
Purdue University
Purdue e-Pubs

CTRC Research Publications Cooling Technologies Research Center

2018

A Validated Time-Stepping Analytical Model for
3D Transient Vapor Chamber Transport
G. Patankar
Purdue University

J. A. Weibel
Purdue University, jaweibel@purdue.edu

S V. Garimella
Purdue University, sureshg@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/coolingpubs

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Patankar, G.; Weibel, J. A.; and Garimella, S V., "A Validated Time-Stepping Analytical Model for 3D Transient Vapor Chamber
Transport" (2018). CTRC Research Publications. Paper 322.
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.135

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/145190992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fcoolingpubs%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/coolingpubs?utm_source=docs.lib.purdue.edu%2Fcoolingpubs%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cooling?utm_source=docs.lib.purdue.edu%2Fcoolingpubs%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/coolingpubs?utm_source=docs.lib.purdue.edu%2Fcoolingpubs%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages


1 
 

A Validated Time-Stepping Analytical Model for 3D Transient Vapor Chamber Transport  
 

Gaurav Patankar, Justin A. Weibel and Suresh V. Garimella0F

* 

Cooling Technologies Research Center, an NSF I/UCRC 
School of Mechanical Engineering, Purdue University 

585 Purdue Mall, West Lafayette, IN 47907 USA 
 

 

 

Abstract  

Advances in the computational performance of electronic devices have created a clear need 

for improved methods of passive thermal management. This has led to renewed interest in the 

use of vapor chambers as heat spreaders in applications ranging from mobile devices to high-

performance-computing and power electronics systems. While there has been significant effort to 

develop vapor chambers for these applications, their designs have largely relied on steady-state 

analyses and performance prediction. In many applications, however, the heat load is inherently 

transient in nature. Heat spreader design must consider transient performance in response to 

these use-case scenarios. While detailed numerical models of transient vapor chamber operation 

have been developed, a transient modeling approach with low computational cost  is needed for 

parametric study and quick assessment of vapor chamber performance in system-level models. 

In the current work, a low-cost, transient vapor chamber model is developed targeting the 

geometries and operating conditions typical of thermal management applications. The model 

considers mass, momentum, and energy transport in the vapor chamber wall, wick, and vapor 

core as well as phase change at the wick-vapor interface. The governing equations are simplified 

to a system of first-order differential equations based on a scaling analysis and assuming a 

functional form for the temperature profile along the thickness dimension. The errors in the 
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temperature and pressure fields due to these simplifying assumptions are estimated for a wide 

range of operating conditions. These estimates indicate low errors in the model predictions over 

the range considered. For two example cases, the model predictions are compared to a finite-

volume-based numerical model. Any deviation from the numerical model prediction is on the 

same order as the errors estimated based on the simplifying assumptions. The time-stepping 

analytical model is demonstrated to have a computational cost reduction of three to four orders 

of magnitude compared to the finite-volume based model. 

 

Keywords: vapor chamber, heat pipe, heat spreaders, transient, low-cost modeling 

Nomenclature 

A


, B


 matrix containing thermophysical and geometric properties  

lkb   coefficients of 2D Fourier series [K s-1] 

C  vector source term [K s-1] 

lka , lkc  coefficients of 2D Fourier series  [K] 

CNCC condition number for linearizing the Clausius-Clapeyron equation 

CNconv condition number for assuming negligible convection in the momentum equation 

in the vapor core 

CNT condition number for assuming negligible temperature difference across the 

thicknesses of the wall and the wick on the evaporator side 

,sum lkd , ,diff lkd  coefficients of 2D Fourier series [Pa] 

dp wick particle diameter [m] 

ρCp volumetric specific heat capacity [J kg-1 K-1] 
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h convection coefficient [W m-2 K-1] 

hfg specific enthalpy of vaporization [J kg-1] 

hvap  thickness of vapor core [m] 

hwall, 1 thickness of evaporator-side wall [m] 

hwall, 2  thickness of condenser-side wall [m] 

hwick, 1  thickness of evaporator-side wick 1 [m] 

hwick, 2  thickness of condenser-side wick 2 [m] 

K permeability of the porous medium [m2] 

k thermal conductivity [W m-1 K-1] 

keff porous medium effective thermal conductivity [W m-1 K-1] 

Lx length of the vapor chamber in x direction [m] 

Ly width of the vapor chamber in y direction [m] 

l, k indices of summations in the 2D Fourier series [-] 

m′′  mass flux rate due to phase change [kg m-2 s-1] 

N number of terms in truncated infinite series 

P pressure [Pa] 

Pcap capillary pressure [Pa] 

OP  
saturation pressure corresponding to the volume-averaged vapor core 

temperature [Pa] 

Pr Prandtl number µ
ρα

 
 
 

 [-] 

inq′′  external boundary heat flux [W m-2] 

R specific gas constant [J kg-1 K-1] 
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Re Reynolds number ULρ
µ

 
 
 

 [-] 

T temperature [K] 

T  z-averaged temperature [K 

Tsat saturation temperature [K] 

T∞  ambient temperature [K] 

t time [s] 

u x-component of velocity [m s-1] 

V


 velocity vector [m s-1] 

v y-component of velocity [m s-1] 

w z-component of velocity [m s-1] 

x x-coordinate (length) direction [m] 

y y-coordinate (width) direction [m] 

z z-coordinate (thickness) direction [m] 

Greek  

α thermal diffusivity (keff/(ρCp)eff) [m2 s-1] 

γ surface tension [Pa s] 

CCε   relative error in the pressure field due to linearization of the Clausius-Clapeyron 

equation 

convε  relative error in the pressure field due to neglecting convection in the momentum 

equation in the vapor core 

Tε  relative error in the temperature field due to neglecting temperature difference 
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across the thicknesses of the wall and the wick on the evaporator side 

Θ  vector of temperature field variables [K] 

λ constant 
( )2

fg O

sat mean

h P

R T

 
 
 
 

 [Pa K-1] 

μ viscosity [Pa s] 

ρ density [kg m-3] 

σ accommodation coefficient [-] 

φ constant 
( )

0.5

1.5

2 1
2 2

fg vap

vap mean

h
RT

ρσ
σ p

     −   
  [kg m-2 s-1 K-1] 

ϕ porosity [-] 

Subscript  

int wick–vapor interface 

sum wick 1 plus wick 2 

diff wick 1 minus wick 2 

vap  corresponding to the vapor core 

wall corresponding to the wall 

wick  corresponding to the wick 

x along x coordinate direction 

y  along y coordinate direction 

z  along z coordinate direction 

1  corresponding to the evaporator side  

2  corresponding to the condenser side 
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Superscript  

n time step 

0 initial condition 

Vector notation 
 

  Vector 

 


 Matrix 
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1. Introduction  

A vapor chamber passively spreads heat from a small heat source to a larger surface. The 

sealed chamber is typically lined on the inner surface with a porous wick material and has a 

hollow central core; the device is charged with a working fluid that is held in the wick as liquid 

and vaporizes into the core. Operation of the vapor chamber is illustrated in Figure 1. Heat input 

to the vapor chamber causes localized vapor generation at the wick–vapor interface, which 

spreads through the core. As vapor condenses at the colder wick–vapor interface, the heat 

released is conducted across the condenser-side wick and the wall to the heat rejection surface. 

Condensed liquid is pumped back to the evaporator in the porous wick via capillary forces, 

enabling continuous passive operation. 

Vapor chambers and heat pipes are used in the thermal packaging of electronic components 

as integrated heat spreaders for a variety of applications. The heat flux dissipated ranges from < 

10 W/cm2 for applications such as portable electronics [1] to > 500 W/cm2 for cooling of radar 

power amplifiers and high-performance computing systems [2]. Common among these 

applications is the need for thin, compact heat spreaders that accommodate transient heat loads. 

For example, mobile electronic devices require heat spreaders of < 1 mm thickness and 

experience highly transient operation; idle periods of low heat generation are intermixed with 

shorter pulses of high-power operations (e.g., video recording or calling). Previous work in 

designing vapor chambers for mobile devices has been limited to a consideration of steady-state 

operation [3]. Evaluation of vapor chambers for mobile devices and other applications will 

require transport models capable of efficiently computing the temperature field for transient 

boundary conditions and thin form factors. 
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Existing vapor chamber transport models introduce a range of complexities that typically 

represent a compromise between computational cost and fidelity. Discretized numerical models 

are capable of simulating the transient behavior of complex vapor chamber geometries under 

different operating conditions. Such models are only limited by assumptions inherent in the 

governing equations used to represent the transport mechanisms. Vadakkan et al. [4] and Ranjan 

et al. [5, 6] developed a finite-volume-based numerical model to solve the mass, momentum, and 

energy transport equations in the wall, wick, and vapor core of the vapor chamber, coupled with 

phase change at the wick–vapor interfaces. A model solving the same governing equations using 

the finite-volume method  was developed by Famouri et al. [7] using cylindrical coordinates to 

model the behavior of heat pipes. Harmand et al. [8] developed a transient 3D finite-difference 

based numerical model for vapor chambers that solves governing equations which are simplified 

by assuming control volumes that span the thickness of the wick and the vapor-core separately. 

However, such numerical models have a relatively high computational cost incurred in iteratively 

solving the discretized nonlinear governing equations, especially for vapor chamber geometries 

with high aspect ratios, which require a large number of mesh elements with small cell sizes 

dictated by the thinnest dimension. For example, Patankar et al. [3] used a numerical vapor 

chamber model to analyze the steady-state performance of ultra-thin vapor chambers for mobile 

thermal management applications; due to the large computational cost, a steady-state-seeking 

solution procedure had to be adopted to bypass the physical transient behavior. Such numerical 

models are best suited to single-point evaluation of single device designs. They are, however, not 

practical for simulating a large number of cases covering a wide range of parameters. 

Lower cost computational models for vapor chambers and heat pipes have also been 

developed in the literature, and they solve simplified governing equations analytically. For 
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steady-state behavior, models are readily available for all levels of dimensionality. Prasher [9] 

and Yadavalli et al. [10] developed a 1D resistance-network-based model that predicts the 

steady-state temperature drop by assigning thermal resistances to each primary heat transport 

pathway in the heat pipe. Aghvami and Faghri [11] and Lefevre and Lallemand [12] respectively 

developed analytical models for computing 2D and 3D steady-state temperature fields in vapor 

chambers with arbitrary heat inputs. However, there are few examples of low-cost transient 

models for vapor chamber behavior. Zhu and Vafai [13] developed an  analytical model that 

computed the transient temperature variation along the length and thickness of a vapor chamber. 

But the model utilized symmetry in the geometry and boundary conditions and thus did not 

accommodate boundary conditions corresponding to heat spreading from multiple arbitrarily 

shaped and located hotspots. Thus, there is a need for a low-cost transient vapor chamber 

transport model that computes the 3D temperature fields in the vapor chamber when subjected to 

arbitrarily placed, localized transient heat inputs. 

The current work develops a low-cost, semi-analytical model for transient vapor chamber 

operation. The model solves for mass, momentum, and energy transport in the vapor chamber 

wall, wick and vapor core, along with phase change at the wick–vapor interface. The model 

simplifies the governing equations to a set of linear differential equations, which are solved using 

Fourier series substitutions and implicit time-stepping. Multiple, arbitrarily shaped, time-varying 

heat inputs can be imposed on the evaporator-side of the vapor chamber, with a uniform 

convective boundary condition on the condenser side. The computational cost of the model is 

compared with that of a high-fidelity, finite-volume numerical model.  
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2. Model development 

2.1. Geometry, governing equations, and boundary conditions 

The vapor chamber has a three-dimensional rectangular geometry; Figure 2 illustrates the 

wall, wick, and vapor core domains and their sizes in the x, y, and z coordinate directions. The 

wall, wick and the vapor-core have dimensions of Lx and Ly, respectively, in the x and y 

directions. The vapor chamber is subjected to multiple arbitrarily shaped and time-varying heat 

inputs on one of its faces (z = 0), while the other face (z = hwall,1 + hwick,1 + hvap + hwick,2 + hwall,2) 

is subjected to a uniform convective boundary condition. The lateral walls are insulated. The 

thickness of the walls and wick along the sides at x = 0, x = Lx, y = 0 and y = Ly is assumed to be 

negligible. 

The governing equations solved in the vapor chamber transport model are described below. 

The wick is assumed to be a homogeneous porous medium with its pores fully saturated by the 

working liquid; the model does not account for recession of liquid into the wick. Flow in the 

wick and vapor core is assumed to be laminar and incompressible. The governing equations for 

mass, momentum and energy transport are 

 0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (1) 

 

( )
2 2 2

2 2 2

V V V Vu v w
t x y z

V V VP V
Kx y z

ρ ρ

µφφ µ

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
= −∇ + + + − ∂ ∂ ∂ 

   

  


 (2) 

 
( ) ( )

2 2 2

2 2 2

P Peff l

eff

T T T TC C u v w
t x y z

T T Tk
x y z

ρ ρ
 ∂ ∂ ∂ ∂  + + +  ∂ ∂ ∂ ∂   

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 

 (3) 
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In the vapor core, the porosity φ  is 1 and the permeability K is ∞. For the wick, effk is the 

effective conductivity of the porous medium. For the wall and vapor core, the effective 

conductivity is equal to the corresponding material thermal conductivity. For the wick and the 

vapor core, ( )P l
Cρ is the fluid volumetric heat capacity, while for the wall, ( )P l

Cρ is set to zero; 

( )P eff
Cρ is the effective volumetric heat capacity, and  

for the wick, ( ) ( ) ( )( )1P P Peff l s
C C Cρ f ρ f ρ= + − , 

for the wall, ( ) ( )P Peff wall
C Cρ ρ= , and 

for the vapor core, ( ) ( )P Peff vap
C Cρ ρ= , 

where ( )P s
Cρ  is the volumetric heat capacity of the solid material of the porous wick. All 

thermophysical properties are assumed to be constant at a given time instant.  

The mass flux rate due to phase change at the wick–vapor interface is evaluated using the 

difference between the local interface temperature and the local vapor-core saturation 

temperature [14] as: 

 ( )
0.5

1.5

2 1
2 2

fg vap
int sat

vap

h
m T T

RT
ρs

s p
 ′′ = − −  

 . (4) 

A positive value indicates evaporation, while a negative value indicates condensation. The value 

of σ is chosen to be 0.03 [15]. The saturation temperature in the vapor core is computed using the 

Clausius-Clapeyron equation 

 2
vap fg vap

sat sat

dP h P
dT RT

= . (5) 
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The boundary conditions for the vapor core specify that there is no slip in velocity at the 

thermally insulated lateral sidewalls. 

 

at 0,   0;  0

at ,   0;  0

at 0,   0;  0

at ,   0;  0

x

y

Tx u v w
x
Tx L u v w
x

Ty u v w
y
Ty L u v w
y

∂
= = = = =

∂
∂

= = = = =
∂
∂

= = = = =
∂
∂

= = = = =
∂

 (6) 

At the interfaces with the wick domain, the velocity has a no-slip condition and mass and energy 
are conserved across the interface (accounting for enthalpy of vaporization): 

 

( ) ( )

( ) ( )

,1 ,1

1

,1 ,1

2

at ,

;   0;

at ,

;   0;

wall wick

wick vap

eff fg
wick vap

wall wick vap

wick vap

eff fg
wick vap

z h h

w w u v

T Tk m h k
z z

z h h h

w w u v

T Tk m h k
z z

ρ ρ

ρ ρ

= +

= = =

∂ ∂   ′′− − = −   ∂ ∂   

= + +

= = =

∂ ∂   ′′− =   ∂ ∂   





 (7) 

where 1m′′  is the evaporative mass flux rate at ,1 ,1wall wickz h h= +  and 2m′′  is the value at 

,1 ,1wall wick vapz h h h= + + . The wall and wick layers on the evaporator and condenser sides are 

indicated by the indices 1 and 2, respectively. The two walls, two wicks, and vapor core are 

termed as zones henceforth. The boundary conditions at the edges of both wicks are 
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at 0,   0;  0

at ,   0;  0

at 0,   0;  0

at ,   0;  0

x

y

Tx w
x
Tx L w
x

Ty w
y
Ty L w
y

∂
= = =

∂
∂

= = =
∂
∂

= = =
∂
∂

= = =
∂

. (8) 

Flow of liquid between the two wicks is connected at the boundaries at x and y limits by 

imposing the conditions shown below. 

 

,1 ,2 ,1 ,2

,1 ,2 ,1 ,2

,1 ,2 ,1 ,2

,1 ,2 ,1 ,2

at 0, ; 
at , ; 
at 0, ; 

at , ; 

wick wick wick wick

x wick wick wick wick

wick wick wick wick

y wick wick wick wick

x u u P P
x L u u P P
y v v P P

y L v v P P

= = − =

= = − =

= = − =

= = − =

  (9) 

At the interfaces of the wicks with the wall and the vapor core, the velocity has a no-slip 

condition and energy is conserved: 
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( ) ( )

( ) ( )

,1

,1 ,1

1

,1 ,1

at , 0;

at ,

; 0;

at ,

; 0;

wall

eff
wall wick

wall wick

wick vap

eff fg
wick vap

wall wick vap

wick vap

eff

z h u v w

T Tk k
z z

z h h

w w u v

T Tk m h k
z z

z h h h

w w u v

Tk
z

ρ ρ

ρ ρ

= = = =

∂ ∂   − = −   ∂ ∂   

= +

= = =

∂ ∂   ′′− − = −   ∂ ∂   

= + +

= = =

∂
 ∂



2

_1 _1 _ 2at ,

0; 

fg
wick vap

wall wick vap wick

eff
wall wick

Tm h k
z

z h h h h

T Tu v w k k
z z

∂  ′′− =  ∂  

= + + +

∂ ∂   = = = − = −   ∂ ∂   



 (10) 

The lateral boundaries of the vapor chamber are insulated, which yields the following boundary 

conditions for both the walls: 

 

at 0,   0

at ,   0

at 0,   0

at ,  0

x

y

Tx
x
Tx L
x

Ty
y
Ty L
y

∂
= =

∂
∂

= =
∂
∂

= =
∂
∂

= =
∂

  (11) 

The vapor chamber walls receive heat input(s) at the z = 0 surface, are exposed to a convective 

condition at the ,1 ,1 ,2 ,2+wall wick vap wick wallh hz h h h+ + +=  surface, and energy is conserved at the 

wick interfaces: 
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( )

,1

,1 ,1 ,2

,1 ,1 ,2 ,2

at 0,  ,

at , 

at ,

at + ,

in
wall

wall eff
wall wick

wall wick vap wick

eff
wall wick

wall wick vap wick wall

Tz k q x y
z

T Tz h k k
z z

z h h h h

T Tk k
z z

z h h h h h

Tk

∂  ′′= − = ∂ 

∂ ∂   = − = −   ∂ ∂   

= + + +

∂ ∂   − = −   ∂ ∂   

= + + +

∂
−

∂
( )

wall

h T T
z ∞

  = − 
 

. (12) 

2.2. Scaling analysis 

To render the governing equations more amenable to analytical solution, assumptions 

regarding the scales of the variables are used to eliminate terms of comparatively low magnitude. 

The scales used are shown in Table 1. Time scales based on z-diffusion used for momentum 

transport in the wick and the vapor core are 

 

2 2
, ,2

2

for wick 1, ~ ; for wick 2, ~ ;

for vapor core, ~

wick wick 1 wick wick

wick wick

vap vap

vap

h h

h

rr
τ τ

µ µ

r
τ

µ

. (13) 

The following assumptions are made regarding the scale variables in the vapor core and the 

wick. The thicknesses of the two wicks and the vapor core are assumed to be much smaller than 

the size of the vapor chamber in the x and y directions.  

 ,1 ,2

,1 ,2

,  ,  ,

,  ,  
vap x wick x wick x

vap y wick y wick y

h L h L h L
h L h L h L

<< << <<

<< << <<
 (14) 
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Based on this assumption, diffusion in the x and y directions in the momentum and energy 

equations for the vapor core and wicks is considered negligible compared to diffusion in the z 

direction (in the respective equations and zones). Thus, 

 
2 2 2 2

2 2 2 2,
x z y z
∂ ∂ ∂ ∂

<< <<
∂ ∂ ∂ ∂

  (15) 

The following assumptions are made regarding flow in the vapor core and the wick: 

 

2 2
,1

, , _12 2

22
,2

, _ 2 ,2 2

2 2
,1 ,2

, _1 , _ 22 2

Re 1,  Re 1,

Re 1,  Re 1,

Re 1,  Re 1

vap wick
x vap x wick

x x

vapwick
x wick y vap

x y

wick wick
y wick y wick

y y

h h
L L

hh
L L

h h
L L

   
<< <<        

  
<< <<        

   
<< <<      

   

  (16) 

Based on these assumptions, the convection terms in the momentum equation for the wicks and 

the vapor core are considered negligible compared to diffusion in the z direction. Thus, 

 
2 2 2

2 2 2,  ,u v w
x y zz z z

ρ µ ρ µ ρ µ∂ ∂ ∂ ∂ ∂ ∂
<< << <<

∂ ∂ ∂∂ ∂ ∂
  (17) 

The assumptions made regarding energy transport in the wicks and the vapor core are: 
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2

, 2

2
,1

, ,1 2

2
,2

, ,2 2

2

, 2

2
,1

, ,1 2

, ,2

Pr Re 1,

Pr Re 1,

Pr Re 1,

Pr Re 1,

Pr Re 1,

Pr Re

vap
vap x vap

x

wick
wick x wick

x

wick
wick x wick

x

vap
vap y vap

y

wick
wick y wick

y

wi
wick y wick

h
L

h
L

h
L

h
L

h
L

h

 
<<  

 
 

<<  
 
 

<<  
 
 

<<  
 

 
<<  

 
2

,2
2 1ck

yL
 

<<  
 

  (18) 

Based on these assumptions, the convection terms in the energy equation for the wicks and the 

vapor core are considered negligible compared to diffusion in the z direction. Thus, 

 

2 2

, ,2 2

2

, 2

, ,P l P l

P l

C u k C v k
x yz z

C w k
z z

ρ ρ

ρ

∂ ∂ ∂ ∂
<< <<

∂ ∂∂ ∂

∂ ∂
<<

∂ ∂

 (19) 

In the two wicks, the permeability is proportional to the square of the particle diameter, which is 

smaller than the wick thickness. Thus, the following assumptions are made regarding the porous 

medium: 

 2 2
,1 ,2,  wick wick

wick wick
wick wick

K K
h h

φ φ
<< <<  . (20) 

Based on these assumptions and the time scales, we may write for the two wicks, 

 
2

2 ,  
K t Kz
µφ µφµ ρ∂ ∂

<< <<
∂∂

. (21) 

Given the above simplifications, the governing momentum and energy equations are simplified. 
For the vapor core, Eqs. (2) and (3) reduce to: 
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2

2

V VP
t z

ρ µ∂ ∂
= −∇ +

∂ ∂

 

 (22) 

 ( )
2

2P effeff

T TC k
t z

ρ ∂ ∂  = ∂ ∂ 
, (23) 

and for the wick zones to 

 ( )P V
K
µφφ∇ = −


 (24) 

 ( )
2

2P effeff

T TC k
t z

ρ ∂ ∂  = ∂ ∂ 
. (25) 

2.3. Combined energy equation 

The energy equations for the walls (3), vapor core (23), and  wicks (25) are integrated along z 

in each zone, over their respective thicknesses. Thus, for the evaporator-side wall, 

 

( )

,

,

2 2
, ,

2 2
0

wall 1

wall 1
P eff

h
effwall 1 wall 1

eff
wall_1

T
C

t

kT T Tk
h zx y

ρ
 ∂
  ∂ 

 ∂ ∂ ∂
= + +   ∂∂ ∂ 

 ; (26) 

for the condenser-side wall, 

 

( )

, , , ,

, , ,

2 2
, , ,

2 2

,

                       
wall 1 wick 1 vap wick 2 wall 2

wall 1 wick 1 vap wick 2

wall 2 wall 2 wall 2
P effeff

h h h h h
eff

h h h hwall 2

T T T
C k

t x y

k T
h z

ρ

+ + + +

+ + +

  ∂ ∂ ∂
= +     ∂ ∂ ∂   

∂
+

∂

;  (27) 

for the evaporator-side wick, 

 ( )
, ,

,

,

,

wall 1 wick 1

wall 1

h h
effwick 1

P eff
hwick 1

kT TC
t h z

ρ
+ ∂ ∂

=  ∂ ∂ 
; (28) 

for the condenser-side wick, 
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 ( )
, , ,2

, ,

,

,2

wall 1 wick_ 1 vap wick

wall 1 wick_ 1 vap

h h h h
effwick 2

P eff
h h hwick

kT TC
t h z

ρ
+ + +

+ +

 ∂ ∂
=  ∂ ∂ 

; (29) 

and for the vapor core 

 ( )
, ,

, ,

wall 1 wick_ 1 vap

wall 1 wick_ 1

h h h
vap eff

P eff
hh hvap

T k TC
t h z

ρ
+ +

+

 ∂ ∂
=  ∂ ∂ 

; (30) 

where T  is the z-averaged temperature in each zone. Information regarding the variation of 

temperature in the z direction is lost due to the integration. Hence, profiles are assigned to 

temperature in the z direction. In the walls and the wicks, the temperature difference across the 

thickness is assumed to be negligible compared to the temperature difference along the x and y 

directions. The temperature is thus taken to be constant along the z direction. In the vapor core, 

the temperature is assumed to have a quadratic profile in the z direction. To interface between the 

zones, continuity is imposed at the zone boundaries. Thus, in the walls and the wicks, 

 , , ,2 ,2 2  and   wall 1 wick 1 1 wall wickT T T T T T= = = = . (31) 

The temperature in the vapor core can be written as 

 
( ) ( )
( )

2
, , , ,

2 2
2

,

3 2 6 4 2
, ,

wall 1 wick 1 wall 1 wick 1

1 vap vap 1
1

vapvap

T a z h h b z h h c

T T T T T T
a b c T

hh

= − − + − − +

+ − − −
= = =

. (32) 

Combining the energy equations (26) through (30) for all zones, using the boundary conditions 

in Eqs. (7), (10) and (12), and the assumed temperature profiles specified by Eqs. (31) and (32), 

energy transport in the vapor chamber is represented by a linear differential equation with a 

three-component vector variable, written as 
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( ) ( )
( ) ( )

2 2

2 2

1

1

2 2

2

1 , ,, , ,

2 , ,, , ,

,

 ,  0

,

,

in fg

1

vap

fg

P wall 1 P wick 1wall 1 eff wick 1

P wall 2 P wick 2wall 2 eff wick 2

A B C
t x y

q m h
T

T C
T hT m h

C h C h

C h C h

β

β

β ρ ρ

β ρ ρ

∞

 ∂Θ ∂ Θ ∂ Θ
= + + Θ + ∂ ∂ ∂ 

′′ ′′− 
       Θ = =     ′′−  
 
 

= +

= +

 




, (33) 

The matrices A


 (units of [m2 s-1]) and B


 (units of [s-1]) contain thermophysical properties and 

geometric variables: 
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, ,

1

, ,

2

1

2

2

0 0

0 0 0 ,

0 0

0 0

4 6 2
6

0 0 1 2 1

2 6 4
0 0

wall 1 wall 1

wall 2 wall 2

vap

vap

vap

vap P vap
vap

vap
vap

vap

k h

A
k h

k
h

k
B

h C
h h

k k
h

β

β

β

ρ

β

 
 
 
 =
 
 
  
 −
   
   

−   
   = × −   
   − + −  

  
  





. (34) 

Eq. (33) contains the two unknown mass flux rates due to phase change at the two interfaces, 

which are solved for in the next two sections. 

2.4. Vapor core hydrodynamics 

The continuity and momentum equations for the vapor core are used to obtain a single 

equation for the pressure field in this section. The characteristic time scales of thermal diffusion 

in the x and y directions per the system energy equation (33) are 2~ x wallL a  and 2~ y wallL a , 
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respectively. The characteristic time scale of momentum diffusion in the z direction per the vapor 

momentum equation (22) is 2~ vap vaph a . For typical vapor chamber geometries and working 

fluid properties, assuming 2 2
vap vap x wallh Laa << , the vapor hydrodynamics can be considered 

quasi-steady. Thus, the momentum equation (22) in the vapor core reduces to: 

 
2

2

VP
z

µ ∂
∇ =

∂



. (35) 

Eq. (35) along with the boundary conditions in (7) yields, 

 

( )
( )( )

( )
( )( )

2
, ,

, , , ,

2
, ,

, , , ,

2 21 ,
2

2 21
2

wall 1 wick 1 vap

wall 1 wick 1 wall 1 wick 1 vap

wall 1 wick 1 vap

wall 1 wick 1 wall 1 wick 1 vap

z h h h zPu
x h h h h h

z h h h zPv
y h h h h h

µ

µ

 − + + +∂  =
∂  + + + 

 − + + +∂  =
∂  + + + 

 (36) 

Substituting velocity relations from Eq. (36) into the mass conservation in Eq. (1) and integrating 

along z over the vapor core thickness, using the boundary conditions in (7), yields 

 ( )
2 2

2 12 2 3

12

vap

P P m m
x y h

m
ρ

∂ ∂ ′′ ′′+ = − +
∂ ∂

   (37) 

2.5. Coupling energy equation with vapor hydrodynamics 

In this section, the unknown mass flux rates in Eq. (33) are related to the pressure field in the 

vapor core and the temperature field. The Clausius-Clapeyron equation (5) is simplified by 

assuming a linear relation between the vapor pressure and saturation temperature. Thus, the right 

hand side of the equation is substituted by an average in the field   

 ( )2

fg O

sat sat mean

h PdP
dT R T

λ= = , (38) 
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where OP  is the saturation pressure corresponding to the volume-averaged vapor core 

temperature, and ( )2
sat mean

T is the volume average value of 2
satT in the vapor core. The computation 

of the mass flux rate due to phase change (Eq. (4)) is simplified to create a linear relation with 

the difference in the interface temperature and the vapor core saturation temperature. Thus, 

 

( )

( )
0.5

1.5

,

2 1
2 2

int sat

fg vap

vap mean

m T T

h
RT

ϕ

ρsϕ
s p

′′ = −

 =  −  



  (39) 

where ( )1.5
vap mean

T  is the volume-averaged value of 1.5
vapT . The satT value at the interface on the 

evaporator side is equal to 1T and at the interface on the condenser side is equal to 2T . The 

pressure variable in Eq. (37) is substituted with the saturation temperature using Eq. (38). The 

mass flux rate terms in Eq. (37) are replaced using (39). Thus, an equation is obtained for the 

saturation temperature as 

 ( )
2 2

1 22 2 3

12
2vapsat sat

sat
vap vap

T T
T T T

x y h
µ

λ ϕ
ρ

 ∂ ∂
+ = − + − ∂ ∂ 

 . (40) 

The boundary conditions for saturation temperature are obtained from Eq. (6), using the relations 

from Eq. (36) and Eq. (38). 

 

at 0 and ,

0  0    0

at 0 and ,

0  0    0

x

sat

y

sat

x x L
TPu

x x
y y L

TPv
y y

= =
∂∂

= ⇒ = ⇒ =
∂ ∂

= =

∂∂
= ⇒ = ⇒ =

∂ ∂

  (41) 

2.6. Solution to the combined energy equation 
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The combined energy equation (Eq. (33)) and the saturation temperature equation (Eq. (40)) 

are solved using Fourier series substitution. For the combined energy equation, the substitution 

 

1

0 0
2

1

2

cos cos ,

where 

vap lk
l k x y

lk vap

lk

T
l x k yT a
L L

T

a
a a

a

p p∞ ∞

= =

 
    Θ = =              

 
 =  
  

∑∑
  (42) 

is used. This satisfies the boundary conditions in Eqs. (6), (8), and (11) at x = 0, x = Lx, y = 0 and 

y = Ly. For the saturation temperature equation, the substitution 

 
0 0

cos cossat lk
l k x y

l x k yT c
L L
ππ ∞ ∞

= =

   
=           
∑∑   (43) 

satisfies the boundary conditions in Eq. (41). Substituting Eqs. (42) and (43) into Eq. (40) yields 

 
[ ]
3 2 2

2
2 2

1 0 1

2
12

lk
lk

vap vap

vap x y

a
c

h l k
L L

lρ
p

µ ϕ

=
  

+ +      

. (44) 

The mass flux rate defined in Eq. (39) is substituted into Eq. (33); Θ  in Eq. (33) is substituted 

using Eq. (42), and satT  (introduced from Eq. (39)) is substituted using Eq. (43). Eq. (44) is then 

used to eliminate the lkc variable: 

 
1

0 0

2

cos cos 0

in
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l k x y

q

l x k yb
L L
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b
ππ
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∞ ∞

= =
∞
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 
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 =            
 
  

∑∑ , (45) 
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where 

 lk
lk lk

a
b Ga

t
∂

= +
∂ 

. (46) 

The matrix G


 contains thermophysical and geometric parameters.  
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 

  (47) 

The left hand side of Eq. (45) is a 2D Fourier series. The coefficients of a 2D Fourier series are 

computed using  
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b
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d
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′′ 
 
    
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= > >
= = > > =
= = =

∫ ∫
. (48) 

Eq. (46) is solved by discretizing it in time using a backward difference approximation. Thus, 
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1
1 1

11 1
3

by rearranging terms,

n n
n nlk lk

lk lk

n n n
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a I tG tb a

+
+ +

−+ +

−
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= + ∆ ∆ +





  (49) 

where n is the time step number. The initial values of lka are computed based on the temperature 

at time zero. 

 

0
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2

cos cos
y xL L

lk
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x y x y

T
l x k ya T dxdy

L L L L
T

d p p
 

   =           
∫ ∫   (50) 

where 0
1T , 0

vapT , and 0
2T  are the initial temperatures. 

At each time step, using the known boundary heat flux at the evaporator, Eq. (48) is solved to 

obtain lkb . This is used to solve the time stepping Eq. (49) to obtain lka . The computed lka value 

is used to compute lkc using Eq. (44). Once these coefficients are obtained, the temperature field 

in the vapor chamber and the saturation temperature in the vapor core can be computed. The 

pressure and velocity fields can then be computed. 

2.7. Wick hydrodynamics 

The continuity and momentum equations in the wick zones are combined to compute the 

wick pressure field. The momentum equation in the wick (Eq. (24)) combined with the 

continuity equation (Eq. (1)) yields equations for the pressure in the evaporator-side and 

condenser-side wicks, respectively, as 

 

2 2
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2 2
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2 2
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 ∂ ∂ ′′
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


. (51) 



26 
 

Setting , ,2sum wick 1 wickP P P= +  and , ,2diff wick 1 wickP P P= − , Eq. (51) yields 
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, , , ,
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 

 
. (52) 

Based on the boundary conditions given by Eq. (8) and the wick momentum Eq. (24), the 

boundary conditions for  and sum diffP P  are 
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 , (53) 

where , ,2sum wick 1 wicku u u= + and , ,2diff wick 1 wicku u u= − . To solve the Laplacians in Eq. (52), 2D 

Fourier series substitutions are used.  

 
,

0 0

,
0 0

cos cos

sin sin

sum sum lk
l k x y

diff diff lk
l k x y

x yP d l k
L L

x yP d l k
L L

ππ

ππ

∞ ∞

= =

∞ ∞

= =

   
=           

   
=           

∑∑

∑∑
  (54) 

satisfy the boundary conditions in Eq. (53). Substituting into Eq. (52) yields 
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Using the formula for the coefficients of a 2D Fourier series yields 
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The velocity fields in the wick can then be computed using the governing momentum equation 

(24). 

2.8. Model implementation 

A time-stepping based model is developed for the vapor chamber transport that computes the 

3D fields of temperature in the vapor chamber, as well as the pressure and velocity fields in the 

wick and the vapor core. The temperature-dependent thermophysical properties of the fluid are 

computed at each time step based on the volume-averaged temperature for the corresponding 

zone. The infinite-series sums in the model are truncated to finite sums whose number is chosen 

such that adding another term does not change the magnitude significantly.  

 
0 0

N

i i
i i

sum var var
∞

= =

= ≈∑ ∑   (57) 

where var is the summand of the series. 

It is important to note that using a time-discretized solution method allows for the use of 

temperature-dependent properties for the vapor phase. The vapor phase properties can be 

expected to change considerably over the range of typical operating temperatures (from the 

initial ambient to full-power operation), and thus temperature-dependent properties are necessary 

for achieving reasonable accuracy of the model. Combining analytical and time-discretized 

solution methods in this manner allows for a low-computational cost without sacrificing 

accuracy. 

3. Estimation of model accuracy 

The accuracy of the time-stepping analytical model depends on the validity of the 

assumptions underlying each of the simplifications to the governing equations. The 

Supplementary Material describes an estimate of the errors in the temperature and pressure fields 

computed by the model as a result of the simplifying assumptions for a range of vapor chamber 
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thicknesses and input power. Based on this analysis, the following three assumptions were found 

to cause the largest errors in the temperature and pressure fields across the simulated cases: (1) 

assuming a negligible temperature difference across the thickness of the wall and the wick on the 

evaporator side (Eq. (31)); (2) linearizing the Clausius-Clapeyron equation (Eq. (38)); and (3) 

neglecting convection in the momentum equation in the vapor core (Eq. (17)). 

As detailed in the Supplementary Material, at the most extreme working thickness and 

operating power, the relative error in the maximum temperature drop is only 30%; for most of 

the simulated cases, the error is under 10%. Similarly, the total pressure drop in the vapor 

chamber is generally predicted with good accuracy. Thus the model has excellent accuracy in 

computing the maximum temperature drop and total pressure drop in a vapor chamber over a 

wide range of thicknesses and powers.  

4. Results 

4.1. Model validation 

The predictions of the time-stepping analytical vapor chamber model developed in this work 

are validated against a numerical model for the same geometry, materials, and boundary 

conditions. This benchmark numerical model is the finite-volume-based vapor chamber model 

described in Ref. [6] (without the microscale model corrections to the evaporation rate and 

interfacial area). Two validation cases were simulated comparing the time-stepping analytical 

model against the benchmark numerical model for the same geometry and boundary conditions 

as described in Figure 3; Figure 3a shows Case #1 and Figure 3b shows Case #2. For both cases, 

the vapor chamber has copper walls with a uniform layer of sintered copper wick on the inner 

surface of the walls. The length and width of the vapor chamber are Lx = 90 mm and Ly = 55 mm, 

respectively. The thickness of the walls are hwall,1 = hwall,2 = 0.2 mm. The thickness of the wicks 
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in Case #1 are hwick,1 = hwick,2 = 37 µm, and in Case #2 are hwick,1 = hwick,2 = 120 µm. The thickness 

of the vapor core in Case #1 is hvap = 26 µm, and in Case #2 is hvap = 360 µm. Water is used as 

the working fluid. The properties of the working fluid, copper, and porous wick materials are 

shown in Table 2. The vapor chamber is initially at a uniform temperature of 300 K. Starting at t 

= 0 s, the vapor chamber receives a heat input power 10 W for Case #1 and 160 W for Case #2, 

applied over a square area of 1 cm2 at the center of the evaporator side; the rest of the 

evaporator-side face is insulated. The opposing condenser side experiences a convective 

boundary condition with a heat transfer coefficient of 75 W/m2K for Case #1 and of 1200 

W/m2K for Case #2, and an ambient temperature of 300 K. The sides of the vapor chamber are 

insulated. 

The time-stepping analytical model is solved using the commercial software MATLAB [16]; 

the temperature-dependent properties of the water vapor are obtained using the commercial 

software REFPROP [17]. Each infinite-series summation is truncated to 40 terms. The finite-

volume numerical vapor chamber model is implemented in the commercial software FLUENT 

[18]; the vapor chamber geometry is discretized into a rectangular grid with 540,000 cells. The 

complete transient behavior of Case #1 was simulated using variable time-steps in the range of 

0.1 s to 2 s. Case #2 was simulated to obtain a comparison at steady-state, using the steady-state-

seeking solution algorithm described in Ref. [3]. The simulation with the time-stepping 

analytical model uses a time step of 0.1 s for both the simulations. 

The temperature fields predicted by the two different modeling approaches for Case #1 are 

shown in Figure 4. Figure 4a shows the spatial temperature variation, while Figure 4b shows the 

temporal temperature variation. Figure 4a shows the spatial temperature variation along two lines 

on the evaporator-side (z = 0 mm, y = 27.5 mm) and condenser-side (z = 0.5 mm, y = 27.5 mm) 
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vapor chamber faces at t = 44.5 s. The temperature profile has a maximum temperature at x = 45 

mm for both the curves and decreases in both directions away from the center. A temperature 

difference between the evaporator and condenser sides is also apparent from the plots. The plots 

reveal a good match between the two simulations for the prediction of spatial temperature 

variation; the relative error in the total temperature drop in the vapor chamber is 0.075. In 

Section 3, it was estimated that the temperature field would have no error due to the linearization 

of the Clausius-Clapeyron equation, but would primarily manifest as an error in the pressure 

field. We note here that the linearization of the Clausius-Clapeyron equation does lead to an error 

in the temperature field, albeit one that is small compared to the effect on the pressure field. 

Figure 4b shows the temporal variation of maximum temperature in the vapor chamber, which 

increases with time due to the heat input applied to vapor chamber; the predictions with the two 

approaches again match very well. 

Figure 5 shows the pressure fields in the wicks (Figure 5a) and the vapor core (Figure 5b) at t 

= 44.5 s on the cross-sectional plane (y = 27.5 mm) shown in Figure 3, for Case #1. The pressure 

values in both the plots are offset from the absolute pressure such that the relative pressure value 

is zero at x = 0 mm and x = 90 mm. The pressure in the wick is highest at the center of the 

condenser-side wick and reduces outward in the direction of liquid flow. Once the liquid returns 

to the evaporator side at the peripheries the pressure reduces as liquid flows toward the center of 

the heated region. The pressure in the vapor core is highest at the center where vapor is generated 

in the vicinity of the heat input and reduces in the outward direction of vapor flow. The plot 

reveals a good match between the two simulations for the relative pressure in the wick and the 

vapor core, except near the heat input. Section 3 estimated that the error for this case would be 

mainly due to use of the linearized Clausius-Clapeyron relation and should appear in the vapor 
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core pressure. The vapor core pressure plots show this predicted error; the error in the pressure 

gradients is high near the heat input zone, where the pressure is noticeably higher than the 

average pressure in the vapor core. The wick pressure plot also shows a slight mismatch near the 

heat input, on the evaporator side. This mismatch is due to a change in the local evaporated mass 

flux corresponding to the differences in the vapor core pressure field. The relative error in the 

total pressure drop in the wick is 0.096, which matches the value predicted by the error 

estimation analysis (0.095).  

The steady-state temperature fields predicted by the two modeling approaches for Case #2 

are shown in Figure 6. The temperature profiles are shown along two lines on the evaporator-side 

(z = 0 mm, y = 27.5 mm) and condenser-side (z = 1 mm, y = 27.5 mm) vapor chamber faces. The 

temperature profiles have a maximum temperature at x = 45 mm and decrease in both directions 

away from the center. Unlike Case #1, the temperature variation on the condenser side is 

negligible compared to that on the evaporator side. The reason is that the comparatively thick 

vapor core leads to a very small vapor core resistance as compared to the resistance due to phase 

change across the vapor core. The relative error in the total temperature drop in the vapor 

chamber is 0.08, which is lower than the value estimated in the previous section (0.21), albeit in 

the opposite direction. This is because the thermal convection in the vapor core (which is 

neglected in the simplified governing equation) reduces the resistance due to phase change; this 

indirect error cannot be accounted for using the methods employed in Section 3. 

Figure 7 shows the pressure fields in the wicks (Figure 7a) and the vapor core (Figure 7b) at 

steady state on the cross-sectional plane (y = 27.5 mm) shown in Figure 3, for Case #2. The 

pressure values in both the plots are offset from the absolute pressure such that the relative 

pressure value at x = 0 mm and x = 90 mm is zero. The pressure profiles in the wick and the 
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vapor core have a similar trend as observed in Case #1. The vapor core pressure predicted by the 

time-stepping analytical model deviates from the simulation with the finite-volume based 

numerical model, which is attributed to neglecting the convection term in the momentum 

equation in the vapor core, as discussed in Section 3. The wick pressure plot also shows a 

mismatch near the heat input on the evaporator side. This mismatch is due to the change in the 

local evaporated mass flux associated with the differences in the vapor core pressure field. The 

relative error in the total pressure drop in the wick is 0.086, which matches the value predicted 

by the error estimation analysis (0.095). 

The errors in the temperature and pressure profiles of the time-stepping analytical model are 

remarkably low, both in time and space, considering the significantly reduced computational 

cost. For Case#1, the computational time for the finite-volume numerical simulation, on a 

supercomputer node (Xeon-E5, Intel) using 15 parallel processes, is 319 hr. The computational 

time is reduced to 0.4 hr for the time-stepping analytical model running on a desktop computer, 

which is a reduction of 3 orders of magnitude. 

4.2. Time-stepping analytical model simulation with multiple time-varying heat inputs 

The time-stepping analytical model is demonstrated for a case where the vapor chamber is 

subjected to multiple time-varying heat inputs. For this case, the vapor chamber uses the same 

materials and properties as the previous case (Table 2), with a modified geometry. The length 

and width of the vapor chamber are Lx = 80 mm and Ly = 60 mm, respectively. The wall 

thicknesses are hwall,1 = hwall,2 = 0.2 mm, with wick thicknesses of hwick,1 = hwick,2 = 30 µm and a 

vapor core thickness of hvap = 40 µm. The vapor chamber is initially at a uniform temperature of 

300 K. Starting at t = 0 s, it is subjected to two heat inputs (Heaters A and B) of 0.5 W each over 

separate square areas of 1 cm2 at the locations identified in Figure 8. At t = 50 s, Heater B is 
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switched off (0 W) and Heater A remains on at 0.5 W. The rest of the evaporator-side face is 

insulated. A convective boundary condition, with heat transfer coefficient 15 W/m2K and 

ambient temperature of 300 K, is imposed on the opposing condenser-side face. The sides of the 

vapor chamber are insulated. In the time-stepping analytical solution, the simulation truncates 

each infinite-series summation to 40 terms, and is run for 100 time steps of 1 s each. 

Results for the temperature field from the time-stepping analytical solution are shown in 

Figure 9. Figure 9a shows the temporal variation of the maximum temperature at the center of 

both heat inputs. The maximum temperatures of Heater A and Heater B both increase at a similar 

rate upon the initial imposition of 0.5 W heat inputs to each. Heater B is switched off at t = 50 s, 

and the temperature at this location decreases suddenly. After t = 53 s, the temperatures at both 

Heaters A and B increase due to the heat input at Heater A, albeit at a lower rate than before t = 

50 s, due to the lower total heat input. A video with the 3D and transient contours of temperature 

is included in the Supplementary Materials (snapshot in Figure 9b) Figure 9c and Figure 9d show 

the temperature contours on the vapor chamber condenser-side outer surface at t = 33 s and 66 s, 

respectively. The contours at t = 33 s reveal the non-uniform temperature field that results from 

the two localized heat inputs. The temperature at Heater B is higher than at Heater A, despite the 

heaters having the same input power and size, because Heater B is closer to the edges of the 

vapor chamber. The contours at t = 66 s only shows only one hotspot, which corresponds to 

Heater A, since Heater B is switched off at t = 50 s. The simulation is able to capture the 

transient thermal response of a vapor chamber to multiple time-varying heat inputs. 

5. Conclusions 

A transient model for vapor chamber operation was developed that allows for multiple, 

arbitrarily shaped, time-varying heat inputs on the evaporator-side face; the model predicts 3D 
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fields of temperature, pressure, and velocity in the vapor chamber. The governing mass, 

momentum, and energy equations in the wall, wick, and vapor core domains were simplified 

based on a scaling analysis and assuming temperature profiles across the thickness of each zone. 

The simplified linear differential equations were solved using a combination of analytical and 

time-discretized methods. The errors introduced into the temperature and pressure fields 

computed by the time-stepping analytical model due to the simplifying assumptions employed in 

the model development were estimated. The model has low errors for cases from low- to high-

power applications (less than 10% for a majority of the simulated cases). The model is validated 

against a finite-volume-based numerical model for two cases, one for a low-power application 

and another for a high-power application. Based on this validation case, the newly developed 

time-stepping analytical model was demonstrated to have 3-4 orders of magnitude lower 

computational cost compared to the numerical model while maintaining good physical accuracy. 

This model was then used to simulate the behavior of a vapor chamber subjected to multiple, 

time-varying heat input boundary conditions to demonstrate the capability of the time-stepping 

analytical model to resolve the transient 3D thermal response to complex boundary conditions 

expected in real-world applications. 
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Table 1. Scales for the model variables. 
Variable Scale 
t τ 
x Lx 
y Ly 
z in vapor core hvap 
z in wick 1 hwick,1 
z in wick 2 hwick,2 
z in wall 1 hwall,1 
z in wall 2 hwall,2 
u in vapor core Uvap 
v in vapor core Vvap 
w in vapor core Wvap 
u in wick 1 Uwick,1 
v in wick 1 Vwick,1 
w in wick 1 Wwick,1 
u in wick 2 Uwick,2 
v in wick 2 Vwick,2 
w in wick 2 Wwick,2 
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Table 2. Properties of the working fluid, copper, and porous wick materials used in the vapor 
chamber simulations. Vapor properties are shown at a temperature of 300 K.  

Property Value 

Copper density (ρ) 8978 kg/m3 
Water liquid density (ρ) 998.2 kg/m3 
Water vapor density (ρ) 0.02 kg/m3 
Copper thermal conductivity 
(keff) 

387.6 W/mK 

Wick effective thermal 
conductivity (keff) 

40 W/mK 

Water vapor thermal 
conductivity (keff) 

0.0187 W/mK 

Copper specific heat capacity 
(CP) 381 J/kgK 

Water liquid specific heat 
capacity (CP) 4182 J/kgK 

Water vapor specific heat 
capacity (CP) 1889 J/kgK 

Water liquid viscosity (μ) 1.79×10-5 Pa s 
Water vapor viscosity (μ) 1×10-3 Pa s 
Enthalpy of vaporization (hfg) 2.446×106 J/kg 
Water vapor specific gas 
constant (R) 

462 J/kgK 

Wick porosity (φ) 0.6 

Wick permeability (K) 
( )

3 2

21350 1
wickhϕ

ϕ−
  

Capillary pressure (Pcap) 
2

0.07 wickh
γ
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Figure 1. Cross-sectional view of vapor chamber operation that illustrates the key components 

and transport mechanisms. 
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Figure 2. Vapor chamber transport model geometry and boundary conditions (cross-section and 

bottom views). 
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Figure 3. Schematic diagram of the simulated geometry and boundary conditions used to validate 

the time-stepping analytical vapor chamber model, showing a bottom view at the bottom and 
cross-section at the top for (a) Case #1 (thickness scaled 50×), and (b) Case #2 (thickness scaled 

25×). 
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Figure 4. Comparison of temperature results from vapor chamber simulations using the time-

stepping analytical model and the finite-volume numerical model for Case #1. (a) The 
temperature profile is shown along the evaporator-side outer surface (solid lines; z = 0 mm, y = 
27.5 mm) and the condenser-side outer surface (dashed lines; z = 0.5 mm, y = 27.5 mm), at t = 

44.5 s. (b) The variation of the maximum temperature in the vapor chamber (at z = 0 mm, x = 45 
mm, y = 27.5 mm) with time predicted by the two models is compared. 

  

(a) 

(b) 
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Figure 5. Comparison of pressure results from the vapor chamber simulations using the time-
stepping analytical model and the finite-volume numerical model for Case #1. The relative 

pressure variation in the (a) wick and (b) vapor core are shown for the cross-sectional plane y = 
27.5 mm at t = 44.5 s. 

  

(a) 

(b) 
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Figure 6. Comparison of the temperature profile along the evaporator-side outer surface (solid 

lines; z = 0 mm, y = 27.5 mm) and the condenser-side outer surface (dashed lines; z = 1 mm, y = 
27.5 mm), at steady-state is shown, from vapor chamber simulations using the time-stepping 

analytical model and the finite-volume numerical model for Case #2. 
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Figure 7. Comparison of pressure results from the vapor chamber simulations using the time-
stepping analytical model and the finite-volume numerical model for Case #2. The relative 

pressure variation in the (a) wick and (b) vapor core are shown for the cross-sectional plane y = 
27.5 mm at steady state. 
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(b) 
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Figure 8. Schematic diagram of the geometry and boundary conditions used to simulate multiple 

time-varying inputs with the time-stepping analytical vapor chamber model (thickness scaled 
45×). 
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Figure 9. Time-stepping analytical solution of the (a) maximum temperature at the centers of the 

two heaters with time; (b) snapshot at t = 47 s showing the 3D contours of temperature in the 
vapor chamber, with z-direction scaled 20×x (video in Supplementary Materials played at 5× 

real-time speed) and temperature contours on the condenser-side outer surface (z = 0.5 mm) at 
(c) t = 33 s and (d) t = 66 s. 
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A 

B 
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