each 

subject’s baseline and scarred image was stored in respective folders for sample type. For 

the mock booth, the data was stored on its local computer drive and manually transferred, 

as the booth camera will be the installed webcam.  

 

3.2 Statistical Analysis 

The second half of this research was the statistical analysis procedure. The 

statistical analysis was comprised of three main parts: image quality and performance 

output, image quality analysis of variance, and finally the zoo analysis. 

 

3.2.1 Image Quality and Performance Output 

Once the data collection was finished, and the data was cleaned and segregated, the 

datasets will be processed using PreFace 4.2 and Megamatcher 9.0. Preface outputted the 

image quality results in a spreadsheet under the ISO Frontal Best Practices face profile. 

The image quality will be recorded on an image by image basis before transference to an 

online database, and example is shown in Table 3.2. Megamatcher 9.0 will process the 

performance for the eight different datasets: baseline, powder, and prosthetic scarred; for 

both controlled studio and operational booth settings. Wild scarred faces as is and with 

some setting powder in both controlled studio and operational booth settings. 
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Table 3.2: Example of Image Quality information table 

 

3.2.1.1 DET Curves 

Once performance results are outputted from Megamtcher 9.0, it was visually 

rendered through Oxford Wave Research Bio-Metrics 1.5. Oxford Wave generated DET 

curves to performance observation of FMR, FNMR, as well as the EER. Ten DET curves 

were generated and compared against each other; baseline with prosthetic scar in studio 

setting, baseline with prosthetic scar in booth setting, baseline and preexisting scar in 

studio setting, baseline and preexisting scar in booth setting, enroll on baseline and match 

on prosthetic scar in studio setting, and finally enroll on baseline and match on prosthetic 

scar in booth setting. Two additional DET curves were made to observe the performance 

of the face with setting powder applied, and provided supplementary data. Key 

performance indication points were 0.1, 0.01, and 0.001 FAR. 

 

3.2.2 Analysis of Image Quality 

The outputted measurements from Preface 4.2 will be processed through Microsoft 

Power BI. The various measurements will be graphed on their compliance with the ISO 

full frontal face image standards (ISO/IEC JTC 1/SC 37, 2010), as well as raw values 

statistically compared. Below is a diagram of measurements and coordinates that PreFace 

4.2 will analyze, see Figure 3.3. 

Setting Scar Image EYE_SEPARATIONEYE_SEPARATION_ValueEYE_AXIS_ANGLEEYE_AXIS_ANGLE_ValueEYE_AXIS_LOCATION_RATIOEYE_AXIS_LOCATION_RATIO_ValueCENTERLINE_LOCATION_RATIO

Studio No Chan_Face_F_001_1_1.JPG Ok 648.1111 Ok -1.06091 Ok 0.542245 FailHigh

Studio No Chan_Face_F_001_1_2.JPG Ok 685 Ok 0 Ok 0.550637 FailHigh

Studio No Chan_Face_F_001_1_3.JPG Ok 666.1835 Ok 0.876882 Ok 0.542796 FailHigh

Studio No Chan_Face_F_002_1_1.JPG Ok 687.0262 Ok 1.741611 FailLow 0.463226 FailHigh

Studio No Chan_Face_F_002_1_2.JPG Ok 690.7757 Ok 1.856594 FailLow 0.472567 FailHigh

Studio No Chan_Face_F_002_1_3.JPG Ok 673.2431 Ok 3.487413 FailLow 0.463767 FailHigh
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Figure 3.3: PreFace 4.2 output of face area and associated measurements analyzed. 

 

PreFace 4.2 analyzed all face images captured during data collection and grade 

them along the ISO Frontal Best Practices profile. The profile consisted of the 23 out of 

37 possible image quality metrics, listed in Appendix D (Aware, Inc., 2007). PreFace 4.2 

outputted all 37 metrics in raw values, but only determined compliancy for the 23 

pertinent metrics to ISO Frontal Best Practices. 

A conventional two-sample t-test was performed using a significance level of 𝛼 =

0.05. This significance level was chosen out of conventional practice, as comparison of 

biometric image quality usually follows a simple Boolean compliant or incompliant 
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dimension. Image quality does output in numeric values, ergo if we choose to deviate 

from the compliant incompliant dimension a common and traditional significance level 

would be appropriate (Ableson, 1995).  

The t-test had one factor that separated the samples, presence of scarring. Scarring 

was measured in two levels, if it was or was not applied to the face during the face image 

capture. The two environments, the studio and the booth, were exclusively tested to 

ensure variance from one environment did not bleed over to the other. Equation 3.1 

shows the statistical model for the image quality t-test. 

 

𝐻0: 𝑛𝑢𝑛𝑠𝑐𝑎𝑟𝑟𝑒𝑑 = 𝑛𝑠𝑐𝑎𝑟𝑟𝑒𝑑      

𝐻𝑎: 𝑛𝑢𝑛𝑠𝑐𝑎𝑟𝑟𝑒𝑑 ≠ 𝑛𝑠𝑐𝑎𝑟𝑟𝑒𝑑   (Equation 3.1) 

 

While 

The same t-test statistical model from image quality shown in 𝐻𝑎: 𝑛𝑢𝑛𝑠𝑐𝑎𝑟𝑟𝑒𝑑 ≠

𝑛𝑠𝑐𝑎𝑟𝑟𝑒𝑑   (Equation 3.1 was applied to VeriLook. The age estimation 

from VeriLook was used to calculate age difference from the exact age that was reported 

by the subject. Then the age difference of each sample were compared via t-test to 

evaluate and compare age estimation with the effect of scarring. 

The categorical comparison of gender estimation to the actual sex reported by the 

subject was evaluated with a Pearson’s chi-squared good ness of fit test. The chi-squared 

allowed us to examine the frequency distributions of correct and incorrect gender 

estimations under the conditions of pre- and post-scarring. 
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3.2.3 Stability Analysis 

The final statistical analysis was using Oxford Wave Research Bio-Metrics 1.5 to 

render the Zoo Menagerie on the two different datasets. This is done to supplement the 

performance results of the DET curves, as it added context and granularity to the 

different EERs. Zoo characteristics were connected to subject demographics information. 

Combining the information of the DET curves and Zoo Menageries highlighted where 

performance changes occur and what conditional causes for performance changes. The 

information from the matcher and the zoo plot were recorded, and example table is 

shown in Table 3.3. 

Table 3.3: Matching and Zoo data recording 

 

 

The two zoo analysis result outputs from Oxford Wave can then be compared to 

observe the stability of individual subject performance. Subject zoo characteristics can be 

evaluated between the baseline and scarred images, and will give direction to the subject 

movement. The magnitude of stability was calculated using the Stability Score Index, and 

used to determine the minimum and maximum of genuine and impostor distributions. 

 

3.3 Methodology Summary 

This chapter reviewed the data collection and statistical design utilized to carry out 

this research. It laid out the testing design and the materials needed for completing the 

Before Scars After Scars Before Scars After Scar

1 Doves Normal Doves Normal Normal

2 Normal Doves Normal Normal Doves

3 Normal Normal Normal Normal Normal

4 Normal Phantoms Normal Normal Phantoms

5 Normal Normal Phantoms Normal Normal

Studio Booth

PowderSubject ID
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data collection. Lastly, the statistical analysis and graphical summary methods are 

presented to evaluate the data collected.
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CHAPTER 4. RESULTS 

The results of this research were divided into the following sections: Subject 

Demographics, DET Performance Measurement, Image Quality, and finally Zoo 

Analysis.

 

4.1 Subject Demographics 

Subject ethnicity was classified in two categories, Hispanic and Non-Hispanic. The 

subjects who participated in the data collection were predominantly Non-Hispanic, as 

seen in Figure 4.1. Among all 60 subjects only six were of Hispanic descent, and no 

racially Asian or Black subjects were of Hispanic descent. 

 

 

Figure 4.1: Pie Chart of Subject Ethnicity. 

Hispanic

Non-Hispanic

Category

89.8%

10.2%
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Subject racial characteristics were captured in six different categories. No American 

Indians or Alaskan Natives participated in this study, and no subjects that participated 

declined to report their race. The subjects that participated in this data collection were 

predominantly White, who also made up more than the other three racial categories 

combined. 

 

 

Figure 4.2: Pie Chart of Subject Race. 

 

Subjects also had their biological sex recorded. There were three categories for sex, 

male and female, and also an option for not reported. The subjects that participated in this 

data collection were mostly female, but only by a slight majority, as shown in Figure 4.3. 

No subjects that participated declined to report their sex. 

Asian

Black or African American

More than one race

White

Category

67.8%

10.2%

3.4%

18.6%
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Figure 4.3: Pie Chart of Subject Sex. 

 

Subjects that participated in this data collection were mostly in their early twenties. 

As with any human subject data collection, the histogram of age is skewed to the left, as 

shown in Figure 4.4. This was due to the stipulation that only subjects eighteen or older 

can legally consent for human subject research. 

Female

Male

Category

44.1%

55.9%
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Figure 4.4: Histogram of Subject Age 

 

Half of the subjects who participated in this study had preexisting scars. The split 

between atrophic and hypertrophic scars is even, each accounting for half of the scars 

reported as shown in Figure 4.5. 

 

Figure 4.5: Pie Chart of Subject Scarring 
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For data transformation, the reported scarring is recorded with location details. It 

was interesting to note that atrophic scarring affects the face as a whole rather than 

specific areas. 

 

4.2 DET Performance Measurement 

Throughout the performance results, the data did not show any indications of poor 

performance. Table 4.1shows the EERs for both non-scar subjects and subjects with 

preexisting scars through the various data capture settings for this study. The data showed 

evidence that both unscarred and scarred individuals can achieve good performance in a 

face recognition system. 

 

Table 4.1: Performance Summary 

 

 

The performance of the same baseline but with the setting powder pretreatment can 

be seen under the rows designed with powder as the environment. This pretreatment was 

FAR=1 FAR=0.1 FAR=0.01

No Studio 0.00% 0.00% 0.00% 0.00%

Yes Studio 0.00% 0.00% 0.00% 0.00%

No Powder 0.00% 0.00% 0.00% 0.00%

No Booth 0.00% 0.00% 0.00% 0.00%

Yes Booth 0.00% 0.00% 0.00% 0.00%

Preexisting Studio 0.00% 0.00% 0.00% 0.00%

Preexisting Powder 0.00% 0.00% 0.00% 0.00%

Preexisting Booth 0.00% 0.00% 0.00% 0.00%

Non-Scar Enroll to Scar Match Studio 0.00% 0.00% 0.00% 0.00%

Non-Scar Enroll to Scar Match Booth 0.00% 0.00% 0.00% 0.00%

FRR
EEREnvironmentScarring
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given to all subjects, non-scarred and scared, and was present for the duration of the data 

collection. There was no change in performance with the addition of the pretreatment. 

Simulated scarring using theatrical methods and liquid latex showed equally good 

performance results. EERs were at 0.00% for both studio and booth environments. EER 

percentages are considered good the closer it is to zero (Dunstone & Yager, 2008; 

Schuckers, 2012). Table 4.1 shows good performance in before and after simulated 

scaring in studio, and equally good performance when the same subjects were captured 

using the booth environment.  

The last section of Table 4.1 shows the performance of verifying a scarred image to 

an original non-scarred enrollment. This is operationally interesting due to the decade-

long validity of passport enrollments. Within ten years, it is possible for individuals to 

develop scars, be it hypertrophic repair of trauma or atrophic developments from sun or 

disease recovery. These performance results show that the face recognition matching is 

still effective with changes from scarring. 

 

4.3 Hypothesis Statements 

Table 4.2: Statistical Hypothesis 

Description Statement Subsection 

Studio non scarred and scarred  𝐻0: 𝜇𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜇𝑠𝑐𝑎𝑟 4.4.1 

Booth non scarred and scarred  𝐻0: 𝜇𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜇𝑠𝑐𝑎𝑟 4.4.2 

Baseline and Powder 𝐻0: 𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝜇𝑝𝑜𝑤𝑑𝑒𝑟 4.4.3 

Studio VeriLook Confidence 𝐻0: 𝜇𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜇𝑠𝑐𝑎𝑟 4.5.1 

Booth VeriLook Confidence 𝐻0: 𝜇𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜇𝑠𝑐𝑎𝑟 4.5.2 

Studio VeriLook Gender Accuracy 𝐻0: 𝜒𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜒𝑠𝑐𝑎𝑟 4.5.3 

Booth VeriLook Gender Accuracy 𝐻0: 𝜒𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜒𝑠𝑐𝑎𝑟 4.5.4 
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In Table 4.2, the statistical comparisons are listed with the hypothesis model used. 

The subsection and cross references are also shown. Statistical analysis was used for both 

image quality and VeriLook estimation confidence and accuracy. The Student’s t-test was 

used for comparing means across the function of scarring. The Chi-squared test was used 

to evaluate distribution association between gender estimation accuracy and the function 

of scarring. 

 

4.4 Student’s t-test of Image Quality 

This section contains evaluations for the pre- and post-scarring t-test for both the 

studio and booth environments, with further details in subsections 4.4.1, 4.4.2, and 4.4.3. 

Table 4.3 summarizes the statistical analysis of all image quality metrics. Several metrics 

did not yield meaningful statistical conclusions because all images generated the same 

values. These were mostly dimensional and digital sizing metrics, as seen in Figure 4.6 

where the two subjects feature equal dimensions. Ergo some metrics were not evaluated 

in depth. 

 

 

Figure 4.6: Image dimension consistency 
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Table 4.3: Image Quality Statistical Summary 

 

 

4.4.1 Studio non-scarred and scarred 

This section evaluated the hypothesis of 𝐻0: 𝜇𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜇𝑠𝑐𝑎𝑟 for the studio 

environment. Three metrics were found to have significant difference with the function of 

scarring. Centerline location ratio location of the centerline as a fraction of the image 

width measured from the left side of the image. Background type indicates simple or 

Baseline Scar P-Value Baseline Scar P-Value

EYE SEPARATION 787.70 799.90 0.33 181.23 176.90 0.39

EYE AXIS ANGLE -0.15 0.39 0.55 1.00 0.41 0.15

EYE AXIS LOCATION RATIO 0.52 0.52 0.52 0.52 0.51 0.75

CENTERLINE LOCATION RATIO 0.52 0.52 0.01 0.50 0.50 0.52

IMAGE HEIGHT 3456.00 3456.00 * 1080.00 1080.00 *

IMAGE WIDTH 4608.00 4608.00 * 1920.00 1920.00 *

HEIGHT TO WIDTH RATIO 0.75 0.75 * 0.56 0.56 *

HEAD HEIGHT TO IMAGE HEIGHT RATIO 0.68 0.69 0.45 0.53 0.51 0.24

IMAGE WIDTH TO HEAD WIDTH RATIO 2.72 2.68 0.46 5.05 5.18 0.41

EYE CONTRAST 4.98 4.98 * 4.43 4.52 0.25

BRIGHTNESS SCORE 4.99 4.99 1.00 4.33 4.43 0.33

FACIAL DYNAMIC RANGE 7.64 7.63 0.89 7.66 7.68 0.62

PERCENT FACIAL BRIGHTNESS 57.28 57.30 0.94 43.21 43.74 0.66

PERCENT FACIAL SATURATION 0.00 0.00 * 0.00 0.00 *

PERCENT BACKGROUND GRAY 43.52 44.42 0.51 51.21 50.45 0.24

PERCENT BACKGROUND UNIFORMITY 97.12 96.82 0.08 71.51 81.50 0.05

BACKGROUND TYPE 1.03 1.14 0.01 1.93 1.94 0.76

DEGREE OF CLUTTER 0.10 0.31 0.04 2.47 2.13 0.22

DEGREE OF BLUR 0.17 0.07 0.16 0.02 0.01 0.56

SMILE 0.03 0.03 1.00 0.01 0.01 *

GLASSES 0.00 0.00 * 0.00 0.02 *

SMILE LIKELIHOOD 0.03 0.03 1.00 0.01 0.01 *

GLASSES LIKELIHOOD 0.00 0.00 * 0.00 0.03 *

POSE ANGLE 0.57 0.63 0.71 1.47 1.60 0.78

DEGREE OF POSE 0.00 0.00 * 0.04 0.07 0.52

IMAGE FORMAT 4.00 4.00 * 4.00 4.00 *

FILE SIZE 3806463.34 3794393.14 0.52 293704.10 296032.26 0.65

JPEG QUALITY LEVEL -1.00 -1.00 * -1.00 -1.00 *

J2K COMPRESSION RATIO -1.00 -1.00 * -1.00 -1.00 *

J2K ROI BACKGROUND COMPRESSION RATIO -1.00 -1.00 * -1.00 -1.00 *

J2K ROI FOREGROUND COMPRESSION RATIO -1.00 -1.00 * -1.00 -1.00 *

DESIRED BACKGROUND RGB RED 143.51 141.70 0.59 123.80 125.80 0.28

DESIRED BACKGROUND RGB GREEN 144.90 142.40 0.46 125.14 127.07 0.31

DESIRED BACKGROUND RGB BLUE 140.70 138.60 0.57 122.31 124.60 0.20

DESIRED BACKGROUND HSL HUE 93.70 90.70 0.69 111.59 112.88 0.94

DESIRED BACKGROUND HSL LIGHTNESS 56.01 55.14 0.53 48.44 49.27 0.24

DESIRED BACKGROUND HSL SATURATION 2.26 2.07 0.15 2.16 1.93 0.22

DESIRED BACKGROUND HSV HUE 93.70 90.70 0.69 111.59 112.88 0.94

DESIRED BACKGROUND HSV SATURATION 3.53 3.34 0.50 4.05 3.54 0.16

DESIRED BACKGROUND HSV VALUE 56.96 56.01 0.48 49.44 50.16 0.31

DEGREE OF LEFT EYE OBSTRUCTION 0.00 0.08 * 0.00 0.00 *

DEGREE OF RIGHT EYE OBSTRUCTION 0.00 0.00 * 0.00 0.00 *

DEGREE TO WHICH EYES ARE CLOSED 0.00 0.00 * 0.00 0.01 *

DEGREE OF ILLUMINATION ASYMMETRY 1.59 1.73 0.45 4.44 4.40 0.54

Metric

Studio - Mean Value Booth - Mean Value
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cluttered, with a 0 or 1 scoring system. Degree of clutter measures how much clutter 

occurs, with a scoring scale of 1 to 5. There was a significant difference in the centerline 

location ratio for pre- (M=0.52, SD=0.01) and post-scarring (M=0.52, SD=0.01); 

t(176)=2.53, p=0.01.  

 

 

Figure 4.7: Centerline location ratio between pre- and post-scarring 

 

As seen in Figure 4.7 and the mathematical means and standard deviations from 

the t-test, the centerline location ratio is very similar within the function of scarring. The 

central tendency for the centerline location value falls well beyond two decimal places, 

and requires impractical accuracy and precision. This reflected that the centerline location 

as a metric for image quality is viable, but can generate mathematical errors that may not 

reveal any practical difference between two images. 

There was a significant difference in the background type for pre- (M=0.97.12, 

SD=0.69) and post-scarring (M=96.82, SD=1.47); t(126)=1.75, p=0.01. There was also a 

significant difference in the degree of clutter for pre- (M=0.10, SD=0.54) and post-

scarring (M=0.31, SD=0.816); t(154)=-2.04, p=0.04 
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Figure 4.8: Background measurements between pre- and post-scarring 

 

The results of the t-tests for background type and clutter are highlighted with 

Figure 4.8. There is visible difference between the pre- and post-scarring images, but 

more so between the two subjects. There is evidence that the degree of background 

changes are an artefact of the intra-subject variability. It can be seen with subject 18 that 

there is almost no change in shadowing in the background, but the natural hair 

movements from subject 17 creates more variability. 

 

4.4.2 Booth non-scarred and scarred 

This sections evaluated the hypothesis of 𝐻0: 𝜇𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜇𝑠𝑐𝑎𝑟 within the booth 

environment. Only one metric resulted in significant difference with the function of 



59 

 

scarring. Percent background uniformity reflects the variation of color throughout the 

background of the image as a percentage. For the booth environment, a significant 

difference appeared in the percent background uniformity for pre- (M=71.51, SD=38.5) 

and post-scarring (M=81.50, SD=29.1); t(165)=-1.97, p=0.05. 

 

 

Figure 4.9: Background uniformity between pre- and post-scarring 

 

The results of the t-test does show significant difference of background 

uniformity with the function of scarring, Figure 4.9 affirms the convention that variability 

is from intra-subject tendencies when engaged in an uncontrolled environment (Jain, 
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Klare, & Park, 2011; Li & Jain, 2005). With only a unimodal reference point for users to 

engage, the Logitech Webcam, there is little reference for users to guide their interface 

with the system. Subsequently, the capture operations may diminish in consistency of 

capture angle and distance. Though the distance and angle tolerance provided by ISO 

standards are adequate, 35° above line of sight with 1.2-2.5 meters distance from user, 

this is set for a controlled studio environment. With the uncontrolled nature of the 

operation environments such as the booth the tolerance allowed by the ISO standard 

created more variation in the booth than the studio, ergo another set of standards for the 

booth would be appropriate. 

 

4.4.3 Baseline and Powder 

This section evaluated the hypothesis of 𝐻0: 𝜇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝜇𝑝𝑜𝑤𝑑𝑒𝑟, to examine the 

function of the pretreatment powder.The same statistical methods used in for the function 

of scarring was also used for the function of setting powder. The pretreatment effects 

were measured to ensue metric values were consistent for basis of data collection 

uniformity. In Table 4.4 show the t-test results for the pretreatment; all results were done 

within the studio environment. 
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Table 4.4: Image Quality Statistical Summary for Pretreatment 

 

 

The pretreatment only showed significant difference in one metric for preexisting 

scarred subjects, the degree of illumination asymmetry, see Table 4.4. The degree of 

illumination asymmetry represents the extent to which the illumination of the image is 

not symmetrical with a score from 0 to 5. A significant difference appeared in the degree 

Baseline Powder P-Value Baseline Powder P-Value

EYE SEPARATION 787.70 799.80 0.32 806.60 808.20 0.90

EYE AXIS ANGLE -0.15 -0.04 0.79 -0.56 -0.24 4.37

EYE AXIS LOCATION RATIO 0.52 0.52 0.92 0.52 0.52 0.54

CENTERLINE LOCATION RATIO 0.52 0.52 0.97 0.52 0.53 0.61

IMAGE HEIGHT 3456.00 3456.00 * 3456.00 3456.00 *

IMAGE WIDTH 4608.00 4608.00 * 4608.00 4608.00 *

HEIGHT TO WIDTH RATIO 0.75 0.75 * 0.75 0.75 *

HEAD HEIGHT TO IMAGE HEIGHT RATIO 0.68 0.68 0.67 0.68 0.68 0.98

IMAGE WIDTH TO HEAD WIDTH RATIO 2.72 2.68 0.41 2.66 2.65 0.95

EYE CONTRAST 4.98 4.98 * 4.93 4.91 0.58

BRIGHTNESS SCORE 4.99 4.99 1.00 4.98 4.98 1.00

FACIAL DYNAMIC RANGE 7.64 7.61 0.15 7.61 7.60 0.50

PERCENT FACIAL BRIGHTNESS 57.28 56.94 0.25 54.76 54.74 0.97

PERCENT FACIAL SATURATION 0.00 0.00 * 0.00 0.00 0.57

PERCENT BACKGROUND GRAY 43.52 44.44 0.50 41.10 40.80 0.82

PERCENT BACKGROUND UNIFORMITY 97.12 96.97 0.30 96.94 97.15 0.29

BACKGROUND TYPE 1.03 1.07 0.31 1.09 1.06 0.39

DEGREE OF CLUTTER 0.10 0.17 0.47 0.24 0.13 0.28

DEGREE OF BLUR 0.17 0.11 0.46 0.20 0.21 0.89

SMILE 0.03 0.03 1.00 0.00 0.00 *

GLASSES 0.00 0.00 * 0.00 0.00 *

SMILE LIKELIHOOD 0.03 0.03 1.00 0.00 0.00 *

GLASSES LIKELIHOOD 0.00 0.00 * 0.00 0.00 *

POSE ANGLE 0.57 0.67 0.53 0.75 0.49 0.14

DEGREE OF POSE 0.00 0.00 * 0.00 0.00 *

IMAGE FORMAT 4.00 4.00 * 4.00 4.00 *

FILE SIZE 3806463.34 3813485.00 0.69 3834841.00 3832956.00 0.92

JPEG QUALITY LEVEL -1.00 -1.00 * -1.00 -1.00 *

J2K COMPRESSION RATIO -1.00 -1.00 * -1.00 -1.00 *

J2K ROI BACKGROUND COMPRESSION RATIO -1.00 -1.00 * -1.00 -1.00 *

J2K ROI FOREGROUND COMPRESSION RATIO -1.00 -1.00 * -1.00 -1.00 *

DESIRED BACKGROUND RGB RED 143.51 141.40 0.53 149.60 150.50 0.82

DESIRED BACKGROUND RGB GREEN 144.90 142.50 0.48 150.90 151.80 0.81

DESIRED BACKGROUND RGB BLUE 140.70 138.30 0.51 148.30 147.50 0.87

DESIRED BACKGROUND HSL HUE 93.70 92.90 0.92 112.50 110.80 0.86

DESIRED BACKGROUND HSL LIGHTNESS 56.01 55.07 0.50 58.55 58.80 0.83

DESIRED BACKGROUND HSL SATURATION 2.26 2.30 0.80 2.50 2.47 0.85

DESIRED BACKGROUND HSV HUE 93.70 92.90 0.92 112.50 110.80 0.86

DESIRED BACKGROUND HSV SATURATION 3.53 3.66 0.66 3.55 3.52 0.94

DESIRED BACKGROUND HSV VALUE 56.96 56.03 0.50 59.40 59.80 0.83

DEGREE OF LEFT EYE OBSTRUCTION 0.00 0.00 * 0.00 0.00 *

DEGREE OF RIGHT EYE OBSTRUCTION 0.00 0.00 * 0.00 0.00 *

DEGREE TO WHICH EYES ARE CLOSED 0.00 0.00 * 0.00 0.00 *

DEGREE OF ILLUMINATION ASYMMETRY 1.59 1.52 0.74 1.68 1.23 0.01

Metric

Non-Scarred - Mean Value Preexisting Scarred - Mean Value
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of illumination asymmetry for the preexisting scarred baseline (M=1.68, SD=1.21) and 

the pretreatment (M=1.23, SD=1.08); t(175)=-2.60, p=0.01. 

 

 

Figure 4.10: Asymmetry of illumination between baseline and pretreatment powder 

 

This t-test report of asymmetric illumination reveals practical impacts that did not 

appear in other metrics, such as brightness score and percent facial brightness. It can be 

seen in Figure 4.10 that there is visible changes between the baseline and the 

pretreatment powder. Baseline faces have more specular reflectance, noticeably in 

highlight areas such as the nose inflection points of the nasal labial folds, the chin, and 

the forehead. After the pretreatment, the powder diminishes this specular reflectance, and 

the overall face is mattified with uniform illumination, concurring with the value means 
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gathered. This discovery has direct impact on the adaptability of image capture, in any 

environment, as cosmetic powder has common use. 

 

4.5 VeriLook 8.0 Estimation Results 

The confidence scores from VeriLook 8.0 were analyzed with MiniTab 17. A 

two-sample t-test was conducted to compare confidence scores in pre- and post-scarring, 

and a Pearson’s chi-squared goodness of fit test was done to evaluate correct and 

incorrect estimations of gender. Table 4.5 summarizes the t-test results for confidence 

scores. 

 

Table 4.5: VeriLook t-test Summery 

 

 

4.5.1 Studio VeriLook Confidence 

This section evaluated the hypothesis of 𝐻0: 𝜇𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜇𝑠𝑐𝑎𝑟 for VeriLook 

confidence within the studio. The data shows evidence that scarring in studio 

environment has a significant impact on estimation confidence for whether or not the 

mouth is open, glasses and dark glasses presence. Nevertheless, we see that the booth 

environment generates lower confidence in estimation, so it not to say that the studio 

Before Scars After Scars P-Value Before Scars After Scars P-Value

Gender 62.10 63.80 0.82 62.70 60.74 0.69

Expression 53.80 58.00 0.09 58.60 57.50 0.63

Blink 99.26 98.78 0.50 95.40 96.30 0.62

Mouth Open 71.50 84.20 0.03 70.50 72.20 0.70

Glasses 43.00 63.30 0.01 48.90 53.40 0.60

Dark Glasses 64.60 60.70 0.03 72.50 71.30 0.57

Quality 78.89 78.76 0.85 73.99 73.96 0.97

Age Error 3.98 4.53 0.27 4.82 5.23 0.45

Estimation

Studio - Mean of Confidence Score Booth - Mean of Confidence Score
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performs worse. There is evidence that accents that the booth environment performs 

poorly in general, ergo significant difference is not present. 

Mouth open, glasses, and dark glasses fall within the feature points located on the 

face for extraction and matching. The data shows evidence that scarring has a significant 

impact on the local feature points where the scar makes contact with. There was a 

significant difference in the confidence scores for whether or not the mouth was open for 

pre- (M=71.50, SD=31.90) and post-scarring (M=84.20, SD=43.6); t(163)=-2.22, p=0.03. 

There was a significant difference in the confidence scores for glasses present on the face 

for pre- (M=43.00, SD=37.30) and post-scarring (M=63.30, SD=66.6); t(139)=-2.52, 

p=0.01. There was also a significant difference in the confidence scores for dark glasses 

present on the face for pre- (M=64.60, SD=12.5) and post-scarring (M=60.7, SD=12.2); 

t(177)=2.15, p=0.03. 

 

4.5.2 Booth VeriLook Confidence 

This section evaluated the hypothesis of 𝐻0: 𝜇𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜇𝑠𝑐𝑎𝑟 for confidence 

within the booth environment. In Table 4.5 it is shown that only the studio environment 

presents statistically significant difference in select estimations with a function of 

scarring. Though there are not statistically significant differences reported in the t-tests 

for the booth environment there are lower mean values for confidence. The studio 

environment showed higher blink estimation confidence values for non-scarred 

(M=98.79, SD=4.95) and scarred (M=99.26, SD=4.27) compared to the booth non-

scarred (M=96.3, SD=11.40) and scarred (M=95.40, SD=12.70). Whether the mouth is 

open or not, the studio showed higher confidence values for non-scarred (M=84.20, 
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SD=43.60) and scarred (71.50, SD=31.90) than the booth non-scarred (M=12.20, 

SD=27.00) and scarred (M=70.5, SD=32.60). Overall VeriLook quality assessment taken 

into consideration, studio images were rated higher with non-scarred (M=78.76, 

SD=4.83) and scarred (M=78.89, SD=4.67) compared to the booth non-scarred 

(M=73.96, SD=6.22) and scarred (M=73.99, SD=5.34). It is evident while the booth 

presented no significant changes over the function of scarring, the confidence means 

were lower with the exception of dark glasses and expression, which showed that the 

confidence of VeriLook’s system was lower overall in the booth compared to the studio. 

 

4.5.3 Studio VeriLook Gender Accuracy 

This section evaluated the hypothesis of 𝐻0: 𝜒𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜒𝑠𝑐𝑎𝑟 for association 

from distribution in the studio. A Pearson’s chi-squared test was done to evaluate the 

frequency distributions of the correct and incorrect gender estimations under pre- and 

post-scarring. Cognate to the t-tests performed, the chi-squared was also done for the 

studio and booth exclusively. There was no significant relationship between pre and post-

scarring and the accuracy of gender estimation for the studio, 𝜒2(1, 𝑛 = 90) = 0.00, 𝑝 =

1.00. The data shows a lack of evidence that there was an association between correct 

gender estimation and the function of scarring within the studio environment. 

 

4.5.4 Booth VeriLook Gender Accuracy 

This section evaluated the hypothesis of 𝐻0: 𝜒𝑛𝑜−𝑠𝑐𝑎𝑟 = 𝜒𝑠𝑐𝑎𝑟 for association 

from distribution in the booth. The booth shared similar non-association results as the 

studio, 𝜒2(1, 𝑛 = 90) = 2.79, 𝑝 = 0.09. The data shows a lack of evidence that there is 



66 

 

an association between correct gender estimation and the function of scarring within the 

operational booth environment. 

 

4.6 Zoo Analysis 

The zoo analysis provided a textured look at the performance data by plotting 

genuine and impostor scores within a plot. This allowed genuine and impostor 

distribution variations to manifest into visual movements along the zoo plot. Interquartile 

ranges for each genuine and impostor distribution was established for each zoo plot, 

which determined animal classifications based on their scoring characteristics. In Table 

4.6, the zoo plots used for analysis are as listed. 

 

Table 4.6: Zoo Plot Summary 

Description Plot  Subsection 

Studio Non-Scarred Baseline (1) 4.6.1 

Studio Non-Scarred with Powder Baseline (2) 4.6.1 

Studio Non-Scarred with Prosthetic Scar Baseline (3) 4.6.1 

Booth Non-Scarred Baseline (4) 4.6.1 

Booth Non-Scarred with Prosthetic Scar Baseline (5) 4.6.1 

Studio Scarred Preexisting (1) 4.6.2 

Studio Scarred with Powder Preexisting (2) 4.6.2 

Booth Scarred Preexisting (3) 4.6.2 

Studio Pre-Scar Enroll to Post-Scar Verify Interoperability (1) 4.6.4 

Booth Pre-Scar Enroll to Post-Scar Verify Interoperability (2) 4.6.4 

 

4.6.1 Non-Scarred Subjects 

Zoo analysis of the non-scarred subjects revealed classification movement of more 

than one-third of subjects. These movements were highlighted in Table 4.7. Among the 

eleven subjects that presented movement, only two showed movements among all 

settings, be it without or without scars in the studio or the booth.  
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Table 4.7: Zoo Movements of Non-Scarred Subjects 

 

 

Table 4.7 showed the zoo animal classification for each of the non-scarred 

subjects. Subjects would sometimes move between animal classifications with the 

introduction of factors and covariates, which in this case is environmental setting and 

scarring.  

 

Before Scars After Scars Before Scars After Scar

1 Doves Normal Doves Normal Normal

2 Normal Doves Normal Normal Doves

3 Normal Normal Normal Normal Normal

4 Normal Phantoms Normal Normal Phantoms

5 Normal Normal Phantoms Normal Normal

6 Normal Normal Normal Normal Normal

7 Normal Normal Normal Normal Normal

8 Normal Normal Normal Normal Normal

9 Normal Normal Normal Normal Normal

10 Normal Normal Normal Normal Normal

11 Normal Normal Doves Normal Normal

12 Normal Normal Normal Normal Worms

13 Worms Worms Worms Worms Worms

14 Normal Normal Normal Normal Normal

15 Normal Normal Normal Normal Normal

16 Normal Worms Normal Normal Normal

17 Normal Normal Normal Normal Normal

18 Normal Normal Normal Normal Normal

19 Normal Normal Normal Chameleons Chameleons

20 Worms Worms Worms Worms Normal

21 Doves Phantoms Normal Normal Normal

22 Normal Normal Normal Normal Normal

23 Phantoms Normal Normal Normal Normal

24 Normal Normal Normal Normal Normal

25 Normal Normal Normal Normal Normal

26 Normal Normal Normal Normal Normal

27 Phantoms Phantoms Phantoms Normal Normal

28 Normal Normal Normal Normal Normal

29 Normal Normal Normal Normal Normal

30 Normal Normal Normal Phantoms Normal

Studio Booth

PowderSubject ID
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Figure 4.11: Zoo Plot of Studio Non-Scarred, Baseline (1) 

 

 

Figure 4.12: Zoo Plot of Studio Non-Scarred with Powder, Baseline (2) 
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Figure 4.13: Zoo Plot of Studio Non-Scarred with Prosthetic Scar, Baseline (3) 

 

Figure 4.11 is the zoo plot for the baseline face images. These are faces with no 

pretreatment and no preexisting scars. These face would later have prosthetic scars 

applied for a scar to no-scar comparison 

Figure 4.12 is the zoo plot of the same subjects of Figure 4.11, but with the setting 

powder pretreatment in preparation for the application of liquid latex. The pretreatment 

does show evidence of subject movement, but the range of genuine and impostor scores 

remain similar. In Figure 4.16 the stability score results show that there is some 

movement of pre- and post-scarring. More interestingly there was also some instances 

where the pretreatment resulted in higher instability than the function of scarring. 

Figure 4.13 displays the same subjects from Figure 4.11, but with prosthetic scars 

applied. Before, the baseline showed more centralized position in the lower left, 

indicating both low genuine and impostor score. When scars are applied, the subjects 

moved higher within the zoo plot, showing that impostor score moved when scarring was 

introduced.  
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Figure 4.14: Zoo Plot of Booth Non-Scarred, Baseline (4). 

 

 

Figure 4.15: Zoo Plot of Booth Non-Scarred with Prosthetic Scar, Baseline (5) 

 

The booth environment showed a decline in both genuine and impostor scores, 

and all subjects were closely clustered in the lower left corner of the zoo plot. Though the 

movement can be considered extreme in regards to the results in Figure 4.11 and Figure 
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4.13, the movement of Figure 4.14 does align with the results of Gross et al.’s (2005) 

previous work. 

The zoo plots showed evidence that studio environments present less variance in 

genuine and impostor score distributions. Even though Table 4.7 only shows five subject 

movements in a booth environment, which is less than what was seen in the studio. As 

observed in Figure 4.14 and Figure 4.15, the entire sample shifted and the maximum 

genuine and impostor score increased, as well as the greater distance between subjects. In 

Figure 4.11 and Figure 4.13, it was noticed that the studio sample set central tendency 

shifted to a higher genuine and impostor score, but not as drastic as the sample booth set. 

 

 

Figure 4.16: Stability scores for Pretreatment Powder and Scarring in the Studio. 

 

The stability score of the subjects tested for scarring showed movement for the 

function of scarring as well as the pretreatment. Eighteen subjects, more than half of the 

sample, showed higher instances of instability in the pretreatment than the application of 
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scarring. One subject, subject 22, showed no instability for scarring with a stability score 

of 0, but showed zoo distribution movement with the pretreatment with a stability score 

of 0.13. This can be seen in Figure 4.16. 

 

4.6.2 Preexisting Scarred Subjects 

Data on preexisting scars subjects was also plotted into zoo menageries to 

compare genuine and impostor scores distributions. These were completely different 

subjects, so a one on one comparison between factors were not done. Instead, a 

comparison between the same factors but with different subject samples was made. 
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Table 4.8: Zoo Movements of Scarred Subjects. 

 

 

Table 4.8 shows a greater amount of subject movement from subjects who have 

developed scarring. Thirteen of those who came into the data collection with their scars 

moved animal classifications, opposed to the eleven on non-scarred subjects who 

simulated scars. 

Subject ID Powder Studio Booth

31 Normal Normal Normal

32 Normal Worms Normal

33 Normal Normal Phantoms

34 Normal Normal Normal

35 Normal Normal Normal

36 Worms Worms Worms

37 Normal Doves Normal

38 Normal Normal Normal

39 Phantoms Normal Worms

40 Normal Doves Doves

41 Worms Worms Normal

42 Doves Normal Normal

43 Normal Normal Normal

44 Normal Normal Normal

45 Doves Doves Normal

46 Normal Normal Normal

47 Normal Normal Normal

48 Normal Normal Normal

49 Normal Normal Normal

50 Normal Normal Normal

51 Worms Normal Normal

52 Normal Normal Normal

53 Normal Normal Worms

54 Normal Normal Normal

55 Chameleons Chameleons Normal

56 Chameleons Normal Normal

57 Normal Doves Normal

58 Normal Normal Normal

59 Normal Phantoms Phantoms

60 Normal Normal Normal
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Figure 4.17: Zoo Plot of Studio Scarred, Preexisting (1). 

 

 

Figure 4.18: Zoo Plot of Studio Scarred with Powder, Preexisting (2) 

 

Figure 4.17 shows the zoo plot for those with preexisting scars in a studio 

environment. The factor of scarring was omitted for this subject sample set, as they have 

preexisting scars, and they cannot be concealed. Within this zoo plot there was similar 
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distributions to the non-scarred baseline in Figure 4.11. Despite the low left concentration 

similarity, the preexisting scars group showed higher genuine score distribution. 

Figure 4.18 is the zoo plot for subjects with preexisting scars, but with the setting 

powder pretreatment. The pretreatment did not change much of the distribution from 

Figure 4.17; the genuine score distribution remained largely unchanged while there was a 

little more variation in impostor score distribution. 

The setting powder pretreatment did show some subject movement for subjects with 

scars, but like the previous non-scarred sample set the range of genuine and impostor 

scores do not show drastic change. The pretreatment does not affect the genuine and 

impostor distribution within the two samples, compared to the magnitude of change from 

a face without scars to a face with scars. 

 

 

Figure 4.19: Zoo Plot of Booth Scarred, Preexisting (3) 

 

Those with scars displayed more variance than their non-scarred counterparts. 

This was evident in comparisons between non-scarred before and after zoo plots, as seen 
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in Figure 4.11 to Figure 4.13 and to Figure 4.14. Even comparing the two different 

subject sample sets, Figure 4.11 to Figure 4.17 and Figure 4.14 to Figure 4.19, it is 

apparent that scarring can affect sample set stability. 

 

 

Figure 4.20: Stability scores for Pretreatment of preexisting scarred subjects in the 

Studio. 

 

The stability scores for the preexisting scars also show that the pretreatment had 

an effect on subject movement, as seen in Figure 4.20 compared back to Figure 4.16. 

There was only one preexisting scarred subject, subject 56, which showed no instances of 

instability. 

 

4.6.3 Stability and Confounding Variables 

Due to the general nature of genuine and impostor scoring for the zoo menagerie, 

it is difficult to analyze instability that is precisely connected to certain variables. As seen 
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in Table 4.3 and Figure 4.8, there is visible illumination halo cast on the studio 

background, which directly impacts the background image quality. 

 

 

Figure 4.21: Stability Score over standard deviation of Percent Background Gray 

 

The stability score in relation to the standard deviation of background gray 

percentage is shown in Figure 4.21. At first glance, the trend line does not show a strong 

regression, but the general patter and dispersion of the data reveals an elemental 

connection between stability and background. The subjects with lower instances of 

instability also feature lower standard deviations of percent background gray. This 

relationship was also evident in Figure 4.22, when analyzing the stability score with 

background uniformity.  
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Figure 4.22: Stability Score over standard deviation of Percent Background Uniformity 

 

It is important to highlight that what is observed is a practical difference within 

image quality and stability. Statistically there was a lack of evidence that the standard 

deviation of percent background gray [F (1, 58) = 0.42, p= 0.52] and uniformity [F (1, 

58) = 0.51, p= 0.48] have an effect on the stability of a subject, at a conventional p<0.05 

level. Yet Figure 4.21 and Figure 4.22 show different results that affirm the practical 

implications of background haloing seen within the raw data. 

 

4.6.4 Matching Scarred to a Non-Scarred Enrollment 

Testing for interoperability was also done to see how well scarred images 

matched to non-scarred templates that could have come from a previous enrollment. 

Table 4.9 shows the zoo movements, comparing the original non-scarred baseline to the 

match with scar results. 
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Table 4.9: Zoo Movements of Matching Scarred to Non-Scarred Enrollment 

 

Before Scars Match with Scar Before Scars Match with Scar

1 Normal Doves Normal Normal

2 Doves Normal Normal Doves

3 Normal Normal Normal Normal

4 Phantoms Normal Normal Normal

5 Normal Normal Normal Normal

6 Normal Normal Normal Normal

7 Normal Normal Normal Normal

8 Normal Normal Normal Normal

9 Normal Normal Normal Normal

10 Normal Normal Normal Doves

11 Normal Normal Normal Normal

12 Normal Normal Normal Normal

13 Worms Worms Worms Normal

14 Normal Normal Normal Normal

15 Normal Normal Normal Normal

16 Worms Worms Normal Normal

17 Normal Normal Normal Normal

18 Normal Normal Normal Normal

19 Normal Normal Chameleons Chameleons

20 Worms Normal Worms Worms

21 Phantoms Normal Normal Normal

22 Normal Worms Normal Normal

23 Normal Normal Normal Normal

24 Normal Phantoms Normal Normal

25 Normal Normal Normal Normal

26 Normal Normal Normal Normal

27 Phantoms Phantoms Normal Phantoms

28 Normal Normal Normal Normal

29 Normal Normal Normal Normal

30 Normal Normal Phantoms Normal

Subject ID

Studio Booth



80 

 

 

Figure 4.23: Zoo Plot of Studio Pre-Scar Enroll to Post-Scar Verify, Interoperability (1) 

 

 

Figure 4.24: Zoo Plot of Booth Pre-Scar Enroll to Post-Scar Verify, Interoperability (2) 

 

Figure 4.23 show the zoo menagerie of verifying a scarred image to an original non-

scarred enrollment. Figure 4.24 is the same verification match but of the booth 

environment. Both show an increase variance compared to the exhaustive match scores of 
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regular single non-scar or scar sample sets. Though there are animal shifts between the 

zoo plots, it is not beyond the regular variance of the previous zoo analysis. 

 

4.7 Results Summary 

This chapter provided the results gathered from the data collection of this study. 

Starting with conventional demographics data that was recorded from each subject to 

describe the overall characteristics of subjects who participated. The performance was 

analyzed using the DET curves, a biometric industry standard for performance 

measurement, as well as a 2-sample t-test and a Pearson’s chi-squared test for 

association. Image quality was also reported from all face images collected from the 

subjects. Finally, stability analysis was done to show subject movement and the 

respective distributions of genuine and impostor scores. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

The final chapter of this research is divided into two section. This first section is the 

conclusion, which provides the verdict for performance and zoo stability for the subjects 

of this research, and also the overall findings of image quality. The last section is with 

respect to future research in this field, contributing directions for exploration and 

furnishing research ideas relation to what was and was not done in this research. 

 

5.1 Conclusions 

Suffice it to say; scarring does not seem to be a major contributor to performance or 

image quality deterioration. However, it should be noted that the zoo results show 

increase variance in genuine and impostor scores. The matching and image quality 

assessment software within the current face recognition standard are robust enough to 

make accurate identification and verification judgments, but are too sensitive in some 

aspect and not enough in others. Review of the ISO standard should be done to ensure 

that control of the control and constraints for face image quality are not only feasible, but 

practical as well. 

 

5.1.1 Performance 

All DET curves showed EER of 0.00%, desirable performance for any biometric 

system. Even comparing matching results from before and after scarring using the liquid 
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latex methodology showed EER of 0.00% from both samples, showing evidence that if 

an individual develops a scar, performance can remain at optimal levels. 

 

5.1.2 Image Quality 

The image quality deterioration aligned with previous conclusions from Gross et al. 

(2005), Barsi & Jacobs (2006), and Adini, Moses, & Ullman, 1997. The controlled studio 

environment of the studio provided better image quality than that of the operational 

environment of the booth. Among all the image quality variance, there was a lack of 

evidence for scarring as a contributor to image quality deterioration. Assuredly, face 

image quality does not seem affected by the emergence of scarring. 

 

5.1.2.1 Validation of Testing Methodologies 

Several of the image quality metrics showed complete uniformity, where all 

image reported the same values, mostly in respect to dimensions and format. J2K digital 

formatting showed equal results among all images, all images were captured as. jpgs, and 

digital saturation of pixels within the face region were all equal. This validated the testing 

methodology of this study, and provided metadata that showed conformance to the 

testing protocol across all subjects and visits. Even the t-test of centerline location ratio in 

the studio that showed significant difference reported arithmetic mean so close, as well as 

standard deviations of 0.01 for both pre- and post-scarring, revealed that the capture of 

the face was well within the limits pertaining to ISO standards.  

Physical constraints applied by the test administrator also had evidence that the 

data was collected properly to ISO standards. Metrics that showed either very close 



84 

 

values or values that were equal included degree of pose, pose angle, facial dynamic 

range, brightness score, and eye contrast. Pose metrics such as degree of pose and pose 

angle showed that the test administrator took precautions to ensure the head was properly 

positioned within the centerline of the image dimension. Facial dynamic range showed 

near equal results across all images, and validated that the head size within the image was 

not just adequate for ISO standards, but also mathematically and practically similar. Eye 

metrics such as eye contrast, eye separation, and eye axis angle and location ratio showed 

that the feature points of the eyes were properly centered during data collection. The eyes 

play an important role in biometric feature extracting algorithms, and the ISO standards 

for the eyes ensure clarity and location for matching purposes. 

The digital color background metrics measured in Red Blue Green (RGB), Hue 

Saturation Value (HSV), and Hue Lightness Value (HLV), showed no significant 

changes across the function of scarring. Additionally, upon evaluation of the standard 

deviations for background clutter and degree of clutter, there is much overlap between the 

standard deviation from central tendency. This showed that arithmetically it can be said 

with confidence that there is significance within the function of scarring, but there is little 

practicality within actual application or data capture. 

The image quality data as a whole showed evidence that face image data collected 

from a standardized studio setting will produce raw similar, if not exactly equal, raw 

values. However, the image quality assessment algorithm sensitivity can still 

mathematically show significant difference in central tendency, rendering results difficult 

to interpret for practical biometrics. The case for this study was the centerline location 

ratio, as both pre- and post-scar samples showed arithmetic means of 0.52 and standard 
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deviations of 0.1. The t-test still rendered a significant result, because the results recorded 

were in such detailed decimals that any minute change, from scarring or otherwise, would 

ripple through. At such focus to detailed decimal results, any non-overlap the distribution 

of value would be highlighted above appropriation. This leads to practical implications 

for the ISO standards currently in place. 

 

5.1.2.2 Practical Impact on Image Quality 

While the data does show that the function of scarring does not impact image 

quality generally, several aspects of the data collection showed visible changes to the data 

captured. These changes, though not pertaining to scarring, effect image quality as a 

whole and would explain the significant results in the t-tests.  

 

Figure 5.1: Visible effects of the pretreatment powder. 

 

The pretreatment only significantly affects one image quality metric for the 

preexisting scar subject sample, and no metric was found significant difference for the 

non-scarred subject sample. With only the degree of illumination asymmetry effected for 

preexisting scars, it is concluded that the data collection was done within ISO standards. 
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There are no determinations for illumination asymmetry set forth by the ISO, but even 

with the incompliances with select metrics in select images, there were no other metric 

values that showed statistically significant difference. 

Statistically, the brightness metrics are unaffected by the pretreatment powder. 

Brightness score, indicates how the darken dynamic range is centered in the facial region 

with a scoring of 1 to 5, showed no significant difference in our results between baseline 

(M=4.99, SD=0.11) and powder (M=4.99, SD=0.11); t(178)=0.00, p=1.00. Similarly 

percent facial brightness, the average luminance of the facial region as a percent, also 

showed no significant difference baseline (M=57.28, SD=2.03) and powder (M=56.94, 

SD=1.86); t(176)=-1.15, p=0.252. Although, from Figure 5.1 we can see lesser luminance 

and specular reflectance from the forehead and underneath the eyes. Scar pitting from the 

subject’s atrophic scars were also more defined within his baseline image compared to 

his pretreatment image. 
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Figure 5.2: Comparison of visible effects from pretreatment. 

 

Figure 5.2 shows the brightness reduction effect, but from subjects without 

preexisting scars, reaffirming our conclusion from Figure 5.1. There was evidence that 

the pretreatment mattifies the skin, even if not statistically significant the effect is 

present. The significance of this conclusion is the implications for border security 
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systems. The Dantcheva, Chen, and Ross (2012) study on cosmetics showed that there 

was an effect in performance for face recognition within the function of makeup. 

Although this study is focused on the function of scarring, base makeup was used for 

simulation. Base makeup such as setting powder or color foundation is widely used, due 

to its affordability and longevity.  

 

 

Figure 5.3: Skin pigmentation on background effects. 

 

Skin pigmentation showed effects on background image quality, as seen with the 

four subjects in Figure 5.3. Though not enough subjects for each race or skin 

pigmentation was collected during this study, it was observed that darker pigmented face 

was accompanied by lighter gray backgrounds. This is the result of the autofocus 
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capabilities of modern digital and webcams. The camera speed and exposure standards 

set forth by ISO is inclusive to all skin pigmentations, and will acquire a face of sufficient 

quality for biometric authentication. Autofocus functions on cameras are well within 

these limits. Without real time feedback, it is difficult for data collectors to know if the 

autofocus is over exposing to compensate for darker skin pigmentations, or vice-versa. 

This was evident in the biometric performance analysis performed for this study, where 

images with visible variation in background still matched without incident.  

The background variance did not show significant change in value prima facie. 

Subject 30 had a percent background gray from 19.77% to 21.15% and a percent 

background uniformity from 96.63% to 96.75%. Subject 7 had a percent background gray 

from 49.96% to 50.77% and a percent background uniformity of 96.91% to 96.94%. 

These results for the dark skinned subjects 30 and 8 were compliant, but the lighter 

skinned subject 7 and 28 were considered too gray. This showed practical changes that 

revealed a flaw within the ISO standard. If image quality is to keep background as part of 

the quality metrics, there needs to be an adaptive solution towards skin pigmentations and 

background gray.  
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Figure 5.4: Capture time and background reflectance. 
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The time of capture also presented effects that were not anticipated for this study. 

In the operational booth simulation, it can be seen that exterior sun lighting had an effect 

on background glare. The effect extended to camera sensitivity and the changes have 

been seen on the foreground as well in the shadowing of the face. For percent facial 

brightness 49%, 50%, and 44% for subject 17, 18, and 27 respectively. These values for 

facial brightness were all compliant by ISO standards. For background HSL lightness 

50.95, 47.95, and 45.54 for subjects 17, 18, and 27 respectively. Though there are not 

determinations for background HSL for the ISO standard, it is evident that there is an 

effect from the time of capture. This would prove important for airports where exterior 

sunlight cannot be controlled. 

 

5.1.3 Zoo Analysis 

The zoo menageries do not reveal system performance, but it does show subject 

behavior within the biometric system. Evaluating the zoo plots show that despite the good 

performance of the face recognition system, subject movement and their respective 

genuine and impostor score distributions reveal instabilities within the face recognition 

system. Though fluctuations within the genuine and impostor score are common, it can 

pose problems for the face recognition system; scarring does not seem to exacerbate this 

instability phenomenon. This conclusion comes with good confidence as the data exhibit 

behavior similar to the work Dunstone & Yager, (2007) and O’Connor et al. (2015) 

where instability can be observed with the introduction of a factor. The effect factor of 

this study was scarring and environment, and it is observed that both the studio and the 

booth show different levels of genuine and impostor distributions. The distribution 
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changes caused by scarring was not as salient as the environment. The data does show 

changes, but not from the factor of interest for this study. 

 

5.1.3.1 Distribution Changes from Pretreatment 

As noted from the image quality results, the pretreatment did have a practical 

effect, and while no manifestations were in the performance results it can be seen in the 

zoo analysis. Figure 5.5 shows the eighteen subjects that had higher instability with the 

powder pretreatment than the scarring.  

 

 

Figure 5.5: Higher instability results for pretreatment than scarring. 

 

Evidence that unintendedly emerged showed that powder pretreatment has can 

have a greater effect on genuine and impostor score distribution than the function of 

scarring. A baseline face can change in stability with the application of cosmetic setting 
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powder; this change can be greater than a powdered face with the application of a 

prosthetic scar that was designed, constructed, and applied for color and texture change.  

 

 

Figure 5.6: Highest instability recorded for baseline to powder, subject 13. 

 

Figure 5.6 shows an example of a large magnitude zoo movement, subject 13 with 

a stability score of 0.56. Though previous conclusions of performance show that all faces 

were able to match without dispute, the practical implications are still problematic. While 

Figure 5.2 shows visible evidence of the effects setting powder on the face, Figure 5.5 

and Figure 5.6, show mathematical evidence. This showed a duplex effect, but presents a 

difficult challenge for machine learning and machine vision. While the human visual 

system can observe the changes seen in Figure 5.2, there is also dependency that the 

machine can calculate and discern the differences in Figure 5.5. 
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5.2 Recommendations 

The conclusions of the study bring about several recommendations for the current 

model of face recognition systems used for border control applications. Firstly, it is 

resolved that scarring does not affect the performance of face recognition systems. This 

implies that attack presentations using scars, either manufactured or purposeful 

mutilation, would not cloak an attacker from the face recognition system. Border control 

agents should focus on factors that would cause acquisition or capture failures. This could 

be illumination, background clutter, or expressions. 

The texture and color changes from scarring may have no effect, but the study 

inadvertently uncovered practical effects from setting powder and skin pigmentation. The 

wide use of setting powder in cosmetic makeup and the variation in user skin 

pigmentation in border control operations can be a source of instability in image quality 

and matching score distribution. 

Scarring has shown a penchant for creating more variation among match scores, and 

border agents should keep personalized records to dexterously identify and verify 

travelers. Subject movement and variation can be integrated into biometrics for system 

adaptation and contextual machine learning, and scarring could provide a factor for 

increasing the accuracy in the match score equation. 

 

5.3 Future Work 

With the closure of this research, another channel for research opens. Various other 

techniques and procedures can be used in replication of this study to test, not only its 

validity but its applicability. Race and skin pigmentation made another appearance in the 
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paradigm of biometrics, due to the practical effects seen within the ISO standard 

background measurements of this study. New ideas on testing for makeup effects was 

also presented with the revelation of setting powder pretreatment effects. Also to be 

presented is another metric that could potentially reveal tendencies in machine vision. 

 

5.3.1 Race, Skin Pigmentation, Background, and Exposure 

It was seen in this study that the darker skin pigmentation triggered greater camera 

image sensory exposure, which incidentally changed background dynamics within 

images. This poses a problem for automated biometric systems implemented within 

border control, as the variation in user race and skin pigmentation would be higher than a 

homogenous environment, and the automated image capture hardware will compensate 

for clarity in the foreground. The high level of foreign traffic engaging biometric border 

systems presents race and skin pigmentation as a salient issue for ISO passport 

compliancy. 

Switching to a manual image sensory adjustment system would not be cost 

effective, and would hinder throughput in the biometric border system. Ergo race and 

skin pigmentation should be integrated as a function to the image capture system. At first, 

a conventional general linear model with Cramér's V could be done on the association 

between skin pigmentation and background measurements, as well as an ANOVA 

analyzing race and background measurements. The statistical models resulting from these 

studies could help augment the current ISO standards to find the optimal background 

settings in regards to the face. This study showed that even non-compliant background 

measurements yielded 0.00% error in matching performance. The rigidity of the ISO 
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standards, while providing good guideline for data collectors, is shown to be too rigid. 

New results from skin pigment and race studies could provide a foundation for a more 

adaptive ISO standard that result in optimal background levels based on user skin and 

race characteristics. 

 

5.3.2 Other Theatrics 

Different theatrical techniques could be used to simulate more conditions and 

environments. This could expand this research on scarring to other use case 

environments, other than conventional overhead strip lighting found in border security 

and airports. The wide use and commercially diverse selection of solid state powder 

cosmetic makeup should also be explored, as the study showed effects from the setting 

powder pretreatment. 

 

5.3.2.1 Pose and Illumination 

This study was limited to the established ISO full frontal lighting scheme, but we 

also tested uncontrolled overhead strip lighting as a wild operational scenario. Collecting 

data on various lighting levels and directions, and performing an exhaustive match, 

would imaginably yield meaningful performance reports. The direction and intensity of 

lighting could be explored to find the best operational setting.  

Different light bulbs and emitters could also be explored. It is common practice 

theater, film, and photography to use incandescent bulbs that emit soft yellow light. This 

punctilio was chosen through decades of trial and error, and it was realized that it was 
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much easier to feature or distinguish objects in a scene. The current ISO does not impose 

standards on light bulbs and emitters themselves.

Lightbulbs and emitters would be a very marketable research as face biometric 

users tend to be large-scale implementers, such the DHS, and Law Enforcement, who are 

looking to control cost as much as possible. Overhead strip lighting that is commonly 

found in DHS use case operations, such airports, and borders, would not be able to utilize 

incandescent light bulbs. This would suggest that the infrastructure would need to be 

overhauled, and that would indicate another cost. For large scale users like the DHS or 

DoD, this cost could be immense as they have many facilities and areas of operation. If 

research is done to find a light emitting source that could perform similarly to soft yellow 

incandescent bulbs while utilizing the existing infrastructure of large scale biometric 

users, this could lead to a cost-effective solution for specular reflectance and shadow. 

 

5.3.2.2 Simulating Various Scars 

This study only evaluated performance under a single scarring condition, if scars 

were applied or not. Since liquid latex can be fitted into various molds, this research 

could be expanded to other scar dimensions. Though the complication with medical 

science is that scar dimensions are hard to define, biometric standards entities could make 

their own. If a research potentially reveals scarring dimensions that affect performance 

more than others, then it would provide a foundation for the biometrics developers to 

launch new standards and recommendations. 

Another method worth exploring is using Kryolan Tuplast scar polymer. Instead of 

liquid latex poured into a mold, Kryolan Tuplast and be drawn on a layer by layer. This 
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method could be used to add more elevation and mass to simulated scars, providing 

another dimension for performance analysis. 

 

5.3.2.3 Global Changes in Face Characteristics 

While this study investigated the effects of scarring using a simple linear scar and 

naturally developed scars, it did not cover massive face disfigurement. It is not outlandish 

to image individuals developing global changes to facial anatomy. Third-degree burns, 

destruction of bone, and paralysis can cause changes within the principle components 

used by face recognition systems. Though such damage is rare and intuitively 

noteworthy, it could be studied to further analyze the capability of face recognition 

systems. Face recognition research covered in this study’s literature review follows the 

conventional analysis of generic faces for the purpose of wide application and 

universality. Notwithstanding, deviant faces could be encountered by border control 

operations. 

  

5.3.2.4 High Definition Makeup Techniques 

Besides the conventional makeup used in this study for superficial color blending, 

high definition makeup used commonly in film and photography can also be used to 

simulate scarring. This study assumed scarrings creates changes in skin texture and color 

as a result of mammalian tissue repair process. However, with advancements in medical 

science, it is possible to have very discrete scarring. The potential for smaller scars, ones 

so obscure that they are almost unnoticeable, is greater with contemporary medical 

science. A biometric face recognition experiment employing high definition makeup 
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techniques could be used to simulate not just scarring, but also aging and cosmetic 

surgery. 

 

5.3.2.5 Powder Cosmetic Makeup 

Solid state powder is one of the oldest varieties of cosmetic makeup (Corson & 

Glavan, 2001; Debreceni, 2013; Sartor & Pivovarnick, 2001). With widespread use, it is 

actively encountered by face recognition systems (Dantcheva, Chen, & Ross, 2012). The 

mattifying effects of solid state powder has shown practical effects in illumination within 

this study. Future studies could expand from to embrace different types of solid state 

powder. The setting powder used for this study’s pretreatment was a translucent base 

powder, but many commercially available solid state powders come in a variety of colors 

and perform various functions. In addition to base setting powder there are face primers, 

foundations, concealers, highlights, and contour shadowing. Though there are 

unimaginable permutations and combinations for all these solid state powders, a general 

linear model should be done first to scale effects of the different types of solid state 

powder within biometrics. Afterwards, the conventional permutations and combinations 

of solid state makeup, commonly taught to aspiring makeup artists, can be analyzed 

through a multi-level ANOVA would give a general and conservative effect analysis for 

the operational biometric setting. This could potentially expand to market and brand 

product analysis, and give context and measurability to the effects of brand-named 

proprietary makeup. 
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5.3.3 Other Matching Algorithms 

The matching algorithm for this study was NeuroTechnology’s VeriLook 8.0, 

validated by the National Institute of Standards and Technology (NIST). Further research 

can be conducted to see if other algorithms behave similarly when scars are introduced. 

NEC’s NeoScan® face recognition solution would be an exemplary research and easily 

applied to the border control use case due to NEC’ deployment for John F. Kennedy 

International Airport (Foster, 2016). Other algorithms that could be used for performance 

research would be Cognitec’s FaceVACS series of face recognition solutions, FaceFirst 

products and solutions, and Griaule’s GBS programs. 

 

5.3.4 Estimation Tools 

NeuroTechnology’s VeriLook 8.0 also feature estimation tools that will make 

demographic estimates on processed images. These estimations include age, sex, and 

emotional state. This estimation feature could be used as another set of metrics to 

measure assumptions and tendencies of machine vision. Biometric systems could exhibit 

a bias towards certain demographics in respects to performance and match scores. The 

advantage of using VeriLook estimation is that it is a single image process, and does not 

require multiple images or probe and gallery method matching to output results. It is an 

algorithmic analysis of the image as is, and it reveals how the machine perceives the 

image in and of itself. Researching this facet of machine visions could help render a more 

defined conclusion of bias in machine vision. These findings could be employed not just 

in biometrics, but in robotics and digital signal processing as well. 
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5.4 Summary of Research 

This chapter provides the conclusions and recommendations made with data 

collected for this research. It also lays the foundation and launching point for future 

research, not just within face recognition, but for biometrics and machine visual 

processes as a science. 
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Appendix A: Liquid Latex Demonstration 

 

Video Link: https://youtu.be/xKlw3VtJr3E 
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Appendix B: Application of Prosthetic Scars 

 

Video Link: https://youtu.be/0B7iX6zcOKA 
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Appendix C: Model Release Forms 
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Appendix D: Image Quality Metrics

 Eye Axis Angle: slope of the eye-axis measured in degrees clockwise from the 

horizontal. 

 

Figure D.1.1: Eye Axis Location Ratio. 

 

 Eye Axis Location Ratio: location of the eye axis as a fraction of the image height 

up from the bottom (BB:B in the ISO standard), as shown in Figure D.1.1. 

 



131 

 

 

 

Figure D.1.2: Centerline Location Ratio. 

 

 Centerline Location Ratio: location of the centerline as a fraction of the image 

width measured from the left side of the image (AA:A in the ISO standard), as 

shown in Figure D.1.2. 
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Figure D.1.3: Height to Width Ratio. 

 

 Height to Width Ratio: ratio of image height to image width (B:A in the ISO 

standard), as shown in Figure D.1.3. 
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Figure D.1.4: Head Height to Image Height Ratio. 

 

 Head Height to Image Height Ratio: ratio of the head height to image height 

(DD:B in the ISO standard), as shown in Figure D.1.4.  
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Figure D.1.5: Image Width to Head Width Ratio. 

 

 Image Width to Head Width Ratio: ratio of image width to head width (A:CC in 

the ISO standard), as shown in Figure D.1.5. 

 Eye Contrast: indicates how well the dynamic range is spread in the eye regions 

of the image. The contrast value will range of 1 to 5. A score of 3 or higher is 

adequate (the higher the better). A score of 2 or less is inadequate.  
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 Brightness Score: indicates how the dynamic range is centered in the facial region 

of the image. Scoring ranges from 1 to 5. Value should be greater than or equal to 

3, values below 3 indicate that the facial region may be too dark. A special value 

of 0 applies to facial images that have too much saturated black. 

 Facial Dynamic Range: indicates the number of bits in the dynamic range of the 

facial region of the input image. A minimum of 7 is required. 

 Percent Facial Brightness: average luminance of the facial region as a percent. 

Valid values are in the range 25-75%. 

 Percent Facial Saturation: percent fraction of pixels saturated in the facial region. 

 Percent Background Gray: reflects the level of gray in the background as a 

percentage. Optimal is 18%. 

 Percent Background Uniformity: reflects the variation of color throughout the 

background of the image as a percentage. Optimal is 100%. 

 Background Type: indicates the type of background the image has. At 0 indicates 

a simple background. 

 Degree of Clutter: indicates how much background clutter occurs in the image. 

Scores are in the range 0 to 5. With 0 indicating no background clutter and 5 

indicating a high degree of background clutter. 

 Degree of Blur: indicates how much focus and/or motion blur is present in the 

image. Scores are in the range 0 to 5. With 0 indicating no blur and 5 indicating a 

high degree of image blur. 

 Smile: if smiles are present or not using the aw_fac_get_image_value function. 0 

indicates no smiles were detected. 
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 Smile Likelihood: indicates the allowed likelihood of a smile. 0 indicates a smile 

is very unlikely. 1-5 indicate an increasing likelihood of a smile. 

 Degree of Pose: extent to which a face deviates from the frontal position. Scores 

are in the range 0 to 5, with 0 indicating frontal pose and 5 indicating a very 

extreme pose. 

 Format: the digital format of the image, such as .jpg or .png. 

 File size: number of bytes for JPEG 2000 compressed file. 

 JPEG quality level: used for assessing JPEG file quality for compression 

operations. 

 J2K Compression Ratio: the ratio for JPEG 2000 compression. 

 J2K ROI Background Compression Ratio: compression ratio in the background 

region (outside of the ROI) for ROI based JPEG 2000 compression. 

 J2K ROI Foreground Compression Ratio: compression ratio within region of 

interest for ROI based JPEG 2000 compression. 

 Desired Background RGB Red: red-channel-value desired for background, values 

range from 0 to 255.  

 Desired Background RGB Green: green-channel-value desired for background, 

values range from 0 to 255. 

 Desired Background RGB Blue: blue-channel-value desired for background, 

values range from 0 to 255. 

 Desired Background HSL Hue: desired background color in reference to the 

spectrum in the HSL color space, values are in angular degrees, 0 to 360. 
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 Desired Background HSL Lightness: brightness of the background in the HSL 

color space, values range from 0 to 100. 

 Desired Background HSL Saturation: desired intensity of hue for the background 

in the HSL color space, values range from 0 to 100. 

 Desired Background HSV Hue: desired background color in reference to the 

spectrum in the HSV color space, values are in angular degrees, 0 to 360. 

 Desired Background HSV Saturation: desired intensity of hue for the background 

in the HSV color space, values range from 0 to 100. 

 Desired Background HSV Value: brightness of the background in the HSV color 

space, values range from 0 to 100. 

 Degree of Left Eye Obstruction: indicates to what degree there is an obstruction 

of the left eye. Scores are in the range 0 to 5, with 0 indicating no obstruction and 

5 indicating significant obstruction. 

 Degree of Right Eye Obstruction: indicates to what degree there is an obstruction 

of the right eye. Scores are in the range 0 to 5, with 0 indicating no obstruction 

and 5 indicating significant obstruction. 

 Degree to which Eyes can be Considered Closed: indicates to what degree the 

eyes are closed. Scores are in the range 0 to 5, with 0 indicating very unlikely 

either eye is closed and 5 indicating very likely that one or both eyes are closed. 

 Degree of Illumination Asymmetry: indicates the extent to which the illumination 

of the image is not symmetrical. Scores are in the range 0 to 5. 
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Appendix E: Application to Use Human Subjects 
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Appendix F: Research Participant Consent Form 
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Appendix G: Research Advertisement and Recruitment Material 
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