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ABSTRACT

Zhao, Banghua MSAA, Purdue University, December 2016. Analysis of Compos-
ite Plates by Using Mechanics of Structure Genome and Comparison with ANSYS.
Major Professor: Wenbin Yu.

Motivated by a recently discovered concept, Structure Genome (SG) which is

defined as the smallest mathematical building block of a structure, a new approach

named Mechanics of Structure Genome (MSG) to model and analyze composite plates

is introduced. MSG is implemented in a general-purpose code named SwiftCompTM,

which provides the constitutive models needed in structural analysis by homogeniza-

tion and pointwise local fields by dehomogenization. To improve the user friendliness

of SwiftCompTM, a simple graphic user interface (GUI) based on ANSYS Mechan-

ical APDL platform, called ANSYS-SwiftComp GUI is developed, which provides

a convenient way to create some common SG models or arbitrary customized SG

models in ANSYS and invoke SwiftCompTM to perform homogenization and deho-

mogenization. The global structural analysis can also be handled in ANSYS after

homogenization, which could predict the global behavior and provide needed inputs

for dehomogenization.

To demonstrate the accuracy and efficiency of the MSG approach, several numer-

ical cases are studied and compared using both MSG and ANSYS. In the ANSYS

approach, 3D solid element models (ANSYS 3D approach) are used as reference mod-

els and the 2D shell element models created by ANSYS Composite PrepPost (ACP

approach) are compared with the MSG approach. The results of the MSG approach

agree well with the ANSYS 3D approach while being as efficient as the ACP approach.

Therefore, the MSG approach provides an efficient and accurate new way to model

composite plates.
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1. INTRODUCTION

1.1 Motivation

Composite plates are widely used in many fields of industry ranging from civil to

aerospace due to its lightness characteristics and high stiffness. The simplest compos-

ite plate could be composite laminates which are stacked up by layers with different

materials or fiber orientations. Theoretically, one can use 3D elasticity theory to ana-

lyze composite plates. With the help of a commercial finite element software, one can

use solid elements to build the corresponding 3D models to carry out the analysis.

However, since composites are heterogeneous and anisotropic, insurmountable of de-

grees of freedom (DOFs) are needed to build a fine enough 3D finite element model.

It costs tremendous computational power and time for engineers. The 3D approach

is thus not practical and realistic. Alternatively, one can use various equivalent single

layer (ESL) plate theories available in literature to carry out analysis. And many

commercial finite element software codes provide the corresponding shell elements,

which implement these theories. For example, ANSYS has linear 4-node SHELL181

element and quadratic 8-node SHELL281 element in their element database. Both of

them are based on the first-order shear deformation theory (FSDT) [1].

However, while being computationally efficient, shell elements provided in com-

mercial finite element software codes have many limitations. The major reason is that

there are many ad hoc assumptions in ESL plate theories. Although these assump-

tions are commonly used by shell elements, many users are not aware of that. They

may think that these shell elements capture the true characteristics of the structure.

Nevertheless, it is not true in some circumstances. For example, in FSDT, the trans-

verse normal stress is always zero as a direct result of the invoked ad hoc assumptions.

However, this stress component is not zero in general if there is transverse load and



2

is very important for some failure criteria. Thus we need new approaches to analyze

composite plates while being efficient and accurate.

1.2 Lecture Review

Since shell elements provided in commercial finite element software are based on

ESL plate theories, the lecture review will mainly focus on ESL plate theories.

1.2.1 Equivalent Single Layer Plate Theories

The ESL plate theories are derived from the three-dimensional (3D) elasticity the-

ory by making ad hoc assumptions with respect to the deformation or the stress state

through the thickness of a composite plate. These assumptions allow the reduction

of a 3D problem to a two-dimensional (2D) problem.

The simplest ESL plate theory is the classical laminated plate theory (CLPT),

which is an extension of the Kirchhoff-Love plate theory to laminated composite

plates. CLPT is based on two sets of assumptions: plane stress assumption and kine-

matic assumptions (also called Kirchhoff assumptions). The plane stress assumption

states that the transverse stress components vanish for each layer of the composite

laminate. The kinematic assumptions state that the transverse normal to the refer-

ence surface remains rigid, straight and normal. With these two sets of assumptions,

the original 3D elasticity problem can be reduced to be a 2D problem. CLPT pro-

vides a reasonable prediction to thin laminates with the in-plane dimensions 20 times

or more larger than the thickness. However, the two sets of ad hoc assumptions in

CLPT create a contradiction: the zero transverse normal strain due to the Kirchhoff

assumptions contradicts with the plane stress assumption unless the Poisson’s ratio

is zero. Besides, CLPT loses accuracy quickly if a laminate is thick and under trans-

verse load. Thus more refined laminated plate theories are needed to better capture

the response characteristics of composite plates.
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The elimination of the transverse normal remaining normal assumption in CLPT

leads to the first-order shear deformation theory (FSDT), which is also called the

Reissner-Mindlin plate theory. Mindlin proposed his plate theory in 1951 [2] while

a similar, but not identical plate theory had been proposed by Reissner [3] in 1945.

Mindlin’s theory assumes that there is a linear variation of displacement across the

plate thickness whereas Reissner’s theory assumes that the bending stress is linear

while the shear stress is quadratic through the thickness of the plate. Both theories

include transverse shear strains and both are extensions of Kirchhoff-Love plate theory

including transverse shear effects. Since FSDT implies a linear displacement variation

through the thickness, it is incompatible with Reissner’s plate theory. But we still

call FSDT as the Reissner-Mindlin plate theory because both share the same 2D plate

model. A direct result of FSDT is that the transverse shear strain is constant through

thickness and it needs shear correction factors to approximate the fact that transverse

shear stress may be quadratic through thickness due to boundary conditions on the

top and bottom surfaces [4]. The limitations of FSDT will be discussed in detail in

Chapter 3. Nevertheless, in practical, FSDT is often adopted by commercial finite

element software such as ANSYS due to its efficiency and relative accuracy than

CLPT.

The higher-order shear deformation theory (HSDT) uses higher-order polynomi-

als (second order or higher) for displacement through the thickness of a laminate. A

famous one is the third-order laminated plated theory by Reddy [5]. The displace-

ment field can provide quadratic variation of transverse shear strains and stresses

for a general laminate composed of monoclinic layers. Thus there is no need to use

shear correction factors. The third-order theory provides a slight increase in accuracy

relative to FSDT, at the expense of an increase in computational effort. However,

HSDT still assumes a displacement field a priori.

In 1979, Berdichevsky [6] first introduced the Variational Asymptotic Method

(VAM) to analyze shells without involving ad hoc assumptions. VAM takes advantage

of the small terms h/l, where h is the thickness and l is the characteristic length of
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the reference surface of a composite plate, by dropping them from energy functional

of 3D elasticity theory for different approximations, through which the 2D model is

obtained. Thus, VAM provides a more systematic and mathematical justified way

than traditional methods which use ad hoc assumptions. VAM was firstly extended to

model composite plates by Atilgan and Hodges [7] in 1992. Their work was continued

by Sutyrin and Hodges in [8] resulting in a Reissner-Mindlin-like model. Yu et al.

[9–11] continued and extended their work to shells and developed a general Reissner-

Mindlin-like model with accurate strain recovery and transverse normal stress. The

resulting model was implemented by Yu [10, 12] by a finite element code named

Variational Asymptotic Plate And Shell Analysis (VAPAS).

Recently, Yu [13] developed mechanics of structure genome (MSG) as a unified ap-

proach for composite modeling. MSG uses the VAM to avoid ad hoc assumptions and

principle of minimum information loss (PMIL) to minimize information loss between

the original model and the final macroscopic structural model. MSG is implemented

into a general purpose code named SwiftCompTM, which reproduces the capabilities

of Variational Asymptotic Beam Section Analysis (VABS) [10, 14], VAPAS [10, 12],

Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH) [15] and

many more capabilities not available in the previous three codes. It has been shown

that MSG can be used to provide an efficient and accurate approach for composite

beams [16] and a general-purpose solution for the free-edge stress problem [17]. It is

the objective of this thesis to shown that MSG can be used for efficient high-fidelity

modeling of composite plates.

1.2.2 Analysis of Composite Plates by ANSYS

ANSYS, Inc is a computer-aided engineering software provider. Their products

include general-purpose FEA packages for numerically solving a wide variety of me-

chanical problems. For structural analysis, ANSYS Mechanical can solve linear or

nonlinear static or dynamic problems. ANSYS FEA software is used throughout
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industry to enable engineers to optimize their product designs. This thesis uses AN-

SYS to create reference models and comparison models. So a brief introduction about

ANSYS capability and functionality to model composite structures is given below.

In general, ANSYS cam model composite structures by solid element, solid shell

element and shell element. For simplification, this thesis does not use solid shell ele-

ment. In addition, ANSYS provides ANSYS Composite PrepPost (ACP) to facilitate

building finite element models (FEMs) and access results. So we will first introduce

solid and shell elements, and then ACP.

For solid elements, ANSYS provides 8-node structural solid SOLID185 and 20-

node structural solid SOLID186. Both of them are based on 3D Cauchy continuum

model with three degrees of freedom at each node: translations in the nodal x, y,

and z directions. SOLID185 is a linear element whereas SOLID186 is a quadratic

serendipity element. If a composite structure has in-plane to thickness ratio not

larger than 8, solid element is recommended.

For shell element, ANSYS provides 4-node structural shell SHELL181 and 8-node

structural shell SHELL281. Both of them are based on FSDT with six degrees of

freedom at each node: translations in the x, y, and z directions, and rotations about

the x, y, and z-axes. SHELL181 is a linear element whereas SHELL281 is a quadratic

serendipity element. If a composite structure has in-plane to thickness ratio larger

than 8, shell element is recommended. Beside FSDT, many other technologies are

used to improve the stress predictions within these shell element [1]. For example,

ANSYS can obtain a linear varied transverse shear stress by set KEYOPT(8) equal

to 1 or 2 if there is more than one layers. Also the transverse normal stress can be

independently recovered during the element solution output from the applied pressure

load. These technologies increase the accuracy of FSDT to some extent.

With those two types of elements and its powerful solver, ANSYS can easily solve

composite structure problems as long as a model is set up. However, real composite

plates could have very complex definitions that include numerous layers, materials,

thicknesses and layup orientation. Without the proper FEA tools to set up a model,
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one may spend too much time before one can actually get meaningful results. Even

if the solution is done, it is very tedious to extract all the results needed such as

the stress/strain field and failure index within every layer. To handle this prob-

lem, ANSYS Composite PrepPost (ACP) [18] is designed to perform preprocessing

(build model) and postprocessing (extract solution) easier. ACP has a pre- and post-

Figure 1.1. ANSYS Composite PrepPost

processing mode. In the pre-processing mode as shown in Figure 1.1, all composite

definitions can be created and are mapped to the geometry (FE mesh). These com-

posite definitions are transferred to the FE model and the solver input file. In the

post-processing mode, after a completed solution and the import of the result files,

post-processing results (failure, safety, strains and stresses) can be evaluated and

visualized.

This thesis will use the powerful ACP preprocessing capabilities to easily build

numerical cases, which will be called the ACP approach.
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1.2.3 Present Work and Outline

The purpose of this thesis is to analyze composite plates using MSG and AN-

SYS and compare with ANSYS results. To use MSG and its corresponding code

SwiftCompTM, a graphical user interface (GUI) named ANSYS-SwiftComp GUI [19]

is developed based on ANSYS platform for preprocessing and postprocessing needed

for SwiftCompTM. The global structural analysis is performed in ANSYS, which

reads results from SwiftCompTM homogenization and provides global behavior for

SwiftCompTM dehomogenization. The outline of the present work is followed.

Chapter 2 introduces the definition of MSG in detail. Different types of SG are

explained for 3D structures, plates/shells and beams. The MSG-based multiscale

modeling approach is explained at the end of the chapter.

Chapter 3 is divided into two sections. In the first section, FSDT is derived to

provide a reference for the ACP approach and the limitation of FSDT is discussed.

In the second section, the Reissner-Mindlin plate model based on VAM is derived so

that the results in numerical cases can be better understood.

Chapter 4 presents five numerical cases to compare the MSG approach with the

ANSYS 3D approach and the ACP approach for composite plate modeling. The

results are discussed in detail, which reveals the accuracy and efficiency of MSG

approach.

Chapter 5 concludes the present work and suggests possible improvements for

future work.
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2. MECHANICS OF STRUCTURE GENOME

This chapter provides an introduction to Mechanics of Structures Genome (MSG).

MSG is the fundamental framework on which the new approach to analyze composite

plates in this thesis is based. Hence, a brief introduction of MSG is presented in

this chapter to set up the stage for the composite plate modeling using MSG in next

chapter.

2.1 Introduction

In the field of biology, a genome is an organism’s complete set of DNA, which con-

tains all of the information needed to build and maintain that organism. Inspired by

this concept, we can generalize the word genome to represent a fundamental building

block of a system which is not biological. Then a new concept called the Structure

Genome (SG) is defined as the smallest mathematical building block of a structure

by Yu [13]. This definition represents an analogy between two different disciplines:

SG containing all the constitutive information needed for a structure is similar to the

genome containing all the genetic information for an organism’s growth and develop-

ment.

To understand the concept of SG, we need to carefully define the concept of struc-

ture first. Yu [20] clarified the distinction between structures and materials, which

are often used interchangeably in literature. A structure is a solid body made of

one or more materials with clearly defined interactions with its external environment

through boundary conditions, applied loads, and environment effects, (e.g., tempera-

ture and moisture) etc [21]. Despite the complexity of a structure, it can be modeled

using one or more typical components as shown in Figure 2.1. If all three dimensions

of a component are of similar size, it can be called a 3D structure; if one dimension
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is much smaller than the other two dimensions, it can be called a plate/shell; if two

dimensions are much smaller than the third dimension, it can be called a beam.

Figure 2.1. Typical structure components

Many models have been developed for these structural components. The classical

ones are Cauchy elasticity for 3D structures, Kirchhoff-Love model for plates/shells,

and Euler-Bernoulli model for beams. 3D structures can be considered as 3D models

because the unknown functions are three-variable functions with three coordinates

as independent variables. Plates/shells can be considered as 2D models because

the unknowns functions are two-variable functions with two in-plane coordinates as

independent variables. Beams can be considered as one-dimensional (1D) models

because the unknowns functions are one-variable functions with the axial coordinate

as the independent variable. To this end, beams/plates/shells can be collectively

called dimensionally reducible structures as the models of these structural components

are reduced from the original 3D model [10].

With the definition and categorization of structures in mind, we will then explain

SG for 3D structures, SG for plates/shells and SG for beams in the following sections.

2.2 SG for 3D Structures

For 3D structures, SG is a generalization of the representative volume element

(RVE) concept in micromechanics. As shown in Figure 2.2, depending on the het-

erogeneity of a 3D heterogeneous structure, a SG can be 1D, 2D or 3D. Also a SG
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will use the lowest dimensions needed to represent the building block of the original

structure.

+

3D macroscopic structural analysis

a) 1D SG

b) 2D SG

C) 3D SG

Actual problem

SG-based 

Representa!on

Figure 2.2. SG for 3D structures

For example, the binary composite in Figure 2.2a) features 1D heterogeneity, then

a 1D SG with two different segments in corresponding to the two different phases can

fully represent the original structure. Note we could also use 2D SG or 3D SG to

represent this structure but it is unnecessary since 1D SG contains all the information

we need for constitutive modeling. For 3D structures featuring 2D or 3D heterogeneity

as shown in Figure 2.2b) and Figure 2.2c), the corresponding SG will be 2D or 3D.

After determining a SG, we can perform a homogenization analysis over the SG

to obtain the constitutive models for the macroscopic structural analysis. For linear

elastic behavior the constitutive information means the 6 × 6 effective stiffness matrix

in the generalized Hooke’s law. Then we can use this constitutive information to

perform 3D macroscopic structural analyses as shown in the bottom of Figure 2.2.

Finally, we can obtain the local fields of displacement/stress/strain of the SG in the

original structure by dehomogenization. To this end, a 3D structure is considered as

a 3D continuum and every material point of this continuum has an associated SG as

its microstructure.
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Thus, a SG has more features than RVE as summarized below:

• A 1D SG can be used to compute the complete set of 3D properties and local

fields for structures with 1D heterogeneity. However, 1D RVE is not common

and can not be used to compute the complete 3D properties and local fields.

• A 2D RVE only obtains in-plane properties and local fields. If the complete

set of properties are needed for 3D structural analysis, a 3D RVE is usually

required [22]. However, there is no such limitation in SG.

• Boundary conditions in terms of displacements and tractions indispensable in

RVE-based models are not needed for SG-based models.

• Because SG-based models does not need to apply displacement or traction

boundary conditions, MSG is more efficient than RVE analysis even for 3D

SGs.

2.3 SG for Plates/Shells

For plate/shell structures, a SG can be 1D, 2D or 3D depending on the hetero-

geneity of the original structure as shown in Figure 2.3. The SGs we use in this

thesis to analyze composite plates belong to this section. If a plate/shell features 1D

heterogeneity as shown in Figure 2.3a), the SG is 1D. For plates/shells featuring 2D

or 3D heterogeneity as shown in Figure 2.3b) and Figure 2.3c), the corresponding SG

will be 2D or 3D.

Same as SG for 3D structures, 1D, 2D or 3D SG for plates/shells will give all con-

stitutive information by homogenization and local fields of displacement/strain/stress

by dehomogenization. And the constitutive information can be used directly for 2D

plate/shell analysis as shown in the bottom of Figure 2.3. Here, however, the con-

stitutive information means plate stiffness matrix, the 6 × 6 stiffness matrix for the

Kirchhoff-Love plate model or the 8 × 8 stiffness matrix for the Reissner-Mindlin

model. To this end, the reference surface of a plate/shell structure is considered as
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2D plate/shell analysis

+
a) 1D SG

b) 2D SG
c) 3D SG

Actual problem

SG-based 

Representa!on

Figure 2.3. SG for Plates/Shells

a 2D continuum and every material point of this continuum has an associated SG as

its microstructure.

This thesis will use 1D and 2D SGs to model plate/shell structures.

2.4 SG for Beams

For beam structures, a SG can be 2D or 3D depending on the heterogeneity of

the original structure as shown in Figure 2.4. If a beam has uniform cross sections as

shown in 2.4a), the SG is 2D. More specifically, it is a 2D cross-sectional domain. If

the beam is also heterogeneous in the spanwise direction as shown in 2.4b), the SG

will be 3D to represent the fundamental building block of the original beam structure.

Same as SG for 3D structures and plates/shells, 2D or 3D SG for beams will give all

constitutive information by homogenization and local fields of displacement/strain/stress

by dehomogenization. And the constitutive information can be used directly for 1D

beam analysis as shown in the bottom of Figure 2.4. Here, however, the constitu-

tive information means beam stiffness matrix, the 4 × 4 beam stiffness matrix for

Euler-Bernoulli beam model or the 6 × 6 beam stiffness matrix for Timoshenko beam
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+

1D beam analysis

a) 2D SG

b) 3D SG

Reference line

Reference line

Reference line

Actual problem

SG-based 

Representa!on

Figure 2.4. SG for Beams

model. To this end, the beam reference line of a beam structure is considered as a

1D continuum and every material point of this continuum has an associated SG as

its microstructure.

2.5 MSG-based Multiscale Structural Modeling

Now we have clearly defined the meaning of SG. Then for different structures, MSG

provides a rigorous and systematic approach to compute constitutive information

(homogenization) and local fields (dehomogenization) within the original structures.

To use MSG approach practically, MSG-based multiscale structural modeling ap-

proach is introduced. It can be used to fill the gap between material genome and

macroscopic structural analysis and can directly connect with simple structural ele-

ments (3D solid elements, plate/shell elements or beam elements) available in stan-

dard FEA software packages, such as shell elements in ANSYS.

The work flow of MSG is shown in Figure 2.5. First, MSG starts from the original

model. Note the original model here means 3D continuum mechanics. Next, we iden-

tify SG based on the nature of original model and engineering experience. Then, MSG
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uses the principle of minimum information loss (PMIL) based on the powerful varia-

tional asymptotic method (VAM) to decouple the original problem to a constitutive

modeling over the SG and a structural analysis. The constitutive modeling has been

implemented in a general-purpose software named SwiftCompTM, which is developed

by Professor Wenbin Yu at Purdue University. SwiftCompTM can provide the con-

stitutive models needed for the structural analysis by homogenization and pointwise

local fields of displacement/strain/stress by dehomogenization. The global structural

analysis could be easily handled by standard FEA software package such as ANSYS,

which provides the global behavior for SwiftCompTM to perform dehomogenization.

Figure 2.5. Work flow of Mechanics of Structure Genome
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3. EQUIVALENT SINGLE LAYER PLATE THEORIES

The MSG in the above chapter is very general, which covers three major areas, i.e. 3D

structures, plates/shells and beams. For a realistic scope, this thesis only considers a

subset of MSG, i.e., plate-like structure for simplicity. In this chapter, the FSDT will

be derived first to provide a reference for the ACP approach. The limitations of FSDT

will be discussed in detail. Then the Reissner-Mindlin model based on VAM will be

derived as a theory reference for the MSG approach. With these two derivations, the

numerical cases in the next chapter can be better understood. Please note that all

the derivations only reflect the author’s understanding of the originally publication.

All credits should go to the original authors [9, 10,23,24].

The sign convention of a composite plate is shown in Figure 3.1, which will be

used in the rest of the thesis. Note, ui and ūi are displacements and Φα are rotations.

Greek indices represent in-plane values 1 and 2. Latin indices represent values 1, 2,

and 3 in a 3D space. Repeated indices are summed over their range except where

explicitly indicated.

Figure 3.1. Sign convention for the displacements and rotation of a laminate
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3.1 First Order Shear Deformation Theory

3.1.1 Kinematics

The kinematic assumptions of FSDT state that the transverse normal to the refer-

ence surface (x3 = 0) remains rigid and straight, which implies the following displace-

ment field within every material point of a composite plate. Note here, the kinematic

assumptions are assumed a priori.

u1(x1, x2, x3) = ū1(x1, x2) + x3Φ2(x1, x2)

u2(x1, x2, x3) = ū2(x1, x2)− x3Φ1(x1, x2)

u3(x1, x2, x3) = ū3(x1, x2)

(3.1)

where ūi and Φα are unknown functions as the displacements and rotations of material

points on the reference surface.

The second assumption also implies the relationship between transverse shear

strains to the slope of the reference surface and rotation of the transverse normal as

depicted in Figure 3.2.

γ13 = ū3,1 + Φ2

γ23 = ū3,2 − Φ1

(3.2)

Figure 3.2. Plate reference surface slope and transverse normal
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The infinitesimal strain defined in the 3D linear elasticity theory is.

εij =
1

2
(ui,j + uj,i) (3.3)

Substituting the displacement field in Eq. (3.1) into the definition of infinitesimal

strain in Eq. (3.3), we get the 3D strain field within very material point of a composite

plate.

ε11(x1, x2, x3) = ū1,1(x1, x2) + x3Φ2,1(x1, x2)

2ε12(x1, x2, x3) = ū1,2(x1, x2) + ū2,1(x1, x2) + x3[Φ2,2(x1, x2)− Φ1,1(x1, x2)]

ε22(x1, x2, x3) = ū2,2(x1, x2)− x3Φ1,2(x1, x2)

2ε13(x1, x2, x3) = ū3,1(x1, x2) + Φ2(x1, x2)

2ε23(x1, x2, x3) = ū3,2(x1, x2)− Φ1(x1, x2)

ε33(x1, x2, x3) = 0

(3.4)

Introducing 2D plate strain measures for FSDT

εαβ =
1

2
(ūα,β + ūβ,α)

κ11 = Φ̄2,1, κ22 = −Φ̄1,2, κ12 =
1

2
[Φ̄2,2 − Φ̄1,1]

(3.5)

Substituting 2D plate strain measures in Eqs. (3.5) and (3.2) into Eq. (3.4), we

can express the 3D strain field in terms of 2D unknown plate strain measures as:

εαβ(x1, x2, x3) = εαβ(x1, x2) + x3καβ(x1, x2)

2εα3(x1, x2, x3) = γα3(x1, x2)

ε33(x1, x2, x3) = 0

(3.6)

At this point, the original 3D strain fields are expressed in terms of 2D plate

strains and the thickness coordinate x3.

3.1.2 Constitutive Relations

In FSDT, we assume each layer is made of homogeneous monoclinic material and

the transverse normal stress is equal to zero. The constitutive relation of each layer

in 3D linear elasticity theory is:
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
εe

2εs

εt

 =


Se 0 Set

0 Ss 0

ST
et 0 St



σe

σs

σt

 (3.7)

where

εe =


ε11

ε22

2ε12

 2εs =

2ε13

2ε23

 εt =
{
ε33

}

σe =


σ11

σ22

σ12

 σs =

σ13

σ23

 σt =
{
σ33

}
=
{

0
}

Se =


S11 S12 S16

S12 S22 S26

S16 S26 S66

 Set =


S13

S23

S36

 Ss =

S55 S45

S45 S44

 St =
[
S33

]

Eq. (3.7) implies the relationship between in-plane strains and in-plane stresses

εe = Seσe (3.8)

or the plane-stress reduced stress-strain relations

σe = Qεe (3.9)

where the plane-stress reduced stiffness matrix Q = S−1
e depends on the material and

orientation of a layer, which can be expressed explicitly as

Q = RσeQ
′RT

σe (3.10)

where Q′ is the plane-stress reduced stiffness matrix in the material coordinate system

and Rσe is the in-plane stress transformation matrix for plane stress state, i.e.,

Q′−1 = S ′e =


1
E1

−ν12
E1

η12,1
G12

−ν12
E1

1
E2

η12,2
G12

η12,1
G12

η12,2
G12

1
G12

 Rσe =


c2 s2 −2sc

s2 c2 2sc

sc −sc c2 − s2

 (3.11)
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where E1, E2, ν12, G12, η12,1, η12,2 are engineering constants of this layer in the material

coordinate system. c = cos θ, s = sin θ with θ denoting the layup angle.

The 3D constitutive relations in Eq. (3.7) also imply the relationship between

transverse shear strains and transverse shear stresses as

2εs = Ssσs (3.12)

where Ss is the transverse shear compliance matrix. The inverse relations are

σs = Q∗(2εs) (3.13)

where the transverse shear stiffness matrix Q∗ = S−1
s depends on the material and

orientation of a layer, which can be expressed explicitly as

Q∗ = R̂σsQ
∗′R̂T

σs (3.14)

where Q∗′ is the transverse shear stiffness matrix in the material coordinate system

and R̂σs is the transverse stress transformation matrix, i.e.,

Q∗′−1 = S ′s =

 1
G13

µ23,13
G23

µ23,13
G23

1
G23

 R̂σs =

c −s
s c

 (3.15)

where G23, G13, µ13,23, µ23,13 are engineering constants of this layer in the material

coordinate system.

Eqs. (3.7) also implies that the transverse normal strain can be expressed as

ε33 = ST
etσe (3.16)

Now, in order to express the 3D constitutive relations into its 2D counterpart, we

introduce stress resultant Nαβ,Mαβ and Nα3

Nαβ = 〈σαβ〉

Mαβ = 〈x3σαβ〉N13

N23

 = K

〈σ13〉

〈σ23〉


(3.17)



22

where

K =

k11 k12

k12 k22

 (3.18)

where the angle brackets indicate piecewise integration through the thickness, that

is 〈·〉 =
∑N

i=1

∫ zi+1

zi
·dx3. kαβ are called the shear correction factors. Since transverse

shear stresses vary at least parabolically through layer thickness if there is transverse

force, shear correction factors are needed to approximate the true distribution of

transverse shear stresses. In ANSYS, SHELL181 and SHELL281 element use an

equivalent energy method to compute shear correction factors such that the strain

energy due to transverse shear stress resultant is equal to the strain energy due to

the true transverse shear stresses predicted by the 3D elasticity theory. These factors

are predetermined based on the section lay-up at the start of solution [25]. The

calculation of shear correction factors is given in Appendix A [26].

Substituting the 2D strain field in Eq. (3.6) into Eqs. (3.9) and (3.13), then into

plate stress resultants in Eq. (3.17), we have 2D constitutive relations


N

M

N∗

 =


A B 0

B D 0

0 0 G



ε

κ

γ

 (3.19)

where

N =


N11

N22

N12

 M =


M11

M22

M12

 N∗ =

N13

N23



ε =


ε11

ε22

2ε12

 κ =


κ11

κ22

2κ12

 γ =

γ13

γ23


A = 〈Q〉 B = 〈x3Q〉 D = 〈x2

3Q〉 G = K〈Q∗〉

At this point, the original 3D constitutive relations are reduced to 2D constitutive

relations.
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3.1.3 Equilibrium Equations

The equilibrium equations of FSDT will be derived by using the principle of virtual

work

δU = δW (3.20)

Substitute 2D strain field in Eq. (3.6) into the virtual strain energy δU , we have

δU =

∫
S

〈σijδεij〉dS =

∫
S

〈σαβδ(εαβ + x3καβ) + σα3δγα3〉dS

=

∫
S

(〈σαβ〉δεαβ + 〈x3σαβ〉δκαβ + 〈σα3〉δγα3)dS

=

∫
S

[
1

2
Nαβδ(ūα,β + ūβ,α) +M11δΦ2,1 −M22δΦ1,2

+M12δ(Φ2,2 − Φ1,1) +N13δ(ū3,1 + Φ2) +N23δ(ū3,2 − Φ1)]dS

(3.21)

where S denotes reference surface plane. Note the transverse shear stress resultants

are defined as Nα3 = 〈σα3〉 here. The shear correction factors are not introduced in

the derivation of equilibrium equations.

Virtual work δW can be expressed as

δW =

∫
S

(
〈fiδui〉+ βiδui(x1, x2,−

h

2
) + τiδui(x1, x2,

h

2
)
)
dS +

∫
Ω

〈tiδui〉dΩ (3.22)

where fi is distributed body force, τi, βi and ti are surface tractions on the top,

bottom and lateral surfaces respectively. Ω denotes the boundary curve of the plate

reference surface.

Substituting the 3D displacement field in Eq. (3.1) into virtual work in Eq. (3.22)

we have

δW =

∫
S

(piδūi + qαδΦα)dS +

∫
Ω

(Piδūi +QαδΦα)dΩ (3.23)
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Where fi, βi, τi, ti, pi, qα, Pi, Qα are defined by the equations below

pi(x1, x2) = 〈fi〉+ βi + τi

q1(x1, x2) =
h

2
(β2 − τ2)− 〈x3f2〉

q2(x1, x2) =
h

2
(τ1 − β1) + 〈x3f1〉

Pi = 〈ti〉

Q1 = −〈x3t2〉

Q2 = 〈x3t1〉

(3.24)

Substituting virtual strain energy δU in Eq. (3.21) and virtual work δW in Eq.

(3.22) into the principle of virtual work in Eq. (3.20), we have

0 =

∫
S

[N11δū1,1 +N12δū1,2 +N12δū2,1 +N22δū2,2 +M11δΦ2,1 −M22δΦ1,2

−M12δΦ1,1 +M12δΦ2,2 +N13δū3,1 +N23δū3,2 + (N13 − q2)δΦ2

− (N23 + q1)δΦ1 − p1δū1 − p2δū2 − p3δū3]dS

−
∫

Ω

(P1δū1 + P2δū2 + P3δū3 +Q1δΦ1 +Q2δΦ2)dΩ

(3.25)

Integration by parts, we have

0 =

∫
S

[
− (N11,1 +N12,2 + p1)δū1 − (N12,1 +N22,2 + p2)δū2

− (N13,1 +N23,2 + p3)δū3 + (M12,1 +M22,2 − q1 −N23)δΦ1

− (M11,1 +M12,2 + q2 −N13)δΦ2

]
dS

+

∫
Ω

[
(n1N11 + n2N12 − P1)δū1 + (n1N12 + n2N22 − P2)δū2

+ (n1N13 + n2N23 − P3)δū3 − (n1M12 + n2M22 +Q1)δΦ1

+ (n1M11 + n2M12 −Q2)δΦ2

]
dΩ

(3.26)
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The 2D equilibrium equations correspond to the Euler-Lagrange equations in Eq.

(3.26). Setting the coefficient before variations δūi and δΦα in the domain S to be

zero will obtain:

δū1 : N11,1 +N12,2 + p1 = 0

δū2 : N12,1 +N22,2 + p2 = 0

δū3 : N13,1 +N23,2 + p3 = 0

δΦ1 : M12,1 +M22,2 − q1 −N23 = 0

δΦ2 : M11,1 +M12,2 + q2 −N13 = 0

(3.27)

For boundary conditions, express displacements and rotations by normal and tan-

gent components

δū1 = n1δūn − n2δūs

δū2 = n2δūn + n1δūs

δΦ1 = n1δΦn − n2δΦs

δΦ2 = n2δΦn + n1δΦs

(3.28)

Then the boundary terms over domain Ω in Eq. (3.26) become

0 =

∫
Ω

[(Nnn − Pn)δūn + (Nns − Ps)δūs + (V3 − P3)δū3

− (Mnn −Qn)δΦn + (Mns −Qs)δΦs]dΩ

(3.29)

where

Nnn = n2
1N11 + n2

2N22 + 2n1n2N12

Nns = n1n2(N22 −N11) + (n2
1 − n2

2)N12

Pn = P1n1 + P2n2

Ps = −P1n2 + P2n1

Mnn = n1n2(M22 −M11) + (n2
1 − n2

2)M12

Mns = n2
1M11 + n2

2M22 + 2n1n2M12

Qn = −Q2n2 −Q1n1

Qs = Q2n1 −Q1n2

V3 = n1N13 + n2N23

(3.30)
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Equation (3.29) implies that there are two sets of boundary conditions including

displacement boundary conditions:

ūn = u0
n, ūs = u0

s, ū3 = u0
3, Φn = Φ0

n, Φs = Φ0
s on Ωu (3.31)

and force boundary conditions:

Nnn = Pn, Nns = Ps, Vn3 = P3, Mnn = Qn, Mns = Qs on Ωf (3.32)

Here the portion of the boundary curve where the displacement is prescribed is de-

noted by Ωu, and the portion of the boundary curve where the force is prescribed is

denoted by Ωf . And they have the relationship

Ωu ∩ Ωf = 0

Ωu ∪ Ωf = Ω
(3.33)

3.1.4 Limitations

• As a direct result of kinematic assumptions, transverse normal strain ε33 is

zero as shown in Eq. (3.6). This contradicts with the transverse normal stress

assumption σ33 = 0 in Eq. (3.7) which results a nonzero transverse normal

strain in Eq. (3.16) unless the Poison’s ratio is zero. However, FSDT uses the

strain field from kinematic assumptions along with σ33 = 0 in reduced stress-

strain relations to derive 2D constitutive relations and equilibrium equations.

• The transverse stress results are not accurate. If there is transverse shear force,

the transverse shear stress should be at least parabolic along the thickness

whereas it is a constant in FSDT. Besides, the transverse normal stress is always

zero by assumption. This directly ignores that fact that transverse normal stress

exists if there is transverse load.

• The calculation of shear correction factors kαβ is tedious. There are many

different formulas to calculate kαβ in literature. And the calculation of kαβ takes

many factors into consideration such as the material and fiber orientation. The

accuracy of transverse shear stress depends greatly on kαβ.
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3.2 The Reissner-Mindlin Plate Model Based on VAM

The ad hoc assumptions made by FSDT create many limitations as pointed out

in the above section. However, the Reissner-Mindlin plate model based on VAM has

no ad hoc assumptions as to be derived in the following. For simplicity, the following

derivation only gives dimensional reduction up to the first order.

3.2.1 3D Formulation

The displacement within every material point of a composite plate can be ex-

pressed as

u1(x1, x2, x3) = ū1(x1, x2)− x3ū3,1(x1, x2) + w1(x1, x2, x3)

u2(x1, x2, x3) = ū2(x1, x2)− x3ū3,2(x1, x2) + w2(x1, x2, x3)

u3(x1, x2, x3) = ū3(x1, x2) + w3(x1, x2, x3)

(3.34)

where wi are unknown warping functions

With the introduction of warping functions, Eq. (3.34) can describe all the possible

displacement within every material point of a composite plate. The kinematic assump-

tions of FSDT are equivalent to assume wi = 0 and relaxing ū3,1 = −Φ2, ū3,2 = Φ1.

Note unlike FSDT, there are no assumptions about the specific distribution of the

displacement field through the thickness. The warping functions will be determined

through the process of dimensional reduction described later. Let the origin of the

thickness coordinate to be at the middle of the plate thickness. For a plate theory,

the plate displacements ūi(x1, x2) can be defined as the average of 3D displacement

through the thickness. i.e.,

hūi = 〈ui〉 (3.35)

where h is the thickness of the composite plate. Eq. (3.35) implies the following

constraints on the warping functions

〈wi〉 = 0 (3.36)
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The 3D strain field is obtained by substituting Eq. (3.34) into the definition of

infinitesimal strain in Eq. (3.3)

ε11 = ū1,1 − x3ū2,11 + w1,1

2ε12 = ū1,2 + ū2,1 − 2x3ū3,12 + w1,2 + w2,1

ε22 = ū2,2 − x3ū1,22 + w2,2

2ε13 = w1,3 + w3,1

2ε23 = w2,3 + w3,2

ε33 = w3,3

(3.37)

Introducing 2D strain measures as

εαβ =
1

2
(ūα,β + ūβ,α)

καβ = −ū3,αβ

(3.38)

Note here καβ are different from the curvatures defined in FSDT (3.5). The curvatures

here are the same as what defined in CLPT. They will be transferred to the Mindlin-

Reissner model later.

Substituting Eq. (3.38) into Eq. (3.37). The 3D strain field can be expressed as:

εe = ε+ x3κ+ Iαw‖,α

2εs = w‖
′ + eαw3,α

εt = w3
′

(3.39)

where

εe =


ε11

ε22

2ε12

 2εs =

2ε13

2ε23

 εt =
{
ε33

}

ε =


ε11

ε22

2ε12

 κ =


κ11

κ22

2κ12


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and

I1 =


1 0

0 1

0 0

 I2 =


0 0

1 0

0 1

 e1 =

1

0

 e2 =

0

1


Then, twice of the strain energy stored in a composite plate can be written as

2U =

∫
S

〈
εe

2εs

εt


T 

Ce Ces Cet

CT
es Cs Cst

CT
et CT

st Ct



εe

2εs

εt


〉
dS =

∫
S

2UdS (3.40)

Note, the material properties are general anisotropic.

For 3D virtual work done by applied loads, it can be written in two terms

δW = δW 2D + δW
∗

(3.41)

where

δW 2D =

∫
S

(piδūi + q1δū3,2 + q2δū3,1)dS +

∫
Ω

(Piδūi +Q1δū3,2 +Q2δū3,1)dΩ (3.42)

δW
∗

=

∫
S

(〈fiδwi〉+ τiδw
+
i + βiδw

−
i )dS +

∫
Ω

〈tiδwi〉dΩ (3.43)

where ()+ = ()|x3=h
2
, ()− = ()|x3=−h

2
and

pi(x1, x2) = 〈fi〉+ βi + τi

qα(x1, x2) =
h

2
(βα − τα)− 〈x3fα〉

Pi = 〈ti〉

Qα = −〈x3tα〉

(3.44)

Note the boundary line integral part of δW
∗

in Eq. (3.43) represents the work done

through the virtual warping along the lateral boundary of a plate. This term is only

for edge problem, which is beyond the scope of this thesis and will be dropped.

Now, according to the principal of virtual work in Eq. (3.20), we can construct

the problem that has the warping functions as unknown functions to minimize total
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potential energy density functional and ui are not considered as variable functions.

Note virtual work δW 2D is thus a constant term and will be dropped.

The total potential energy density is

δΠ = 0 with Π = U −W∗ (3.45)

where

δW
∗

= δ

∫
S

W∗dS (3.46)

with

W∗ = 〈fT
‖ w‖〉+ 〈fT

3 w3〉+ τT
‖ w

+
‖ + τT

3 w
+
3 + βT

‖ w
−
‖ + βT

3 w
−
3 (3.47)

Now, VAM will be used to determine unknown warping functions asymptotically.

3.2.2 Dimensional Reduction

To use VAM, the first step is to assess the order of terms in the potential energy.

Since a composite plate is a plate-like structure, the ratio of thickness to characteristic

length of reference surface is inherently very small, i.e., h/l� 1. We will make use of

this small term in dimensional reduction. Since the problem in consideration is a linear

elastic problem, all the strains are assumed to be small. So we have εij ∼ εαβ ∼ ε.

The expressions of strains in Eq. (3.39) imply the order of curvature hκαβ ∼ ε. The

order of strains implies that the order of warping function is either wi ∼ hε or wi ∼ lε.

However, if wi ∼ lε, then ε33 will be in the order of (l/h)ε, which is much larger than

ε. So the order of warping functions can only be hε. Then the orders of derivative of

warping functions are

w‖,α ∼ w3,α ∼
h

l
ε

w‖
′ ∼ w3

′ ∼ ε

(3.48)

Consider the 2D plate equilibrium equation in Eqs. (3.27). The orders of surface

traction are

hfα ∼ τα ∼ βα ∼ µ
h

l
ε

hf3 ∼ τ3 ∼ β3 ∼ µ(
h

l
)2ε

(3.49)
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where µ is the order of material properties.

Zeroth-Order Approximation

Now, the total potential energy density can be written explicitly as

2Π =〈(ε+ x3κ)TCe(ε+ x3κ) + 2(ε+ x3κ)TCeIαw‖,α + 2(Iαw‖,α)TCeIαw‖,α

+ 2(ε+ x3κ)TCesw‖
′ + 2(ε+ x3κ)TCeseαw3,α + 2(Iαw‖,α)TCes(w‖

′ + eαw3,α)

+ 2(ε+ x3κ)TCetw3
′ + 2(Iαw‖,α)TCetw3

′ + w‖
′TCsw‖

′ + 2w‖
′TCseαw3,α

+ 2(eαw3,α)TCseαw3,α + 2w‖
′TCstw3

′ + 2(eαw3,α)TCstw3
′ + Ctw3

′2〉

− 2
(
〈fT
‖ w‖〉+ 〈fT

3 w3〉+ τT
‖ w

+
‖ + τT

3 w
+
3 + βT

‖ w
−
‖ + βT

3 w
−
3

)
(3.50)

where the underlined terms are in the order of h/l or higher and are dropped in the

zeroth-order approximation. The double underlined terms are constants which will

not affect the stationary points and can be simply dropped.

Since the unknown warping functions are subjected to constraints, Lagrange mul-

tiplier method is used. Then the stationary conditions for the total potential energy

density can be obtained from the following variational statement

δI = 0 with I = Π + λ‖〈w‖〉+ λ3〈w3〉 (3.51)

Dropping the underlined and double underlined terms in Eq. (3.50) and leaving

only the leading terms, the variation with respect to the warping functions of the

zeroth-order variational statement is

δI0 =〈[(ε+ x3κ)TCes + w‖
′TCs + w3

′CT
st]δw‖

′ + λ‖δw‖

+ [(ε+ x3κ)TCet + w‖
′TCst + w3

′Ct]δw3
′ + λ3δw3〉 = 0

(3.52)

Integration by part, Eq. (3.52) yields the following Euler-Lagrange equations

δw‖ : [(ε+ x3κ)TCes + w‖
′TCs + w3

′CT
st]
′ = λ‖ (3.53)

δw3 : [(ε+ x3κ)TCet + w‖
′TCst + w3

′Ct]
′ = λ3 (3.54)
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Since wi are free to vary at top and bottom surfaces, δwi may be not equal to zero.

The boundary conditions from integration by part are

δw‖ : [(ε+ x3κ)TCes + w‖
′TCs + w3

′CT
st]

+ = 0

[(ε+ x3κ)TCes + w‖
′TCs + w3

′CT
st]
− = 0

(3.55)

δw3 : [(ε+ x3κ)TCet + w‖
′TCst + w3

′Ct]
+ = 0

[(ε+ x3κ)TCet + w‖
′TCst + w3

′Ct]
− = 0

(3.56)

Integrating Eq. (3.53) and Eq. (3.54) and substituting boundary conditions from

Eqs. (3.55) and (3.56), we get λ‖ = 0, λ3 = 0 and the Euler-Lagrange equations can

be written as

δw‖ : (ε+ x3κ)TCes + w‖
′TCs + w3

′CT
st = 0 (3.57)

δw3 : (ε+ x3κ)TCet + w‖
′TCst + w3

′Ct = 0 (3.58)

These two equations are satisfied at every point of a composite plate. Solving for

w‖
′T and w3

′, we get

w‖
′T =− (ε+ x3κ)TC∗esC

−1
s

w3
′ =− (ε+ x3κ)TC∗etC

∗−1
t

(3.59)

where

C∗t =Ct − CT
stC
−1
s Cst

C∗et =Cet − CesC−1
s Cst

C∗es =Ces −
C∗etC

T
st

C∗t

(3.60)

Substituting the solution of warping functions in Eq. (3.59) back into total potential

energy density in Eq. (3.50) and drop underlined small terms, one can obtain the

total potential energy density asymptotically correct to the zeroth-order as

2Π0 = 〈(ε+ x3κ)TC∗e (ε+ x3κ)〉 =

εκ


T  A∗ B∗

B∗T D∗

εκ
 (3.61)

where

C∗e = Ce − C∗esC−1
s CT

es −
C∗etC

T
et

C∗t

A∗ = 〈C∗e 〉 B∗ = 〈x3C
∗
e 〉 D∗ = 〈x2

3C
∗
e 〉

(3.62)
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The first approximation coincides with CLPT. However, the transverse strains are not

zero and this procedure does not need ad hoc assumptions regarding the displacement

field or stress field.

The strain field of the zeroth-order approximation can be calculated as

ε0
e =ε+ x3κ

2ε0
s =w′‖

ε0
t =w3

′

(3.63)

The stress field of the zeroth-order approximation can be calculated as

σ0
e =C∗e (ε+ x3κ)

2σ0
s =0

σ0
t =0

(3.64)

First-Order Approximation

In the zeroth-order approximation, the warping functions are in the order of h(h
l
)0ε

and the total potential energy is in the order of (hl2)µ(h
l
)0ε2. Perturb the warping

functions to include first-order terms vi, which is in the order of h(h
l
)ε as expressed

in Eq. (3.65). Continue this process to find first-order approximation. Now the order

of total potential energy is expected to be (hl2)µ(h
l
)2ε2. We will drop terms greater

than order (h)µ(h
l
)2ε2 in total potential energy density.

w‖ =w0
‖ + v‖

w3 =w0
3 + v3

(3.65)

Then the orders of derivative of the first-order terms are

v‖,α ∼ v3,α ∼ (
h

l
)2ε

v‖
′ ∼ v3

′ ∼ h

l
ε

(3.66)

The constraints on warping functions in Eqs. (3.36) lead to the constraints on the

first-order terms
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〈vi〉 = 0 (3.67)

Since in most engineering problems, a composite layer presents at most monoclinic

material symmetry, we will assume that the layer is monoclinic. So Ces and Cst terms

will vanish in the constitutive relations and the resulting zeroth-order terms become

w0
‖ =0

w0
3 =C⊥E

(3.68)

where

C⊥
′ =
[
−CT

et

Ct
−x3

CT
et

Ct

]
(3.69)

and

E =
[
ε κ

]T

(3.70)

Now, the total potential energy density can be written explicitly as

2Π =〈(ε+ x3κ)TCe(ε+ x3κ) + 2(ε+ x3κ)TCeIαv‖,α + (Iαv‖,α)TCeIαv‖,α

+ 2(ε+ x3κ)TCetw
0
3
′
+ 2(ε+ x3κ)TCetv3

′ + 2(Iαv‖,α)TCetw
0
3
′

+ 2(Iαv‖,α)TCetv3
′ + v‖

′TCsv‖
′ + 2v‖

′TCseαw
0
3,α + 2v‖

′TCseαv3,α

+ (eαw
0
3,α)TCseαw

0
3,α + (eαw

0
3,α)TCseαv3,α + (eαv3,α)TCseαv3,α

+ w0
3
′T
Ctw

0
3
′
+ 2w0

3
′T
Ctv3

′ + v3
′TCtv3

′〉 − 2
(
〈fiw0

i 〉+ τiw
0+
i + βiw

0−
i )

− 2
(
〈fT
‖ v‖〉+ 〈fT

3 v3〉+ τT
‖ v

+
‖ + τT

3 v
+
3 + βT

‖ v
−
‖ + βT

3 v
−
3

)

(3.71)

Dropping the underlined and double underlined terms in Eq. (3.71) and leaving

only the leading terms, the variation with respect to warping functions of the first-

order variational statement is

δI1 =〈(ε+ x3κ)TC∗e Iαδv‖,α + (v‖
′ + eαC⊥E,α)TCsδv‖

′

− fT
‖ δv‖ + λ‖δv‖ + v3

′Ctδv3
′ + λ3δv3〉

+ τT
‖ δv

+
‖ + βT

‖ δv
−
‖ = 0

(3.72)
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Using integration by parts, Eq. (3.72) yields the following Euler-Lagrange equa-

tions

δv‖ : [Cs(v‖
′ + eαC⊥E,α)]′ = Dα

′E,α + g′ + λ‖ (3.73)

δv3 : (v3
′TCt)

′ = λ3 (3.74)

where

Dα
′ =− IT

α

[
C∗e x3C

∗
e

]
g′ =− f‖

(3.75)

Since vi are free to vary at top and bottom surfaces, δvi may not equal to zero.

The boundary conditions from integration by part are

δv‖ : [Cs(v‖
′ + eαC⊥E,α)]+ = τ‖

[Cs(v‖
′ + eαC⊥E,α)]− = −β‖

(3.76)

δv3 : (v3
′Ct)

+ = 0

(v3
′Ct)

− = 0
(3.77)

Integrating Eq. (3.74) and substituting boundary conditions in Eq. (3.77), we get

λ3 = 0 and the Euler-Lagrange equation can be written as

δv3 : v3
′Ct = 0 (3.78)

This equation is satisfied at every point of a composite plate. Solving for v3
′ by

considering the constraints in Eq. (3.67), we get

v3 = 0 (3.79)

In order to solve v‖, integrating Eq. (3.73) with respect to x3

Cs(v‖
′ + eαC⊥E,α) = DαE,α + g + λ‖x3 + Λ‖ (3.80)

where Λ‖ is an integration constant.

Substituting boundary conditions in Eq. (3.76), the Lagrange multipliers and

integration constant can be solved to be

λ‖ =
1

h
(τ‖ + β‖ −D+

α E,α +D−α E,α − g+ + g−)

Λ‖ =
1

2
(τ‖ − β‖ −D+

α E,α −D−α E,α − g+ − g−)
(3.81)
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Substituting Eqs. (3.81) back into Eq. (3.80) and solving for v‖
′, we get

v‖
′ = C−1

s D∗αE,α + C−1
s g∗ (3.82)

where

D∗α =Dα − CseαC⊥ +
x3

h
C∓α −

1

2
C±α

g∗ =g +
x3

h
g∓ − 1

2
g± + (

x3

h
+

1

2
)τ‖ + (

x3

h
− 1

2
)β‖

(3.83)

with the notation ()± = ()+ + ()− and ()∓ = ()− − ()+

Integrating Eq. (3.82) both side, we get the following first-order warping functions

v‖ = DαE,α + g (3.84)

where

Dα
′
=C−1

s D∗α

〈Dα〉 =0
(3.85)

and

g′ =C−1
s g∗

〈g〉 =0
(3.86)

Substituting the solution of warping functions in Eq. (3.84) back into total po-

tential energy density in Eq. (3.71) and dropping underlined small terms, one can

obtain the total potential energy asymptotically correct to the first-order as

2Π1 = ETAE + ET
,1BE,1 + 2ET

,1CE,2 + ET
,2DE,2 − 2ETF (3.87)

where

A =

 A∗ B∗

B∗T D∗


B =〈Cs(11)C

T
⊥C⊥ +D

T

1D1
′ +D∗1

Te1C⊥〉

C =〈Cs(12)C
T
⊥C⊥ +

1

2
(D

T

1D2
′ +D1

′TD2 +D∗1
Te2C⊥ + C⊥

TeT
1D
∗
2)〉

D =〈Cs(22)C
T
⊥C⊥ +D

T

2D2
′ +D∗2

Te2C⊥〉

F =τ3C
+
⊥

T
+ β3C

−
⊥

T
+ 〈f3C

T
⊥〉

+
1

2
(〈CT

⊥e
T
αg
∗
,α +Dα

′Tg,α −D
T

αf‖,α〉 −D
+T

α τ‖,α −D
−T

α β‖,α)

(3.88)
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and (αβ) in the subscript indicates the α, β th element in the corresponding matrix.

Note the quadratic terms associated with the applied loads are dropped because they

are not functions of 2D generalized strain E .

The strain field of the first-order approximation can be calculated as

ε1
e =ε+ x3κ

2ε1
s =v‖

′ + eαw
0
3 ,α

ε1
t =w0

3
′

(3.89)

The stress field of the first-order approximation can be calculated as

σ1
e =C∗e (ε+ x3κ)

2σ1
s =(D∗α + CseαC⊥)E,α + g∗

σ1
t =0

(3.90)

3.2.3 Transformation to the Reissner-Mindlin Model

Now, for practical applications and to use the shell elements available in commer-

cial finite element software such as ANSYS, Eq. (3.87) needs to be transformed to a

model having the same form as the Reissner-Mindlin plate theory.

In order to transform into the Reissner-Mindlin model, the transverse shear strains

are introduced

γ =
[
2γ13 2γ23

]T

(3.91)

The relationship between the 2D generalized strain of the Reissner-Mindlin model,

R, and those of the classical plate model, E , can be written as [10]

E = R−Dαγ,α (3.92)

where

D1 =

0 0 0 1 0 0

0 0 0 0 1 0

T

D2 =

0 0 0 0 1 0

0 0 0 0 0 1

T

(3.93)

R =
[
ε∗11 2ε∗12 ε∗22 K∗11 2K∗12 K∗22

]T

(3.94)
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where the in-plane strains ε∗αβ and curvatures K∗αβ are the 2D strain measures in the

Reissner-Mindlin model.

Substituting Eq. (3.92) back into Eq. (3.87) and neglecting higher-order terms,

the total potential density asymptotically correct to the first-order in terms of Reissner-

Mindlin strains can be expressed as

2Π1 =RTAR− 2RTAD2γ,2 − 2RTAD1γ,1

+RT
,1BR,1 + 2RT

,1CR,2 +RT
,2DR,2 − 2RTF

(3.95)

The total potential energy of the Reissner-Mindlin plate model has the form of

2ΠR =RTAR+ γTGγ − 2RTFR − 2γTFγ (3.96)

Further derivation is needed to eliminate the terms with partial derivatives of

the 2D generalized strains of the Reissner-Mindlin model. From the equilibrium

equations, we have

M11,1 +M12,2 −N13 +m1 = 0

M12,1 +M22,2 −N23 +m2 = 0
(3.97)

where m1 = q2 and m2 = −q1.

In the Reissner-Mindlin model, it hasNM
 = AR− FRN13

N23

 = Gγ − Fγ

(3.98)

Combining Eqs. (3.97) and (3.98) together, we have

Gγ − Fγ = DT
αAR,α −DT

αAFR,α +

m1

m2

 (3.99)

Then the transverse strain can be solved as

γ = G−1Fγ +G−1DT
αAR,α −DT

αAFR,α +G−1

m1

m2

 (3.100)
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Substituting Eq. (3.100) back into Eq. (3.95) and dropping higher-order terms

not related with 2D generalized strains, Eq. (3.95) can be rewritten as

2ΠR = RTAR+ γTGγ − 2RTF + U∗ (3.101)

where

U∗ = RT
,1BR,1 + 2RT

,1CR,2 +RT
,2DR,2 (3.102)

and

B =B + AD1G
−1DT

1 A

C =C + AD1G
−1DT

2 A

D =D + AD2G
−1DT

2 A

(3.103)

If we can drive U∗ to be zero for any R, then we have found an asymptotically

correct Reissner-Mindlin plate model. This can be achieved by using optimization

process such as the least square technique to solve the overdetermined system for

the constants as done in [9]. By the optimization process, the best transverse shear

stiffness matrix G can be obtained to complete the transformation to the Reissner-

Mindlin plate model. There is no need for shear correction factors and the transverse

shear stress can be accurately calculated. We can continue the dimensional reduction

process to obtain second-order approximate, which is needed for accurately recovering

transverse normal stress.

3.2.4 Advantages

• There are no ad hoc assumptions involved in the derivation, which is mathe-

matically more rigorous. No contradictions are created as appeared in FSDT.

• The transverse stress can be accurately recovered in the second-order approx-

imation. Mathematically, the accuracy of the second-order approximation is

comparable to zigzag plate theories with transverse shear stress expressed as a

second-order polynomials.
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• Shear correction factors are not needed in the derivation of the VAM-based

Reissner-Mindlin model. The transverse shear stiffness matrix G can be ob-

tained by the transformation to the Reissner-Mindlin plate model.
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4. NUMERICAL EXAMPLES

In this chapter, five numerical cases are provided to demonstrate the accuracy and

efficiency of the MSG-based plate analysis approach. To assess the accuracy, the

corresponding equivalent 3D finite element models created by ANSYS solid element

(ANSYS 3D approach) are provided as reference. To evaluate the efficiency, the 2D

models created by ANSYS Composite PrepPost (ACP approach) are provided as

comparison.

The modeling framework of the MSG approach is shown in Figure 4.1. The

detailed steps are explained below.

Figure 4.1. Modeling framework of the MSG approach
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The first three cases will use 1D SG. The forth and fifth cases will use 2D SG.

Having identified the SG, we will use SwiftCompTM to conduct SG homogenization

analysis, whose input file, ∗.sc, is generated by ANSYS-SwiftComp GUI. Then we

get the results of the homogenization analysis, i.e, A, B, D matrix. To get G matrix,

VAPAS will be used instead. Note, in the current version of SwiftCompTM, the

Reissner-Mindlin model has not been included yet. So VAPAS will be used if the

Reissner-Mindlin model is needed. In ANSYS, we can input A, B, D, G matrix

directly into SHELL281 element for the macroscopic structural analysis. Then we

obtain displacements for each node and 2D strain measures, i.e, εαβ, καβ and γα3

for each element. Next, we identify the point we are interested in to recover local

field. Note, we may need several nodes/elements around this point and use the

finite difference method to get the derivative of 2D strain measures at this point

in order to accurately recover the local field if we use VAPAS. Next, we will use

SwiftCompTM again to perform dehomogenization analysis, whose input file, ∗.glb, is

generated by ANSYS-SwiftComp GUI. Finally, we get the local pointwise distribution

of displacements/stresses/strains over the SG.

For the ANSYS 3D approach, SOLID186 element will be used to create the refer-

ence model. Note, the ANSYS version used in all the cases is 17.1.

For the ACP approach, the geometry and layup information will be created in

ANSYS Composite PrePost, which will generate the corresponding APDL files in

ANSYS Workbench.
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4.1 Case 1: A 6-layer Symmetric Thin Laminate

The first case is a [0/30/-30]s laminate. All the layers have same thickness of

0.01 inch. Each layer is assumed to be orthotropic. The lamina constants of the

composites are E1 = 20 × 106 psi, E2 = E3 = 1.45 × 106 psi, G12 = G13 = 106 psi,

G23 = 4.86577 × 106 psi, ν12 = ν13 = 0.3, ν23 = 0.49. The geometry and boundary

conditions are depicted in Figure 4.2. It is clamped at x1 = −0.5 and subjected to a

uniform pressure P = 100 psi at the top surface along the negative x3 direction. The

ratio of in-plane dimension to thickness is 16.67.

Figure 4.2. Geometry and boundary condition for case 1

The detailed steps for the MSG approach will be presented for case 1 as a demon-

stration. Other cases will follow a similar procedure and detailed steps are not re-

peated for simplicity.

First, the SG for case 1 is 1D. This 1D SG can be easily created in ANSYS-

SwiftComp GUI. Click Preprocessor → Common SG → 1D SGs → Fast Generate.

Then input Material number, Layup and Ply thickness for this laminate, i.e., 1,

′[0/30 − 30]s′ and 0.01 respectively. For detailed instructions of creating a common

SG, an introduction to ANSYS-SwiftComp GUI is given in Appendix B.
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After creating 1D SG, the next step is to perform homogenization analysis to

get A, B, D and G matrices of the laminate. Click Preprocessor → Solution →

Homogenization → Plate/Shell Model. Keep default parameters and click OK. The

effective properties will automatically pop up. Note, to get G matrix, VAPAS is used.

The input file of SwiftCompTM can be easily modified to be the input files of VAPAS.

The third step is to perform global structural analysis. SHELL281 element is used

to directly read A, B, D and G matrix. The mesh and boundary conditions are the

same with the ACP approach. In order to input global behaviors for dehomogeniza-

tion analysis, output the displacements values of a node at the center (x1 = 0, x2 = 0)

as well as displacement values of 8 nodes neighboring to the center node. The 2D

strain measures of 16 elements neighboring to the center node are also printed.

The last step is dehomogenization analysis. The finite difference method is used

to get the global behaviors at the center node, if the dehomogenization is carried out

by VAPAS, which needs the derivatives of 2D strain measures, i.e.,

εαβ,1, καβ,1, εαβ,2, καβ,2, εαβ,11, καβ,11, εαβ,12, καβ,12, εαβ,22, καβ,22

In order to demonstrate the accuracy and efficiency of using the MSG approach,

all the cases will also be analyzed by the ANSYS 3D approach and the ACP approach.

Note, we will call the ANSYS 3D approach, the ACP approach and the MSG approach

as ANSYS 3D, ACP and MSG respectively in all the cases for simplicity.

For case 1, ANSYS 3D has 614, 400 elements and 2, 558, 129 nodes. There are 4

elements through the thickness of each layer. The reason that using such a fine mesh

with approximately unity aspect ratio is to get the results converged so the model

of ANSYS 3D can be treated as the reference. Both MSG and ACP have 25, 600

elements and 77, 441 nodes for the 2D plate analysis. In addition, MSG uses 6 more

line elements with 25 nodes for MSG homogenization and dehomogenization analysis.

The total number of elements and nodes of the three approaches are summarized in

Table 4.1.

The displacement u3 by the three approaches is shown in Figure 4.3. The dis-

placement values are taken along a path from point (−0.5, 0, 0) to point (0.5, 0, 0).
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Table 4.1 Finite element mesh information for case 1

Approach Element type Elements Nodes

ANSYS 3D SOLID186 614, 400 2, 558, 129

ACP SHELL281 25, 600 77, 441

MSG
SG - 6 25

2D Plate SHELL281 25, 600 77, 441

As we can see, the displacement u3 of both MSG and ACP agree well with ANSYS

3D.
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Figure 4.3. Comparison of deflection u3 along x1 at x2 = x3 = 0 for case 1

The stresses obtained from the three approaches are also compared. The stress

values are taken through thickness at the center node (x1 = 0, x2 = 0). For ANSYS

3D, it is taken along a path from point (0, 0,−0.03) to point (0, 0, 0.03). For ACP, it

is taken from data at TOP and BOTTOM for all layers. For MSG, the results are

from dehomogenization.
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For in-plane stresses, both MSG and ACP agree well with ANSYS 3D as shown

from Figure 4.4 to Figure 4.6.
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Figure 4.4. Comparison of stress σ11 through thickness for case 1
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Figure 4.5. Comparison of stress σ22 through thickness for case 1
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Figure 4.6. Comparison of stress σ12 through thickness for case 1

For transverse stresses, the MSG agrees well with ANSYS 3D while ACP loses

accuracy as shown from Figure 4.7 to Figure 4.9.
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Figure 4.7. Comparison of stress σ13 through thickness for case 1
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Figure 4.8. Comparison of stress σ23 through thickness for case 1
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Figure 4.9. Comparison of stress σ33 through thickness for case 1

Specifically, the transverse shear stresses of ACP are piecewise linear while σ13 is

quadratic and σ23 is more complex in ANSYS 3D. It is noted that ACP is a little bit

better than FDST which only predicts a piecewise constant transverse shear stresses.
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However, MSG is much better than ACP, which has a perfect match with ANSYS

3D. The transverse normal stress of ACP is linear through thickness while σ33 is at

least second order polynomial in ANSYS 3D. Note, ACP is also better than FSDT

since it can recover σ33 independently during the element solution output from the

applied pressure load. Nevertheless, MSG is even better, which perfectly agrees with

ANSYS 3D.

In terms of efficiency, the computation time among the three approaches are com-

pared. It takes 3 hours and 44 seconds to build and solve the model by ANSYS 3D

with 16 CPUs. For MSG, it takes less than 1 minute to build and solve the model

with 2 CPUs. The comparison of computation time for the three approaches is listed

in Table 4.2.

Table 4.2 Computation time for case 1

Approach CPUs Time

ANSYS 3D 16 3 h 44 sec

ACP 2 45 sec

MSG

Homogenization 2 1 sec

34 secStructural analysis 2 32 sec

Dehomogenization 2 1 sec

It is clear that MSG is 2, 551 times more efficient than ANSYS 3D and is even

slightly faster than ACP. The ACP is 11 seconds slower because of the time for

calculation of shear correction factors.
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4.2 Case 2: A 8-layer Unsymmetrical Thick Laminate

The second case is a [0/90/45/-45/30/-30/75/-75] laminate. All the layers have

same thickness of 0.02 inch. Each layer is assumed to be orthotropic with material

properties being the same as case 1. The geometry and boundary conditions are

depicted in Figure 4.10. It is clamped at x1 = −0.5 and subjected to point force

F3 = −100 lb at (0.5, 0, 0). The ratio of in-plane dimension to thickness is 6.25.

Figure 4.10. Geometry and boundary condition for case 2

The ANSYS 3D has 834, 945 elements and 3, 385, 026 nodes. There are 4 elements

through the thickness of each layer. Both MSG and ACP have 25, 921 elements and

77, 442 nodes for 2D plate analysis. In addition, MSG uses 8 more line elements with

33 nodes for MSG homogenization and dehomogenization analysis. The total number

of elements and nodes of the three approaches are summarized in Table 4.3.

The displacement u3 by the three approaches is shown in Figure 4.11. The dis-

placement values are taken along a path from point (−0.5, 0, 0) to point (0.5, 0, 0).

As we can see, the displacement u3 of both MSG and ACP agree well with ANSYS

3D.
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Table 4.3 Finite element mesh information for case 2

Approach Element type Elements Nodes

ANSYS 3D SOLID186 834, 945 3, 385, 026

ACP SHELL281 25, 921 77, 442

MSG
SG - 8 33

2D Plate SHELL281 25, 921 77, 442
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Figure 4.11. Comparison of deflection u3 along x1 at x2 = x3 = 0 for case 2

The stresses obtained from the three approaches are compared. The stress values

are taken along thickness at the center node (x1 = 0, x2 = 0). For ANSYS 3D, it is

taken along a path from point (0, 0,−0.08) to point (0, 0, 0.08).

For in-plane stress, both MSG and ACP agree well with ANSYS 3D as shown

from Figure 4.12 to Figure 4.14.

For transverse stresses, the MSG agrees well with ANSYS 3D while ACP loses

accuracy as shown from Figure 4.15 to Figure 4.17. The transverse shear stress σ13

of ACP agrees with ANSYS 3D but slightly worse than MSG. The transverse shear
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Figure 4.12. Comparison of stress σ11 through thickness for case 2
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Figure 4.13. Comparison of stress σ22 through thickness for case 2

stress σ23 of ACP can not capture the variation of stress if x3 > −0.04. The transverse

normal stress of ACP is zero through thickness since there is no pressure applied to

the laminate.
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Figure 4.14. Comparison of stress σ12 through thickness for case 2
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Figure 4.15. Comparison of stress σ13 through thickness for case 2

In terms of efficiency, the computation time among the three approaches are com-

pared. It takes 4 hours, 58 minutes and 45 seconds to build and solve the model

by ANSYS 3D with 16 CPUs. For MSG, it takes less than 1 minute to build and
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Figure 4.16. Comparison of stress σ23 through thickness for case 2
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Figure 4.17. Comparison of stress σ33 through thickness for case 2

solve the model with 2 CPUs. The comparison of computation time for the three

approaches is listed in Table 4.4.
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Table 4.4 Computation time for case 2

Approach CPUs Time

ANSYS 3D 16 4 h 58 min and 45 sec

ACP 2 48 sec

MSG

Homogenization 2 1 sec

32 secStructural analysis 2 30 sec

Dehomogenization 2 1 sec

It is clear that MSG is 4, 481 times more efficient than ANSYS 3D and is even

slightly faster than ACP.
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4.3 Case 3: A Kiteboard

The third case is a Kiteboard. This case is modified from the tutorial example of

ANSYS Composite PrepPost Users Guide [18]. The bottom of the kiteboard are three

plies arranged as a [-45/0/45] laminate. On top of those layers, there is a sandwich

core. On top of the sandwich core, there is another [-45/0/45] laminate, which is the

same as the bottom. For simplicity, each layer of the [-45/0/45] laminate is assumed

to be orthotropic and has a thickness of 2 mm. The lamina constants of the [-45/0/45]

laminate are E1 = 120 GPa, E2 = E3 = 86 GPa, G12 = G13 = 47 GPa, G23 = 31

GPa, ν12 = ν13 = 0.28, ν23 = 0.4. The sandwich core is assumed to be isotropic and

has a thickness of 8 mm. The lamina constants of the sandwich core are E = 6 GPa,

ν = 0.35. The geometry and boundary conditions of the kiteboard are depicted in

Figure 4.18. It is clamped at x1 = −700 and subjected to point force F2 = 1000 N at

(700, 0, 0). It is noted that this case is not exactly the same as the tutorial example

from ANSYS. The thickness of [-45/0/45] is changed to be thicker so that the 3D

model is easier to model. Also, the geometry and boundary conditions are simplified.

Figure 4.18. Geometry and boundary condition for case 3

The ANSYS 3D has 819, 641 elements and 3, 381, 351 nodes as shown in Figure

4.19. There are 4 elements through the thickness of each layer of [-45/0/45] laminate

and 32 elements through the thickness of the sandwich core. Both MSG and ACP
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Figure 4.19. ANSYS 3D model for case 3

have 20, 491 elements and 62, 150 nodes for the 2D plate analysis. In addition, MSG

uses 8 more line elements with 33 nodes for MSG homogenization and dehomogeniza-

tion analysis. The total number of elements and nodes of the three approaches are

summarized in Table 4.5.

Table 4.5 Finite element mesh information for case 3

Approach Element type Elements Nodes

ANSYS 3D SOLID186 819, 641 3, 381, 351

ACP SHELL281 20, 491 62, 150

MSG
SG - 8 33

2D Plate SHELL281 20, 491 62, 188

The displacement u3 by the three approaches is shown in Figure 4.20. The dis-

placement values are taken along a path from point (−700, 0, 0) to point (700, 0, 0).

As we can see, the displacement u3 of both MSG and ACP agree well with ANSYS

3D.
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Figure 4.20. Comparison of deflection u2 along x1 at x2 = x3 = 0 for case 3

The stresses obtained from the three approaches are compared. The stress values

are taken through thickness at the center node (x1 = 0, x2 = 0). For ANSYS 3D, it

is taken along a path from point (0, 0,−10) to point (0, 0, 10).
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Figure 4.21. Comparison of stress σ11 through thickness for case 3
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For in-plane stresses, both MSG and ACP agree well with ANSYS 3D as shown

from Figure 4.21 to Figure 4.23.
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Figure 4.22. Comparison of stress σ22 through thickness for case 3
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Figure 4.23. Comparison of stress σ12 through thickness for case 3
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For transverse stresses, MSG agrees well with ANSYS 3D while ACP loses accu-

racy as shown from Figure 4.24 to Figure 4.26. For σ13, ACP can not capture the

variation of stress. For σ23 and σ33, ACP only gives a constant zero value.
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Figure 4.24. Comparison of stress σ13 through thickness for case 3
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Figure 4.25. Comparison of stress σ23 through thickness for case 3
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Figure 4.26. Comparison of stress σ33 through thickness for case 3

In terms of efficiency, the computation time among the three approaches are com-

pared. It takes 5 hours, 2 minutes and 58 seconds to build and solve the model by

ANSYS 3D with 16 CPUs. For MSG, it takes less than 1 minute to build and solve the

model with 2 CPUs. The comparison of computation time for the three approaches

is listed in Table 4.6.

Table 4.6 Computation time for case 3

Approach CPUs Time

ANSYS 3D 16 5 h 2 min 58 sec

ACP 2 56 sec

MSG

Homogenization 2 1 sec

36 secStructural analysis 2 34 sec

Dehomogenization 2 1 sec
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It is clear that MSG is 4, 039 times more efficient than ANSYS 3D and is even

slightly faster than ACP.



63

4.4 Case 4: A Roof Sandwich Panel

The forth case is a roof sandwich panel, which is widely used in the construction of

house roof as shown in Figure 4.27. It is a composite plate made of three layers: low

density sandwich core inserted between two relatively thin skin layers. For simplicity,

both the sandwich core and the skin layers are assumed to be isotropic. The material

properties of the sandwich core is E = 600 MPa, ν = 0.35. The material properties

of the skin layers are E = 68.9 GPa, ν = 0.33. The cross section geometry of the roof

sandwich panel is depicted in Figure 4.28, which is repeated five times in x2 direction

for the whole structure. The whole structure is a 1000 mm × 1000 mm plate, which

is clamped at x1 = −500 and subjected to point force F1 = 10 kN at (500, 0, 0). Since

this structure features 2D heterogeneity, the corresponding SG will be 2D as depicted

in Figure 4.29.

Figure 4.27. Application of roof sandwich panels

The ANSYS 3D has 871, 201 elements and 3, 715, 696 nodes as shown in Figure

4.30. Both MSG and ACP have 14, 401 elements and 43, 682 nodes for the 2D plate

analysis. In addition, MSG uses 1, 452 more elements with 4, 623 nodes for MSG
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Figure 4.28. Geometry and boundary condition for case 4

1

X

Y

Z

                                                                                

PLOT NO.   1

ELEMENTS

MAT  NUM

Figure 4.29. 2D SG for roof sandwich panel

homogenization and dehomogenization analysis. The total number of elements and

nodes of the three approaches are summarized in Table 4.9.

For ACP, the model is made of three layers. The thickness of the sandwich core

is 20 mm and the thickness of the skin layers is the same as ANSYS 3D.

The displacement u1 and u3 by the three approaches are shown in Figure 4.31 and

Figure 4.32. The displacement values are taken along a path from point (−500, 0, 0)

to point (500, 0, 0). As we can see, MSG agrees well with ANSYS 3D for both u1 and

u3. For u1, ACP loses significant accuracy when approaching to x1 = 500. For u3,
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Figure 4.30. ANSYS 3D model case 4

Table 4.7 Finite element mesh information for case 4

Approach Element type Elements Nodes

ANSYS 3D SOLID186 871, 201 3, 751, 696

ACP SHELL281 14, 401 43, 682

MSG
SG - 1, 452 4, 623

2D Plate SHELL281 14, 401 43, 682

ACP only gives a constant zero value. Because the point force is applied at the middle

of the thickness, there is no coupling between force and moment in ACP. However,

the coupling exists in 3D model due to the variation of thickness.

The stresses obtained from the three approaches are compared. The stress values

are taken at x1 = 0, x2 = 0 through thickness. Since the shear stress components σ12,

σ13 and σ23 are in the magnitude of 0.1 Pa or less, these stress components are not

compared. For ANSYS 3D, it is taken along a path from point (0, 0,−10) to point

(0, 0, 10).

For σ11, σ22 and σ33, MSG agrees well with ANSYS 3D as shown in 4.33 to Figure

4.35 while ACP loses accuracy. For σ11 and σ22, the loss of accuracy is obvious at the
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Figure 4.31. Comparison of deflection u2 along x2 = 0 for case 4
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Figure 4.32. Comparison of deflection u2 along x2 = 0 for case 4

skin layers. For σ33, ACP only gives a constant zero value since there is no applied

pressure.
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Figure 4.33. Comparison of stress σ11 through thickness for case 4
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Figure 4.34. Comparison of stress σ22 through thickness for case 4

In terms of efficiency, the computation time among the three approaches are com-

pared. It takes 6 hours, 21 minutes and 45 seconds to build and solve the model

by ANSYS 3D with 16 CPUs. For MSG, it takes less than 1 minute to build and
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Figure 4.35. Comparison of stress σ33 through thickness for case 4

solve the model with 2 CPUs. The comparison of computation time for the three

approaches is listed in Table 4.8.

Table 4.8 Computation time for case 4

Approach CPUs Time

ANSYS 3D 16 6 h 21 min 45 sec

ACP 2 28 sec

MSG

Homogenization 2 5 sec

44 secStructural analysis 2 23 sec

Dehomogenization 2 16 sec

It is clear that MSG is 4, 164 times more efficient than ANSYS 3D.
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4.5 Case 5: A Corrugated-core Sandwich Panel

The fifth case is a corrugated-core sandwich panel, which is also widely used in

industry because of its high bending stiffness to weight ratio. A sample aluminum

corrugated sandwich panel is illustrated in Figure 4.36. The thin skin layers are high

in stiffness when compared to the corrugated core. For simplicity, both the corrugated

core and skin layers are assumed to be isotropic. The material properties [27] of the

corrugated core is E = 4.5 GPa, ν = 0.225. The material properties of the skin

layers are E = 68.9 GPa, ν = 0.33. The cross section geometry of the corrugated-

core sandwich panel is depicted in Figure 4.37, which is repeated seven times in x2

direction for the whole structure. The whole structure is a 200 mm × 203.7 mm plate,

which is clamped at x1 = −100 and subjected to point force F1 = 10 kN and F2 = 10

kN at (100, 0, 0). Since this structure features 2D heterogeneity, the corresponding

SG will be 2D as depicted in Figure 4.38.

Figure 4.36. Aluminum Corrugated Sandwich Panel

The ANSYS 3D has 1, 422, 401 elements and 6, 958, 887 nodes as shown in Figure

4.39. Both MSG and ACP have 25, 601 elements and 77, 442 nodes for the 2D plate

analysis. In addition, MSG uses 1, 016 more elements with 3, 658 nodes for MSG
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Figure 4.37. Geometry and boundary condition for case 5
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Figure 4.38. 2D SG for corrugated-core sandwich panel

homogenization and dehomogenization analysis. The elements number and nodes

number of the three approaches are summarized in Table 4.9.

For ACP, the model is made of three layers. The material properties of the

corrugated core is the smeared material properties of the original core since there are

void. The Poisson’s ratio remains the same while the Young’s modulus of the smeared

corrugated core becomes

E∗ = E
Ac
A

= 4.5× 103 × 44.46

291
= 687.53 MPa (4.1)
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Figure 4.39. The magnitude of displacement by ANSYS 3D for case 5

Table 4.9 Finite element mesh information for case 5

Approach Element type Elements Nodes

ANSYS 3D SOLID186 1, 442, 401 6, 958, 887

ACP SHELL281 25, 601 77, 442

MSG
SG - 1, 016 3, 658

2D Plate SHELL281 25, 601 77, 442

where Ac is the area of sandwich the core and A is the area between the the skin

layers (not include the skins) in Figure 4.37.

The displacement u1 and u2 are compared at point (0, 4, 0) as shown in Table

4.10. For u1, both ACP and MSG have difference less than 1% to ANSYS 3D. For

u2, MSG has difference less than 1% to ANSYS 3D while ACP has difference 1.176%

to ANSYS 3D.

The stresses obtained from the three approaches are compared. The stress values

are taken through the thickness along (0, 0, 4) to (0, 0, 6). Since the transverse stress

components σ13, σ23 and σ33 are in the magnitude of 0.1 Pa or less, these stress

components are not compared.
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Table 4.10 Comparison of u1 and u2 at point (0, 4, 0) for case 5

Approach u1 (mm) u2 (mm)

ANSYS 3D 3.281364E-02 1.798312E-01

ACP 3.290286E-02 1.777169E-01

MSG 3.292460E-02 1.800830E-01

For σ11, σ22 and σ12, MSG agrees well with ANSYS 3D as shown in Figure 4.40

to Figure 4.42 while ACP loses accuracy. The loss of accuracy is obvious at the

corrugated core for σ11 and σ12. And the loss of accuracy is obvious at the skin layer

for σ22.

4 4.5 5 5.5 6
0

5

10

15

20

25

x
3
 (mm)

σ
1

1
 (

M
P

a
)

 

 
ANSYS 3D

ACP

MSG

Figure 4.40. Comparison of stress σ11 through thickness for case 5

In terms of efficiency, the computation time among the three approaches are com-

pared. It takes 5 hours, 20 minutes and 30 seconds to build and solve the model

by ANSYS 3D with 16 CPUs. For MSG, it takes less than 1 minute to build and
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Figure 4.41. Comparison of stress σ22 through thickness for case 5
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Figure 4.42. Comparison of stress σ12 through thickness for case 5

solve the model with 2 CPUs. The comparison of computation time for the three

approaches is listed in Table 4.11.
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Table 4.11 Computation time for case 5

Approach CPUs Time

ANSYS 3D 16 5 h 20 min 30 sec

ACP 2 41 sec

MSG

Homogenization 2 3 sec

42 secStructural analysis 2 31 sec

Dehomogenization 2 8 sec

It is clear that MSG is 3, 662 times more efficient than ANSYS 3D and as fast as

ACP.
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5. SUMMARY

In this thesis, Mechanics of Structure Genome (MSG) has been used to analyze com-

posite plates. A simple graphic user interface (GUI) named ANSYS-SwiftComp GUI

has been developed based on ANSYS platform as a user friendly GUI to improve the

user friendliness of MSG. The numerical cases show that the MSG approach is not

only accurate but also efficient in comparison to the ANSYS 3D approach and the

ACP approach. The following accomplishments are achieved during this study:

1. ANSYS-SwiftComp GUI has been developed, which can use the preprocessing

and postprocessing capability of ANSYS as a user friendly GUI for SwiftCompTM.

ANSYS-SwiftComp GUI can easily create 1D, 2D or 3D SGs and generate the

corresponding input files for SwiftCompTM homogenization and dehomogeniza-

tion, which greatly enhances the convenience to use SwiftCompTM.

2. The steps of modeling composite plates by using the MSG approach are demon-

strated by five numerical cases. When compared with the ANSYS 3D approach,

the MSG approach agrees well with the results, which reveals its accuracy.

When compared with the ACP approach, the MSG approach presents the same

computational efficiency while being more accurate.

3. The first-order shear deformation theory (FSDT) is derived and compared in

detail with the Reissner-Mindlin plate model based on VAM. The limitations

of FSDT are discussed while the advantages of plate model using VAM are

presented.

Although the power of MSG to analyze composite plates has been shown and the

GUI based on ANSYS has been developed, there are still some work to be continued

and investigated in the future.
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1. ANSYS SHELL281 or SHELL181 elements can read A, B, D and G matrix and

output global behavior element-wise. However, new shell element is needed to

read the coupling terms Y matrix if one uses Reissner-Mindlin plate model in

SwiftCompTM. Also the new shell element should output global behavior point-

wise at each Gaussian point, which will be more accurate. And the derivatives

of 2D strain measures should also be represented at each Gaussian point if one

uses the Reissner-Mindlin plate model.

2. Present work only used 1D and 2D SGs for composite plates. In some cases such

as honeycomb sandwich structure, only 3D SG can capture the heterogeneity

of the original structure. So some numerical cases by using 3D SGs are needed

to further reveal the capability of MSG.
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A. CALCULATION OF SHEAR CORRECTION FACTORS

Consider a composite plate as shown in Figure 3.1. Assume only bending and shear

in the x1 direction, without gradients in the x2 direction. Then the in-plane forces

in the composite plate are zero N11 = N22 = N12 = 0 and ∂
∂x2

= 0 for all response

variables. Then the equilibrium equation in the x1 direction is

σ11,1 + σ13,3 = 0 (A.1)

The 2D equilibrium equations from Eq. (3.27) become

M11,1 −N13 = 0 (A.2)

From Eq. (3.19), we have εκ
 = H

NM
 (A.3)

where

H =

A B

B D

−1

We also assume M22 = M12 = 0. Thus,εκ
 =

[
H14 H24 H34 H44 H54 H64

]T

M11 (A.4)

where Hi4 is the fourth column of H. Substituting Eq. (A.4) into Eq. (3.6) and then

into Eq. (3.8), we get in-plane stress components in terms of M11 as

σ11 = (P1 + x3P2)M11 (A.5)

where

P1 = Q11H14 +Q12H24 +Q16H34
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and

P2 = Q11H44 +Q12H54 +Q16H64

Combining the gradient of this equation with the equilibrium equations in Eq.

(A.1) and Eq. (A.2), we get

σ13,3 = −(P1 + x3P2)N13 (A.6)

A composite plate consists of N layers 1, 2, 3, ... with different values of (P 1
1 , P

1
2 )

at layer 1, (P 2
1 , P

2
2 ) at layer 2, ... (PN

1 , P
N
2 ) at layer N . Layer i extends from zi to

zi+1 and its thickness is ti = zi+1 − zi. Integrating Eq. (A.6) through the plate and

using the boundary conditions σ13 = 0 at x3 = 0, σi13 = σi+1
13 at x3 = zi+1 and σ13 = 0

at x3 = zN+1, gives the transverse shear stress in layer i as

σi13 = −
[
P i

1(x3 − zi) +
1

2
(x2

3 − z2
i )P

i
2 + P i

3

]
N13 (A.7)

where

P i
3 =

i−1∑
j=1

tj
[
P j

1 +
1

2
(zi+1 + zi)P

j
2

]
(A.8)

We can find σ23 through the thickness of a composite plate using a similar procedure

by assuming only bending and shear in the x2 direction

σi23 = −
[
P i

4(x3 − zi) +
1

2
(x2

3 − z2
i )P

i
5 + P i

6

]
N23 (A.9)

where

P i
6 =

i−1∑
j=1

tj
[
P j

4 +
1

2
(zi+1 + zi)P

j
5

]
(A.10)

Equating the strain energy due to transverse shear stress resultant with the strain

energy due to the true transverse shear stresses obtained above

1

2

[
N13 N23

]
Sss

N13

N23

 =
1

2

N∑
i=1

∫ zi+1

zi

[
σi13 σi23

]
Sis

σi13

σi23

 dx3 (A.11)

where Sss is the transverse shear compliance matrix of the section and Sis is the

transverse shear compliance matrix of layer i.
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Substituting the relations for σi13 and σi23 into the above equation and solving for

Sss , we get

Sss11 =
N∑
i=1

Sis11ti
[
(P i

3)2 + tiP
i
3(P i

1 + ziP
i
2) +

1

3
t2i (P

i
1 + ziP

i
2)2

− 1

4
t3iP

i
2(P i

1 + ziP
i
2)2 +

1

20
t4i (P

i
2)2
] (A.12)

Sss22 =
N∑
i=1

Sis22ti
[
(P i

6)2 + tiP
i
6(P i

4 + ziP
i
5) +

1

3
t2i (P

i
4 + ziP

i
5)2

− 1

4
t3iP

i
5(P i

4 + ziP
i
5)2 +

1

20
t4i (P

i
5)2
] (A.13)

Sss12 =
N∑
i=1

Sis12ti

[
P i

3P
i
6 +

1

2
ti
[
P i

3(P i
4 + ziP

i
5) + P i

6(P i
1 + ziP

i
2)
]

+
1

3
t2i (P

i
1 + ziP

i
2)(P i

4 + ziP
i
5)

− 1

8
t3i
[
P2(P i

4 + ziP
i
5) + P5(P i

1 + ziP
i
2)
]

+
1

20
t4iP

i
2P

i
5

]
(A.14)

Then transverse shear stiffness matrix G is the inverse of Sss

G =

Sss11 Sss12

Sss12 Sss22

−1

(A.15)

The shear correction factors are K = G〈Q∗〉−1
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B. ANSYS-SWIFTCOMP GUI

To facilitate the use of SwiftCompTM, a simple graphic user interface (GUI) based on

ANSYS, called ANSYS-SwiftComp GUI [19] is developed, which can be downloaded

from cdmHUB: https://cdmhub.org/resources/1136 . The development of this GUI

uses two languages, i.e., ANSYS Parametric Design Language (APDL) and User

Interface Design Language (UIDL). The ANSYS-SwiftComp GUI is modified from

the ANSYS-VAMUCH GUI developed by Zheng Ye and part of the macros are also

inherited from ANSYS-VABS GUI [28] developed by Fang Jiang. Both ANSYS-

VAMUCH GUI and ANSYS-VABS GUI are superseded by ANSYS-SwiftComp GUI.

B.1 ANSYS-SwiftComp GUI Overview

ANSYS-SwiftComp GUI is a graphic user interface integrated in the Main Menu

of ANSYS, which can use the preprocessing and postprocessing capability of ANSYS

as a user friendly GUI for SwiftCompTM. The newly added functions specific for

SwiftCompTM are located in the Preprocessor menu and the Solution menu in ANSYS

as shown in Figure B.1. The functions including Common SGs, Homogenization

and Dehomogenization are completely new to ANSYS and will be explained in the

following:

The first level menu of ANSYS-SwiftComp GUI composes of three major menus:

Preprocessor, Solution and General Postproc.

Preprocessor menu

Material Props: Users can define isotropic, orthotropic or general anisotropic ma-

terial properties under this menu by using Material Models function.

Modeling: Users can build their own models by elementary entities which contain

all basic geometry elements (e.g. point, line, surface, and volume).
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Figure B.1. Customized menu structure of ANSYS-SwiftComp GUI

Common SGs: Users can create their model through Common SGs, which pro-

vides several common fundamental building blocks of composite materials and struc-

tures.

Mesh: Generate mesh according to the geometry of model, and user can choose

different mesh algorithms to meet their needs.

Solution menu

Homogenization: Users can invoke SwiftCompTM to compute the effect properties

for different structural models (beams, plates/shells or 3D structures).

Dehomogenization: After providing the global behavior, users can invoke SwiftCompTM

to compute the local fields including displacements, stresses and strains, and contour

plots will be automatically generated after calculation is completed.

General Postproc menu

Plot Results: After Dehomogenization, users can choose different contour plots

(displacements, stresses and strains) in this menu to visualize the results.



85

B.2 Create Common SGs

ANSYS-SwiftComp GUI provides a convenient way to create some common SG

models. Engineers can easily create the geometry and mesh of these models, and

invoke SwiftCompTM to perform homogenization and dehomogenization for different

composites with arbitrary fundamental building blocks (aka SGs).

Currently, ANSYS-SwiftComp GUI provides the following common SGs:

1D SGs: layered materials, laminates.

2D SGs: square pack microstructures (with interphase region), hexagonal pack

microstructures (with interphase region).

3D SGs: square pack microstructures, spherical inclusion microstructures.

This appendix mainly focuses on introducing 1D and 2D common SGs for plates/shells

model as this thesis only uses 1D and 2D SGs. For 3D or even customized SGs,

please refer to ANSYS-SwiftComp GUI manual, which can be downloaded from

cdmHUB [19].

There are three different ways to generate 1D SGs for laminates. The fastest way

to generate 1D SG for laminate is to use Fast Generate function: Preprocessor →

Common SG → 1D SGs → Fast Generate. Users can use simple notation to define

ply sequence from the bottom to the top. For example, case 2 uses the notation

[0/90/45/-45/30/-30/75/-75] to indicate ply sequence. Choose the material number

for each lamina and assign thickness for each ply as shown in Figure B.2. Both case

1 and case 2 use Fast Generate function. Note: for Solid Model, 2-noded elements

will be sufficient. And for Plate/Shell Model, 5-noded elements are needed.

After inputting all the parameters, click OK. The 1D SG for the laminate of case

2 has been created as shown in Figure B.3. Note that Fast Generate function only

deals with constant layer thickness and single material property. As shown in Figure

B.3, each layer with five nodes has been shown by five different color lines.

If users want to create laminates with different layer thickness and material prop-

erty, Advanced Generate function in 1D SGs can serve this purpose. Preprocessor→
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Figure B.2. Fast Generate function
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Figure B.3. 1D SG for case 2

Common SG → 1D SGs → Advanced Generate. Choose a laminate [0/90/45/-45]

with thickness 0.01 as an example, the input parameters for this laminate is shown

in Figure B.4.

In addition, the function of 1D SGs also provides Input File function to let users

upload their own data file. This function can handle laminates with complex ply

sequence. Click Input File function in the 1D SGs menu. Preprocessor → Common

SG → 1D SGs → Input File. A new window will pop out. Users can choose the



87

Figure B.4. 1D SG for case 2

file which contains laminate data. The format of the data file is discussed in the

ANSYS-SwiftComp GUI Manual. The case 3 uses Input File function to generate the

corresponding 1D SG.

The fastest ways to generate common 2D SGs is to use 2D SGs menu: Preprocessor

→ Common SGs → 2D SGs. For example, if we want to create a square pack

microstructure. Choose Square Pack function in 2D SGs menu. Input volume fraction

of fiber and keep volume fraction of interphase empty or zero if there is no interphase

region in your model. Select corresponding material number for the fiber and matrix.

If there is no interphase, keep the Material # for Interphase empty or zero. Select

element type and mesh size as shown in Figure B.5. Click OK, The 2D SG represented

as a square with a circle in the center will be shown in Figure B.6.

B.3 Homogenization and Dehomogenization

After creating SGs, users can perform homogenization and dehomogenization in

ANSYS-SwiftComp GUI, which is explained in the following

Homogenization
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Figure B.5. Square Pack function for common 2D SG
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Figure B.6. 2D SG for square pack microstructure

For laminates, the mesh has been generated right after defining 1D SG. Users can

directly go to Homogenization function to get the effective properties of a laminate.

Preprocessor → Solution → Homogenization → Plate/Shell Model. We will use the

model generated by case 5 to show the results of Homogenization and Dehomogeniza-

tion. Click Plate/Shell Model in Homogenization function, keep default parameters
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and Click OK as depicted in Figure B.7. Then the effective properties will pop up

automatically as shown in Figure B.8.

Figure B.7. Plate/Shell Model function for Homogenization

Figure B.8. Effective properties for case 5

Dehomogenization

Before dehomogenization, users need to perform structural analysis in ANSYS

to get global behavior. This step can be done independently by using ANSYS. The

only additional step needed is to read A, B, D and G matrices from homogenization

analysis, which can be easily done by using sectype,1,gens command. Then go to Pre-
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processor → Solution → Dehomogenization → Plate/Shell Model. Input the global

behavior from the plate analysis as depicted in Figure B.9. Click Run. The post-

processing results will be automatically loaded. The default value is the magnitude

of displacement as in Figure B.10.

Figure B.9. Plate/Shell Model function for Dehomogenization
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Figure B.10. The magnitude of displacement for case 5
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