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GLOSSARY 

Event detection - The methodology of utilizing social networks to determine whether 
special events, such as holidays, sport games, earthquakes, crimes, are happening. 

Hashtag - A word or phrase proceeded by “#”. 

Tweet - An 140-character message posted by Twitter users. 

Twitter - An online social networking service. 
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ABSTRACT 

Yang, Shih-Feng. M.S., Purdue University, December 2016. An Event Detection 
Approach Based On Twitter Hashtags. Major Professor: Julia Taylor Rayz. 

Twitter is one of the most popular microblogging services in the world. The great 

amount of information made Twitter an important information channel for people to 

know and share news. Hashtag is a popular feature when people use Twitter. It can be 

taken as human labeled information and is useful for people to identify the topic of a 

tweet. Many researchers have proposed event-detection approaches that can monitor 

Twitter data and determine whether special events, such as accidents, extreme weather, 

earthquakes, or crimes, are happening. Although many approaches considered hashtag as 

one of their features, few of them explicitly focused on the effectiveness of using hashtag 

on event detection. In this study, we proposed an event detection approach that utilizes 

hashtags in tweets. We adopted the feature extraction used in STREAMCUBE (Feng et 

al., 2015) and applied a clustering K-means approach (Lloyd, 1982) to it. The 

experiments were conducted on 20,514 tweets with 8,616 hashtags collected between 

November 13, 2015 and November 17, 2015 with general topic of the Paris Attacks. A 

randomly sampled subset of 200 tweets was also manually labeled by a human subject to 

verify the approach. Based on the collected tweets, we demonstrated that the K-means 
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approach could perform better than STREAMCUBE in the clustering results. Also, we 

discussed how to set the K values for the K-means approach to lead to a better clustering 

performance.  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CHAPTER 1. INTRODUCTION 

1.1 Background 

Twitter is one of the most popular microblogging services in the world. There are 

more than 500 million Twitter posts (i.e., tweets) generated per day and around 200 

billion per year. The great amount of information made Twitter an important information 

channel for people to know and share news. Twitter has several characteristics that 

distinguish it from news web sites and other information channels (Li et al., 2012). First, 

tweets are created in real-time. For example, a tweet related to a tornado might be written 

one minute after a user witnessed a tornado was formed. The information could be spread 

even faster than TV broadcasts. Second, tweets contain any kinds of information shared 

by people. When people see gunfire, earthquake or other events, every witness can share 

his observations and pictures immediately. The information could be helpful to evaluate 

the actual situation of the events. Third, tweets contain geolocation information. By 

monitoring tweets about crime events in a specific location, some crimes could be 

detected immediately. 

Hashtag is a popular feature when people use Twitter. A hashtag is a word or 

phrase proceeded by “#”, and is used to identify messages on a specific topic (Feng et al., 

2015). For example, “#ParisAttacks” can be used to indicate the terrorist attacks 
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happened in evening of November 13, 2015. It is an important feature for researchers to 

identify the topic of a tweet. 

Recently, many organizations have utilized crowdsourced information from 

Twitter to detect natural disaster events (Middleton et al., 2014). Utilizing tweets in event 

detection helps researchers understand further about an event. The goal of this research 

was to design a clustering approach that utilized hashtag and to analyze the similarity and 

difference between the clusters generated by other existing approaches and one proposed. 

We also surveyed the state-of-the-art event detection approaches based on Twitter data, 

especially the applications that utilized hashtag. 

1.2 Significance 

Many researchers proposed event-detection approaches that monitored Twitter 

data and determined whether special events, such as accidents, extreme weather, 

earthquakes, or crimes, were happening by analyzing the data on social networks. Data 

mining techniques related to clustering, classification, and text mining techniques were 

wildly used in this topic. Although many of them considered hashtag as one of their 

features, few of them explicitly focused on the effectiveness of hashtag on event 

detection. In order to filled this gap and make the best use of hashtag on Twitter 

clustering, we discussed the effectiveness of hashtag and proposed an event detection 

approach in this study. Moreover, we describe complete experiments to evaluate the the 



!3

clustering quality of our approach as well as the comparisons with other clustering 

approaches. 

1.3 Statement of purpose 

The purpose of this research was to propose an event detection approach that 

utilized hashtags in tweets. We adopted the feature extraction used in the approach of 

Feng et al. (2015) and the K-means (Lloyd, 1982) clustering method. We surveyed the 

background of current related works and explain the performance differences between 

those works and the proposed approach. According to the experimental results, we 

discussed the possible improvements for the current research of event detection using 

Twitter. 

1.4 Research question 

The question central to this study was: 

1. Can the state-of-the-art approaches of event detection using Twitter hashtag be 

improved by introducing K-means clustering? 

1.5 Assumptions 

The assumptions of this research included: 

1. Authors of the collected tweets were assumed to write their true observations and did 

not intentionally fabricate false content. 
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2. The Twitter APIs were functional and could return correct information of public 

tweets during November 13th to November 17th, 2015. 

3. The third-party K-means libraries used in our implementation had no significant 

defects that may lead to incorrect experiment results. 

1.6 Limitations 

The limitations of this research included: 

1. In order to compare the performance with related works, we contacted the authors of 

Feng et al. (2015) for accessing their source codes and datasets. However, we were 

not able to receive the feedbacks from the authors. We implemented this approach 

according to the steps provided in these articles. 

2. Because Twitter APIs only allowed developers to access public tweets, our data 

crawler only collected public tweets for experiments.  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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

The literature review focused on reviewing past research of the following fields. 

Many articles of event detection utilized Twitter data to determine whether special events, 

such as holidays, sport games, earthquakes, crimes, are happening. The research of 

hashtag analysis made use of hashtags in tweets to determine the sentiments, preferences 

and topics of tweets. 

2.2 Event detection 

Middleton et al. (2014) presented a real-time crisis-mapping platform. The 

researchers implemented an offline service including data-extraction tools for extracting 

geospatial data. The proposed system performed data preprocessing such as geocoding 

for every location address. Their real-time service had a Twitter crawler and a location-

extraction module for efficient real-time matching. Their system contained a parallel 

geospatial clustering service to continuously cluster spatial areas of high activity. They 

performed two case studies by comparing their crisis map with the damaged area in 

Oklahoma’s 2013 tornado and in Hurricane Sandy (October 2012). They compared their 

maps to the storm-surge map from the official post-event impact assessment produced by 
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the US National Geospatial Agency (NGA). The researchers segmented the maps into 8 x 

8 grid and compared each grid cells to the growth truth map. True positives were reported 

for any cell that has both a tweeted location and some storm-surge activity on the US 

NGA impact assessment map. The maps were computed using a high/medium/low 

threshold setting for the allowed deviation of simple moving average from baseline 

(dev_sma). When increasing dev_sma, the number of places and streets on the maps will 

be fewer, so basically a higher precision and lower recall will be obtained. The 

researchers calculated precision, recall, and F1 measures as their performance metrics. 

When dev_sma was greater than 0.1, both of their case studies obtained higher than 90% 

precision. However, the recall were both lower than 30%. 

Walther and Kaisser (2013) proposed an algorithm for geo-spatial event detection 

on social media streams. The researchers monitored all Twitter posts that were in a given 

geographic region and identified the locations that showed a high amount of activities as 

event candidates. The researchers extracted textual features and other attributes from the 

event candidates, and used a classification component to make a binary decision of 

whether the candidate was an event. In the experiments, the researchers collected 1000 

candidate events identified by their system. The candidate events were then manually 

labeled as real world events or not. The researchers than respectively adopted Naive 

Bayes, Multilayer Perceptron and pruned C4.5 decision tree as their classifier. In the 

experiments, the pruned C4.5 decision tree performed best and achieved a precision of 

85.8% and a recall of 85.6%. The second experiment is to compare the difference 
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between employing only textual features, employing only other features and employing 

all features. The results showed employing all features is the best, employing only textual 

features is the second, and employing other features is the last. 

Hua et al. (2013) presented a semi-supervised system, STED, that can detect 

target types of events for users in Twitter. The researchers extracted action words and 

named entities from news articles as candidate query words and labeled tweets that 

contain these words. They further used social-ties terms (i.e., Mentions(@), 

Retweets(RT), and Hashtag(#)) and popular terms to model the label propagating to 

extend their label dataset. Finally, they performed text classification and location 

estimation based on the automatically labeled tweets. In their experiment, STED reacted 

to real events much faster than traditional news sources and achieved 72% precision and 

74% recall. 

Ritter et al. (2012) proposed an open-domain event-extraction and categorization 

system, which was a scalable and open-domain approach to extracting and categorizing 

events from status messages. Their approach aimed to discover important event 

categories and to classify extracted events based on latent variable models. In this 

research, annotated examples were not needed when classifying aggregate events. The 

researchers discovered event types that matched the aggregate events in an unsupervised 

manner. In the experiments, their work outperformed the supervised baseline by 14% 

because its ability to leverage large quantities of unlabeled data. 
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Li et al. (2012) proposed a system, TEDAS, to detect new events, to analyze the 

spatial and temporal patterns of an event, and to identify the importance of events. The 

research focused on crime and disaster related events (CDE). The researchers developed a 

set of efficient CDE-based crawler, classifiers, rankers and a prediction module to predict 

the event locations from the Twitter data. In their classifiers, they defined several Twitter-

based features and CDE-specific features, and then trained a classification model to 

identify CDE-related tweets. By combing both Twitter-based and CDE-specific features, 

the researchers achieved accuracy of 80%. In their rankers, they aimed to identify 

important CDEs in a learning-to-rank approach that considered content features, user 

features and usage features. Finally, they used a linear regression model to estimate the 

importance of each CDE, but the performance results weren’t described in this study. 

Mathioudakis and Koudas (2010) presented TwitterMonitor that performs trend 

detection over the Twitter stream. The researchers detected the burst keywords by 

processing tweets with their one-pass real-time algorithm based on queuing theory. They 

also filtered the spurious burst and spam words. They then grouped the burst keywords to 

generate possible trends. The researchers implemented a front-end interface that enabled 

users to rank the generated trends along with a short description. However, a performance 

analysis was not provided in this study. 

Sakaki et al. (2010) investigated the real-time interaction of events, such as 

earthquakes, on Twitter, proposed an algorithm to monitor tweets, and detected a target 

event. Each post on Twitter was classified as positive or negative by a semantic analysis 
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in order to determine if it was truly referring to an actual earthquake occurrence. Support 

Vector Machine method was applied for the classification method in the semantic 

analysis. The main idea of this approach was taking every Twitter user as a sensor. The 

researchers then transformed the problem into an event-based problem on sensory 

observations. In their experiments, they detected 96% of earthquakes that were stronger 

than Japan Meteorological Agency (JMA) seismic intensity scale 3. Moreover, their 

average response time was within 20 seconds after an earthquake occurred, which was 

faster than the average response time (6 minutes) of JMA announcement. 

Lee and Sumiya (2010) proposed a Twitter-based geo-social event detection 

system by measuring geographical regularities of crowd behaviors for Twitter. In this 

study, the researchers built geographical regularities deduced from the usual behavior 

patterns of crowds with geo-tagged microblogs. First, they proposed the Region-of-

Interests (RoIs) factor based on three indicators #Tweets, #Crowd, and #MovCrowd. 

Second, in order to configure RoIs, they used K-means clustering method to partition 

tweets based on their geographical occurrences. Third, they estimated geographical 

regularity of local crowd behaviors. Finally, they detected “usual” geographical areas 

based on the three indicators and detected unusual areas as the target events. In their 

experiment, the researchers tried to detect the geographical areas of 15 town festivals 

held in Japan during July 17th to 19th, 2010. The recall achieved 87% but the precision 

was 1.8%, which meant their approach detected the geographical areas of the town 
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festivals, however, it might detected many other unknown events irrelevant to the town 

festivals as well. 

Cataldi et al. (2010) proposed a topic detection technique that retrieved the most 

recent topics expressed by the community in a real-time manner. The researchers 

extracted a set of terms from tweets and modeled each term’s life cycle according to an 

aging theory used to score the terms. They intended to discover the emerging terms that 

frequently occurred in the specified time interval but relatively rare in the past. The 

researchers considered social relationships in the user network to quantify the importance 

of each analyzed content, then formalized a keyword-based topic graph that connected 

the emerging terms with their co-occurrent terms. After highlighting the recent hot terms, 

these terms were used to select related topics. These topics were taken as the most recent 

ones expressed by the community. The researchers provided case studies to demonstrate 

the effectiveness of their approach. They retrieved topics based on the five most emerging 

terms detected on April 15th, 2010 and showed those terms were relevant to specific 

news events reported in professional news articles. However, there is no comprehensive 

analysis about the accuracy or precision provided in this study. 

Techniques of data visualization enable human to browse a large collection of 

tweets using a timeline-based display that highlights peaks of high tweet activity. Marcus 

et al. (2011) proposed TwitInfo to aggregate and visualize tweets for event exploration. 

The researchers designed a streaming algorithm that automatically discovers peaks of 

high tweet activities and labels them using text from the tweets. They also adopted a 
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Naïve Bayes classifier to detect the sentiments in tweets. Finally, they developed 

timelines, maps and pie charts for users to monitor events and explored further via 

geolocation, sentiment, and popular URLs. The researchers evaluated their performance 

by detecting different types of event. The precision was 14% to 95% and the recall was 

77% to 100% according to different types of event. 

Ko et al. (2014) proposed to establish an event detection approach for a large 

amount data with high complexity. The research was essential to integrate techniques for 

data analysis, visualization, and exploration. The researchers analyzed high-dimensional, 

multivariate network data by visualization technology. In this research, they introduced 

two visualization components, Petal and Thread, to effectively present a large amount of 

network data including multi-attribute vectors. The researchers performed case studies to 

evaluate the petal and thread designs by using flight delay network data from the top 50 

airports. The data included the delay information of airport with five different delay 

types. The researchers used their components to display the five delay types as well as the 

delay time happened in every airport. They recruited 30 participants from various majors 

at the author’s university and asked them to recognize the longest delay type reported in 

the 50 airports. The researchers first set up five hypotheses for the petal design. They 

evaluated the accuracy and the time that a participant spent to complete specific tasks. 

According to their results, the petal helped the users better recognize the delay time and 

delay type between  airports. Moreover, the accuracy of recognizing the longest delay 

type in an airport is higher when the difference of delay time between the longest delay 
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type and the second longest delay type is larger. The researchers than used the same 

hypotheses for the thread design. The results again showed that the larger the difference 

between the longest and the second longest delays, the higher accuracy and shorter time 

for users to recognize longest delay of an airport. However, they found the colors used for 

different threads could confuse their participants, so they added numeric information in 

the legend view that users can refer to. 

Zhang et al. (2014) proposed a real-time visual analytics process based on 

microblog and emergency call data. The motivation of this research was to solve a 

challenge in the IEEE Symposium on Visual Analytics Science and Technology (VAST) 

2014. The researchers built an extension for their previous work, SMART (Social Media 

Analytics and Reporting Toolkit) system (Cui, Chae, & Ebert, 2014). They proposed an 

integrated visual analytics framework to integrate different data sources and data 

attributes for event identification. Their system was also able to monitor the anomaly 

events by using microblog and emergency call stream. In this challenge, the researchers 

successfully identified several major events happened in Abila city. They also monitored 

the time lines and investigated the underlying connections. No explicit experimental 

digits were provided in this study. 

2.3 Hashtag analysis 

Feng et al. (2015) proposed STREAMCUBE, which focused on hierarchical 

spatio-temporal hashtag clustering techniques and generated hashtag clusters for 
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automatically identifying potential events. In order to scale the large amount of Twitter 

information in different time frames and different areas, the researchers considered both 

space and time granularity in its database. STREAMCUBE was extended from the 

traditional data cube. They designed a single-pass clustering algorithm for event 

identification as well as a event ranking method to find burst events in real time. In their 

experiments, the researchers first compared the clustering quality of STREAMCUBE 

with other tweet clustering approaches. STREAMCUBE outperformed other algorithms 

by achieving 38.1% Normalized Mutual Information (NMI) and 71.7% Rand Index (RI). 

Second, they compared the performance of event ranking with other approaches. 

STREAMCUBE outperformed other algorithms by achieving 63.4% Mean Average 

Precision (MAP). Finally, the researchers also provided discussions about the scalability 

and the memory usage of their implementation of STREAMCUBE. 

Anusha and Singh (2015) analyzed Twitter data based on the trending hashtags. 

The researchers attempted to find events that might intrigued specific users based on the 

hashtags used by the user and his sentimental states derived from the user’s tweets. To 

analyze the tweets, the proposed system contained a topic modeling module to find the 

score of interestingness and a sentiment analysis module to detect the polarity.  The 

researchers first extracted tweets by using specific hashtags as keywords. In topic 

modeling, they adopted Latent Dirichlet Allocation (LDA) to infer latent topics to which 

the tweets they collected had belonged. After getting the latent topics, they defined a 

tweet scoring measure to compute an interestingness score for every tweet. In the 
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sentiment polarity analysis, they used NLTK corpora as training data and the NLTK 

analysis to decide the sentiment polarity of the tweets. In the experiments, the researchers 

provided a case study to discuss the interestingness scores and sentiment polarity 

(positive/negative) of the tweets related to hashtags about ICC World Cup 2015. 

However, since the number of topics considered for their dataset was low, they only 

showed several tweets with their positive/negative polarities and interestingness scores. 

No solid experimental results were provided in this study. 

Wang and Iwaihara (2015) proposed a method to induce senses of a hashtag in a 

particular time frame on Twitter. The researchers built a co-occurrence graph that 

modeled the words and hashtags as nodes and the consecutiveness between two hashtags 

as an edge. They proposed a hashtag sense induction system aimed to extract a list of 

words with high node degree and used them to represent a sense of a community. For 

each hashtag, the system built a list of words as the induced senses of the hashtag. In their 

implementation, they took the entries in Wikipedia disambiguation list as Wikipedia 

senses. In the experiments, for each sense of a hashtag, the researchers used the context 

words extracted from the co-occurrence graph as keywords to fetch tweets, then ranked 

every tweet by the score that calculated by summing up all the weights of keywords 

existing in it. They asked human subjects to judge whether the sense of the hashtag in the 

top K tweets matches the sense they induced. The highest average precision of the system 

achieved 81.66% (K=10). 
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Pervin et al. (2015) performed an analysis on the co-occurrence of hashtags. The 

researchers designed the hypotheses to determine if the popularity of a hashtag increases 

when it appears along with one or more other similar hashtags. In order to evaluate the 

hashtag popularity, they defined several popularity factors (e.g. hashtag specific 

variables, dyad specific variables and control variables) for a hashtag. The researchers 

than perform experiments to determine if the scores of popularity factors are higher when 

a hashtag had other co-occurred ones. Their findings show that the popularity of a 

hashtag increases when a hashtag appears with other hashtags on the Great Eastern Japan 

earthquake tweet dataset. However, the criteria that they claim their hypotheses are true 

were not included in their study. 

Cepni and Akan (2014) proposed a social sensing model for event detection and 

estimation with Twitter. The researchers modeled the information propagation on Twitter 

as a sensor network and adopted the communication theories to solve this problem. They 

considered an event as a sensor which with signal strength. The event estimation is made 

when an event signal is strong enough at a specific time (i.e., when relevant tweets 

accumulated in hashtag timeline.) The accuracy of the estimated signal is explored with 

mean square error analysis. In the experiment, the researchers calculate Mean Squared 

Error (MSE) in the estimation of every signal for various cases. The first experiment was 

designed by varying tweeting probabilities, hashtag use and network blockage 

probabilities, and concluded that tweeting probabilities impacted a lot more than hashtag 

use and network blockage probabilities. They also experimented on the number of active 
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sensors and concluded that increasing the number of active sensors ultimately improved 

MSE. In the second experiment, they experimented on the effect of geotag use and 

suggested that the accuracy of information aggregated hashtags timeline improved 7-10% 

while users use geotag. 

Denton et al. (2015) employed user hashtags to capture the description of image 

content of Facebook users. The researchers utilized the metadata, such as age, gender, 

home city and country of Facebook users combined with image features extracted from a 

convolutional neural network algorithm to predict the possible hashtags for images. They 

proposed three different models (i.e. bilinear model, user-based bilinear model and user-

multiplicative tensor model) and trained those models by minimizing the weighted 

approximate-rank pairwise (WARP) loss. They evaluated their models respectively on 20 

million public images uploaded on Facebook over a period of several days by using 

precision, recall and accuracy as the metrics. The user-multiplicative model outperformed 

other models. Their findings demonstrate how the user metadata combined with image 

features could be used for image hashtag prediction. Moreover, their user-multiplicative 

model gained the most significant performance boost. 

Wang and Zheng (2014) performed a study of hashtag diffusion in Twitter. The 

researchers analyzed the hashtag diffusion by macro and micro perspectives. Their 

dataset contained 12 million tweets, but they kept only 153 hashtags that appeared in 

more than 100 tweets. From the macro perspective, they studied the diffusion by the 

tweet/hashtag properties combined with three proposed hashtag classes “single spike”, 
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“multi-spikes” and “fluctuation”. They manually classified the 153 hashtags into three 

proposed hashtag classes and discussed the classes’ difference in terms of the general 

properties (e.g. hashtag length, tweet size, retweet ratio, etc.). From the micro 

perspective, the researchers adopted Edelman’s topology of influence (TOI) theory to 

discuss the individual diffusion. They characterized the tweet users as idea starter (IS.), 

amplifiers (Amp.), adapters (Ad.) and commentators (Com.) and defined four scores 

respectively according to TOI theory. They computed the four scores and discussed the 

role differences for the proposed hashtag classes. The researchers found that the user 

group that used the hashtags with the fluctuation pattern was formed by fewer idea 

starters and more commentators, which showed idea starters influenced others more in 

event-specific topics but less in general-interest topics. Second, the researchers studied 

properties of the users within different role categories. They used five network structure 

properties based on the user mention network, including in-degree, out-degree, total-

degree, betweenness and in-out degree ratio, boundary spanner and the average number 

of tweets. According to the results, the researchers found that the idea starters have higher 

in-degree and the most uneven in-out degree ratio, which means they might be popular 

users who were mentioned by many others. The betweenness of the idea starters is also 

high because other users tend to re-share the contents posted by them. Finally, they also 

found that the adapters are the most active, which indicated the adapters are busier than 

other users because they combine and re-share ideas from many other users. 
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2.4 Summary 

Among the above articles, STREAMCUBE (Feng et al., 2015) was the only study 

that mainly focused on tweet clustering based on hashtag to the best of our knowledge. 

STREAMCUBE proposed a detailed approach for tweet preprocessing, feature 

extraction, and a single-pass hashtag clustering algorithm. We were interested in how 

STREAMCUBE would perform when using our Twitter dataset related to the Paris 

Attacks. Also, we wanted to adopt a different hashtag clustering algorithm, such as K-

means and see if we could extend the original STREAMCUBE and improve its 

performance by using different clustering algorithm. Finally, in order to evaluate the 

clustering results, we adopted Purity (Zhao & Karypis, 2001) and normalized mutual 

information (NMI) (Strehl & Ghosh, 2003) as the performance measures in this study. 

The details were as described in the next chapter. 
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CHAPTER 3. METHODOLOGY 

3.1 Introduction 

This study aimed to compare the clusters generated by our approach and by the 

existing event-detection approaches. Figure 3.1 is the workflow of this research. First, we 

collected tweets through Twitter public API and preprocess the data into features. Second, 

we implemented the K-means clustering algorithm as the clustering module as well as the 

clustering algorithm of STREAMCUBE (Feng et al., 2015) as another clustering module. 

Finally, we performed experiments and discussed the performance of the compared 

clustering approaches. 
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!  

Figure 3.1. Workflow overview 

Figure 3.2 depicts the system architecture of the proposed event detection method 

based on hashtag. We discuss our data collection and preprocessing for Twitter data in 

section 3.2. In section 3.3, we described the implementation details of the clustering 

modules of the K-means approach and the STREAMCUBE approach respectively. The 

metrics of performance evaluation are described in section 3.4. 
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!  

Figure 3.2. System architecture 

3.2 Data collection and preprocessing 

Twitter provided a set of streaming APIs that gave developers low latency access 

to its global stream of tweets. In this study, we used the Tweepy APIs (https://github.com/

tweepy/tweepy), which was a Python library for accessing the Twitter. The APIs enabled 

us to collect the tweets related to a specific keyword list. 

For each tweet, the following properties were collected: created time, number of 

retweet, text content, mentioned hyperlinks, mentioned hashtags and geographic 
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coordinates. The preprocessing steps in figure 3.3 were used to extract features from the 

collected tweets. 

!  

Figure 3.3. Tweet preprocessing 

1. Hashtags in tweets were extracted as unigram features and removed from the original 

messages. 

2. Lowercased all characters in tweets. Removed special characters, stop words, and 

hyperlinks. 

Stop words 
filtering

“Last week, we were in Mexico 
treating the animals affected by 
#HurricanePatricia. Find out 
about the animals we met 
http://ow.ly/UhEeg”

“last week 
mexico treating 
animals affected 
find animals met”

Hashtags = {“HurricanePatricia”}
Unigrams in this message = 
{“last”, “week”, “mexico”, “treat”, 
“anim”, “affect”, “find”, “met”}

Hashtag 
extraction

“last week mexico 
treat anim affect find 
anim met”

Stemming
Unigram 

extraction
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3. All the tweets were stemmed using the Porter stemmer for reducing inflected words 

to their word stem. 

The following example demonstrates how we extracted the features. Suppose that we 

have two tweet messages: 

message1 = “Last week, we were in Mexico treating the animals affected by 

#HurricanePatricia. Find out about the animals we met http://ow.ly/UhEeg” 

message2 = “The #Tornado last week was horrible!” 

First, the hashtags are extracted and removed from the messages: 

message1 = “Last week, we were in Mexico treating the animals affected by. Find 

out about the animals we met http://ow.ly/UhEeg”, hashtag = 

{“HurricanePatricia”} 

message2 = “The last week was horrible!”, hashtag = {“Tornado”} 

Second, lowercase all characters in tweets can then remove special characters, stop 

words, and hyperlinks: 

message1 = “last week mexico treating animals affected find animals met”, 

hashtag = {“HurricanePatricia”} 

message2 = “last week horrible”, hashtag = {“Tornado”} 

Finally, after processed by Porter Stemmer, the results are: 

message1 = “last week mexico treat anim affect find anim met”, hashtag = 

{“HurricanePatricia”} 

message2 = “last week horrible”, hashtag = {“Tornado”} 

http://ow.ly/UhEeg
http://ow.ly/UhEeg
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3.3 Hashtag clustering 

In the research, we adopted the feature definition of the hashtag clustering 

approach in STREAMCUBE. In section 3.3.1, we define the representations of hashtag 

and event. In section 3.3.2, we introduce how we adopt K-means cluster algorithm in this 

study. 

3.3.1 Hashtag and event representations 

First, a hashtag h can be considered as a bag of words, which is an aggregation of 

all the tweets that contain h. Let W denote all the words in our tweets, a hashtag h can be 

represented as a normalized weighted vector 

htweet = (w1, w2, …, w|W|) 

where wi is the weight of the i-th word and || htweet || = 1. 

Second, a hashtag h can also be considered as a bag of hashtags because many 

hashtags have co-occurred with other hashtags. Let H denote the hashtag set, a hashtag h 

can be represented as a normalized weighted vector 

htag = (h1, h2, …, h|H|) 

where hi is the weight of the i-th word and || htag || = 1. 

By using the above two representation, the distance between two hashtags can be defined. 

Let hitweet and hitag denote the word vector and hashtag vector of the i-th hashtag hi . Given 

two hashtag h1  and h2, the distance is defined as 
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sim(h1, h2) = α * cos(h1tweet, h2tweet) + β * cos(h1tag, h2tag) 

= (α1/2 h1tweet, β 1/2 h1tag) (α1/2 h2tweet, β 1/2 h2tag) 

where α and β are two hyperparameters and α + β = 1. From the above equation, a 

hashtag can be represented as a vector: 

h = (α1/2 htweet, β 1/2 htag) 

The following is a running example. We continue from the messages preprocessed 

before: 

message1 = “last week mexico treat anim affect find anim met” 

message2 = “last week horrible” 

hashtag = {“HurricanePatricia”, “Tornado”} 

In the messages, W = {‘last’, ‘week’, ‘mexico’, ‘treat’, ‘anim’, ‘affect’, ‘find’, ‘met’, 

‘horrible’}, H = {“HurricanePatricia”, “Tornado”}. The features of the hashtags are 

extracted as below: 

h#HurricanePatricia = (α1/2 h#HurricanePatriciatweet, β 1/2 h#HurricanePatriciatag) 

h#HurricanePatriciatweet = (0.11, 0.11, 0.11, 0.11, 0.22, 0.11, 0.11, 0.11, 0) 

h#HurricanePatriciatag = (1, 0) 

h#Tornado = (α1/2 h#Tornadoword, β 1/2 h#Tornadotag) 

h#Tornadotweet = (0.33, 0.33, 0, 0, 0, 0, 0, 0, 0.33) 

h#Tornadotag = (0, 1) 

Given that α = 0.5 and β = 0.5, the distance between the hashtag “#HurricanePatricia” 

and “#Tornado” based message1 and message2 is: 
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sim(h#HurricanePatricia, h#Tornado)  

= α * cos(h#HurricanePatriciatweet, h#Tornadotweet) + β * cos(h#HurricanePatriciatag, 

h#Tornadotag) 

= 0.826 

3.3.2 K-means clustering 

In the clustering algorithm of STREAMCUBE, the researchers designed a single-

pass clustering algorithm because they aimed to process data in real time without using 

an iteration-based algorithm. This issue did not occur in this study because we 

concentrated on discovering the similarity and dissimilarity between different clustering 

methods but not the real time capability. 

We adopted the K-means clustering method to find hashtag clusters by using the 

features described in section 3.3.1. We chose K-means because of the following reasons: 

1. To identify the clusters, hierarchical clustering and K-means are two well-known 

cluster algorithms (Zhang et al., 2012). However, considering the great number of 

features used in our large-scale dataset, K-means is relatively faster and more 

effective. 

2. Scaling K-means to massive data is relatively easy with respect to the algorithm’s 

simplicity and iterative nature (Bahmani et al., 2012). 

To perform K-means, we need the following parameters: 
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1. The distance function used to compute the distance between two points and the 

means of cluster centers. In this study, we use the distance function introduced in 

3.3.1 as the distance function.  

2. The selection of the number of clusters. In our experiment, we explored how to 

adequately set K for our dataset to gain the best performance. Since there is no 

perfect mathematical criterion exists (Jain, 2010), we experimented on how to set a 

best range of K values that could lead to better performance in the K-means 

approach. 

 In order to implement the clustering method, we adopted the K-means function in 

Natural Language Toolkit (Bird, 2006), a leading platform for building Python programs 

to work with human language data. The K-means toolkit provided the flexibility for 

programmers to use their own distance function instead of Euclidean distance. We used 

the following distance function introduced in 3.3.1 for two hashtags h1, h2. 

sim(h1, h2) = α * cos(h1tweet, h2tweet) + β * cos(h1tag, h2tag) 

= (α1/2 h1tweet, β 1/2 h1tag) (α1/2 h2tweet, β 1/2 h2tag) 

hitweet and hitag denote the word vector and hashtag vector of the i-th hashtag hi. We set α 

= β = 0.5. Every hashtag was represented as the following vector:  

h = (α1/2 htweet, β 1/2 htag) 

We also used a similar feature vector to represent a cluster e: 

e = (α1/2 etweet, β 1/2 etag) 
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where etweet represents the average feature vector of every hashtag’s tweet vectors in this 

cluster, and etag represents the average feature vector of every hashtag’s htag vectors in 

this cluster. By defining the above functions, we were able to compute the distance 

between two hashtag, the distance between two cluster, as well as the distance between a 

cluster and a hashtag. 

3.3.3 STREAMCUBE clustering 

In order to compare with STREAMCUBE, we performed a rough implementation 

of their clustering approach as we eventually could not access the programs and datasets 

were not provided by the authors. Since the implementation was not identical to the 

original programs used in their experiments, the performance differences may have 

occurred in our implementation. 

In STREAMCUBE, Feng et al. designed a single-pass hashtag clustering 

algorithm shown in figure 3.4. For each new hashtag, the algorithm first used a nearest-

neighbor (shown in figure 3.5) function to find the existing cluster nearest to the hashtag. 

Second, the algorithm checked the absorbing condition to decide if the hashtag should be 

absorbed into the nearest cluster. If the distance between the hashtag and the nearest 

cluster was greater than the cluster’s minimum threshold (i.e. the nearest distance 

between the cluster and any other clusters), the hashtag initialized a new cluster; 

Otherwise, the hashtag was absorbed by the cluster. 
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!  

Figure 3.4. HASHTAG-CLUSTER-STATIC algorithm (Feng et al., 2015) 

!  

Figure 3.5. NEAREST-NEIGHBOR algorithm (Feng et al., 2015) 

3.4 Data analysis 

This research aimed to analyze similarity and difference between the cluster 

results generated in section 3.3.2 and 3.3.3. 
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In terms of cluster analysis, there is no best measure for evaluating the cluster 

quality (Bhatnagar & Ahuja, 2010). However, a mix of internal and external quality 

criteria provides us a comprehensive view to evaluate the clustering approaches. 

Therefore, we adopted two widely used metrics: Purity (Zhao & Karypis, 2001) as an 

external criterion and normalized mutual information (NMI) (Strehl & Ghosh, 2003) as 

an internal criterion to evaluate the quality of the clustering results. 

Purity is an external quality criterion and is used when classes in the data are 

known. It measures the extent that if the documents in a cluster are from primarily one 

specific class. Given there are k clusters formed by total n documents that each document 

was labeled by one of I classes. The Purity of r-th cluster Sr with size nr is defined as the 

equation in figure 3.6: 

!  

Figure 3.6. The equation of the Purity (1) 

where nri is the number of documents of the i-th class that were assigned to the r-th 

cluster. The overall Purity of the clustering solution is obtained as a weighted sum of the 

individual cluster purities and is given by the equation in figure 3.7: 
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!  

Figure 3.7. The equation of the Purity (2) 

In general, the larger the values of Purity, the better the clustering solution is. 

NMI is an internal quality criterion and captures the commonality between two 

clustering approaches. It provides an indication of the shared information between a pair 

of clusters. Given X and Y be the random variables described by the cluster labeling λ(a) 

and λ(b), with k(a) and k(b) respectively. Let I(X,Y) denote the mutual information between 

X and Y, H(X), H(Y) denote the entropy of X, Y. The equation of NMI is as the equation in 

figure 3.8: 

!  

Figure 3.8. The equation of NMI (1) 

Let nh(a) be the number of objects in h-th cluster according to λ(a), nl(b) be the number of 

objects in l-th cluster according to λ(b). Let nh,l denote the number of objects that are in h-

th cluster according to λ(a) as well as in l-th cluster according to λ(b). Then the NMI ϕ(NMI) 

can be rewritten as the following equation in figure 3.9: 
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!  

Figure 3.9. The equation of NMI (2) 

The value of NMI is a fraction between 0 and 1, with 0 indicating that the two clusters do 

not shared the same information and 1 indicating that the two clusters are exactly the 

same. 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CHAPTER 4. EXPERIMENTS 

4.1. Data Collection 

We collected 11,884,448 tweets during November 13, 2015 to November 17, 

2015 for the Paris Attacks. The keyword list for collecting the tweets contained the 

following keywords: 'paris', 'attack', 'Gunmen', 'Bataclan', 'gunfire', 'hostage', 'Les 

Halles', 'Belle Equipe', 'Petite Cambodge', 'le Carillon’. We then filtered those tweets 

without text content, created time or geolocation to ensure the collected tweets did not 

lack any information we needed. Geolocation parameter is assumed to be useful for 

experiments beyond the scope of this thesis. There were 20,514 tweets with 8,616 

different hashtags in our tweet collection after filtering those without geolocation. In the 

following sections, we describe the design of our experiments from three different 

perspectives: 1) Comparing K-means to STREAMCUBE, with STREAMCUBE as the 

ground truth, 2) comparing K-means to STREAMCUBE, with human serving as the 

ground truth, and 3) finding better K values for K-means, with human serving as the 

ground truth. 
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4.2. Compare K-means to STREAMCUBE (STREAMCUBE as the ground truth) 

In this experiment, we compared the differences of clustering results between the 

K-means approach and STREAMCUBE with STREAMCUBE as the ground truth. In this 

experiment, we did not consider which approach was better but investigated the 

commonality between the two approaches. First, we followed the group setting of 

STREAMCUBE to group the collected tweets by their created time into 6-hours, 12-

hours, and 24-hours groups respectively. The original reason for this setting is because 

STREAMCUBE only keeps events from the last six hours in memory for increment 

updates in their online system. The historical data are fixed and flushed into disk-based 

storage (Feng et al., 2015). Once every six-hours data go into disk-based storage, the 

system merges two six-hours data as a 12-hours data. The merge rule applied for the rest 

of the levels. Since their coarsest granularity is a day, the merge rule stops for 24-hours 

data. Although we did not aim to build a realtime system, we followed their setting to 

ensure the performance of STREAMCUBE was not influenced by a different group 

setting from its original. Second, we performed STREAMCUBE to cluster the tweet 

groups. Since STREAMCUBE generated a dynamic number of clusters for every tweet 

group, we recorded the numbers of clusters for all tweet groups in order to use the 

numbers as the K values in the K-means approach. Third, we performed the K-means 

approach to cluster the tweet groups. Finally, we took the clustering results of 

STREAMCUBE as the ground truth and the clustering results of the K-means approach 

as the predictions to calculate the NMI and Purity scores.  
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Table 4.1, 4.2 and 4.3 listed the Purity and NMI scores of every 6, 12, 24 hours 

respectively. In table 4.4, the Purity scores showed that over 70% of clusters generated by 

the K-means approach can be matched to corresponding clusters generated by 

STREAMCUBE, and the NMI scores showed the commonality between the results of the 

two clustering approaches are 57.8% for 24-hour groups, 69.6% for 12-hours groups, and 

69.9% for 6-hours groups respectively. The K-means approach and STREAMCUBE did 

share a large portion of similar clustering results, but some significant performance 

differences are worth to be investigated. To further understand the differences, we 

designed the experiment in section 4.3 to use human labeled tweets for comparing the 

two approaches.  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Table 4.1. The NMI and Purity scores of every 6 hours 

Date Hour range Number of 
tweets

Number of 
clusters

Purity NMI

2015/11/13 18:00 - 24:00 783 8 83.3% 74.8%

2015/11/14 0:00 - 6:00 1214 9 87.8% 78.8%

2015/11/14 6:00 - 12:00 1038 6 71.4% 51.3%

2015/11/14 12:00 - 18:00 1274 29 66.1% 79.0%

2015/11/14 18:00 - 24:00 1848 11 75.3% 59.7%

2015/11/15 0:00 - 6:00 1262 5 73.8% 63.6%

2015/11/15 6:00 - 12:00 1451 13 77.5% 69.1%

2015/11/15 12:00 - 18:00 1645 25 68.4% 74.3%

2015/11/15 18:00 - 24:00 1302 6 73.2% 60.1%

2015/11/16 0:00 - 6:00 1275 4 75.5% 63.7%

2015/11/16 6:00 - 12:00 1598 25 67.2% 74.3%

2015/11/16 12:00 - 18:00 1718 41 68.8% 80.3%

2015/11/16 18:00 - 24:00 808 11 84.1% 76.1%

2015/11/17 0:00 - 6:00 855 5 87.5% 83.2%

2015/11/17 6:00 - 12:00 431 5 88.9% 79.9%

2015/11/17 12:00 - 18:00 1191 6 63.8% 69.6%

2015/11/17 18:00 - 24:00 821 5 63.4% 51.1%
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Table 4.2. The NMI and Purity scores of every 12 hours 

Table 4.3. The NMI and Purity scores of every 24 hours 

Date Hour range Number of 
tweets

Number of 
clusters

Purity NMI

2015/11/13 12:00 - 24:00 783 8 83.3% 74.8%

2015/11/14 0:00 - 12:00 2252 27 75.0% 76.8%

2015/11/14 12:00 - 24:00 3122 17 72.0% 61.8%

2015/11/15 0:00 - 12:00 2713 11 64.1% 49.5%

2015/11/15 12:00 - 24:00 2947 22 70.9% 65.6%

2015/11/16 0:00 - 12:00 2873 40 72.6% 79.4%

2015/11/16 12:00 - 24:00 2526 41 65.4% 73.0%

2015/11/17 0:00 - 12:00 1286 8 80.9% 68.5%

2015/11/17 12:00 - 24:00 2012 22 72.1% 77.0%

Date Number of tweets Number of 
clusters

Purity NMI

2015/11/13 783 8 83.3% 74.8%

2015/11/14 5374 26 67.6% 56.2%

2015/11/15 5660 2 99.3% 1.0%

2015/11/16 5399 84 68.5% 78.5%

2015/11/17 3298 46 67.1% 78.3%
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Table 4.4. The summary of table 4.1, 4.2 and 4.3 

  

4.3. Compare K-means to STREAMCUBE (human serving as the ground truth) 

We further compared the performance between the K-means approach and 

STREAMCUBE by using human labeled tweets as the ground truth. First, we randomly 

selected 200 from 3298 tweets, which contains 170 hashtags and 7185 unigrams, 

collected on November 17th, 2015. Second, we asked a human subject (a graduate 

student) to manually label categories for each of the 200 tweets. We instructed the subject 

to choose any text he wanted to label the tweets, but to use only one label for each tweet. 

The subject used six different labels in the labeling task: “Travel”, “Terrorism”, “Pray”, 

“Life”, “Hiring”, and “Others”. The label distribution of the 200 tweets is shown in figure 

4.1. Third, we used similar steps in section 4.2 to performed clustering on the tweets 

collected on November 17th, 2015. We generated the clusters of STREAMCUBE and the 

clusters of the K-means approach respectively. Fourth, for each of the two cluster sets, we 

extracted the 200 labeled tweets and kept the cluster information of them. Thus, we had 

the clustering results of the 200 labeled tweets generated by the two approaches 

respectively, and we had the human labeled information of the 200 tweets as the ground 

truth. Finally, we calculated the NMI and Purity scores for the K-means approach and 

Hour range Avg. number of clusters Avg. Purity Avg. NMI

6 13.3 75.1% 69.9%

12 21.8 72.9% 69.6%

24 33.2 77.2% 57.8%
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STREAMCUBE respectively. Table 4.5 and 4.6 were the hashtags of the top 20 large 

clusters generated by the K-means approach and by STREAMCUBE. Table 4.7 was the 

performance comparison between the K-means approach and STREAMCUBE. We have 

shown that the K-means approach performed better than STREAMCUBE on both the 

Purity and NMI scores given the same number of clusters.  

!  

Figure 4.1. The distribution of the human labeled tweets 
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Table 4.5. Hashtags of the top 15 large clusters generated by the K-means approach 

K-means

1 parisattacks, igersparis, french, love, france, toulouse, city, picoftheday, 
photooftheday, pray, disneyland, fluctuatnecmergitur, europe, jesuisparis, peace, 
charliehebdo, parisian, tbt, view, prayforparis

2 SONIC, CareerArc, Retail, Lebanon, Job, job, Veterans, ExpediaJobs, LEBANON, 
CustomerService, Jobs, Sales, Hiring, Hospitality

3 Stigmabase, peaceforparis, informatique, vscocam, tb, movie, hope, instagood, 
stage, vsco, friends

4 bomb, ParisAttacks, parismaville, Adidas, portrait, COP21, jesuisenterrasse, quiz, 
Montemartre

5 TourEiffel, WeLoveParis, EiffelTower, MisterJoeCity, ILoveParis, Montmartre, 
France, Paris18, DirectLive

6 2DaysTilIKWYDLS, StreamMadeInTheAM, PrayForSyria, MTVStars, 
playpurpose, adtechNZ, SiyaKeRam, maritime

7 blue, frenchlife, me, parisstreet, iloveparis, ootd, metro, parisjetaime

8 tousaubistrot, concorde, attentat, parisattack, hommage, republique, 
placedelarepublique

9 selfies, streetlife, selfiewithart, streetart, photography, parisnights

10 london, football, huaweishot, Wembley, huawei, wembley

11 chezmatante, basket, creditmunicipal, inParis, villelumiere

12 like4like, toureiffel, beautiful, eiffeltower, bleublancrouge

13 christmas, beirut, lebanon, Beirut

14 news, London, hnytwtr, Fashion

15 PARIS, hiring, IT, Transportation

16 travel, vegas, JeSuisParis

17 bataclan, homage, rip

18 paris, Francia, prayfortheworld

19 burjkhalifa, mydubai, dubai

20 life, freedom
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Table 4.6. Hashtags of the top 15 large clusters generated by STREAMCUBE 

STREAMCUBE

1 JeSuisParis, travel, tousaubistrot, bomb, news, parisattacks, Stigmabase, vegas, 
pray, fluctuatnecmergitur, eiffeltower, jesuisparis, peace, prayforparis, PrayForParis

2 PARIS, SONIC, CareerArc, Retail, Lebanon, hiring, Job, job, IT, Veterans, 
LEBANON, Transportation, Jobs, Hospitality

3 selfies, frenchie, selfie, parisstreet, streetlife, iloveparis, selfiewithart, frenchart, 
streetart, photography, parisnights, parisjetaime

4 2DaysTilIKWYDLS, trndnl, StreamMadeInTheAM, PrayForSyria, MTVStars, 
playpurpose, adtechNZ, SiyaKeRam, maritime

5 foodporn, ISIS, London, Adidas, Syria, COP21, Bataclan, ParisAttacks, movie

6 expo, chezmatante, basket, creditmunicipal, inParis, art, villelumiere

7 london, football, hnytwtr, huaweishot, Wembley, huawei, wembley

8 liberté, blue, music, liberteegalitefraternite, shym, bercy, ootd

9 attentat, parisattack, hommage, republique, freedom, placedelarepublique

10 TourEiffel, WeLoveParis, EiffelTower, ILoveParis, France, DirectLive

11 paris, Francia, prayfortheworld, Paris, vivelafrance

12 paris7, topparisphoto, iphone6plus, toureiffel

13 burjkhalifa, support, mydubai, dubai

14 ExpediaJobs, CustomerService, Sales, Hiring

15 french, parisian, tbt, friends

16 life, concorde, love, france

17 Repost, igersparis, usa, europe

18 parigi, photo, francia, beautiful

19 vscocam, vsco, disneyland

20 MisterJoeCity, Montmartre, Paris18
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Table 4.7. The performance comparison based on human-labeled categories 

4.4. Find better K values for K-means (human serving as the ground truth) 

We wanted to find the best K values for the K-means approach. In previous 

experiments, although we have shown the K-means approach could outperform 

STREAMCUBE when using the same number of clusters, the K values of the K-means 

approach were chosen based on the results of STREAMCUBE. In this experiment, we 

performed experiments on the K-means approach and compared the performance 

between different K-means. We again used the 200 manually labeled tweets created in 

section 4.3 as the ground truth and the clustering results as the prediction. In table 4.8, we 

performed the experiments for different K values. In figure 4.2 and 4.3, we found that 

both the Purity and NMI scores were higher when the number of clusters is larger. 

Although the clustering method is better when the Purity is greater, high Purity is 

easy to achieve when the number of clusters is large. Thus, we should not use Purity to 

trade off the quality of the clustering against the number of clusters (Manning et al., 

2008). The NMI scores reach 36% and become stable when the number of clusters is 

greater than 20. Moreover, in table 4.7, the Purity and NMI of STREAMCUBE was 

67.1% and 27.8% while the number of cluster was 46. Results of table 4.8 show that once 

Clustering approach Number of clusters Purity NMI

K-means 46 70.5% 35.6%

STREAMCUBE 46 67.1% 27.8%
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the number of clusters is greater than 20, the K-means approach could perform better 

than STREAMCUBE on both the Purity and NMI scores. Thus, according to our 

experiments, the K value for the K-means approach could be set at least greater than one 

tenth of the number of hashtags to achieve the performance better than STREAMCUBE. 

Table 4.8. The performance of the K-means approach with different Ks 

Number of clusters Purity NMI

2 49.4% 15.2%

5 53.9% 23.8%

10 59.7% 31.1%

15 66.5% 36.6%

20 67.8% 36.6%

30 70.0% 37.0%

50 70.0% 35.4%

100 73.8% 35.6%

150 75.6% 36.2%

170 76.8% 37.0%
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!  

Figure 4.2. The line graph of Purity scores for different number of clusters 

!  

Figure 4.3. The line graph of NMI scores for different number of clusters 
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CHAPTER 5. CONCLUSION 

5.1. Conclusion 

In this study, we proposed an event detection approach that utilizes hashtags in 

tweets. We adopted the feature extraction used in STREAMCUBE and the clustering 

approach K-means. To the best of our knowledge, this is the first study to extend the 

framework of STREAMCUBE by adopting different clustering algorithm to enhance the 

original STREAMCUBE. Moreover, we collected the tweets related to the Paris Attack 

during November 13th to November 17th, 2015 as our datasets and performed the 

following experiments: First, we compared the commonality and difference between the 

K-means approach and STREAMCUBE in the perspectives of Purity and NMI on a full 

set of over 20,000 tweets. Second, we collected manual labels for 200 randomly sampled 

tweets from a human subject and demonstrated that the K-means approach outperformed 

STREAMCUBE on the clustering results. Third, we further discussed how to set the K 

value for the K-means approach to lead to a better clustering performance. 
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5.2. Recommendations for future studies 

As with any study, some things could have been done better or more to further 

improve the results. The following are some recommendations for future research about 

this study. 

1. Consider both spatial and temporal perspectives. In this study, we only considered the 

temporal perspective in the implementation and experiments. However, taking the 

spatial information into the implementation could make this study more practical for 

industry. For example, some events (e.g. local sport events) might not be discussed 

nationwide in lots of tweets but are densely discussed only in the tweets from certain 

areas. The characteristic could not be detected in our current approach. Considering 

both spatial and temporal perspectives could provide more information for event 

detection. 

2. Compare with more related works of hashtag clustering. Our original idea was to 

compare our method with STREAMCUBE, Middleton et al. (2014), and Walther and 

Kaisser (2013). However, we only selected STREAMCUBE for some reasons: First, 

STREAMCUBE is the most relevant study to ours. Second, we could not find enough 

implementation details through the other two papers, and we were not able to reach 

the authors to use their original systems for our experiments. Although our approach 

was proved effective, a comprehensive comparison with the above different 

approaches could make our results more solid and convincing. 
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3. Collect more manual labels from human subjects for the collected tweets. In this 

study, we only collected manual labels for 200 tweets that were randomly sampled 

from the collected tweets of November 17th, 2015. Because the number of our 

manual labels and human subjects are low, inviting more subjects and increasing 

manually labeled tweets could enhance the credibility of our experiments when 

comparing our approach to others. 

4. Analyze more events discussed on Twitter. We only collected the tweets related to the 

Paris Attack during November 13th to November 17th, 2015. Since this approach can 

be easily applied to any other events, it would be interesting if we could have applied 

our method on different datasets. If we could prove our approach also performs well 

on different datasets, it will demonstrate the practicality of this approach. 

5. Adopt other clustering approaches in our hashtag clustering module instead of K-

means. Although we have shown K-means is effective in our study and could perform 

better than the clustering approach of STREAMCUBE, the best setting of K values 

may be varied in different datasets and is not easy to be determined. Even though we 

have discovered how to set K values in this study, it is still difficult to transfer the 

knowledge to other datasets. It is worth to adopt different clustering approaches that 

could self-adapt to different datasets in our hashtag clustering module. Moreover, 

adopting multiple different clustering approaches will show the extensibility of this 

study. 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APPENDIX A: NUMBER OF ELEMENTS IN THE CLUSTERS 

1. The number of elements in clusters (every 6 hours) 

Date Hour range Number 
of clusters

Number 
of 

hashtags

Average 
number of 
hashtags in 

clusters

Standard 
Deviation of 
number of 
hashtags in 

clusters

2015/11/13 18:00 - 
24:00

8 24 3.0 3.3

2015/11/14 0:00 - 6:00 9 41 4.6 5.6

2015/11/14 6:00 - 12:00 6 35 5.8 5.8

2015/11/14 12:00 - 
18:00

29 56 1.9 1.5

2015/11/14 18:00 - 
24:00

11 89 8.1 8.9

2015/11/15 0:00 - 6:00 5 65 13.0 8.6

2015/11/15 6:00 - 12:00 13 71 5.5 5.9

2015/11/15 12:00 - 
18:00

25 79 3.2 3.4

2015/11/15 18:00 - 
24:00

6 71 11.8 8.4

2015/11/16 0:00 - 6:00 4 53 13.3 5.0

2015/11/16 6:00 - 12:00 25 64 2.6 2.9

2015/11/16 12:00 - 
18:00

41 96 2.3 2.0
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2015/11/16 18:00 - 
24:00

11 44 4.0 4.4

2015/11/17 0:00 - 6:00 5 32 6.4 3.5

2015/11/17 6:00 - 12:00 5 18 3.6 1.6

2015/11/17 12:00 - 
18:00

6 58 9.7 5.3

2015/11/17 18:00 - 
24:00

5 41 8.2 4.0

Date Hour range Number 
of clusters

Number 
of 

hashtags

Average 
number of 
hashtags in 

clusters

Standard 
Deviation of 
number of 
hashtags in 

clusters
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2. The number of elements in clusters (every 12 hours) 

3. The number of elements in clusters (every 24 hours) 

Date Hour range Number 
of clusters

Number 
of 

hashtags

Average number 
of hashtags in 

clusters

Standard 
Deviation of 
number of 
hashtags in 

clusters

2015/11/13 12:00 - 
24:00

8 24 3.0 3.3

2015/11/14 0:00 - 12:00 27 80 3.0 4.6

2015/11/14 12:00 - 
24:00

17 157 9.2 11.8

2015/11/15 0:00 - 12:00 11 131 11.9 16.7

2015/11/15 12:00 - 
24:00

22 148 6.7 8.9

2015/11/16 0:00 - 12:00 40 113 2.8 3.8

2015/11/16 12:00 - 
24:00

41 133 3.2 3.6

2015/11/17 0:00 - 12:00 8 47 5.9 4.4

2015/11/17 12:00 - 
24:00

22 104 4.7 3.6

Date Number of 
clusters

Number of 
hashtags

Average 
number of 
hashtags in 

clusters

Standard 
Deviation of 
number of 
hashtags in 

clusters

2015/11/13 8 24 3.0 3.3

2015/11/14 26 241 9.3 16.9

2015/11/15 2 303 151.5 149.5
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2015/11/16 84 238 2.8 4.3

2015/11/17 46 170 3.7 3.4

Date Number of 
clusters

Number of 
hashtags

Average 
number of 
hashtags in 

clusters

Standard 
Deviation of 
number of 
hashtags in 

clusters
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APPENDIX B: TWEETS MANUALLY LABELED BY A HUMAN EXPERT 

In this section, we listed the 200 tweets used in section 4.3 that were manually 

labeled by a human expert. For each tweet, the attribute “manual_label” contains a 

number between 1 to 6: 1 stands for “Travel”, 2 stands for “Terrorism”, 3 stands for 

“Pray”, 4 stands for “Life”, 5 stands for “Hiring”, and 6 stands for “Others”. The details 

of the tweets are as below: 

1. {"original_text": "Barnie pense... \ud83d\ude1d\ud83d\ude3b #barnie @ Paris, France 
https://t.co/hxiXx8rCWa", "manual_label": "1", "hashtags": ["barnie"], 
"filtered_text": "barni pense ie paris franc wa", "original_id": 666681423290609664, 
"created_time": "Tue Nov 17 18:16:52 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8567, 2.3508]}} 

2. {"original_text": "#LasVegas #Paris #Casino #whathappensinvegas #StayInVegas @ 
Paris Las Vegas Hotel &amp; Casino https://t.co/ao9uAW7FNy", "manual_label": 
"1", "hashtags": ["LasVegas", "Paris", "Casino", "whathappensinvegas", 
"StayInVegas"], "filtered_text": "pari la vega hotel amp casino", "original_id": 
666820776801263616, "created_time": "Wed Nov 18 03:30:36 +0000 2015", "geo": 
{"type": "Point", "coordinates": [36.11235778, -115.17147064]}} 

3. {"original_text": "#paris #love #amour charlottebentz \ud83d\ude18 @ Paris Quai De 
Seine https://t.co/Ybrovm7K7o", "manual_label": "1", "hashtags": ["paris", "love", 
"amour"], "filtered_text": "charlottebentz pari quai de sein o", "original_id": 
666552264937635840, "created_time": "Tue Nov 17 09:43:38 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.84867601, 2.35944041]}} 

4. {"original_text": "Macken:  Paris attacks \u2018wake up call\u2019 for more 
surveillance https://t.co/seUOxvCjFC #macken", "manual_label": "2", "hashtags": 
["macken"], "filtered_text": "macken pari attack wake call surveil", "original_id": 
666726781013983234, "created_time": "Tue Nov 17 21:17:06 +0000 2015", "geo": 
{"type": "Point", "coordinates": [64.7079076, 21.00379944]}} 
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5. {"original_text": "#vangogh #selfie #mentalillness #parisjetaime #paris #frenchart @ 
Mus\u00e9e d'Orsay (officiel) https://t.co/eHt6UPdwxA", "manual_label": "1", 
"hashtags": ["vangogh", "selfie", "mentalillness", "parisjetaime", "paris", "frenchart"], 
"filtered_text": "mus d orsay officiel", "original_id": 666808304442679297, 
"created_time": "Wed Nov 18 02:41:03 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.86025591, 2.32602851]}} 

6. {"original_text": "Good Morning Paris, Bonjo\u00far ! \ud83c\uddeb\ud83c\uddf7 
#paris #france #prayforparis\ud83c\uddeb\ud83c\uddf7 @ A\u00e9roport de Paris-
Charles-de-Gaulle\u2026 https://t.co/E4tdkzVU4f", "manual_label": "3", "hashtags": 
["paris", "france", "prayforparis"], "filtered_text": "good morn paris bonjo r c is a 
roport de paris charles de gaul vu4f", "original_id": 666529925092917248, 
"created_time": "Tue Nov 17 08:14:52 +0000 2015", "geo": {"type": "Point", 
"coordinates": [49.01478417, 2.54166164]}} 

7. {"original_text": "\ud83c\uddeb\ud83c\uddf7 #resistinpeace #prayforparis 
#republique #paris @ Place de la Republique https://t.co/mKtl48JRIQ", 
"manual_label": "3", "hashtags": ["resistinpeace", "prayforparis", "republique", 
"paris"], "filtered_text": "c u place de la republiqu iq", "original_id": 
666741957859897345, "created_time": "Tue Nov 17 22:17:24 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.86746503, 2.36418438]}} 

8. {"original_text": "6. Syria\n7. #SiyaKeRam\n8. #APEC2015\n9. Paris\n10. 
B.A.P\n\n2015/11/17 14:15 SGT #trndnl https://t.co/psP0GzBgZB", "manual_label": 
"6", "hashtags": ["SiyaKeRam", "APEC2015", "trndnl"], "filtered_text": "6 syria 7 8 
9 pari 10 b a p 2015 11 17 14 15 sgt", "original_id": 666501178952314880, 
"created_time": "Tue Nov 17 06:20:38 +0000 2015", "geo": {"type": "Point", 
"coordinates": [1.3656, 103.8277]}} 

9. {"original_text": "ENSEMBLE \ud83d\udc97 \n\n#France #Paris #parisiloveyou 
#hope #crossfit #community #crossfitenyeto\u2026 https://t.co/HctNbtjyej", 
"manual_label": "4", "hashtags": ["France", "Paris", "parisiloveyou", "hope", 
"crossfit", "community", "crossfitenyeto"], "filtered_text": "ensembl e u e y o j", 
"original_id": 666547332901502976, "created_time": "Tue Nov 17 09:24:02 +0000 
2015", "geo": {"type": "Point", "coordinates": [45.77353164, 4.79741492]}} 

10. {"original_text": "England paid their respects to the victims of the Paris attacks 
during training ahead of their friendly tie with France #PrayForParis", 
"manual_label": "2", "hashtags": ["PrayForParis"], "filtered_text": "england paid 
respect victim pari attack train ahead friendli tie franc", "original_id": 
666520695568998400, "created_time": "Tue Nov 17 07:38:11 +0000 2015", "geo": 
{"type": "Point", "coordinates": [8.83134, 3.74247]}} 

11. {"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/AgQW5WpJ9E", 
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"manual_label": "4", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666801491659747328, "created_time": "Wed Nov 18 02:13:58 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

12. {"original_text": "Paris International Film Fantastic Festival ! #pifff #cinema #movie 
#film #fantastic #grandrex\u2026 https://t.co/LZzDQFiOSo", "manual_label": "1", 
"hashtags": ["pifff", "cinema", "movie", "film", "fantastic", "grandrex"], 
"filtered_text": "pari intern film fantast festiv", "original_id": 666686011896930304, 
"created_time": "Tue Nov 17 18:35:06 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.87050278, 2.347725]}} 

13. {"original_text": "#Stigmabase | VN -  Time for action, not words, from peace-loving 
Muslims in face of Paris barbarism \u00a0- But if you\u2026 https://t.co/
tutDt52kXw", "manual_label": "2", "hashtags": ["Stigmabase"], "filtered_text": "vn 
time action words peace lov muslim face pari barbar but you", "original_id": 
666771814043901952, "created_time": "Wed Nov 18 00:16:03 +0000 2015", "geo": 
{"type": "Point", "coordinates": [21.10748654, 105.85161133]}} 

14. {"original_text": "#prayforparis #attentat #metz #paris #fabert \"nous devons rester 
fort...\"\u2026 https://t.co/fJY29j4yyL", "manual_label": "3", "hashtags": 
["prayforparis", "attentat", "metz", "paris", "fabert"], "filtered_text": "nou devon 
rester fort", "original_id": 666592670626660353, "created_time": "Tue Nov 17 
12:24:12 +0000 2015", "geo": {"type": "Point", "coordinates": [49.12199588, 
6.17163429]}} 

15. {"original_text": "Pas de panique ce ne sont que des nouilles de riz. #Wokbar (@ 
Wokbar in Paris, \u00cele-de-France) https://t.co/a27R9LfHtz", "manual_label": "1", 
"hashtags": ["Wokbar"], "filtered_text": "pa de paniqu ce ne sont que de nouill de riz 
wokbar paris le de france", "original_id": 666586903689502720, "created_time": 
"Tue Nov 17 12:01:17 +0000 2015", "geo": {"type": "Point", "coordinates": 
[48.84435579, 2.33124733]}} 

16. {"original_text": "6. #SiyaKeRam\n7. #APEC2015\n8. Paris\n9. B.A.P\n10. LITTLE 
MIX\n\n2015/11/17 13:35 SGT #trndnl https://t.co/psP0GzBgZB", "manual_label": 
"6", "hashtags": ["SiyaKeRam", "APEC2015", "trndnl"], "filtered_text": "6 7 8 pari 9 
b a p 10 littl mix 2015 11 17 13 35 sgt", "original_id": 666491119715291136, 
"created_time": "Tue Nov 17 05:40:40 +0000 2015", "geo": {"type": "Point", 
"coordinates": [1.3656, 103.8277]}} 

17. {"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/I7GrS20woT", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
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"original_id": 666804965160054785, "created_time": "Wed Nov 18 02:27:46 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

18. {"original_text": "#hnytwtr id53,IT,{2}WEB_X,Webmail attack from from 
151.8.222.x req=|administrator|components|com_acymailing|inc|openflas...", 
"manual_label": "6", "hashtags": ["hnytwtr"], "filtered_text": "id53 it 2 web_x 
webmail attack 151 8 222 x req administrator components com_acymailing inc 
openflas", "original_id": 666570840130105344, "created_time": "Tue Nov 17 
10:57:27 +0000 2015", "geo": {"type": "Point", "coordinates": [42.83, 12.83]}} 

19. {"original_text": "@TCSITWiz  i feel u are a global organization so u must change ur 
dp to show support for paris #tcsitwiz", "manual_label": "2", "hashtags": ["tcsitwiz"], 
"filtered_text": "feel u global organ u must chang ur dp show support pari", 
"original_id": 666496641180962816, "created_time": "Tue Nov 17 06:02:36 +0000 
2015", "geo": {"type": "Point", "coordinates": [26.8706463, 80.9842061]}} 

20. {"original_text": "My everything \ud83c\uddeb\ud83c\uddf7\u2764\ufe0f #sisters 
#sisterlove margauxf90 @pipa160 #paris #france #familyfirst #jeunesse\u2026 
https://t.co/dtmQovygso", "manual_label": "4", "hashtags": ["sisters", "sisterlove", 
"paris", "france", "familyfirst", "jeunesse"], "filtered_text": "my everyth r ve 
margauxf9 6 c se", "original_id": 666714412040847361, "created_time": "Tue Nov 
17 20:27:57 +0000 2015", "geo": {"type": "Point", "coordinates": [48.86537748, 
2.2736029]}} 

21. {"original_text": "The tweet with the most impact of the 'Fabien Clain' Trend, was 
published by @mathieuvonrohr: https://t.co/hT9kgEXeGc (94 RTs) #trndnl", 
"manual_label": "2", "hashtags": ["trndnl"], "filtered_text": "the tweet impact fabien 
clain trend publish 94 rts", "original_id": 666598694859354112, "created_time": "Tue 
Nov 17 12:48:08 +0000 2015", "geo": {"type": "Point", "coordinates": [48.8569, 
2.3412]}} 

22. {"original_text": 
"\u4f55\u3057\u306b\u6765\u305f\u306e\u304b\u5fd8\u308c\u308b\u3068\u3053\u3
08d\u3067\u3057\u305f\u3002\n\n\u30ec\u30b9\u30c8\u30e9\u30f3higuma negui 
ramen \n#paris #instagood #ramen #sakumanaohito @ Restaurant\u2026 https://t.co/
IpYdG2ED9e", "manual_label": "1", "hashtags": ["paris", "instagood", "ramen", 
"sakumanaohito"], "filtered_text": "higuma negui ramen restaurant", "original_id": 
666559248998883328, "created_time": "Tue Nov 17 10:11:23 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8634415, 2.33483]}} 

23. {"original_text": "After Paris attacks, English football fans salute France by roaring 
out the ... -\u2026 https://t.co/TfTZutjDmc #news https://t.co/VzAvlZDhEl", 
"manual_label": "2", "hashtags": ["news"], "filtered_text": "after pari attacks english 
footbal fan salut franc roar https t co vzavlzdhel", "original_id": 
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666743709585666048, "created_time": "Tue Nov 17 22:24:22 +0000 2015", "geo": 
{"type": "Point", "coordinates": [36.06801502, -79.79721587]}} 

24. {"original_text": "https://t.co/A88bO1P3BV #beirut", "manual_label": "6", 
"hashtags": ["beirut"], "filtered_text": "", "original_id": 666762934455017472, 
"created_time": "Tue Nov 17 23:40:46 +0000 2015", "geo": {"type": "Point", 
"coordinates": [33.89376063, 35.55259466]}} 

25. {"original_text": "The #world #loves #Adidas #collectors #only : Swag #Adidas 
#Stripes #Bomb #Weapon #Army #Battlefield #Artwork #War", "manual_label": "2", 
"hashtags": ["world", "loves", "Adidas", "collectors", "only", "Adidas", "Stripes", 
"Bomb", "Weapon", "Army", "Battlefield", "Artwork", "War"], "filtered_text": "the 
swag", "original_id": 666771547944837121, "created_time": "Wed Nov 18 00:14:59 
+0000 2015", "geo": {"type": "Point", "coordinates": [40.892601, -78.215897]}} 

26. {"original_text": "6. Fran\u00e7a\n7. #PrayForSyria\n8. #2DaysTilIKWYDLS\n9. 
Jessica\n10. Paris\n\n2015/11/17 07:35 WET #trndnl https://t.co/uLzQlByvJf", 
"manual_label": "6", "hashtags": ["PrayForSyria", "2DaysTilIKWYDLS", "trndnl"], 
"filtered_text": "6 fran a 7 8 9 jessica 10 pari 2015 11 17 07 35 wet", "original_id": 
666521272596099072, "created_time": "Tue Nov 17 07:40:29 +0000 2015", "geo": 
{"type": "Point", "coordinates": [38.9901, -9.1413]}} 

27. {"original_text": "#PwC lighting up for #Paris @ PwC https://t.co/vM7k8AjO3r", 
"manual_label": "4", "hashtags": ["PwC", "Paris"], "filtered_text": "light pwc", 
"original_id": 666485906086469632, "created_time": "Tue Nov 17 05:19:57 +0000 
2015", "geo": {"type": "Point", "coordinates": [37.3268623, -121.8890991]}} 

28. {"original_text": "#UnitedWeStand #g\u00e9n\u00e9rationBataclan 
#PrayForTheWorld #WarIsComing #ParisAttacks #FrenchRepublic #Paris\u2026 
https://t.co/XcmTqc2NdR", "manual_label": "2", "hashtags": ["UnitedWeStand", 
"g\u00e9n\u00e9rationBataclan", "PrayForTheWorld", "WarIsComing", 
"ParisAttacks", "FrenchRepublic", "Paris"], "filtered_text": "", "original_id": 
666744393030893568, "created_time": "Tue Nov 17 22:27:05 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8590256, 2.29811714]}} 

29. {"original_text": "This is a freedom place.\nWords are powerful.\nExpress yourself.
\n\nLOVE , EMPATHY, FORGIVENESS\n\n#Paris @\u2026 https://t.co/
9D7XVPXVCT", "manual_label": "3", "hashtags": ["Paris"], "filtered_text": "thi 
freedom place word powerful express yourself love empathy forgiv", "original_id": 
666692648971833344, "created_time": "Tue Nov 17 19:01:28 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.86746503, 2.36418438]}} 

30. {"original_text": "Beautiful Washington Square Arch lit up on Sunday night in #NYC 
as a memorial for the Paris attacks\u2026 https://t.co/w8sNkEdWJQ", 
"manual_label": "3", "hashtags": ["NYC"], "filtered_text": "beauti washington squar 
arch lit sunday night memori pari attacks", "original_id": 666742524892061697, 
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"created_time": "Tue Nov 17 22:19:40 +0000 2015", "geo": {"type": "Point", 
"coordinates": [40.73083565, -73.9974153]}} 

31. {"original_text": "L'#ob\u00e9lisque de la #concorde #paris #France @ Place de la 
concorde https://t.co/tTvZl9MGiI", "manual_label": "1", "hashtags": 
["ob\u00e9lisque", "concorde", "paris", "France"], "filtered_text": "l de la place de la 
concord", "original_id": 666714627992981504, "created_time": "Tue Nov 17 
20:28:48 +0000 2015", "geo": {"type": "Point", "coordinates": [48.86562942, 
2.32172938]}} 

32. {"original_text": "#Montreal to #Paris with live #ParisAttacks @ Place \u00c9milie-
Gamelin https://t.co/myQ1Gt6sHS", "manual_label": "1", "hashtags": ["Montreal", 
"Paris", "ParisAttacks"], "filtered_text": "live place milie gamelin", "original_id": 
666819222836674560, "created_time": "Wed Nov 18 03:24:26 +0000 2015", "geo": 
{"type": "Point", "coordinates": [45.515414, -73.55996]}} 

33. {"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/H0KqlhWGii", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666810152058621952, "created_time": "Wed Nov 18 02:48:23 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

34. {"original_text": "Paris attacks: All faiths need to stand together, says Bishop of 
#Shrewsbury https://t.co/sXO5xtoomE #Shropshire https://t.co/tjOeJtvZZl", 
"manual_label": "2", "hashtags": ["Shrewsbury", "Shropshire"], "filtered_text": "pari 
attacks all faith need stand together say bishop https t co tjoejtvzzl", "original_id": 
666672917233594368, "created_time": "Tue Nov 17 17:43:04 +0000 2015", "geo": 
{"type": "Point", "coordinates": [52.63162952, -2.50153743]}} 

35. {"original_text": "Something was missing... #PeopleOf pt14\n\n#Paris\n\nA simple 
portrait \nWaiting for the bus to arrive,\u2026 https://t.co/zsPQkq8HYC", 
"manual_label": "3", "hashtags": ["PeopleOf", "Paris"], "filtered_text": "someth 
missing pt14 a simpl portrait wait bu arrive", "original_id": 666814212157652992, 
"created_time": "Wed Nov 18 03:04:31 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8567, 2.3508]}} 

36. {"original_text": "He Can't multi-task! #waiting #agegap #HeOld!! @ Paris, France 
https://t.co/h4DQ6nYPES", "manual_label": "4", "hashtags": ["waiting", "agegap", 
"HeOld"], "filtered_text": "he can t multi task paris franc", "original_id": 
666577332975587328, "created_time": "Tue Nov 17 11:23:15 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8567, 2.3508]}} 

37. {"original_text": "#Paris, we join you in #Cincinnati! #jesuisenterrasse 
#TousAuBistrot \ud83c\udf77 @ Columbia Township https://t.co/HemCzoPbU0", 
"manual_label": "3", "hashtags": ["Paris", "Cincinnati", "jesuisenterrasse", 



!62

"TousAuBistrot"], "filtered_text": "join columbia township 0", "original_id": 
666781214338977792, "created_time": "Wed Nov 18 00:53:24 +0000 2015", "geo": 
{"type": "Point", "coordinates": [39.170236, -84.386322]}} 

38. {"original_text": "At @ow2 #ow2con in Paris,to join a panel session about FOSS 
project governance", "manual_label": "1", "hashtags": ["ow2con"], "filtered_text": "at 
paris to join panel session foss project govern", "original_id": 666547936311033856, 
"created_time": "Tue Nov 17 09:26:26 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.84385337, 2.3880959]}} 

39. {"original_text": "6. H\u00f8gmo\n7. ISIS\n8. Gratulerer\n9. Aftenposten\n10. 
Beirut\n\n2015/11/17 13:35 CET #trndnl https://t.co/6sjsp7X8c6", "manual_label": 
"6", "hashtags": ["trndnl"], "filtered_text": "6 h gmo 7 isi 8 gratuler 9 aftenposten 10 
beirut 2015 11 17 13 35 cet", "original_id": 666596774098829312, "created_time": 
"Tue Nov 17 12:40:30 +0000 2015", "geo": {"type": "Point", "coordinates": [64.5565, 
12.6654]}} 

40. {"original_text": "The Guys @sheridanaveband \n#photoshoot #lvc 
#sheridanaveband #sheridanave #homies 4/6 @ Lebanon\u2026 https://t.co/
yOh59iIeIV", "manual_label": "6", "hashtags": ["photoshoot", "lvc", 
"sheridanaveband", "sheridanave", "homies"], "filtered_text": "the guy 4 6 lebanon", 
"original_id": 666735918892486657, "created_time": "Tue Nov 17 21:53:25 +0000 
2015", "geo": {"type": "Point", "coordinates": [40.33176802, -76.51479861]}} 

41. {"original_text": "On Monday 16, 'Poutine' was Trending Topic in Paris for 6 hours: 
https://t.co/aGaBPMwTK8 #trndnl", "manual_label": "6", "hashtags": ["trndnl"], 
"filtered_text": "on monday 16 poutine trend topic pari 6 hours", "original_id": 
666582618729771008, "created_time": "Tue Nov 17 11:44:15 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8569, 2.3412]}} 

42. {"original_text": "#France 2 bomb Azam khan buffalo's?\nHey take away 
#AzamKhan leave \nprecious #Buffalo's\n#FranceAttacks #Hollande #Raqqa 
\n#SyrianWar #IraqWar", "manual_label": "2", "hashtags": ["France", "AzamKhan", 
"Buffalo", "FranceAttacks", "Hollande", "Raqqa", "SyrianWar", "IraqWar"], 
"filtered_text": "2 bomb azam khan buffalo s hey take away leav preciou s", 
"original_id": 666837687941246976, "created_time": "Wed Nov 18 04:37:48 +0000 
2015", "geo": {"type": "Point", "coordinates": [15.8750453, 74.5025448]}} 

43. {"original_text": "Want to work in #Lebanon, TN? View our latest opening: https://
t.co/sMOOommg0n #Engineering #Veterans #Job #Jobs #Hiring", "manual_label": 
"5", "hashtags": ["Lebanon", "Engineering", "Veterans", "Job", "Jobs", "Hiring"], 
"filtered_text": "want work tn view latest opening", "original_id": 
666686608729485312, "created_time": "Tue Nov 17 18:37:28 +0000 2015", "geo": 
{"type": "Point", "coordinates": [36.2081098, -86.2911024]}} 
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44. {"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/tpBKH3DHAz", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666807187386138624, "created_time": "Wed Nov 18 02:36:36 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

45. {"original_text": "Charlie Hebdo ..#charliehebdo #leman #uykusuz (at 
@Charlie_Hebdo_ in Paris, \u00cele-de-France) https://t.co/tVzypi9TCb https://t.co/
25YGMNG8xh", "manual_label": "6", "hashtags": ["charliehebdo", "leman", 
"uykusuz"], "filtered_text": "charli hebdo at paris le de france https t co 
25ygmng8xh", "original_id": 666604085634850816, "created_time": "Tue Nov 17 
13:09:33 +0000 2015", "geo": {"type": "Point", "coordinates": [48.85888666, 
2.37054651]}} 

46. {"original_text": "Ajude quem precisa... S\u00f3 isso! 
\n\u2764\ufe0f\ud83d\ude4f\ud83c\udffc\n#mariana\n#ajudemarianamg\n#mg 
\n#paris\n#playforparis\n#Repost\u2026 https://t.co/vgSQgok5Tf", "manual_label": 
"3", "hashtags": ["mariana", "ajudemarianamg", "mg", "paris", "playforparis", 
"Repost"], "filtered_text": "ajud quem precisa s isso n m mg st tf", "original_id": 
666486637090766848, "created_time": "Tue Nov 17 05:22:51 +0000 2015", "geo": 
{"type": "Point", "coordinates": [-2.6, -44.23333333]}} 

47. {"original_text": "Les meilleurs #best #family #friends #parisian #paris #party 
#birthday debydebo026 deboamar55\u2026 https://t.co/hErqHnafPu", 
"manual_label": "4", "hashtags": ["best", "family", "friends", "parisian", "paris", 
"party", "birthday"], "filtered_text": "le meilleur debydebo026 deboamar55", 
"original_id": 666775862633611264, "created_time": "Wed Nov 18 00:32:08 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.87905849, 2.27838699]}} 

48. {"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/hRJ4elUiC6", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666805227438211072, "created_time": "Wed Nov 18 02:28:49 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

49. {"original_text": "\u00c7a fait du bien de la voir aussi belle. #paris #tourEiffel 
#13thnovember\u2026 https://t.co/d3up5Tq78J", "manual_label": "2", "hashtags": 
["paris", "tourEiffel", "13thnovember"], "filtered_text": "a fait du bien de la voir aussi 
belle", "original_id": 666716966078586880, "created_time": "Tue Nov 17 20:38:06 
+0000 2015", "geo": {"type": "Point", "coordinates": [48.86219263, 2.28795251]}} 

50. {"original_text": "The affects of a tea bomb during your shake shift on Founders Day! 
#ApronOff #SSSO #Funky4\u2026 https://t.co/40KpBbW19f", "manual_label": "4", 
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"hashtags": ["ApronOff", "SSSO", "Funky4"], "filtered_text": "the affect tea bomb 
shake shift founder day", "original_id": 666765569354571776, "created_time": "Tue 
Nov 17 23:51:14 +0000 2015", "geo": {"type": "Point", "coordinates": [33.04068211, 
-96.7174629]}} 

51. {"original_text": "Performance Food Group #Transportation : Driver (Route 
Delivery) Min $1100.00 a week!!!!! (#Lebanon, Tennessee) https://t.co/jhhooimkhI", 
"manual_label": "4", "hashtags": ["Transportation", "Lebanon"], "filtered_text": 
"perform food group driver rout delivery min 1100 00 week tennessee", "original_id": 
666790503384375296, "created_time": "Wed Nov 18 01:30:19 +0000 2015", "geo": 
{"type": "Point", "coordinates": [35.6117453, -89.3575712]}} 

52. {"original_text": "\ud83c\uddeb\ud83c\uddf7PARIS __ 
FRANCE\ud83d\udd35\u26aa\ufe0f\ud83d\udd34 #night #picture #river #toureiffel 
#photo #likes #igers #followme #bridge\u2026 https://t.co/ulWgt4Bxzp", 
"manual_label": "1", "hashtags": ["night", "picture", "river", "toureiffel", "photo", 
"likes", "igers", "followme", "bridge"], "filtered_text": "pari __ france f h g o id 
bxzp", "original_id": 666671105797697536, "created_time": "Tue Nov 17 17:35:52 
+0000 2015", "geo": {"type": "Point", "coordinates": [48.8590256, 2.29811714]}} 

53. {"original_text": "Beautiful tribute outside the Pyramid tonight. #prayforparis #paris 
#csulb #vivelafrance @ California\u2026 https://t.co/aagdmDDp3n", "manual_label": 
"3", "hashtags": ["prayforparis", "paris", "csulb", "vivelafrance"], "filtered_text": 
"beauti tribut outsid pyramid tonight california", "original_id": 
666549578452312064, "created_time": "Tue Nov 17 09:32:58 +0000 2015", "geo": 
{"type": "Point", "coordinates": [33.78138261, -118.1139261]}} 

54. {"original_text": "@SenTomCotton @JakeTapper @CNN #ISIS #Paris 
#BreakingNews #ArrestBuhari explosion in Adamawa @PA @M_E_Adams 
@RT_com https://t.co/EYUSv5TYA9", "manual_label": "2", "hashtags": ["ISIS", 
"Paris", "BreakingNews", "ArrestBuhari"], "filtered_text": "explos adamawa https t 
co eyusv5tya9", "original_id": 666733851587289088, "created_time": "Tue Nov 17 
21:45:12 +0000 2015", "geo": {"type": "Point", "coordinates": [6.43667, 7.48353]}} 

55. {"original_text": "#paris @ Paris, France https://t.co/9x0SRvAmY5", 
"manual_label": "1", "hashtags": ["paris"], "filtered_text": "paris franc", 
"original_id": 666578005439983616, "created_time": "Tue Nov 17 11:25:55 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8567, 2.3508]}} 

56. {"original_text": "#Paris\n#InGodWeTrust @ Paris, France https://t.co/
yhxuVDFAS4", "manual_label": "3", "hashtags": ["Paris", "InGodWeTrust"], 
"filtered_text": "paris franc", "original_id": 666710094999089154, "created_time": 
"Tue Nov 17 20:10:48 +0000 2015", "geo": {"type": "Point", "coordinates": [48.8567, 
2.3508]}} 
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57. {"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/UazWBYr7t3", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666807895657349120, "created_time": "Wed Nov 18 02:39:25 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

58. {"original_text": "Pop corn au homard\n#popcorn #streetfood #foodtruck 
#lobsterandco #lobster #homard @ Paris, France https://t.co/83o2ty5ZtH", 
"manual_label": "1", "hashtags": ["popcorn", "streetfood", "foodtruck", 
"lobsterandco", "lobster", "homard"], "filtered_text": "pop corn au homard paris 
franc", "original_id": 666707707089416192, "created_time": "Tue Nov 17 20:01:18 
+0000 2015", "geo": {"type": "Point", "coordinates": [48.8567, 2.3508]}} 

59. {"original_text": "Elle est magnifique \ud83c\uddeb\ud83c\uddf7\u2764\ufe0f #Paris 
#toureiffel #eiffeltower #Fluctuatnecmergitu @ Tour Eiffel https://t.co/Iscljj6kC3", 
"manual_label": "1", "hashtags": ["Paris", "toureiffel", "eiffeltower", 
"Fluctuatnecmergitu"], "filtered_text": "ell est magnifiqu e e tu tour eiff c3", 
"original_id": 666708623159140352, "created_time": "Tue Nov 17 20:04:57 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8590256, 2.29811714]}} 

60. {"original_text": "\u201c@MazMHussain: one of the attackers, was 5 years old on 
9/11.War on Terror &amp; airstrikes no solution more creating multi-headed #Hydra 
#paris", "manual_label": "2", "hashtags": ["Hydra", "paris"], "filtered_text": "one 
attackers 5 year old 9 11 war terror amp airstrik solut creat multi head", "original_id": 
666488201360580608, "created_time": "Tue Nov 17 05:29:04 +0000 2015", "geo": 
{"type": "Point", "coordinates": [52.37010055, 4.91085774]}} 

61. {"original_text": "Can you recommend anyone for this #job? Co-op - Machining 
Engineering (Lebanon, MO) (Summer 2016 \u2013 May Start) - https://t.co/
TDoOfaLo1P", "manual_label": "5", "hashtags": ["job"], "filtered_text": "can 
recommend anyon co op machin engin lebanon mo summer 2016 may start", 
"original_id": 666746337963044864, "created_time": "Tue Nov 17 22:34:49 +0000 
2015", "geo": {"type": "Point", "coordinates": [37.6805967, -92.6637865]}} 

62. {"original_text": "Come i #bambini vedono la #guerra e il #terrorismo #paris 
\n#nowar no terrorism we are all #brothers\u2026 https://t.co/lLQdwXjDe3", 
"manual_label": "2", "hashtags": ["bambini", "guerra", "terrorismo", "paris", "nowar", 
"brothers"], "filtered_text": "come vedono la e il terror", "original_id": 
666531972546625536, "created_time": "Tue Nov 17 08:23:00 +0000 2015", "geo": 
{"type": "Point", "coordinates": [45.4667, 9.2]}} 

63. {"original_text": "Heart attack #1DPL", "manual_label": "6", "hashtags": ["1DPL"], 
"filtered_text": "heart attack", "original_id": 666688900920950785, "created_time": 
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"Tue Nov 17 18:46:35 +0000 2015", "geo": {"type": "Point", "coordinates": 
[54.3841611, 19.8297019]}} 

64. {"original_text": "Speechless... \ud83c\uddeb\ud83c\uddf7 #stadedefrance #Paris 
#day4 @ Stade de France \u2013 Saint-Denis https://t.co/oFLDoU1ZeO", 
"manual_label": "6", "hashtags": ["stadedefrance", "Paris", "day4"], "filtered_text": 
"speechless c y4 stade de franc saint deni eo", "original_id": 666526550867750912, 
"created_time": "Tue Nov 17 08:01:27 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.91777778, 2.35055556]}} 

65. {"original_text": "#Stigmabase | AM -  Copacabana LGBT parade honors Paris 
victims \u00a0 -\u00a0The Copacabana LGBT parade dampened by Paris\u2026 
https://t.co/dpxyTeTDqV", "manual_label": "3", "hashtags": ["Stigmabase"], 
"filtered_text": "am copacabana lgbt parad honor pari victim the copacabana lgbt 
parad dampen paris", "original_id": 666750069777895425, "created_time": "Tue Nov 
17 22:49:38 +0000 2015", "geo": {"type": "Point", "coordinates": [25.7231361, 
-80.20185547]}} 

66. {"original_text": "Attack of the sea nettles. #montereybayaquarium #seanettle @ 
Monterey, CA, United States https://t.co/f37zf1YeRz", "manual_label": "1", 
"hashtags": ["montereybayaquarium", "seanettle"], "filtered_text": "attack sea nettles 
monterey ca unit state", "original_id": 666829583656886272, "created_time": "Wed 
Nov 18 04:05:36 +0000 2015", "geo": {"type": "Point", "coordinates": [36.6, 
-121.891]}} 

67. {"original_text": "romyjanec : \"\ud83d\udc40\" https://t.co/5eUAMoIHa2 #beirut", 
"manual_label": "2", "hashtags": ["beirut"], "filtered_text": "romyjanec 2", 
"original_id": 666491100107022336, "created_time": "Tue Nov 17 05:40:35 +0000 
2015", "geo": {"type": "Point", "coordinates": [33.89977205, 35.48200163]}} 

68. {"original_text": "https://t.co/HMFo3KHMQo #beirut", "manual_label": "2", 
"hashtags": ["beirut"], "filtered_text": "", "original_id": 666576701699264512, 
"created_time": "Tue Nov 17 11:20:44 +0000 2015", "geo": {"type": "Point", 
"coordinates": [33.88682038, 35.5042974]}} 

69. {"original_text": "6. #adtechNZ\n7. Simon Lusk\n8. ISIS\n9. Syria\n10. 
Paris\n\n2015/11/17 22:55 NZDT #trndnl https://t.co/WiiLMe8GDw", 
"manual_label": "6", "hashtags": ["adtechNZ", "trndnl"], "filtered_text": "6 7 simon 
lusk 8 isi 9 syria 10 pari 2015 11 17 22 55 nzdt", "original_id": 
666556539281367040, "created_time": "Tue Nov 17 10:00:37 +0000 2015", "geo": 
{"type": "Point", "coordinates": [-43.5877, 170.3666]}} 

70. {"original_text": "Milano non sar\u00e0 mai pi\u00f9 la stessa \ud83c\udf42 
#prayforparis #prayfortheworld #milan #paris @ Piazza Fontana https://t.co/
Rw5Re5jcti", "manual_label": "3", "hashtags": ["prayforparis", "prayfortheworld", 
"milan", "paris"], "filtered_text": "milano non sar mai pi la stessa d n piazza fontana", 
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"original_id": 666696222778880001, "created_time": "Tue Nov 17 19:15:40 +0000 
2015", "geo": {"type": "Point", "coordinates": [45.46344098, 9.19406362]}} 

71. {"original_text": "On Monday 16, 'Paris' was Trending Topic in Bristol for 9 hours: 
https://t.co/NVYZ4Fck2V #trndnl", "manual_label": "6", "hashtags": ["trndnl"], 
"filtered_text": "on monday 16 paris trend topic bristol 9 hours", "original_id": 
666729791932862464, "created_time": "Tue Nov 17 21:29:04 +0000 2015", "geo": 
{"type": "Point", "coordinates": [51.4537, -2.5914]}} 

72. {"original_text": "mhd_khatib : \"\u0628\u0627\u0644\u0631\u0648\u062d 
\u0644\u0627 \u062a\u0628\u0627\u0644\u064a \u0631\u0648\u062d 
\u0644\u0644\u063a\u0627\u0644\u064a\n \u0645\u0634\u064a \u0645\u0634\u064a 
\u0645\u0634\u064a \u0645\u0634\u064a\" https://t.co/ljYnt3jGqv #beirut", 
"manual_label": "6", "hashtags": ["beirut"], "filtered_text": "mhd_khatib", 
"original_id": 666531779231277056, "created_time": "Tue Nov 17 08:22:14 +0000 
2015", "geo": {"type": "Point", "coordinates": [33.85139815, 35.52001102]}} 

73. {"original_text": "What a great #Tribute l! Thank you so much #city of #LosAngeles 
for caring! #ThankYou #paris\u2026 https://t.co/xldcgUAZtc", "manual_label": "1", 
"hashtags": ["Tribute", "city", "LosAngeles", "ThankYou", "paris"], "filtered_text": 
"what great l thank much caring", "original_id": 666839400295305217, 
"created_time": "Wed Nov 18 04:44:36 +0000 2015", "geo": {"type": "Point", 
"coordinates": [34.0536, -118.243]}} 

74. {"original_text": "Paris reste une f\u00eate ! #tousaubistrot #jesuisenterrasse 
#hommage #resistance @ La Marmite https://t.co/FhuZvDQH6B", "manual_label": 
"3", "hashtags": ["tousaubistrot", "jesuisenterrasse", "hommage", "resistance"], 
"filtered_text": "pari rest une f te la marmit", "original_id": 666750343192047616, 
"created_time": "Tue Nov 17 22:50:44 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8822899, 2.33939]}} 

75. {"original_text": "Did you know that #E1matin was Trending Topic on Tuesday 17 
for 4 hours in Paris? https://t.co/D67fdwWnro #trndnl", "manual_label": "6", 
"hashtags": ["E1matin", "trndnl"], "filtered_text": "did know trend topic tuesday 17 4 
hour paris", "original_id": 666760091194949632, "created_time": "Tue Nov 17 
23:29:28 +0000 2015", "geo": {"type": "Point", "coordinates": [48.8569, 2.3412]}} 

76. {"original_text": "Burj khalifa\ud83d\ude07\ud83d\ude07\ud83d\ude07 pray for paris 
#uae #dubai #france #paris #flag #lights #nightlife #nightlights @\u2026 https://t.co/
VIseBzc4yF", "manual_label": "1", "hashtags": ["uae", "dubai", "france", "paris", 
"flag", "lights", "nightlife", "nightlights"], "filtered_text": "burj khalifa pray par u b n 
r l h ht 4yf", "original_id": 666680284654383105, "created_time": "Tue Nov 17 
18:12:20 +0000 2015", "geo": {"type": "Point", "coordinates": [25.19588318, 
55.27713686]}} 
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77. {"original_text": "Can you recommend anyone for this #job? 12K Plumber - https://
t.co/L5kudeLRE4 #NettempsJobs #Paris, TN #Engineering #Hiring #CareerArc", 
"manual_label": "5", "hashtags": ["job", "NettempsJobs", "Paris", "Engineering", 
"Hiring", "CareerArc"], "filtered_text": "can recommend anyon 12k plumber tn", 
"original_id": 666686899868688385, "created_time": "Tue Nov 17 18:38:38 +0000 
2015", "geo": {"type": "Point", "coordinates": [36.3020023, -88.3267107]}} 

78. {"original_text": "Happy place 
\u2764\ud83c\uddeb\ud83c\uddf7\ufe0f\ud83d\ude4f\ud83c\udffd @fsparrows #Paris 
#coffeeshop @ Folks And Sparrows https://t.co/Rje4aDmUnO", "manual_label": "1", 
"hashtags": ["Paris", "coffeeshop"], "filtered_text": "happi place r shop folk and sparr 
muno", "original_id": 666602305756745728, "created_time": "Tue Nov 17 13:02:29 
+0000 2015", "geo": {"type": "Point", "coordinates": [48.8609505, 2.36869]}} 

79. {"original_text": "Nice touch from saintraymondmusic last night. #paris @ 
Manchester, United Kingdom https://t.co/tbrSKMH1Qq", "manual_label": "1", 
"hashtags": ["paris"], "filtered_text": "nice touch saintraymondmus last night 
manchester unit kingdom", "original_id": 666595120284721153, "created_time": 
"Tue Nov 17 12:33:56 +0000 2015", "geo": {"type": "Point", "coordinates": [53.4667, 
-2.2333]}} 

80. {"original_text": "#tuinglemoment #tuingletravel snapshot pf Paris, France. Our 
prayers are still with you. #paris\u2026 https://t.co/DZGIoYYUKV", "manual_label": 
"1", "hashtags": ["tuinglemoment", "tuingletravel", "paris"], "filtered_text": "snapshot 
pf paris france our prayer still you", "original_id": 666787098612129792, 
"created_time": "Wed Nov 18 01:16:47 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8567, 2.3508]}} 

81. {"original_text": "Seriously sounds like we're going to bomb #Syria \ud83d\udc4d 
\ud83d\udc4d \ud83d\udc4d \ud83d\udc4d #DestroyISIS", "manual_label": "2", 
"hashtags": ["Syria", "DestroyISIS"], "filtered_text": "serious sound like we r go 
bomb isi", "original_id": 666597523029680128, "created_time": "Tue Nov 17 
12:43:28 +0000 2015", "geo": {"type": "Point", "coordinates": [52.38820222, 
-1.4841975]}} 

82. {"original_text": "#pressday #optic2000 #lunettes #glasses #karllagerfeld #paris @ 
Rue de S\u00e9vign\u00e9 https://t.co/Q4s8MU9Jc3", "manual_label": "4", 
"hashtags": ["pressday", "optic2000", "lunettes", "glasses", "karllagerfeld", "paris"], 
"filtered_text": "rue de s vign", "original_id": 666592659172118528, "created_time": 
"Tue Nov 17 12:24:09 +0000 2015", "geo": {"type": "Point", "coordinates": 
[48.85680199, 2.3625774]}} 

83. {"original_text": "Join the TeamHealth team! See our latest #job opening here: 
https://t.co/zu0YoLKjoH #LEBANON, KY #Hiring #CareerArc", "manual_label": 
"5", "hashtags": ["job", "LEBANON", "Hiring", "CareerArc"], "filtered_text": "join 
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teamhealth team see latest open here ky", "original_id": 666715330761256960, 
"created_time": "Tue Nov 17 20:31:36 +0000 2015", "geo": {"type": "Point", 
"coordinates": [37.5706264, -85.2606241]}} 

84. {"original_text": "Paris / #paris \ud83d\udc99 @ Trocad\u00e9ro https://t.co/
FDGx5SgQiE", "manual_label": "1", "hashtags": ["paris"], "filtered_text": "pari 
trocad ro e", "original_id": 666733911435821057, "created_time": "Tue Nov 17 
21:45:26 +0000 2015", "geo": {"type": "Point", "coordinates": [48.86219263, 
2.28795251]}} 

85. {"original_text": "Thurrock Mayor writes to Paris counterpart to express sympathies 
https://t.co/dbYCvY8i9p #Thurrock https://t.co/vllubi7FjG", "manual_label": "3", 
"hashtags": ["Thurrock"], "filtered_text": "thurrock mayor write pari counterpart 
express sympathi https t co vllubi7fjg", "original_id": 666676581830553600, 
"created_time": "Tue Nov 17 17:57:38 +0000 2015", "geo": {"type": "Point", 
"coordinates": [51.48344704, 0.36244053]}} 

86. {"original_text": "\ud83d\uddfc\ud83d\ude22 #prayforparis #france #Paris 
#prayfortheworld #vsco @ Eiffel Tower https://t.co/iZI3blneCm", "manual_label": 
"3", "hashtags": ["prayforparis", "france", "Paris", "prayfortheworld", "vsco"], 
"filtered_text": "c l co eiffel tow cm", "original_id": 666806833273794560, 
"created_time": "Wed Nov 18 02:35:12 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.83505906, 2.38761335]}} 

87. {"original_text": "#neoplasticism in Paris #centrepompidou #vsco #vscocam 
#afternoon @ Centre Pompidou https://t.co/j8pYrkYkmc", "manual_label": "1", 
"hashtags": ["neoplasticism", "centrepompidou", "vsco", "vscocam", "afternoon"], 
"filtered_text": "pari centr pompid", "original_id": 666809922504421376, 
"created_time": "Wed Nov 18 02:47:28 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8606796, 2.35198]}} 

88. {"original_text": "'Paris' esteve na segunda-feira 16 como Assunto do Momento em 
Guarulhos durante 4 horas: https://t.co/N6TpnYdFDd #trndnl", "manual_label": "6", 
"hashtags": ["trndnl"], "filtered_text": "paris estev na segunda feira 16 como assunto 
momento em guarulho durant 4 horas", "original_id": 666763798531801090, 
"created_time": "Tue Nov 17 23:44:12 +0000 2015", "geo": {"type": "Point", 
"coordinates": [-23.444, -46.5078]}} 

89. {"original_text": "\ud83c\udf19 #Paris \ud83d\udcf7 @gwwla @ Canal Saint-Martin 
https://t.co/FPicgi1JpL", "manual_label": "1", "hashtags": ["Paris"], "filtered_text": 
"la canal saint marti pl", "original_id": 666528224894181376, "created_time": "Tue 
Nov 17 08:08:06 +0000 2015", "geo": {"type": "Point", "coordinates": [48.874892, 
2.363386]}} 

90. {"original_text": "#webstagram #europe #emirates #rider #young #uae #usa 
#instadubai #paris #jumeirah #jumeirahbeach\u2026 https://t.co/UKBhwX3FDs", 
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"manual_label": "1", "hashtags": ["webstagram", "europe", "emirates", "rider", 
"young", "uae", "usa", "instadubai", "paris", "jumeirah", "jumeirahbeach"], 
"filtered_text": "", "original_id": 666522418282819584, "created_time": "Tue Nov 17 
07:45:02 +0000 2015", "geo": {"type": "Point", "coordinates": [24.36888174, 
54.52090481]}} 

91. {"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/5VLxlgkvPf", 
"manual_label": "6", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666808131565916161, "created_time": "Wed Nov 18 02:40:21 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

92. {"original_text": "#morning #session #yoga #peace #paris @ Palestra Montecatini 
https://t.co/vAEZtf0GGK", "manual_label": "4", "hashtags": ["morning", "session", 
"yoga", "peace", "paris"], "filtered_text": "palestra montecatini", "original_id": 
666544402060345345, "created_time": "Tue Nov 17 09:12:23 +0000 2015", "geo": 
{"type": "Point", "coordinates": [43.878231, 10.7789202]}} 

93. {"original_text": "#Repost paris.38 with repostapp.\n\u30fb\u30fb\u30fb\nMaquillaje 
express #tachi jackelyn.gaibor \ud83d\ude1a @ Tachi https://t.co/16xt6d4tti", 
"manual_label": "4", "hashtags": ["Repost", "tachi"], "filtered_text": "paris 38 
repostapp maquillaj express jackelyn gaibor tachi", "original_id": 
666723793369346048, "created_time": "Tue Nov 17 21:05:14 +0000 2015", "geo": 
{"type": "Point", "coordinates": [40.422451, -3.66694]}} 

94. {"original_text": "Les petits #parisiens dessinent #Paris #Libre @ Le Bataclan https://
t.co/zuRGtp1OhV", "manual_label": "3", "hashtags": ["parisiens", "Paris", "Libre"], 
"filtered_text": "le petit dessin le bataclan", "original_id": 666602201695956992, 
"created_time": "Tue Nov 17 13:02:04 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.863121, 2.3708701]}} 

95. {"original_text": "#Paris zabouartist  #streetart #arturbain #urbanart #paint #artderue 
#zabou #zabouartist @ Montmartre https://t.co/p6qFHp7n5i", "manual_label": "1", 
"hashtags": ["Paris", "streetart", "arturbain", "urbanart", "paint", "artderue", "zabou", 
"zabouartist"], "filtered_text": "zabouartist montmartr", "original_id": 
666731331443789824, "created_time": "Tue Nov 17 21:35:11 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.88694444, 2.34111111]}} 

96. {"original_text": "#TousAuBistrot \n\ud83c\uddeb\ud83c\uddf7 @ Paris 10\u00e8me 
https://t.co/c1LFNpWwLF", "manual_label": "1", "hashtags": ["TousAuBistrot"], 
"filtered_text": "pari 10 m lf", "original_id": 666718740713598976, "created_time": 
"Tue Nov 17 20:45:09 +0000 2015", "geo": {"type": "Point", "coordinates": 
[48.87666201, 2.36878429]}} 
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97. {"original_text": "#Merci #TankYou 
\ud83c\uddeb\ud83c\uddf7\ud83c\uddec\ud83c\udde7\u2764\ufe0f @ Paris, France 
https://t.co/gfO8FdD6l4", "manual_label": "3", "hashtags": ["Merci", "TankYou"], 
"filtered_text": "paris fra d6l4", "original_id": 666708167502393346, "created_time": 
"Tue Nov 17 20:03:08 +0000 2015", "geo": {"type": "Point", "coordinates": [48.8567, 
2.3508]}} 

98. {"original_text": "#hello #adele #adelehello #parisstreet 
#frenchlife\ud83c\uddeb\ud83c\uddf7 #paris #metro @ Paris, France https://t.co/
FJ9bHQuF58", "manual_label": "1", "hashtags": ["hello", "adele", "adelehello", 
"parisstreet", "frenchlife", "paris", "metro"], "filtered_text": "ro paris franc 58", 
"original_id": 666772840155344896, "created_time": "Wed Nov 18 00:20:07 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8567, 2.3508]}} 

99. {"original_text": "Beautiful fall days... In studio 
\ud83d\ude02\ud83d\uddfb\ud83c\udf42\ud83c\udfac\ud83c\udfa5 New film coming 
soon! #setlife #reddragon #paris #studio\u2026 https://t.co/tNJtl5JwMf", 
"manual_label": "1", "hashtags": ["setlife", "reddragon", "paris", "studio"], 
"filtered_text": "beauti fall days in studio new film come r p tu 5jwmf", "original_id": 
666689193293123584, "created_time": "Tue Nov 17 18:47:44 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8904, 2.3426]}} 

100.{"original_text": "6. #MTVStars\n7. Simon Lusk\n8. ISIS\n9. Paris\n10. Ross 
Taylor\n\n2015/11/18 01:15 NZDT #trndnl https://t.co/WiiLMe8GDw", 
"manual_label": "6", "hashtags": ["MTVStars", "trndnl"], "filtered_text": "6 7 simon 
lusk 8 isi 9 pari 10 ross taylor 2015 11 18 01 15 nzdt", "original_id": 
666591781677457409, "created_time": "Tue Nov 17 12:20:40 +0000 2015", "geo": 
{"type": "Point", "coordinates": [-43.5877, 170.3666]}} 

101.{"original_text": "'Paris' appeared on Sunday 16 at the 2nd place in the Top20 of 
Australia's Trends: https://t.co/w1EZoZzuB4 #trndnl", "manual_label": "6", 
"hashtags": ["trndnl"], "filtered_text": "paris appear sunday 16 2nd place top20 
australia trends", "original_id": 666537076137918464, "created_time": "Tue Nov 17 
08:43:17 +0000 2015", "geo": {"type": "Point", "coordinates": [-24.9162, 
133.3931]}} 

102.{"original_text": "Nights R a blessing \ud83d\ude4f\ud83c\udffdwhen I'm spending 
them like this... Right @ my feet\u2764\ufe0f #Paris &amp; #knicks 
\ud83d\udc08\u2026 https://t.co/8MBuNKVDnZ", "manual_label": "1", "hashtags": 
["Paris", "knicks"], "filtered_text": "night r bless when i m spend like this right feet 
amp ks dnz", "original_id": 666791692381642753, "created_time": "Wed Nov 18 
01:35:02 +0000 2015", "geo": {"type": "Point", "coordinates": [40.7142, -74.0064]}} 

103.{"original_text": "#paris #libert\u00e9 #toujours #gauloises @ Amman, Jordan 
https://t.co/hZCIZMzoTF", "manual_label": "1", "hashtags": ["paris", "libert\u00e9", 
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"toujours", "gauloises"], "filtered_text": "amman jordan", "original_id": 
666713675202342912, "created_time": "Tue Nov 17 20:25:01 +0000 2015", "geo": 
{"type": "Point", "coordinates": [31.95, 35.9333]}} 

104.{"original_text": "LE RUN DU MARDI | HOMMAGE \u00c0 PARIS 
\ud83c\uddeb\ud83c\uddf7\u2728\n#rundumardi #runners #running #crossfit 
#streetworkout #paris\u2026 https://t.co/D5VagAjWKj", "manual_label": "1", 
"hashtags": ["rundumardi", "runners", "running", "crossfit", "streetworkout", "paris"], 
"filtered_text": "le run du mardi hommag pari d r n u kj", "original_id": 
666746523078774784, "created_time": "Tue Nov 17 22:35:33 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8831978, 2.3697503]}} 

105.{"original_text": "\"@FemiDlive: Retweeted Mr Tomide (@Tomyboiz): 
BEEAKING: BOMB BLAST KILLS OVER 30 IN YOLA,ADAMAWA STATE 
#PrayForNigeria\" @RadioPaparazi", "manual_label": "2", "hashtags": 
["PrayForNigeria"], "filtered_text": "retweet mr tomid beeaking bomb blast kill over 
30 in yola adamawa state", "original_id": 666710478962499584, "created_time": 
"Tue Nov 17 20:12:19 +0000 2015", "geo": {"type": "Point", "coordinates": [6.67097, 
3.32569]}} 

106.{"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/EJTGFb3ET5", 
"manual_label": "6", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666810464211333120, "created_time": "Wed Nov 18 02:49:38 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

107.{"original_text": "Want to work in #Lebanon, Tennessee? View our latest opening: 
https://t.co/YON7lcRloq #SupplyChain #Job #Jobs #Hiring", "manual_label": "5", 
"hashtags": ["Lebanon", "SupplyChain", "Job", "Jobs", "Hiring"], "filtered_text": 
"want work tennessee view latest opening", "original_id": 666721403312345089, 
"created_time": "Tue Nov 17 20:55:44 +0000 2015", "geo": {"type": "Point", 
"coordinates": [35.6117453, -89.3575712]}} 

108.{"original_text": "#garebibliothequefrancoismiterand #paris12 #rerc #metro #ligne14 
#empty #iphone6plus #paris @ Gare\u2026 https://t.co/psEVkpAgix", 
"manual_label": "1", "hashtags": ["garebibliothequefrancoismiterand", "paris12", 
"rerc", "metro", "ligne14", "empty", "iphone6plus", "paris"], "filtered_text": "gare", 
"original_id": 666713899396300801, "created_time": "Tue Nov 17 20:25:55 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.87798001, 2.32879169]}} 

109.{"original_text": "Am in love with you \ud83c\udf39\u2764\ufe0f\n#leurope #france 
#paris #champselys\u00e9es #laduree @\u2026 https://t.co/ZZbdDxMH7O", 
"manual_label": "4", "hashtags": ["leurope", "france", "paris", "champselys\u00e9es", 
"laduree"], "filtered_text": "am love e e e o", "original_id": 666552508056100864, 
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"created_time": "Tue Nov 17 09:44:36 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.87102288, 2.30328988]}} 

110.{"original_text": "Merci #france #freedom #candles #mourning #prayforparis #paris 
@ Place de la R\u00e9publique https://t.co/MC8wteYg8h", "manual_label": "3", 
"hashtags": ["france", "freedom", "candles", "mourning", "prayforparis", "paris"], 
"filtered_text": "merci place de la r publiqu", "original_id": 666785249569976320, 
"created_time": "Wed Nov 18 01:09:26 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.86727778, 2.36405556]}} 

111.{"original_text": "Where is Paris on the map? Play the game at https://t.co/
t8uzWiaOqr #Paris", "manual_label": "6", "hashtags": ["Paris"], "filtered_text": 
"where pari map play game", "original_id": 666672160409296896, "created_time": 
"Tue Nov 17 17:40:03 +0000 2015", "geo": {"type": "Point", "coordinates": [48.8567, 
2.35099]}} 

112.{"original_text": "Can you recommend anyone for this #job? ASST STORE MGR, 
3305 PARIS RD, CHALMETTE LA - https://t.co/vagLRHYsih #Chalmette, LA 
#Veterans", "manual_label": "5", "hashtags": ["job", "Chalmette", "Veterans"], 
"filtered_text": "can recommend anyon asst store mgr 3305 pari rd chalmett la la", 
"original_id": 666710845229920256, "created_time": "Tue Nov 17 20:13:47 +0000 
2015", "geo": {"type": "Point", "coordinates": [29.9492817, -89.9593078]}} 

113.{"original_text": "Good morning #Paris from #Sonoma, #California #Wine 
Country.https://t.co/Rhxa0Q1vx4", "manual_label": "1", "hashtags": ["Paris", 
"Sonoma", "California", "Wine"], "filtered_text": "good morn country https t co 
rhxa0q1vx4", "original_id": 666485514363514885, "created_time": "Tue Nov 17 
05:18:23 +0000 2015", "geo": {"type": "Point", "coordinates": [38.28308279, 
-122.46323279]}} 

114.{"original_text": "L'amour vaincra.\n#Paris #RueDeCharonne #11th #Attack 
#Message #Wall #Stranger #Post #Respect #Peace\u2026 https://t.co/GRoTbOPncS", 
"manual_label": "3", "hashtags": ["Paris", "RueDeCharonne", "11th", "Attack", 
"Message", "Wall", "Stranger", "Post", "Respect", "Peace"], "filtered_text": "l amour 
vaincra", "original_id": 666748981104541698, "created_time": "Tue Nov 17 
22:45:19 +0000 2015", "geo": {"type": "Point", "coordinates": [48.8567, 2.3508]}} 

115.{"original_text": "Burj Khalifa #dubai #uae #mydubai #dxb #lovedubai #burjkhalifa 
#prayersforparis #paris @ Burj\u2026 https://t.co/ed0xAGfC4X", "manual_label": 
"3", "hashtags": ["dubai", "uae", "mydubai", "dxb", "lovedubai", "burjkhalifa", 
"prayersforparis", "paris"], "filtered_text": "burj khalifa burj", "original_id": 
666690699623014404, "created_time": "Tue Nov 17 18:53:43 +0000 2015", "geo": 
{"type": "Point", "coordinates": [25.19322829, 55.27365642]}} 

116.{"original_text": "Barcelona tribute to Paris #tribute #memory #paris #france 
#barcelona #spain #espana #peace #respect\u2026 https://t.co/VYT2tTbF11", 
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"manual_label": "3", "hashtags": ["tribute", "memory", "paris", "france", "barcelona", 
"spain", "espana", "peace", "respect"], "filtered_text": "barcelona tribut pari", 
"original_id": 666532727382913024, "created_time": "Tue Nov 17 08:26:00 +0000 
2015", "geo": {"type": "Point", "coordinates": [41.38981595, 2.16481917]}} 

117.{"original_text": "The shortest Trends on Monday 16 in Paris had only 4 characters 
long: https://t.co/aGaBPMOuBG #trndnl", "manual_label": "6", "hashtags": 
["trndnl"], "filtered_text": "the shortest trend monday 16 pari 4 charact long", 
"original_id": 666699673466335232, "created_time": "Tue Nov 17 19:29:23 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8569, 2.3412]}} 

118.{"original_text": "#artselfie #paris #frenchlife\ud83c\uddeb\ud83c\uddf7 #frenchie 
#frenchart @ Mus\u00e9e d'Orsay (officiel) https://t.co/VHdilubhht", 
"manual_label": "1", "hashtags": ["artselfie", "paris", "frenchlife", "frenchie", 
"frenchart"], "filtered_text": "rt mus d orsay officiel ht", "original_id": 
666801013005905920, "created_time": "Wed Nov 18 02:12:04 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.86025591, 2.32602851]}} 

119.{"original_text": "leoniefreiji : \"Autumn leaves. #favorite #nightOut #london 
#LetsGo #Soon \ud83d\ude0c\ud83d\ude06\" https://t.co/0r2rwDSGXi #beirut", 
"manual_label": "1", "hashtags": ["favorite", "nightOut", "london", "LetsGo", "Soon", 
"beirut"], "filtered_text": "leoniefreiji autumn leaves x ut", "original_id": 
666677411661127680, "created_time": "Tue Nov 17 18:00:55 +0000 2015", "geo": 
{"type": "Point", "coordinates": [33.8948614, 35.51283186]}} 

120.{"original_text": "Exclusive Sketches: Designers Stand Behind Paris Amidst Tragedy 
https://t.co/6TGW661lV1 #Fashion https://t.co/VSzoke8OfN", "manual_label": "2", 
"hashtags": ["Fashion"], "filtered_text": "exclus sketches design stand behind pari 
amidst tragedi https t co vszoke8ofn", "original_id": 666681024760295424, 
"created_time": "Tue Nov 17 18:15:17 +0000 2015", "geo": {"type": "Point", 
"coordinates": [54.9026209, -2.48664781]}} 

121.{"original_text": "shopping addiction ! yikes #boots #cowgirl  #country #vegas @ 
Paris Las Vegas Hotel &amp; Casino https://t.co/XcLkOukOmJ", "manual_label": 
"1", "hashtags": ["boots", "cowgirl", "country", "vegas"], "filtered_text": "shop addict 
yike pari la vega hotel amp casino", "original_id": 666739385824595968, 
"created_time": "Tue Nov 17 22:07:11 +0000 2015", "geo": {"type": "Point", 
"coordinates": [36.11235778, -115.17147064]}} 

122.{"original_text": "#MoulinRouge #\u00c7aCestParis #Paris #ParisByNight 
#TonyGomez #ParisLaNuit #jaimeparis #LeMoulinRouge\u2026 https://t.co/
jkHUc4CEUf", "manual_label": "1", "hashtags": ["MoulinRouge", 
"\u00c7aCestParis", "Paris", "ParisByNight", "TonyGomez", "ParisLaNuit", 
"jaimeparis", "LeMoulinRouge"], "filtered_text": "", "original_id": 
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666762121833816067, "created_time": "Tue Nov 17 23:37:32 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8840218, 2.3326199]}} 

123.{"original_text": "CGI #internship #Job: Entry Level Business Analyst - Campus 
Recruiting (#Lebanon, VA) https://t.co/cuACD6ed5t #Jobs #Hiring #CareerArc", 
"manual_label": "5", "hashtags": ["internship", "Job", "Lebanon", "Jobs", "Hiring", 
"CareerArc"], "filtered_text": "cgi entri level busi analyst campu recruit va", 
"original_id": 666603243250692097, "created_time": "Tue Nov 17 13:06:12 +0000 
2015", "geo": {"type": "Point", "coordinates": [36.900942, -82.0801309]}} 

124.{"original_text": "The Parisian way of life can't be destroyed! #paris #parisparis 
#pariscity #city #citylife #parislife\u2026 https://t.co/JG3SzBGVVo", 
"manual_label": "4", "hashtags": ["paris", "parisparis", "pariscity", "city", "citylife", 
"parislife"], "filtered_text": "the parisian way life can t destroyed", "original_id": 
666578550074380288, "created_time": "Tue Nov 17 11:28:05 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8567, 2.3508]}} 

125.{"original_text": "Me and Ele my Princess at #prpawards @ Cafe De Paris -London 
https://t.co/EZLu3nauqy", "manual_label": "1", "hashtags": ["prpawards"], 
"filtered_text": "me ele princess cafe de pari london", "original_id": 
666778167206481920, "created_time": "Wed Nov 18 00:41:17 +0000 2015", "geo": 
{"type": "Point", "coordinates": [51.6765441, -0.0331088]}} 

126.{"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/koyLlxhukM", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666806858221400064, "created_time": "Wed Nov 18 02:35:18 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

127.{"original_text": "French flag at half mast #france #jesuisparis #paris #melbourne 
visitmelbourne @cityofmelbourne @\u2026 https://t.co/171gzndfPz", 
"manual_label": "1", "hashtags": ["france", "jesuisparis", "paris", "melbourne"], 
"filtered_text": "french flag half mast visitmelbourn", "original_id": 
666509685588164608, "created_time": "Tue Nov 17 06:54:26 +0000 2015", "geo": 
{"type": "Point", "coordinates": [-37.81789122, 144.96836333]}} 

128.{"original_text": "L'Or\u00e9al Paris India, @lorealparisin is now trending in 
#Mumbai https://t.co/SGugy08vLO", "manual_label": "6", "hashtags": ["Mumbai"], 
"filtered_text": "l or al pari india trend", "original_id": 666544219129970688, 
"created_time": "Tue Nov 17 09:11:40 +0000 2015", "geo": {"type": "Point", 
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h f chez codifi pari paris", "original_id": 666589122274947073, "created_time": "Tue 
Nov 17 12:10:06 +0000 2015", "geo": {"type": "Point", "coordinates": [48.8772058, 
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130.{"original_text": "How your right to know about government decisions and public 
money is under attack https://t.co/0FT03L1qWY #Rutland https://t.co/tNT0qPFA8c", 
"manual_label": "6", "hashtags": ["Rutland"], "filtered_text": "how right know govern 
decis public money attack https t co tnt0qpfa8c", "original_id": 
666673498467667968, "created_time": "Tue Nov 17 17:45:22 +0000 2015", "geo": 
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131.{"original_text": "6. Fran\u00e7a\n7. #PrayForSyria\n8. #2DaysTilIKWYDLS\n9. 
Jessica\n10. Paris\n\n2015/11/17 07:55 WET #trndnl https://t.co/uLzQlByvJf", 
"manual_label": "6", "hashtags": ["PrayForSyria", "2DaysTilIKWYDLS", "trndnl"], 
"filtered_text": "6 fran a 7 8 9 jessica 10 pari 2015 11 17 07 55 wet", "original_id": 
666526330469511168, "created_time": "Tue Nov 17 08:00:35 +0000 2015", "geo": 
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132.{"original_text": "#mma Holm executed flawless plan to crush Rousey - Lebanon 
Democrat: Food World News Holm\u2026 https://t.co/UQQFDsEDUE https://t.co/
QYO5zGQkPj", "manual_label": "6", "hashtags": ["mma"], "filtered_text": "holm 
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133.{"original_text": "6. #MTVStars\n7. Simon Lusk\n8. ISIS\n9. Syria\n10. 
Paris\n\n2015/11/17 23:15 NZDT #trndnl https://t.co/WiiLMe8GDw", 
"manual_label": "6", "hashtags": ["MTVStars", "trndnl"], "filtered_text": "6 7 simon 
lusk 8 isi 9 syria 10 pari 2015 11 17 23 15 nzdt", "original_id": 
666561582286024704, "created_time": "Tue Nov 17 10:20:39 +0000 2015", "geo": 
{"type": "Point", "coordinates": [-43.5877, 170.3666]}} 

134.{"original_text": "Conf\u00e9rence Efashion 2015 #CCMefashion #conference 
#paris #efashion #fashion #stanleystella\u2026 https://t.co/VY1NRNPZyq", 
"manual_label": "1", "hashtags": ["CCMefashion", "conference", "paris", "efashion", 
"fashion", "stanleystella"], "filtered_text": "conf renc efashion 2015", "original_id": 
666547700209287168, "created_time": "Tue Nov 17 09:25:30 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8699291, 2.33093791]}} 

135.{"original_text": "#DirectLive :  #TourEiffel #EiffelTower #Paris \ud83c\udf1e 
#ILoveParis #WeLoveParis #France @ Tour Eiffel https://t.co/0X8MHjk0VA", 
"manual_label": "1", "hashtags": ["DirectLive", "TourEiffel", "EiffelTower", "Paris", 
"ILoveParis", "WeLoveParis", "France"], "filtered_text": "e tour eiffel a", 
"original_id": 666674197092048897, "created_time": "Tue Nov 17 17:48:09 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8590256, 2.29811714]}} 



!77

136.{"original_text": "My 10 seconds of fame with Karl Stefanovic in #Paris 
@thetodayshow @ Place de la Republique https://t.co/1k4vpicvYZ", "manual_label": 
"1", "hashtags": ["Paris"], "filtered_text": "my 10 second fame karl stefanov place de 
la republiqu", "original_id": 666549888667271168, "created_time": "Tue Nov 17 
09:34:12 +0000 2015", "geo": {"type": "Point", "coordinates": [48.86746503, 
2.36418438]}} 

137.{"original_text": "Candles were lit today at a Vigil for #NohemiGonzales (victim of 
the terrorist attacks in Paris) at\u2026 https://t.co/yeJ410TDmj", "manual_label": "3", 
"hashtags": ["NohemiGonzales"], "filtered_text": "candl lit today vigil victim terrorist 
attack paris at", "original_id": 666843347554693120, "created_time": "Wed Nov 18 
05:00:18 +0000 2015", "geo": {"type": "Point", "coordinates": [33.9792442, 
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138.{"original_text": "@mouv dans le m\u00e9tro! #HipHopNeverStop @ Paris, France 
https://t.co/hgfuI7Yn9Q", "manual_label": "1", "hashtags": ["HipHopNeverStop"], 
"filtered_text": "dan le m tro paris franc", "original_id": 666598096734941184, 
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"manual_label": "6", "hashtags": ["francais", "paris", "charliehebdo"], "filtered_text": 
"c est tous they weapons fuck them we champagne new", "original_id": 
666831417104551936, "created_time": "Wed Nov 18 04:12:53 +0000 2015", "geo": 
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140.{"original_text": "Man jailed for life for savage attack https://t.co/iHM2MrsUdi 
#Cumbria https://t.co/W0VVSgKFCy", "manual_label": "2", "hashtags": 
["Cumbria"], "filtered_text": "man jail life savag attack https t co w0vvsgkfci", 
"original_id": 666604801405227012, "created_time": "Tue Nov 17 13:12:24 +0000 
2015", "geo": {"type": "Point", "coordinates": [54.89453982, -2.93380223]}} 

141.{"original_text": "#art #france #frenchart #streetlife #streetart @ Paris, France 
https://t.co/S5IMz78Uyc", "manual_label": "1", "hashtags": ["art", "france", 
"frenchart", "streetlife", "streetart"], "filtered_text": "paris franc", "original_id": 
666811432399425536, "created_time": "Wed Nov 18 02:53:28 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8567, 2.3508]}} 

142.{"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/Umte2O5b7N", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666810873831292929, "created_time": "Wed Nov 18 02:51:15 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 
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143.{"original_text": "#dessert #dessertporn #parisjetaime #parisstreet 
#frenchlife\ud83c\uddeb\ud83c\uddf7 #frenchie #mango #mangue @ Paris, France 
https://t.co/DKdJoL2xKr", "manual_label": "1", "hashtags": ["dessert", "dessertporn", 
"parisjetaime", "parisstreet", "frenchlife", "frenchie", "mango", "mangue"], 
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144.{"original_text": "I needed it I guess. #Bataclan #prayforparis #mourning @ Le 
Bataclan https://t.co/F8ZnZTlMHC", "manual_label": "3", "hashtags": ["Bataclan", 
"prayforparis", "mourning"], "filtered_text": "i need i guess le bataclan", 
"original_id": 666732142672666625, "created_time": "Tue Nov 17 21:38:24 +0000 
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https://t.co/0wLKsIqLuH", "manual_label": "1", "hashtags": ["Paris"], "filtered_text": 
"peopl color come back sur le parvi de notre dam allez l uh", "original_id": 
666685135803146240, "created_time": "Tue Nov 17 18:31:37 +0000 2015", "geo": 
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146.{"original_text": "WORD\n#dontknowwhatyouvegottilitsgone @ Lebanon, Maine 
https://t.co/gYFc1ongqG", "manual_label": "6", "hashtags": 
["dontknowwhatyouvegottilitsgone"], "filtered_text": "word lebanon main", 
"original_id": 666788505545129984, "created_time": "Wed Nov 18 01:22:22 +0000 
2015", "geo": {"type": "Point", "coordinates": [43.3944, -70.8514]}} 

147.{"original_text": "C\u00e9r\u00e9monie de remise des dipl\u00f4mes #MBA #SMS 
(@ Stade Jean Bouin in Paris, \u00cele-de-France) https://t.co/EOShPVLsy0 https://
t.co/5LwLpLS1bZ", "manual_label": "6", "hashtags": ["MBA", "SMS"], 
"filtered_text": "c r moni de remis de dipl m stade jean bouin paris le de france https t 
co 5lwlpls1bz", "original_id": 666673921702420480, "created_time": "Tue Nov 17 
17:47:03 +0000 2015", "geo": {"type": "Point", "coordinates": [48.84318, 
2.252919]}} 

148.{"original_text": "#Transportation #Job in #PARIS, MO: Driver Helper at UPS 
https://t.co/OO9cdMn8FJ #Jobs #Hiring #CareerArc", "manual_label": "5", 
"hashtags": ["Transportation", "Job", "PARIS", "Jobs", "Hiring", "CareerArc"], 
"filtered_text": "mo driver helper up", "original_id": 666671439219560449, 
"created_time": "Tue Nov 17 17:37:11 +0000 2015", "geo": {"type": "Point", 
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149.{"original_text": "Bonne nuit! On change pour le meilleur chaque jour 
@leandrojusten vipmodelsparis mint_mgmt_nyc #paris\u2026 https://t.co/
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!79

on chang pour le meilleur chaqu jour vipmodelspari mint_mgmt_nyc", "original_id": 
666747768036167680, "created_time": "Tue Nov 17 22:40:30 +0000 2015", "geo": 
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150.{"original_text": "Shy'm - Bercy!!! THA BOMB!!! #shym #bercy #paradoxaletour 
@ AccorHotels Arena https://t.co/igBVkNLiDk", "manual_label": "1", "hashtags": 
["shym", "bercy", "paradoxaletour"], "filtered_text": "shy m bercy tha bomb 
accorhotel arena", "original_id": 666758481664315392, "created_time": "Tue Nov 17 
23:23:04 +0000 2015", "geo": {"type": "Point", "coordinates": [48.83875005, 
2.37919344]}} 

151.{"original_text": "The museums opened today. Checking out the #museedorsay ! 
#Monet #koeurotrip #Paris @ Mus\u00e9e d'Orsay\u2026 https://t.co/HCParJc6a6", 
"manual_label": "1", "hashtags": ["museedorsay", "Monet", "koeurotrip", "Paris"], 
"filtered_text": "the museum open today check mus d orsay", "original_id": 
666704051753590784, "created_time": "Tue Nov 17 19:46:47 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.86025591, 2.32602851]}} 

152.{"original_text": "#tb photo. . Persian #scouts #boysscouts @ Paris, \u00cele-de-
France, France https://t.co/ymRWG3fsLD", "manual_label": "1", "hashtags": ["tb", 
"scouts", "boysscouts"], "filtered_text": "photo persian paris le de france franc", 
"original_id": 666818394767892480, "created_time": "Wed Nov 18 03:21:08 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8567, 2.3508]}} 

153.{"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/GQNWSMr4GQ", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666802872248479744, "created_time": "Wed Nov 18 02:19:27 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

154.{"original_text": "#frenchart #frenchlife\ud83c\uddeb\ud83c\uddf7 #paris #museum 
@ Mus\u00e9e d'Orsay (officiel) https://t.co/TKzZsaBPtS", "manual_label": "1", 
"hashtags": ["frenchart", "frenchlife", "paris", "museum"], "filtered_text": "um mus d 
orsay officiel ts", "original_id": 666801257139609600, "created_time": "Wed Nov 18 
02:13:02 +0000 2015", "geo": {"type": "Point", "coordinates": [48.86025591, 
2.32602851]}} 

155.{"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/hDUQMzMeno", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666805586722336768, "created_time": "Wed Nov 18 02:30:15 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 
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156.{"original_text": "JE SUIS PARIS \n\n#jesuisparis #paris #francia #france #instdaily 
#eiffel #eiffeltower #tower\u2026 https://t.co/c6vlpH3qL4", "manual_label": "1", 
"hashtags": ["jesuisparis", "paris", "francia", "france", "instdaily", "eiffel", 
"eiffeltower", "tower"], "filtered_text": "je sui pari", "original_id": 
666525575222194176, "created_time": "Tue Nov 17 07:57:35 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.9012525, 2.3346539]}} 

157.{"original_text": "#prayforparis #jesuisparis #prayforeveryone @ Paris - Tour Eiffel 
https://t.co/elYW0EVQ1M", "manual_label": "3", "hashtags": ["prayforparis", 
"jesuisparis", "prayforeveryone"], "filtered_text": "pari tour eiffel", "original_id": 
666590151024381952, "created_time": "Tue Nov 17 12:14:11 +0000 2015", "geo": 
{"type": "Point", "coordinates": [43.93735683, 4.81249409]}} 

158.{"original_text": "Nous on sort ! #parisattacks #resiste @ Parc Des Expositions 
(Paris Expo) https://t.co/6rTO9PKrBM", "manual_label": "1", "hashtags": 
["parisattacks", "resiste"], "filtered_text": "nou sort parc de exposit pari expo", 
"original_id": 666691197839241219, "created_time": "Tue Nov 17 18:55:42 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.83067065, 2.28800222]}} 

159.{"original_text": "#flag #halfmast #paris #beruit #inmemorium  
#eisenhowermedicalcenter #ranchomirage #palmsprings\u2026 https://t.co/
IpdgHvCENg", "manual_label": "2", "hashtags": ["flag", "halfmast", "paris", "beruit", 
"inmemorium", "eisenhowermedicalcenter", "ranchomirage", "palmsprings"], 
"filtered_text": "", "original_id": 666516330330374144, "created_time": "Tue Nov 17 
07:20:51 +0000 2015", "geo": {"type": "Point", "coordinates": [33.76337319, 
-116.4055836]}} 

160.{"original_text": "Cheese Bomb Burger atm.  Yumyum! #cheeseoverload #metime @ 
HID Burgers Mandaluyong https://t.co/eFoNvnJ5EL", "manual_label": "1", 
"hashtags": ["cheeseoverload", "metime"], "filtered_text": "chees bomb burger atm 
yumyum hid burger mandaluyong", "original_id": 666538894465208320, 
"created_time": "Tue Nov 17 08:50:30 +0000 2015", "geo": {"type": "Point", 
"coordinates": [14.5816011, 121.0492706]}} 

161.{"original_text": "Still standing. Still dancing. \u2b50\ufe0f #hope #love #art #words 
#street #atnight #paris @ Le Marais - Paris\u2026 https://t.co/RwyvB7HVPO", 
"manual_label": "1", "hashtags": ["hope", "love", "art", "words", "street", "atnight", 
"paris"], "filtered_text": "still standing still dancing le marai paris", "original_id": 
666751814117625857, "created_time": "Tue Nov 17 22:56:34 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8599619, 2.3565491]}} 

162.{"original_text": "Moulin Rouge and absinthe at midnight  #moulinrouge #paris 
#absinthe #midnightinparis @ Moulin Rouge https://t.co/CxWZNxmZrW", 
"manual_label": "1", "hashtags": ["moulinrouge", "paris", "absinthe", 
"midnightinparis"], "filtered_text": "moulin roug absinth midnight moulin roug", 
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"original_id": 666752805051371520, "created_time": "Tue Nov 17 23:00:31 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.88416667, 2.3325]}} 

163.{"original_text": "#TWU is praying for Paris.\n#PrayForParis #GodsNotDead @ 
Margo Jones Auditorium Texas Women's University https://t.co/hI7h20p5nl", 
"manual_label": "3", "hashtags": ["TWU", "PrayForParis", "GodsNotDead"], 
"filtered_text": "pray paris margo jone auditorium texa women univers", 
"original_id": 666835170494980096, "created_time": "Wed Nov 18 04:27:48 +0000 
2015", "geo": {"type": "Point", "coordinates": [33.22373464, -97.12973263]}} 

164.{"original_text": "Living in the same arrondissement as where the #paris attacks 
occurred, I have not wanted to post,\u2026 https://t.co/jVEaVN2AAL", 
"manual_label": "2", "hashtags": ["paris"], "filtered_text": "live arrondiss attack 
occurred i want post", "original_id": 666709434501103616, "created_time": "Tue 
Nov 17 20:08:10 +0000 2015", "geo": {"type": "Point", "coordinates": [48.86746503, 
2.36418438]}} 

165.{"original_text": "@AntBit Great call! I was thinking Waits, but of course those 
three guys. I saw this in open air cinema in Paris. #Paris", "manual_label": "6", 
"hashtags": ["Paris"], "filtered_text": "great call i think waits cours three guys i saw 
open air cinema paris", "original_id": 666703890537160704, "created_time": "Tue 
Nov 17 19:46:08 +0000 2015", "geo": {"type": "Point", "coordinates": [51.42872, 
-0.34215]}} 

166.{"original_text": "C'est beau ! #liberteegalitefraternite #paris #france #stadedefrance 
#ruedecharonne #lepetitcambodge\u2026 https://t.co/azKTfHS2dx", "manual_label": 
"1", "hashtags": ["liberteegalitefraternite", "paris", "france", "stadedefrance", 
"ruedecharonne", "lepetitcambodge"], "filtered_text": "c est beau", "original_id": 
666733238635876352, "created_time": "Tue Nov 17 21:42:46 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.8590256, 2.29811714]}} 

167.{"original_text": "#CCUFB\nInside the Warmup\nLiberty Week!!
\nATTACK\n#1TEAM\n#BAM\n#builtCHANTtough\n#rarebreed @ Coastal\u2026 
https://t.co/NHqmRl1E5l", "manual_label": "6", "hashtags": ["CCUFB", "1TEAM", 
"BAM", "builtCHANTtough", "rarebreed"], "filtered_text": "insid warmup liberti 
week attack coastal", "original_id": 666758712632197120, "created_time": "Tue Nov 
17 23:23:59 +0000 2015", "geo": {"type": "Point", "coordinates": [33.79887401, 
-79.01552429]}} 

168.{"original_text": "First espresso \u2615\ufe0f. First heart attack \ud83d\udc94.  
#enoughenergytorunfrommiamitochicago #jkhaterunning @\u2026 https://t.co/
Zns5dlMKKc", "manual_label": "1", "hashtags": 
["enoughenergytorunfrommiamitochicago", "jkhaterunning"], "filtered_text": "first 
espresso first heart attack o g c", "original_id": 666755944785686528, 
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"created_time": "Tue Nov 17 23:12:59 +0000 2015", "geo": {"type": "Point", 
"coordinates": [25.7731972, -80.1900635]}} 

169.{"original_text": "Forrester Research #Sales #Job: Sales Development Specialist 
(#Paris) https://t.co/NQGlNsGeb6 #Jobs #Hiring", "manual_label": "5", "hashtags": 
["Sales", "Job", "Paris", "Jobs", "Hiring"], "filtered_text": "forrest research sale 
develop specialist", "original_id": 666716002776805376, "created_time": "Tue Nov 
17 20:34:16 +0000 2015", "geo": {"type": "Point", "coordinates": [48.856614, 
2.3522219]}} 

170.{"original_text": "#hnytwtr id65,BR,{1}WEB_X,POST attack from 186.202.153.x", 
"manual_label": "6", "hashtags": ["hnytwtr"], "filtered_text": "id65 br 1 web_x post 
attack 186 202 153 x", "original_id": 666693491490234368, "created_time": "Tue 
Nov 17 19:04:49 +0000 2015", "geo": {"type": "Point", "coordinates": [-10.0, 
-55.0]}} 

171.{"original_text": "My shadow on a French street!  #paris #streetstyle #parisstreet 
#parisnights # @ Paris, France https://t.co/bCK4p3eASR", "manual_label": "1", 
"hashtags": ["paris", "streetstyle", "parisstreet", "parisnights"], "filtered_text": "my 
shadow french street paris franc", "original_id": 666792664805847041, 
"created_time": "Wed Nov 18 01:38:54 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8567, 2.3508]}} 

172.{"original_text": "#TousAuBistrot , mais #bouare d'abord ! (@ CopperBay in Paris, 
\u00cele-de-France) https://t.co/NGNpwpPAnk", "manual_label": "1", "hashtags": 
["TousAuBistrot", "bouare"], "filtered_text": "mai d abord copperbay paris le de 
france", "original_id": 666690099971792897, "created_time": "Tue Nov 17 18:51:20 
+0000 2015", "geo": {"type": "Point", "coordinates": [48.869764, 2.357482]}} 

173.{"original_text": "Can you find Paris on the map? Just try it at https://t.co/
t8uzWiaOqr #Paris", "manual_label": "1", "hashtags": ["Paris"], "filtered_text": "can 
find pari map just tri", "original_id": 666670916181602304, "created_time": "Tue 
Nov 17 17:35:07 +0000 2015", "geo": {"type": "Point", "coordinates": [48.8567, 
2.35099]}} 

174.{"original_text": "#Paris #Freedom #DefeatISIS #UniteAgainstHatred 
#ToleranceWins https://t.co/RfLyh5Etb3", "manual_label": "2", "hashtags": ["Paris", 
"Freedom", "DefeatISIS", "UniteAgainstHatred", "ToleranceWins"], "filtered_text": 
"", "original_id": 666693386431238144, "created_time": "Tue Nov 17 19:04:24 
+0000 2015", "geo": {"type": "Point", "coordinates": [67.64943718, 24.92204052]}} 

175.{"original_text": "#Stigmabase | DE -  Wie mit unseren Kindern \u00fcber den Terror 
in Paris sprechen? \u00a0-\u00a0Die Bilder und Filmaufnahmen von\u2026 https://
t.co/pMSAuRDSZQ", "manual_label": "6", "hashtags": ["Stigmabase"], 
"filtered_text": "de wie mit unseren kindern ber den terror pari sprechen die bilder 
und filmaufnahmen von", "original_id": 666678106271256577, "created_time": "Tue 
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Nov 17 18:03:41 +0000 2015", "geo": {"type": "Point", "coordinates": [52.52786948, 
13.42912598]}} 

176.{"original_text": "I\u2764\ufe0fParis. Paris hearts. Graffiti on Parisian walls after the 
Paris Attacks on Friday. #parisheart\u2026 https://t.co/IUYJSdJ06Q", 
"manual_label": "3", "hashtags": ["parisheart"], "filtered_text": "i paris pari hearts 
graffiti parisian wall pari attack friday", "original_id": 666599996536541184, 
"created_time": "Tue Nov 17 12:53:18 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8567, 2.3508]}} 

177.{"original_text": "#autumn in #paris #jardin #albertkhan #boulognebillancourt 
#gardens #zen\u2026 https://t.co/AKluemrdsh", "manual_label": "1", "hashtags": 
["autumn", "paris", "jardin", "albertkhan", "boulognebillancourt", "gardens", "zen"], 
"filtered_text": "", "original_id": 666689182421688321, "created_time": "Tue Nov 17 
18:47:42 +0000 2015", "geo": {"type": "Point", "coordinates": [48.84211043, 
2.22745657]}} 

178.{"original_text": "\"for Paris is a moveable feast\" #parisstreetstyle #paris @ Paris, 
France https://t.co/vmEXLudwz8", "manual_label": "1", "hashtags": 
["parisstreetstyle", "paris"], "filtered_text": "for pari moveabl feast paris franc", 
"original_id": 666760841421651968, "created_time": "Tue Nov 17 23:32:27 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8567, 2.3508]}} 

179.{"original_text": ". @GregPalkot And @GOP wonders why America prefers hearing 
@realDonaldTrump say \"I'll bomb the sh!t out of them\". #ISIS", "manual_label": 
"2", "hashtags": ["ISIS"], "filtered_text": "and wonder america prefer hear say i ll 
bomb sh t them", "original_id": 666602308361445376, "created_time": "Tue Nov 17 
13:02:29 +0000 2015", "geo": {"type": "Point", "coordinates": [43.2314637, 
-75.44843506]}} 

180.{"original_text": "The tweet with the most impact of the #exrdi Trend, was published 
by @s_bombero: https://t.co/lrkYxyXbkt (15 RTs) #trndnl", "manual_label": "6", 
"hashtags": ["exrdi", "trndnl"], "filtered_text": "the tweet impact trend publish 15 rts", 
"original_id": 666680502187782144, "created_time": "Tue Nov 17 18:13:12 +0000 
2015", "geo": {"type": "Point", "coordinates": [56.9547, -98.309]}} 

181.{"original_text": "Still standing \ud83c\uddeb\ud83c\uddf7 #fluctuatnecmergitur 
#eiffeltower #jesuisparis #paris #paris7 #france @ Tour Eiffel https://t.co/
1r7dS8KCQl", "manual_label": "1", "hashtags": ["fluctuatnecmergitur", "eiffeltower", 
"jesuisparis", "paris", "paris7", "france"], "filtered_text": "still stand u e ce tour eiff 
ql", "original_id": 666678914303987712, "created_time": "Tue Nov 17 18:06:54 
+0000 2015", "geo": {"type": "Point", "coordinates": [48.8590256, 2.29811714]}} 

182.{"original_text": "#paris #eiffeltower en bleu blanc rouge @ Tour Eiffel https://t.co/
pvaywXO3CZ", "manual_label": "1", "hashtags": ["paris", "eiffeltower"], 
"filtered_text": "en bleu blanc roug tour eiffel", "original_id": 666543853797683200, 
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"created_time": "Tue Nov 17 09:10:13 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8590256, 2.29811714]}} 

183.{"original_text": "Physician (Dermatologist) - Department of Veterans Affairs: 
(#Lebanon, PA) https://t.co/8jRmLNO6n7 #Physician #Veterans #Job #Jobs #Hiring", 
"manual_label": "5", "hashtags": ["Lebanon", "Physician", "Veterans", "Job", "Jobs", 
"Hiring"], "filtered_text": "physician dermatologist depart veteran affairs pa", 
"original_id": 666725964194312192, "created_time": "Tue Nov 17 21:13:51 +0000 
2015", "geo": {"type": "Point", "coordinates": [40.3409251, -76.4113497]}} 

184.{"original_text": "After Paris Attacks, CIA Director Rekindles Debate Over 
Surveillance - New York Times https://t.co/akG4FSEmgP #news https://t.co/
0hJ228enTT", "manual_label": "2", "hashtags": ["news"], "filtered_text": "after pari 
attacks cia director rekindl debat over surveil new york time https t co 0hj228entt", 
"original_id": 666499528300752898, "created_time": "Tue Nov 17 06:14:05 +0000 
2015", "geo": {"type": "Point", "coordinates": [36.06801502, -79.79721587]}} 

185.{"original_text": "Silent tributes as Kendal joins Europe-wide silence for Paris terror 
attacks https://t.co/rP0ciWCJ9W #Cumbria https://t.co/J5RUmWNNwl", 
"manual_label": "2", "hashtags": ["Cumbria"], "filtered_text": "silent tribut kendal 
join europe wid silenc pari terror attack https t co j5rumwnnwl", "original_id": 
666527047972335617, "created_time": "Tue Nov 17 08:03:26 +0000 2015", "geo": 
{"type": "Point", "coordinates": [54.89453982, -2.93380223]}} 

186.{"original_text": "#EnigmaticSmile full length album \u266b Panic Attack by 
Annisokay (at Horney Get Store) \u2014 https://t.co/jaMWHRKGoY", 
"manual_label": "2", "hashtags": ["EnigmaticSmile"], "filtered_text": "full length 
album panic attack annisokay at horney get store", "original_id": 
666829721049546752, "created_time": "Wed Nov 18 04:06:09 +0000 2015", "geo": 
{"type": "Point", "coordinates": [-8.35855, 114.64388]}} 

187.{"original_text": "#MARDICESTBISTROT \ud83d\ude4f\ud83c\udffb\n\n#paris 
#frenchrestaurant #bistrot #traditional #love #prayforparis #cheffe\u2026 https://t.co/
wFZSg7u6Qn", "manual_label": "3", "hashtags": ["MARDICESTBISTROT", 
"paris", "frenchrestaurant", "bistrot", "traditional", "love", "prayforparis", "cheffe"], 
"filtered_text": "n o v fe qn", "original_id": 666701546831405057, "created_time": 
"Tue Nov 17 19:36:50 +0000 2015", "geo": {"type": "Point", "coordinates": 
[48.86472222, 2.33222222]}} 

188.{"original_text": "#paris #pont @ Pont Alexandre III https://t.co/2ynt3ytZ5i", 
"manual_label": "6", "hashtags": ["paris", "pont"], "filtered_text": "pont alexandr iii", 
"original_id": 666541640807387137, "created_time": "Tue Nov 17 09:01:25 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.86361111, 2.31361111]}} 

189.{"original_text": "#catacombs #paris @ Catacombs of Paris https://t.co/
M9ZDymxHL4", "manual_label": "1", "hashtags": ["catacombs", "paris"], 
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"filtered_text": "catacomb pari", "original_id": 666741938641616896, 
"created_time": "Tue Nov 17 22:17:20 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.83400833, 2.33232222]}} 

190.{"original_text": "#Paris tonight outside Le Bataclan nightclub. Live reports on 
#ParisAttacks 4/5/6/11p nbcphiladelphia\u2026 https://t.co/J994jFzgRt", 
"manual_label": "2", "hashtags": ["Paris", "ParisAttacks"], "filtered_text": "tonight 
outsid le bataclan nightclub live report 4 5 6 11p nbcphiladelphia", "original_id": 
666708589000720384, "created_time": "Tue Nov 17 20:04:49 +0000 2015", "geo": 
{"type": "Point", "coordinates": [48.863121, 2.3708701]}} 

191.{"original_text": "Good morning, Paris! :) #Sunrise 08:02, noon 12:36, sunset 17:09 
CET (UTC+1), November 17. Day length: 9h 7m.", "manual_label": "4", "hashtags": 
["Sunrise"], "filtered_text": "good morning paris 08 02 noon 12 36 sunset 17 09 cet 
utc 1 novemb 17 day length 9h 7m", "original_id": 666511638347055104, 
"created_time": "Tue Nov 17 07:02:12 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8567, 2.351]}} 

192.{"original_text": "#chezmatante #creditmunicipal #art #expo #basket #inParis 
#villelumiere @ Cr\u00e9dit Municipal de Paris https://t.co/ralWjqNbBC", 
"manual_label": "1", "hashtags": ["chezmatante", "creditmunicipal", "art", "expo", 
"basket", "inParis", "villelumiere"], "filtered_text": "cr dit municip de pari", 
"original_id": 666810269134225409, "created_time": "Wed Nov 18 02:48:51 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8594704, 2.35761]}} 

193.{"original_text": "Lovers #concorde @ Paris, France https://t.co/1MmI30flNt", 
"manual_label": "1", "hashtags": ["concorde"], "filtered_text": "lover paris franc", 
"original_id": 666670618864128000, "created_time": "Tue Nov 17 17:33:56 +0000 
2015", "geo": {"type": "Point", "coordinates": [48.8567, 2.3508]}} 

194.{"original_text": "Caf\u00e9 Arabe #buen\u00edsimo  en Bomb\u00f3n Oriental @ 
Santiago, Chile https://t.co/G5AokqCwwM", "manual_label": "1", "hashtags": 
["buen\u00edsimo"], "filtered_text": "caf arab en bomb n orient santiago chile", 
"original_id": 666729620105003008, "created_time": "Tue Nov 17 21:28:23 +0000 
2015", "geo": {"type": "Point", "coordinates": [-33.45, -70.6667]}} 

195.{"original_text": "Wonder if the french want their statue back. #paris @ Starlite 
Hotel https://t.co/8LmRs7mvSo", "manual_label": "1", "hashtags": ["paris"], 
"filtered_text": "wonder french want statu back starlit hotel", "original_id": 
666816107269984256, "created_time": "Wed Nov 18 03:12:03 +0000 2015", "geo": 
{"type": "Point", "coordinates": [42.124499, -80.105016]}} 

196.{"original_text": "Thousands gather at oldmainstagram #paris #peace #remembering 
@ Penn State https://t.co/Z0mEuWGV0q", "manual_label": "3", "hashtags": ["paris", 
"peace", "remembering"], "filtered_text": "thousand gather oldmainstagram penn 
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state", "original_id": 666777959567527936, "created_time": "Wed Nov 18 00:40:28 
+0000 2015", "geo": {"type": "Point", "coordinates": [40.7961816, -77.8593151]}} 

197.{"original_text": "We Love our Country, We love our City and we are so Proud of it! 
From Como with \u2764\ufe0f #Paris #France\u2026 https://t.co/zlk7njXrN5", 
"manual_label": "1", "hashtags": ["Paris", "France"], "filtered_text": "we love country 
we love citi proud it from como", "original_id": 666777638640291840, 
"created_time": "Wed Nov 18 00:39:11 +0000 2015", "geo": {"type": "Point", 
"coordinates": [48.8590256, 2.29811714]}} 

198.{"original_text": "#Ir\u00e1n asegura que se deber\u00eda juzgar a Estados Unidos 
por haber creado el Estado Isl\u00e1mico https://t.co/TBfg968F0S https://t.co/
eg3onfrQVY", "manual_label": "2", "hashtags": ["Ir\u00e1n"], "filtered_text": 
"asegura que se deber a juzgar estado unido por haber creado el estado isl mico https t 
co eg3onfrqvi", "original_id": 666553186602369024, "created_time": "Tue Nov 17 
09:47:18 +0000 2015", "geo": {"type": "Point", "coordinates": [-16.4963067, 
-68.1164723]}} 

199.{"original_text": "\ud83d\udcf7\ud83d\udc49 oneguyinthecity \n#fallfashion 
#fallvibes @ Paris, France https://t.co/3XY7I837aa", "manual_label": "1", 
"hashtags": ["fallfashion", "fallvibes"], "filtered_text": "oneguyinthec o es paris franc 
aa", "original_id": 666667787201282048, "created_time": "Tue Nov 17 17:22:41 
+0000 2015", "geo": {"type": "Point", "coordinates": [48.8567, 2.3508]}} 

200.{"original_text": "This photo was taken a while back...when I visited #Paris I saw 
diversity and love - all the deaths\u2026 https://t.co/flLVkKYmOY", "manual_label": 
"3", "hashtags": ["Paris"], "filtered_text": "thi photo taken back when i visit i saw 
divers love deaths", "original_id": 666507400032223232, "created_time": "Tue Nov 
17 06:45:21 +0000 2015", "geo": {"type": "Point", "coordinates": [48.8590256, 
2.29811714]}} 


	Purdue University
	Purdue e-Pubs
	12-2016

	An event detection approach based on Twitter hashtags
	Shih-Feng Yang
	Recommended Citation


	draft.pages

