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ABSTRACT

Williams, Joseph M.S.A.A., Purdue University, December 2016. Trajectory Opti-
mization using Indirect Methods and Parametric Scramjet Cycle Analysis. Major
Professor: Michael J. Grant.

This study investigates the solution of time sensitive regional strike trajectories for

hypersonic missiles. This minimum time trajectory is suspected to be best performed

by scramjet powered hypersonic missiles which creates strong coupled interaction be-

tween the flight dynamics and the performance of the engine. Comprehensive engine

models are necessary to gain better insight into scramjet propulsion. Separately,

robust and comprehensive trajectory analysis provides references for vehicles to fly

along. However, additional observation and understanding is obtained by integrating

the propulsion model inside the trajectory framework. Going beyond curve fitted

thrusting models, an integrated scramjet cycle analysis o↵ers rapid trade studies on

engine parameters and enables the identification of the most significant and optimal

engine parameters for the mission as a whole. Regularization of bang-bang control

problems by use of the Epsilon-Trig regularization method has created the possibil-

ity to preserve the original equations of motion while still solving these problems

through indirect methods. Indirect methods incorporate mathematical information

from the optimal control problem to provide high quality, integrated solutions. The

minimum time optimal trajectory of a rocket propelled missile is compared to that

of a scramjet powered missile to determine the advantages of scramjet technology in

this application.
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1. INTRODUCTION

1.1 Motivation

The large velocities associated with scramjet powered systems make them appeal-

ing for use as take-o↵ vehicles meant for orbital flight, long distance quick civilian

transport, and for a wide range of military applications. The first and second o↵set

strategies, nuclear weapons and stealth technology, have forced opponents to out-

spend the United States in hopes of defending against the new capability. This has

provided the US with both a technological advantage and a systematic and cost ad-

vantage. With stealth fighter and bomber technology aging, the need for a third o↵set

is necessary. This third o↵set may include the use of hypersonic technologies [38].

Scramjet engines provide the capability to fly air-breathing machines with a larger ef-

ficiency and potentially an expanded performance compared to its rocket and ramjet

counterparts.

One of the main drivers for the development of hypersonic scramjet technology

is its application in missile vehicles for time sensitive regional strike missions. From

the Joint Technology O�ce on Hypersonics (JTOH) roadmaps, hypersonic weapons

with a nominal range of 600-1000 nautical miles capable of precision engagement of

high payo↵, time sensitive, fixed/relocatable, moving, and deeply buried targets are

desired to improve the performance of time sensitive regional strike missions [2]. On

the Technology Product Roadmap, an expendable fuel cooled scramjet engine capable

of extended flight at Mach 6 or greater is a prime candidate to fulfill this need.

Establishing a desired trajectory by controlling the attitude and propulsion com-

mands impacts the performance of any aerospace vehicle. Designing trajectories for

hypersonic scramjet vehicles is di�cult due to the highly coupled nature of the propul-

sion system and the flight dynamics. This complicates modeling and can make it
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unclear how certain vehicle shape, propulsion, or trajectory parameters a↵ect the

performance of the system and mission overall. Understanding the optimal trajecto-

ries in which these prompt strike vehicles fly and knowing the e↵ect specific engine

variables have on the overall mission will provide insight into which parameters matter

most and how to design and build more e↵ective and e�cient weapons.

Currently engine models in trajectory optimization rely on tabulated data from

independently run advanced models and test data. Stepping away from the tabu-

lated based models and towards integrated analytic thrust models within the solver’s

framework allows for more readily conducted trade studies on engine parameters with

regards to the overall vehicle performance in terms of specific missions. This can aid

program managers in focusing on specific designs and investing in research of par-

ticular components, ultimately creating a more e�cient and better performing final

product.

1.2 History of Hypersonic Vehicles

The first person to recognize the possibility of ram pressure as a means of propul-

sion was probably René Lorin in 1913. By 1928, a patent was issued for a propulsion

device containing all the parts of a modern ramjet. Soon after, René Leduc received a

patent for an airplane powered by ramjet technology. However, because of the Second

World War, ramjet technology did not fly until 1949, reaching Mach 0.84 at 26,000

feet. This was the beginning of ramjet technology that would soon lead to scramjet

propulsion and its application in missiles and vehicles.

In a ramjet, air reaches the engine inlet at supersonic speeds. Ramjets are designed

to take this flow and decelerate it until it is subsonic for combustion before ejecting

it back at supersonic speeds. As the flight Mach number increases, it becomes less

e�cient to decelerate the breathed air to subsonic velocities for combustion. This

realization is what funded work on scramjet propulsion systems and more research

airplanes. NASA has devoted several X-planes to the study of hypersonic flight.



3

The Hypersonic Research Engine (HRE) Project started in 1964 was created with

the goal of designing, developing, and constructing a hypersonic research engine that

used ramjet or scramjet technology. As the engine was being developed, HRE paired

up with the more senior X-15 experimental rocket program to use an X-15 vehicle

that crashed in 1962. The X-15 was rebuilt with modifications, adding space for a

ramjet. The overhauled X-15, called X-15A-2, flew several times with an inactive

ramjet and reached hypersonic speeds. Eventually the program was canceled in part

due to excessive costs. However, more X-planes were to follow.

With the goal of single stage to orbit missions the National Aerospace Plane

(NASP) program was started. This plane, designated the X-30, was meant to take

o↵ horizontally from a runway, travel through the atmosphere experiencing varying

flight conditions and fly at Mach numbers as high as Mach 25. From a structural

and aerodynamic standpoint, the design involved a highly integrated configuration

of airframe and engine. This setup, referred to as a waverider, is an e�cient body

for high speed flight due to the compression lift, where the aircraft forebody acts as

compression ramps to gather air from the sparse atmosphere for combustion, while

the aftbody behaves as a nozzle. While the X-30 was canceled in 1993, a significant

amount of aero-thermo-elastic-propulsion research was accomplished because of it.

At the end, the scramjet component of the vehicle was never tested, but hypersonic

flight research continued.

Announced in 1996, the Hyper-X (X-43) was a scaled down version of the X-30.

At 12 feet and 2,800 pounds, the X-43 was designed to test the critical technologies

remaining after the end of the X-30 program. The first flight test failed on June 2,

2001 due to lost control of the Pegasus booster after being deployed by a B-52. The

second flight test was successful reaching Mach 6.83 and having controlled powered

flight for 11 seconds at 24 km. A third version of the X-43 flew 6 months later in

November, 2004 reaching Mach 9.65 at 33.5 km and again breaking the speed record

set from the second flight.



4

Figure 1.1. X-43A Vehicle Schematic NASA LaRC Archive

Another version of the X-43 was planned, the X-43C. Meant to be a slightly larger

than the X-43A, the purpose of this version was to test vehicle cooling with its own

hydrocarbon fuel. The built and tested X-43C scramjet engine also featured a variable

geometry inlet compared to the fixed inlet of the X-43A. However, the X-43C was

suspended indefinitely in March 2004.

The X-51A was similar to the successful X-43A. A joint Boeing and Pratt &

Whitney team began designing the Scramjet Engine Demonstrator that would be

dropped by a B-52 near an altitude of 50 kft and from there the 25 foot vehicle would

be boosted to Mach 4.6 by a rocket. The goal was for the scramjet engine to ignite

and propel the vehicle for 240 seconds, a vast improvemnt over the 11 seconds of the

X-43A. [13] Extensive freejet testing was done on the first flight-weight hydrocarbon-

fueled scramjet in the early 2000’s. Engineers performed more than 50 ground test

attempts on the Gound Demonstration Engine 1 (GDE-1) using an open loop fuel

source for cooling. Ground Demonstration Engine 2 (GDE-2) completed over 300

seconds of combustion with a closed loop fuel source for cooling at Mach 5. The first

X-51 took flight on May 25, 2010. Despite the flight only lasting just over 200 seconds
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and having a scramjet burn time of 140 seconds, the experiment was considered a

success. Using JP-7 jet fuel, the vehicle accelerated from Mach 4.5 to Mach 5.

Figure 1.2. GDE-2 engine in NASA-LaRC.

The continued reduction in maximum altitude and Mach number from the X-30 to

the X-41A, and finally the X-51A is a direct result of the di�culty of hypersonic prob-

lems. It indicates the need for improved vehicle design methods as well as carefully

planned demonstrations and tests.

1.3 Previous Work in Trajectory Optimization

Historically, hypersonic thrusting problems have been solved through various ap-

proaches. Broadly these approaches are categorized under the names of direct and

indirect methods.

The most common direct method used for solving trajectory optimization prob-

lems is pseudo-spectral optimal control (PSOC). GPOPS and DIDO are two popular

direct method solvers that utilize PSOC. The direct method arose with the expand-

ing use of computers and computational power as the trajectory is broken down into

nodes, and the state values at the nodes are moved around until a locally optimal

solution to the problem is found. In principle, a direct method computes the objective
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function value and compares this value for di↵erent solutions to find a minimum with-

out explicitly deriving the necessary conditions of optimality. Direct method solvers

typically have three major benefits. The problems are generally easy to set-up, they

are quick to run, and can be robust to a wide range of initial guesses.

There are di↵erent solution methods (some of which are much older than the direct

methods) that have only started being utilized in trjaectory optimization in recent

years. Indirect methods [11] o↵er the advantage of leveraging mathematical informa-

tion present in the problem to guarantee locally optimal solutions. The benefits and

di�culties of the indirect method will be discussed in more detail in Chapter 2.

There are several approaches to modifying a problem to make it easier to solver

numerically:

• A common technique to approach more complicated problems is to partition

the trajectory. This involves making predetermined assumptions about what

the most optimal solution will look like on the whole. A couple of examples

of this approach are seen in Ref. 3 and Ref. 4 and are discussed later in this

chapter.

• Another approach to obtain better solutions for thrusting problems is to reduce

the accuracy of the equations of motion. This method is particularly useful

with indirect solvers and is seen in Ref. 5.

• Rather than simplifiying the equations of motion as seen above when using an

indriect method, another approach is to solve the control law using numerical

methods [11].

• For air breathing problems, the usual strategy is to take data tables from tests or

advanced models and form equations describing thrust from them. In these cases

the engine model is only defined for the configurations used in the tests, limiting

their applications in design studies that sweep a wide range of conditions.
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Addressing the first bullet, it is common to see two methods of partitioning tra-

jectories into di↵erent phases. The first one has a climbing or ascent phase, followed

by cruise, and finally descent. Another flight profile has a full thrust phase until

propellant is expended, followed by a glide phase.

In Ref. 3, GPOPS was used to optimize a trajectory of an air-dropped and rocket-

boosted scramjet missile to maximize downrange. The trajectory was divided into

three phases: ascent, cruise, and descent, and the beginning and end of each phase

was predetermined. The cruise phase maintained an altitude of 20 km and a velocity

of 2 km/s.

Another example of user selected trajectory architectures can be seen in Ref. 4.

A fuel-optimal trajectory is split into two problems: an ascent and a maximum glide

problem and then the two trajectories are joined to obtain the flight path. The benefit

is that after the ascent phase, there is only one control, angle of attack, and the mass

does not change.

Indirect solvers with analytically derived control laws have optimized boost glide

trajectories for maximum downrange, where a rocket was given the ability to throttle

on and o↵ until the propellant mass was expended [5]. The solution method, similar

to the one used in this work, requires derivatives with respect to control. Using

angle of attack as control leads to the problem of transcendental equations and thus

prevents a solution. Therefore, the angle of attack is assumed to be a small angle and

the equations of motion are modified to remove the trigonometric terms in ↵. This

modification means that the thrust vector is assumed to be in the same direction as

the wind or velocity vector. This can cause large errors when either ↵ or the value

of thrust is large. Fig. 1.3 highlights the fidelity that is lost throughout the entire

powered portion of the trajectory by making a small angle approximation for ↵.

In Ref. 11, a minimum fuel orbital ascent by a hypersonic air-breathing vehicle is

investigated using optimal control theory. Two controls, angle of attack and throttle

are used. The control law is solved with numerical methods instead of finding a closed
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Figure 1.3. Accurate vehicle thrust vector [36]

form, analytic solution. Additionally constraints were placed on both angle of attack

and the dynamic pressure in which the vehicle could operate.

Commonly, in trajectory optimization of an air breathing hypersonic vehicle, the

propulsion model is defined as curve fits from more complicated computer simulations

or experimental data that have been tabulated. The thrust models previously used

in hypersonic trajectory problems typically originate from Eq. (1.1), where Isp is the

specific impulse, ṁf is the mass flow rate of fuel, and g
0

is the gravity as sea level.

The thrust equation:

T = ṁfg0Isp (1.1)

An example of engine curve fitting for thrust models in trajectory optimization

can be found in Ref. 3. Specific impulse and air intake rate, ṁa, are curve fit from

data at 32.5 km. Intake flow rate is used to calculate fuel-mass flow rate, which is then

input into Eq. 1.1 to find thrust. This is represented in the following equations, where

the engine control is the equivalence ratio,  . The equivalence ratio is the ratio of the

actual fuel-air ratio and the fuel-air ratio that occurs when the combustion process

consumes all oxygen.
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Isp = f(M,↵) (1.2a)

ṁa = f(M,↵)at 32.5 km (1.2b)

ṁf = f(ṁa, ) (1.2c)

Other work uses a similar thrust model in which the thrust coe�cient is curve

fit and then is multiplied by the dynamic pressure [17]. In this case, the thrust

coe�cient and specific impulse are functions of the Mach number, dynamic pressure,

and fuel-equivalence ratio.

A Generic Hypersonic Vehicle (GHV) model or Generic Hypersonic Aerodynamic

Model Example (GHAME) are often used. In these models, the thrust coe�cient

and specific impulse are defined as functions of freestram Mach number and angle of

attack (thrust coe�cient) or throttle (specific impulse). [15]. Several engine cycles

are run covering the prominent configurations for hypersonic flight and the stages to

achieve that condition: turbojet, ramjet, and scramjet cycles. [16] The thrust model

built from these components is derived from the thrust equation and can be seen

below in Eq. (1.3). These models are useful in setting up problems involving powered

flight trajectories. Developing the GHV engine model, the specific impulse becomes

a curve fit function, and mass flow rate of fuel is reduced to its several components.

The second of two curve fit functions is the coe�cient of thrust. The results are seen

in Eq. (1.3).

T = 0.5�Isp(�,M)⇢vg
0

CT (↵,M) (1.3)

The research presented in this thesis does not advance scramjet cycle analysis but

rather attempts to determine if there are flight conditions being ignored that may be

critical to mission success. It could direct research toward areas not being considered

in current scramjet propulsion modeling research.

The development of scramjet modeling has been a research topic spanning many

decades with large amounts of funding for testing and flight verification occuring fol-
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lowed by periods of little funding. Much of the work done on scramjets has been

summarized in [18]. Inlet design issues include capturing the flow, starting the en-

gine, viscous flow e↵ects, and boundary-layer separation. Selecting wedge angles or

an isentropic ramp to align the oblique shocks for proper air intake is a significant

issue for high speed travel and the main purpose of the inlet. The combustion process

is another critical component of the engine which has been studied in depth. Fuel in-

jectors and air-fuel mixing are major considerations in combustion design and mixing

techniques are widely studied. Finally combustion reactions with flow temperature

increase and exit species are investigated.

In Ref. [19], the idea of expanding supersonic combustion to lower Mach numbers

while maintaining performance at higher Mach number flight is considered. This

work utilizes a stream thrust analysis to analyze the scramjet performance because

of the many engine parameters that it involves. A common dynamic pressure value

of 47,880 N
m2 is used and held constant throughout Roberts’ work.

The idea of coupling research in engines and trajectories is not new. Dalle focused

on integrating optimal engine design with optimal trajectories in Ref. [20]. This work

optimized a hypersonic vehicle geometry and trajectory through detailed investigation

of supersonic inlets and modeling of complex shock interactions, finite-rate chemistry,

pre-combustion shock trains, and more. It should be noted that the approach Dalle

took is opposite of the one presented in this work. Starting with the engine, the

modeling of the scramjet is extensive, but the trajectory is designed by assuming a

constant dynamic pressure and the vehicle’s flight profile is restricted to consecutive

attached lines of constant dynamic pressure. This is opposed to starting with the

trajectory and building up the engine model once initially integrated.

Prior research has explored improving scramjet models and adding complexity

to more accurately capture engine behavior. These works focus on better modeling

the scramjet propulsion system with often greatly simplified trajectories. Since the

focus is on the engine model, the trajectories considered are usually along a constant

dynamic pressure line. Often the maximum dynamic pressure is chosen to maxi-
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mize the thrust of the vehicle. While these investigations are mostly looking at the

performance of the engine at a common flight condition, it is important to know if

mission design requires the engine to unstart/restart or if most of the operation is at

an unexpected flight condition.

In this study, the two areas of engine modeling and trajectory optimization are

bridged in a unique and more promising way through an indirect method of opti-

mization. This guarantees a locally optimal solution while retaining the full accuracy

of the equations of motion and without presupposing any phases in the trajectory

as seen in previous works. Implementing an engine cycle analysis within trajectory

optimization allows for engine parameter design and tuning analysis of the engine’s

overall e↵ect on the mission. The scramjet thrusting model integrated into the solver

is a parametric, ideal, thermodynamic cycle analysis that at this stage is not as com-

plex as the work seen in Refs. [19] and [20]. The model can be developed to a more

comprehensive state.
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2. OVERVIEW OF INDIRECT TRAJECTORY

OPTIMIZATION

2.1 Calculus of Variations

Trajectory optimization problems are generally defined by a cost functional, J ,

that is composed of a terminal cost, � and a path cost,
R tf
t0

L(x, u, t) dt. The opti-

mization process will evaluate the cost functional and minimize it while satisfying the

dynamics of the problem, f as well as the initial and terminal boundary conditions,

 and � respectively [33].

Min J = �(x(tf ), tf ) +

Z tf

t0

L(x,u, t) dt (2.1)

Subject to :

ẋ = f(x,u, t) (2.2)

 (x(t
0

), t
0

) = 0 (2.3)

�(x(tf ), tf ) = 0 (2.4)

t
0

= 0

Trajectory optimization of powered hypersonic vehicles is complex due to the

complex dynamics and coupled nature of the problem. There are mainly two classes

of methods used to solve such problems, direct and indriect methods. The method

used in this thesis is an indirect method. The main tool of the indirect method is

calculus of variations, a field of mathematics that provides a framework to optimize

functionals, such as J , and find their extrema.
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2.2 Necessary Conditions of Optimality

Indirect methods optimize the cost functional J shown in Eq. (2.1) by formulating

a multi-point boundary value problem that represents the necessary conditions of

optimality. In this sense, the problem is first optimized by forming Eqs. (2.5a–2.5f)

and then it is converted into a boundary value problem (BVP).

The necessary conditions of optimality are defined as follows:

H = L(x, u, t) + �

T (t)f(x,u, t) (2.5a)

�̇ = � @H

@x
(2.5b)

@H

@u
= 0 (2.5c)

�(t
0

) = ⌫

T
0

@ 

@x(t
0

)
(2.5d)

�(tf ) =

✓
@�

@x(tf )
+ ⌫

T
f

@�

@x(tf )

◆
(2.5e)

✓
H +

@�

@t
+ ⌫

T
f

@�

@t

◆

t=tf

= 0 (2.5f)

Optimal control theory (OCT) introduces mathematical entities called costates

for each dynamic state. Each has its own equation defined by Eq. (2.5b). The

Hamiltonian is augmented with costates and Langrange Multipliers. Eq. (2.5a) defines

the augmented Hamiltonian, where � is the costate vector. Eqs. (2.5b–2.5f) describe

the necessary conditions of optimality and form a well-defined BVP. The optimal

control law, u(t) is obtained as a function of the states and costates by solving

Eq. (2.5c). The initial and terminal boundary conditions on the costates are specified

in Eqs. (2.5d) and (2.5e), where ⌫
0

and ⌫f are the Langrange Multipliers which are

used to adjoin these boundary conditions to the cost functional. In addition to the

boundary conditions, free parameters can exist in the optimization problem, such as

time of flight.
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2.3 Numerical Method

As described above, OCT converts trajectory optimization problems into BVPs.

The boundary conditions in the BVP can be root solved to obtain the optimal tra-

jectory. The specific values for the initial conditions and free parameters need to be

found that when propogated forward by integrating the equations of motion, satisfy

the terminal boundary conditions. Several numerical solvers exist to solve such BVPs,

including single shooting, multiple shooting, and collocation. Matlab o↵ers an easy

to use and reasonably robust, collocation solver called BVP4c which is used in this

thesis [24].

2.4 Challenges of Indirect Methods

The indirect method provides explicit expressions for the optimal control as a

function of the dynamic states and costates which guarantee a locally optimal trajec-

tory. However, this method has challenges [23] described below, which are particularly

relevant to hypersonic trajectory problems.

• The first di�culty is in formulating the boundary value problem for the given

optimization problem. This requires detailed knowledge about the system, fa-

miliarity with optimal control theory, and a strong theoretical background.

• Path inequalities add another dimension of issues to solving the optimal control

problem. It is necessary to know before hand how often the path constraints

are active and the sequence in which they are active and not active.

• The third, well recognized obstacle is the sensitivity of the indirect method to

the initial guess and its lack of robustness. Initial guesses of the states and

especially co-states need to be very accurate for a solution be found. Co-states

are mathematical entities with no physical meaning which makes it di�cult to

provide reasonable starting values.
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A technique called continuation is utilized to overcome the challenge of providing

an accurate initial guess. The process begins by first solving for a simple trajectory.

The problem is evolved through a series of steps into a desired problem. Solutions from

previous steps are used as the initial guess for subsequent steps [39]. Additionally,

modern symbolic math tools make it easier to formulate the BVPs automatically.

These techniques have successfully been used to solve optimal hypersonic trajec-

tories. When the addition of powered flight is integrated into hypersonic problems

and especially air-breathing powered flight, the dynamics of the problem become

complex enough to prevent the creation of solutions using the techniques presented

above. This work explores the strategies used to solve air-breathing powered flight

trajectory problems using indirect methods and the challenges associated with it.
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3. EPSILON-TRIG REGULARIZATION

3.1 Epsilon-Trig Regularization of Bang-Bang Control Problems

A feature of optimal control problems (OCPs), detailed in Chapter 2, is the bang-

bang nature of certain bounded controls. When a bounded control appears in a

linear form in the state equations, that control value will often stay at extremum

values. At certain locations along the trajectory, a bang-bang control may change

from one boundary to another. This switching from a minimum to maximum value

and vice versa create numerical issues when using a gradient-based solution method

like optimal control theory. Common bang-bang controls include throttle, which

makes this issue relevant to the work presented in this thesis.

Techniques have been developed to overcome the gradient issue with bang-bang

controls. A smooth regularization technique was developed in [26], which introduced

error controls, u✏n , and an error parameter, ✏. Together the error parameters are able

to smooth the transition from one boundary to the other. Dimensional consistency

issues, as well as a lack of control bounding, in this method drove the founding of the

next regularization technique.

A di↵erent regularization method was developed in [27] and expanded on in [28].

This method uses the concept of trigonomerization to express the control in the form

of trigonometric functions, which implicitly bounds the control. When trigonomeriza-

tion is applied upon bang-bang control problems, Eq. (3.1) is converted into Eq. (3.2),

which contains control as a sine function.

H = H
0

(t, x(t), (t)) +H
1

(t, x(t), (t))u (3.1)

H = H
0

(t,x(t),�(t)) +H
1

(t,x(t),�(t)) sin u
TRIG

(3.2)
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The Epsilon-Trig regularization method introduces a disturbance in the state equa-

tions, ✏, similar to the smoothing method, and creates an error control in trigonomet-

ric form. The error control is combined with its parameter, ✏. A major simplification

over the previous method is that the reformulated OCP needs to have only one error

control, u
TRIG

, for each original control, keeping the new system of equations close

to the original system. It should be noted that if there are two bang-bang controls

then two separate error parameters are required to compliment the respective error

controls.

Error parameters carry with them dimensions based on their complimentary con-

trol and the dynamic equation to which they are adjoined. Eq. (3.3) provides the

unit of an individual ✏.

Unit of ✏ =
Unit of state equation

Unit of complimentary control
(3.3)

The method works by forming two orthogonal control components with the trigono-

metric functions. One component is the smooth control and the other is the error

control. By increasing the error, the switching is smoothed.

The Epsilon-Trig regularization method is demonstrated below by reformulating

the system of k+1 equations in Eqs. (3.4) to the system seen in Eqs. (3.5). The objec-

tive function as shown in Eq. (3.4a) remains unchanged. Likewise, k-1 state equations

where neither the error nor control appear remain unchanged. These equations are

represented in Eq. (3.4c). For demonstration, the error is introduced into one state

equation, Eq. (3.4b), and it is reformulated to a form shown in Eq. (3.5b). The state

equation where the control appears originally in the form shown in Eq. (3.4d) is con-

verted to a smooth trigonometric form as shown in Eq. (3.5d). The result is a smooth

control and an error control in a trigonometric form such that Eq. (3.5e) is obtained.

One trigonometric control, u
TRIG

, can then be used to calculate both the smooth and

the error controls.



18

Minimize:

J = J(tf , x(tf )) (3.4a)

Subject to:

ẋ✏ = f
1

(t, x(t)) (3.4b)

ẋn = fn(t, x(t)) (3.4c)

ẋk+1

= fk+1

(t, x(t)) + u (3.4d)

2  n  k (3.4e)

Minimize:

J = J(tf , x(tf )) (3.5a)

Subject to:

ẋ✏ = f
1

(t, x(t)) + ✏ cos uTRIG (3.5b)

ẋn = fn(t, x(t)) (3.5c)

ẋk+1

= fk+1

(t, x(t)) + sin uTRIG (3.5d)

sin2 uTRIG + cos2 uTRIG = 1 (3.5e)

2  n  k (3.5f)

Using Eq. (2.5c) the optimal control options found are shown in Eqs. (3.6).

u⇤
TRIG =

8
>>>>>><

>>>>>>:

arctan

✓
�xk+1

✏�x1

◆

arctan

✓
�xk+1

✏�x1

◆
+ ⇡

(3.6)

It is possible that the costate �x1 in Eqs. (3.6) can vanish. This can again lead to

additional numerical issues. Alternatively the nature of the OCP may mean that �x1
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in the optimal solution is zero leading to same problem. Therefore it is necessary to

choose the adjoining dynamic equation with some thought to avoid these scenarios.

The adjoining location will be addressed in Section 6.3.1.
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4. PROBLEM FORMULATION

4.1 Vehicle Characterization

Two hypersonic vehicle models are used in this study. The first is for the missile

powered by the rocket and is defined in the works of [3] and [7]. The vehicle is a

larger class missile that is capable of reaching distances farther than the maximum

desired target distance adopted from the JSTO. However, the range discrepancy is

su�ciently small that the vehicle can be used as a comparison for the scramjet pow-

ered missile. The second hypersonic vehicle model is a blended model drawing from

the aforementioned works as well as [30]. Investigating [30], the hypersonic missile

used is more suitable for a regional strike scramjet missile because of its size, how-

ever the available vehicle information is limited. Therefore, the size of the missile in

weight is taken from [30] while the previous vehicle’s aerodynamics were applied to

this smaller missile. Additionally parameters like dry mass and reference area were

scaled down to an appropriate value. It is expected that a larger missile will have a

larger mass margin for propellant, therefore the dry to wet mass ratio of the scramjet

missile is smaller. Both vehicle characteristics are summarized in Table 4.1.

Table 4.1. Vehicle characteristics.

Vehicle Parameter Rocket Scramjet

S
ref

(m2) 1 0.35

Wet Mass (kg) 3600 1300

Dry Mass (kg) 2000 600

Capture Area (m2) N.A. 0.3
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4.1.1 Aerodynamics

The aerodynamic model in [7] used coe�cients for lift and drag that varied with

both angle of attack (AoA) and Mach number,[CL(M0

,↵), CD(M0

,↵)]. While incor-

porating this model into this thesis, the Mach number was assumed to be 6. Inaccu-

racies, from the missing fidelity, were introduced from this decision, seen in Fig. 4.1.

However, from comparing Eqs. (4.1a) and (4.1b), the model was greatly simplified

which directly simplifies the control law. Note these equations input ↵ in degrees.

Future work can expand the aerodynamic model accuracy. The original model con-

tained a limited range of AoA, starting at 0 degrees and ending at 8 degrees. While

hypersonic vehicles have a relatively small operational range of AoA, this was con-

sidered too constrained for a design trade study [35]. Therefore the range of AoA

was extended to -10 to 10 degrees as seen in Fig. 4.2. In the fitting, the coe�cient of

lift is assumed to be linear while the coe�cient of drag is quadratic. The fittings are

detailed in Eq. (4.2) and Table 4.2.
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Figure 4.1. Aerodynamic model at varying Mach numbers.
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Figure 4.2. Curve fit aerodynamic model.

CL = (�0.008M3 + 0.133M2 � 0.793M + 2.648)(0.001↵2 + 0.2↵ + 0.19) (4.1a)

CL(M = 6) = 0.00095↵2 + 0.19↵ + 0.1805 (4.1b)

CL(M = 6,↵) = CL1(↵)↵ + CL0(↵)

CD(M = 6,↵) = CD2(↵)↵
2 + CD1(↵)↵ + CD0(↵)

(4.2)

Table 4.2. Coe�cients for the aerodynamic model.

CL1 (1/rad) CL0 CD2 (1/rad2) CD1 (1/rad) CD0

10.305 0.1758 18.231 -0.4113 0.26943

4.2 Equations of Motion and Coordinate System

A vehicle-centric polar coordinate system and 2-DOF dynamic model are used

to develop the equations of motion used in the present work. These can be seen in
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Eqs. (4.3). As is common, the states are altitude, downrange angle (✓),velocity, flight

path angle (�), and vehicle mass [31]. Traditionally angle of attack, (↵), is used as

a control however here it is transitioned to a sixth state. The controls become rate

of change of angle of attack, ↵̇, and thrust, T . These controls are converted to their

trignometric form as explained in Chapter 3 and seen in Eqs. (4.3o) and (4.3p). A

spherical Earth gravity model with an exponential atmosphere is assumed with the

parameters shown in Table 4.3. The atmosphere model used makes an assumption of

a constant temperature throughout the entire atmosphere. By using this atmospheric

model, fidelity is lost when using engine models that utilize the inlet temperature for

the cycle analysis. This is the case for the present work.

ḣ = V sin � (4.3a)

✓̇ =
V cos �

r
(4.3b)

V̇ =
T cos↵�D

m
� µ sin �

r2
(4.3c)

�̇ =
(L+ T sin↵) cos�

mV
+

✓
V

r
� µ

V r2

◆
cos � (4.3d)

ṁ = � T

g
0

Isp
(4.3e)

↵̇ = ↵rate sin(↵̇TRIG) (4.3f)
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Where:

r = Re + h (4.3g)

⇢ = ⇢
0

e
�h

HScale (4.3h)

L = qSrefCL (4.3i)

CL = CL1↵ + CL0 (4.3j)

D = qSrefCD (4.3k)

CD = CD2↵
2 + CD1↵ + CD0 (4.3l)

� =

✓
1 + sinT

TRIG

2

◆
(4.3m)

T = TMAX� (4.3n)

u
1

= ↵̇
TRIG

(4.3o)

u
2

= T
TRIG

(4.3p)

In Table 4.3, Re is the radius of the planet, Earth, µ is the gravitational parameter

of the planet, ⇢
0

is the surface atmospheric density of the planet, and Hscale is the

scale height of the exponential atmosphere model.

Table 4.3. Constants for the exponential atmosphere model.

Parameter Value

R
e

(km) 6378

µ (m3/s2) 3.986e14

⇢
0

(kg/m3) 1.2

H
Scale

(km) 7.5

g
0

(m/s2) 9.81
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4.3 Objective and Constraints

The objective in a time sensitive trajectory is to reach the target as quickly as pos-

sible given a set of constraints. These constraints include: engine operational limits

in both Mach number and dynamic pressure, target downrange location, limitations

on ↵̇, and maximum possible fuel to burn. The vehicle is assumed to have been flown

or boosted to an altitude and velocity conducive to scramjet engine operation. This

is incorporated as initial state constraints on altitude, downrange, velocity, and mass.

The target location and fuel capacity of the missile lead to terminal state constraints

in altitude, downrange, and mass.

4.4 Scaling

Scaling is crucial to the convergence of the problem. Even with a simple planar

problem, the dynamics are complex enough that without scaling no solution could be

found. Scaling is used to bring all of the values of the states into the same order or

nearly so. Distance, in this case altitude, time, and mass are all scaled at first by the

initial values of the initial guess. Temperature is scaled by the constant maximum

combustion temperature. These scaling parameters are updated throughout the con-

tinuation process by using the maximum value of the previous step. Note, time is

scaled by Eq. (4.4).

time (s) =
h (m)

V
�
m

s

� (4.4)
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5. THE ROCKET PROBLEM

5.1 New Control

5.1.1 Justification

It has been discussed that the traditional control for hypersonic vehicles is angle

of attack. In the context of optimal control theory, when this control is applied to a

powered flight vehicle, solving for the control law results in a transcendental equation

that makes it impossible to find the root solution of dH
d↵

= 0. The planar problem in

Eq. (4.3), can be used to demonstrate this if the sixth state is removed and ↵ is used

as the control.

The Hamiltonian is formed from Eq. (2.5a). The derivative of the Hamiltonian

with respect to the control results in the optimal control law for angle of attack seen

in Eq. (5.1). The only contributing states to the control law are velocity and �:

dH

d↵
= �V

�Tsin(↵)� (2qSref↵CD2 + CD1)

m
+ ��

Tcos(↵) + qSrefCL1

mV
= 0 (5.1)

It can be observed that the control law is transcendental because of the presence

of polynomial and trigonometric expressions of control, ↵. This means that a closed

form analytic solution cannot be found. Other works have avoided this issue through

various methods such as simplifying the equations of motion by assuming thrust is

in the line with the drag force, reducing the trignometric expressions of ↵ into poly-

nomials, or by solving the control law numerically [5, 8, 9]. An alternative approach

that preserves the equations of motion while still finding an analytic control law is

taken here.
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5.1.2 New Control Explained

The original control, ↵, is converted into a state variable and its time-derivative

can be made the new control, u, as shown in Eq. (5.2).

↵̇ = u (5.2)

The control is rewritten in a trigonometric form as shown in Eq. (4.3f) and fol-

lowing the discussion in Chapter 3. The second control, thrust, assumes that the

rocket can be throttled between full thrust and no thrust as often as required by

the optimal control problem. This control is also converted to trigonometric form

in Eq. (4.3m). The error controls were adjoined to state equation corresponding to

mass. The new equation of motion, parameters, and bounding variables are described

in Eqs. (5.3a)- (5.3e).

↵̇ = ↵
RATE

sin u
TRIG

(5.3a)

ṁ = � T

g
0

Isp
+ ✏

1

cos(↵̇
TRIG

) + ✏
2

cos(T
TRIG

) (5.3b)

↵RATE = 5 deg/s (5.3c)

✏
1

= 0.01 kg/rad (5.3d)

✏
2

= 0.01 s/m (5.3e)

Due to the error controls being adjoined to the mass EOM, an error will result

in the vehicle propellant. This will either add or remove propellant from the final

problem. It is therefore necessary to reduce both ✏’s until the error is insignificant.

Additionally each individual term of Eq. (5.3b) appears to have di↵erent dimensions.

However, another variable, k, is multiplied into each error term. This variable is

dimensionally consistent with its control. When solving the problem, only the product

of ✏ and k is considered and therefore one of them can be assumed to be one. Eq. (5.4a)

describes the situation.
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ṁ = � T

g
0

Isp
+ ✏

1

k
1

cos(↵̇
TRIG

) + ✏
2

k
2

cos(T
TRIG

) (5.4a)

k
1

= 1 rad/s (5.4b)

k
2

= 1 N (5.4c)

The optimal control law for the angle of attack rate, ↵̇, becomes very simple as

compared to the previous scenario and is shown in Eq. (5.5). Similarly, the optimal

control law for thrust is shown in Eq. (5.6). Note that most aircraft do not measure

angle of attack rate, this is not an issue because the history of ↵ still exists from the

state equation and that can be used for actual flight plans.

uTRIG =

8
>>>>>><

>>>>>>:

arctan

✓
�↵̇TRIG

✏�mass

◆

arctan

✓
�↵̇TRIG

✏�mass

◆
+ ⇡

(5.5)

TTRIG =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

arctan

0

BB@

TMAX

✓
�v cos↵

m
+
�� sin↵

mv
� �m

g
0

ISP

◆

2✏�mass

1

CCA

arctan

0

BB@

TMAX

✓
�v cos↵

m
+
�� sin↵

mv
� �m

g
0

ISP

◆

2✏�mass

1

CCA+ ⇡

(5.6)

5.2 Example Problem

A simplified analysis was conducted to help prove the theory that ↵̇ as a control

overcame the transcendental problem and still found an optimal solution and that

the epsilon-Trig Regularization method would solve the bang-bang controls. This

opportunity was also used to begin solving powered flight optimal trajectory problems.
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Therefore a rocket powered missile trajectory was studied and solved. The problem

statement is the same Eqs. (4.3) with the modified equation of motion in Eq. (5.3b).

The objective is to minimize the time taken to strike a target at a predetermined

location.

Some of the performance parameters of the rocket can be found in Table 5.1. The

thrust expression is a product of the throttle and maximum thrust capacity of the

rocket, resulting in a thrust output that varies between 0 and that maximum possible

thrust, TMAX . The rocket characteristics seen in both Table 5.1 and 5.2 were closely

based on the Lockheed Martin ATACMS 140 1A solid rocket [3].

Table 5.1. Constants for the rocket missile problem.

Parameter Value

TMAX (kN) 80

Isp (s) 400

The boundary conditions for the problem are shown in Table 5.2. These conditions

are chosen to be a similar problem as the scramjet powered problem based on the

JTOH roadmap. Despite some di↵erences the two problems will be compared to one

another.

The state histories are shown in Fig. 5.1 and the control histories are shown in

Fig. 5.2. A comparison is made between the results obtained by OCT using the Matlab

based solver, BVP4c, and the results obtained using current state of the art optimal

control solver, GPOPS-II. The minimum time to strike a predetermined target for

such a rocket powered missile is found to be 761 s. The results are in excellent

agreement and show that high quality solutions that satisfy necessary conditions of

optimality can be obtained using OCT with the newly proposed ↵̇ control.

The missile in this problem does not rely on the atmosphere to generate thrust

because the rocket contains both oxygen and fuel. As a result, the vehicle in an

optimal trajectory will want to climb out of the thicker portions of the atmosphere
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Table 5.2. Initial and final conditions for rocket missile problem.

Attribute Initial Value Final Value

Time (s) 0 free

Altitude (km) 18 0

Downrange (km) 0 1700

Velocity (m/s) 1100 free

� (�) free free

Mass (kg) 3600 2000

↵ (�) free free

and travel downrange at large altitudes. This climb can be seen in the energy plot.

The vehicle travels the entire downrange at altitude, waiting until directly above the

target to dive into the thick portions of the atmosphere. This architecture minimizes

the total drag force experienced over the entire trajectory.

From the mass history plot it is seen that the rocket expends the entire propellant

mass at the beginning of the trajectory as well as doing so at the maximum possible

rate. These are general features of optimality. This is in agreement with the thrust

history plot.

Once all of the fuel is burned, the powered hypersonic missile becomes a glide hy-

personic missile. A common feature of glide hypersonic vehicles is oscillation [40]. The

altitude-downrange plot shows a few oscillations occurring. The trajectory contains

many known features of optimality.

The large spike in the angle of attack rate plot is a numerical artifact. It is a

consequence of the inaccuracies of GPOPS. The OCT also contains the spike, but it

is a result of the choice of adjoining EOM for the error control. A solution to this

problem is o↵ered in Section 6.3.1.
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Figure 5.1. State histories using bvp4c and GPOPS-II.
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Despite reducing both error parameters to low magnitudes, their e↵ect is still

present in the problem. By integrating the mass EOM over the entire trajectory, the

cumulative propellant burned is 1608 kg. This is a half percent error in available fuel

and the added mass is a violation of the real physics involved. The error, as required

by the regularization approach, is insignificant.

Angle of attack rate history shows a small discrepancy between the two solvers.

The saturation of the control in GPOPS’s solution is an example in the di↵erence in

solution qualities. If the control did not have the lower bound of -5, the downward

singularity would have continued, a↵ecting the solution even more.

Table 5.3 provides information on the objective function value and the solution

time of both solution methods. As is expected based on the agreement in the state

and control figures, the objective functions are within a small tolerance of each

other. GPOPS is able to solve this simple problem, relative to hypersonic trajec-

tories, rapidly while OCT requires more time.

Table 5.3. Solver Performance.

Solver Objective Function Value (s) Solution Time (s)

GPOPS 761.4 11.2

OCT 761.4 247
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6. THE SCRAMJET PROBLEM

6.1 The Thrust Model

As previously discussed, trajectory optimization of air-breathing vehicles has tra-

ditionally been conducted through the use of tabulated engine models. This work

introduces an analytic approach to modeling the scramjet propulsion system within

the optimization framework allowing OCT to leverage mathematics to obtain higher

quality solutions for complicated problems. The analytic relationships may also o↵er

deeper insight into better performing operating ranges for scramjets.

Analytic Model

The scramjet model used in this paper is a parametric ideal scramjet cycle analysis

developed in Ref. 12. This cycle analysis is fundamentally based on the Brayton cycle.

The major assumptions include: an isentropic inlet, a constant pressure combustion

process, an isentropic nozzle, and a constant pressure heat rejection process. The flow

exiting the nozzle measures a static pressure that is equal to the freestream ambient

static pressure.

The following process relates the freestream conditions of Mach number and tem-

perature to the scramjet engine operation (specific thrust and fuel-air ratio) to model

the coupled performance. ⌧r is the inlet temperature ratio and Eq. (6.1) is the result

of an adiabatic inlet.

⌧r = 1 +
� � 1

2
M

0

2 (6.1)

T 0
Max is the total temperature at the nozzle exit and can be found through Eq. (6.2),

where TMax is the temperature limit of the combustor material. In a scramjet engine,

combustion occurs at supersonic speeds, this has the benefit that the engine walls
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never experience the total temperature present in the burner and therefore eases the

cooling requirements.

T 0
Max = TMax(1 +

�r � 1

2
Mc

2) (6.2)

⌧� is created for a more compact evaluation of the specific thrust and fuel-air ratio.

⌧� =
T 0
Max

T
0

(6.3)

The ratio of mass flow rate of fuel injected into the burner to the mass flow rate

of air passing through the engine, f, has been used as a parameter for throttling

the engine directly. However, in this work, ṁ
0

will be throttled through a variable

geometry inlet. Within the cycle analysis, f is needed to calculate specific impulse and

can be found by applying the steady-flow energy equation to the control volume across

the combustion chamber. In other words, using the first law of thermodynamics:

f =
cpT0

hpr

(⌧� � ⌧r) (6.4)

The other performance variable of the cycle analysis is specific thrust. Both

specific thrust and fuel-air ratio are parameters scalable by the engine and more

specifically ṁ
0

. They are an indication of engine e�ciency. A smaller f would result

in less fuel burned for a given mass flow rate, however the larger the specific thrust,

the more thrust that is produced for that same mass flow rate.

F

ṁ
0

=
V
0

gc

✓r
⌧�
⌧r

� 1

◆
(6.5)

ṁ
0

= ⇢AcV0

(6.6)

Figure 6.1 shows the performance of the scramjet engine across a range of freestream

Mach numbers at 26 km altitude. In actual flight, the scramjet will not operate below

a flight Mach number of approximately 4. Finally, the end results of the ideal cycle

analysis are given in Eqs. (6.7) and (6.8). These are the values that feed back into

the equations of motions in Eq. (4.3) and complete the coupled nature of the flight

dynamics and propulsion system.
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Figure 6.1. Range of scramjet engine model performance at 26 km altitude.

T =
F

ṁ
0

ṁ
0

(6.7)

Isp =
F
ṁ0

g
0

f
(6.8)

6.2 Scramjet Engine Bounding

As seen in Fig. 6.2, the unbounded thrust model could be used for flight Mach

numbers outside of the operating range of the scramjet. The saturation function

arctan was used to enforce only valid operating conditions. Fig. 6.2 shows the behavior

of the thrust model with the saturation functions applied.

To manipulate the thrust model, ⌧� was inserted into the arctan saturation func-

tion seen in Eq. (6.9). The lower (q
1

) and upper (q
2

) bounds of the saturation function

are the dynamic pressure operational limits of the scramjet and are where the switch-

ing occurs. In this work, the scramjet was assumed to produce thrust in dynamic

pressures greater than the vehicle would operate. Therefore q
2

was set to a su�ciently

large value. How quickly the saturation function switches is controlled by qscale. There
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is potential to use this for a transient phase between starting and unstarting the en-

gine. For this work qscale was set so that switching would occur over a short period of

time. While within the desired bounds of dynamic pressure, ⌧ ⇤� equals ⌧�, otherwise

it becomes equal to ⌧r. This results in Eq. (6.4) and Eq. (6.5) producing a value of

zero, meaning no propellant is burned, nor thrust achieved.

⌧ ⇤� = ⌧r + (⌧� � ⌧r)
[arctan(qscale(q � q1))� arctan(qscale(q � q2))]

⇡
(6.9)
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Figure 6.2. Scramjet engine operation limited by dynamic pressure.

The engine model can be bounded by Mach number with the same approach. This

may be necessary for future air-breathing hypersonic work. In the solutions presented

below, the Mach number remained in a valid range and therefore no Mach bounding

was conducted.

6.3 Scramjet Solutions

The prompt, regional strike problem statement from Chapter 4 was solved . How-

ever, it was now solved using the engine model described above as opposed to using
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the rocket booster discussed in Chapter 5. The problem statement is expressed again

in Eqs. 6.10 because of key changes. The thrust control was switched from a generic

thrust concept to the engine inlet area control, A, simulating a variable geometry

inlet by way of adjusting wedge angles. The inlet was assumed to be in the opti-

mal position during the entire trajectory. Future work can improve the modeling

of the variable geometry inlet and determine if the performance benefits are worth

the expense. However, this was a convenient control for the problem because once

simplified, the only equation relevant to the EOMs that used inlet area was thrust.

Additionally, the inlet area is linear in the thrust equation, resulting in the same

ban-bang nature as before, see Eq. 6.10h.

Other changes include the EOM for mass being simplified to �ṁff . This was

to simplify the control law which converted the inlet area control into a bang-bang

control. A benefit found is that the optimal solution can be more easily verified

through engineering judgment. The error controls are still adjoined to the mass

EOM, but the units and magnitude of the error parameters, ✏
1

and ✏
2

have changed.

Minimize:

J = tf (6.10a)

Subject to:

ḣ = v sin � (6.10b)

✓̇ =
v cos �

r
(6.10c)

v̇ =
T cos↵�D

m
� µ sin �

r2
(6.10d)

�̇ =
(L+ T sin↵)

mv
+
⇣v
r
� µ

vr2

⌘
cos � (6.10e)

ṁ = �ṁ
0

f + ✏
1

cos(↵̇TRIG) + ✏
2

cos(ATRIG) (6.10f)

↵̇ = ↵ratesin(↵̇TRIG) (6.10g)
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Where:

A = AMAX

✓
1 + sinATRIG

2

◆
(6.10h)

u
1

= ↵̇TRIG (6.10i)

u
2

= ATRIG (6.10j)

✏
1

= 0.5 kg/rad (6.10k)

✏
2

= 1e� 13 kg/(m2s1) (6.10l)

The expression for thrust in this problem contained more variables due to the

coupling of the propulsion system with the atmosphere. From the necessary conditions

of optimality, the new control law is significantly longer than Eq. (5.6). Eqs. (6.14)

and (6.15) show the computed analytic control laws for this problem. The rapidly

increasing complexity of the control law can be seen in ATRIG.

p1 =

vuuut
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p2 =
(tan�1(qscale(�v2

2

⇢+ q
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))� tan�1(qscale(�v2
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⇢+ q
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)))(
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c
��1

2

+ 1) + 1)
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(6.12)

p3 =

vuuut
(tan�1(qscale(� v2

2 ⇢+q1))�tan�1(qscale(� v2
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(6.15)

An expanded list of variables are required for the thrust calculation. These vari-

ables describe both necessary atmospheric and engine parameters and are seen in

Table 6.1. These are considered the baseline values for the parameters in this study

and a few will be varied later in Chapter 7. Many of the parameters are ideal values

for a perfect gas or simplified atmosphere. This includes the specific heat ratio, �, the

Earth’s atmospheric gas constant, R, and the heat capacity at constant pressure, cp.

T
0

, the freestream temperature, is a constant value due to the exponential atmosphere

assumption. The fuel heating value corresponds to the use of JP-7. This fuel, used

in the SR-71, is a popular choice because of its endothermic properties allowing for

active cooling while cracking the fuel before combustion. The selected lower dynamic

pressure limit (q
1

) for sustainable engine operation is from [37]. q
2

is defined so that

the vehicle will not encounter the limit. Future work should address lowering it to

appropriate values.

Table 6.2 provides the boundary conditions placed on the scramjet problem. The

majority of the initial conditions are recognized from the previous rocket problem

and are set to values that are obtainable by a booster and conducive to scramjet

operation. The terminal boundary conditions provide both the target location and

the dry weight of the missile.
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Table 6.1. Values for scramjet engine input.

Parameter Value

� (nd) 1.4

R (m2/s2K) 287.058

c
p

(m2/s2K) 1004

h
pr

(m2/s2) 43903250

M
c

(nd) 3

T
Max

(K) 1600

T
0

(K) 230

A
max

(m2) 0.3

q
1

(kg/ms2) 20000

q
2

(kg/ms2) 3500000

Table 6.2. Initial and final conditions for scramjet missile problem.

Attribute Initial Value Final Value

Time (s) 0 free

Altitude (km) 20 0

Downrange (km) 0 1700

Velocity (m/s) 1300 free

Flight Path Angle

(�)

free free

Mass (kg) 1300 600

Angle of Attack (�) free free

Observing the solutions in Figs. 6.3, a di↵erent trajectory architecture from the

rocket solution is found. After beginning from the boosted state, the missile immedi-
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ately dives to a thicker portion of the atmosphere. This solution leads to the vehicle

experiencing larger dynamic pressures which has a proportional a↵ect on the thrust

generated. The dive also corresponds to increased drag force from the atmosphere,

but the vehicle still accelerates rapidly as seen by the steep rise in the velocity history

plot. Quickly regaining altitude after the dive, the result of the altitude deviation is

a missile traveling over a one km

s

faster by the time it enters a cruise phase.

The mass history plot illustrates how the vehicle burns through its fuel the most

at the beginning and end of the trajectory. The connection between these two phases

is that they both occur lower in the atmosphere where oxygen is available in larger

quantities. The first substantial fuel burn is optimal since it allows the vehicle to

accelerate rapidly. The second substantial fuel burn is used to o↵set some of the

significant deceleration during the descent phase. The last, two kilometers of decent

are met with a 20% reduction in velocity. This is also the reason that the vehicle

nearly reaches the terminal downrange at altitude and then performs a steep dive to

the target. These are features expected in the optimal solution.

A lapse in the model exists with the captured inlet air flow. In flight, when the

angle of attack becomes too large, oblique shocks at the engine inlet lead to flow spill

making it di�cult for the engine to consume enough air for combustion. This feature

is not captured in the model, but an assumption is made that the variable geometry

inlet adjusts accordingly. However in this particular trajectory the angle of attack

remains small and the Mach number constant over nearly the entire history of the

trajectory. Therefore the issue of spilled flow is significantly reduced and a strong

argument can be made that only small penalties would be incurred with a fixed inlet.

Di↵erent trajectories may result rely more on the variable geometry inlet. Studies

can be conducted that consider the trade-o↵ between the large expense of a variable

inlet and the performance penalties of a fixed inlet.

Despite the engine bounding feature in the indirect solution (BVP4c), the direct

solver solution (GPOPS) agrees closely. The dynamic pressure of the trajectory did

not lower enough to activate the q
1

bound. One main reason is that the vehicle would
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have to reduce velocity or climb to altitudes without enough oxygen for sustainable

combustion. Both options would increase the time to target and therefore were not

optimal.
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Figure 6.3. State histories using GPOPS-II and BVP4C.

In Fig. 6.4 the solution to the optimal controls are shown. The engine control

history shows that the vehicle burns as much fuel as it can for the mass flow rate of

air that passes into its inlet. It does this until all the fuel reserves are depleted. This

structure is in agreement with previous works and is optimal [5].

In Fig. 6.5, the Mach number range is seen to be neither too low (unsustainable

operation) or too high (negative thrust from the analytic model) to warrant Mach

bounding. The dynamic pressure over the course of the trajectory peaks twice, to

values much higher than any modern vehicle can withstand. This phenomenon has

been seen in other optimal problems as well [14]. Because these dynamic pressures
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Figure 6.4. Control histories using GPOPS-II and BVP4C.

cannot be flown in reality, the solutions presented are unrealistic, but represent the

capabilities of this engine-trajectory bridging.
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Figure 6.5. Dynamic pressure and Mach histories over the trajectory.

A benefit of solving di↵erent vehicle options quickly, in the scope of the overall

mission is that designs can be compared rapidly and at the start of the schedule.
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For example, the missile from Chapter 5 powered by a rocket can now be compared

with the scramjet powered missile solution solved above. The objective minimizes

time to target, and, from that objective alone, the missile powered by the scramjet

is the better design, reaching the target about a minute before the rocket. However,

knowing the performance of both vehicles can allow other trade-o↵s to be considered.

The rocket has an initial mass that is nearly three times larger than the scramjet.

The size discrepancy is a result of the rocket needing to carry both the oxygen and

fuel whereas the scramjet will receive its oxygen from the atmosphere. Integrating

the rocket into a missile is significantly cheaper than a scramjet. The scramjet needs

to be accelerated to a larger Mach number before it can be started and therefore

its trajectory begins at a higher altitude and larger velocity than the rocket. This

mission has more phases and therefore is more complicated and risky. But the rocket

climbs to much higher altitudes to reach its target. This could have implications

with treaties regarding intercontinental ballistic missiles. A project manager is able

to consider these trade-o↵s early in the design schedule and make more educated

decisions on how to proceed. With a selected design, the same project leaders can set

design specific requirements for a development team.

6.3.1 Epsilon-Trig Adjoining

Original solutions of the scramjet problem used the Epsilon-Trig regularization

technique by adjoining the error control to the altitude equation of motion. A result

of this decision is that the control law has the altitude costate in the denominator.

The optimal solution to the minimum time problem gives the altitude costate history

seen in Fig. 6.6. The zero crossings result in singularities seen in the ↵̇ control

history in Fig. 6.7. Additionally, the singularities create a need for more nodes, and

the increased number of nodes drastically increase the solution time as shown in

Table 6.3.
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To resolve the singularity problem, the error control terms were moved to the

mass equation of motion. Similar to the altitude EOM, the mass EOM was a good

candidate because of its bounded nature. States that are unbounded either at their

initial or terminal point are guaranteed to have a costate of zero at that point. Unlike,

�h in this minimum time problem, �
mass

always remained negative as seen in Fig. 6.6.

The singularities are eliminated, and the result is an optimal control. A significant

computational speedup of nearly six times is observed.
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Figure 6.6. Costate histories explaining numerical spikes in controls.

Table 6.3. Solver Performance.

Solver Objective Function Value (s) Solution Time (s)

OCT H Adjoining 690.5 2825.6

OCT Mass Adjoining 690.9 492

OCT Engine Bounding 690.7 912.3

GPOPS 691.2 9
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Figure 6.7. Control accuracy given adjoining methodology.

For objective functions such as minimize terminal velocity for soft landings, the

terminal velocity, Vf should approach 0 m

s

. The costate associated with velocity will

be function of Vf and therefore will also approach 0. This state should not be used

for adjoining the error control.

When the engine bounding structure was added to the indirect solver the solution

time nearly doubled. This provides insight into the added complexity of the problem.

Finally, GPOPS-II was able to solve the problem within 10 seconds but it does

not guarantee that necessary conditions of optimality would be satisfied. With its

default settings and common techniques it could not incorporate the engine bounding.

Finally, GPOPS cannot be parallelized. Current research is investigating parallelizing

the indirect solver which could make its computation time competitive with GPOPS.

6.3.2 Continuation Process

The continuation process allows the user to start from a problem that is simple

and evolve it through steps to a desired solution. To obtain the final product shown
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in this chapter, a specific continuation process was necessary to navigate the growing

problem to its destination. Currently, discovering the correct process to solve the

problem is a long procedure of trial and error. This process is summarized briefly:

• Step 1: Engine dynamic pressure bound (q
2

) must be started relatively low

while q
1

is started at zero (non-active)

• Step 2: Terminal altitude is brought to zero

• Step 3: Terminal downrange is taken from the initial guess value to 300 km

• Step 4: Downrange is taken slightly farther while mass is decreased

• Step 5: Terminal mass is further decreased while q
2

is increased

• Step 6: Downrange is extend while increasing q
2

• Step 7: Downrange is extended while terminal mass is decreased

• Step 8: Downrange is extend while increasing q
2

• Step 9: Downrange is extended while terminal mass is decreased

• Step 10: ✏
2

is increased

• Step 11: Downrange is increased to its final terminal position

• Step 12: ✏
2

is decreased

• Step 13: Initial altitude is brought down to initial value

• Step 14: q
1

is increased from zero to its lower, inactive bound, 20 kPa

In many problems, placing constraints on the trajectory can result in making

it troublesome to obtain solutions. However, in the case of the scramjet problem,

starting with a relatively low q
2

bound, confines solution space to aid the solver in

finding the optimal path. Terminal states can be extended to the perimeter of this
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space. q
2

is then increased and the process repeats until all states are at the desired

values. The final step of increasing the lower bound on the engine proves that the

presented engine bounding technique is valid.
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7. TRADE STUDIES

By incorporating the engine model into the trajectory framework, it is possible to

conduct trade studies on specific parameters. The solution found in Chpater 6 is

used as a baseline for comparison. Maximum engine inlet area, maximum combustion

temperature, combustion Mach number, and fuel were varied separately. The studies

below investigate these engine parameter’s e↵ect on the overall mission.

The first parameter studied was the maximum combustion temperature. The

temperature was increased by increments of 300K from the baseline 1600K. As

expected, a high combustion temperature leads to more thrust production as well as

a more e�cient burn. This means that the vehicle was able to reach a larger velocity,

operate at a higher altitude, and ultimately hit the target sooner. These trends are

seen in the figures below with the time of flight recorded in Table 7.1. The trend

in the objective function shows diminishing returns as the combustion temperature

continues to rise. The first 300 K increase in TMax was more beneficial then the

next 300 K. From a vehicle perspective when the flight path involves larger velocities

and Mach numbers the aeroheating load is significantly increased. These additional

phenomena need to be considered and introduced into the modeling to gain more

feedback in the consequences of certain choices.

Table 7.1. Values for scramjet engine input.

Tmax (K) Time of Flight (s)

1600 691.4

1900 632.7

2200 587.2
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Figure 7.3. Energy plot with changing TMax values.

The next parameter studied was the maximum engine inlet area. The inlet area

scales the thrust output linearly and this means that a change in area can have a

large e↵ect on the outcome of the mission. Observing Fig. 7.4, 7.5, and 7.6 the same

trend is recognized as was seen with combustion temperature. Increasing the inlet

area increases the maximum velocity and altitude while lowering the time of flight.

The objective function values are recorded in Table 7.2. While the maximum inlet

area can be used as a design tool to tune a vehicle toward a mission, it is less useful

than improving the combustion temperature. To have the same e↵ect on the overall

mission the inlet area would need to be changed to a much larger extent.

Table 7.2. Values for scramjet engine input.

Amax (m2) Time of Flight (s)

0.2 742.7

0.3 691.4

0.4 665.5
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Section 6.1 previously showed the e↵ect that combustion Mach number had on

the engine. The next trade study shows how combustion Mach number impacts the

overall mission. Figures 7.7, 7.8, and 7.9 illustrate that as the engine produces more

thrust and has a larger fraction of fuel flow rate per unit mass flow rate, the mission

profile expands to increased maximum altitudes and velocities. Mc of 3 versus 4 is

a maximum velocity di↵erence of approximately half a kilometer per second. The

reduced drag of operating higher in the atmosphere certainly plays a role in this. The

available fuel to burn is depleted at a much quicker rate. The final result of these

changes is a reduction in time of flight of 129 seconds or 18.7% between the Mc of 3

and 4 cases.

This is a significant change in the trajectory and the largest seen in this study.

However, operating a scramjet combustor at a Mach number of 4 rather than 3 is a

drastic change and one that is not done easily. Therefore it is not unexpected that

such an improvement in engine operation would have this e↵ect on the mission.

The final trade study conducted varied three di↵erent fuels, JP-7, JP-10, and

methane. JP-7 is a common fuel used when evaluating supersonic aircraft. It’s high

flash point allows the fuel to be used as a heat sink for scramjet engines, cooling the
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Table 7.3. Values for scramjet engine input.

Mc Time of Flight (s)

3 691.5

3.5 621

4 562.3
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Figure 7.7. Altitude history with changing Mc values.



55

0 500 1000 1500 2000

Downrange (km)

400

600

800

1000

1200

1400

M
a
ss

 (
kg

)

Combustion Mach Number Trade Study

3
3.5
4

Figure 7.8. Mass by downrange with changing Mc values.

1000 1500 2000 2500 3000 3500

Velocity (m/s)

0

10

20

30

40

A
lti

tu
d
e
 (

km
)

Combustion Mach Number Trade Study

3
3.5
4

Figure 7.9. Energy plot with changing Mc values.
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engine while cracking the fuel. JP-10 is a fuel selected for scramjets in volume limited

applications due to the high density [34].

Fuel selection is accounted for in the thrust model only by the heating value, hpr.

Therefore additional benefits of a particular fuel, such as its heat sinking capability,

are not considered. In Table 7.4 it is seen that the heating values of the three selected

fuels are all relatively close to each other. This helps explain why the fuel selection

had a relatively small e↵ect on the overall mission. In future work, evaluating a

fuel such as hydrogen, H
2

, with a significantly higher heating value may have a large

impact. Currently, there is nearly no di↵erence in the time of flight between the fuels.

A more comprehensive model may be needed to capture the e↵ect of fuel selection.

Table 7.4. Values for scramjet engine input.

Fuel hpr (MJ/kg) Time of Flight (s)

JP-10 42.101 691.8

JP-7 43.9 691.4

Methane 50 690.8
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Figure 7.10. Altitude history with changing hpr values.
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Figure 7.12. Energy plot with changing hpr values.

The major advantages of bridging the engine cycle analysis and trajectory opti-

mization is the capability to conduct these various trade studies quickly. The new

information attained is as follows:
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• Understanding a single parameter’s e↵ect on mission

• Contrasting performance improvements from various parameters

• Comparing multiple designs architectures

• Estimating performance of designs

Researchers will be able to study the e↵ect parameters have on the mission scale

and plan their research based on the most impactful parameters. It can also inform

researchers when a parameter has reached a limit in terms of its influence on missions.

Alternatively, project managers can utilize this tool to compare competing solutions

against requirements early in the project, saving time and resources. With a selected

design, the same project leaders can set design specific requirements for a development

team.
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8. SUMMARY

The bridging between propulsion and trajectory/mission studies has been achieved in

a way that allows for quick advancements and readily performed trade studies. Cre-

ating the solution steps and process was the primary focus of this work. Challenges

regarding transcendental equations preventing analytic control laws, integrating an-

alytic engine models, and a complex and precise solution process were overcome.

The example case shows the benefit of integrating propulsion models directly into

the optimization framework. Comparison between two di↵erent vehicle architectures,

the rocket and the scramjet, can be rapidly performed allowing a project manager to

make informed decisions about which designs to pursue. Additionally, by adjusting

parameters in the scramjet, their overall e↵ect on the trajectory and mission at large

was quickly seen. This o↵ers the benefit of knowing what research might best improve

modern missiles. From the trade studies in this thesis, combustion Mach number and

maximum combustion temperature had the largest e↵ect on reducing the time of

flight. This result identifies areas of potential interest for research.

This work is just a first step in a growing mission design capability that currently

contains many simplifications. However, this study has shown how to regulate power

flight trajectory optimization problems with the epsilon-trig regularization method

and intelligent guesses for adjoining error controls. It has also shown a capability to

solve problems that the current state of the art direct solver could not. This sug-

gests that as problem dynamics become more complicated and integrated an indirect

method may be better suited to solve it.
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9. FUTURE WORK

The introduction of an engine cycle analysis into the trajectory optimization solver

has allowed trade studies to be conducted much quicker than previous methods. Some

of these capabilities were shown in Chapter 7 with combustion temperature and inlet

area being readily adjusted to determine the e↵ect on the mission. However, the

complex nature of hypersonic problems meant that in this early work pieces of the

problem were simplified and some complexities removed. The following is a short list

of research to pursue with the completion of the present work.

• The most important task would be to implement the vehicle dynamic pressure

path constraint. Adding this constraint is required for realistic trajectories.

Currently, the dynamic pressures become too large for real vehicles to fly. On

a similar note, the engine upper dynamic pressure bound should be reduced to

a realistic value.

• Additionally, varying objective functions needs to be explored. One example

of a minimum time problem was solved in this thesis, but objectives such as

maximize range or impact velocity may provide increased insight into the nature

of scramjet flight. These trajectories may also use the Mach bounding on the

engine.

• The remaining pieces involve improving model fidelity. The first obvious im-

provement would regard the scramjet engine. In this work an each component of

the engine was assumed ideal but as seen in many modeling works, the scramjet

is complex machinery with many phenomena playing a part in its operation.

Increasing complexity here would likely complicate the continuation process for

attaining converged solutions, but it could also open up the possibility of more

meaningful trade studies.
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• In the example problem run, the freestream Mach number varied between 4 and

8, however the aerodynamic model assumed a constant Mach of 6. Improving

the aerodynamic curve fit for more accurate results across the entire range

of Mach would lead to better solutions. The di↵erence may be particularly

prominent in problems with objective functions that require flight with Mach

number frequently changing.

• Finally, the exponential atmospheric model assumes a constant temperature.

The loss of fidelity in the freestream temperature, T
0

, can be improved by using

a more accurate atmosphere model.

As the mission design capability develops and more vehicle and engine path con-

straints can be applied, engine parameters may eventually be moved into the op-

timization process and be optimized in-turn with the trajectory. Limits placed on

dynamic pressure, heat loads, flight Mach numbers and more would restrict param-

eters from approaching infinity. This scenario represents a complete bridging of the

propulsion system and vehicle trajectory.
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