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ABSTRACT 

Author: Zhao, Xiaojun. MS 
Institution: Purdue University 
Degree Received: December 2016 
Title: Forest Industry Byproducts Improve Soil Quality and Increase Pepper Growth in    

Three Soils Infested With Phythophthora Blight 
Major Professor: Lori Hoagland.  

Phytophthora blight is a serious threat to the Midwest vegetable industry, because the 

oomycete pathogen responsible for this disease, Phytophthora capsici, has a wide host 

range, can spread quickly in fields, and produces resilient oospores that can survive in 

soil for years. Phytophthora capsici has become resistant to commonly used fungicides 

and resistant crop varieties are rare. Amending soil with complex organic substrates has 

potential to improve soil quality and suppress soil-borne pathogens including P. capsici. 

Indiana has a significant forest industry with many residual products that could be used as 

locally available amendments to meet this goal. However, the mechanisms mediating 

how amendments induce disease suppressive activity in soil are not well understood, 

which currently limits their practical application as a disease control strategy.  The 

objective of the experiments described in this thesis were to: (i) determine whether 

commercially available forest industry byproducts with different compositions and 

expected rates of decomposition, could suppress Phytophthora blight in pepper, and (ii) 

determine whether changes in soil physiochemical and biological properties were 

correlated with the suppressive activity of these amendments. In the first study, four 

forest industry byproducts were evaluated at a rate of 1% total carbon (w/w) soil.  

Changes in soil moisture, microbial activity and specific microbial taxa that have 

previously been associated with disease suppressive activity were monitored during a one 

month incubation period prior to pepper transplant, and changes in soil chemical 

properties were quantified at the end of the trial. In the second study, five forest industry 

byproducts were evaluated, each at one of two rates (1% or 3% total carbon (w/w) soil), 

and in either a high or low organic matter soil. The soils were amended with P. capsici 
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inoculum to ensure sufficient disease pressure, and a variety of soil physiochemical and 

biological factors were quantified. The amendments tested in these trials included two 

biochar products and a locally-available compost derived from woody materials, and 

kraft pine lignin and sawdust generated as direct byproducts of the forest industry.  Both 

experiments were conducted in the greenhouse using field soil collected from sites with 

recent outbreaks of Phytophthora blight. Results of these studies indicate that many of the 

amendments altered soil physiochemical properties including soil moisture, pH, nitrogen, 

magnesium, potassium, and calcium availability, microbial biomass, and microbial 

activity, particularly in the low organic matter soil. Several amendments also improved 

pepper root growth, indicating that they have potential to suppress Phytophthora blight.  

The suppressive activity of the amendments was not consistently correlated with specific 

soil physiochemical and biological factors, indicating that different mechanisms may be 

responsible for the suppressive activity induced by the different types of amendments. 

Results of these studies indicate that forest industry byproducts have potential to improve 

soil quality and reduce Phytophthora blight, but field trials and cost-benefit analyses will 

need to be conducted before these products can be recommended to growers. Additional 

studies that document differences in the biochemical quality of the amendments and 

quantify changes in microbial community structure using molecular tools are 

recommended to better understand how these amendments induce disease suppressive 

activity. 
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CHAPTER 1. INTRODUCTION: OPPORTUNTIES FOR 

BIOCONTROL OF PHYTOPHTHORA BLIGHT WITH FOREST 

INDUSTRY BYPRODUCTS  

1.1  Introduction to Soil-Borne Pathogens and Phytophthora capsici 

Soil-borne pathogens refer to soil organisms that can survive in the soil and infect 

plants at different stages throughout their life cycles. Soil-borne pathogens mostly tend to 

affect underground plant tissues, causing root rots, crown rots, seed decay and damping-

off of seedlings. However, in some cases, aboveground plant parts can also be affected by 

soil-borne pathogens resulting in foliar disease symptoms. Most diseases caused by soil-

borne pathogens dramatically reduce crop yield, as well as the quality of the produce 

(Koike et al., 2003). Given the extreme complexity of the soil environment, 

understanding how to effectively manage soil-borne pathogens is a significant challenge.  

One of the most challenging soil-borne pathogens facing Indiana vegetable 

growers is P. capsici, a fungus-like oomycete pathogen which causes Phytophthora 

blight. In the past, Phythopthora blight was often presumed to be caused by waterlogging 

of roots because symptoms often occur in low-lying places where surface water cannot be 

drained away. The first report of Phytophthora capsici as the causal agent of 

Phythophthora blight was presented by L. H. Leonian in Las Cruces, New Mexico in 

1922 (Leonian, 1922). In autumn 1918, he noticed a novel species of Phytophthora that 

was attacking the pods and branches of chili peppers (Capsicum annuum). The pathogen 

was associated with symptoms commonly observed in waterlogged soil. He noted that it 

was unusual, because the symptoms usually appeared during the early warm, rainy season 

in June or early summer. He described the distinctive morphological character of this 

species, which appeared as peculiar tuberous growths on the mycelium resembling 

sporangia. Since this early discovery, P. capsici has become a devastating threat 

throughout the United States and world (Lamour et al., 2012). This pathogen is 

particularly difficult to manage, because host plants can be infected by P. capsici at any 

growth stage and infection can result in up to 100% crop loss (Babadoost and Islam, 
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2003). The pathogen also has a broad host range, which makes crop rotation ineffective, 

and it produces long-lived spores (oospores) that can survive in soil for years (Babadoost 

and Pavon, 2013). Phythophthora capsici can also spread quickly via long distance 

movement in water (Ristaino and Johnston, 1999), and it has many isolates that are now 

resistant to commonly used fungicides (Lamour and Hausbeck, 2001). 

1.1.1 P. capsici Host Range and Host Susceptibility 

Phytophthora capsici has a very wide range of hosts including cultivated crops, 

ornamentals and even weeds. In 1996, Erwin and Ribeiro reported that 49 species of 

plants can be infected by this pathogen (Erwin and Ribeiro, 1996), and additional species 

have since been added to the long list of susceptible hosts.  In 2004, Tian and Babadoost 

first reported that spinach (Spinacia oleracea), turnip (Brassica rapa), lima bean 

(Phaseolus lunatus) and velvet-leaf (Abutilon theophrasti) can be hosts of P. capsici. In 

addition, they reported that most species from the family Chenopodiaceae and almost all 

species from the Cucurbitaceae and Solanaceae families can be infected by P. capsici. As 

of 2012, 27 families and 71 species have now been confirmed as hosts of P. capsici under 

laboratory and greenhouse conditions (Granke and Ocampo, et al., 2012). This is the 

widest investigation of host range conducted to date. 

Among the wide host range of P. capsici, differences in host susceptibility have 

been observed. For example, Tian and Babadoost (2004) found that more than 50% of 

seedlings from cucurbits and pepper (Capsicum annuum) were infected with disease 

symptoms by P. capsici 12 days after inoculation. In contrast, none of the broccoli 

(Brassica oleracea), cabbage (Brassica oleracea), cauliflower (Brassica oleracea), kale 

(Brassica oleracea), kohlrabi (Brassica oleracea), mustard (Brassica nigra), corn (Zea 

mays), wheat (Triticum aestivum), basil (Ocimum basilicum) and soybean (Glycine max) 

exhibited disease symptoms 12 days after inoculation with P. capsici (Tian and 

Babadoost, 2004).  Differences in susceptibility can also be present among different plant 

parts. For example, compared to the root, the fruit of cucumber are more easily infected 

by P. capsici (Hausbeck and Lamour, 2004).  
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1.1.2 Disease Symptoms 

Phytophthora capsici can strike virtually every part of the host plant causing fruit 

rot and stunting, leaf defoliation, stem lesions, crown rot and root rot, and it is often 

observed to result in seedling-blight or damping-off symptoms during emergence 

(Kingkun et al, 1989).  However, while any growth stage of host plants can be infected 

by this pathogen, studies investigating pepper and tomato (Solanum lycopersicum) have 

revealed that juvenile plants are more easily infected by P. capsici than mature plants 

(Kim, Hwang et al., 1989; Roberts and McGovern, 2000). Typically, the infected stems 

exhibit soft, water-soaked and brownish lesions close to the soil line (Figure 1.1) and a 

brownish discoloration in the center of the vascular tissue can be observed (Figure 1.2). 

Symptoms caused by P.capsici are easily confused with those caused by Verticillium wilt 

and white mold (Sclerotinia), Tian and Babadoost (2004) suggested that a polymerase 

chain reaction (PCR) assay should be used to detect Phytophthora species in plants rather 

than rely on visual inspection of symptoms on infected plant tissues.  

 

Figure 1-1 The stem lesion of bell pepper (Capsicum annuum) close to the soil line. 
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Figure 1-2 The brownish discoloration of vascular tissue of bell pepper (Capsicum 

annuum) 

1.1.3 Disease Cycle: Dissemination of Zoospores via Water and Long-term 

Survival of Oospores in Soil 

Like other species in the genus Phytophthora, P. capsici can be disseminated by 

both asexual (sporangia and zoospores) and sexual means (oospores), which can result in 

rapid polycyclic disease development. In general, sporangia and zoospores are regarded 

as ephemeral structures, whereas oospores serve as survival structures. 

Swift dissemination of this pathogen generally results from rapid production of 

sporangia and zoospores under ideal environmental conditions. Temperatures between 25 

and 28 C are optimal to produce copious sporangia (Alconero and Santiago, 1972). 

Lemon-shaped sporangia can release 20 to 40 bi-motile swimming zoospores when 

immersed in free water (Hausbeck and Lamour, 2004)). Zoospores exhibit negative 

geotropism and use chemotaxis to locate and contact plant surfaces (Erwin and Ribeiro, 

1996). Once they reach the plant, zoospores penetrate the intact cuticle or directly infect 

the plants through stomata (Katsura and Miyazaki, 1960).  

Rainfall and flowing water are often cited as the most critical environmental 

factor leading to the incidence and progress of Phythopthora blight (Bowers et al., 1990). 

Disease symptoms are commonly observed to follow water runoff, with symptoms 

occurring down rows in a field (Café-Filho et al., 1995). In addition, the research 

conducted by Ristaino and Johnston (1999) served to illustrate that soil moisture, 
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especially cyclical changes in soil water potential, can also stimulate oospore germination 

in soil. 

Unlike sporangia and zoospores, which generally cannot survive in harsh soil 

conditions, oospores, produced by sexual recombination, appear to play a critical role in 

this pathogen’s adaptation to the environment. A study conducted by Babadoost and 

Pavon in 2013 demonstrated that oospores of P. capsici can be recovered from Illinois 

soil samples and remain virulent for more than 36 months. However, after 48 months in a 

field environment, oospores were no longer viable in this study (Babadoost and Pavon, 

2013).   

1.1.4 Management Practices 

Many fungicides are available for control of Phytophthora blight. However, 

relying on fungicides alone to control Phytophthora blight is not advised, because 

P.capsici is able to develop fungicide resistance. Methyl bromide was effective against 

many P. capsici isolates; however, this soil fumigant is now banned for use in most 

vegetable crops (Lamour and Hausbeck, 2001; Parra and Ristaino, 2001). Most growers 

now rely on the phenylamide class of fungicides including metalaxyl and mefenoxam to 

combat this pathogen. However, as early as 2004, research conducted by Hausbeck and 

Lamour, indicated that there was development and increasing incidence of P. capsici 

isolates that were insensitive to mefenoxam in some Michigan fields. They indicated that 

sexual recombination likely led to the development of mefonoxam insensitive isolates 

(Hausbeck and Lamour, 2004). 

1.2 Soil Health and Disease Suppressive Soil 

Soil health, also commonly referred to as soil quality by scientists, is defined as 

the capacity of a soil to serve as a living ecosystem (Doran and Zeiss, 2000).  Only 

“living” things can be described as healthy or not, so this definition of soil health, stresses 

the importance of managing our soils correctly, because this ecosystem is dynamic and it 

is affected by a diversity of living organisms and the environment (Doran & Parkin, 
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1994). Soil health is very closely related to plant and animal health, environmental 

quality and biological productivity (Doran and Zeiss, 2000). 

1.2.1 Indicators of Soil Health 

Soil plays a vital role in sustaining our agricultural production systems by 

providing nutrients for crop growth, reducing rainwater runoff, detoxifying potential 

pollutants, and providing a habitat for billions of bacteria, fungi, and other microbes. 

However, intensive vegetable production can degrade soil health over time. For example, 

plastic tunnels, which now account for more than 2 million ha of production worldwide, 

can help farmers improve economic profits (Scarascia- Mugnozza et al., 2012), though 

long-term continuous cultivation under plastic cover can lead to high electrical 

conductivity and total soluble salts, and low organic carbon contents (Rudisill et al., 

2015). Consequently, management practices that rebuild and maintain soil health are 

needed to sustain ecosystem services provided by soils. 

Because soil is so variable and dynamic, developing an assessment that can be 

used to quantify soil health is the first step to managing this elegant symbiotic system. 

Rather than depending on any single parameter, or indicator, a combination of physical, 

chemical and biological parameters is needed to measure soil health (Doran & Parkin, 

1994). For example, Appendix Table 1 shows how soil quality functions can be affected 

by multiple indicators, as well as how each indicator can be correlated with more than 

one function. 

1.2.2 Relationships between Soil Health and Soil-Borne Pathogens 

Diseases caused by soil-borne pathogens are one of the most important limiting factors 

for plant growth, because they can dramatically reduce crop yield and quality. Outbreak 

of a disease caused by a soil-borne pathogen requires the joint action of a susceptible 

plant host, presence of a virulent pathogen, and a favorable environment (Perkins et al., 

2011). This relationship is often depicted by the disease triangle (Figure 1.3). While 

pathologists often think of factors such as adequate temperate and moisture when 

referring to a favorable environment, soil health can also play a role. In fact, almost all 

soils have some natural potential to suppress soil-borne pathogens (Mazzola et al., 2001). 
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However, the degree to which a particular soil can suppress disease is variable and can be 

affected by management practices (Janvier et al., 2007). Some soils have been found to 

be highly suppressive to disease and commonly referred to as “disease suppressive soils”. 

A disease suppressive soil is defined as a soil in which a virulent pathogen fails to persist 

or cause infection, even with the presence of a susceptible plant host and favorable 

environment (Darin, 2000; Lazarovits, 2001). Disease suppressive soils are classified 

based on their potential to contribute to either specific or general disease suppression. 

Unlike specific suppression, which is attributed to a specific pathogen or parasite and a 

specific microbial antagonist, and often develops over time in monoculture system, 

general suppression is attributed to multiple factors and can lead to suppression of 

multiple pathogens. The level of general disease suppression in soil systems is often 

highly correlated with biotic factors, especially soil biological activity, but can also be 

attributed to abiotic factors as well. 

 

Figure 1-3 Plant disease triangle 

1.2.3 Abiotic Factors Associated with Disease Suppressive Soils 

Several abiotic factors of soil including pH, available nutrients, organic matter 

content, clay type, and texture are considered to be able to affect disease incidence and 

severity. For example, the optimum pH for Fusarium oxysporum f. sp. niveum activity is 

between 4.6 and 6.0, and increasing soil pH from 4.0 to 7.5 will result in an obvious 
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decline of Fusarium wilt incidence (Jones et al., 1975). Mineral nutrition, especially 

nitrogen, is known to affect the incidence of many plant diseases (Huber and Watson 

1974). High applications of N-P-K (10:10:10) fertilizer increased the rate of Fusarium 

wilt incidence (Wensley and Mckeen, 1965). Heyman and his colleagues found that 

greater concentration of water-soluble Ca in soil was directly related to lower 

Aphanomyces root rot disease severity of pea (Heyman et al, 2007). However, Janvier et 

al., (2007) noted that the correlation between soil physicochemical parameters and 

disease suppression is not consistent. Similarly, in a comprehensive review by Bonanomi 

et al. (2010), which summarized over 252 papers investigating the effects of soil 

amendments, the authors concluded that soil chemical properties were not predictive of 

pathogen severity or disease suppressive activity. These studies indicate that other factors 

could play a more significant role in suppressive activity. 

1.2.4 Biotic Factors Associated with Disease Suppressive Soils  

Studies demonstrating that soil sterilization results in greater disease incidence 

and severity supports the hypothesis that biological factors play an important role in 

disease suppression (Borrero et al., 2004). In the comprehensive review by Bonanomi et 

al., (2010) enzymatic and microbiological parameters such as microbial activity, 

microbial biomass, and total populations of certain microbial taxa were found to be far 

more informative than chemical factors in predicting disease suppressive activity 

(Bonanomi et al., 2010).  

Theoretically, increased microbial biomass may lead to greater nutrient 

competition with pathogens resulting in a direct effect on soil suppressiveness. However, 

Grünwald et al. (2000) found that the relationship between microbial biomass and disease 

suppression is not always stable or consistent, indicating that microbial diversity may be 

a more important factor than biomass. For example, research by Van Elsas et al. in 2002 

indicated that severity of the soil-borne potato pathogen Rhizoctonia solani AG3, was 

negatively associated with soil microbial diversity. Other researchers failed to identify 

correlations between microbial diversity and pathogen suppression, and suggested that 

instead, microbial community structure could be more effective to predict disease 

suppressive activity (Jin et al., 2010; Tiquia et al., 2002).  Abundance of specific 
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microbial populations has also been correlated with soil suppressiveness. For example, 

Bonanomi et al. (2010) pointed out total culturable bacteria, Fluorescent pseudomonads, 

and Trichoderma spp. are the most effective features to indicate the extent of soil 

suppressiveness. 

Bonanomi et al. (2010) also pointed out that total microbial activity, as indicated 

by the fluorescein diacetate (FDA) hydrolysis assay, is often highly correlated with 

disease suppressive activity. However, this assay has displayed great variability when 

scientists try to analyze the capacity for a soil to suppress some diseases (Weller et al., 

2002).  Several microbial activities have been suggested as factors mediating pathogen 

suppressive activity in soil including competition for nutrients or niches, production of 

antibiotic compounds, enhancement of plant defenses, production of hydrolytic activities, 

and predation and parasitism (Weller, 2007). This indicates that other more specific 

assays of microbial activity could be more predictive for assessing disease suppressive 

activity. However, different factors may be responsible for suppressive activity when 

different amendments or pathosystems are under study, and thus researchers should 

continue to measure a suite of factors in an effort to determine how a particular practice 

might be inducing disease suppressive activity.  

1.3 Potential Effects of Organic Matter Amendments to Increase Disease Suppressive 

Activity 

There are many crop management practices that can improve soil quality, 

including planting cover crops, practicing crop rotation, reducing tillage, and amending 

soil with organic inputs (Bailey et al., 2003). Identifying cultural practices that improve 

soil and plant health, but are of low cost and environment-friendly, are a high priority for 

contemporary agroecosystems (Martin, 2003). The direct addition of organic matter by 

organic amendments is experiencing a resurgence in agricultural systems because of its 

potential to help reduce the need for chemical fertilizers and pesticides (Bailey et al., 

2003). External organic matter inputs can improve soil health by improving 

physicochemical properties such as soil structure, water-holding capacity, and nutrient 
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availability, as well as biological components - especially the quantity, diversity and 

functions of soil microbiota (Doran and Zeiss, 2000).   

There are many organic waste products that could be used as soil amendments to 

improve soil health and potentially suppress soil-borne pathogens. In particular, 

amendments that are harder to decompose, because of a high carbon (C) to nitrogen (N) 

ratio, are theorized to contribute to greater soil suppressiveness than easily degradable C 

sources (Senechkin et al., 2014). However, growers will need to be careful when 

applying soil amendments with high C/N ratios. The C/N ratio of organic matter is a 

critical parameter influencing mineralization and rate of nutrient release (Parton et al., 

2007). In general, when the C/N ratio exceeds the threshold value of 30-35, the 

amendments can indirectly impair crop growth because the decomposing microbes will 

integrate N from the surrounding soil into their biomass preventing plants from obtaining 

adequate N for crop growth (Michelsen et al., 1995).   

1.3.1 Compost 

Compost can be defined as a mixture of various decaying organic substances such 

as dead leaves and animal manure, and it is often used for fertilizing soil. Compost has a 

long history of use as a reliable and effective way to rebuild depleted soil organic carbon 

(Smith et al., 1997). More importantly, Edwards et al. (2000) reported that amending soil 

with compost can enhance utilization of complex substrates and lead to greater 

populations of beneficial soil microbes. Many studies have demonstrated that compost 

amendments can increase disease suppressive activity in soil, however, results are 

variable, especially in field trials, given the type of compost applied and the pathosystem 

under study (Bonanomi et al., 2010). Compost is highly variable given feedstocks and 

processing conditions, which can dramatically affect its availability for microbial 

decomposition. In one study, Iovieno et al. (2009) reported that the soil organic carbon 

recovery by compost was limited, possibly due to a high C/N ratio or presence of other 

high chemical quality substrates. The presence of certain types of recalcitrant organic 

materials could favor microbial taxa that are more competitive than soil-borne pathogens, 

thereby reducing their potential to colonize plant roots (Bonanomi et al., 2013).  
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1.3.2 Biochar 

Biochar is a carbon-rich, recalcitrant and heterogeneous material derived from the 

pyrolysis process (Bonanomi et al., 2015). Pyrolysis refers to a process of burning 

organic biomass under low oxygen conditions, with little CO2 produced (Singh et al., 

2010). Biochar has recently received a lot of attention for its potential to improve 

agricultural productivity and reduce negative environmental impacts such as N leaching 

(Lehman and Joseph, 2009). The beneficial effects of biochar are thought to result from 

its high chemical and microbial stability (due to the aromatic structure), which creates a 

porous structure and large surface area to sorb nutrients (Atkinson et al., 2010). As a soil 

amendment, biochar is noted for its potential to help sequester atmospheric carbon 

(Lehmann 2009), provide habitat for beneficial microorganisms (Quilliam et al., 2013), 

improve soil tilth, enhance nutrient availability (such as N and P), and increase crop 

growth (Lehmann et al., 2003).  

Several recent studies have provided evidence that amending soil with biochar 

can suppress many soil-borne pathogens, including Phytophthora spp., Fusarium spp., 

and Rhizoctonia solani, as well as foliar pathogens such as Botrytis cinerea (gray mold) 

and Leveilla taurica (powdery mildew (Bonanomi et al., 2015). Bonanomi et al. (2015) 

summarized the potential mechanisms behind the potential disease suppressive effects of 

biochar: (i) induce systemic resistance of host plant; (ii) aggregate more beneficial 

microorganisms; (iii) improve soil quality characteristics such as pH and nutrient 

availability; (iv) secret chemicals that are toxic to fungi; and (v) disrupt chemical 

signaling between plants and pathogens. Rates used in studies demonstrating disease 

suppression in response to biochar amendments vary from 1 to 5% (w/w) soil.  Achieving 

such high rates in field trials could be problematic because of the high cost and limited 

commercial availability of biochar amendments. In addition, because of biochar’s 

physiochemical characteristics, applying this amendment to soil could result in some 

negative side-effects such as absorbing agrochemicals and reducing the efficacy of 

herbicides and fungicides. 
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1.3.3 Lignin 

Kraft pine lignin, which is a byproduct of the paper industry, is another organic 

amendment with potential for improving soil health and suppressing plant disease. In a 

recent study, Van Beneden et al. (2010), demonstrated that amending soil with kraft pine 

lignin could suppress Rhizoctonia solani. However, the results depended on soil type and 

appeared to be related to specific changes in resident microbial community structure. 

Specifically, in the soil that became more suppressive with the amendment, Trichoderma 

spp. and gram negative bacteria were increased.  

1.3.4 Sawdust 

Sawdust is readily available as a waste product of the forest industry. This material has 

not been widely tested for its potential to affect soil-borne pathogens, but in one early 

study, it was found to be a promising amendment for nematode suppression (Muller and 

Gooch, 1982).   

1.4 Summary 

Intensive vegetable production can degrade soil quality and potentially cause crop 

plants to become more susceptible to soil-borne pathogens. Soil organic matter is the 

most important factor for improving and maintaining soil quality. Amending soil with 

complex organic substrates has previously been demonstrated to reduce disease severity, 

but the mechanisms are not well understood and further research is needed before these 

types of amendments can be used to reliably suppress soil-borne pathogens in vegetable 

systems. Indiana has a significant forest industry with many residual products that could 

be used to rebuild soil organic matter and help suppress soil-borne pathogens. Many of 

these residual products previously ended up as land-fill waste, so using them as soil 

amendments could have multiple benefits for system-wide sustainability.   
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CHAPTER 2. IMPACT OF FOREST INDUSTRY RESIDUALS ON 

SOIL MOISTURE, SOIL MICROBES AND PEPPER GROWTH 

IN FIELD SOIL INFESTED WITH PHYTOPHTHORA CAPSICI 

2.1 Abstract 

Intensive vegetable production can degrade soil quality and make crops more 

susceptible to soil-borne pathogens.  Indiana has a significant forest industry with 

residual products that could be used to rebuild soil quality and help suppress soil-borne 

pathogens.  Amending soil with complex organic substrates has previously been 

demonstrated to reduce disease severity in some trials, though the mechanisms are not 

well understood.  We collected soil from a farm with a recent outbreak of Phytophthora 

blight and amended it with one of four forest industry residues alongside a control (no 

amendment) treatment.  Results indicate that these amendments differentially impacted 

soil water holding capacity, enzyme activity, and Phytophthora, Pseudomonas 

fluorescens, and Trichoderma spp. during a one month incubation period. Soil amended 

with sawdust had significantly less P. capsici root infection and significantly greater root 

biomass than the control, biochar and compost treatments. Unlike previous studies, 

biochar amendment did not reduce P. capsici infection nor stimulate pepper growth. 

Future experiments are needed learn more about how these amendments alter physical, 

chemical and biological properties, which are likely to play a role in pathogen 

suppression.  Results of these studies will have important implications for helping 

vegetable growers build soil organic matter, and manage soil-borne pathogens.  

2.2 Introduction 

The soil-borne oomycete pathogen Phytophthora capsici, is a major factor 

limiting crop production during warm and wet seasons. This pathogen is difficult to 

control with traditional strategies such as crop rotation, resistant cultivars, and chemical 

fungicides. Crop rotation is ineffective as a control because P. capsici has a wide host 
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range and it produces long-lived spores (oospores) that can survive in soil for years. 

Using greenhouse studies, Granke and Ocampo (2012) reported that 27 families and 71 

species have been confirmed as ‘victims’ of P. capsici. The long list of susceptible host 

plants includes many economically important crops such as pumpkin, watermelon, 

zucchini, bell pepper, hot pepper, eggplant, tomato, lima bean and snap beans (Hausbeck 

and Lamour, 2004). Phytophthora capsici is a heterothallic organism which can 

reproduce via both asexual (sporangia and zoospores) and sexual stages (oospores), and 

the oospores can survive outside of host tissues for a long time. Babadoost and Pavon 

(2013) reported that oospores remained virulent in an Illinois field environment for more 

than three years. Protecting crops from P. capsici using resistant cultivars and chemical 

fungicides is difficult due to the diversity of physiological races of P. capsici. The genetic 

variation in P. capsici is rendered by sexual recombination, mutations and outcrossings 

with other Phytophthora species (Babadoost, et al., 2008). Mefenoxam is now the most 

commonly used fungicide for managing P. capsici, however, many isolates have been 

found to be either insensitive or resistant to this fungicide (Lamour and Hausbeck, 2001; 

Parra and Ristaino, 2001).  

Another obstacle that makes management of P. capsici difficult, is the pathogen’s 

polycyclic disease development and rapid dissemination in fields with water.  Under 

optimal environmental conditions of 25 to 28 °C, P. capsici can produce large amounts of 

sporangia (Weber, 1932). Each mature sporangia can release 20 to 40 motile zoospores 

(Hickman, 1970), which can spread quickly via irrigation water or rain drops that splash 

water and zoospores onto plants (Schlub, 1983).  

An outbreak of plant disease usually can be explained by the “disease triangle”, 

which highlights the interaction of a favorable environment, a virulent pathogen, and a 

susceptible plant host (Francl, 2001). Since P. capsici is difficult to control with 

traditional disease control approaches and there are few resistant crop varieties available, 

altering the environment could be an alternative strategy to help manage this pathogen. In 

this context, organic soil amendments have been proposed as a potentially promising 

alternative.  Adding organic amendments to soil is a comprehensive strategy to rebuild 

soil quality, provide disease suppression and enhance plant health (Bonilla, et al., 2012). 

Organic amendments improve soil physical, chemical and biological properties, and in 
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some cases, induce a more ‘disease suppressive state’. When soil is disease suppressive, a 

pathogen fails to cause infection despite the presence of a pathogen and a susceptible 

plant host. Compost is one of the most well studied organic amendments for improving 

soil quality and suppressing soil-borne pathogens. In a comprehensive review by 

Bonanomi et al. (2007), the authors noted that many soil-borne plant pathogens including 

Fusarium spp., Phythophthora spp., Sclerotinia spp., Verticillium dahlia and Rhizoctonia 

solani have been suppressed by compost amendments. However, not all composts are 

disease suppressive and the degree of suppression is often dependent on the composition 

of the amendment as well as the pathosystem under study (Bonanomi et al., 2010).  

Organic amendments derived from woody materials have been suggested as a 

promising approach to induce disease suppressive soil (Castano et al., 2011; Bonanomi et 

al., 2013). Indiana has a robust forest industry with many residual products that could be 

used as amendments to help suppress soil-borne pathogens such as P. capsici. Many of 

these byproducts currently end up as wastes in land-fills, so utilizing these products as 

soil amendments could increase sustainability in several ways. In addition to compost 

derived from woody materials, other organic amendments with potential to help suppress 

soil-borne pathogens include kraft pine lignin, sawdust and biochar. Kraft pine lignin, 

which is a byproduct of the paper industry, has been reported to induce suppressiveness 

against Rhizoctonia solani, an aggressive soil-borne pathogen with a wide host range that 

can also survive in the soil for a long time (Van Beneden et al., 2010). In early 1982, 

sawdust was found to be a promising amendment for nematode suppression (Muller and 

Gooch, 1982).   Many recent studies have reported that biochar can effectively suppress 

several soil-borne plant pathogens including Fusarium spp., Rhizoctonia solani, and 

Phytophthora spp. (Graber et al., 2015), including P. capsici (Shoaf et al., 2016). Biochar 

is defined as the solid co-product of biomass pyrolysis in the absence of oxygen 

(Lehmann et al., 2006). As a soil amendment, biochar is often cited for its potential to 

sequester soil carbon, improve soil tilth, enhance nutrient availability and increase crop 

productivity (Graber et al., 2010). However, biochar amendment could also result in 

negative side-effects. For example, biochar amendments could adsorb agrochemicals and 

reduce their effectiveness (Bonanomi et al., 2015), and introduce environmental 

contaminants (Montanarella and Lugato, 2013). Biochar amendments are also expensive 
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and commercial sources are rare (Shoaf et al., 2016). Finally, biochar is difficult to 

degrade and could persist in the soil indefinitely (Bonanomi et al., 2015), so additional 

research is needed before this amendment should be tested in field trials. 

The objectives of this study were to: 1) test the effectiveness of four forest 

industry byproducts for their suppressive activity against P. capsici, and 2) investigate 

potential biotic and abiotic factors that might contribute to suppressive activity induced 

by these amendments.  

2.3 Materials and Methods 

2.3.1 Soil collection 

Soil was collected from a field near Vincennes, IN (lat. 38.47° and long. -87.63°), 

which contained a poorly drained Ayrshire (fine-loamy, mixed, active, mesic Aeric 

Endoaqualfs) soil. This field has a history of Phythophthora blight caused by P. capsici, 

and had been planted with watermelon just prior to when the soil was collected. Soil was 

collected from the top 0 to 20 cm, under diseased plant material. The soil was transported 

in BPA-free food pails, and stored in the cooler at 4 C in the Purdue University 

Horticulture Greenhouse, West Lafayette, IN, until the greenhouse experiment was 

initiated.  

2.3.2 Amendments and Treatments 

Field moist soil was sieved to 4 mm and allocated into five 40.1*26.1*17.7 cm 

containers (Rubbermaid Inc., Huntersville, NC), with 5 holes drilled evenly on the 

bottom of each container to facilitate drainage. Each of the four forest industry  

byproducts (Appendix Table 2) were ground to a fine powder and the carbon and 

nitrogen percentage of the byproducts was determined using a FlashEA® 1112 Nitrogen 

and Carbon Analyzer (CE Elantec, Lakewood, NJ). The soils were amended with the 

forest industry byproducts and mixed thoroughly within each container to provide the 

following treatments: 1) unamended control (soil only), 2) biochar, 3) wood fines 
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compost, 4) kraft pine lignin, and 5) sawdust. All amendments were applied at a rate of 

1% total carbon (w/w) soil.   

 

2.3.3 Incubation assay 

All treatments were saturated with water and incubated for one month to stimulate 

decomposition of the forest industry byproducts and alter soil chemical and biological 

properties in response to the amendments.  

Soil volumetric water content (VWC) was monitored regularly using a FieldScout 

TDR100 soil moisture meter (Spectrum Technologies Inc., Aurora, IL) by taking 10 

random readings in each treatment directly from the 40.1*26.1*17.7 cm containers at 

0,1,3,7,14,21,28 days after amendment incorporation. One L of water was added 

immediately after the amendments were incorporated, and 2 L were added after 14 days 

to maintain soil moisture. 

Soil samples were collected from each treatment container at 0,1,3,7,14,21,28 

days after amendment incorporation, placed into sterile 50 ml centrifuge tubes, and stored 

at 4 C until being subject to the following microbial assays. Total populations of 

Phytophthora spp., Pseudomonas fluorescence, Trichoderma spp., and Actinomyces spp. 

were quantified using serial dilution on selective media. The selective media included 

PSSM-H (Mazzola et al., 2001) amended with hymexazol for Phythopthora spp., 

modified King’s B media (Schaad, 1980) for P. fluorescence, Trichoderma semi-selective 

media (Williams et al., 2003) for Trichoderma spp., and starch casein media (Mackay, 

1977) for Actinomycetes spp. Serial dilutions were conducted as follows. Five grams of 

moist soil from each treatment was combined with 25 ml of sterile water, with two 

replicate samples per treatment, and three plates of each media per replicate using the 

following dilutions. The optimal dilution levels varied among time points, as did the ideal 

time to quantify colony forming units (CFU) on plates with the different media. PSSM-H 

media was plated with 10-2 dilutions (first reading 5 days after plating), modified King’s 

B media was plated with 10-4 to 10-6 dilutions (first reading 2 days after plating), 

Trichoderma semi-selective media was plated with 10-2 dilutions (first reading 5 days 

after plating) and starch casein media was plated with 10-2 to 10-6 dilutions (first reading 
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4 days after plating). All plates were incubated at room temperature after plating, with the 

exception of the starch casein which was incubated at 30 C. Because moist soil was used 

for the dilutions, the dry weight of soil from each treatment was quantified by putting 25 

g soil, with 3 replicates per treatment, into a 70 C oven for 48h. All of the microbial data 

collected from the plates was adjusted to account for the dry weight of each soil sample. 

Total microbial activity in each sample was quantified using the fluorescein diacetate 

hydrolysis (FDA) enzyme assay using methods described in Green et al. (2006).  

2.3.4 Greenhouse trials 

The susceptible pepper variety ‘Red Knight’ (Johnny’s Selected Seeds, Winslow, 

Maine) seeds were prepared as follows. Seeds were placed in a beaker for surface 

sterilization with 8.25% sodium hypochlorite solution containing Tween-20 (two drops 

per 1 ml), stirred for 20 minutes on a magnetic stir plate, and triple-rinsed in deionized 

water. Sterilized seeds were placed on 4 layers of autoclaved cheesecloth within a 

laminar flow hood and allowed to air dry for 30 minutes. Seeds were then stored at 4 C 

until planting. Surface sterilized seeds were planted into thin plastic trays with 48 cells 

containing soilless potting mixes (Growing Mix; Fafard, Agawam, MA) which is 

typically used for germination. This media contains 59-73% Canadian sphagnum peat 

moss, perlite, vermiculite, dolomite lime, and a wetting agent. After sowing, trays were 

placed in the mist room at the Purdue University Horticulture Greenhouse, West 

Lafayette, IN to facilitate germination.  

Following the one month incubation, soil from each treatment was distributed into 

10.16 cm diameter pots, with 7 replicates per treatment. Twenty-eight-day-old pepper 

seedlings were transplanted into each pot and pots were arranged in a randomized 

complete block design on the greenhouse bench. Conditions in the greenhouse were 

maintained at an average temperature of 20.7 C and relative humidity of 53.09%. All pots 

received fertilizer water daily to try and prevent potential N immobilization resulting 

from the high C/N ratio soil amendments. After 37 days, pepper plants were harvested to 

quantify total biomass and perform root infection assays.  
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2.3.5 Laboratory Assays 

Five grams of roots were randomly collected from each pepper plant along with 

the adhering rhizosphere soil, and placed in a sterile 50 ml centrifuge tube containing 25 

ml sterile DI water. After sonicating the centrifuge tubes for 60 s, roots were removed 

and washed with DI water. Ten root cuttings (5 mm) were randomly selected and placed 

on a plate containing PSSM-H (Papavizas et al., 1981) with 3 replicates per plate. Root 

infection by P. capsici was quantified on the plates 3 days later. The 50 ml tubes 

containing rhizosphere soil were centrifuged at 4300 rpm for 5 min. The water was 

discarded and the soil was lyophilized, and saved at -20 C for potential future microbial 

community analysis. Soil was also collected from each pot at harvest and sent to Midwest 

Laboratories (Omaha, NE) for standard soil chemical analyses. Remaining pepper above 

and below ground biomass was dried at 50 C for 48 h.  

2.3.6 Statistical analysis 

Data were checked for model assumptions, and square root or log transformed 

when normality or equality of variance were not met. Data were back transformed to 

report means in tables and figures. After validating data standard analysis of variance 

(ANOVA) was carried out using SAS (SAS VERSION 9.4; SAS Institute Inc., Cary, NC) 

using PROC GLM, and means separated using Tukey’s honestly significant test (P< 

0.05)  

2.4 Results 

2.4.1 Soil moisture and microbial dynamics during the incubation 

Difference in soil moisture among treatments during the incubation period could 

not be statistically analyzed because of the experimental design, though the treatments 

appeared to affect soil moisture (Fig. 2.1).  Interestingly, the biochar treatment often had 

the lowest level of soil moisture relative to the other treatments. In contrast, the compost 

and sawdust treatments had higher and more stable soil moisture relative to the other 

treatments. 
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Figure 2-1 Soil moisture (%) dynamics following five forest industry amendment 

2.4.2 Soil microbial abundance and microbial activity during the incubation 

Microbial abundance and microbial activity also could not be statistically 

analyzed because of the statistical design, though some trends were evident during the 

incubation. For example, P. capsici abundance spiked in response to the lignin and 

biochar treatments, while declining steadily over time in the sawdust treatment (Fig. 2.2). 

Pseudomonas flourescences dropped and remained low in all treatments during the 

incubation period (Fig. 2.3). Trichoderma spp. spiked in all treatments during the first 

few days of the incubation period, with the exception of biochar, which remained low 

throughout the incubation period (Fig. 2.4). Finally, the Actinomycetes spp. spiked in 

response to soil water in the biochar and control treatments (Fig. 2.5).  
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Figure 2-2 Dynamics of Phytophthora capsici soil abundance during incubation period 

following five forest industry amendment. 

 

Figure 2-3 Dynamics of Trichoderma spp. soil abundance during incubation period 

following five forest industry amendment. 
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Figure 2-4 Dynamics of Pseudomounas fluorescence soil abundance during incubation 

period following five forest industry amendment  

 

Figure 2-5 Dynamics of Actinomyces spp. soil abundance during incubation period 

following five forest industry amendment. 
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Figure 2-6 Total microbial activity estimated using an FDA enzyme assay 

Total microbial activity, estimated using an FDA enzyme assay was greatest in the 

compost and sawdust treatments, and lowest in the lignin and biochar treatments 

(Fig.2.6). At the end of the incubation period, microbial activity was lowest in the control 

treatment. 

2.4.3 Percent root infection by P. capsici 

 After growing for one month in treated soils, P. capsici root infection was 

significantly lower in the sawdust treatment relative to the control (Fig. 2.7). However, 

none of the other treatments differed from the control. 

2.4.4 Pepper above and below ground biomass  

   Aboveground pepper biomass was greatest in the sawdust treatment, but was 

not significantly different than the control or other treatments (data not shown). 

Belowground pepper biomass was significantly greater in sawdust treatment relative to 

the control, biochar and lignin treatments (Fig. 2.8). 
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Figure 2-7 Root infection rate of pepper at harvest following five forest industry 

amendment. Different letters represent significant difference as determined by Tukey’s 

honestly significant difference test (P < 0.05).  

 

Figure 2-8 Root dry weight of pepper at harvest following five forest industry 

amendment. Different letters represent significant difference as determined by Tukey’s 

honestly significant difference test (P< 0.05). 
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2.4.5 Soil chemical analyses 

Several soil chemical properties were influenced by the amendment treatments 

(Appendix Table 3). Soil pH was lower in the lignin treatment relative to the control, 

compost and sawdust treatments. Percent soil organic matter was higher in the lignin 

relative to the control treatment. Soil Mg was lower in the biochar and sawdust 

treatments relative to the control and compost treatments, and soil Ca was lower in the 

biochar, lignin and sawdust treatments.  

2.5 Discussion 

Results of this study indicate that a locally available sawdust amendment, applied 

at a rate of 1% total carbon (w/w) soil, can reduce root infection and improve pepper root 

growth in soils infested with P. capsici. This particular amendment is produced as a 

byproduct of the local forest industry and has often ended up in landfills. Making use of 

this byproduct as a soil amendment to suppress P. capsici disease incidence and severity 

could provide multiple benefits and increase the sustainability of the Indiana forest and 

agricultural industry.  

Unexpectedly, the biochar amendment tested in this trial did not suppress P. 

capsici root infection, which contradicts results of Shoaf et al. (2016), who observed P. 

capsici suppression with the same biochar amendment in the same soil. Differences in the 

results between these two trials could be related to the rate at which the biochar was 

applied. In this trial, the biochar amendment was applied at a rate of 1% total carbon 

(w/w) soil, whereas in the trial by Shoaf et al. (2016), it was applied at a rate of 3% total 

biochar (w/w) soil. Disease severity in response to biochar amendments has previously 

been found to exhibit a U-shaped response curve, with a minimum of disease incidence at 

some intermediate dose (Graber et al., 2014). Consequently, it is possible that we did not 

observe P. capsici suppression in this study, because the biochar rate was too low. This is 

unfortunate, because biochar is expensive and it can have negative unintended side 

effects.  

The compost and kraft pine lignin treatments also did not suppress P. capsici root 

infection rate in this trial, which also could be related to the dose. Alternatively, the lack 
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of response in our study could be due to resident soil microbial community structure. In 

the study by Van Beneden et al., (2010), the suppressive effect of kraft pine lignin on R. 

solani was dependent on soil type, and was correlated with increased Trichoderma and 

actinomycetes populations in the soil where suppressive activity was observed.  

Understanding how soil amendments induce pathogen suppressive activity is 

important for the development of reliable disease control strategies. Soil moisture is often 

cited as a factor that promotes survival and infection by oomycete pathogens like P. 

capsici.  For example, moisture has been demonstrated to affect almost every stage of the 

P. capsici life cycle, including the development of mycelia, release of zoospores and 

formation of oospores (Sanogo and Ji, 2013). Consequently, moisture management is 

expected to be critical for the control of Phytophthora epidemics. Interestingly in our 

study, soil moisture appeared to be higher with the sawdust treatment, yet P. capsici root 

infection was significantly lower and root growth was greater in this treatment.  This 

indicates that greater soil moisture is not completely consistent with the threat of P. 

capsici abundance and activity in our soil. Other researchers have found that greater soil 

water content can lead to lower incidence of disease by P. capsici (Liu et al., 2008a; Liu 

et al., 2008b), supporting this hypothesis.  

Another interesting finding in this study, was that while biochar amendments are 

often observed to increase soil water holding capacity (Downie et al., 2009), which could 

exacerbate oomycete pathogens like P. capsici, moisture content was lowest in soil 

amended with biochar in our trial. One possible reason that soil moisture content was not 

related to disease incidence in our study, is that it was kept at a relatively high 

concentration throughout the experiment, and it may not have been at the optimal level to 

facilitate P. capsici disease incidence. In order to better understand how water can affect 

disease incidence in response to different soil amendments, future researchers might 

consider using alternative indicators, such as soil matric potential and relative humidity 

(RH) in the atmosphere, to create optimal conditions of moisture, and help build 

moisture-based prediction models for disease management. Changes in soil structure, 

such as the density of pores in soil treated with different amendments, could also be 

analyzed in future research to more accurately evaluate how organic amendments affect 

water conditions and disease dynamics.  
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Changes in soil microbial community structure are often cited as a potential 

mechanism for induction of disease suppressive activity by soil amendments. In soils 

with suppressive activity, microbial taxa are suspected to biologically control soil-borne 

pathogens via competition for space and resources, production of antagonistic 

compounds, parasitism, and/or induction of induced systemic resistance in plants. In our 

study, total microbial activity as indicated by FDA, did appear to be higher in sawdust 

amended soil relative to the control, supporting the hypothesis by Bonanomi et al. (2007), 

that increased soil microbial activity is related to soil-borne pathogen suppression, and 

that FDA can be used to predict disease suppressive activity in response to soil 

amendments. In our trial, abundance of specific microbial taxa that have previously been 

reported have a role in the suppression of soil-borne pathogens (Trichoderma spp., 

Pseudomonas fluorescence, and Actinomycetes spp.), did not appear to be directly related 

to the suppressive activity observed in response to the sawdust amendment. This could 

indicate that other microbial taxa that were not measured in this trial could have been 

responsible for the suppressive activity observed. Higher total microbial activity in the 

sawdust treatment at the end of the incubation period supports this hypothesis. 

Alternatively, these microbial taxa could have been active in the rhizosphere of pepper 

plants grown in sawdust amended soil, which was not measured in this study. 

Interestingly, P. capsici abundance appeared to be greater in the lignin treatment relative 

to the control throughout the incubation period, but it did not significantly increase root 

infection or decrease root growth. Consequently, P. capsici soil abundance cannot be 

used alone as a reliable indicator to predict disease incidence. 
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CHAPTER 3. SUPPRESSIVE EFFECTS OF FIVE FOREST 

INDUSTRY BYPRODUCTS APPLIED AT TWO RATES ON 

PHYTOPHTHORA BLIGHT IN A LOW AND HIGH ORGANIC 

MATTER SOIL  

3.1 Abstract 

Pythophthora capsici, the pathogen that causes Phytophthora blight, is a serious 

threat to the Midwest vegetable industry. Phytophthora blight is difficult to control with 

traditional disease control strategies because of its broad host range, transmission 

strategies, and fungicide resistance. Amending soil with complex organic substrates has 

potential to suppress P. capsici infection and increase vegetable productivity via 

biocontrol mechanisms, but the effects could vary given amendment composition and soil 

type. The goal of this project was to determine how five forest industry byproducts, each 

with different compositions and expected rates of decomposition, would influence 

Phytophthora blight in a high and low organic matter soil.  Soil was collected from fields 

with recent outbreaks of P. capsici, amended with one of two rates of each amendment, 

and further inoculated with P. capsici zoospores to ensure sufficient disease pressure. 

Susceptible pepper plants were transplanted into the amended soil and allowed to grow 

for six weeks, after which root infection, crop biomass and various soil chemical and 

biological parameters were quantified. Results indicate that several of the amendments 

improved soil physiochemical and biological properties, and reduced the negative effects 

of P. capsici. The suppressive affects are likely related to changes in these soil properties, 

but the actual mechanisms could vary given amendment composition. The results of this 

trial indicate that locally available forest industry byproducts could be used to improve 

soil quality, reduce Phythopthora blight and increase vegetable crop productivity. 

However, field trials and cost-benefit analyses will need to be conducted before such 

practices are recommended to growers.  
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3.2 Introduction 

Organic matter plays a vital role in soil physiochemical quality (i.e. pH, moisture 

holding capacity, nutrient availability, cation exchange capacity) and biotic factors (i.e. 

microbial diversity, microbial structure, microbial activity) (Chung et al., 1988). 

However, intensive agricultural practices such as shortened rotations, reliance on 

chemical fertilizers and pesticides, and intensive tillage has depleted soil organic matter 

and potentially made crops more susceptible to soil-borne pathogens (Lazarovits, 2001). 

Soil-borne pathogens including Phytophthora capsici, are one of the main limiting factors 

affecting vegetable yield and quality. Phytophthora capsici is difficult to control with 

traditional strategies such as planting resistant cultivars, rotating crops and applying 

fungicides (Shoaf et al., 2016), because it has a wide host range, can survive in soil for 

years, and has become resistant to common fungicides (Koike et al., 2003).   

Adding organic amendments to soil has been reported to control many soil-borne 

diseases (Bonanomi et al., 2010; Boniulla et al., 2012), and improve crop health and crop 

yield (Boniulla et al., 2012). Potential mechanisms for the suppressive activity resulting 

from these amendments include changes in soil physicochemical qualities such as soil 

moisture, nutrient availability, Ca content and soil pH (Höper and Alabouvette, 1996), as 

well as changes in soil microbiota such as microbial community structure, microbial 

diversity and microbial activity (Boniulla et al., 2012). However, the materials’ 

constituents, carbon to nitrogen (C/N) ratio, and degree of decomposition of organic 

amendments can affect the suppressive activity of these amendments (Papavizas et al., 

1968; Janvier et al., 2007; Bonanomi et al., 2010).  

Organic soil amendments derived from more complex substrates have been 

theorized to result in greater disease suppressive activity than those derived from 

substrates that are more readily available to microbial decomposition (Bonanomi et al., 

2013; Senechkin et al., 2014). Organic amendments with a high C/N ratio (>30:1), such 

as woody or more fibrous amendments, generally provide more stable organic matter to 

soil and lead to higher cation exchange capacity and greater nutrient-holding capacity 

(Sarrantonio, 1998). Amendments containing more complex substrates are also expected 

to result in greater competition among soil microbes and favor taxa with an oligotrophic 
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growth habit (Bonanomi et al., 2010). The availability of easily degradable carbon has 

been found to favor pathogen survival in soil, and a high copiotroph to oligotrophic ratio 

is thought to be associated with poor soil quality and disease conduciveness (Borrero et 

al., 2004). However, the type of amendment that best suppresses disease activity could 

depend on the type of pathogen present, as well as the amendment composition and soil 

type. For example, soil-borne pathogen like Fusarium, which are generally more host 

specific, can be suppressed with labile organic matter substrates, whereas pathogens such 

as Rhizoctonia, Phytophthora and Pythium are better controlled when complex organic 

substrates are applied (Bonanomi et al., 2010). Shoaf et al. (2016) observed differences in 

the potential for several biochar amendments to suppress P. capsici, and results also 

varied given soil type. 

Variable application rates is another factor that could affect the disease 

suppressive activity of organic soil amendments. In a review of several studies 

investigating the suppressive potential of organic amendments, more than half of studies 

argued that disease suppression via crop residues, composts and organic wastes would 

increase with the application rate (Bonanomi et al., 2007). However, the optimal 

application rate varied with different types of organic amendments. For example, the 

authors noted that an application rate of less than 5% (v/v) organic wastes were best for 

disease suppression, while the optimal rate for suppression by crop residues were well 

under 1.3% (v/v). Further complicating these dynamics is that the optimal rate can 

depend on the objective. In a recent study, Jaiswal et al. (2014) found that the optimal 

application rate of biochar for disease suppressiveness is not always consistent with the 

optimal rate to promote crop growth.  

Additional research is needed to better understand the mechanisms mediating the 

suppressive activity of organic amendments before they can be reliably used by growers 

to control diseases in the field. The objectives of this study were to: 1) determine how 

amendment composition and rate would affect P. capsici activity in a high and low 

organic matter soil, and 2) determine whether changes in soil physiochemical and 

biological properties were correlated with disease suppressive activity of the 

amendments.  



31 

 

3.3 Materials and Methods 

3.3.1 Soil collection 

Two soils were collected for use in greenhouse trials from farms with recent 

outbreaks of Phytophthora blight in pumpkin fields. The farms were located in Knox 

County, IN. Soil A (with 1.8% organic matter content), collected from a farm at (lat. 

38.633196°, long. -87.490869°) containing soil characterized as Aryshire fine sandy loam 

(deep, poorly-drained soil formed in eolian material). Soil B (with 4% organic matter 

content), collected from a farm at (lat. 38.602675°, -long. 87.435070°) containing soil 

characterized as Alford silt loam (deep, well-drained soil formed in loess). Both soil A 

and soil B were collected from under diseased plant material to a depth of 15 cm, mixed, 

and stored at 4 C in the cooler at the Purdue University Horticulture Greenhouse, West 

Lafayette, IN, to limit biological activity until greenhouse experiments were conducted. 

Both soils were thoroughly mixed and sieved while moist to 4 mm before the trials were 

initiated. The abundance of P. capsici was determined in both soils by plating soil 

dilutions on PARP-H media. 

3.3.2 Amendments and Treatments 

Five forest industry byproducts (Appendix Table 4) were obtained for use in 

greenhouse trials: 1) compost; 2) lignin; 3) sawdust; 4) Biochar A; and 5) Biochar B. All 

amendments were ground to a fine powder and the C/N ratio of each amendment was 

determined using a FlashEA® 1112 Nitrogen and Carbon Analyzer (CE Elantec, 

Lakewood, NJ).  

 Each soil was amended with one of the forestry industry byproducts at a rate of 

either 1% or 3% total carbon (w/w) soil and mixed thoroughly. Amended soils from each 

treatment were distributed into 10.16 cm diameter pots with 6 replicates per treatment, 

except for biochar B, which only had 4 replicates for each rate because of limited 

supplies of the amendment.  
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3.3.3 Plant materials and Phytophthora capsici inoculum preparation 

Seed from the susceptible pepper variety ‘Red Knight’ (Johnny’s Selected Seeds, 

Winslow, ME) were prepared as follows. Seeds were placed in a beaker for surface 

sterilization with a 8.25% sodium hypochlorite solution containing Tween-20 (two drops 

per 100ml), stirred for 20 minutes on a magnetic stir plate, and then triple-rinsed in 

deionized water. Surface sterilized seeds were placed on 4 layers of autoclaved 

cheesecloth within a laminar flow hood and allowed to air dry for 30 minutes. Surface 

sterilized seeds were planted into 72-cell plastic trays containing soilless potting mix 

(Growing Mix; Fafard, Agawam, MA) which is commonly used for germination (59-73% 

Canadian sphagnum peat moss perlite, vermiculite, dolomite lime, wetting agent). The 

trays were placed in the mist room of Purdue University Horticulture Greenhouse to 

facilitate germination.  

Phytophthora capsici inoculum was prepared using a protocol from Larkin et al. 

(1995). The pathogen was cultured in petri dishes containing V8 agar media (which 

contained 200 ml filtered V8 juice, 2g CaCO3, 15g agar and 800 ml distilled water) and 

allowed to grow at 24C for 7 days. Media in the plates was cut into pieces and flooded 

with water to injure the mycelia and stimulate zoospore production. The plates were 

incubated in light at 24C for 72 h, chilled at 5C for 1 hour, and then incubated at 24C for 

30 to 60 minutes. Suspensions from the plates were filtered through 8 layers of sterile 

cheesecloth to remove hyphal and sporangial debris, and zoospore concentration was 

enumerated using a haemocytometer. 

3.3.4 Greenhouse experiment 

Pots containing amended soils were distributed on the greenhouse bench in a 

randomized complete block design. The greenhouse was maintained at an average 

temperature and relative humidity of 20.7 C and 53.09% for the duration of the 

experiment. Each pot was watered alternately with exactly 100 ml clean water and 

fertilizer water every other day to facilitate decomposition and any potential changes in 

soil properties resulting from the amendments. Moisture content was monitored using a 

FieldScout TDR100 soil moisture meter (Spectrum Technologies Inc., Aurora, IL) by 
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taking two random readings in each pot 1, 3, 7, 14, 21, and 28 days after amendment 

incorporation.  

After 28 days, above ground weed biomass was collected from each pot and oven 

dried at 70 C to obtain the dry weight, and soil in each pot was stirred to simulate tillage 

and disrupt belowground weed biomass.  

 One pepper seedling was transplanted into each pot. Each pot was watered with 

100 ml of fertilizer every other day to ensure sufficient nutrients and prevent potential 

effects of immobilization from the amendments.  Pots containing soil A were amended 

with 2450 ppg and soil B 2000 ppg of P. capsici zoospores to obtain 3000 ppg P. capsici 

soil abundance in each pot and ensure adequate disease pressure once pepper seedlings 

were transplanted into each pot. Relative chlorophyll content of pepper leaves was 

monitored using a SPAD 502 Plus Chlorophyll Meter (Spectrum Technologies, Inc. 

12360 S. Industrial Dr. East Plainfield, IL 60585 USA) by taking three random readings 

in each pot after 30 days. 

Pepper plants were harvested after 37 days. Roots were shaken to remove closely 

adhering soil and obtain rhizosphere samples. Five grams of roots were collected 

randomly from each pepper plant and placed in a sterile 50 ml centrifuge tube containing 

25 ml sterilized water and stored at 4 C until microbial community analyses described 

below. The remaining root systems from each plant were washed with water, and root 

and shoot material was separated and dried at 40 C to obtain above and belowground 

biomass. 

3.3.5 Laboratory analyses 

The centrifuge tubes containing plant roots were vortexed for 60s to dislodge 

rhizosphere soil. Roots were removed and washed thoroughly with DI to remove any 

remaining soil. Ten root cuttings (5mm) were randomly selected and placed on plates 

containing PARP-H media (Papavizas et al., 1981) with 3 replicates per plate. Root 

infection was recorded after 3 days. Rhizosphere soil collected in the 50 ml tubes were 

centrifuged at 4300 rpm for 5 min. The water was discarded and the soil was lyophilized 

and stored at -20 C for future potential microbial community analysis.  
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Soil samples were collected from each pot at harvest, thoroughly mixed and 

stored at 4 C until being subject to the following analyses. Phytophthora capsici 

abundance was determined by placing 5 grams of moist soil into 25ml sterile water for 

serial dilutions on selective media (PARP-H amended with hymexazol), with two 

replicates per pot, and three replicate plates per dilution.  Because the dilutions were 

conducted using moist soil, a 25 g soil sample with 3 replicates per treatment was dried at 

50 C for 48 h to determine soil dry weight, and P. capsici soil abundance values were 

adjusted accordingly. Soil microbial biomass was determined by lyophilizing 15 ml of 

moist soil and sending this soil overnight on ice to WARD Labs (Kearney, NE) for 

phospholipid fatty acid (PLFA) analyses. WARD labs uses a standard protocol for 

performing this analyses and references for this procedure can be found at the following 

website http://www.wardlab.com/WardInfo/ListOfReferences.aspx. Soil microbial 

activity was estimated using the hydrolysis of fluorescein diacetate [3’, 6’-

diacetylfluorescein (FDA)] method described in Green et al. (2006). Reacted samples and 

standards were measured at 490 nm on a BioTek Epoch plate reader (BioTek, Winooski, 

VT). Soil samples were sent to Midwest Labs (Omaha, NE) for a basic soil test to 

determine % OM, CEC, pH and availability of nitrate, phosphorous, potassium, 

magnesium, and calcium.  

3.3.6 Statistical analyses 

Data were analyzed using standard analyses of variance (ANOVA) procedures in 

SAS (SAS version 9.2; SAS Institute Inc., Cary, NC) using PROC GLM, and means 

separated using Tukey’s honestly significant difference test (P < 0.05). All data were 

checked for model assumptions. Percent root infection by P. capsici was log transformed 

because the normal distribution was not met, and data was back-transformed to report 

means in the figure. Data for weed biomass, soil pH and PLFA are reported separately by 

soil because of significant soil by treatment interactions. All other data was combined 

across the two soils because the interaction of soil and treatment was not significant.  

http://www.wardlab.com/WardInfo/ListOfReferences.aspx
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3.4 Results 

3.4.1 Soil moisture 

Soil moisture was affected by treatment and differences between treatments 

became more pronounced over the 28 day incubation period (Appendix Table 5). Soils 

with amendments at 3% were more affected than those receiving the amendments at a 

rate of 1%. In particularly, compost 3%, lignin 3% and biochar A 3% all increased soil 

moisture relative to the control. In contrast, the sawdust 3% treatment initially reduced 

soil moisture, but then resulted in greater soil moisture toward the end of the 28-day 

period. Biochar B also reduced soil moisture relative to the control early during the 28-

day period, but did not result in lower soil moisture later in the experiment. When 

compared across treatments, soil B had greater soil moisture than soil A (data not shown).  

3.4.2 Weed biomass 

The soil significantly impacted weed biomass in both soils (Fig. 3.1). The sawdust 

treatment suppressed weeds relative to the control at both rates in both soils, however, 

effects of the other amendments depended on the soil. In soil A, biochar B had greater 

weed biomass relative to the control at both rates, whereas in soil B, weed biomass was 

greater in the 1% rate. In soil B, both rates of the compost and lignin, and the 1% rate of 

biochar A had greater weed biomass relative to the control. When compared across 

treatments, soil B had greater weed biomass than soil A (data not shown). 
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Figure 3-1 Weed biomass one month after soil amendment in two soils infested with 

Phytophthora capsici during incubation period in greenhouse trials. Different letters 

represent significant difference as determined by Tukey’s honestly significant difference 

test (P< 0.05). 

3.4.3 SPAD chlorophyll readings 

Relative chlorophyll content of pepper leaves was not significantly affected by the 

soil amendments with the exception of the sawdust 3% treatment, which had lower 

relative chlorophyll content that the control (Fig.3.2). When compared across treatments, 

soil A had greater relative chlorophyll content of pepper leaves than soil B (data not 

shown). 
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Figure 3-2 Chlorophyll content (SPAD) of bell pepper (Capsicum annuum) leaves 30 

days after transplanting into soil amendments averaged across two soils. Different letters 

represent significant difference as determined by Tukey’s honestly significant difference 

test (P< 0.05). 

3.4.4 Phytophthora capsici pepper root infection and soil abundance 

Root infection by P. capsici was not significantly affected by any of the 

amendment treatments (Fig. 3.3). Root infection was greater in soil A than soil B (data 

not shown). Soil abundance of P. capsici (Fig. 3.4) appeared to be reduced in the lignin, 

sawdust and both biochar treatments at both rates relative to the control, but was not 

significantly different (Fig. 3.4). There was also no difference in P. capsici abundance 

when compared across the treatments in the two soils (data now shown).  

 

 
Figure 3-3 Percent root infection of bell pepper (Capsicum annuum) with Phytophthora 

capsici six weeks after transplanting into amended soil averaged over two soils. No 

significant difference was observed across treatments. 

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

%
 ro

ot
 in

fe
ct

io
n 

by
 

Ph
yt

op
ht

ho
ra

 s
pp

.



38 

 

 
Figure 3-4 Soil abundance of Phytophthora capsici at pepper harvest averaged across two 

soil amended with forest industry byproducts. No significant difference was observed 

across treatments. 

3.4.5 Pepper root and shoot biomass 

The lignin, biochar A and biochar B treatments at 3% and the sawdust treatment 

at 1% all increased root biomass relative to the control treatment (Fig. 3.5). When 

compared across treatments, there was no difference in root biomass between the two 

soils (data not shown). In contrast, when compared across treatments, shoot biomass was 

greater in soil B than soil A (data not shown). None of the treatments improved shoot 

biomass relative to the control, though the sawdust treatment at 3% reduced biomass 

relative to the control (Fig. 3.5b). 
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3.4.6 Soil chemical properties 

Figure 3-5 Root (a) and shoot (b) biomass of pepper grown in two soils amended with 

forest industry residuals. Different letters represent significant difference as determined 

by Tukey’s honestly significant difference test (P< 0.05). 

 

Many of the amendment treatments affected soil pH (Fig. 3.6). In soil A, the 

compost treatment at 3% and the sawdust and both biochar treatments at both rates had 

greater soil pH than the control. In soil B, the sawdust and biochar A treatments at both 

rates, the biochar B at 3%, and the compost at 1% had greater soil pH that the control. 

The lignin treatment at both rates also had lower soil pH than the control in soil B.  
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Figure 3-6 Soil pH in two soils amended with forest industry residuals. Different letters 

represent significant difference as determined by Tukey’s honestly significant difference 

test (P< 0.05). 
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chemical properties, with greater % organic matter, cation exchange capacity, and 
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contrast only the lignin treatment at both rates had greater cation exchange capacity, and 

the biochar B treatment at 3% had lower cation exchange capacity than the control. The 

sawdust treatment at 1% had greater available Mg and the sawdust at 3% had greater 

available K relative to the control. The lignin and sawdust treatments at both rates had 

lower available P relative to the control. The sawdust and both biochar treatments at both 

rates had lower nitrate relative to the control. Biochar B at 3% also had lower available P, 

K, Mg and Ca relative to the control. When compared across treatments, all soil chemical 

properties were greater in soil B than A (data not shown).  

3.4.7 Soil microbial biomass 

In soil A, all amendments dramatically affected soil microbial biomass (Appendix 

tables 7 and 8). In particular, the compost, lignin and sawdust treatments at both rates had 

greater diversity index, total biomass, total bacterial biomass, total fungal biomass, 

undifferentiated biomass, and fungal:bacterial ratio than the control. Most of the 

amendments also had greater gram +, gram -, actinomyctes, rhizobia, arbuscular 

mycorrhizal fungi and saprophyte biomass relative to the control. In contrast, both 

biochar treatments at both rates had greater total fungal biomass, fungi:bacteria ratio, and 

arbuscular mycorrhizal fungi relative to the control. All amendments had a lower gram + 

to gram – ratio than the control in soil A. When compared across treatments, microbial 

biomass was greater in soil B than soil A (data not shown), but there were far fewer 

effects of the amendments on microbial biomass in soil B (Tables 7 and 8). Interestingly 

the lignin treatment at rate 3%, and both biochar treatments at 3% had lower biomass of 

individual microbial groups relative to the control. 

3.4.8 Soil microbial activity 

Soil microbial activity was greater in the compost treatment at 1%, the sawdust 

treatment at both rates, and the biochar A treatment at 3% than the control (Fig. 3.7). 

When compared across treatments, there was no difference between the two soils (data 

not shown).  
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Figure 3-7 Soil microbial activity (FDA) averaged over two soils amended with forest 

industry residuals. Different letters represent significant difference as determined by 

Tukey’s honestly significant difference test (P< 0.05). 

3.5 Discussion 

Soil quality is widely regarded to provide the foundation for sustainable crop 

production and poor soil quality is suspected to contribute disease outbreaks. Amending 

soil with amendments containing complex carbon-based substrates has been suggested as 

a viable approach to improve soil quality and reduce negative impacts of soil-borne 
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cd

ab
bcd

cd d

a a

cd ab abcd
c

0.000

0.050

0.100

0.150

0.200

0.250

ug
 F

D
A

 g
-1

 so
il 

hr
-1



43 

 

However, the compost amendment did not appear to reduce P. capsici root infection nor 

improve pepper growth in soils infested with this pathogen. This could be related to the 

fact that this particular compost amendment had a relatively low C: N ratio for compost, 

which means it was likely readily available for microbial decomposition. Amendments 

with labile carbon compounds have generally not been effective in suppressing 

Phytophthora spp. (Bonanomi et al., 2010). The compost amendment did increase plant 

available nutrients and significantly increased weed biomass in soil B, indicating that this 

amendment has potential for use as an organic fertility amendment if applied closer to 

transplanting.   

Sawdust amended media has been used in the nursery industry for its potential to 

control plant parasitic nematodes and Phytophthora and Pythium root rots (Hoitink et al., 

2004). In this study, amending soil with a sawdust derived from processing hardwood 

spp. for furniture at a rate of 1% total carbon (w/w) soil, improved pepper growth in soils 

infested with P. capsici. This amendment also improved several soil quality indicators, 

including soil pH and microbial biomass in soil A, which could have contributed to the 

suppressive effects observed. Soil pH is one of the most important factors regulating soil 

microbial composition and activity in soil (Fierer and Jackson, 2006), and changes in soil 

pH have previously been found to be highly correlated with disease suppressive activity 

(Bonanomi et al., 2010). However, previous studies investigating the effects of soil pH on 

Phythophthora blight have demonstrated that disease severity is greater when soil pH is 

increased (Muchovej et al., 1980), so changes observed in this study may not be directly 

related to the suppressive activity observed.  

Changes in nitrogen availability is another factor that could have influenced 

severity of Phytophthora blight in response to the sawdust amendment in this study. High 

levels of soil nitrates have previously been found to increase host plant susceptibility to 

pathogens and also could change pathogen virulence (especially in vascular wilt 

pathogens) (Snyder et al., 1959).  Snyder et al. (1959), also found that high C/N ratio 

organic materials can effectively suppress pathogen infection by stimulating microbial 

activity and inducing N starvation. However, while reducing N availability could be 

advantageous in terms of suppressing Phytophthora blight, growers would need to be 

careful with the amount of sawdust that is applied, because over-application could 
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prevent plants from obtaining adequate nutrition. For example, nitrogen immobilization 

may have been responsible for the dramatic reduction in weed biomass in both soils 

following the sawdust amendments in this trial, as well as the low relative pepper leaf 

chlorophyll content with the 3% amendment.  

Finally, changes in soil microbial biomass could have been related to the 

suppressive effects observed in response to the sawdust amendment in this trial. 

However, suppressive effects were greater in soil B, which had a greater microbial 

biomass to start with and did not exhibit dramatic changes in soil microbial biomass in 

response to the sawdust amendment. It is not surprising that changes in microbial 

biomass do not appear to be directly related to disease suppression in this study, given 

that changes in microbial community structure, rather than changes in total microbial 

biomass, have previously been reported to be a stronger indicator of disease suppressive 

potential (Bonanomi et al., 2010). Differences in how the two soils responded to this 

amendment supports this hypothesis. It has been theorized that greater soil microbial 

density, and more importantly where a community starts, is likely to have a significant 

impact on the effectiveness of a particular management practice to induce disease 

suppressive activity (Kinkel et al., 2011). This is because there is likely to be a greater 

diversity of genotypes and more potential for mutation and recombination, that could 

result in more antagonistic phenotypes.   This does not mean that a low organic matter 

soil would not respond at all to an amendment that induces disease suppressive activity in 

a soil with higher organic matter, but it might take longer to develop suppressive effects.  

Amending soil with kraft pine lignin has previously been found to result in a soil 

dependent reduction of R. solani (Van Beneden et al., 2010). In this study, amending soil 

with kraft pine lignin at 3% total carbon (w/w) soil suppressed the negative effects of P. 

capsici and improved pepper root growth. In Van Beneden et al. (2010) suppressive 

effects were correlated with greater abundance of actinomycetes, gram – bacteria, and 

fungi. Lignin degradation by fungi has provided aromatic monomers which can be 

degraded by bacteria (Vicuna et al., 1993) and many actinomycetes have been found to 

be able to utilize lignin as a growth substrate (Ball et al., 1989). Actinomycetes are often 

implicated for their potential to contribute to disease suppressive soil because of their 

potential to produce compounds that are antagonistic to soil-borne fungi (Janvier et al., 
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2007). Many gram – bacteria are oligotrophs, which are also thought to contribute to soil 

suppressiveness (Bonanomi et al., 2010). In this trial, total fungi, actinomycetes and gram 

– bacteria were significantly greater in soil amended with lignin relative to the control, 

however, in soil B, gram – bacteria and actinomycetes were decreased, indicating that 

changes in individual soil microbial taxa may have been more important that broad 

groups. Changes in soil pH is another factor that could have contributed to the 

suppressive effects of lignin observed in this study, since soil pH was reduced in soil B 

relative to the control, and lower pH has previously been found to reduce the severity of 

Phyophthora blight (Muchovej et al., 1980). Greater availability of soil K derived from 

this amendment also could have stimulated weed biomass as well as pepper root growth. 

Finally, changes in soil moisture availability could have contributed to the suppressive 

effects of lignin observed in this study. Soil receiving the lignin treatment at 3% had 

significantly greater soil moisture in the last four of the six moisture measurements 

quantified in this study. While P. capsici activity is generally expected to be favored 

under greater soil moisture, these conditions also could have been more favorable for root 

growth.   

Many recent studies have provided evidence that biochar amendments can 

suppress a wide range of soil-borne pathogens (Graber et al., 2015), including P. capsici 

(Shoaf et al., 2016). However, suppressive effects can be dependent on the type of 

biochar applied (Jaiswal et al., 2014; Shoaf et al., 2016), as well as the rate (Jaiswal et al., 

2014; Graber et al., 2015). This is not surprising given that feedstocks and pyrolysis 

conditions can dramatically alter biochar’s physical and chemical properties (Downie et 

al., 2009). In this study, both biochar amendments applied at the 3% rate, but not the 1% 

rate reduced the negative effects of P. capsici and improved pepper root biomass relative 

to the control.  

Many potential mechanisms for biochar’s disease suppressive effects have been 

proposed including changes in nutrient content, water holding capacity, redox activity, 

adsorption ability, pH and content of toxic or hormone-like activities, as well changes in 

the rhizosphere microbiome (Graber et al., 2015). Results of this study indicate that 

different types of biochars could suppress pathogen activity via alternative mechanisms. 

For example, both biochar amendments increased soil pH and total fungal biomass in soil 
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A, but not in soil B, which may or may not have contributed to the suppressive effects 

observed as discussed above. In contrast biochar A dramatically increased soil moisture 

relative to the control, while biochar B reduced it. Both changes could have contributed 

to the plant effects observed, either by promoting root growth in the case of greater soil 

moisture, or reducing P. capsici activity in the case of reduced soil moisture. Greater soil 

microbial activity, as indicated by FDA hydrolysis in soil amended with biochar A, could 

have contributed to the suppressive effects observed, as this indicator has previously been 

found to be highly correlated with disease suppressive effects (Bonanomi et al., 2010). 

Lower nitrate availability in soil amended with biochar B could have contributed to the 

suppressive activity with this amendment, as discussed above.  

Interestingly, none of the treatments that improved root growth in the presence of 

P. capsici stress appeared to be correlated with lower P. capsici soil abundance or root 

infection. There does appear to be a trend towards lower P. capsici abundance in the 

lignin, sawdust and biochar treatments, and the lack of significant differences could be 

related to the very high heterogenous nature of soil microbial communities, which could 

make it difficult to demonstrate differences among treatments. However, it is also not 

uncommon for soil-borne pathogens such as Phythophthora spp. to remain abundant in 

soils with disease suppressive activity, and abundance has previously been suggested as a 

poor predictor of disease suppression (Bonanomi et al., 2010). What is more surprising is 

that there was no difference in root infection despite greater root biomass in the 

suppressive treatments. Consequently, it is possible that improvements in root growth in 

response to the suppressive amendments were due to the presence of abiotic factors that 

stimulated root growth, and/or presence of beneficial plant growth promoting microbes in 

the rhizosphere. 

In conclusion, results of this study provide evidence that forest industry 

byproducts can help to suppress Phythophthora blight in pepper. However, before 

recommending this approach to growers, field trials are needed to confirm that 

suppressive effects will be observed in the field. In addition, cost-benefit analyses should 

be performed to determine whether these amendments would be cost effective. For 

example, the common rate of 25 T/ha that has been found to improve crop productivity in 

field trials with biochar, was estimated to cost over $6000 per ha (Filiberto and Gaunt, 
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2013). If the benefits of this application are long-term in nature, it is possible that these 

costs could be recovered, but longer term studies are needed to confirm this assumption. 

Finally, before these amendments are recommended to growers, studies to investigate 

potential negative side effects must be conducted. For example, biochar amendments 

could adsorb agrochemicals, reducing their effectiveness (Bonanomi et al., 2015), or 

introduce environmental contaminants (Montanarella and Lugato, 2013).  
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CHAPTER 4. CONCLUSION 

4.1 Suppressive Effects of Forest Industry Byproducts on Phytophthora Blight 

Results of these studies indicate that commercially available sawdust, lignin and 

two biochar amendments have the potential to help suppress Phytophthora blight in bell 

pepper. While field trials are needed before any of these amendments should be 

suggested as an alternative strategy for managing Phytophthora blight, amending soil 

with the sawdust at 1% is likely to be the most desirable strategy, because it is readily 

available, was effective at the low rate in all trials, and it has the least potential for 

negative long-term side effects. 

Many of the amendments tested in this trial including the compost, lignin and 

sawdust, improved soil quality, particularly in the low organic matter soil, resulting in a 

greater diversity index, greater total microbial biomass, bacterial and fungal biomass, and 

a greater fungal to bacterial ratio. These amendments also increased soil pH, soil organic 

matter, cation exchange capacity and P, K, Mg availability in some cases. The biochar 

amendments also improved many soil quality parameters, but to a lesser extent than the 

other amendments. This indicates that these amendments could be helpful in rebuilding 

soil quality in soils that have been degraded by decades of intensive agricultural 

practices.  

4.2 Correlations between analytical parameters and suppressive capacity of 

amendments 

Understanding how organic soil amendments induce disease suppressive activity 

is critical to being able to use these amendments to reliably suppress diseases in field 

trials. In this study, we found that soil moisture holding capacity, soil pH, soil microbial 

biomass (as indicated by PLFA) and soil microbial activity (as indicated by FDA 

activity) could be promising parameters. Soil pH has previously been reported to be a 

strong indicator of disease suppressive activity (Bonanomi et al, 2010). Soil moisture 

holding capacity has not been widely studied as an indicator of disease suppressive 
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activity, though it is likely to have a significant impact on root growth and soil microbial 

communities, and should be further investigated.   

FDA activity has been widely investigated for its capacity to predict the 

suppressive activity of organic amendments (Chen et al., 1988). FDA is a strong indicator 

of organic matter decomposition, because it quantifies the activity of multiple enzymes 

(Nannipieri et al., 2003). Organic matter decomposition is thought to be a key factor is 

soil disease suppressive activity (Bonanomi et al., 2010). In our study, FDA activity did 

appear to be correlated with the suppressive activity of the sawdust and biochar A 

amendments.  

Total fungal biomass is another promising parameter that appeared to be 

correlated with some of the suppressive activity observed in our trials. Most agricultural 

soils have a low fungal to bacterial biomass ratio because they are dominated by bacteria 

(Postma et al., 2008). Increasing soil fungal biomass could be a significant factor in 

inducing disease suppressive activity, as Postma et al. (2008) reported a significant 

correlation between fungal composition and soil suppressiveness against Rhizoctonia.   

We did not observe a consistent relationship between P. capsici soil abundance, 

root infection, and plant productivity in this trial. However, this was not surprising given 

that other studies have observed greater disease suppressive capacity in response to soil 

amendments, even though Phytophthora populations remained high (Szczech and 

Smolinska, 2001, Widmer et al.,1998).  

4.3 Suggestions for future research directions 

Results of this study indicate that amending soil with forest industry byproducts 

could improve soil quality and suppress Phytophthora blight. However, these benefits 

depended on the type of amendment applied, as well as the initial quality of the soil. In 

addition, these trials were conducted under controlled conditions in the greenhouse, and 

results could vary if the amendments were applied in the field given more variable 

environmental conditions. Consequently, field trials are highly recommended at multiple 

sites that have variable existing levels of soil quality. These studies should include 
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evaluation of potential negative side effects, such as N immobilization or adsorption of 

agrochemicals, as well as cost-benefit analyses. 

Greater understanding of the mechanisms mediating how these amendments 

induce disease suppressive activity is also needed. Results of this and previous studies 

indicate that changes in soil microbial community structure could be a key factor in 

disease suppressive activity. Determining whether this is the case will require more 

advanced microbial community analyses such as next-generation sequencing. Because 

the composition of the amendments also appears to be a critical factor in the suppressive 

activity, more advanced assays that better quantify the biochemical quality of the 

amendments are also needed.  

Finally, additional research is needed to develop simple and cost-effective tests 

and/or ‘kits’ that growers could use to determine whether an amendment has potential to 

induce suppressive activity, or track whether such amendments are inducing suppressive 

activity on their farms.  
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APPENDIX A. TABLES 

Table 1 Biological and Chemical Indicators as Related To Soil Quality Functions*. 

 
Soil Function 

Soil Quality 
Indicator 

Sustain biological 
diversity activity, 
and productivity 

Regulate and 
partition water 
and solute flow 

filter, buffer, degrade, 
detoxify organic and 
inorganic materials 

Store and 
cycle nutrients 
and carbon 

Physical stability and support 
for plants and structures 
associated with human 
habitation 

Earthworms ⃝⃝⃝ −−− ⃝⃝⃝ ⃝⃝⃝ ⃝⃝⃝ 

Particulate 
Organic 
Matter 

⃝⃝⃝ ⃝⃝⃝ ⃝⃝⃝ ⃝⃝⃝ ⃝⃝⃝ 

Potentially 
Mineralizable 
Nitrogen 

⃝⃝⃝ −−− −−− ⃝⃝⃝ −−− 

Phosphorus ⃝ ⃝ −−− −−− −−− 

Reactive 
Carbon 

⃝⃝ ⃝ ⃝⃝⃝ ⃝⃝ ⃝⃝ 

Soil Electrical 
Conductivity 

−−− ⃝⃝⃝ −−− −−− −−− 

Soil Nitrate ⃝ ⃝ −−− −−− −−− 

Soil pH ⃝⃝ ⃝⃝⃝ ⃝⃝⃝ ⃝⃝⃝ −−− 

*Modified by Natural Resources Conservation Service of USDA 
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Table 2 The Carbon And Nitrogen Percent And Materials Source Of Four Forest Industry Amendments. 

Amendment Carbon (%) Nitrogen (%) C/N Materials source 
Compost 35.95 3.2403 11: 1 Wood fines compost, mixed by hardwood spp.; Soilmaker, West Lafayette, IN 
Lignin 61.82 0.8449 73: 1 Kraft pine lignin, Indulin AT ®, Westvaco, Co., Charleston, SC 
Sawdust 54.24 0.4613 118:1 Wood flour, mixed by oak, maple, & ash; Fiber By-Products Corp., Goshen, IN 
Biochar  40.81 0.2980 137:1 Mixed softwood spp, pyrolyzed at 1 hr at temperatures between 450 ° and 

550 °C; courtesy North Carolina State University 
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Table 3 Chemical Properties Across Treatments In Greenhouse Trials. 

    
ppm  Percent base saturation   Nitrate-N (FIA) 

 pH % Organic matter 
Cation exchange 

capacity K Mg Ca  %K %Mg %Ca   ppm  
Control 6.9a* 1.375b 8.25 4.93  23.63a  71.45a   4.93  23.63  71.45    45.5  
Biochar 6.75ab 1.525b 7.15 6.48  22.08 b 67.75b   6.48  22.08  67.75    59.5  
Compost 7.025a 1.525b 8.275 5.08  23.30a  71.63 a  5.08  23.30  71.63    62  
Lignin 6.575b 2.4a 7.55 6.20  21.93ab  66.48b   6.20  21.93  66.48    47.75  
Sawdust 6.95a 1.475b 6.75 7.18  23.78 b 69.05b   7.18  23.78  69.05    60.5  
*Different letters within a column represent significant difference as determined by Tukey’s significant difference test (P <0.05).  
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Table 4 Chemical Properties Across Five Forest Industry Amendments In Greenhouse Trials 

Amendment Carbon (%) Nitrogen (%) C/N Materials source 
Compost 35.95 3.2403 11: 1 Wood fines compost, mixed by hardwood spp.; Soilmaker, West Lafayette, IN 
Lignin 61.82 0.8449 73: 1 Kraft pine lignin, Indulin AT ®, Westvaco, Co., Charleston, SC 
Sawdust 54.24 0.4613 118:1 Wood flour, mixed by oak, maple, & ash; Fiber By-Products Corp., Goshen, IN 
Biochar A 40.81 0.2980 137:1 Mixed softwood spp, pyrolyzed at 1 hour at temperatures between 450 and 550 C; 

courtesy North Carolina State University 
Biochar B 31.45 0.1082 291:1 Mixed softwood spp., pyrolyzed for 1 hour at temperatures between 450 and 550 

C; Diacarbon, Burnaby, BC).  
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Table 5 Soil Moisture (%) Following Soil Amendments Over Time Averaged Across Two Soils. 

 
Soil moisture (%) 

Treatment Day 0 Day3 Day 7 Day14 Day 21 Day 28 
Control  18.55 bcd* 19.27abc 24.33cde 16.05ef 15.81def 16.29d 
Compost 1% 19.75 abcd 19.89abc 27.33bc 20.57bcd 19.49cd 19.20dc 
Compost 3% 21.92a 22.43a 32.54a 25.44bcd 25.65a 23.10abc 
Lignin 1% 13.53e 18.08bcd 26.45bcd 19.49bcde 19.19cd 21.61bc 
Lignin 3% 17.38cd 18.99bcd 30.67ab 22.89ab 20.47bc 21.87bc 
Sawdust 1% 18.06cd 16.87 cde 22.08ef 17.59def 19.65bcd 24.82ab 
Sawdust 3% 13.77e 14.14de 22.63def 22.06abc 23.58ab 27.25a 
Biochar A 1% 20.00abc 19.43abc 26.39bcde 18.47cdef 17.19cde 19.57bc 
Biochar A 3% 21.11ab 21.15ab 28.64ab 19.86bcd 19.86bc 21.33bc 
Biochar B 1% 16.84d 15.98cde 22.35def 15.17f 14.81ef 15.73de 
Biochar B 3% 12.30e 13.14e 19.36f 14.99f 12.85f 11.25e 
* Different letters within a column represent represent significant difference as determined by Tukey’s honestly significant difference 

test (P< 0.05). 
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Table 6 Soil Chemical Properties Averaged Over Two Soils Amended With Forest Industry Residuals. 

     ppm % base saturation 

Treatments 

% 

Organic 

matter 

Cation 

exchange 

capacity Nitrate-N 
P1 (weak 

bray) 1:7 
P2 (strong 

bray)1:7 K Mg Ca %K %Mg %Ca 
Control 2.90d 11.30de 136.33ab 144.50bc 154.00bc 351.17b 356.50ce 1482.17cd 8.20b 26.57bcd 65.23ab 
Compost 1% 4.05bcd 12.93b 118.67abc 167.17ab 169.67ab 389.67bc 401.50b 1700.50b 7.90bc 26.42bcd 65.10ab 
Compost 3% 4.98ab 15.05a 139.50a 192.50a 196.00a 450.67bc 466.50a 1913.67a 7.73bc 25.93cd 63.72abc 
Lignin 1% 4.28bc 12.60bc 138.67ab 103.83e 108.67e 382.67bc 389.83bc 1541.83bc 7.90bc 26.57bcd 60.17d 
Lignin 3% 5.77a 12.98b 101.50ad 115.00de 126.67de 342.67c 385.67bd 1596.33bc 6.75c 25.28d 60.62cd 
Sawdust 1% 3.85bcd 12.43bcd 50.33de 111.67de 124.00de 384.83b 429.33ab 1575.50bc 8.15b 29.62a 62.23bcd 
Sawdust 3% 6.00a 11.43cde 5.33e 101.00e 130.83cde 440.50a 368.33ce 1447.50cd 9.97a 27.55bc 62.48bcd 
Biochar A 1% 3.37cd 10.88e 69.50dc 128.67cde 135.67cd 328.83bc 334.33ef 1454.83cd 7.78bc 26.18bcd 66.03a 
Biochar A 3% 3.95bcd 11.42cde 87.50bd 135.00cd 144.33bcd 336.17bc 360.83ce 1510.33c 7.65bc 27.10bcd 65.25ab 
Biochar B 1% 4.85ab 10.40ef 109.67dc 125.50cde 139.67cd 339.33b 338.00df 1341.33de 8.42b 28.05bcd 63.53abc 
Biochar B 3% 5.58a 9.53f 55.00de 112.50de 127.83cde 260.50bc 293.50f 1280.17e 7.13bc 26.18ab 66.68a 
* Different letters within a column represent significant difference as determined by Tukey’s honestly significant difference test (P< 

0.05).  
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Table 7 Soil Microbial Biomass (PLFA) Averaged Over Two Soils Amended With Forest Industry Residuals. 

Treatments 
Soil  
type 

Diversity  
index 

Total 
Biomass 

Protozoa 
Biomass 

Total  
Bacteria 

Biomass 

Total  
Fungi  
Biomass 

Fungi: 
Bacteria 

Undifferentiated 

Biomass 
Control A 1.22e 1950.90 c 3d 936.56 d 78.42 e 0.07 e 932.62 e 
Compost 1% A 1.48abcd 2855.72 b 24d 1341.90 bc 235.01 cd 0.14 cd 1265.98 abc 
Compost 3% A 1.41d 3813.04 b 15d 1856.02 bc 329.69 cd 0.17 d 1612.55 abcd 
Lignin 1% A 1.51abc 3355.57 b 61ab 1614.71 b 309.26 cd 0.17 cd 1407.59 bcd 
Lignin 3% A 1.46ad 5432.66 a 56abc 2758.22 a 566.44 bc 0.20 d 2051.61 a 
Sawdust 1% A 1.54abc 5878.33 a 72a 2823.57 a 1004.17 a 0.35 ab 1979.08 ab 
Sawdust 3% A 1.47bdd 4020.08 b 33bcd 1912.67 bc 720.11 b 0.37 s 1354.65 cde 
Biochar A 1% A 1.55abc 2961.84 bc 28cd 1300.31 cd 391.39 cd 0.29 bc 1241.68 cde 
Biochar A 3% A 1.57a 2884.70 bc 29cd 1340.69 cd 394.59 cd 0.28 bc 1120.46 de 
Biochar B 1% A 1.39d 3030.81 bc 17d 1328.54 cd 290.93 de 0.20 d 1394.81 cde 
Biochar B 3% A 1.57bab 3062.93 bc 30cd 1412.29 bcd 420.26 cd 0.29 bc 1200.57 cde 
* Different letters within a column represent significant difference as determined by Tukey’s honestly significant difference test (P< 

0.05). 
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Table 7 Continued 

Treatments 
Soil 

type 
Diversity 

index 
Total  
Biomass 

Protozoa 
Biomass 

Total  
Bacteria  
Biomass 

Total  
Fungi  
Biomass 

Fungi: 
Bacteria 

Undifferentiated 

Biomass 
Control B 1.59a 7518.60abcde 112a 3539.86abcd 1089.85abcde 0.29bcd 2777.27 
Compost 1% B 1.64a 7714.97abcd 104ab 3731.97abc 1302.08abc 0.34abc 2576.98 
Compost 3% B 1.60a 7783.97abcd 91abc 3550.65abcd 1550.31ab 0.40a 2592.13 
Lignin 1% B 1.56a 7906.99abc 104ab 3727.40abc 1079.59abcde 0.27cde 2995.56 
Lignin 3% B 1.47b 6002.53e 44cd 2891.93cde 642.19e 0.21de 2423.95 
Sawdust 1% B 1.56a 8610.02ab 104ab 4052.03ab 1554.31ab 0.38ab 2899.69 
Sawdust 3% B 1.56a 8960.88a 117a 4267.07a 1716.09a 0.40a 2860.31 
Biochar A 1% B 1.61b 7817.19abc 78abc 3920.06abc 1233.77abcd 0.32abc 2584.92 
Biochar A 3% B 1.42a 5191.81cde 25d 2451.65e 469.86de 0.19e 2244.95 
Biochar B 1% B 1.56a 6552.13bcde 82abc 3171.26bcde 933.80bcde 0.28cde 2365.06 
Biochar B 3% B 1.61a 5445.00de 61bcd 2569.91de 854.47cde 0.32abc 1960.07 
* Different letters within a column represent significant difference as determined by Tukey’s honestly significant difference test (P< 

0.05). 
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Table 8 Total Biomass Of Specific Microbial Groups (PLFA) Averaged Over Two Soils Amended With Forest Industry Residuals. 

Treatments 
Soil  
type 

Gram (+) 

Biomass 
Gram (-) 

Biomass 
Gram(+): 
Gram(-) 

Actinomycetes 

Biomass 
Rhizobia 

Biomass 

Arbuscular 

Mycorrhizal 

Biomass 
Saprophytes 

Biomass 
Control A 580.10 f* 356.46 f 1.74 a 161.51 f 0.00 d 11.97 g 66.45 f 
Compost 1% A 752.52 bc 589.38 cde 1.49 bc 209.05 bcde 5.88 cd 63.07 bcd 171.94de  
Compost 3% A 1120.47 ab 735.55 def 1.75 a 302.72 ab 9.25 cd 155.23 ab 174.46 ef 
Lignin 1% A 875.23 bcde 739.48 cd 1.43 cde 249.38 abc 23.67 b 90.42 def 218.84 cd 
Lignin 3% A 921.28 bcd 1836.94 a 0.51 f 276.67 bcd 214.23 a 63.82 efg 502.62 bc 
Sawdust 1% A 1233.10 a 1590.47 ab 0.82 def 363.65 a 86.53 b 201.61 a 802.56 a 
Sawdust 3% A 730.66 def 1182.01 bc 0.64 ef 196.54 def 64.50 bc 97.11 cdef 623.00 ab 
Biochar A 1% A 652.29 ef 648.02 ef 1.05 bcd 180.87 f 32.12 bcd 109.92 bcde 281.46 de 
Biochar A 3% A 700.96 def 639.74 ef 1.19 bc 184.93 ef 48.28 bcd 147.83 abc 246.76 def 
Biochar B 1% A 743.45 cdef 585.09 ef 1.33 b 215.65 cdef 10.07 cd 48.34 fg 242.59 def 
Biochar B 3% A 709.44 def 702.84 def 1.02 cbd 231.20 bcdef 51.19 bcd 90.11 cf 330.15 ce 
* Different letters within a column represent significant difference as determined by Tukey’s honestly significant difference test (P< 

0.05). 
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Table 8 Continued 

* Different letters within a column represent significant difference as determined by Tukey’s honestly significant difference test (P< 

0.05). 

Treatments 
Soil  
type 

Gram (+) 

Biomass 
Gram (-)  
Biomass 

Gram(+): 
Gram(-) 

Actinomycetes 

Biomass 
Rhizobia  
Biomass 

Arbuscular 

Mycorrhizal 

Biomass 
Saprophytes  
Biomass 

Control B 1821.39abc* 1718.47bcd 1.20abc 585.30abc 115.06 233.95bc 855.90bcde 
Compost 1% B 1967.77ab 1764.20bcd 1.15bcd 647.83a 184.12 279.38ab 1022.70abcd 
Compost 3% B 1824.51abc 1726.14abcd 1.15bcd 571.58abc 169.04 271.67ab 1278.65abc 
Lignin 1% B 1751.19bcd 1976.22abc 0.97cde 576.79abc 198.62 160.20cd 919.39abcde 
Lignin 3% B 1379.95d 1511.99bcde 0.95cde 463.77bcd 106.95 65.04e 577.15de 
Sawdust 1% B 1876.31ab 2175.72ab 0.89de 604.53ab 118.30 256.25ab 1298.06ab 
Sawdust 3% B 1862.74ab 2404.33a 0.79e 574.87abc 178.66 239.44abc 1476.65a 
Biochar A 1% B 2155.63a 1764.42abcd 1.23abc 704.79a 143.08 322.78a 910.99abcde 
Biochar A 3% B 1462.34cd 989.31e 1.49a 413.71d 7.83 132.73de 337.13e 
Biochar B 1% B 1763.14bcd 1408.12cde 1.47a 581.24abc 59.66 221.38bc 712.42bcde 
Biochar B 3% B 1399.47d 1170.43de 1.27ab 461.93cd 93.83 166.82cd 687.66cde 
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