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ABSTRACT 

Rorick, Joseph D. M.S., Purdue University, December 2016. Cereal Rye Cover Crop 
Effects on Soil Physical and Chemical Properties in Southeastern Indiana  
Major Professor: Eileen J. Kladivko. 
 

 Cover crops are growing in popularity in the Midwest, although questions remain 

about how to include them most effectively in a corn-soybean (Zea mays L. - Glycine 

max L.) rotation. This study was conducted to determine the effects of cereal rye (Secale 

cereale L.) on soil bulk density and water retention, soil organic carbon, soil nitrogen, 

and water stable aggregate mean weight diameter after four years of cover crop growth 

and the effects on soil moisture over a five year period. The study was conducted at the 

Southeast Purdue Agricultural Center (SEPAC) on silt loam soils. A 14 hectare field was 

laid out in a split plot design with four blocks of four treatments in each block for a total 

of sixteen plots. Treatments were corn with cereal rye, corn with no cover, soybean with 

cereal rye, and soybean with no cover, all four treatments every year, with the corn and 

soybeans alternating yearly. The field site was established in the spring of 2011 and 

baseline samples were taken in the summer of that year before the first establishment of 

the cover crop in fall 2011. Measurements were taken at 0-10, 10-20, 20-40, and 40-60 

cm depth intervals in 2011 and 2015 for bulk density, water retention, soil organic carbon, 

total soil nitrogen, and aggregate stability. Soil moisture and temperature were measured 

at five minute intervals from 2011-2016 at 10, 20, 40, 60, and 100 cm depths.
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 After four years of a cereal rye cover crop, wet soil aggregate mean weight diameter 

increased 55% when compared to the no cover control in the 0 to 10 cm depth and 29% 

in the 10 to 20 cm depth. Bulk density, water retention, soil organic carbon, and total soil 

nitrogen showed no change between cover crop treatments. Differences in soil moisture 

were detected throughout the year but further analysis is needed to fully quantify the 

effects of the cover crop as results were mixed throughout the time periods analyzed. 

Overall, in the early spring before cash crop planting, cereal rye either had significantly 

lower soil moisture or had no effect on soil moisture compared to no cover, while during 

the cash crop growing season in the 40 and 60 cm depths five of eight plot pairs showed 

relatively higher soil moisture and three of eight plot pairs showed lower soil moisture 

with cereal rye than with no cover. Cereal rye can be an effective soil conservation tool, 

protecting the soil surface from erosive forces, taking up excess nutrients at the end of a 

growing season, and helping feed soil microbes during a typically fallow period, but 

some of the improvements it has been reported to make may require a longer time period 

to change than the years included in this study. 
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 INTRODUCTION 

One of the largest questions facing agriculture today is how to increase production 

while maintaining or decreasing the current agricultural footprint and doing it all in a 

more sustainable manner. In a world of increasingly variable weather patterns, how can 

we make our cropping systems more resilient to these increasing and variable climate 

stresses? Cover crops have been identified as one possible management practice to 

increase soil carbon storage, take up and hold nutrients, cover and protect the soil from 

erosion and loss, improve soil structure to increase water infiltration and air exchange, 

and many other benefits consistent with the concept of resiliency. Cereal rye is a popular 

cover crop because it has a wide window of efficacy for use as a winter cover, it can be 

planted later in the fall than many other cover crops, achieve reasonable amounts of 

growth, overwinter, and begin growing early in the spring taking up excess nutrients and 

protecting the soil during the early spring when much of the excess rainfall in the 

Midwest is received.  

In 2011, a multi-state transdisciplinary project was begun to identify ways to 

increase the productivity and long term sustainability of corn based cropping systems. 

This thesis work is part of that large regional project supported by the USDA-NIFA, 

Award No. 2011-68002-30190, “Cropping Systems Coordinated Agricultural Project:
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Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems.” Thirty-

five field sites were established across nine states in the Corn Belt researching many 

different field management techniques from extended crop rotations to different tillage 

practices and cover crops. This thesis includes results from one of these sites that was 

begun to investigate cover crops in a no-till corn-soybean rotation.  

The objectives of this work were to determine the effects of a cereal rye cover 

crop on: 1) soil bulk density, soil water retention, soil organic carbon, total soil nitrogen, 

and wet soil aggregate mean weight diameter after four years of cover crop growth, 2) 

soil moisture in different seasons and at different depths over five years.    

The analysis of these selected soil physical and chemical properties on a field site 

after four years of a cover crop is covered in chapter two. This chapter has been accepted 

for publication in the Journal of Soil and Water Conservation (accepted November 1, 

2016). An initial analysis and observations of soil moisture over a five year period are 

discussed in chapter three. Chapter four contains discussion of the major findings of this 

work and includes thoughts on direction for future analyses as well as a synopsis of some 

of the challenges associated with conducting longer term field scale research.    
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  CEREAL RYE COVER CROP EFFECTS ON SOIL CARBON AND 
PHYSICAL PROPERTIES IN SOUTHEASTERN INDIANA 

2.1 Abstract  

 Cover crops can be a management practice used to improve soil health and 

increase resilience to extreme climate events in a typical Midwestern corn-soybean (Zea 

mays L. - Glycine max L.) rotation. This study was conducted as part of a large regional 

project with a goal of studying how to make corn based cropping systems more resilient 

to climate stresses. A field site was established in Southeastern Indiana to study the 

effects of a cereal rye (Secale cereale L.) cover crop on soil physical and chemical 

properties in a no till corn and soybean rotation. Soil measurements included water stable 

soil aggregates using the wet sieving method, bulk density and water retention using 

intact cores, and soil organic carbon and total nitrogen. After four years of a cereal rye 

cover crop, wet soil aggregate mean weight diameter increased 55% when compared to 

the no cover control in the 0 to 10 cm depth and 29% in the 10 to 20 cm depth. Bulk 

density, water retention, soil organic carbon, and total soil nitrogen showed no change 

between cover crop treatments. This research shows that a cereal rye cover crop can 

increase water stable aggregation in a relatively short time, but changes in other physical 

and chemical properties are more difficult to detect. 
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2.2 Introduction 

In the Midwest, corn (Zea mays L.) is a dominant cash crop and is at least a part of 

almost every major cropping system, but questions have been raised about the 

sustainability and environmental impacts of corn based cropping systems. In 2011 the 

USDA NIFA funded Climate and Corn-based Cropping Systems Coordinated 

Agricultural Project (CSCAP), an eight state transdisciplinary five year project, was 

begun to “evaluate the social, economic, and environmental impacts of climate variability 

on corn-based cropping systems” (sustainablecorn.org). One of the goals of the project 

was to investigate agronomic management practices and their effects on increasing the 

sustainability and resilience of these systems. Cover crops have been identified as a 

possible way to protect and improve soil physical properties and water quality (Blanco-

Canqui et al. 2011; Kladivko et al. 2014a), but research is still needed on how to integrate 

cover crops into corn based cropping systems and to quantify the potential benefits and 

drawbacks of doing so. Cereal rye (Secale cereale L.) was used as the cover crop in this 

regional project because it has good germination and establishment even when planted in 

late fall, exceptional winter hardiness, and early resumption of growth in the spring. 

These characteristics were likely to result in substantial biomass production across the 

broad range of field sites included in the larger study throughout the Midwest. Cereal rye 

as a cover crop has been shown to have many benefits including weed suppression 

(Barnes and Putnam 1983), improved soil aggregation and structure (Benoit et al. 1962; 

Villamil et al. 2006), decreased bulk density and compaction (Moore et al. 2014; Blanco-

Canqui et al. 2011), and improved soil water retention characteristics (Villamil et al. 2006; 

Basche et al. 2016). Other studies have shown no change in soil physical properties other 
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than water stable aggregation, when measured during the cash crop growing season 

(Steele et al. 2012). Soil organic matter and soil organic carbon (SOC) have been shown 

to increase under a cover crop (Kuo et al. 1997; Moore et al. 2014; Villamil et al. 2006) 

but many researchers have also documented no change (Eckert 1991; Jokela et al. 2009) 

indicating a need for more research. This study was conducted to test the hypothesis that 

after four years of a cereal rye cover crop, there would be differences in soil physical and 

chemical properties between cover crop and no cover crop treatments on a poorly 

structured silt loam soil in Indiana. 

2.3 Materials and Methods 

The field site was established at Purdue University’s Southeast Purdue 

Agricultural Center (SEPAC) near Butlerville, Indiana (39° 1' 32.88" N, 85° 32' 24" W) 

in 2011. Previous to the study the field was in a conventionally tilled corn and soybean 

rotation with soybean being the 2010 cash crop. In spring 2011 the field was tilled with a 

disk to a depth of 10 cm and then with a field cultivator to a depth of ~5 cm prior to the 

overlay of the plots and treatments. Sixteen plots measuring 18 x 365 m were laid out in a 

14 ha field in a split plot design with each plot having a no till corn and soybean rotation 

with or without a cereal rye cover crop. Treatments were corn with cereal rye, soybean 

with cereal rye, corn no cover, and soybean no cover replicated in each of four blocks. 

The cereal rye was drilled as soon as possible after cash crop harvest each year at a rate 

of 70 kg ha-1 and was chemically terminated in the spring with herbicide. In 2012, all 

treatments were terminated at the same time at least two weeks before corn planting. In 

the last three years of the study it was decided to maximize cover crop growth so the 

termination timeline changed slightly.  In the last three years the plots going into corn 
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(called “before corn”) were terminated at least two weeks before cash crop planting. The 

no cover plots going into soybean (called “before soybean”) were also sprayed at the 

same time as the before corn treatments to terminate any weeds present, so for three out 

of four treatments the termination timing is the same. The cereal rye in plots before 

soybean was allowed to grow until a few days before soybean planting in the last three 

years, in order to have greater biomass which might have greater impact on soil 

properties.  Above-ground biomass amounts at the time of spring termination, averaged 

across the four years of treatments were 1,900 kg ha-1 for the cereal rye treatments and 

545 kg ha-1 of weedy biomass for the no cover treatments. Crop and fertility management 

was performed in accordance with good agronomic practices and did not differ between 

cover crop treatments.  

Soils at this field were mapped on site by Purdue pedologist Phillip Owens 

(personal communication, 2011).  Soil types in the areas sampled were predominantly 

Nabb (fine-silty, mixed, active, mesic Aquic Fragiudalfs), Blocher (fine-silty, mixed, 

active, mesic Oxyaquic Hapludalfs), and Cincinnati (fine-silty, mixed, active, mesic, 

Oxyaquic Fragiudalfs) silt loams. This project was part of a larger regional project, and 

sampling protocols were standardized to ensure consistent methods across the regional 

network (Kladivko et al. 2014b). Soil measurements were taken within four weeks of 

planting the cash crop in odd years of the study (2011, 2013, and 2015) and sampling 

depths used were 0 to 10, 10 to 20, 20 to 40, and 40 to 60 cm. Samples were taken in the 

quarter-row position of the corn rows (~19 cm from the corn row) and midway between 

soybean drilled rows, avoiding any cereal rye plants if present.  Wheel tracks were 
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avoided where they were obvious, but due to different sizes and types of equipment used 

on the field, it was not always clear if a wheel track had been there or not. 

 Samples for aggregate stability were taken using a Giddings hydraulic probe 

5.3 cm in diameter in 2011 and 2015. These samples were cut into four depth increments 

(0 to 10, 10 to 20, 20 to 40, 40 to 60 cm) and two cores of each depth increment were 

composited per subsample.  Three subsamples were taken per plot, analyzed individually, 

and then averaged for each plot. Each subsample was pushed through an 8 mm sieve 

while still field moist and then air dried and sieved to remove the < 2 mm fraction. Two 

25 g subsamples of each subsample were analyzed using the wet aggregate size 

distribution method (Nimmo and Perkins 2002), and an average mean weight diameter 

(MWD) was calculated for each depth.  

Soil organic carbon and total soil nitrogen samples were collected with a 

hydraulic probe similar to the aggregation samples and split into the same four depths. 

Six 5.3 cm diameter cores were collected per plot, analyzed individually, and then 

averaged for each plot. Soil samples were air dried, hand ground to pass a 2 mm sieve, 

and stored for subsampling and testing. An ~10 g subsample from each core was further 

hand ground to pass a 150 µm sieve for SOC and total nitrogen analysis. These 

subsamples were analyzed at the Iowa State University Soil and Plant Analysis 

Laboratory (Ames, IA) using the dry combustion method, and evolved CO2 was 

measured using a LECO TruSpec (LECO Corp., St. Joseph, MO). Inorganic C was 

negligible in this soil profile. In 2011 a subsample was taken from the  < 2 mm stored 

samples and sent to A&L Great Lakes Laboratory (Fort Wayne, Indiana) to be analyzed 

for texture using the hydrometer method (Gee and Or 2002). Texture is unlikely to 
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change over a 4-year period so it was determined only once on all plots at each depth 

(Kladivko et al. 2014b).   

Bulk density was measured using the short core method as described by 

Grossman and Reinsch (2002) using a 6 cm tall core 5.4 cm in diameter with three 

repetitions per depth in each plot. Samples were taken from the approximate center of 

each depth interval sampled to represent that depth increment. In 2011 and 2015 all four 

depths were sampled and in 2013 only the 0 to 10 cm and 10 to 20 cm depths were 

sampled for water retention measurements and bulk density, due to the generally slow 

rate of change of these properties, especially in the lowest two depths. 

Soil water retention was measured at five water potentials using sand tables and 

pressure pots according to the methods described by Dane and Hopmans (2002a, 2002b). 

The same cores used for bulk density measurements were used for water retention at 

saturation and -4.9, -9.8, and -33 kPa. A bulk sample air dried and crushed to < 2 mm 

was used for measurements at -1500 kPa.   Cores were gradually soaked to reach 

saturation, weighed, then placed on sand tables, allowed to equilibrate, and weighed to 

measure -4.9 kPa and -9.8kPa water retention. Cores were then transferred to pressure 

pots to measure water retention at -33 kPa and then oven dried to obtain a dry mass for 

bulk density measurements. Aeration porosity was calculated as the difference between 

saturation and -4.9 kPa (Kohnke 1968). Water holding capacity (WHC) was calculated as 

the difference between -9.8 and -1500 kPa.     

Statistical analyses for all measurements were performed using SAS Version 9.4 

software (SAS Institute Inc., Cary, NC.). Summary statistics and graphical data analysis 

were used to check for errors in the data and to see if a transformation was required (Box 
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et. al, 1978). The soil carbon data were square root transformed and aggregate stability 

data were log transformed prior to the analysis to make the data more normally 

distributed. Results are presented in back-transformed units. Each measure was analyzed 

as a split plot split block experimental design with cash crop used as the whole unit, 

cover crop as the split plot, and depth as the split block treatment. Error variances were 

dropped from the model where the majority of the variances were not significant at 

p=0.25.  The MIXED procedure was used for the analysis of variance and an LSMeans 

separation test was performed on all significant effects (p ≤ 0.05). 

Standardized protocols agreed upon by the USDA NIFA funded Climate and 

Corn-based Cropping Systems Coordinated Agricultural Project (Kladivko et al., 2014) 

were followed; see paper for full explanation of methods. Research data and supporting 

metadata were uploaded to the team’s central database with review and quality control 

performed by database managers to ensure data integrity and adherence to 

standardization (Herzmann et al., 2014). The data will be published at the National 

Agricultural Library (NAL) Ag Data Commons in 2017 (doi forthcoming). Data 

regarding comparisons not significantly different are not presented in this paper, however 

the reader can access the data through the NAL.  

 

2.4 Results and Discussion 

In June 2011, prior to establishing cover crop treatments in fall 2011, there were 

no differences in MWD among plots, indicating that the baseline values for plots that 

would receive rye cover vs no cover were the same (figure 1; p>0.05). Aggregate size 

was greater in the upper soil depths than in the lower soil depths at the onset of the study 
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and four years after treatments were instituted. After four years of a cereal rye cover crop 

wet soil aggregate MWD in the 0 to 10 cm depth was 55% larger with cover crop and 29% 

larger in the 10 to 20 cm depth when compared to the no cover treatments (figure 1, cover 

crop x depth p≤0.05). No difference between cover crop treatments occurred below 20 

cm and no difference between cash crops occurred at any depth in any year. Many studies 

have reported increased aggregate size or stability with the use of cover crops and 

continuous field cover (Villamil et al. 2006, Sainju et al. 2003, Rachman et al. 2003). The 

increased aggregation may be short-lived, however, as found by Linsler et al. (2016) in a 

greenhouse/incubation study where several brassicas or legumes were grown in the 

greenhouse and then terminated by freezing.  After a 12-week incubation in a microcosm 

room following the cover crop termination, there was no difference in large 

macroaggregate concentration and total macroaggregates, indicating that differences in 

aggregation caused by some cover crops may be relatively short term. Tisdall and Oades 

(1982) reference the importance of actively growing roots and fungal hyphae on the 

stability of soil aggregates, adding strength to the argument for growing winter cover 

crops during a typically fallow period in a corn soybean production system in order to 

help protect and improve the soil. The fibrous root system of cereal rye was likely one 

cause of the increased MWD (Benoit et al. 1962, Villamil et al. 2006), as well as fungal 

hyphae and the decaying organic matter from the dead roots (Tisdall and Oades 1982). 

Larger more stable soil aggregates are better able to withstand erosive forces, allow for 

better water infiltration, and help to prevent surface compaction and runoff (Blanco-

Canqui et al. 2011).    
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Texture in the four depths ranged from silt loam in the 0 to 10 cm depth with 26% 

clay to silty clay loam in the 40 to 60 cm depth with 33% clay. This small difference in 

clay content indicates that the increased aggregate MWD at shallower depths compared 

with deeper depths is more likely due to the effects of the cash and cover crop roots on 

biological activity and soil organic matter concentration, rather than differences in clay 

content.  

After four years of the cereal rye winter cover crop treatments, soil organic carbon 

was unaffected by crop rotation and cover crop treatment (table A-1). In 2015 the organic 

carbon concentration in the 0-10 cm depth, when averaged between cash crops, was 

15.05 and 14.02 g C kg-1 for cover and no cover, respectively (p>0.05). Other researchers 

have found little effect of cereal rye cover crop on soil organic carbon over a similar time 

frame (Eckert 1991; Kaspar et al. 2006) although when measured after ten years, Moore 

et al. (2014) was able to detect a 15 percent greater average soil organic matter content in 

the cereal rye treatment when compared to the no cover treatment. Kuo et al. (1997) 

found a 1 g kg-1 higher SOC amount in a 0-15 cm depth after eight years of cereal rye 

when compared to a no cover treatment, but both Eckert in Ohio (1991) and Jokela et al. 

in Wisconsin (2009) recorded no difference in SOC or soil organic matter after four years 

of cereal rye cover. A regional power analysis of minimum detectable differences (MDD) 

for SOC found a mean MDD of 3.38 g C kg-1 for comparing two treatments with five 

replications at an α=0.05 and a ß=0.15 (Necpalova et al. 2014). With the SOC values 

being only about 1 g C kg-1 different between cover crop treatments in our study, it is not 

surprising that differences were not statistically significant due to the inherent variability 

of SOC. Organic carbon significantly decreased with depth (table 2-1), which is expected 
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due to the predominance of roots in surface horizons and the deposition of cash crop and 

cover crop residues on the soil surface without incorporation from tillage.  

The distribution of total soil nitrogen mirrors that of organic carbon (table 2-1) 

with the highest values at the surface and decreasing with depth in all years. Soils 

sampled in soybean had lower soil nitrogen than in corn;  0.94 g N kg-1 and 1.03 g N kg-1, 

respectively in 2011 and 1.01 g N kg-1 and 1.13 g N kg-1, respectively in 2015 (p≤0.05). 

No differences were found between cover crop treatments for soil nitrogen (table A-2), 

with values in 2015 in the 0-10cm depth of 1.64 g N kg-1 and 1.55 g N kg-1 (p > 0.05) for 

the cover crop and no cover crop treatments, respectively.  

No differences in bulk density were found between cover crop treatments in any 

year (tables A-3 to A-6) and in the 0-10 cm depth in 2015 for both cover and no cover the 

values were 1.32 g cm-3. In 2015, bulk density was slightly greater in corn (1.41 g cm-3) 

than in soybean (1.38 g cm-3) similar to what was found in Iowa (Moore et al. 2014). 

Bulk density increased with depth in both years consistent with the decrease in SOC with 

depth. Over time we would expect soil bulk density to decrease due to the presence of the 

fibrous root system of the cereal rye. However, even after 13 years of cereal rye growth 

in a study in Maryland, no differences in bulk density were measured during the cash 

crop growing season, although there were some differences observed during the cover 

crop winter season (Steele et al. 2012).  In our study the samples were all taken at a 

similar time of year in all three years.  Care was also taken to sample in similar row 

positions on all plots and to avoid wheel tracks, but it is still possible that some less 

obvious wheel tracks were sampled, adding variability and making it very difficult to 

detect smaller changes due to the cover crop. Kaspar et al. (1995) found that trafficked 
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interrows had up to a 36% higher bulk density (1.36 Mg m-3) when compared to 

untrafficked interrows (1.09 Mg m-3) averaged across different tillage systems including 

chisel plow and no till, highlighting the need to plan sampling locations carefully.  

Volumetric water content at saturation (0 kPa) had an inverse relationship with 

bulk density in 2011 and 2015 (table 2-2). Soils that are less dense have more total pore 

space that can be occupied by water at saturation.  In both 2011 and 2015 the surface 

depth had significantly higher saturated water content than deeper depths consistent with 

a lower bulk density in the upper depths as previously discussed. Similarly, aeration 

porosity (the difference between 0 kPa and -4.9 kPa) did not differ with cover crop or 

cash crop although in 2011 and 2015, depth was a significant factor with the greatest 

values in the 0 to 10 cm depth (0.110 and 0.082, respectively) and the lowest values in 

the 40 to 60 cm depth (0.025 in both years).  Water retention at every water potential 

measured did not differ between cover crops nor between cash crops (tables A-3 to A-6). 

Water retention of the 0 to 10 cm depth in 2011 and 2015 at -4.9, -9.8, and -33 kPa 

showed a significant difference when compared to the 40 to 60 cm depth except for -4.9 

kPa in 2015. Volumetric water content at -1500 kPa in 2011 and 2015 showed significant 

differences between the top two depths and the bottom two depths. This may be due to a 

clay increase and the significant density increases with increasing depth resulting in more 

surface area for water retention at this approximation of wilting point. In the 0-10 cm 

depth, in 2015 the measured water potential values for the no cover treatment were all 

within 98-100% of the cover crop treatment  (p > 0.05, data not shown), and WHC was 

0.224 and 0.219 cm3 cm-3 for the cover and no cover treatments, respectively. The WHC 

was not significantly different for cover crop or cash crop treatments in any year at 
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p≤0.05, but WHC was significantly greater in cover crop treatments compared to no 

cover treatments at p≤0.10 in 2015 across all depths (data not shown). In 2015 WHC in 

the 0 to 10 cm depth was greater than in the 40 to 60 cm depth (table 2-2). These findings 

contrast with a study on a Mollisol in Illinois over a similar time period where slight 

differences were found in aeration porosity and WHC between cover crop treatments 

(Villamil et al. 2006). Additionally, Basche et al. (2016) found that after thirteen years of 

cover crops, plant available water was 21% greater for the cover treatment compared to 

the no cover treatment in the 0 to 15 cm depth on a loam soil in Iowa.     

 

2.5 Conclusion 

The addition of cereal rye as a winter cover crop to a no-till corn and soybean 

rotation can increase soil health benefits and improve soil physical properties over time. 

Soil aggregate stability in the 0 to 10 cm depth was increased by 55% and in the 10 to 20 

cm depth by 29% after four years of cereal rye cover crop as compared to the control, 

which can help to improve water infiltration as well as help to protect against erosion and 

surface crusting. Bulk density, water retention, and SOC were unchanged by cover crop 

growth during that four year period, however. Increasing the amount of cover crop 

biomass produced within any year and over a greater number of years could increase the 

likelihood of maintaining or increasing soil organic carbon which in turn could help to 

improve soil physical properties. Measuring changes in soil physical properties can be 

difficult due to the inherent spatial and temporal variation found in any soil, and 

differences may need to be large in order to be detectable within this natural variation.    
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Table 2-1 Soil organic carbon (SOC) and total soil nitrogen (Tot N) with depth, averaged 
across cover crop and cash crop within each year. SOC shown in back-transformed units. 
Year Depth  

(cm) 
SOC 

(g kg-1) 
Tot N 

(g kg-1) 
2011 0-10 14.25a 1.46a
 10-20 10.02b 1.22b
 20-40 5.06c 0.76c
 40-60 3.10d 0.51d
   
2013 0-10 13.00a 1.31a
 10-20 8.68b 1.00b
 20-40 4.16c 0.52c
 40-60 3.12d 0.36d
  
2015 0-10 14.54a 1.60a
 10-20 9.58b 1.25b
 20-40 5.01c 0.82c
 40-60 3.65d 0.62d
Note: Means followed by the same letter within a column and year are not significantly 
different at p≤0.05 
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Table 2-2 Bulk density (BD) and volumetric water content at five water potentials, and water holding capacity (WHC*) with depth 
averaged across cover crop and cash crop within year 

      Volumetric Water Content (cm3 cm-3) 
    water potential (kPa) 
Year Depth (cm) BD (g cm-3) 0 -4.9 -9.8 -33 -1500 WHC 
2011 0-10 1.27a 0.459c 0.349a 0.330a 0.311a 0.123a 0.207a 
 10-20 1.40b 0.414b 0.356a 0.340a 0.319ab 0.134a 0.206a 
 20-40 1.44b 0.405ab 0.360ab 0.345a 0.330b 0.165b 0.180a 
 40-60 1.48c 0.397a 0.372b 0.363b 0.355c 0.172b 0.192a 
     
2013 0-10 1.36a 0.445b 0.365a 0.348a 0.325a 0.135a 0.213a 
 10-20 1.39a 0.420a 0.355a 0.339a 0.318a 0.122a 0.217a 
     
2015 0-10 1.32a 0.446d 0.364c 0.346b 0.321b 0.125a 0.221c 
 10-20 1.36b 0.416c 0.352a 0.336a 0.313a 0.129a 0.208bc 
 20-40 1.42c 0.406b 0.361bc 0.349bc 0.332c 0.158b 0.192a 
 40-60 1.49d 0.395a 0.370cd 0.361d 0.350d 0.166b 0.196ab 

Note: Means followed by the same letter within a column and year are not significantly different at p≤0.05 
*WHC calculated between -9.8 and -1500 kPa 
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Figure 2-1 Effects of a cereal rye cover crop on water stable aggregate mean weight 
diameter (MWD) in 2011* and 2015, averaged across cash crop as affected by a cover 
crop by depth interaction. Shown in back-transformed units. 

Note: Depths with the same uppercase letters within a cover crop treatment are not 
significantly different p≤0.05. Cover crop treatments with the same lowercase letters are 
not significantly different within a depth at the p≤0.05 level.  
*2011 samples were taken in the spring after cash crop planting but before any cover 
crops had been established at the site.  
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 EFFECTS OF A CEREAL RYE COVER CROP ON SOIL MOISTURE 
IN A SILT LOAM SOIL IN SOUTHEASTERN INDIANA 

3.1 Abstract  

Cereal rye (Secale cereale L.) is a cover crop often used in the Midwest to improve soil 

health and protect soil during a typically fallow period in a corn-soybean (Zea mays L. - 

Glycine max L.) rotation, but questions remain about its effects on soil moisture. This 

study was conducted as part of a large regional project with a goal of studying how to 

make corn based cropping systems more resilient to climate stresses. A field site was 

established in Southeastern Indiana to study the effects of a cereal rye cover crop on soil 

physical and chemical properties in a no till corn and soybean rotation. Soil moisture is a 

very important physical condition, having a large effect on plant growth and development, 

crop productivity, and the ability to perform in-field management operations. Soil 

moisture and temperature were measured for five years (2011-2016) at five depths (10, 

20, 40, 60, and 100cm) in two replicates of four treatments. Median soil moisture 

differences were calculated for four plot pairs as cover minus no cover for each of four 

periods of interest, and each plot pair moisture difference in each depth was compared 

back to the initial baseline period during the winter soil moisture recharge period. Overall, 

in the early spring before cash crop planting, cereal rye either had no effect on soil 

moisture or had significantly lower soil moisture than the no cover treatment when 

compared to the difference of the baseline period. During the summer growing season 
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cereal rye had mixed effects on soil moisture. Long term, high frequency sampling in real 

world field conditions presents many challenges and also creates large datasets that 

require careful thought, analysis, and interpretation. 

3.2 Introduction 

 Cereal rye has been shown to provide many benefits to soil health and to increase 

the resiliency of corn based cropping systems but questions have been raised about its 

effects on soil moisture. Soil moisture is crucial for plant growth and development. The 

lack of adequate soil moisture during peak periods of the growing season reduced corn 

yields by as much as 90% (NeSmith and Ritchie, 1992) and grain yield was the factor 

affected more than any other plant characteristic by moisture stress in any growth stage 

(Denmead and Shaw, 1960). When cereal rye is growing it is also transpiring water 

pulled from the soil profile. This can be a concern in semi-arid regions where 

precipitation amounts may not be adequate to provide soil water recharge (McGuire et al., 

1998).  After the cover crop has been terminated, depending on the amount of biomass 

produced, there can be a mulch effect of the residue similar to that seen in conservation 

tillage systems that can increase soil moisture over what a bare soil counterpart would be. 

In a review of cover crop effects on soil water relationships, Unger and Vigil (1998) 

found that in humid and semi-humid regions, where precipitation is adequate for crop 

growth and the cover crop residues were left on the soil surface, there was little effect on 

the cash crop. Results are highly dependent on many factors including the timing and 

amount of rainfall received, the amount of cover crop biomass, and the tillage 

management of the study, although many studies showed little or no negative effects of 
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the cover crop on soil moisture (Basche et al., 2016; Clark et al., 1997; Clark et al., 2007; 

Daigh et al., 2014; Qi and Helmers, 2009).   

 This research was conducted to test the hypothesis that cover crops will have an 

effect on soil moisture. During the early spring the cereal rye would be growing and 

transpiring water so the soil moisture would likely be lower under cereal rye when 

compared to a no cover treatment.  Later in the spring after the cover crop has been 

terminated and into the cash crop growing season the residue can act as a mulch thereby 

conserving soil moisture so a cereal rye cover crop would have higher soil moisture than 

a no cover treatment.  

3.3 Materials and Methods 

The field site was established at Purdue University’s Southeast Purdue 

Agricultural Center (SEPAC) near Butlerville, Indiana (39° 1' 32.88" N, 85° 32' 24" W) 

in 2011. Previous to the study the field was in a conventionally tilled corn and soybean 

rotation with soybean being the 2010 cash crop. In spring 2011 the field was tilled with a 

disk to a depth of 10 cm and then with a field cultivator to a depth of ~5 cm prior to the 

overlay of the plots and treatments. Sixteen plots measuring 18 x 365 m were laid out in a 

14 ha field in a split plot design with each plot having a no till corn and soybean rotation 

with or without a cereal rye cover crop (figure 3-1). Treatments were corn with cereal rye, 

soybean with cereal rye, corn no cover, and soybean no cover replicated in each of four 

blocks. The cereal rye was drilled as soon as possible after cash crop harvest each year at 

a rate of 70 kg ha-1 and was chemically terminated in the spring with herbicide. In 2012, 

all treatments were terminated at the same time 28 days before corn planting. In the last 

three years of the study it was decided to maximize cover crop growth so the termination 
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timeline differed dependent on the crop to be planted.  In the last three years the plots 

going into corn (called “before corn”) were terminated at least two weeks before cash 

crop planting. The no cover plots going into soybean (called “before soybean”) were also 

sprayed at the same time as the before corn treatments to terminate any weeds present, so 

for three out of four treatments the termination timing is the same. The cereal rye in plots 

before soybean was allowed to grow until a few days before soybean planting in the last 

three years, in order to have greater biomass which might have greater impact on soil 

properties.  Above-ground biomass amounts at the time of spring termination, averaged 

across the four years of treatments were 1,900 kg ha-1 for the cereal rye treatments and 

545 kg ha-1 of weedy biomass for the no cover treatments. Crop and fertility management 

was performed in accordance with good agronomic practices and did not differ between 

cover crop treatments.  

Standardized protocols agreed upon by the USDA NIFA funded Climate and 

Corn-based Cropping Systems Coordinated Agricultural Project (Kladivko et al., 2014) 

were followed; see paper for full explanation of methods. Research data and supporting 

metadata were uploaded to the team’s central database with review and quality control 

performed by database managers to ensure data integrity and adherence to 

standardization (Herzmann et al., 2014). The data will be published at the National 

Agricultural Library (NAL) Ag Data Commons in 2017 (doi forthcoming).Soils at this 

field were mapped on site by Purdue pedologist Phillip Owens (personal communication, 

2011).  Soil types in the areas sampled were predominantly Nabb (fine-silty, mixed, 

active, mesic Aquic Fragiudalfs), Blocher (fine-silty, mixed, active, mesic Oxyaquic 

Hapludalfs), and Cincinnati (fine-silty, mixed, active, mesic, Oxyaquic Fragiudalfs) silt 
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loams. These soils exhibit fragic qualities at depth, so for the purposes of this analysis 

only the top 4 depths will be used, and the 100 cm depth will be ignored. 

Soil moisture readings were required for cover crop sites (Kladivko et al., 2014) 

and an indirect method was desired so measuring dielectric permittivity was the method 

selected (Topp and Ferre, 2002). Soil temperature was measured using a surface mounted 

thermistor on the 5TM sensor (McInness, 2002). One Decagon Devices EM50 data 

logger and five 5TM soil moisture and temperature sensors were placed in 8 of the 16 

plots and the middle 8 plots (plots 5-12) were chosen as the closest soil types and 

topography and were considered the most representative of the field. A bore hole was dug 

and sensors were placed horizontally into the side of the hole into the undisturbed soil 

profile at 10, 20, 40, and 60 cm. Sensors at 100 cm were placed vertically into the bottom 

of the bore hole and the hole was refilled by hand, approximating the same bulk density 

as the surrounding undisturbed profile in order to prevent preferential flow pathways. 

Loggers were set to read every 5 minutes to gather higher resolution data, but for the 

purposes of this analysis the data have been aggregated to a daily average. Data 

collection began in the summer of 2011, however, since there was not a cover crop 

planted until the fall of 2011, only data from January 2012 – the summer of 2016 will be 

reported here.   Data were downloaded monthly and converted to a structured text file for 

upload to the main project database. Google Gadgets were used and a visualization and 

aggregation tool was created by the database team at Iowa State to ease the process of 

handling such a large dataset. Graphs created by this Gadget are shown below (figures 3-

2 to 3-15) and data were downloaded as daily averages for statistical analysis.   
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The data were broken up into four initial time periods of interest in order to 

determine differential effects of the cover crop due to transpiration versus acting as a soil 

mulch (table 3-1). Period 1 is January 1st through the end of February (Feb. 28 or 29 in 

the leap years). This period is used as the baseline period because Indiana in the winter 

time typically receives enough precipitation to get full soil water recharge and the soils 

are approximately at a rough estimation of a “field capacity”, meaning that overall 

through the course of the period the free water has been drained by gravity and the 

remaining water is held by the soil matrix. Period 2 is March 1st through the day of 

termination of the cover crop (table 3-1). As stated previously, in the first year of the 

study the cover crop was terminated at the same time in the corn and soybean plots so the 

period in 2012 runs until March 25th. In the last 4 years of the study the cover crop before 

corn and the no cover crop plots before both corn and soybeans were terminated on the 

same date, this was April 14th in 2013 (table 3-1). The cereal rye before soybean was 

allowed to grow about two weeks longer, until April 29th in 2013 for example. Due to the 

complicated nature of the dataset, which will be explained in greater detail later, in order 

to simplify the analysis it was decided to analyze the data on a plot pair basis so that each 

pair had the same cash crop, either corn or soybeans every year. Analyzing the data on a 

cash crop basis required us to assign one beginning and one ending date to the pair of 

plots so it was decided to use the cover crop termination date for both the corn and 

soybean plots. The corn plots with and without rye are in fact, the same date, but for the 

soybean plots in the beginning of period 2 there are growing weeds in the no cover plots 

and growing cereal rye in the cover plots, then the weeds are terminated but the cover 

crop is allowed to remain alive. So for a portion of period 2, generally about two weeks, 
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there is a cover crop growing and transpiring in the cover plots before soybean and 

nothing growing in the no cover plots that were terminated at the same time as the cover 

crop plots before corn. Period 3 is the day after termination of the cover crop through 

cash crop planting (table 3-1). For the before corn treatments this period is about two 

weeks long or longer, such as in 2016 when it was about six weeks, which is a time 

period of interest since there is concern in the Midwest about anything that may interfere 

with corn planting. For the before soybean treatments period 3 is only a few days at most 

and in 2016 is nonexistent (table 3-1). Period 4 ranges from the day after cash crop 

planting until August 31st for 2012 through 2015 which is nearing the end of the growing 

season for both corn and soybeans in Indiana. In 2016 the plots were split in half and two 

different N rates were applied so the treatments including corn run until the time of side-

dress N application and the soybean treatments run until July 14th which are the last data 

available from the database.  

Due to the large and complicated nature of the data, analysis began with a simple 

look at whether or not differences might exist between the cover and no cover treatments. 

Since the field is in a split plot design, two plots next to each other have the same cash 

crop in each year, but one plot received the cover treatment and the other plot in each pair 

was a no cover treatment. During period 1 (table 3-1) in Indiana there is typically enough 

precipitation to recharge soil moisture and it is expected that plots would all have a 

similar soil moisture approaching a “field capacity”, but as can be seen in figure 3-2, in 

January and February of 2012, the soil moisture values for each plot appear to behave 

similarly but they are not equal. These differences could be related to many different 

factors including localized variation or the plots being inherently different at the sensor 
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locations, but they caused us to look at the relationships between plot pairs rather than 

use the actual values for soil moisture in each plot. A simple difference in soil moisture 

between adjacent plots was calculated by taking the values for the cereal rye plot minus 

the soil moisture values for the no cover plot for each plot pair. As mentioned previously, 

four time periods of interest were identified with time period one being considered the 

baseline time period to be compared against. Since the largest effect was suspected to be 

due to the growing cover crop rather than an effect compounding over time, it was 

decided to aggregate the five years together for an initial analysis. Combining the years in 

this manner allowed for comparisons to be made to test for effects of the cover crop when 

compared back to the baseline period. Since the plots are in a corn-soybean rotation and 

the time periods are assigned based on hard dates, cover crop termination, and cash crop 

planting, combining years still allows for each period in any year to have similar 

conditions (growing cover crop, terminated cover crop, growing cash crop, etc.) as the 

years before or after it because the period lengths are variable based on the cash crop to 

account for this. Matlab software (Natick, MA) was used for statistical analysis and a two 

sided Wilcoxon rank sum test was performed on 50% of the data selected at random in 

order to account for the autocorrelation contained in the dataset. Differences in the 

medians are considered significant at the p ≤ 0.05 level.  

3.4 Results and Discussion 

Figures 3-2 through 3-15 are captures from the Google Gadget and are intended to 

provide graphic representation of what the daily average data look like. There are two 

graphs for each year, depth, and measurement combination, so for 2012, for example 

there are two figures (3-2 and 3-3) for soil moisture at the 10 centimeter depth, broken up 



32 
 

  

into approximately 120 day time intervals (January to May and May to September) to 

condense the amount of data represented. The year 2014 actually has six figures, two for 

soil moisture at the 10 cm depth (figures 3-6 and 3-7), two for soil temperature at the 10 

cm depth (figures 3-8 and 3-9) to highlight some issues with the data related to some 

observations in the moisture data, and two for soil moisture at the 20 cm depth (figures 3-

10 and 3-11) to illustrate what the moisture at the lower depths of the soil profile looked 

like.  

When reviewing the figures for soil moisture it can be observed that while most of 

the lines exhibit similar trends there is a fair amount of spread between the lines on any 

given day. We attribute most of this spread to localized variation within each plot but this 

indicates that there may be some other sources of variability that have been introduced in 

one or more of several possible ways. The first source of variability is that these sensors 

were not calibrated to this specific soil so there is about a ±0.03 cm3 cm-3 volumetric 

water content accuracy and it can be seen that in many cases this could account for the 

greater portion of variation within the separation of the lines. The second source of 

variability is related to the installation of the sensors and data loggers. The very best job 

possible was done to ensure that each sensor location was as similar to the others as 

possible but the it could be that some sensor locations ended up in a locally high or low 

spot, a bore hole was filled in slightly differently or settled differently than the rest, or 

that there were inherent differences in the soils previous to the installation of the sensors. 

Yet another source of variation was introduced through the amount of time that this study 

covered. In the 5 years that these sensors and data loggers were in place, over time, 

various things happen and sensors and data loggers need to be replaced. In this case, for 
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example, if a sensor was consistently reading at the upper end of the ±0.03 cm3 cm-3 

accuracy, and a new one was installed that was reading at the lower end of that accuracy 

range, there is automatically a quite large source of error that may have been introduced 

to even be able to collect data on a continuous basis. 

Table 3-2 is a compilation of the median soil moisture value for each time period of 

interest within each depth and plot pair by cover crop treatment. Table 3-3 shows the 

results of the rank sum analysis, comparing each plot pair difference in any period and 

depth to the same plot pair depth combination in period 1. So for example, at the 10 cm 

depth for plot pair 5-6, the median soil moisture difference (cover minus no cover) was 

0.022 cm3 cm-3 for Period 1 and 0.020 cm3 cm-3 for Period 4, meaning that the cover crop 

plot became relatively drier compared to no cover, and this change in relationship was 

significant at p ≤ 0.05. Overall, in periods 2 and 3, for all four depths, cereal rye was 

evenly split between having either had no effect on soil moisture or having significantly 

reduced soil moisture compared to the no cover treatment, with only a few instances of 

increased soil moisture (table 3-3). These results fit closely with the original hypothesis 

that a growing cover crop would be transpiring water which would result in lower soil 

moisture in the early spring but contrasts with the hypothesis that the residue would act as 

a mulch in Period 3 and could increase soil moisture. This contrast could be due in part to 

how short Period 3 is (typically about two weeks) and the timing and amount of spring 

precipitation not being enough to overcome any previous deficit. Basche et al. (2016) 

found that, while cereal rye did lower soil moisture in the early spring, soil moisture was 

recharged by the time of cash crop planting in five out of seven years. It is interesting to 

note that at the 40 and 60 cm depths during the cash crop growing season (period 4) that 
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every plot pair is significantly different when compared to period 1, suggesting that 

maybe there is some effect of the cereal rye roots at depth. In the 40 cm depth during 

period 4, half of the plot pairs showed significantly increased soil moisture with cereal 

rye and half showed significantly decreased soil moisture and in the 60 cm depth three 

plot pairs increased with cereal rye while one plot pair decreased. These findings are 

slightly different than hypothesized, as it was thought the cereal rye would act as a mulch 

and have higher soil moisture into the growing season but this was not always true. The 

difference in soil moisture in period 4 in the 10 cm depth is significantly different than in 

period 1 for both plots 5-6 and plot 9-10, with both having lower soil moisture. These 

plots are on the same corn soybean rotation schedule so it is possible that this may be due 

to an extra year of corn (three years of corn two years of soybean) or possibly due to an 

extra year of the different management of cereal rye before corn and soybean.  There are 

several other instances of the plot pairs on the same cash crop rotation showing up as 

significant. In period 2 in the 20 cm depth, plot 5-6 and plot 9-10 are significant, as are 

plot 7-8 and plot 11-12 at the 60 cm depth. In period 3 at the 20 cm depth, plot 7-8 and 

plot 11-12 are both significantly different than period 1, and at the 40 cm depth plot 5-6 

and plot 9-10 are significantly different also. Any future work should include trying to 

tease apart these apparent cash crop related differences.    

3.5 Conclusion 

Soil moisture is affected by a cereal rye cover crop as can be seen by the many 

significant differences in table 3-3. Long term high frequency soil moisture measurement 

presents many challenges and over long periods provided many opportunities for errors 

and gaps. Overall, in the early spring before cash crop planting, cereal rye either had 
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significantly lower soil moisture or had no effect on soil moisture, while during the cash 

crop growing season in the 40 and 60 cm depths five out of eight plot pairs showed 

relatively higher soil moisture with cereal rye when compared to period 1, while three 

plot pairs showed the opposite. Future work on the data should include a more detailed 

analysis of the differences observed in this analysis in order to more fully understand the 

effects of a cereal rye cover crop on soil moisture. An analysis of individual years could 

more closely relate soil moisture to cover crop and cash crop growth, precipitation 

patterns, and may uncover some finer details that may have been missed in this larger 

scale analysis.      
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Table 3-1 Soil moisture period of interest by year 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 
Cash 
Crop 

Cover 
Crop  

Plot 
Period 1 

(Baseline) 

Period 2 
March 1-

Termination 

Period 3 
Termination-Crop 

Planting 

Period 4 
Crop Planting- 
End of Season 

2012 

Corn  Rye 
6 1/1 2/29 3/1 3/25 3/26 4/23 4/24 8/31 
9 1/1 2/29 3/1 3/25 3/26 4/23 4/24 8/31 

Corn  No Cover 
5 1/1 2/29 3/1 3/25 3/26 4/23 4/24 8/31 

10 1/1 2/29 3/1 3/25 3/26 4/23 4/24 8/31 

Soybean Rye 
7 1/1 2/29 3/1 3/25 3/26 4/23 4/24 8/31 

12 1/1 2/29 3/1 3/25 3/26 4/23 4/24 8/31 

Soybean No Cover 
8 1/1 2/29 3/1 3/25 3/26 4/23 4/24 8/31 

11 1/1 2/29 3/1 3/25 3/26 4/23 4/24 8/31 

2013 

Corn  Rye 
7 1/1 2/28 3/1 4/14 4/15 5/1 5/2 8/31 

12 1/1 2/28 3/1 4/14 4/15 5/1 5/2 8/31 

Corn  No Cover 
8 1/1 2/28 3/1 4/14 4/15 5/1 5/2 8/31 

11 1/1 2/28 3/1 4/14 4/15 5/1 5/2 8/31 

Soybean Rye 
6 1/1 2/28 3/1 4/29 4/30 5/1 5/2 8/31 
9 1/1 2/28 3/1 4/29 4/30 5/1 5/2 8/31 

Soybean No Cover 
5 1/1 2/28 3/1 4/29 4/30 5/1 5/2 8/31 

10 1/1 2/28 3/1 4/29 4/30 5/1 5/2 8/31 

2014 

Corn  Rye 
6 1/1 2/28 3/1 4/17 4/18 5/5 5/6 8/31 
9 1/1 2/28 3/1 4/17 4/18 5/5 5/6 8/31 

Corn  No Cover 
5 1/1 2/28 3/1 4/17 4/18 5/5 5/6 8/31 

10 1/1 2/28 3/1 4/17 4/18 5/5 5/6 8/31 

Soybean Rye 
7 1/1 2/28 3/1 5/1 5/2 5/5 5/6 8/31 

12 1/1 2/28 3/1 5/1 5/2 5/5 5/6 8/31 

Soybean No Cover 
8 1/1 2/28 3/1 5/1 5/2 5/5 5/6 8/31 

11 1/1 2/28 3/1 5/1 5/2 5/5 5/6 8/31 
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Table 3-1 Continued 

2015 

Corn  Rye 
7 1/1 2/28 3/1 4/16 4/17 5/5 5/6 8/31 

12 1/1 2/28 3/1 4/16 4/17 5/5 5/6 8/31 

Corn  No Cover 
8 1/1 2/28 3/1 4/16 4/17 5/5 5/6 8/31 

11 1/1 2/28 3/1 4/16 4/17 5/5 5/6 8/31 

Soybean Rye 
6 1/1 2/28 3/1 5/3 5/4 5/4 5/5 8/31 

9 1/1 2/28 3/1 5/3 5/4 5/4 5/5 8/31 

Soybean No Cover 
5 1/1 2/28 3/1 5/3 5/4 5/4 5/5 8/31 

10 1/1 2/28 3/1 5/3 5/4 5/4 5/5 8/31 

2016 

Corn  Rye 
6 1/1 2/29 3/1 4/14 4/15 5/24 5/25 6/8 

9 1/1 2/29 3/1 4/14 4/15 5/24 5/25 6/8 

Corn  No Cover 
5 1/1 2/29 3/1 4/14 4/15 5/24 5/25 6/8 

10 1/1 2/29 3/1 4/14 4/15 5/24 5/25 6/8 

Soybean Rye 
7 1/1 2/29 3/1 5/24 N/A N/A 5/25 7/14 

12 1/1 2/29 3/1 5/24 N/A N/A 5/25 7/14 

Soybean No Cover 
8 1/1 2/29 3/1 5/24 N/A N/A 5/25 7/14 

11 1/1 2/29 3/1 5/24  N/A N/A  5/25 7/14 

 

 

 

 

 



 
 

  

41

Table 3-2 Median volumetric water content (cm3 cm-3) by period of interest, depth, and plot pair for cover and no cover plots, at 
the SEPAC cover crop site averaged over five years  

 Period of Interest 
1 2 3 4 

Depth 
(cm) 

Plot 
Pair 

Cereal 
Rye 

No 
Cover 

Cereal 
Rye 

No 
Cover 

Cereal 
Rye 

No 
Cover 

Cereal 
Rye 

No 
Cover 

10 5-6 0.285 0.261 0.299 0.274 0.305 0.272 0.257 0.236 
7-8 0.288 0.253 0.301 0.258 0.277 0.245 0.266 0.216 
9-10 0.284 0.280 0.284 0.291 0.284 0.290 0.245 0.235 
11-12 0.279 0.276 0.286 0.286 0.292 0.264 0.249 0.245 

20 5-6 0.286 0.269 0.294 0.280 0.293 0.284 0.258 0.243 
7-8 0.301 0.257 0.308 0.262 0.301 0.260 0.283 0.225 
9-10 0.281 0.290 0.279 0.298 0.281 0.298 0.266 0.251 
11-12 0.319 0.290 0.328 0.294 0.314 0.284 0.278 0.249 

40 5-6 0.280 0.283 0.285 0.294 0.286 0.300 0.277 0.261 
7-8 0.304 0.282 0.320 0.291 0.318 0.295 0.313 0.277 
9-10 0.292 0.302 0.295 0.309 0.298 0.313 0.271 0.283 
11-12 0.281 0.293 0.294 0.294 0.289 0.303 0.254 0.274 

60 5-6 0.271 0.284 0.279 0.292 0.283 0.302 0.262 0.275 
7-8 0.281 0.260 0.288 0.270 0.292 0.268 0.290 0.258 
9-10 0.265 0.272 0.275 0.278 0.278 0.284 0.259 0.263 
11-12 0.288 0.259 0.304 0.269 0.298 0.268 0.291 0.265 
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Table 3-3 Significance of the ranksum test using median difference in volumetric water 
content (cm3 cm-3), with difference calculated as cover minus no cover, for cash crop 
pairs averaged over five years by depth within a period. Each period is compared to 
period 1.  

Period of Interest 

Depth (cm) Plot Pair 1 2 3 4 

10 5-6 0.022 0.023ns 0.023ns 0.020* 

7-8 0.028 0.018ns 0.020*** 0.016ns 

9-10 -0.001 -0.006*** 0.000ns -0.002** 

11-12 0.037 0.006* 0.023ns 0.006ns 

20 5-6 0.015 0.013** 0.001*** 0.016ns 

7-8 0.052 0.050ns 0.056* 0.069*** 

9-10 -0.015 -0.022*** -0.017ns 0.000*** 

11-12 0.045 0.029*** 0.026*** 0.021*** 

40 5-6 -0.004 -0.009ns -0.022*** 0.007* 

7-8 0.024 0.026** 0.027ns 0.050*** 

9-10 -0.012 -0.014ns -0.020*** -0.017*** 

11-12 -0.012 -0.004ns -0.023* -0.024*** 

60 5-6 -0.017 -0.005* -0.021*** -0.001* 

7-8 0.021 0.020* 0.024*** 0.034*** 

9-10 -0.007 -0.007ns -0.007ns -0.009*** 

11-12 0.030 0.023*** 0.031ns 0.035*** 
* Significant at the 0.05 probability level. 
** Significant at the 0.01 probability level.  
*** Significant at the 0.001 probability level 
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.  

Figure 3-1 SEPAC field layout. Each color represents one of the four treatments and each 
group of four plots is a block. The black dots are the approximate sampling locations 
within the field. The circled 8 plots (plots 5-12) are the locations of the Decagon soil 
moisture and temperature sensors.   
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Figure 3-2 10 cm daily average soil moisture January 2012-May 2012 for plots 5-12 at the SEPAC cover crop site  
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Figure 3-3 10 cm daily average soil moisture May 2012-September 2012 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-4 10 cm daily average soil moisture January 2013-May 2013 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-5 10 cm daily average soil moisture May 2013-September 2013 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-6 10 cm daily average soil moisture January 2014-May 2014 for plots 5-12 at the SEPAC cover crop site 

 

 

 



 
 

  

49 

 

Figure 3-7 10 cm daily average soil moisture May 2014-September 2014 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-8 10 cm daily average soil temperature January 2014-May 2014 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-9 10 cm daily average soil temperature May 2014-September 2014 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-10 20 cm daily average soil moisture January 2014-May 2014 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-11 20 cm daily average soil moisture May 2014-September 2014 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-12 10 cm daily average soil moisture January 2015-May 2015 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-13 10 cm daily average soil moisture May 2015-September 2015 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-14 10 cm daily average soil moisture January 2016-May 2016 for plots 5-12 at the SEPAC cover crop site 
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Figure 3-15 10 cm daily average soil moisture May 2016-September 2016 for plots 5-12 at the SEPAC cover crop site 
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 SUMMARY, CONCLUSIONS, AND FUTURE WORK 

This research highlights the difficulties of doing large plot research on soil 

properties that are slow to change and often difficult to measure against a background of 

inherent soil variability. Cereal rye can serve well as a winter cover crop during a period 

in a typical corn-soybean system where the ground would normally be fallow. Its effects 

on soil physical and chemical properties are not always fast and large although there were 

some important changes noted in this study indicating that there may be a trend towards 

change occurring. 

After four years of a cereal rye cover crop, soil aggregate mean weight diameter 

was 1.2 mm greater with cereal rye in the 0-10 cm depth and 0.6 mm greater in the 10-20 

cm depth when compared to the no cover treatments. This is an important measure for a 

poorly structured silt loam soil such as the one at this field site. With increased 

aggregation water infiltration can increase, as structure improves the soil is better able to 

resist erosion from wind and water, and over longer periods there can be more protection 

and an increase of soil carbon and water holding capacity. Soil bulk density, water 

retention at saturation, -4.9, -9.8, -33, and -1500 kPa, water holding capacity 

between -9.8 and -1500 kPa, aeration porosity at -4.9 kPa, soil organic carbon, and total 

soil nitrogen were unchanged by the cover crop.
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With more years of growth and with more growth within each of those years it is 

anticipated that many of these measures will improve although further study is warranted. 

Increasing the sample size of each measure may also help to decrease the signal to noise 

ratio and improve the chances of observing differences and overcoming the challenge of 

detecting small changes in these properties. A strong effort was made to take samples 

according to the standardized protocols however with a project of this magnitude, 

sampling over the course of multiple years with different crews, yearly weather variations, 

taking, transporting, storing, processing, and analyzing these samples, and a multitude of 

other factors, it is possible that even though the error introduced by each of these factors 

by itself may be very small, the accumulated error over such a large sampling regime 

over this long of a period may have had an effect on results.  

There is clearly an effect of the cover crop on soil moisture but the results of this 

analysis show that sometimes cereal rye can increase soil moisture, while sometimes it 

can decrease it. Overall, in the early spring before cash crop planting, cereal rye has 

either no effect on soil moisture or has significantly lower soil moisture compared to no 

cover. During the summer cash crop growing season, in the 40 and 60 cm depths, five of 

eight plot pairs showed increased soil moisture in the cereal rye compared to the no cover, 

while three of eight plot pairs showed the opposite. The dataset is large and without 

question warrants further, more detailed analysis. There are many complications 

associated with taking high frequency data over long periods of time. Over time sensors 

and data loggers simply stop working and need to be replaced, increasing the chances for 

increased variability by disturbing the sensor locations. A semi-permanent structure in an 

open field is an inviting thing for wild creatures such as mice that chew on the exposed 
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wiring, ants that cause corrosion in the circuit board of the data loggers, and wasps that 

require very careful attention to detail from the folks going to the field and downloading 

the data from the data loggers. Technological issues arise such as the computer used to 

download data inexplicably cuts out data from the dataset irrecoverably. A balance 

between the shortest necessary and the longest possible download interval must be 

achieved. The data were downloaded approximately monthly. This was determined to be 

a reasonable compromise between an efficient use of time and good data collection. The 

data loggers have a memory storage capability of approximately two months so this 

allowed for some flex if weather conditions delayed a download or if other farm or 

sampling tasks took priority; it also allowed for a larger dataset to be processed at one 

time versus a two week download interval, for example. At the same time, this also 

allowed a full month to pass between checking on the equipment and processing the data 

to detect errors. If there was a problem with a sensor there could be a long period of time 

with missing data and if a data logger stopped working then there could be no data for 

that plot entirely for some time. This issue combined with other field studies and research 

conflicting with time spent processing and checking data created some gaps in the data. 

Even when the data were processed in a timely manner the distance to the field site, 

replacement equipment availability, and the weather did not always permit rapid 

correction of problems. Data loggers that transmit wirelessly to a database could be 

another option to collect data in a timely manner.  

 Analysis of the soil moisture data proved to be difficult as the dataset is very large 

and a more complicated analysis is beyond the scope of this thesis. The data are strongly 

autocorrelated and any analysis must account for this. Based on the findings of this study 
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there are several follow up analyses that should be conducted. Precipitation can be highly 

variable from year to year and this has a huge effect on soil moisture amounts so 

analyzing the data on a yearly basis and including that year’s precipitation within the 

periods may help to provide some more conclusive and applicable answers. The periods 

could be more finely tuned to really home in on critical, although short, time periods 

throughout the year that may be getting lost in the larger time windows used here. A few 

examples of short but important time windows are the time around corn tasseling and 

pollination where soil moisture levels can have a critical effect on yield, an individual 

rain event to look at rates of infiltration or wetting fronts within the soil, and the time 

around cash crop planting to determine the effects on soil moisture and germination rates. 

Different statistical analyses may use some different assumptions and prove to be a better 

fit for this dataset depending on the hypothesis being tested. The dataset contains very 

high frequency measurements that have gone almost entirely unused for this analysis so 

once shorter time periods of interest have been identified it could be very interesting to 

look at an effect of cover on wetting fronts following a rainfall event for example. Some 

sort of gap filling procedure may have to be conducted if a more detailed analysis is to be 

performed as there are some gaps and holes in the data but there is a very large amount of 

information that still could be very useful. 

 Cover crops can be a useful management tool to increase the resilience of corn 

based cropping systems in the Midwest. Cereal rye can be used to increase soil 

aggregation to protect the soil from erosive forces during a time of the year that fields are 

typically fallow and exposed to excess rainfall. After four years of a cover crop soil bulk 
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density and water retention remain unchanged, although from the literature these 

measures often prove slow to change and difficult to measure.     



 
 

  

 

 

 

 

 

APPENDIX



63 
 

  

APPENDIX 

 

Table A-1 Soil organic carbon (SOC) treatment means by year at SEPAC   

Depth 
(cm) 

Treatment 
SOC 

(g kg-1) 

2011 2013 2015 
0-10 Corn with no cover 14.18 12.43 13.88 

 Soybean with no cover 14.72 12.75 14.12 
 Corn with cereal rye 13.65 12.86 15.02 
 Soybean with cereal rye 14.33 13.88 15.06 

   

10-20 Corn with no cover 9.97 8.63 9.71 
 Soybean with no cover 9.99 8.63 9.49 
 Corn with cereal rye 9.76 8.39 9.39 
 Soybean with cereal rye 10.24 9.00 9.69 
    

20-40 Corn with no cover 5.23 4.10 5.37 
 Soybean with no cover 5.05 4.24 5.08 
 Corn with cereal rye 4.28 4.01 4.56 
 Soybean with cereal rye 5.46 4.21 4.86 

40-60 Corn with no cover 3.25 3.28 3.89 
Soybean with no cover 3.07 2.98 3.57 
Corn with cereal rye 2.96 2.75 3.63 

Soybean with cereal rye 3.08 3.39 3.44 
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Table A-2 Total soil nitrogen (TN) treatment means by year at SEPAC 

Depth 
(cm) 

Treatment 
TN 

(g kg-1) 

2011 2013 2015 
0-10 Corn with no cover 1.45 1.29 1.53 

 Soybean with no cover 1.49 1.31 1.57 
 Corn with cereal rye 1.39 1.23 1.55 
 Soybean with cereal rye 1.51 1.39 1.73 

   

10-20 Corn with no cover 1.21 1.01 1.20 
 Soybean with no cover 1.21 1.03 1.30 
 Corn with cereal rye 1.15 0.90 1.15 
 Soybean with cereal rye 1.29 1.04 1.35 
    

20-40 Corn with no cover 0.74 0.55 0.85 
 Soybean with no cover 0.80 0.56 0.85 
 Corn with cereal rye 0.64 0.41 0.67 
 Soybean with cereal rye 0.87 0.54 0.90 

40-60 Corn with no cover 0.49 0.38 0.63 

Soybean with no cover 0.54 0.37 0.62 

Corn with cereal rye 0.46 0.29 0.52 

Soybean with cereal rye 0.54 0.41 0.68 
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Table A-3 Bulk density (BD) and volumetric water content at five water potentials, and 
water holding capacity (WHC*) with depth for corn with no cover treatment at SEPAC 

Volumetric Water Content (cm3 cm-3) 

water potential (kPa) 

Year Depth (cm) BD (g cm-3) 0 -4.9 -9.8 -33 -1500 WHC 

2011 0-10 1.28 0.455 0.349 0.330 0.312 0.119 0.212 
10-20 1.41 0.410 0.352 0.336 0.317 0.134 0.203 
20-40 1.45 0.403 0.357 0.343 0.330 0.167 0.176 
40-60 1.48 0.394 0.365 0.357 0.348 0.166 0.191 

   

2013 0-10 1.37 0.442 0.369 0.349 0.323 0.133 0.217 
10-20 1.40 0.415 0.354 0.338 0.317 0.123 0.215 

   

2015 0-10 1.33 0.445 0.362 0.342 0.317 0.125 0.217 
10-20 1.35 0.414 0.347 0.330 0.307 0.130 0.201 
20-40 1.46 0.396 0.363 0.352 0.340 0.165 0.187 
40-60 1.49 0.395 0.365 0.356 0.346 0.164 0.192 

*WHC calculated between -9.8 and -1500 kPa 
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Table A-4 Bulk density (BD) and volumetric water content at five water potentials, and 
water holding capacity (WHC*) with depth for corn with cereal rye treatment at SEPAC 

Volumetric Water Content (cm3 cm-3) 

water potential (kPa) 

Year Depth (cm) BD (g cm-3) 0 -4.9 -9.8 -33 -1500 WHC 

2011 0-10 1.27 0.459 0.345 0.327 0.310 0.123 0.204 
10-20 1.40 0.415 0.359 0.341 0.320 0.130 0.212 

20-40 1.42 0.410 0.361 0.343 0.328 0.168 0.175 

40-60 1.49 0.397 0.372 0.363 0.355 0.167 0.196 
   

2013 0-10 1.37 0.442 0.363 0.348 0.327 0.132 0.216 

10-20 1.39 0.425 0.358 0.341 0.318 0.125 0.216 
   

2015 0-10 1.34 0.444 0.363 0.346 0.323 0.122 0.224 

10-20 1.38 0.417 0.357 0.342 0.320 0.124 0.218 

20-40 1.43 0.407 0.364 0.353 0.338 0.159 0.194 

40-60 1.52 0.388 0.365 0.358 0.348 0.164 0.194 

*WHC calculated between -9.8 and -1500 kPa 
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Table A-5 Bulk density (BD) and volumetric water content at five water potentials, and 
water holding capacity (WHC*) with depth for soybean with no cover treatment at 
SEPAC  

Volumetric Water Content (cm3 cm-3) 

water potential (kPa) 

Year Depth (cm) BD (g cm-3) 0 -4.9 -9.8 -33 -1500 WHC 

2011 0-10 1.28 0.455 0.350 0.331 0.312 0.119 0.212 
10-20 1.40 0.415 0.357 0.341 0.321 0.127 0.214 

20-40 1.45 0.398 0.361 0.346 0.331 0.156 0.191 

40-60 1.47 0.404 0.376 0.366 0.357 0.169 0.197 
   

2013 0-10 1.34 0.455 0.366 0.348 0.323 0.135 0.213 

10-20 1.37 0.428 0.354 0.337 0.315 0.116 0.221 
   

2015 0-10 1.30 0.443 0.360 0.343 0.320 0.123 0.220 

10-20 1.37 0.413 0.351 0.336 0.315 0.130 0.206 

20-40 1.40 0.410 0.358 0.345 0.328 0.157 0.188 

40-60 1.47 0.400 0.378 0.369 0.358 0.168 0.201 

*WHC calculated between -9.8 and -1500 kPa 
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Table A-6 Bulk density (BD) and volumetric water content at five water potentials, and 
water holding capacity (WHC*) with depth for soybean with cereal rye treatment at 
SEPAC 

Volumetric Water Content (cm3 cm-3) 

water potential (kPa) 

Year Depth (cm) BD (g cm-3) 0 -4.9 -9.8 -33 -1500 WHC 

2011 0-10 1.25 0.465 0.349 0.330 0.309 0.129 0.200 
10-20 1.39 0.415 0.354 0.340 0.319 0.145 0.194 

20-40 1.42 0.408 0.361 0.346 0.331 0.170 0.177 

40-60 1.49 0.394 0.375 0.366 0.359 0.185 0.181 
   

2013 0-10 1.38 0.440 0.364 0.346 0.328 0.141 0.205 

10-20 1.42 0.412 0.354 0.339 0.323 0.122 0.216 
   

2015 0-10 1.29 0.453 0.369 0.351 0.325 0.127 0.223 

10-20 1.35 0.420 0.353 0.335 0.310 0.128 0.208 

20-40 1.39 0.410 0.359 0.344 0.323 0.148 0.197 

40-60 1.48 0.398 0.371 0.361 0.349 0.165 0.196 

*WHC calculated between -9.8 and -1500 kPa 
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