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Hypoxia inducible factors (HIFs) are central mediators of cellular responses to 

fluctuations of oxygen, an environmental regulator of stem cell activity. Muscle satellite 

cells are myogenic stem cells whose quiescence, activation, self-renewal and 

differentiation are influenced by microenvironment oxygen levels. However, the in vivo 

roles of HIFs in quiescent satellite cells and activated satellite cells (myoblasts) are 

poorly understood. Expression analyses indicate that HIF1α and HIF2α are preferentially 

expressed in pre- and post-differentiation myoblasts, respectively. Interestingly, double 

knockout of HIF1α and HIF2α (HIF1α/2α dKO) in embryonic myoblasts results in 

apparently normal muscle development and growth. However, HIF1α/2α dKO in 

postnatal satellite cells impairs injury-induced muscle repair, accompanied by a reduced 

number of myoblasts during regeneration. Analysis of satellite cell dynamics on 

myofibers confirms that HIF1α/2α dKO myoblasts exhibit reduced self-renewal but more 

pronounced myogenic differentiation under hypoxia conditions. Mechanistically, 

HIF1α/2α dKO blocks hypoxia-induced activation of Notch signaling, a key determinant 

of satellite cell self-renewal. Constitutive activation of Notch signaling can rescue 

HIF1α/2α dKO induced inhibition of satellite cell self-renewal. Together, HIF1α and 

HIF2α are dispensable for muscle stem cell function under normoxia, but are required for 

maintaining satellite cell self-renewal under hypoxic environment 
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CHAPTER 1. LITERATURE REVIEW 

1.1 Skeletal Muscle: Structure and Function 

Skeletal muscle, smooth muscle and cardiac muscle are three main muscle types in 

vertebrate animals. Skeletal muscle is named so because of its tight connection to the 

skeleton. As skeletal muscle contracts by stimulation of the nervous system, it pulls or 

pushes the skeleton to which it is connected, providing energy to move or hold a posture 

(Kanning et al., 2010). Skeletal muscle can drive skeleton movement due to two main 

motivational function proteins, actin and myosin (Higashifujime, 1981). Actin is tightly 

connected long fiber-shaped proteins, as is myosin (Hartman and Spudich, 2012; 

Howard, 1997). Actin and myosin are arranged side by side with partly overlapping 

areas, forming one myofibril. Once stimulated by the nervous system, actin pulls myosin 

from end to center (Hartman and Spudich, 2012). Thus the shape of the muscle will be 

changed from thin and long to thick and short, which will further change the 

corresponding location of the skeleton. By this, animals can either hold a posture or make 

a movement (Hartman and Spudich, 2012). 

Mature skeletal muscle cells are fiber-shaped multinuclear  cells, which are called 

myofibers, the largest cells in vertebrate body (Schiaffino and Reggiani, 2011). Each 

myofiber contains many myofibrils. Myofibrils, as mentioned above, are the functional 

proteins made of actin, myosin and other proteins that can contract and relax (Howard, 

1997). When myofibrils contract, the shape of the myofibers consequently change. Each 

myofiber has variant numbers of nuclei (Capers, 1960). Each nucleus is supposed to have 

a functional domain (Hall and Ralston, 1989; Pavlath et al., 1989). Thus it’s hypothesized 

that the size of the myofiber is controlled by the nucleus number (Gundersen and 
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Bruusgaard, 2008). Each myofiber is surrounded by a basal lamina layer. Between the 

cell membrane of the myofiber and the basal lamina layer are located the quiescent 

muscle stem cells called satellite cells (Katz and Miledi, 1961). During skeletal muscle 

development or regeneration, satellite cells activate, proliferate, differentiate and fuse 

into myofibers to support the new myofiber formation (Hawke and Garry, 2001). Several 

myofibers are surrounded and bundled by perimysium forming fascicles. Blood vessels 

are rich in the gaps between each fascicle. Fascicles are bundled by the epimysium. On 

each end of the skeletal muscle, the muscle is tightly connected to the skeleton by 

tendons. 

To achieve different functions, different muscles have their own motivational 

features. So far, four types of myofibers have been determined: type I, type II a, type II b 

and type II x (Schiaffino and Reggiani, 2011). In terms of the different twitch rates, type I 

myofibers are usually considered as slow twitch myofibers, while the other three are 

classified as fast twitch myofibers. Besides the contracting rates, the main metabolic 

difference between slow myofibers and the fast myofibers is that fast twitch myofibers 

have a higher level of glycolytic energy metabolism, which shortens the fiber twitch 

endurance. Slow twitch myofibers exhibit longer endurance due to a more oxidative 

respiration metabolism (Schiaffino and Reggiani, 2011). Thus, slow twitch myofibers 

require more oxygen supply, which, consequently, are enriched blood vessels and exhibit 

a red color. More satellite cells are resident in slow twitch myofibers in the same muscle 

compared with fast twitch myofibers (Gibson and Schultz, 1982; Snow, 1983). This 

implies that the difference between mature myofibers may contribute to forming a 

different microenvironment, which leads to different satellite cell behaviors. 
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Different muscles contain different ratios of myofiber types. In tibialis anterior 

muscle, slow twitch possesses a much smaller ratio than in the extensor digitorum longus 

muscle. This might be due to the different functions of the different muscles. Those 

muscles that mainly provide powerful force tend to be consisted of fast twitch fibers, 

while those mainly producing endurance movement muscles tend to contain more slow-

twitch fibers. 

Unlike myofiber numbers, which are considered unchanging throughout their 

lifetime, myofiber types can change with age, exercise and health conditions, although 

the original ratio is set by genotype. During aging, myofiber type tends to switch from 

slow twitch fibers to fast ones (Payne et al., 2004; Schiaffino and Reggiani, 2011). On the 

contrary, cycling and continuous exercise can increase slow twitch fiber but decrease fast 

twitch fibers (Gehlert et al., 2012). Some genomic changes can also switch myofiber 

types. For example, HIF1α knocking out can switch fast twitch myofibers to the slow 

ones (Mason et al., 2004; Pisani and Dechesne, 2005). Thus, myofiber types are 

controlled dynamically.  

Besides working as a motivated tissue, skeletal muscle is also a very important 

thermogenesis tissue. Muscle shivering is one of the two most important heat producing 

metabolism activities; the other is non-shivering thermogenesis, which is mainly 

achieved by brown adipose tissue (Astrup et al., 1985; Dubois-Ferriere and Chinet, 

1981). Compared with non-shivering heat, muscle shivering is the most important short-

term thermogenesis reaction for animals to adapt to short-term dynamic temperature 

changes. In humans and mice, neonatal babies keep their body temperature mainly by 
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non-shivering thermogenesis. In other animals, shivering thermogenesis contributes more 

to keeping body temperature, which mainly relies on muscle (Rowland et al., 2015). 

Recently, more studies have revealed that muscle is also a very important endocrine 

tissue. It has been long known that exercising is good for memory improvement. 

However, the exact reason is still less known. Only recently, a study group demonstrated 

that, during exercising, muscle produces more secreted factors called Cathepsin B, which 

can significantly improve brain cell function and improve memory (Moon et al., 2016). 

Also, Cathepsin B is helpful for new neuron cell proliferation. Although other reports 

demonstrated that Cathepsin B is involved in neuron apoptosis, this study provided novel 

ideas regarding neuro disease therapy applications (Kingham and Pocock, 2001). If this 

result can be confirmed in humans, we can investigate new methods and applications for 

brain diseases. All this depends on research into muscle. 

Not only for memory improvement, but muscle secretory factors also participate in 

brown adipose tissue stimulation and beige cell recruitment. FGF21 and FNDC5 are the 

two of the most important factors involved in this regulation (Fisher et al., 2012; Hanssen 

et al., 2015; Hofmann et al., 2014). Additionally, suckling can induce the release of 

FGF21 from the liver in the neonatal stage (Hondares et al., 2010). FGF21 can also be 

released from muscle, which can improve metabolism by stimulating brown adipose 

tissue function and recruiting beige cells in white adipose tissue (Hanssen et al., 2015). 

While FNDC5 is released from muscle when exercising, targeting white adipose tissue 

induces browning, which can also improve metabolism (Hofmann et al., 2014).  

Muscle is a complex organ with complex functions. The health condition of muscle 

is very important, not only in the muscle itself but also as a whole body regulation 
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system. Thus, muscle research is necessary and important for human health. With a better 

understanding of muscle, we can achieve a better human life. 

1.2 Skeletal Muscle Stem Cells: Satellite Cell 

Skeletal muscle is a complex tissue consisting of multi types of cells. Different cell 

types conduct different functions, such as myofiber for contraction and twitch, epithelial 

cells for bundling of the myofiber clusters and endothelial cells for forming blood 

vessels. Multiple types of stem cells are resident in the muscle, such as fibro-adipogenic 

progenitors, epithelial stem cells, endothelial stem cells and, the most important in 

muscle stem cells, satellite cells (Pannerec et al., 2013).  

Satellite cells are progenitors to mature skeletal muscle cells. In 1961, skeletal 

muscle satellite cell was first named based on its location (Katz and Miledi, 1961). These 

cells were described as satellites, surrounding the myofibers, and were located between 

the myofiber cell membrane and basal lamina membranes. The first two groups found 

satellite cells individually in frog and rat limbs using electron microscopes (Katz and 

Miledi, 1961; Mauro, 1961). Afterwards, different groups have identified satellite cells in 

other vertebrate animal models (Grounds and Yablonka-Reuveni, 1993).  

Upon discovery, people failed to recognize the function of satellite cells due to their 

commonly quiescent state (Schultz et al., 1978). However, the studies on satellite cells 

developed quickly afterwards. The satellite cells were identified as myogenic stem cells, 

given their ability to self-renew and produce mature myofibers (Collins et al., 2005; 

Grounds and Yablonka-Reuveni, 1993; Yablonka-Reuveni and Rivera, 1994). More 

studies for satellite cell marker identification and regulation achieved impressive results, 

consequently. Discovery of specific expressed molecular markers, in particular Pax7 and 
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Pax3, has facilitated classification and isolation of satellite cells using flow cytometric 

sorting (Kassar-Duchossoy et al., 2005; Seale et al., 2000). Moreover, the function of 

different molecular pathways involved in satellite cell regulation has been clarified, 

including Notch, Wnt and TGF β(Allen and Boxhorn, 1987; Conboy and Rando, 2002a; 

Otto et al., 2008b; Rathbone et al., 2011).  

More recently, satellite cells have been shown as multipotent stem cells, which can 

not only differentiate into mature myocytes, but also can undergo adipogenesis induced 

by an adipogenic induction medium and osteogenesis cultured in an osteogenic induction 

medium in vitro (Asakura et al., 2001). However, the multi-potency of satellite cells in 

animals has never been illustrated, even though this finding provides a new idea to 

broaden the application of satellite cells in transplantation therapies of different tissues. 

This finding also provides knowledge of how satellite cells work and the regulation of 

satellite cells’ self-renewal and differentiation. 

1.2.1 Development of original of satellite cells 

Embryonic muscle development can be separated into two main stages. During 

the first stage, the primitive muscles are formed. The primitive muscle cells come from 

the dermomyotome and are located underneath the dermomyotome region (Gros et al., 

2004). Some cells in the outer layer of the dermomyotome, expressing Myf5, migrate out 

and form the initial muscle. The primitive muscles then become the primary myotome 

and are the original skeletal muscles in trunk (Gros et al., 2004). In the second stage of 

muscle growth, epithelial-to-mesenchymal transition (EMT) occurs in the central part of 

the dermomyotome (Gros et al., 2005). During this process, tightly connected epithelial 

cells separate, moving and developing into muscles in different body region (Ben-Yair 
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and Kalcheim, 2005; Kalcheim and Ben-Yair, 2005). The trunk skeletal muscle originates 

from the cells in the central part of the dermomyotome, and the rest cell population of the 

dermomyotome may then be determined to differentiate into brown fat or dermis (Wang 

et al., 2014a). While the limb skeletal muscle descends from the cells in the lateral part of 

dermomyotome, other cells in this part will develop into endothelia muscles (Ben-Yair 

and Kalcheim, 2005; Esner et al., 2006; Gros et al., 2005). However, the regulation of the 

cell fate decision and the control of migration of these cells is still unknown. One 

hypothesis is that the asymmetric division may contribute to the migration and cell fate 

decision (Cinnamon et al., 2006). 

Cells originally migrating from the central dermomyotome are resident in the 

primitive muscles. These cells express Pax7 and Pax3, working as the original committed 

skeletal muscle stem cells (Relaix et al., 2005). Some of these stem cells proliferate 

continuously, leading to an increased stem cell population and contributing to the early 

fetal stage muscle development. During this kind of proliferation, some cells lose their 

stemness and differentiate into myocytes while other cells keep their stem cell character. 

These cells are resident underneath the basal lamina and they are widely considered as 

the original adult muscle stem cells. The specific markers of these cells are Pax3 and 

Pax7 (Relaix et al., 2005). 

Although both Pax3 and Pax7 positive cells can differentiate into mature muscle 

cells, there is a difference between these two groups. Scientist have found that Pax3 

positive cells can not only differentiate into myocytes, but also they have the potency to 

develop into vascular cells and other cell types (Hutcheson et al., 2009; Relaix et al., 

2004; Relaix et al., 2005; Schienda et al., 2006). This implies that Pax3 positive cells 
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obtain more multi-potency than Pax7 positive cells. This theory has been supported by 

the fact that, after E11.5 in the development stage, some Pax3 Pax7 double positive cells 

turn into Pax7 single positive cells and are committed to undergo the muscle 

development process (Relaix et al., 2004). 

Although it has been widely accepted that Pax7 positive cells are the main source 

of satellite cells, it is possible that some other cells can contribute to muscle formation. 

Some other cell types can be induced to myocytes robustly under cell culture conditions 

(Esner et al., 2006). Thus, it is still too early to make a conclusion that all muscles come 

from Pax7 lineage cells.  

During fetal development and the neonatal development stage, some composition 

of Pax7 positive muscle stem cells differentiate into myocytes. When Pax7 positive cells 

express Myod, they withdraw from the cell cycle to differentiate into myocytes and lose 

their ability to proliferate (Sabourin and Rudnicki, 2000). Thus, during muscle 

development, the population of Pax7 positive is reduced. There are still certain portions 

of muscle stem cells that can maintain their proliferating ability, however, even though 

they stay quiescent in their normal condition.  

To isolate muscle stem cells in adults, besides Pax7 there are other cell surface 

markers that can be used. Even different markers can be used to identify different 

subpopulation linages of satellite cells. The common surface markers for satellite cells 

are CD34 and integrin alpha 7 (Beauchamp et al., 2000; Sacco et al., 2008). Double 

positive cells exhibit muscle stem cell features and can be induced into myocytes in 

culture conditions. Early studies have demonstrated that satellite cells in adult muscle are 

heterogeneous, and some of the satellite cells are more “stem” than others, exhibiting a 
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higher transplant efficiency (Collins et al., 2005). The satellite cells never express Myf5, 

exhibiting more stemness compared to Myf5 linage satellite cells, which contributes to 

the satellite cells’ population maintenance during regeneration. The lower stemness 

satellite cells may be responsible for the growth and repair of myofibers under normal 

conditions (Kuang and Rudnicki, 2008; Kuang et al., 2007).  

There are two trends in satellite cell therapy applications. One is to modify 

satellite cells to increase satellite cell function. The other is to transplant high 

performance satellite cells to increase efficiency. Both of these two trends need a deeper 

understanding of satellite cells regulation and origination.  

1.2.2 Satellite cells function and metabolism 

Satellite cells, as mentioned before, are the main source of myocytes and 

myofibers during development and regeneration. During development, satellite cells 

differentiate into mature myocytes and fuse into myofibers continuously triggered by 

different pathways (Sabourin and Rudnicki, 2000). The undifferentiated satellite cells 

proliferate and self-renew to maintain the satellite cell pool.  

In mature skeletal muscle, satellite cells resident between basal lamina and 

myofiber normally keep a quiescent state. Upon injury, the quiescent satellite cells are 

activated and proliferate. Proliferating satellite cells undergo either differentiation to fuse 

into myofibers to repair destroyed myofibers or stay undifferentiated and maintain 

satellite cell population to keep homeostasis and prepare for future need (Charge and 

Rudnicki, 2004).  

During the development and homeostasis stage, skeletal muscle stem cells 

undergo either differentiation for new myofiber formation or self-renewal for stem cell 
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pool maintenance. These two metabolic process are controlled by two different but 

important groups of factors. Factors that can initiate, promote and maintain myoblast 

myogenic differentiation are called muscle-specific regulatory factors (MRFs) (Pownall 

et al., 2002). Transcription and activation of MRFs is controlled as a cascade. The first 

activated gene is Myod, followed by activation of Myog and Myogenin (Berkes and 

Tapscott, 2005; Nabeshima et al., 1993). The activation of Myod determines satellite cell 

fate to undergo myogenic differentiation. Knocking out Myod can abolish the myogenic 

differentiation capacity of myoblasts. The blocked myogenic differentiation can be 

retrieved by ectopic Myod expression (Davis et al., 1987; Tapscott et al., 1988). It has 

been reported that Myod-deficient myoblasts can be induced to adipocytes when cultured 

in adipogenic induction media. However, whether Myod deficiency is pushing myoblasts 

to the adipocyte side or dedifferentiates myoblasts to multipotent stem cells is still 

unknown. Besides Myod, Myf5 is also considered another important regulator. 

Abolishing Myf5 can induce abnormal muscle development (Braun et al., 1992; Kablar et 

al., 1998; Rudnicki et al., 1993). The function of Myod and Myf5 is overlapped insomuch 

that single knocking out mice can still survive despite abnormal development. However, 

their common downstream target gene, Myogenin, is critical in muscle development, 

such that Myogenin deficiency induces fetal death due to severe inhibited muscle 

development (Hasty et al., 1993; Nabeshima et al., 1993). Different than the MRFs, Pax7 

keeps satellite cells in an undifferentiated stage and keeps the ability to proliferate and 

self-renew (Olguin and Olwin, 2004). Pax7-deficient mice exhibit impaired muscle 

development and muscle regeneration (Kuang et al., 2006). Also, in physiological 

conditions, proliferating or quiescent satellite cells keep expressing Pax7 (Zammit et al., 
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2006), while the shade of Pax7 is a marker that satellite cells withdraw from to cycle and 

undergo myogenic differentiation (Zammit et al., 2006).  

1.2.3 Satellite cells dysfunction and disease 

Satellite cells are the source and engine of skeletal muscle. Accurate function of 

satellite cells is very important for skeletal muscle homeostasis. Satellite cell dysfunction 

definitely leads to severe muscle disease. The dysfunction of satellite cells may come 

from a genetic mutant in the genome or may be induced by abnormal microenvironment 

changes. In terms of the impaired function of satellite cells due to the microenvironment, 

the types of growth factors involved include Wnts, FGFs and TGF-β factors (Amthor et 

al., 2013; Brack et al., 2007; Liu et al., 2001; Toth et al., 2011). These factors cooperate 

with each other to maintain accurate muscle functions. Lack of or an exceeded level of 

any of these factors may lead to muscle changes and dysfunction. For example, 

deficiency of myostatin can cause muscle hypertrophy and can exhibit the double muscle 

phenotype (Amthor et al., 2013). FGF2 can largely promote satellite cell proliferation, 

and a lack of FGF2 can lead to less efficient muscle regeneration (Yablonka-Reuveni et 

al., 2015). During aging, the Wnts level is largely elevated, which leads to a lower 

satellite cell self-renewal ratio (Brack et al., 2007). Besides the circulation growth factors, 

oxygen levels also effect satellite cell function. It has been determined that low oxygen 

levels could largely inhibit myogenesis, and thus animals in high altitudes may have less 

efficient muscle regeneration than those in low altitude levels (Di Carlo et al., 2004). 

Also, in vitro studies have shown that hypoxia or low oxygen levels can increase satellite 

cells’ self-renewal, which may be helpful to keep the satellite cell pool and further keep 

muscle younger (Liu et al., 2012b).  
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During aging, skeletal muscle stem cells gradually lose their self-renewal 

capacity. The satellite cell pool dramatically decreases as animals get older. Different 

mechanisms involved the loss of satellite cells have been determined by different groups. 

The regulation mechanisms of Notch and Wnt signaling have been widely accepted. 

During aging, satellite cells exhibit lower Notch levels but more active Wnt signaling. 

Both Notch activators and Wnt inhibitors can partly rescue the aging-induced loss of 

satellite cell stemness (Brack et al., 2007). 

Efficient skeletal muscle function is a prerequisite for a healthy life. However, 

many skeletal muscle-related diseases affect human health, such as Parkinson's disease, 

muscle ischemic diseases and muscle weakness. Many of these diseases are originally 

caused by sickness in other tissue, and subsequently impair muscle function. For 

example, the originality of Parkinson’s disease is central neuron system dysfunction. But 

the abnormal nervous system could further cause the shaking of the muscle. Long-term 

denervation can induce muscle atrophy and dysfunction (Schulz-Schaeffer, 2016). 

Among these diseases that exhibit phenotypes in skeletal muscle, Duchenne 

muscular dystrophy or Duchenne syndrome (DMD) is a disease that exactly originates 

from muscle dysfunction due to satellite cell dysfunction (Ciafaloni et al., 2016). DMD is 

an inherited disease caused by a mutation in the dystrophin protein. Dystrophin connects 

inner cellular motivational proteins with the extracellular matrix. Dystrophin deficiency 

can induce continuous satellite cell differentiation, which deplete satellite cell pools and 

induce muscle weakness and death (Blake et al., 2002).   

Besides DMD, there are other similar but less severe muscle diseases, such as 

Becker muscular dystrophy, congenital muscular dystrophy, myotonic muscular 
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dystrophy (MMD), distal muscular dystrophy and so on (Nowak and Davies, 2004; 

Schulz-Schaeffer, 2016). Some of these diseases are also caused by the mutation of 

dystrophin, such as Becker muscular dystrophy (BMD). The difference between BMD 

and DMD is that the mutation of dystrophin in BMD can only impair skeletal muscle 

function in old age and only happened in males (Nowak and Davies, 2004). Besides 

BMD, others may be caused by different gene mutations. For example, MMD, the most 

common adult muscle dystrophy, is caused by the DNA mutation of DMPK (type I 

MMD) or ZNF9 (type II MMD) (Turner and Hilton-Jones, 2010). With distal muscular 

dystrophy, patients have genome mutations that may cause the disconnection of the 

dystrophin-glycoprotein complex, further inducing muscle dysfunction.  

So far, there are no efficient valid therapy applications that can clinically cure 

DMD. However, researchers have proposed several potential methods to treat DMD. 

Especially since the discovery and applications of iPS cells, researchers have hoped to 

manipulate and refine the stem cells isolated from patients and inject them back to 

replace the mutant stem cells in order to rescue skeletal muscle dystrophy.  

1.3 Satellite Cell Niche 

1.3.1 Satellite Cells Microenvironment 

Satellite cells are located between the basal lamina and the myofiber membrane, 

tightly surrounded by these two membranes. These two membranes encapsulate the 

satellite cells, forming a microenvironment that regulates satellite cell homeostasis, cells’ 

quiescence and activation, as well as self-renewal or myogenic differentiation after 

activation.  
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The four main mechanisms involved in this regulation are: attaching scaffold, 

extracellular matrix, microenvironment growth factors and nutrition. The 

microenvironment provides an ideal attaching scaffold for satellite cells. This scaffold 

fuctions to keep satellite cells quiescent. Breaking or injuring the scaffolding may lead to 

activation and myogenic differentiation of satellite cells. Dystrophin is an important 

protein involved in the connection of myofibers with the basal lamina. Dystrophin 

deficiency leads to myofiber damage. If the impaired myofiber fails to keep satellite cells 

quiescent, it leads to continuous activation and differentiation of satellite cells. Satellite 

cell depletion leads to failure of muscle regeneration and homeostasis, as well as severe 

muscle disease.  

In addition to the structure of the basal lamina, some proteins are inserted into the 

basal lamina and the existing muscle fiber and may regulate satellite cells directly. 

Recently, researchers found that Collagen VI is required for satellite cells’ self-renewal 

and population maintenance (Urciuolo et al., 2013). After knocking out Collagen VI, the 

mice exhibited impaired muscle regeneration caused by fewer satellite cells self-renewing 

(Urciuolo et al., 2013). Also, satellite cells cultured in Collagen VI-deficient muscle fiber 

exhibited less self-renewal. Further, myoblast culture in a null Collagen VI-coated dish 

showed less self-renewal than in Collagen VI-coated dish. These results indicate that 

Collagen VI is helpful for satellite cells maintenance (Urciuolo et al., 2013). Even though 

the reason and how Collagen VI can facilitate satellite cell self-renewal is unknown, these 

results imply a complex regulation of the microenvironment or ECM involved in satellite 

cell regulation.  
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Besides ECM, some important growth factor ligands exist in cell membranes also 

involved in satellite cell regulation. It has been widely accepted that Notch signaling is 

very important in satellite cell quiescence and self-renewal. But the exact mechanism of 

how Notch regulates satellite cells in vivo is still unknown. One hypothesis is that Notch 

ligands exist in the muscle fibers and are enriched in the satellite cells’ resident region 

(Kuang et al., 2008). Thus, the Notch signaling in satellite cells were continuously 

activated under normal conditions. This hypothesis can explain why asymmetric division 

can lead to different cell fates: satellite cells residing nearby fibers are still Notch 

activated, while the satellite cells detached from muscle fibers will undergo myogenic 

differentiation due to Notch removal. For symmetric division, both daughter cells attach 

to muscle fibers, leading to activation of Notch signaling in both cells. Thus, both 

daughter cells can keep their stem cell capacity (Kuang et al., 2008).  

Growth factors of which transport through blood all over the whole body called 

endocrine, or they can act just nearby, called paracrine. The functional region of 

endocrine and paracrine is different. However, in microenvironments, both endocrine and 

paracrine are controlled in terms of concentration, even though the concentration is 

impacted at the whole body level. Growth factors are highly involved in satellite cell 

regulation. Fibroblast growth factors (FGFs), WNTs and bone morphogenetic proteins 

(BMPs) are the most important growth factors in regulating satellite cell function, which I 

will talk more about in following chapters. These factors can be secreted by the 

surrounded cells inside the muscle, or they can be transferred from other tissue. The 

balance of these factors keeps satellite cell homeostasis. During muscle injury, other cells 
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invade into the muscle and the regulation of the growth factor balance changes. Satellite 

cells are activated and differentiated to repair injured fibers.  

As for nutrition, including amino acids, glucose and oxygen, satellite cell 

behavior can be changed when challenged by different nutrition levels. Our in vitro 

experiment demonstrated that during starvation, satellite cells tend to stay quiescent. This 

result is hard to do in animals, because it’s hard to achieve muscle-specific nutrition 

restriction.  

Previous results have shown that under a hypoxia state, myoblast differentiation is 

largely blocked. The hypoxia inhibited myogenic differentiation is induced by different 

mechanisms, including accelerated Myod protein degradation, decreased Myod mRNA 

levels, inhibition of Wnt signaling and elevation of Notch signaling (Di Carlo et al., 

2004; Majmundar et al., 2012; Wang et al., 2015). Also, our previous result demonstrated 

that during hypoxia, satellite cells tended to undergo self-renewal rather than 

differentiation (Liu et al., 2012b). Hypoxia-promoted self-renewal originates from the 

promotion of Notch signaling. In vivo studies show consistent results that muscle 

regeneration in high altitudes is largely impeded due to low oxygen levels (Blaisdell, 

2002). Hypoxia-treated satellite cells exhibit higher transplantation efficiency. Both 

results indicate that oxygen level is very important in satellite cell regulation. 

Recently, researchers found that NAD+ level can alter satellite cell behaviors (Zhang et 

al., 2016). The balance of NAD+/NADH is controlled by energy and oxygen levels. 

NAD+ increased when energy level was low or oxygen level was high. Recent research 

also has demonstrated that NAD+ repletion can largely improve mitochondrial function 

and improve muscle stem cell stemness. This group fed mice with NAD+ precursor NR 



17 

 

to increase the NAD+ level of the whole body. Surprisingly, they found that NR 

supplements can prohibit muscle degeneration. Also, they found that NR delays 

senescence of neural SCs and melanocyte SCs and increases mouse life span (Zhang et 

al., 2016). 

All these results demonstrate that satellite cell function and behavior regulation is 

not just programmed in the satellite cell itself, but is largely dependent on the 

microenvironment changes. Meanwhile, satellite cells can monitor muscle condition by 

receiving messages from the microenvironment to determine subsequent reactions. Once 

a muscle is challenged by injury, growth factors, scaffold, cell surface ligands, nutrition 

and oxygen level, all these factors will change. Satellite cells receive signals from all 

these changes and then determine the cell fate for muscle repair and, at the same time, 

maintain the stem cell population for long-term homeostasis. Thus, a deeper 

understanding of how the microenvironment controls satellite cell cell-fate is required for 

acute application therapies in muscle injury and muscle disease treatment.  

1.3.2 Multipotent Stem Cells Resident in Skeletal Muscle 

Skeletal muscle is a complex organ that consists of multiple types of cells. 

Besides the major muscle-specific progenitor or precursor cells, such as myoblast and 

satellite cells, multipotent stem cells are also resident in skeletal muscle. These 

multipotent stem cells were only recently identified, and their function and origin is not 

clear. However, they are very important in maintaining skeletal muscle homeostasis. 

Their population needs to be tightly regulated within a certain amount, as too much or too 

few will lead to muscle dysfunction and impaired muscle regeneration. Although 

researchers have found some functions of these cells, the exact function and regulation is 
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still unknown. Even less whether these cells belong to one cell type or are just a mixture 

of different cell types is unknown. In order to gain a deeper understanding of these kinds 

of cells, more research needs to be done to investigate the specific function and markers 

of skeletal muscle resident multipotent stem cells. 

The first time researchers found skeletal muscle resident multipotent stem cells 

was in 2010 (Joe et al., 2010; Uezumi et al., 2010). Two groups found these cell types 

independently at the same time and they published them in Nature cell biology in a same 

series. Before that, it was long known that during aging, exotic adipose tissue 

accumulated in muscle, which can induce insulin resistance and muscle dysfunction, 

though the origin of the intramuscular fat was unknown. Some groups claimed that the 

intramuscular fat originated from muscle satellite cells (Asakura et al., 2001). They 

provided evidence that satellite cells are actually multipotent stem cells. Some other 

groups believed that the intramuscular fatwas coming from blood (Joe et al., 2010). Until 

2010, people found that mesenchymal stem cells resident in skeletal muscle can be 

induced into adipocytes. Kunihiro Tsuchida’s group isolated stem cells using satellite cell 

marker negative and endothelial marker negative (lin-, CD31-, CD34+, Integrin 7- ) as a 

sorting requirement (Joe et al., 2010). They found that these mesenchymal stem cells can 

be induced into different cell types, include adipocytes. Their transplantation results 

demonstrated that mesenchymal stem cells can be induced into adipocytes in muscle by 

glycerol injection-induced injury in vivo, indicating it was the origin of ectopic muscle 

fat. Further, they found these cell specifically express PDGFRα, which can be used as a 

specific marker for isolation (Joe et al., 2010).  
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Another group got a similar result at the same time. They found that PDGFRα 

positive cells can be differentiated into both fibroblasts and adipocytes, so they named 

them fibro/adipogenic progenitors (FAPs) (Uezumi et al., 2010). They found that during 

muscle regeneration FAPs first increased during the first three days and then decreased to 

non-injury levels as muscle regeneration finished. The increase of FAPs was very fast 

and dramatic. The proliferation of FAPs started earlier than satellite cell proliferation, 

implying that they may be helpful for satellite cell proliferation. Under normal 

conditions, FAPs proliferate slowly and it only occurs in a few cells. After injury, eighty 

percent of FAPs started to proliferate, indicating cell state changes. All these changes 

imply FAPs may react to facilitate muscle regeneration. The researchers didn’t mention 

more, except for an increased level of Wnt and Il-6 in FAPs after injury. Wnts and Il-6 

are helpful for satellite cell proliferation. Thus, they concluded that FAPs promote muscle 

regeneration (Uezumi et al., 2010).  

FAPs are adipocyte progenitors. FABP4 (fatty acid binding protein 4, aP2) is a 

marker of pre-adipocyte and adipocyte. Our group, using aP2Cre to trigger iDTR 

expression to ablate adipocyte progenitors in skeletal muscle (Liu et al., 2012a). Our 

results demonstrated that after deletion of aP2 positive cells, muscle regeneration was 

largely impaired. These results indicated that the adipocyte progenitors in muscle actually 

contribute to muscle regeneration, although the exact regulation is unknown. Also, why 

these cells proliferate to that extent after injury is still unknown. 

Recently, another group showed the exact trigger that can induce proliferation of 

FAPs after injury (Heredia et al., 2013). Instead of considering these factors as causing 

proliferation in the muscle itself, this group connected muscle injury with the immune 
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system and type II innate immune reaction. They demonstrated that knocking out Il-4 and 

Il-13 in monocytes can largely decrease the proliferation of FAPs. This kind of decrease 

can be rescued by an Il-4 and Il-13 supplement. Meanwhile, when there is a lack of Il-4 

and Il-13, muscle regeneration is worse compared with the control. Since Il-4 and Il-13 

can’t affect satellite cells directly, the impaired muscle regeneration should be induced by 

the lack of FAPs. In the end, they demonstrated that one critical function of FAPs is to 

engulf debris of dead fibers and work as immune cells. Thus, FAPs can help muscle 

regeneration by removing damaged fiber debris. 

These results demonstrated that enough FAPs are needed for efficient muscle 

regeneration; however, there are other studies that confirmed that too many FAPs may 

lead to fibrosis and impeded muscle regeneration or may lead to ectopic fat accumulation 

in muscle.  

Since FAPs are the original of two important diseases, injury-induced fibrosis and 

ectopic fat accumulation, researchers have begun to look deeper into it. What is the 

regulation that controls the increase of FAPs when needed, and what is the mechanism 

that cascades the decrease when FAPs are no longer needed? Very recently, one group 

found that the increase and decrease of FAPs is controlled by time case and dose case 

(Lemos et al., 2015). The most important regulator involved in this regulation is TGF-β. 

When muscle is challenged by injury, TGF-β level increased to induce an increase of 

FAPs. However, as regeneration goes on, TGF-β level is reduced, inducing apoptosis and 

a decrease of FAPs. If that’s the case, then the muscle exhibits normal regeneration. 

However, when muscle is challenged by continuous or multiple injury, then the TGF-β 

will stay high, which may induce fibrosis. This model can explain much of the injury-
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induced fibrosis in different tissues. Also, it provides an idea on how to heal injury-

induced fibrosis using TGF-β inhibitors to reduce excessive fibroblasts (Lemos et al., 

2015). 

However, one thing that still can’t be explained by this TGF-β induced fibrosis 

model is that TGF-β can promote fibroblast formation, but how can accumulated FAPs 

be induced into adipocytes? FAPs are multipotent stem cells, but they can only 

differentiate into one single cell type under certain conditions. So, the factors and 

regulation involved in adipogenic induction of FAPs is still largely unknown. 

Given the fact that FAPs can be functional in different ways, are these cells truly 

just one unique cell type or are they actually heterogeneous and we just can’t distinguish 

them from each other? Another very important question is since these cells specifically 

express PDGFRα, what is the unique function of the PDGF signaling pathway’s 

participation in the regulation of FAPs? With these questions, we believe that as we study 

more about FAPs, we will be able to treat FAPs-related diseases and push them to a 

beneficial side rather than the other. 

1.4 Signal Pathways Involved in Satellite Cell Regulations. 

1.4.1 Notch Signaling Promotes Satellite Cell Self-Renewal 

Satellite cell self-renewal is very important in keeping the stem cell population. 

Different factors participate in the regulation of self-renewal. Among these factors, Notch 

signaling is one of the most well-studied and clearer understood pathways. However, 

there are still many myths hiding in these pathways, including crosstalk with other 

signaling or application methods, which need to be discovered. 
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Generally, Notch signaling is an evolutionarily conserved mechanism that can be 

found in almost every animal (Chitnis and Bally-Cuif, 2016; Yuan et al., 2015). This 

signaling pathway can regulate cell metabolism and subsequent changes by cell-to-cell 

interactions. So far, the majority of research on Notch signaling are about its cell fate 

determination mechanism. Only recently, scientists found that Notch signaling actually 

can regulate energy metabolism by inhibiting thermogenesis (Bi et al., 2014). Thus, 

Notch signaling may potentially participate in other kinds of cell metabolism. The Notch 

pathway was first demonstrated in Drosophila melanogaster (Andersson et al., 2011). The 

Notch protein found in Drosophila is a 300 kDa transmembrane receptor. It contains two 

main parts: the extracellular domain (NECD) and the intracellular domain (NICD). The 

extracellular domain, which can recognize extracellular Notch ligands, contains 36 

tandem epidermal growth factor (EGF)–like repeats and three cysteine-rich Notch/LIN-

12 repeats (Gordon et al., 2008).  

The NICD parts consist of six tandem ankyrin repeats, which is shown to be 

responsible for the cleavage of NICD, one glutamine-rich domain, which is related to 

binding of cofactors, and a PEST sequence (Gordon et al., 2008). When the NECD part 

binds to the Notch target ligands, the NICD part will be released and function as a 

transcriptional regulator binding with other cofactors. The cleavage of NICD is controlled 

by the activation of γ-secretase. The activation of γ-secretase is mainly controlled by the 

binding of the Notch receptor and Notch ligands. Notch inhibitors are designed to inhibit 

the activation of γ-secretase, such as DBZ and DAPT (Yuan et al., 2015), while some 

intracellular proteins, such as HIF1α, can bind to γ-secretase and activate its cleavage 
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activity (Villa et al., 2014b). Also, HIF1α can bind and stabilize NICD, all together, 

promoting Notch signaling (Gustafsson et al., 2005b; Pistollato et al., 2010).    

In canonic Notch signaling pathways, NICD binds to Rpbj to recognize specific 

promoter region elements, promoting or inhibiting the specific target genes (Castel et al., 

2013). The canonic Notch target genes are Hes and Hey family genes. These genes 

belong to the bHLH family, with similar bioactivity, acting as transcriptional regulators 

(Iso et al., 2003). In different tissues, the main functional Notch downstream genes may 

be different due to their different target genes and specific regulations. In the brain, the 

main functional Notch downstream genes include Hes1, Hes6 and Hey1 (Lasky and Wu, 

2005). In muscle, the genes that have been demonstrated to regulate muscle functions are 

Hes1 and Hey1 (Gustafsson et al., 2005b; Luo et al., 2005).  

Notch signaling plays a key role in skeletal muscle development and regeneration. 

During the fetal development stage, continuously activating Notch in skeletal muscle can 

cause fetal fatality due to failure of normal skeletal muscle formation by inhibition of 

myogenesis. In adults, the function of Notch signaling is complicated. Previous research 

has demonstrated that muscle injury can upregulate the Notch ligand Delta in both 

activated satellite cells and in myofibers (Luo et al., 2005). Both of these upregulations 

indicate a promotion of Notch signaling. The upregulation of Delta in satellite cells is 

stimulated by an elevated NICD level. The increase of Delta in myofibers can 

subsequently activate Notch signaling in activated satellite cells. These results imply that 

the proliferation of activated satellite cells require activating Notch signaling. To confirm 

these results, the researchers demonstrated that inhibition of Notch signaling impeded 

satellite cell proliferation and impaired muscle regeneration. However, on the other hand, 
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constitutive Notch activation in satellite cells lead to an increase in Pax7 positive satellite 

cells but impaired muscle regeneration through inhibition of myogenic differentiation (Bi 

et al., 2016). Also, another study has demonstrated that, during asymmetric division, the 

self-renewal daughter cells exhibit higher Notch signaling levels while the differentiating 

daughter cells show significantly lower Notch signaling (Kuang et al., 2007). These 

results indicate that Notch signaling is helpful for self-renewal rather than differentiation. 

All these results imply that muscle injury requires accurately Notch regulation. When 

satellite cells need to proliferate, the Notch signaling should be elevated to promote 

proliferation and self-renewal. After that, Notch signaling should be inhibited to release 

the blocked myogenic differentiation. 

Notch downstream genes, such as Hes1 and Hey1, belong to the bHLH family, 

which can recognize the E-box in the promoter region and can promote gene expression 

(Iso et al., 2003). By upregulated Notch signaling, Pax7 level can be significantly 

increased. Meanwhile, the myogenic factor Myod level is decreased. 

It has been long known that hypoxia inhibits stem cells differentiation in different 

tissues, such as the brain and muscle (Gustafsson et al., 2005b). This kind of inhibition is 

similar to the function of activated Notch signaling that researchers have considered the 

relationships between these two important pathways. In tumors, the impact of Notch 

activating towards cancer cells shows significant similarities with hypoxia treatment 

(Yuan et al., 2015). These phenomena imply a close relationship between Notch 

signaling and hypoxia. Until recently, studies have demonstrated high relationships 

between Notch and hypoxia inducible factor 1 α (HIF1α). HIF1α can promote Notch 

signaling in two different ways. First, HIF1α can promote the function of γ-secretase 
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(Villa et al., 2014b). This kind of promotion does not rely on an increased transcription 

level. Rather, HIF1α can bind to γ-secretase to increase the activation of γ-secretase. This 

promotive effect is more dramatic after Notch receptors have bound to the ligands. The 

HIF1α induced activity of γ-secretase can be abolished by a γ-secretase inhibitor. Besides 

that, HIF1α can bind to the cleaved NICD to stabilize NICD and drive it to the nuclei 

(Gustafsson et al., 2005b). During hypoxia, HIF1α can be found enriched in NICD DNA 

binding regions. This means that HIF1α may participate in the transcriptional regulation 

of NICD. All these results indicate that there is a tightly related relationship between 

Notch and HIF1α. But besides HIF1α, the function of other hypoxia inducible factors 

with Notch is still unknown.  

1.4.2 Wnt Signaling Controls Satellite Cells Expansion 

Wnt signaling is very important in regulating the cellular process. So far it has 

been reported that Wnt can promote cell proliferation in multiple tissues, determine cell 

fate, participate in regulation of morphology and the subsequent cell attachment 

efficiency (Klaus and Birchmeier, 2008).  

In the Wnt/β-catenin pathway, after receiving Wnt proteins from extracellular 

matrix by receptors named Frizzled, Wnt cascade pass through to β-catenin (MacDonald 

et al., 2009). The β-catenin level determines the final output. In normal conditions, the 

dynamic consistent levels of cytoplasmic β-catenin are kept by constitutive degradation 

by phosphorylation by GSK3-β (MacDonald et al., 2009). Then, phosphorylated β-

catenin is bound by the ubiquitin ligase and degraded by the proteasome as normal 

protein degradation processes. The activation of GSK3-β can be inhibited by drugs 

designed for Wnt signaling inhibition. In physiological conditions, the activation of 
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GSK3-β can be inhibited by Dishevelled, which is activated by the binding of Wnt or 

Frizzled (Clevers and Nusse, 2012; Hayward et al., 2008; Naito et al., 2012). Free 

cytoplasmic β-catenin will increase after the activation of Wnt signaling. The released β-

catenin binds with cofactors and transfers to the nucleus and interacts to promote or 

inhibit the target gene expression. 

Like Notch signaling, the fact that Wnt signaling highly participates in satellite 

cell and myogenic differentiation has been demonstrated by increasing evidence (Brack 

et al., 2007; Cisternas et al., 2014; Jones et al., 2015; Majmundar et al., 2015; Otto et al., 

2008a; Suzuki et al., 2015; Trensz et al., 2010). However, the exact roles of Wnt in 

satellite cell regulation is still controversial.  

Nohno’s group believed that Wnt signaling activation can terminate the stemness 

of muscle stem cells and induce myogenic commitment and differentiation (Tanaka et al., 

2011). They compared the performance of muscle regeneration by either inhibiting or 

activating Wnt signaling and they noticed that satellite cells only respond to Wnt 

signaling at a late stage of myogenic differentiation (Tanaka et al., 2011). Inhibition of 

Wnt signaling can largely impede muscle regeneration by reducing the myofiber size due 

via decreased Myogenin levels. The activation group exhibited relatively better 

regeneration with an efficient repair and larger fiber size.  

However, another group reported that β-catenin can promote satellite cell self-

renewal and instead of inducing withdrawal from the cell cycle to commit to 

differentiation, it can protect satellite cells from myogenic differentiation (Perez-Ruiz et 

al., 2008). They found that overexpression of mutant β-catenin leads to downregulation 

of MyoD and Myogenin expression. Also, by inhibiting the activity of GSK-β, the 
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researchers achieved the same results. On the contrary, reduced β-catenin level in 

myoblasts can largely reduce self-renewal (Perez-Ruiz et al., 2008). However, the 

regulation of β-catenin towards Myod seems complicated in that another study 

demonstrated that β-catenin can bind with Myod directly to enhance the transcriptional 

activity of Myod (Kim et al., 2008).  

Not only does this work as a short-term effect on growth factors participating in 

short-term cellular biology regulations, it also has been reported that the level of Wnt 

protein in skeletal muscle is highly related to long-term physiological changes such as 

aging (Brack et al., 2007). In aged mice skeletal muscle, Wnt family proteins are 

significantly higher than that in young mice. Also, studies have demonstrated that this 

high level of Wnt proteins is harmful for muscle regeneration due to reducing satellite 

cell expansion and self-renewal in vivo and in vitro. A high level of Wnt in skeletal 

muscle can not only impede muscle regeneration by inhibiting satellite cell expansion and 

self-renewal, but also it facilitates fibrosis (Brack et al., 2007). Non-efficient regeneration 

always induces fibrosis due to continuously activated immune response. Moreover, Wnt 

signaling can directly work on fibroblast progenitors and promote fibrosis. Altogether, 

the mechanism leads to impaired muscle regenerations in old mice compared with young 

mice by a high level of Wnt signaling. This kind of impairment can be rescued by Wnt 

signaling inhibitors. The inhibitors targeting β-catenin can inhibit downstream 

transcriptional activities.  

The interesting thing about Wnt is that Wnt signaling always works together with 

Notch signaling (Hayward et al., 2008). This association is that Wnt signaling seems to 

work the opposite way with Notch (Tian et al., 2015). Notch can prevent satellite cells 
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from differentiation and keep satellite cells stemness, while Wnt signaling promotes 

satellite cells’ differentiating commitment and facilitates differentiation and myotube 

fusion. Notch signaling activation can promote satellite cell proliferation and self-

renewal, thereby contributing to the maintenance of satellite cell population. However, 

when activating Wnt signaling, satellite cells pretend to withdraw from the cell cycle and 

undergo myogenic differentiation. The competitive function of Wnt signaling and Notch 

signaling is very important in muscle physiological regulation. During muscle 

regeneration, satellite cells need to proliferate to produce myoblasts and keep stem cell 

population, which can be achieved by elevated Notch signaling and inhibited Wnt 

signaling. Afterwards, inhibition of Notch signaling cannot push the myoblasts into 

mature myocytes, thus activated Wnt signaling is required for myogenic commitment and 

myogenic differentiation. After regeneration, Wnt signaling should be downregulated for 

the maintenance of stem cell stemness. Likewise, only block Wnt signaling cannot 

promote stem cell self-renewal, thus activated Notch signaling is needed. Having balance 

and accurate levels of Notch and Wnt is very important for efficient muscle regeneration. 

Either too high or too low level of Notch and Wnt can lead to impaired muscle 

regeneration. It has also been reported that NICD can directly bind with β-catenin and 

can regulate the transcriptional activity of β-catenin (Kwon et al., 2011). However, 

whether NICD can promote or inhibit Wnt signaling is not exclusively dependent on 

NICD; instead, it depends on the whole cellular condition (Kwon et al., 2011).  

In addition to Notch signaling, Wnt signaling can also cross talk with hypoxia-

inducible factors. In cancer cells, it has been reported that HIF1α can bind with β-catenin 

and can inhibit transcriptional activity, leading to the inhibition of Wnt signaling (Kaidi 
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et al., 2007). In satellite cells, it has also been reported that, during ischemic injury, 

which can induce skeletal muscle hypoxia, the Wnt signaling is largely been reduced 

(Majmundar et al., 2015). By knocking out HIF1α or supplementing the Wnt agonist, the 

inhibition of myogenic differentiation can be rescued. This result indicates that hypoxia 

can inhibit Wnt signaling by HIF1α through β-catenin. However, the direct binding of β-

catenin and HIF1α is not demonstrated (Majmundar et al., 2015).  

Even though the relationship of hypoxia and Wnt is quite clear, the cross talk of 

Wnt and Notch under hypoxia conditions is still less known. Given the fact that Notch 

signaling can regulate Wnt differently under different conditions, there is a possibility 

that Notch may regulate Wnt differently under a hypoxia state. More studies need to be 

done in this area. 

1.4.3 TGF-ββββ Signaling Controls Skeletal Muscle Mass 

Different from the regulation of determinations on satellite cell differentiation, 

quiescence or self-renewal, which is mainly controlled by transcriptional regulators such 

as Pax7 or Myod, muscle mass is mainly controlled by the balance of protein synthesis 

and degradation (Mitch and Goldberg, 1996; You et al., 2015). Excessive synthesis 

induces muscle hypertrophy, while excessive degradation leads to muscle atrophy. It is 

widely accepted that the key regulation mechanism of protein synthesis in muscle is the 

Akt/protein kinase B (PKB)–mammalian target of rapamycin (mTOR) signaling pathway 

axis (Egerman and Glass, 2014; Sartori et al., 2014; You et al., 2015). This pathway 

controls the protein synthesis tools, S6 and eukaryotic translation initiator factor 4E 

(eIF4E). Meanwhile, it regulates the inhibitor of this tool, 4E-binding protein 1 (4EBP1) 

(Haghighat et al., 1995; Hara et al., 1997). For protein degradation, the direct functional 
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factors are Fbxo32 and MuRF1, which are the two most important E3 ubiquitin ligases 

participating in muscle degradation (Bodine et al., 2001; Gomes et al., 2001; Mammucari 

et al., 2007). Both of these two genes are regulated by FoxO3, which can be inhibited by 

Akt. Thus, it is in this way that the Akt-mTOR pathway controls muscle mass.  

The TGFβ superfamily consists of over 30 factors. All these factors are secreted 

extracellularly, which can be recognized by specific receptors on the cell surface (Shi and 

Massague, 2003). After the binding of extracellular secretory factors with four main types 

of receptors, the secondary messengers, called SMADs, are phosphorylated and 

dimerized followed by a transfer to the nucleus (Massague, 2012). The subsequent 

message transfer is similar, but has some differences. Due to different activated 

transcriptional regulators, the output is largely different. Activins, Myostatin and GDF8 

can be recognized by TGF-βR1 and activates SMAD2/SMAD3. Follistatin can be 

recognized by TGF-βR1, ALKs, and results in activation of SMAD2/SMAD3 or 

SMAD1/SMAD5/SMAD8. BMPs and GDF can be recognized by BMPRII, and also can 

activate SMAD2/SMAD3. Due to SMAD2/SMAD3 being phosphorylated by multiple 

cell surface receptors, the functional efficiency of different TGF-β factors can be 

regulated by competitive mechanisms (Massague, 2012).  

As mentioned previously, the muscle mass core regulation pathway is through the 

Akt pathway. The factors and mechanisms that can connect TGF-β and Akt is that 

phosphorylated SMAD2/SMAD3 can inhibit the activation of Akt (Zhang et al., 2013). 

Also, SMAD2/SMAD3 can directly inhibit the function of MuRF1 and MAFbx (Sartori 

et al., 2013). Thus, activation of SMAD2/SMAD3 can inhibit excessive Akt activation, 

increase muscle protein degradation and keep physiological normal muscle mass. The 
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most significant factor among TGF-β involved in muscle mass is Myostatin (Kambadur 

et al., 1997; McPherron et al., 1997). Normal levels of Myostatin can inhibit excessive 

muscle protein synthesis. Myostatin-deficient animals develop obvious muscle 

hypertrophy, which is conserved in different animals, such as mice, bulls and humans. 

Myostatin mice exhibit larger myofiber size but not myofiber number (McPherron et al., 

1997). Besides the loss of secretory factor function, receptor functional deficiency or over 

functionality can also induce abnormal muscle mass. Overexpression of ALK4 and 

ALK5 can increase the phosphorylation of SMAD2/SMAD3, which can induce muscle 

atrophy (Kemaladewi et al., 2012).  

Recently, new discoveries have demonstrated that BMP pathways highly 

participate in regulation of muscle mass. The core factor involved in this regulation is 

SMAD4 (Sartori et al., 2013). SMAD4 can interact with SMAD2/SMAD3 or 

SMAD1/5/8. Thus, SMAD2/3 competes with SMAD1/5/8 for interactions with SMAD4. 

The function of SMAD4 seems to only depend on inhibition of protein degradation by 

inhibition of Fbxo30, as suggested by the dramatically decreased muscle mass after 

denervation in SMAD4 deficient mice as compared to normal mice. SMAD1/5/8 can be 

activated by BMP7, which can explain how overexpression of BMP7 can help to preserve 

muscle mass after denervation (Sartori et al., 2013). This theory can also explain the 

function of Myostatin and how a Myostatin deficiency induced low level of SMAD2/3 

can release more available SMAD4 for subsequent binding with SMAD1/5/8. 

Differently, the binding of SMAD4 with SMAD1/5/8 or SMAD2/3 can induce different 

gene expression, resulting totally different consequences.  
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The regulation of TGF-β signaling was reported to show cross talk with hypoxia. 

It has been reported that TGF-β1 induces HIF1α stabilization through selective inhibition 

of PHD2 expression (McMahon et al., 2006). The canonical mechanism of stabilization 

of HIF1α is through the inhibition of PHD2 activation. PHD2 can hydroxylate HIF1α 

and commit the protein degradation process. By inhibiting PHD2, avoiding tagged HIF1a 

can be stabilized. However, TGF-β stabilized HIF1a through decreasing the protein level 

of PHD2 through the inhibition of transcription. This means that HIF1α can be stabilized 

even in sufficient oxygen conditions. On the other hand, HIF1α can selectively inhibit the 

function of BMPs (Pistollato et al., 2009; Tseng et al., 2010). HIF1α deficiency can 

increase the phosphorylation of SMADs, which indicates that HIF1α can inhibit BMP 

signaling activity even though the mechanism of HIF1α is still unknown. The HIF-TGF 

in muscle is still less documented, but the close relationship has been demonstrated in 

other tissues, which may imply an important function in muscle. 

1.4.4 JAK-STAT Signaling Controls Satellite Cell Expansion 

The Janus kinase (JAK)–signal transducer of activators of transcription (STAT) 

pathway is an evolutionarily conserved signaling pathway, which participates in different 

kinds of cellular regulation, such as differentiation, proliferation, apoptosis, oncogenesis 

and immune reactions (O'Shea et al., 2015; Rawlings et al., 2004). As a cell signaling 

pathway, JAK-STAT pathway not only works solely, but it can also cross talk with 

different signaling pathways. Thus, when talking about regulations of hypoxia in satellite 

cells and muscle homeostasis, the JAK-STAT pathway is a very important participant 

that can’t be ignored. 
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The JAK-STAT signaling pathway consists of three main components: a cell 

surface receptor, a phosphorylation kinase JAK and a transcriptional regulator, STATs 

(Aaronson and Horvath, 2002). The binding of different ligands in the extracellular 

matrix, such as interferon, interleukin or growth factors, with specific cell surface 

receptors, activates the kinase activity of associated JAKs. The activated JAKs recruits 

and phosphorylates STATs (O'Shea et al., 2015). Phosphorylated STATs are activated 

and form hetero or homo dimers. Dimerized STATs translocate to the cell nucleus and 

regulate gene expression. Besides STATs, JAKs can also phosphorylate other substitutes, 

which can compete with STATs. For example, SOCS can bind and inhibit the activated 

JAKs and block the recruitment and phosphorylation of STATs (Croker et al., 2008).  

Although the regulation of the JAK-STAT pathway looks simple, it participates 

and regulates multiple pathways by the combination of two JAKs and seven STATs. 

Binding growth hormone factors to their specific receptors can phosphorylate JAK2, 

followed by the recruitment and activation of STAT5 or STAT1. On the other hand, 

IFNα/β can activate STAT1/2, while IFN-γ can only activate STAT1 (Ho and Ivashkiv, 

2006; Ivashkiv and Donlin, 2014; Miscia et al., 2002; Qing and Stark, 2004).  

In muscle, it has been reported that the inhibition of JAK-STAT signaling 

stimulates adult satellite cell function (Price et al., 2015; Tierney et al., 2014). It has been 

well-known that muscle regeneration efficiency of aged mice is much lower than that in 

younger mice. However, the reason why aged mice exhibit worse regeneration efficiency 

is still not clear. By comparing freshly isolated satellite cells from aged mice and young 

mice using global gene expression analysis, researchers have found a much higher level 

of JAK-STAT target genes and JAK-STAT coactivators in aged mice, indicating an 
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elevated JAK-STAT signaling level during aging (Price et al., 2015). They also checked 

the phosphorylated STAT3 level and found a higher level of pSTAT3, validating the 

increase of JAK-STAT signaling. By the inhibition of JAK2 or STAT3 using siRNAs, 

the proliferation defect of satellite cells in cultured myofiber from aged mice was rescued 

(Tierney et al., 2014). After reducing JAK2 or STAT3 expression levels, the engraftment 

of myoblasts was largely enhanced. Also, injection of JAK-STAT inhibitors can enhance 

the muscle regeneration in vivo. All these results indicate that inhibition of the JAK-

STAT pathway, specifically the JAK2-STAT3 pathway, can rescue aging-induced 

impaired muscle regeneration. 

At the same time, another group independently reported the function of STAT3 in 

satellite cell regulations from another aspect. It was reported that STAT3 promoted 

myogenic lineage progression and inhibited self-renewal and proliferation, which is 

similar to the previous report (Tierney et al., 2014). In this case, the elevated pSTAT3 

level was found to correspond with the level of IL-6. Both in muscle wasting and during 

aging, IL-6 is largely increased. As a downstream factor of IL-6, constitutive activation 

of STAT3 can impair the proliferation and self-renewal of satellite cells, impairing 

muscle regeneration. However, long-term inhibition of STAT3 also impeded muscle 

regeneration by inhibiting myogenic differentiation. But, in the early stages of 

regeneration, the short-term decrease of STAT3 is helpful for muscle regeneration, and 

results from an increased proliferation of satellite cells. Thus, having an accurate level of 

STAT3 is very important in muscle satellite cell homeostasis (Tierney et al., 2014). 

Hypoxia can control the level of STAT3 in different manner. It has been reported 

that hypoxia can induce a decrease in SOCS3 (Toth et al., 2011). SOCS3 compete with 
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STAT3 with JAK (Croker et al., 2008). Thus, by inhibition of SOCS3, STAT3 can be 

activated. Also, hypoxia can induce the production and release of IL-6 (Toth et al., 2011). 

IL-6 can largely promote STAT3 activity. From a general biological view, STAT3 can 

promote satellite cell differentiation and inhibit proliferation. However, hypoxia can 

induce opposite changes, such as inhibited differentiation and promoted self-renewal. 

This makes the regulation mechanism between hypoxia and STAT3 more complicated. 

More research is needed in this area. 

1.5 Cross Talk between Muscle and Other Tissues 

During muscle regeneration, the oxygen level in muscle microenvironments 

changes dynamically due to the formation of new vessels and increased oxygen 

expenditure. In the early stages of injury, oxygen transport and availability decreases 

compared with normal conditions due to the break of blood vessels (Merrick, 2002). 

Meanwhile, muscle regeneration requires more energy, protein and oxygen. The 

imbalance of oxygen availability and requirement increases a hypoxia reaction in the 

muscle. The hypoxic challenge is not only faced by myogenic lineage cells, but also other 

types of cells that may regulate the regeneration process.  

The connection between the muscle and the immune system is the most important 

regulation mechanism amongst all these cross talks. The immune cells travel around the 

whole body, preventing invasions of bacteria and viruses, cleaning out dead cells and 

debris and secreting cytokines to regulate cellular behaviors (Castelo-Branco and 

Soveral, 2014; Hansen et al., 2015). During muscle regeneration, immune cells invade 

the muscle through the broken vessels, cleaning dead fibers and engulfing debris. At the 

same time, they release cytokines to regulate muscle regeneration directly and indirectly 



36 

 

(Saini et al., 2016; Tidball and Villalta, 2010). As mentioned previously, IL-6 secreted 

from the macrophages can activate STAT3 in satellite cells and promote myogenic 

differentiation. Also, IL-4 and IL-13 can promote the proliferation and inhibit the 

adipogenic differentiation of FAPs cells resident in the muscle tissue (Heredia et al., 

2013). IL-4- and IL-13-activated FAPs cells can engulf dead myofibers and debris, 

secreting Wnt beneficial to muscle regeneration (Heredia et al., 2013; Joe et al., 2010). 

The release of IL-4, IL-6 and IL-13 are highly regulated by the oxygen level. It has been 

demonstrated in different types of cells that hypoxia can induce the expression of IL-6. 

On the other hand, IL-4 can increase the expression of hypoxia-inducible factors. Even 

though the relationship between immune factors and muscle under a hypoxia state has not 

been determined, there should be a complex regulation between hypoxia, the immune 

system and muscle regeneration. 

Different from the previous view, skeletal muscle is no longer just considered as a 

motive organ. Muscle-released factors participate in the regulation of other tissues, such 

as Irision for brown adipose tissue and Cathepsin B for the brain. The interesting fact is 

that the release of these myokines can be induced by exercising the muscle. But precisely 

how exercising can induce the release of myokines is unknown. One possibility is that the 

release of myokines is regulated by oxygen level when doing exercise, and the dynamic 

changes in oxygen levels stimulate the secretion. More research needs to be done to 

investigate the principal mechanism. 
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1.6 Hypoxia: Not Just Low Oxygen Level 

1.6.1 1.6.1 Hypoxia-Related Factors 

The fluctuating oxygen in cells not only regulates the energy supply by changing 

the ratio of respiration chains in mitochondria, but it also induces other molecular 

changes. There are two main types of hypoxia-related factors, the reactive oxygen species 

(ROS) and hypoxia inducible factors (HIFs) (Clanton, 2007; Sabharwal and Schumacker, 

2014; Semenza, 2014).  

ROS is reactive oxidative species. ROS is not only induced by hypoxia, but also 

other environmental stresses, such as overheating and ultraviolent exposure (Circu and 

Aw, 2010). Continuous high levels of ROS can induce cell damage and apoptosis. ROS 

participates in many cellular regulations, such as proliferation, differentiation, immune 

reactions, morphology changes and apoptosis (Circu and Aw, 2010; Day and Suzuki, 

2005; Gauron et al., 2013). It has been reported that the accumulation of ROS can 

immediately downregulate cyclin D1, inducing a cell cycle arrest in the G2 phase 

(Verbon et al., 2012). ROS induces DNA damage by promotion of p53 and activation of 

poly (ADP-ribose) polymerase RARP, leading to an apoptosis cascade (Montero et al., 

2013). ROS can also regulate proliferation and survival through MAPK, PI3K and PTEN 

(Morgan and Liu, 2011; Son et al., 2013). There is an interactional regulation between 

ROS and NF-kB where ROS can inhibit or promote NF-kB signaling, while the 

downstream genes of NF-kB can regulate the generation of ROS (Morgan and Liu, 

2011). All together ROS is a very important factor that is involved in the reaction of the 

hypoxia challenge.  

Another big family of hypoxia-related factors are HIFs. HIFs are transcription 

factors consisting of two main subunits, the oxygen sensor subunit HIFα and the oxygen 
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insensitive group HIFβ (aryl hydrocarbon receptor nuclear translocator, Arnt) (Jaakkola 

et al., 2001; Semenza, 2003). These two factors bind with each other through Per-Arnt-

Sim (PAS) domains, forming a heterodimeric transcriptional regulator. The heterodimer 

forms a basic helix-loop-helix (bHLH) domain, regulating target gene transcription 

through C-terminal transcriptional transactivation domains (TADs) (Wang et al., 1995). 

The activation of HIF signaling is controlled by oxygen level by HIFα degradation. At an 

oxygen concentration above 5%, HIFα can be hydroxylated by prolyl hydroxlase domain 

proteins (PHD) at two specific proline residues (Weidemann and Johnson, 2008). The 

tagged HIFα can be recognized by von Hippel-Lindau tumor suppressor protein (Vhl), 

initiating the ubiquitin degradation cascade (Ivan et al., 2001; Maxwell et al., 1999; 

Wang et al., 1995). When challenged by hypoxia, the hydroxylation rate is reduced and 

induces accumulation of HIFα. Besides a decreased oxygen level, inhibition of activation 

of PHD or ablation of Vhl can also lead to stabilization of HIFα (Matsuura et al., 2011; 

Watanabe et al., 2014). Stabilized HIFα-forming heterodimer with HIF1β, translocating 

to the nucleus regulates gene expression (Semenza, 2003; Semenza and Wang, 1992). In 

addition, the factor inhibiting HIF (FIH) hydroxylates an asparagine residue in the TAD, 

blocking binding of the transcriptional coactivator CBP/p300, which negatively regulates 

HIF signaling (Mahon et al., 2001).  

There are three types of HIFα that have been identified: HIF1α, HIF2α and 

HIF3α (Dengler et al., 2014; Greer et al., 2012; Semenza, 2012). HIF1α and HIF2α 

function similarly by forming a heterodimer with Arnt (Simon, 2008). However, HIF3α 

acts in a completely opposite manner. HIF3α consists of three isoforms, Hif3α, neonatal 

and embryonic PAS (NEPAS), and an inhibitory PAS protein (IPAS). HIF3α and 
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NEPAS do not have a transcriptional regulating activity, even when binding with Arnt. 

This binding process will compete with HIF1α and HIF2α at the Arnt binding sites, 

which can finally inhibit the transcriptional activity of HIF1α and HIF2α (Li et al., 

2006). Different than HIF3α and NEPAS, IPAS do not bind with Arnt. However, IPAS 

binds with HIF1α and HIF2α, thereby preventing the binding of HIF1α and HIF2α with 

Arnt (Weir et al., 2011). All together the three HIF3α isoforms act as negative regulators 

of HIF signaling.  

The heterodimer of HIF and Arnt cooperates with CBP/p300, forming a bHLH 

transcriptional regulator, which can specifically recognize hypoxia-responsive elements 

(HRE) in DNA and can regulate the transcription of target genes. HIFs target genes 

participate in different cell behaviors, such as p53 for survival and apoptosis, VEGF for 

angiogenesis, MMP for extracellular matrix regulation and so on (Greer et al., 2012).  

Recently, it has been found that HIF1α can act as post-transcriptional regulators. For 

example, in tumor cells, HIF1α has demonstrated to bind with γ-secretase and increase its 

activation (Villa et al., 2014a). Also, HIF1α can stabilize NICD after cleavage, 

promoting notch signaling (Gustafsson et al., 2005a). In terms of Wnt, HIF1α can bind 

with β-catenin, inhibiting Wnt signaling, even though the mechanism is still unknown 

(Kaufman, 2010).  

1.6.2 Cross Talk between HIF and Other Cell Signaling 

HIF is involved in different cell behaviors and metabolism by its interaction with 

different cell signaling, such as cell fate determination by Notch and Wnt, proliferation 

by Cyclin D1, fibrosis by TGF-β and apoptosis by p53.  



40 

 

It has been found, in different tissues, that HIF can promote Notch in several 

different ways. The first time a researcher found the interaction of HIF and Notch was in 

neurons and muscle progenitor cells (Gustafsson et al., 2005b). It was reported that 

hypoxia blocked neuronal and myogenic differentiation in a Notch-dependent manner. 

Hypoxia activates Notch-responsive promotors and enhances the expression of Notch 

target downstream genes. Also, HIF1α can interact with NICD to stabilize it and drive it 

to the nucleus. HIF1α was found to be recruited to the Notch-responsive promoter region 

to promote Notch target genes, indicating its function of elevating Notch. Inhibition of 

Notch signaling can rescue the hypoxia-induced blockage of differentiation. All these 

results, at the cell and molecular levels, provide the first evidence that HIF1α can inhibit 

myogenic and neuronal differentiation (Gustafsson et al., 2005b). Later, the interaction of 

HIF1α and Notch signaling in regulating tumor metabolism has been demonstrated in 

different kinds of tumors, such as medulloblastoma and glioblastoma (Pistollato et al., 

2010). The mechanism of how HIF mediates Notch has been further studied. In addition 

to binding with NICD, HIF1α can also interact with γ-secretase and enhance its activity 

(Villa et al., 2014b). Specific γ-secretase inhibitors can inhibit HIF1α-induced promotion 

of Notch. All these results demonstrate that by increasing and stabilizing NICD, HIF1α 

can promote Notch signaling. More recently, it has been shown that HIF1α can promote 

Notch signaling independent of Notch ligand and Notch receptor binding (Mukherjee et 

al., 2011). In crystal cells, HIF1α co-localized with endocytic Notch receptors and 

stabilized NICD during cleavage, transferring NICD to the nucleus to perform its 

transcriptional regulation.  
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Different from the function of HIF on Notch, the reaction between HIF and Wnt 

has been inconsistent between different studies. Some studies showed a promoting Wnt 

function of HIF1α, while other studies demonstrated a completely opposite result 

(Kaufman, 2010; Majmundar et al., 2015; Mazumdar et al., 2010). In embryonic neuron 

stem cells and hepatocellular carcinomas, HIF1α can activate β-catenin and increase the 

downstream genes of Wnt signaling (Kaufman, 2010; Mazumdar et al., 2010). In hypoxia 

states, the researchers noticed an increased level of Wnt signaling by quantifying the Wnt 

downstream regulator protein level. The promoted Wnt signaling can be abolished by 

knocking out HIF1α. The researchers concluded that the hypoxia-induced promotion of 

Wnt is dependent on HIF1α (Mazumdar et al., 2010). In osteoblast and myoblast, 

however, it has been confirmed that HIF1α can strongly inhibit Wnt signaling through a 

different mechanism (Chen et al., 2013; Majmundar et al., 2015). Studies have 

demonstrated that osteoblast growth is inhibited under hypoxia through the cooperation 

of HIF-1α with Osterix (Osx) to inhibit the Wnt pathway. In myoblasts, HIF1α inhibits 

the activation of β-catenin, inhibiting Wnt signaling and blocking late stage myogenic 

differentiation (Majmundar et al., 2015). All these results imply that HIF1α may 

cooperate with some other factors that haven’t been discovered yet and these cooperators 

may or may not lead to dramatically different results. However, this is just one possible 

explanation for these conflicting results; more studies need to be done in the future.   

Besides these two pathways HIF is involved in and mediates, HIF can also cross 

talk with other pathways in a converse direction. Recently, it was reported that the basal 

level of HIF mRNA and the protein level is controlled by NF-kB signaling (Gorlach and 

Bonello, 2008; van Uden et al., 2008). Researchers have found that the NF-kB subunits 
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p50 and p65 can directly interact with HIF1α by transcriptional recognition of NF-kB at 

the promoter region of HIF1α at about -197/188 bp (Yoshida et al., 2013). Mutation of 

this site will block the impact of NF-kB towards HIF1a. More importantly, the specific 

NF-kB recognizing site in HIF1α is conserved among different species. Additional 

results confirmed the regulation function of NF-kB in the HIF pathway and that through a 

knock out or genetic deficiency of IKKα and IKKβ, the mRNA and protein level of 

HIF1α won’t change. All these results demonstrate that NF-kB can transcriptionally 

regulate the expression level of HIF1α (Yoshida et al., 2013).  

In physiological conditions, organs need to maintain normal function under 

dynamically consistent levels of oxygen. Thus, theoretically and practically, HIF can 

cross talk with different pathways to participate in cellular behavior regulations.  

1.6.3 The Impact of Hypoxia in the Embryonic Development Stage 

During the embryonic development stage, animals are challenged by a long-term 

low oxygen level condition due to the lack of blood vessels and a restricted rate of 

oxygen diffusion (Dunwoodie, 2009). However, this long-term hypoxic condition is 

usually harmful in adults. The HIF pathway is involved to increase the tolerance of, or 

rescue from, pathological hypoxia. However, this low oxygen level in the embryonic 

stage is necessary for normal fetal development. Hypoxic microenvironments create 

specific niches regulating cellular differentiation and the HIF system contributes to the 

regulation of differentiation and morphogenesis. In the 1970s, researchers demonstrated 

that a normal neural fold was dependent on a low O2 level culture condition ex utero 

(Morriss and New, 1979). The hypoxic condition in the embryonic development stage 

was confirmed in 2003, where it was discovered that pimonidazole and EF5 can bind 
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with DNA and proteins only in hypoxic conditions (Bruick, 2003). Further, genetic 

manipulation of HIF deficiency models in various species reveals the importance of HIF 

proteins in embryos (Simon et al., 2002). 

Oxygen availability controls the development of the blood circulation system, 

which is responsible for oxygen delivery. This oxygen delivery system should ensure that 

resident cells maintain proper metabolic activity. During vascular development, vascular 

endothelial growth factor (VEGF) is a major angiogenic growth factor, which is highly 

controlled by oxygen level (Jarecki et al., 1999). Similar to VEGF, other vascular 

formation growth factors, such as TGFβ and FGF, are also mediated by HIF (Caniggia et 

al., 2000; Shweiki et al., 1992). When cells are challenged by hypoxia, they release more 

angiogenic factors, which attract vascular endothelial cells to migrate to the oxygen-

starved cells. This theory has been confirmed by the Arnt deficient mice model. 

Knocking out of Arnt induces fetal lethality in E10.5 due to a deficiency of vascular 

formation (Adelman et al., 1999). The initial vascular beds showed normal development; 

however, the vessel remodeling failed to process. Consistent with the phenotype, the 

VEGF mRNA and protein level in embryos is significantly lower in Arnt deficient mice, 

which means Arnt can regulate VEGF level.  

Besides the blood circulation system of the developmental fetus, the development 

of the placenta is also impacted by oxygen concentration. In mice, the embryo undergoes 

glycolysis for energy due to lack of oxygen until the circulation system formation in the 

placenta around E11 (Kozak et al., 1997). The establishment of placental circulation is 

controlled by oxygen sensor regulators. Arnt or HIF deficient mice exhibit abnormal 

development of the placenta (Adelman et al., 2000; Cowden Dahl et al., 2005; Gnarra et 
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al., 1997). Excessive accumulation of HIF by deletion of Vhl and PHD also induces 

aberrant placental architecture (Gnarra et al., 1997).  

Global knock out of HIF family genes can induce early fetal lethality. However, 

single deficiency in one of the HIF family genes (except for HIF1α, which can also 

induce fetal lethality) may also cause mutant mice. Knocking out HIF2α allows for birth, 

even though the neonatal mice will die soon after birth (Compernolle et al., 2002). HIF2α 

deficient mice exhibited severe cardiovascular disease, which is different from the HIF1α 

deficient phenotype. This result implies a common function of HIF1α and HIF2α, though 

they have their own specific roles (Simon, 2008).  

In addition to oxygen delivery-related organs, oxygen level can also affect bone 

morphogenesis. The growth of bone needs a well-programmed cascade proliferation, 

differentiation and apoptosis (Raggatt and Partridge, 2010). As the bone grows thicker, 

more vessels need to be attracted to new bones. Thus, in the proliferating stage, 

osteoblasts and chondrocytes produce a low level of VEGF but a high level of collagen 

II, while in differentiated cells they release significantly higher levels of VEGF. Specific 

deletion of HIF1α in chondrocytes induces chondrocytes death, exhibiting obviously 

shorter limbs (Rajpurohit et al., 1996). This result demonstrates a crucial function of 

HIF1α in chondrogenesis.  

In adipogenesis, HIF1α acts as a suppressor of adipogenic differentiation. Hypoxia 

inhibits adipogenesis through inhibition of the expression of peroxisome proliferative 

activated receptor-γ (PPARγ) (Yun et al., 2002). Ppar-γ is the critical transcriptional 

regulator of adipogenesis, which initiates the adipogenic cascade (Spiegelman, 1998). 

Knocking out HIF1α in fibroblasts can rescue the inhibition of hypoxia-induced 
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adipogenic differentiation (Yun et al., 2002). HIF1α inhibits Ppar-γ through induced 

expression of DEC1, a repressor of the Ppar-γ promoter. All these results demonstrate a 

necessary importance of hypoxia and HIF in embryonic development. 

1.7 Muscle Hypoxia 

1.7.1 Hypoxia Inhibits Myogenic Differentiation 

Skeletal muscle distinguishes itself by its outstanding tolerance of dynamic 

changes of oxygen level due to the frequently changed oxygen level, which is highly 

dependent on the activity frequency. However, the chronic hypoxia impeded myogenesis 

is marked by the decreased fiber size of regenerated myofibers in ischemic conditions 

(Blaisdell, 2002). Long-term exposure in high altitudes also induces a smaller myofiber 

size and decreases the whole muscle size (Howald and Hoppeler, 2003). Given all this 

evidence, it is proposed that hypoxia can inhibit myogenic differentiation and alter the 

myoblast behavior. 

A preliminary study demonstrates that, under as low as a 2% oxygen level, 

myogenic differentiation was inhibited (Yun et al., 2005). The strongest inhibition was 

found in a 0.01% oxygen level. Further, the study confirmed that the low differentiation 

rate is not due to a higher level of apoptosis. These results indicate that hypoxia inhibits 

myogenic differentiation by regulating the myoblast differentiation cascade (Yun et al., 

2005). 

The fact that hypoxia can inhibit myogenic differentiation has been widely 

confirmed; however, the explanations of the mechanism differ among studies (Gustafsson 

et al., 2005b; Majmundar et al., 2012; Yun et al., 2005). Some researchers have 

demonstrated that the hypoxia-induced inhibition of myogenic differentiation is 
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dependent on Notch, while others report that hypoxia won’t alert Notch signaling in 

myoblasts, even though the inhibition is independent of HIF1α. Even though the original 

initial trigger of myogenic inhibition is contrasted among various studies, the reduced 

level of the Myod protein has been identified by different studies. However, the reason 

why the Myod protein level reduced is also conflicting among different groups. One 

group believed that the repressed Myod level is induced by the active inhibition of Myod 

transcription (Yun et al., 2005) and this inhibition fact has a transient impact that can be 

recovered by long-term exposure in a 2% or lower oxygen level. This means that 

myoblasts can adapt to a low oxygen environment. In another study, the researchers 

demonstrated that the decrease of the Myod protein level is due to the accelerated 

degradation rate of Myod proteins (Di Carlo et al., 2004) and the decrease in Myod 

proteins can further decrease the Myod mRNA level, which makes the amount even less. 

To prove their results were correct, the researchers transfected Myod into C3H10T1/2 

cells. If the transfected cells were able to undergo myogenic normal differentiation, then 

hypoxia should repress the transcriptional level of Myod first, otherwise it should be the 

regulation of Myod protein post-transcriptional modification. Indeed, they identified an 

inhibited differentiation in the Myod-transfected C3H10T1/2 cells. This result means that 

hypoxia can directly modify the Myod protein. Then, they investigated the exact cause 

that induced the decrease of the Myod protein. They asked if the Myod protein synthesis 

rates dramatically decreased or if the Myod protein degradation increased a lot. To test 

this question, they treated the C2C12 cells with a protein synthesis inhibitor, 

cycloheximide. The inhibition of protein synthesis was confirmed by the decreased 

protein level. After treating the cells for one hour with cycloheximide, they found a 
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dramatic decrease of Myod protein in the hypoxia treated group. This means the influx of 

the Myod protein will not alert the protein level. Further, they tested the protein 

degradation rates by treating the cells with protein degradation inhibitors. Interestingly, 

the protein level maintained no difference between the hypoxia group and the control 

after the protein degradation inhibitor treatment. All these results indicated that the 

hypoxia-induced decrease of the Myod level was due to the increased protein degradation 

rate (Di Carlo et al., 2004).  

Even though the reason why hypoxia decreased the Myod level has been 

demonstrated, the reason why hypoxia can induce an accelerating degradation of Myod is 

still unknown.  

1.7.2 Hypoxia Inhibits Myogenic Differentiation through Bhlhe40 

Besides decreasing the level of Myod proteins, hypoxia can also inhibit myogenic 

differentiation through other factors. Among these factors, Bhlhe40 has demonstrated to 

be a significant contributor to the hypoxia-induced inhibition of myogenic differentiation. 

Bhlhe40 belongs to the bHLH family and mediates multiple cellular behavior, 

such as cell proliferation, apoptosis, adipogenesis and myogenesis (Honma et al., 2002; 

Li et al., 2002; Liu et al., 2013). The function of Bhlheo40 in myogenic differentiation is 

controversial and dependent on the different stages and pathways in which it is involved. 

It has been reported that overexpression of Srebp-1α in myotubes can downregulate 

muscle specific genes (Lecomte et al., 2010). Global gene expression profiles have 

demonstrated that Bhlh40 is a target gene of Srebp-1α, as indicated by a dramatic 

decrease in expression level in Bhlh40 overexpressed myotubes. Together with the fact 

that 34% of genes inhibited by Srebp-1α can also be inhibited by overexpression of 
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Bhlh40, researchers have concluded that Srebp-1α may inhibit myoblast differentiation 

through Bhlh40. Further studies have demonstrated that overexpression of Bhlh40 can 

inhibit myoblast differentiation and promote skeletal muscle atrophy. Thus, it was 

concluded that Bhlh40 can inhibit myoblast differentiation mediated by Srebp-1α 

(Lecomte et al., 2010). However, another study group demonstrated some controversial 

results. The skeletal muscle development exhibits no statistical differences between 

Bhlh40 mutant and normal mice. However, during muscle regeneration, Bhlh40 deficient 

mice showed impaired muscle regeneration with enhanced myoblast proliferation and 

inhibited differentiation (Sun et al., 2007). Also, in vitro results demonstrated that 

Bhlhe40 deficiency significantly inhibited myogenic differentiation. Constitutive 

expression of Bhlhe40 can rescue the increased proliferation and decreased 

differentiation. The mechanism through which Bhlhe40 deficiency inhibits myogenic 

differentiation is that Bhlhe40 can inhibit Notch signaling. Without Bhlhe40, Notch 

signaling is consistently highly activated in myoblasts and inhibits myogenesis (Sun et 

al., 2007; Wang et al., 2015).  

The microarray analysis of hypoxia-induced genes in primary myoblasts 

demonstrated that Bhlhe40 was highly promoted after hypoxia treatment (Wang et al., 

2015). Together with the fact that overexpression of Bhlhe40 can inhibit the 

differentiation of myoblasts and the knock down of Bhlhe40 can promote myogenic 

differentiation, the author hypothesized that hypoxia can inhibit myogenic differentiation 

through mediating Bhlhe40. Further results confirmed this hypothesis that inhibition of 

Bhlhe40 can partly rescue myogenic differentiation under hypoxia. Thus, the author 

concluded that hypoxia can inhibit myogenic differentiation through Bhlhe40. The 



49 

 

interesting part is that the promotion of Bhlhe40 induced by hypoxia is independent of 

HIF1α. Instead, the elevated Bhlhe40 is dependent on the increased p53 level. This result 

implies that p53 can be promoted by hypoxia independent of HIF1α (Wang et al., 2015).  
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CHAPTER 2. METHOD 

2.1 Animals 

All animal experiments are proved by Purdue University’s Animal Care and Use 

Committee. Mice were maintained in the Purdue Life Science Animal building. Mice 

room temperature was set at 27°C and lighting was set on a 12 h light (6 a.m. to 6 

p.m.)/dark (6 p.m. to 6 a.m.) cycle. Humidity and temperature were automatically 

controlled. Mice were fed with autoclaved chow diet and clean water. Sick mice were 

euthanized by CO2 and death was confirmed by surgical spinal cord dislocation Purdue 

Life Science Animal building. For experimental dissection, mice were sacrificed by 

surgical spinal cord dislocation in Lab. 

All mice used in this experiment were brought from Jackson Lab: Pax7CreER/+ 

(#012476), MyodCre/+ (#014140), HIF1αflox/flox (#007561) and HIF2αflox/flox (#008407). All 

mice were C57/B6 background. To obtain the MyodCre-HIFdKO and Pax7CreER-

HIFdKO mice, the following breeding strategy was used. MyodCre/+ mice were breeding 

with HIF1af/f mice to get MyodCre/+ HIF1af/+ mice. MyodCre/+ HIF1af/+ mice were 

breed with HIF2af/f mice to obtain MyodCre+/- HIF1af/+ HIF2af/+ and HIF1af/+ 

HIF2af/+mice. MyodCre+/- HIF1af/+ HIF2af/+ mice cross with HIF1af/+ HIF2af/+ mice 

to obtain MyodCre-HIFdKO mice and control mice. Similar strategy was used to obtain 

Pax7CreER-HIFdKO mice. 

2.2 Genotyping 

Genotypes were confirmed using PCR analysis according to instructions provided 

by the Jackson Laboratory. The agents used for one 15μl PCR reaction system were: 



73 

 

13l mix buffer (1.5μl 10X PCR buffer (Feldan), 0.3μl of 25mM dNTP (Feldan), 0.6μl 

DMSO, 1.2μl primer mix (20pm each),0.075μl DNA polymerase (Bio Canada INC) and 

9.5μl purified H2O) mixed with 2μl DNA template. The primers used for genotyping 

were listed in table below. 

 

Table 1 Primers, anneal temperature and correspond size of band and genotype. 

Target 

Gene 
Primer Sequence Anneal T 

Size and  

Genotype 

MyoDCre CAC GAC TGC TTT CTT CAC CA  65 
wild type 161 

bp 

  AAG TCT ATG TCC CGG AGT GG    mutant 320 bp 

  CAA GGG ACA TCT TCC CAT TC      

Pax7CreER GCT GCT GTT GAT TAC CTG GC 68 
Mutant 235 

bp 

  
CTG CAC TGA GAC AGG ACC G   

Wild type 419 

bp 

  CAA AAG ACG GCA ATA TGG TG     

HIF1af/f TGC ATG TGT ATG GGT GTT TTG 65 
wild type 99 

bp 

  
GAA AAC TGT CTG TAA CTT CAT 

TTC C 
  mutant 120 bp 

HIF2af/f GAG AGC AGC TTC TCC TGG AA 59 
wild type 182 

bp 

  TGT AGG CAA GGA AAC CAA GG   mutant 220 bp 
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2.3 Conditional Knockout Induction 

HIF1α and HIF2α deletion induction in animals: 

The flox site HIF1αf/fHIF2αf/f can be deleted after tamoxifen induction due to the 

Pax7CreER mice expressing tamoxifen inducible Cre-recombinase. Thus to induce 

HIF1α and 2α double knock-out in mice, we IP injected tamoxifen to mice every day for 

5 days. For adult mice, 100µl tamoxifen/corn oil solution for each mouse is effective for 

inducing recombination. Tamoxifen solution was prepared as described below: 

Dissolve 500 mg of Tamoxifen in 5ml 100% ethanol in a 50 ml tube. After the tamoxifen 

was totally dissolved in ethanol, add 40 ml autoclaved sunflower oil. Protect the Falcon 

tube from light and spin and evaporate for 30 min. Separate the tamoxifen in 1.7 ml 

tubes, store at -20 C and protect from light. 

Knockout induction in myoblasts: 

HIF1/2a knocking out in myoblasts is induced by 4-OH-tamoxifen. Myoblasts were 

cultured in DMEM medium containing 4-OH-tamoxifen. After two days of induction, 

remove culture medium and wash cells with PBS. After cultured for two more days, 

check knocking out efficiency by mRNA level.   

2.4 Muscle Injury and Regeneration 

In general muscle injury is induced by cardiotoxin (CTX) injection. For tensor 

tibialis (TA) muscle, 50ul (10μM) CTX was injected into the middle of TA muscle. To 

ensure evenly injury, the needle was parallel injected into TA muscle. Slightly withdraw 

the needle as injection goes. For one mouse, left leg was injected with CTX to induce 

injury, another as control was injected with saline the same way. After 7 days of 

regeneration, muscle samples were collected and tested for the regeneration status. 
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2.5 C2C12 and OP9 Cell Line Culture 

The classic myoblast cell line C2C12 were used for luciferase assay. OP9 cell line 

was used for induce continuously activation of Notch signaling. C2C12 and OP9 cells 

were cultured in DMEM with 10% FBS, 1% Penicillin / Streptomycin. Medium was 

changed every other day. Cells were passaged when reaching 80% confluent.  

To continuously induce Notch signaling, primary myoblasts were co-cultured with 

80% confluent OP9 cells in myoblast culture media (Gibco Ham’s F-10 medium, 20% 

FBS, 1% penicillin/streptomycin P/S, 0.1% bFGF). After 2 days culture, analyze the cell 

state of primary myoblasts. 

2.6 Primary Myoblast Isolation and Culture 

Mouse hind limb muscles were collected, minced, and digested in 2.5ml of 

collagenase/dispase solution (Roche, 10ug/ml collagenase B, 2.4U/ml dispase in PBS) for 

30 minutes. The digestion was stopped by myoblast culture media (Gibco Ham’s F-10 

medium, 20% FBS, 1% penicillin/streptomycin P/S, 0.1% bFGF). The digested medium 

was passed through a 100μm cell strainer and spun down at 450g for 5min. The pellets 

were suspended in culture medium and cultured at 37°C with 5% CO2. Fresh medium 

was added daily during the first 3 days. Starting from day 3, medium was changed every 

other day until 70% confluence for 3 or 4 passages was achieved.  

2.7 Single Fiber Isolation and Culture 

Extensor digitorum longus (EDL) muscles from 10-week-old mice were isolated 

and digested in single fiber digestion solution (0.2% collagenase I in Dulbecco’s 

Modified Eagle Medium or DMEM) for 30 minutes in 37°C water bath with gentle 
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shaking every 5 min. Single fibers were dissociated by gently pipetting with glass 

pipettes and intact fibers were collected. To test satellite cell number, isolated single 

fibers were transferred into fixative reagents (4% paraformaldehyde PFA solution) for 

staining. For single fiber culture, isolated single fibers were transferred to horse serum 

coated culture dish and cultured in culture media (Dulbecco’s Modified Eagle’s Medium, 

20% FBS, 1% penicillin/streptomycin (P/S), 0.1% bFGF).  

2.8 Hypoxia Treatment  

To induce hypoxia, cells were cultured in a hypoxia chamber for 72 hours in 1% O2 

level. Gas was refilled every day. To mimic hypoxic conditions, cells were treated with 

CoCl2 (final concentration 150 μM) for 6 hours. 

2.9 Hematoxylin and Eosin (H&E) Staining 

TA and Extensor digitorum longus (EDL) muscles were collected and submerged 

in optimal cutting temperature compound (OCT) using dry ice-cold 2-methol-butane. 

Cryosections (10 μm) were obtained and washed with PBS, emerged in Hematoxylin for 

5min, rinsed with deionized water, and then incubated in eosin for 2 minutes. Slides were 

then dried with sequential 75%, 95% and 100% alcohol (1min each), placed in Xylene for 

5 min and mounted with mounting medium.  

2.10 Immunohistochemistry 

Muscle transversal cryosections, muscle fibers or cells obtained were fixed with 

4% paraformaldehyde (PFA) solution for 10 minutes, incubated in 100mM glycine 

solution and rinsed with PBS 3 times. The products were blocked in blocking buffer (5% 
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goat serum, 2% BSA, 0.2% triton X-100 and 0.1% sodium azide in PBS) for 1 hour at 

room temperature, incubated in primary antibodies diluted with blocking buffer overnight 

at 4°C and washed with PBS 3 times. PBS-diluted secondary antibodies conjugated with 

4',6-diamidino-2-phenylindole (DAPI) were then applied for 1 hour at room temperature, 

followed by 3 PBS rinses. Final products were mount with Dako fluorescent mounting 

media (Glostrup, Denmark) and imaged with Coolsnap HQ CCD camera (photometrics, 

USA) driven by IP Lab software (ScanalyticsInc, USA) using Leica DMI 6000B 

fluorescent microscope. Primary antibodies: Pax7 1:20 (Developmental Studies 

Hybridoma Bank), MyoD (Santa Cruz M-318, CA) 1:500. Secondary antibodies: 1:1000. 

Quantification of myofiber size were conducted by ImageJ software.  

2.11 Relative mRNA Level by qPCR 

Quantitative realtime polymerase chain reaction (qPCR) analysis was performed 

using a Roche Lightcycler 480 system. Total RNA was extracted by Trizol and 4 μg of 

RNA was converted into cDNA using MMLV reverse transcriptase and random hexamer 

primers. For each qPCR reaction, 5μl SYBR Green Mastermix (Roche), 0.2μl of each 

primer (20μM) and 4.6μl cDNA (2ng/ul) were mixed. Relative fold changes were 

calculated using 2-ΔΔCT method and 18s gene as a housekeeping control. All primers 

used are listed below. 
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18S 
AACGGTCTAGACAACAAGCTG 

AGTGGTCTTGGTGTGCTGAC 

HIF1α 
TCTCGGCGAAGCAAAGAGTC 

AGCCATCTAGGGCTTTCAGATAA 

HIF2α 
GTGCTCCCACGGCCTGTA 

TTGTCACACCTATGGCATATCACA 

HES1 
CCAGCCAGTGTCAACACGA 

AATGCCGGGAGCTATCTTTCT 

HES2 
CTGAAGGGTCTCGTATTGCCG 

CGCAGGTGCTCTAGTAGGC 

HES3 
GCACGCATCAACGTGTCAC 

TGAGTTCTGGAGGCTTCTCAT 

HEY2 
AAGCGCCCTTGTGAGGAAAC 

GGTAGTTGTCGGTGAATTGGAC 

HEYL 
CAGCCCTTCGCAGATGCAA 

CCAATCGTCGCAATTCAGAAAG 

HES6 
ACCACCTGCTAGAATCCATGC 

GCACCCGGTTTAGTTCAGC 

 

2.12 Western Blot 

Total protein was isolated from cells using RIPA buffer (pH8.0 50mM Tris-HCL, 

150mMNaCl, 1%NP-40, 0.5% sodium deoxycholate and 0.1% SDS). Concentrations 

were determined by BCA Protein Assay Reagent (Pierce Biotechnology, Rockford, IL). 

Proteins adjusted to the same concentrations and volumes were separated by sodium 

dodecyl sulfate PAGE (SDS-PAGE), transferred to a polyvinylidene fluoride (PVDF) 

membrane (Millipore Corporation, Billerica, MA), blocked with 4% milk, and incubated 

with the diluted primary antibodies at 4°C overnight. HIF1α primary antibodies (NB100-
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105, Novus Biologicals, IL) were used with 1:500 dilutions, NICD primary antibodies 

(ab8925, Abcam) were used as 1:2000, α-tubuline primary antibodies (B-7, Santa Cruz, 

CA) were used as 1:1000 dilution. Band detection was performed using enhanced 

chemiluminescence (ECL) western blotting substrate (Pierce Biotechnology, Rockford, 

IL) and detected with a FluorChem R protein imaging system (Protein Simple, CA, 

USA). 

2.13 Image Analysis 

Protein intensity was captured from western blot by NIH imageJ software. For each 

protein, the intensity was measured from each band using gel analysis method. Relative 

protein content was calculated as each protein intensity divided by α-tubulin intensity. 

Statistical analysis was used for relative protein content comparison.  

2.14 Statistics Analysis 

Data are presented as mean ± standard error mean (SEM). Numbers represent 

biological replicates unless indicated. P-values were calculated using two-tailed student t-

test (* P<0.05, ** P<0.01, ***p<0.005). 

  



80 

 

CHAPTER 3. RESULTS 

3.1 Myodcre Mediated Double Knockout of HIF1αααα and HIF2αααα does Not Affect 

Muscle Development 

Previous studies have shown that HIF1α are indispensable for embryonic 

development, and global loss of HIF1α leads to lethality (Forristal et al., 2010; Iyer et 

aliningn., 1998; Simon and Keith, 2008). HIF2α deficient mice develop severe vascular 

defects and show developmental arrest between E9.5 and E12.5 with variability 

depending on the genetic background (Compernolle et al., 2002; Forristal et al., 2010). 

Hence, the tissue–specific function of HIFs in muscle development remains unclear. As 

Pax3Cre-mediated specific deletion of HIF1α in embryonic satellite cells results in 

apparently normal skeletal muscles (Majmundar et al., 2015), we sought to examine 

whether HIF1α and HIF2α play redundant role in muscle development. To achieve this, 

we developed the HIF1α and HIF2α double knockout mouse model using the muscle-

specific MyodCre as a driver (Myod-HIFdKO) (Figure 1). Since Myod is specifically and 

ubiquitously activated in proliferating myoblasts, this model should result in deletion of 

HIF1α and HIF2α in muscle progenitors and mature myofibers (Collins et al., 2005; 

Zammit et al., 2004). We designed primers to confirm specific and efficient knock out 

(Figure 1). Indeed, analysis of the amplified mRNA size and relative mRNA levels 

confirmed the specific and efficient knockout of HIFs in the skeletal muscles (Figure 2, 

3).  

Surprisingly, the Myod-HIFdKO mice were born at normal Mendelian ratio and did 

not exhibit any morphological abnormality. Specifically, the initial body weight and 

postnatal growth of Myod-HIFdKO mice were completely normal (Figure 5). Furthermore, 
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the weight and size of various muscles were identical between control and Myod-HIFdKO 

mice (Figure 6). Muscle morphology was also indistinguishable between the two groups 

(Figure 7). Finally, we measured myofiber number and size of EDL muscles and did not 

find any differences between control and Myod-HIFdKO mice (Figure 8). These results 

suggest that HIF1α and HIF2α are dispensable for skeletal muscle development and 

postnatal growth under normal oxygen conditions. 

3.2 HIF1αααα and HIF2αααα Deficiency Impedes Muscle Regeneration  

The normal development and growth of skeletal muscles in the MyoD-HIFdKO mice 

suggest that coordinated angiogenesis and myogenesis may have ensured adequate 

oxygen supply and rendered HIF1α and HIF2α dispensable for embryonic myogenesis. 

By contrast, ischemic low oxygen levels (hypoxia) typically occur following muscle 

injury and during muscle regeneration (Merrick, 2002). Indeed, examination of HIF1α 

and HIF2α expression indicates that HIF1α protein and mRNA levels rise following 

cardiotoxin (CTX)-induced muscle injury, peaking at 2–3 days post injury (DPI) when 

active myoblast proliferation occurs (Figure 9, 10). However, HIF2α levels decrease 

dramatically upon injury-induced myofiber degeneration and gradually return to the 

normal level at the completion of muscle regeneration (Figure 11). The in vivo dynamics 

of HIF1α and HIF2α during muscle regeneration suggest that HIF1α is mainly expressed 

in myoblasts but HIF2 is mainly expressed in myofibers. Consistent with this notion, 

HIF1α expression is much higher than that of HIF2α in proliferating myoblasts, but 

HIF2α expression is much higher than that of HIF1α in post-differentiation myotubes 

(Figure 12). These results suggest that regenerative muscles are challenged by hypoxia, 
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and HIF1α and HIF2α may play stage-specific functions in myoblasts and myofibers, 

respectively. 

To identify the role of HIF1α and HIF2α in satellite cell-mediated muscle 

regeneration, we used satellite cell specific Pax7CreER to drive double knockout of HIF1α 

and HIF2α (Pax7CreER-HIFdKO) (Halevy et al., 2004; Olguin and Olwin, 2004; Zammit et 

al., 2004) (Figure 13). In this model, HIF1α and HIF2α should be specifically knocked 

out in satellite cells after tamoxifen induction (IP injection). The control group includes 

HIF1αf/f HIF2αf/f mice similarly injected with tamoxifen. To confirm the efficiency of 

tamoxifen induced knockout, we measured the HIF1α and HIF2α mRNA level in 

satellite cells isolated from tamoxifen induced mice. This analysis showed that HIF1α 

and HIF2α were efficiently knocked out in myoblasts (Figure 14).  

Following tamoxifen-induced deletion of HIF1α and HIF2α in satellite cells, CTX 

was injected into TA muscle to induce muscle regeneration in both control and Pax7CreER-

HIFdKO mice. Samples were collected 7 DPI (Figure 15). Compared with those of control 

mice, the CTX-injected TA muscles of Pax7CreER-HIFdKO mice exhibited a decreased size 

and a significantly lower muscle weight (Figure 15, 18). Compared to the control 

muscles, TA muscles of Pax7CreER-HIFdKO mice were poorly regenerated, manifested by 

fewer newly regenerated, central nucleated myofibers but increased infiltration of non-

muscle cells (Figure 16, 17). We also measured the regenerated and non-regenerated 

areas from cross sections of control mice and Pax7CreER-HIFdKO mice. Pax7CreER-HIFdKO 

mice exhibited a lower regenerative area as well as a higher non-regenerative region 

(Figure 19). Thus, we conclude that HIF1α and HIF2α deficiency impairs muscle 

regeneration. 
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3.3 HIF1αααα and HIF2αααα Deficiency Decrease Satellite Cell Number during Muscle 

Regeneration 

As satellite cells are the main driving force of muscle regeneration (Kuang and 

Rudnicki, 2008), we next investigated if defective muscle regeneration is associated with 

reduced satellite cell number or function. To assess the satellite cell numbers during 

regeneration, we used Pax7 as a satellite cell marker (Seale et al., 2000). Pax7 positive 

cells were measured both in normal muscle and regenerative muscle from Pax7CreER-

HIFdKO and control mice. Judging from TA cross-sections (Figure 20), Pax7CreER-HIFdKO 

mice showed a significantly decreased satellite cell numbers compared with control mice 

at 7 DPI (Figure 22), while the satellite cell numbers in normal muscle are identical 

(Figure 22). Therefore, we hypothesized that the impaired muscle regeneration may be a 

consequence of the reduced satellite cell number during regeneration. To confirm our 

hypothesis, we also counted satellite cells in fresh–isolated regenerated myofibers (Figure 

21). Consistent with the cross-section results, a significantly decreased satellite cell 

number was observed on the myofibers (Figure 23). We conclude that HIF1α and HIF2α 

deficiency impairs muscle regeneration by decreasing satellite cell number. 

3.4 HIF1αααα and HIF2αααα Deficiency Inhibits Self-Renewal But Promotes 

Differentiation of Satellite Cells  

Satellite cells undergo self-renewal to maintain the stem cell pool (Relaix and 

Zammit, 2012; Wang et al., 2014b). We hypothesized that the decreased satellite cell 

population in Pax7CreER-HIFdKO mice may be due to insufficient self-renewal. To test this 

possibility, we assessed the self-renewal and differentiation ratio in HIF1α/2α dKO and 

control myoblast under hypoxia. To induce the knockout of HIF1α and HIF2α in 

cultured myoblasts, we isolated myoblasts from Pax7CreER-HIF1αf/fHIF2αf/f and 
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HIF1αf/fHIF2αf/f mice, and then treated the primary myoblasts with 4-hydroxyl 

tamoxifen (4-OH-TMX) for 2 days. After 2 days removal of 4-OH-TMX, we confirmed 

an efficient knockout as described before.  

At 72 h after hypoxia (1% O2) treatment, we used a well-documented method to 

classify cell status as self-renewed (Pax7+/MyoD-), proliferating (Pax7+/MyoD+) and 

differentiating (Pax7-/MyoD+) (Figure 24) (Halevy et al., 2004; Olguin and Olwin, 2004; 

Zammit et al., 2004). Under normoxia condition (21% O2), no difference in cell status 

distribution was observed between the two groups (Figure 25). However, under the 

hypoxic state, HIF1α/2α dKO myoblast showed a significantly reduced self-renewal 

ratio and a relatively higher level of differentiation (Figure 26). Consistent with our 

previous results (Liu et al., 2012b), increased self-renewal was found in the hypoxia 

group compared with the normoxia group in control myoblasts. However, the hypoxia-

enhanced self-renewal was largely diminished by HIF1α and HIF2α dKO, indicating that 

hypoxia promotes self-renewal through HIF1α and HIF2α.  

Muscle satellite cells natively reside underneath the basal lamina, surrounded by 

the membrane of myofiber and basal lamina, forming a microenvironment (Katz and 

Miledi, 1961). To mimic the impact of hypoxia on satellite cell self-renewal in a 

physiological microenvironment, we isolated single myofibers from Pax7CreER-HIFdKO 

and HIF1αf/fHIF2αf/f mice. After culturing under either hypoxia or normoxia condition 

for 72 hours, cultured single fibers were fixed for cell cycle state assay (Figure 27). 

Under normoxia state, the proliferating satellite cells number showed no significant 

difference between control and HIFdKO myofibers (Figure 28). In addition, the self-

renewal and differentiating ratio is similar between control and HIFdKO myofibers 
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(Figure 29). However, control myofiber exhibited more proliferated myoblast and more 

myoblast cluster under hypoxia condition (Figure 30). Also, consistent with our primary 

myoblast culture results, under the hypoxic state, HIFdKO single fibers showed an 

increased ratio of differentiating and lower ratio of self-renewal compared with control 

myofibers (Figure 31).  

It has been wildly accepted that hypoxia can inhibit myoblast differentiation. 

However whether HIF1/2α participates in inhibition of myoblast differentiation is still 

unclear. Thus, we induced control and Pax7Cre-HIFdKO myoblast differentiation under 

hypoxia to investigate the function of HIF1/2α in hypoxia induced differentiation 

inhibition. After 1.5 days induction culture in hypoxia, MF20 staining were used for 

demonstrating new formed myotube (Figure 32). To test the myoblast differentiation rate, 

we quantified myoblast fusion index. We found a significantly promoted myoblast 

differentiation and myotube formation, which indicates that HIF1α and HIF2α deficiency 

promotes satellite cell differentiation in hypoxia (Figure 33).   

Thus we conclude that HIF1α and HIF2α deficiency inhibits satellite cell self-

renewal and promotes their differentiation under the hypoxic state.     

3.5 HIF1αααα and HIF2αααα Promote Satellite Cells Self-Renewal through Notch 

Signaling 

Previous studies have shown that hypoxia activates Notch signaling in myoblasts, 

and subsequently promotes self-renewal and inhibits differentiation (Gustafsson et al., 

2005a; Liu et al., 2012b). We hence hypothesized that HIF1α and HIF2α may promote 

satellite cell self-renewal through enhancing Notch signaling. To determine how HIF1α 

and HIF2α affect Notch signaling, we induced deletion of HIF1α and HIF2α by 
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adenovirus–Cre/GFP transduction into HIF1αf/fHIF2αf/f myoblasts. Adenovirus–GFP was 

used in parallel as a control. After 24 hours of adenovirus infection, Successful HIF1/2α 

knockout was evident in the significantly reduced expression of HIF1α and HIF2α 

mRNA levels (Figure 34). Also, we observed a dramatically decreased HIF1α protein 

level under hypoxia, indicating a successfully induced knockout (Figure 37).  

We next evaluated Notch activation based on the level of Notch1 intercellular 

domain (NICD), which is proteolytically cleaved following Notch activation (Conboy 

and Rando, 2002b; Kopan et al., 1994). Under normoxia conditions, NICD levels were 

similar between HIFdKO and control groups (Figure 35, 36), suggesting that HIF1α and 

HIF2α do not affect Notch signaling under normoxia. However, after 6 hours CoCl2 

treatment (to mimic hypoxia), NICD level in HIF1α/2α dKO group was lower level than 

that in the HIF1αf/f HIF2αf/f group (Figure 37, 39). These results suggest that deletion of 

HIFs blunts hypoxia-induced activation of Notch signaling in myoblasts. To further 

confirm this notion, we examined the expression of Notch target genes. In the control 

myoblasts, Hes2 and Hey2 were significantly increased, whereas Hes6 was dramatically 

decreased by CoCl2 treatment, indicating that hypoxia activates Notch signaling (Figure 

40). But in the HIF1α/2α dKO group, CoCl2 treatment had no effects on the expression 

of Notch target genes (Figure 41). Furthermore, whereas CoCl2 treatment significantly 

increased the level of Pax7 in control myoblasts, it had no effect on Pax7 expression in 

HIF1α and HIF2α deficient myoblasts (Figure 42). These results demonstrate that HIF1α 

and HIF2α are required for hypoxia-induced activation of Notch signaling and 

upregulation of Pax7, the key transcriptional determinant of muscle stem cell fate.  
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3.6 Constitutive Activation of Notch Signaling Rescues HIFdKO Induced 

Inhibition of Satellite Cells Self-Renewal 

To further confirm our hypothesis that hypoxia induced HIF1/2α promote satellite 

cells self-renewal through Notch signaling, we tested whether constitutive activation of 

Notch signaling can rescue HIFdKO induced inhibition of satellite cells self-renewal.  

To constitutive activate Notch signaling in myoblast, we co-cultured HIFdKO and 

control myoblast with OP9 cells (Lehar et al., 2005). It has been demonstrated that OP9 

cell lines highly express Dll1 (Notch ligands). Notch signaling is activated when Notch 

receptors binding with Notch ligands. Cells co-cultured with OP9 cells would be Notch 

signaling constitutive activated. After 72 hours hypoxia co-culture, we tested myoblast 

cell status as described before (Figure 43). Consistent with our hypothesis, HIFdKO 

myoblast exhibited similar self-renewal and differentiating ratio with control myoblast 

(Figure 44). Which means the HIFdKO induced inhibition of self-renewal is polished by 

activation of Notch signaling. Thus, we can conclude that HIF1/2α can promote satellite 

cells through Notch. 
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CHAPTER 4. SUMMARY AND DISCUSSION 

4.1 Discussion 

Given the important role that HIF1α plays in embryonic development, we expected 

to identify their specific functions in muscle satellite cells. However, previous studies have 

shown that Pax3-triggered satellite cell specific HIF1α knockout not alter embryonic 

muscle development (Majundar et al., 2015). The inconsistency between expectations and 

observations made us hypothesize that the complementary function of HIF2α may rescue 

HIF1α deficiency. However, our results demonstrated that Myod-HIFdKO mice exhibited 

normal myofiber size and number in adults, suggesting that HIF1α and HIF2α are 

dispensable for normal muscle development. However, whether HIF3α plays a 

compensatory role in the absence of HIF1α and HIF2α has yet to be determined.  

Following muscle injury, skeletal muscle progenitor cells are challenged by hypoxia 

due to combined reduction of oxygen supply (caused by degeneration of blood vessels) and 

higher oxygen (or energy) demand during regeneration (Merrick, 2002). Our data, 

consistent with previous studies, shows that HIF1α expression is elevated during muscle 

regeneration, while HIF2α is initially decreased but slowly increases during regeneration. 

These results indicate that HIFs may be necessary for muscle regeneration. As expected, 

in the CTX-induced muscle regeneration model, HIF1α and HIF2α deficient mice 

exhibited impaired muscle regeneration and reduced satellite cell number. Further, our in 

vitro study demonstrates that hypoxia promote satellite cell self-renewal in wildtype 

myoblasts. While HIF1α and HIF2α deficiency diminishes the effect of hypoxia on self-

renewal, indicating that hypoxia-enhanced self-renewal is largely dependent on HIF1α and 

HIF2α.  
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Our previous research has demonstrated that hypoxia promotes satellite cell self-

renewal and enhances the efficiency of myoblast transplantation (Liu et al., 2012b). 

Additionally, the hypoxia-induced enhancement of self-renewal was highly dependent on 

Notch signaling activation. Hypoxia also activates Notch signaling in other tissues (Clarke 

and van der Kooy, 2009; Eliasson and Jonsson, 2010). In the present study, we confirmed 

our previous results, and furthermore, we found that hypoxia-induced activation of Notch 

is dependent on HIF1α and HIF2α, which are stabilized by hypoxia. Upon the double 

knockout of HIF1α and HIF2α, hypoxia fail to upregulate NICD, pointing to the critical 

function of HIF1α and HIF2α in mediating the effect of hypoxia on Notch signaling. In 

this regard, the diminished promotion of Notch signaling abolishes the hypoxia-induced 

upregulation of Pax7 and further decreased satellite cell self-renewal in the HIF1α2α dKO 

myoblasts. 

In the present study, we demonstrate that the HIF-Notch axis controls satellite cell 

self-renewal in adult muscle regeneration. For the first time, we show that injury-induced 

increase of HIF1α and HIF2α contributes to the maintenance and long-term homeostasis 

of satellite cells by promoting their self-renewal. Interestingly, HIF1α and HIF2α are both 

dispensable for embryonic myogenesis. There are two potential explanations for this. First, 

even though developing embryos are exposed to a hypoxic environment, all cells in the 

embryo are not under the same hypoxic condition. It has been reported that cells in various 

regions of the embryo are challenged by different levels of hypoxia (Ream et al., 2008). 

Thus, embryonic muscle progenitors may be sufficiently oxygenated to render HIFs 

dispensable. As HIFs mediate hypoxia-induced activation of Notch signaling, an 

alternative possibility is that embryonic myoblasts exhibit sufficiently high level of Notch 
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signaling even in the absence of HIF1α and HIF2α. Indeed, it has been shown that muscle 

progenitors in embryonic stage intrinsically express high level of Notch (Vasyutina et al., 

2007). During injury, however, a temporal switch from Notch to Wnt signaling is required 

for normal adult myogenesis (Brack et al., 2008). Hence, hypoxia-induced activation of 

Notch may switch a subpopulation of activated satellite cells to self-renewal, preventing 

excessive myogenic differentiation and maintaining a sustainable pool of satellite cells. 

Our finding broadens the understanding of the mechanisms underlying the 

microenvironment and oxygen level involved in the muscle regeneration process and 

provides novel insights into therapies for muscle diseases and improving muscle function. 

4.2 Future Research 

In the present study, we clearly demonstrated that HIF1α and HIF2α double 

knockout impedes adult muscle regeneration through inhibition of Notch signaling. 

However, there are two important but still unclear questions yet to be answered.  

The first question is: Given the critical roles of HIFs in embryonic development, why 

double knockout of HIF1α and HIF2α does not impact muscle development? One 

possibility is that HIF1α and HIF2α may impact embryonic muscle development only 

when the oxygen is under certain level. As described before, the significant impact of 

hypoxia on myoblast was observed only when oxygen level is less than 2%. The fact is that 

although the oxygen level in embryo is lower than that in postnatal individuals, it is still 

high enough which may not be able to trigger the hypoxia reactions in muscle. To 

investigate the role of HIF1α and HIF2α in embryonic muscle development, what could 

be done is to challenge pregnant mice with hypoxia to induce even lower oxygen level in 
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embryo. By comparing the development of normal and HIF1α/HIF2α deficient muscle 

under severe hypoxia state, the function of HIF1α and HIF2α in embryonic muscle 

development could be further determined.         

The second question is: What is the function of HIF3α in satellite cells? Because of 

lack the mice model, we were unable to test whether HIF3α deficiency affects muscle and 

satellite cell function. HIF3α is different from HIF1α and HIF2α. As far as concerned, 

HIF1α and HIF2α function similarly but not identically. However, HIF3α acts as an 

inhibitor of HIF1α and HIF2α through competing with HIF1α and HIF2α for HIF1β 

binding, but drives HIF1β to different promoter regions. Thus, high expression of HIF3α 

can somehow blunt the function of HIF1α and HIF2α. To test the function of HIF3α in 

satellite cell, we could first investigate the impact of HIF3α deficiency on cultured 

myoblast. Further we could introduce HIF3α knockout mice model to test its function in 

vivo. With this regard, still lots of myth need to be classified in terms of the function of 

HIFs in muscle and satellite cell function. 
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4.4 Figures 

 

Figure 1. Breeding and validation strategy of MyodCre-HIFdKO mice. 

HIF1/2α flox/flox mice cross with MyoDCre mice to get MyoDCre-HIFdKO mice. Primers 

were designed in the first exon and the third exon to validate knock out efficiency.  
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Figure 2. Validation of HIF1/2αααα double knockout. 

MyoDCre negative HIF1/2α flox/flox mice were used as control as well as brown fat. RNA 

was extract from tissue and myoblast to generate cDNA. Target piece of cDNA were 

amplified by PCR. MyoD-HIFdKO mice showed a lower knocking out band. (Figures 

provided by Xin Yang.) 
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Figure 3. Validation of knocking out Hif1αααα and Hif2αααα by mRNA content. 

Total RNA isolated from myoblasts was used for validating HIF1/2 α knocking out. 

HIF1α and HIF2α mRNA showed a significant decrease in knock out group compared to 

control. (3 pair of Control and HIFdKO myoblast were used for student t test analysis, 

***p<0.005)  
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Figure 4. Representative picture of MyodCre HIFdKO mice and control mice. 

In terms of size, Myod-HIFdKO mice showed no significant difference with control mice. 

(Figures are provided by Xin Yang) 
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Figure 5. Post-natal growth curve of Myod-HIFdKO and control mice. 

Myod-HIFdKO (n=8) mice and Control (n=10) mice were weighed weekly beginning at 

weaning, and showed no difference in body weight across the 12 weeks of analysis. 

(Figures are provided by Xin Yang) 
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Figure 6 Muscle weight of Myod-HIFdKO mice and Control mice. 

At 12 weeks of age tendon tibialis (TA), soleus (SOL), extensor digitorum longus (EDL), 

and gastrocnemius muscle (GAS) were dissected Myod-HIFdKO mice (n=5) and Control 

(n=5) mice and weighed. There was no significant difference in muscle weight between 

the treatments. (Figures are provided by Xin Yang) 
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Figure 7. Representative picture of dystrophin staining of TA muscle from control 

and Myod-HIFdKO mice cross-section. 

TA muscle was dissected from 10 week-old mice, submerged in OCT, plunged in liquid 

nitrogen and cryosectioned. Sections from A) control and B) Myod-HIF muscle tissue 

were stained with distrophin (red) issue DAPI (blue) to visualize muscle fibers. Images 

were used to measure muscle fiber size and number. Dystrophin staining was used to 

quantify muscle fiber size and number. 
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Figure 8. Quantification of myofiber size and number. 

Myofiber size was quantified in cross-sections of TA muscles (Fig. 7) using imageJ 

software. Myofiber number was quantified by total number in each cross-section. Myod-

HIFdKO mice did not show any significant difference in terms of myofiber size and 

number. (Samples taken from 5 Myod-HIFdKO and 5 control mice were analyzed for 

statistics.) 
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Figure 9. Western blot of HIF1αααα level during regeneration of TA muscle. 

Injury TA muscle was dissected from mice (n=5). HIF1α content was significantly 

increased after injury and reached peak 2 days post injury. As regeneration goes on, 

HIF1α protein level returns to normal. 
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Figure 10. Relative mRNA level of HIF1αααα after injury. 

Injury and control muscles were taken from 3 pairs of mice. HIF1α mRNA level 

significantly increased after injury and returned to normal condition by 14 days post CTX 

injection. Paired t test were used for statistical analysis. *p<0.05, **p<0.01) 
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Figure 11. Relative mRNA level of HIF2αααα after injury. 

After injury, HIF2α mRNA was significantly decreased and return to normal level during 

regeneration. (Injury and control muscles were taken from 3 mice as paired. Paired t test 

were used for statistical analysis. ***p<0.005, **p<0.01) (Figures are provided by Xin 

Yang) 
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Figure 12. Different expression level pattern of HIF1αααα HIF2αααα in myoblast and 

myotube. 

Samples were collected from 3 pairs of myoblast and myotube HIF1α levels were greater 

in myoblasts compared to myotube, while HIF2α level was higher in myotube versus 

myoblast. (paired t test. *p<0.05, **p<0.01) 
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Figure 13. Breeding and validation strategy of Pax7 CreER double Knock out mice. 

HIF1/2αflox/flox mice cross with Pax7 CreER mice to get Pax7CreER HIF1/2αflox/flox mice. 

After Tamoxifen injection, Cre cleaves the second exon of HIF1α and HIF2α. Primers 

were designed to the first and third exon to determine knock out efficiency.  
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Figure 14. Validation of HIF1/2αααα knocking out in isolated myoblast. 

Total mRNA extracted from control mice and tamoxifen post injected mice was reverse 

transcribed into cDNA. Target pieces of cDNA were amplified by designed primers. In 

control group, the amplified pieces were around 430 base pair for HIF1α and 670 base 

pair for HIF2α. While in Pax7-HIFdKO group, the amplified pieces were around 240 base 

pair for HIF1α and 480 base pair for HIF2α. (Figures are provided by Xin Yang) 
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Figure 15. Representative picture of regenerated muscle 7 days post injury. 

Pax7CerER-HIFdKO mice showed poorer regeneration than control mice as CTX injured 

muscle was significantly smaller in size in HIF-dKD than saline treated and control. 

(Figures are provided by Xin Yang) 
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Figure 16. Representative picture of H&E stained regenerated muscle cross-section 

in low magnification (20X). 

Pax7CerER-HIFdKO mice exhibit more non-regenerated area and smaller cross-section 

area than control mice. (Figures are provided by Xin Yang) 
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  Pax7CreER-HIFdKO     Control 

Figure 17. Representative picture of H&E stained regenerated muscle cross-section 

at high magnification (200X). 

Pax7CerER-HIFdKO mice exhibit more non-regenerated area and smaller cross-section 

area than control mice. (Scale bar: 25 μm) (Figures are provided by Xin Yang) 
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Figure 18. Impact of Pax7CreER-HIFdKO on muscle weight after 7 days of 

regeneration. 

The weight of regenerated TA muscle was measured 7 days post injury. Muscle weight 

recovery rate was calculated by regenerated muscle divide by non-injured muscle. 

Compared to control muscle, Pax7CreER-HIFdKO mice exhibit lower muscle weight 

recovery rate. (Samples collected from 5 control and 4 Pax7CreER-HIFdKO mice were 

measured for student t test. *p<0.05) (Figures are provided by Xin Yang) 
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Figure 19. Measurement of regenerated area and non-regenerated area. 

The regenerated area and non-regenerated area was measured from TA muscle cross-

section area. Significant decreased regenerated area was noticed in Pax7CreER-HIFdKO 

mice compare to control mice. (Samples collected from 5 control and 4 Pax7CreER-

HIFdKO mice were measured for student t test. *p<0.05, **p<0.01) 
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Figure 20. Representative picture of Pax7 staining of control and regenerated 

muscle cross-section in low magnification. 

Pax7CerER-HIFdKO mice exhibit less satellite cells than control mice. (scale bar: 25 μm) 
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Figure 21. Representative picture of Pax7 staining of control and regenerated 

myofibers. 

Pax7CerER-HIFdKO mice exhibit less satellite cells than control mice 7 days post injury. 

(Scale bar: 25μm) 
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Figure 22. Quantification of satellite cells number from TA cross-section pictures. 

Satellite cells were quantified by Pax7 immunofluorescent staining. Pax7 positive cells 

are considered as muscle satellite cells. Pax7CerER-HIFdKO mice exhibit significantly 

reduced number of satellite cells 7 days post injury. (Samples collected from 5 control 

and 4 Pax7CreER-HIFdKO mice were measured for student t test. *p<0.05) 

  



117 

 

 

Figure 23. Quantification of satellite cells from myofiber Pax7 staining. 

Satellite cells were quantified by Pax7 immunofluorescent staining. Pax7 positive cells 

are considered as muscle satellite cells. Pax7CerER-HIFdKO mice exhibit significantly 

reduced number of satellite cells 7 days post injury. (Samples collected from 5 control 

and 4 Pax7CreER- HIFdKO mice were measured for student t test. *p<0.05) 
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Figure 24. Represent pictures of MyoD/Pax7 staining for control and HIFdKO 

myoblast after cultured in normoxia and hypoxia for 72 hours. 

Satellite cell cycle status were tested by MyoD/Pax7 staining. MyoD single positive cells 

are considered as differentiation, Pax7/MyoD double positive cells are classified as 

proliferation, while Pax7 single positive cells are classified as self-renewal. (Scale bar: 10 

μm) 
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Figure 25. Quantification of Self-renewal, proliferation and differentiation from 

MyoD/Pax7 staining in normoxia. 

Under normoxia condition, the self-renewal, proliferation and differentiation rate 

exhibited no significant difference between Pax7CreER- HIFdKO and control mice. 

(Samples from 4 paired control and Pax7CreER- HIFdKO myoblast were used for 

statistical analysis. Totally, around 500 cell numbers were counted for one sample.) 
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Figure 26. Quantification of Self-renewal, proliferation and differentiation from 

MyoD/Pax7 staining in hypoxia. 

Under hypoxia condition, the self-renewal rate is lower while the differentiation rate is 

higher in Pax7CreER-HIFdKO myoblast compared to control myoblasts. (Samples from 4 

paired control and Pax7-HIFdKO myoblast were used for statistical analysis. Totally, 

around 500 cell numbers were counted for one sample. *p<0.05) 
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Figure 27. Represent picture of MyoD/Pax7 staining for control and HIFdKO 

myofiber after culture in normoxia or hypoxia for 72 hours. 

To mimic in vivo microenvironment, we cultured myofiber in normoxia and hypoxia. 

MyoD/Pax7 staining was used to test cell cycle stages as described before.  
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Figure 28. Quantification of cell number and cluster number after culture myofiber 

under 21%O2 level for 3 days. 

No significant difference was noticed between Pax7CerER-HIFdKO and control mice 

under normoxia condition. (Samples from 4 paired control and Pax7-HIFdKO mice were 

used for statistical analysis. Totally, around 25 myofibers were counted for each sample.) 
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Figure 29. Quantification of cell cycle statues under normoxia condition after 

cultured for 3 days. 

No significant difference was noticed between Pax7CerER-HIFdKO and control mice 

under normoxia condition. (Samples from 4 paired control and Pax7-HIFdKO mice were 

used for statistical analysis. Totally, around 25 myofibers were counted for each sample.) 
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Figure 30. Quantification of cell number and cluster number after 3 days cultured 

under hypoxia states. 

Pax7CerER-HIFdKO myofiber exhibited significant lower number of cluster and low 

number of cells per cluster. (Samples from 4 control and 5 Pax7-HIFdKO mice were used 

for statistical analysis. Totally, around 25 myofibers were counted for each sample. 

*p<0.05) 

 

  



125 

 

 

Figure 31. Quantification of cell cycle statues after culturing isolated myofibers 

under hypoxia states for 3 days. 

Compared to myofibers isolated from control mice, myofibers from Pax7CreER-HIFdKO 

mice showed significantly lower self-renewal ratio and higher differentiation ratio. 

(Samples from 4 control and 5 Pax7-HIFdKO mice were used for statistical analysis. 

Totally, around 25 myofibers were counted for each sample. *p<0.05) 
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Figure 32. Representative picture of control and HIFdKO primary myoblasts induced 

to differentiate in hypoxic conditions for 1.5 days. 

Pax7-HIFdKO and control myoblasts were cultured in differentiation induction medium 

for 1.5 days under hypoxic conditions. To indicate myotube formation ratio, MF20 

staining was used. HIFdKO myoblast exhibited higher differentiation ratio. (Scale bar: 

10μm) 
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Figure 33. Quantification of differentiated myoblasts by fusion index. 

Fusion index was calculated by divide total myoblast number over MF20 positive 

myoblast number. Pax7-HIFdKO myoblast exhibited significant higher differentiated rate. 

(Samples from 4 paired control and Pax7-HIFdKO myoblast were used for statistical 

analysis, *p<0.05) 
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Figure 34. Relative mRNA of HIF1αααα and HIF2αααα after 24 transfection of adenovirus 

loaded Cre. 

Total RNA was isolated from HIF1/2α double flox myoblasts transfected with 

adenovirus loaded Cre or adenovirus loaded GFP and q-PCR was used to measure 

relative expression of HIF1α and HIF2α (Samples were collected from 3 pairs of control 

and HIFdKO myoblast, student t test were used for statistical analysis. ***p<0.005)  
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Figure 35. Western blot of NICD in control myoblast and HIFdKO myoblast after 

48 hours culture under normoxia condition. 

HIF1/2α double flox myoblast were treated by Adenovirus loaded Cre to induce knock 

out of HIF1/2α. Adenovirus loaded GFP was transfected into myoblast as control to 

diminish the side effect of transfection. After 48 hours culture, cellular protein was 

extracted and analyzed by western blot. 
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Figure 36. Quantification of NICD from Western blot of control myoblast and 

HIFdKO myoblast under normoxia condition. 

Quantification of NICD level was conducted by using imageJ software by measuring the 

intensity of the represented blot band. There was no significant difference observed 

between control and HIFdKO myoblast. (N=3) 
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Figure 37. Western blot result of NICD and HIF1αααα from HIFdKO myoblast and 

control myoblast after 48 hours culture under hypoxia condition. 
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Figure 38. Quantification of HIF1αααα protein content. 

HIF1a protein content was measured using intensity of represent bands in western blot. 

The HIF1α protein content was significantly lower in HIFdKO myoblast than in control 

myoblast (N=3, ***p<0.005). 
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Figure 39. Double knocking out HIF1αααα and HIF2αααα decrease NICD in hypoxic 

conditions. 

NICD protein content was measured using intensity of represent bands in western blot. 

The NICD protein content was significantly lower in HIFdKO myoblast than in control 

myoblast. (N=3, *p<0.05) 
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Figure 40. Notch target gene expression level changes before and after hypoxia 

treatment in control myoblast. 

In control myoblasts, Notch activated genes were significantly upregulated after hypoxia 

treatment. (Samples from 5 paired control and HIFdKO myoblast were used for statistical 

analysis. *p<0.05) 
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Figure 41. Notch target gene expression level changes before and after hypoxia 

treatment in HIFdKO myoblast. 

In HIFdKO myoblasts, the promotion of Notch activated genes were significantly 

blocked after HIFdKO in hypoxia treatment. (Samples from 5 paired control and 

HIFdKO myoblast were used for statistical analysis. *p<0.05) 
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Figure 42. Pax7 mRNA expression in control and HIFdKO myoblast before and 

after 48 hours hypoxia treatment. 

Pax7 expression level was significantly elevated in control myoblast after hypoxia 

treatment. While in HIFdKO myoblast, Pax7 expression changes not significantly after 

hypoxia treatment. (Samples from 5 paired control and HIFdKO myoblast were used for 

statistical analysis. *p<0.05) 
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Figure 43. Represent picture of Pax7/Myod staining of OP9 co-cultured myoblasts. 

OP9 cell lines were used for continuously activation of Notch for rescue HIFdKO. 

Myoblasts were co-cultured with OP9 cells for two days for cell stage analysis. 
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Figure 44. Quantification of cell stages for OP9 co-cultured myoblast. 

There was no significant difference in cell states noticed between control and HIFdKO 

myoblast after continuously activation of Notch signaling. (Samples from 4 paired 

control and Pax7-HIFdKO myoblast were used for statistical analysis.) 
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