
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

12-2016

The impact of sleep disruption on mouse
physiology, behavior, and welfare
Amanda L. Robinson-Junker
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Animal Sciences Commons, and the Biology Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Robinson-Junker, Amanda L., "The impact of sleep disruption on mouse physiology, behavior, and welfare" (2016). Open Access Theses.
891.
https://docs.lib.purdue.edu/open_access_theses/891

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/145190954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/76?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/891?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F891&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of 
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): 

Approved by:
Head of the Departmental Graduate Program Date

Amanda Robinson-Junker

THE IMPACT OF SLEEP DISRUPTION ON MOUSE PHYSIOLOGY, BEHAVIOR, AND WELFARE

Master of Science

BRIANNA N. GASKILL D. LAY JR.
Chair

BRUCE F. O'HARA

BRIANNA N. GASKILL

SURESH K. MITTAL 11/4/2016





i 

 

THE IMPACT OF SLEEP DISRUPTION ON MOUSE PHYSIOLOGY, BEHAVIOR, AND WELFARE 

A Thesis 

Submitted to the Faculty 

of 

Purdue University 

by 

Amanda L. Robinson-Junker 

In Partial Fulfillment of the 

Requirements for the Degree 

of 

Master of Science 

December 2016  

Purdue University 

West Lafayette, Indiana 

 



ii 

 

For Dad 

Who taught me how to nerd 

For Mike 

Who kept me sane 

For Addie 

Who kept me company 

 



iii 

 

ACKNOWLEDGEMENTS 

First of all, I must thank Dr. Brianna Gaskill, who took a chance on an intense non-

traditional student with absolutely no background in laboratory animal work. Thank you 

for pushing me to be the best scientist I can be, and for moderating my semicolon 

abuses. 

Thank you to my committee members, Dr. Don Lay and Dr. Bruce O’Hara. Your insights, 

feedback, and support have been invaluable. 

Thank you to Karen Wethington, Carol Dowell, and the rest of the Laboratory Animal 

Programs staff. Your patience with unusual husbandry requests was endless and 

appreciated. 

Thank you to my fellow lab members, including Melissa Swan, Megan LaFollette, and 

Lindsey Robbins. You have all been fantastic colleagues and friends, and I am so lucky to 

have gotten to share an office with you! 

Thank you to Dr. Tracy Vemulapalli, for chatting about Star Wars and analgesia, and 

letting me borrow your mouse restrainer. 

Thank you to my undergraduate students, including Kate Arthur, Roya Ball, and Denise 

Ortiz, for your uncomplaining dedication to watching hundreds of hours of mouse video. 

Without you, this thesis would never have been finished in time.



iv 

 

And last but not least, thank you to my friends and family. My husband Mike, who drove 

3 hours one way for weekend visits for months at a time while I ran experiments; Holly 

and Adam, for taking me to trivia and People’s; and all the classmates and journal club 

members who made me both think and laugh. You all made this possible, and the 

experience would have been poorer without you. 



v 

 

TABLE OF CONTENTS 

Page 

LIST OF TABLES .................................................................................................................. viii 

LIST OF FIGURES .................................................................................................................. ix 

ABSTRACT .......................................................................................................................... xiii 

 LITERATURE REVIEW ................................................................................. 1 

1.1 Abstract ..................................................................................................................... 1 

1.2 Introduction ............................................................................................................... 2 

1.3 Sleep Form and Function........................................................................................... 3 

1.3.1 Defining Sleep ............................................................................................... 3 

1.3.2 Physiological Changes During Sleep ............................................................. 5 

1.3.3 Control of Sleep ............................................................................................ 5 

1.3.3.1 Process C ................................................................................................... 6 

1.3.3.2 Process S .................................................................................................... 7 

1.3.3.3 C and S Combined ..................................................................................... 7 

1.3.4 Functions of Sleep ......................................................................................... 7 

1.3.4.1 NREMS Function ........................................................................................ 8 

1.3.4.2 REMS Function .......................................................................................... 9 

1.4 Sleep Dysfunction .................................................................................................... 10 

1.4.1 Sleep Deprivation/Restriction ..................................................................... 10 

1.4.2 Sleep Fragmentation ................................................................................... 12 

1.4.3 Circadian Mismatch .................................................................................... 13 

1.5 Evaluating Sleep as a Welfare Indicator .................................................................. 14 

1.5.1 Reliability ..................................................................................................... 14



vi 

 

Page 

1.5.2 Validity ........................................................................................................ 14 

1.5.3 Identifying and Measuring Sleep ................................................................ 15 

1.6 Implementing Sleep as a Welfare Indicator ............................................................ 21 

1.7 References ............................................................................................................... 24 

 OUT LIKE A LIGHT? THE EFFECTS ON SLEEP OF BEING A NOCTURNAL 

MOUSE IN A DIURNAL LAB ................................................................................................ 34 

2.1 Abstract ................................................................................................................... 34 

2.2 Introduction ............................................................................................................. 35 

2.3 Materials and Methods ........................................................................................... 38 

2.3.1 Ethical Statement ........................................................................................ 38 

2.3.2 Animals and Housing .................................................................................. 38 

2.3.3 Procedures .................................................................................................. 40 

2.3.4 Data Collection ............................................................................................ 41 

2.3.5 Statistical Analysis ....................................................................................... 42 

2.3.5.1 Sleep Data ............................................................................................... 42 

2.3.5.2 Behavioral Data ....................................................................................... 43 

2.4 Results ..................................................................................................................... 44 

2.4.1 Overall Sleep ............................................................................................... 44 

2.4.2 Nighttime Sleep........................................................................................... 44 

2.4.3 Daytime Sleep ............................................................................................. 45 

2.4.4 Sleep Over 24 Hours ................................................................................... 46 

2.4.5 Behavior ...................................................................................................... 48 

2.5 Discussion ................................................................................................................ 51 

2.6 References ............................................................................................................... 56 

 SLEEPING THROUGH ANYTHING: THE EFFECTS OF UNPREDICTABLE 

DISRUPTIONS ON MOUSE SLEEP, HEALING, AND AFFECT ................................................ 71 

3.1 Abstract ................................................................................................................... 71 

3.2 Introduction ............................................................................................................. 72 



vii 

 

Page 

3.3 Materials and Methods ........................................................................................... 75 

3.3.1 Ethical Statement ........................................................................................ 75 

3.3.2 Experimental Design, Animals, and Housing .............................................. 75 

3.3.3 Procedures .................................................................................................. 76 

3.3.3.1 Disruption Treatments ............................................................................ 76 

3.3.3.2 Punch Biopsy Procedure ......................................................................... 77 

3.3.3.3 Analgesia Treatment ............................................................................... 78 

3.3.3.4 Behavioral Testing ................................................................................... 79 

3.3.3.5 Tissue Collection ...................................................................................... 80 

3.3.4 Statistical Analysis ....................................................................................... 81 

3.4 Results ..................................................................................................................... 82 

3.4.1 Sleep Measures ........................................................................................... 82 

3.4.2 Activity Levels.............................................................................................. 83 

3.4.3 Sucrose Consumption ................................................................................. 84 

3.4.4 TINT Scoring ................................................................................................ 84 

3.4.5 Food Consumption ...................................................................................... 84 

3.4.6 Bodyweight ................................................................................................. 85 

3.4.7 Histopathology ............................................................................................ 85 

3.5 Discussion ................................................................................................................ 85 

3.6 References ............................................................................................................... 90 

 CONCLUSIONS ....................................................................................... 103 

4.1 References ............................................................................................................. 106



viii 

 

LIST OF TABLES 

Table ...............................................................................................................................Page 

Table 2.1: Figure 2.1: Factorial combinations of treatments. Each amount of nesting 

material was used with 2 males and 2 females. ...................................................... 60 

Table 2.2: Ethogram for behavior coding. Includes both scan sampling and 1/0 sampling 

behaviors. Maintenance and nesting categories had subsets of behaviors, but 

subsets were binned into categories for analysis. ................................................... 60 

Table 3.1: Factorial design with number of replicates per combination.......................... 95 

Table 3.2: Disruption descriptions, durations, and number of occurrences. When 

disruptions occurred more than once, different durations were possible; if that 

was the case, all duration times are listed. All mice experienced all disruptions. .. 96 

 



ix 

 

LIST OF FIGURES 

Figure .............................................................................................................................Page 

Figure 2.1: Sleep apparatus, top view (L) and C57BL/6 mouse in apparatus with nesting 

material (R) ............................................................................................................. 61 

Figure 2.2: Average percentage of time spent sleeping during daylight hours. Solid bars 

represent daytime disturbances (10:00) and hashed bars represent nighttime 

disturbances (22:00). Differing letters indicate within sex differences, bars with 

asterisks indicate between sex differences (Tukey, P<0.05). Data represented are 

LSM and SE. ............................................................................................................ 61 

Figure 2.3: Average sleep bout length during daylight hours. Solid bars represent 

daytime disturbances; hashed bars represent nighttime disturbances. Differing 

letters indicate within group differences, asterisks indicate between group 

differences (Tukey, P<0.05). Data represented are LSM and SE. ........................... 62 

Figure 2.6: Average percentage of time spent sleeping per 2 hour interval. Open bar on 

the x-axis indicates lights on and the closed bar indicates lights off. Arrows 

indicate disruption times. Asterisks indicate sleep differences between types of 

mice in that epoch (Bonferroni corrected test slices, P<0.004). Data presented are 

LSM. ........................................................................................................................ 63 



x 

 

Figure                                                                                                                                      Page 

Figure 2.7: Average percentage of time spent sleeping per 2 hour interval. Open bar at 

the bottom indicates lights on, closed bar indicates lights off. Arrows indicate 

disturbance times. Asterisks indicate differences in bout length during that 

interval (Bonferroni corrected test slices, P<0.004). Solid lines indicate daytime 

disturbance, hashed lines indicate nighttime disturbance. Data presented are 

LSM. ........................................................................................................................ 64 

Figure 2.8: Percentage of time spend sleeping per 2 hour interval by day of treatment. 

Open bar at the bottom indicates lights on, closed bar indicates lights off. Arrows 

indicate disturbance times. Asterisks indicate differences in sleep in that epoch 

(Bonferroni corrected test slices, P<0.004). Data presented are LSM. .................. 65 

Figure 2.9: Average bout length by 2 hour interval. Open bar at the bottom indicates 

lights on, closed bar indicates lights off. Arrows indicate disturbance times. 

Asterisks indicate differences in bout length during that epoch (Bonferroni 

corrected test slices, P<0.004). Data were angular transformed, y-axis is 

backtransformed for clarity. Data presented are LSM........................................... 66 

Figure 2.10: Proportion of observations of behavior categories. Solid bars indicate 

males, shaded bars indicate females. Different letters indicate significant (P<0.05, 

Tukey) differences within groups. Data presented are LSM and SE. ..................... 67 

Figure 2.11: Proportion of time observed in behavior categories. Solid bars indicate 

lights on, shaded bars indicate lights off. Different letters indicate significant 

(P<0.05, Tukey) differences within groups. Data presented are LSM and SE. ....... 68 



xi 

 

 

Figure                                                                                                                                      Page 

Figure 2.12:  Nest scores affected by lights, disruption time, and day of treatment. Solid 

bars represent daytime disturbances (10:00) and hashed bars represent nighttime 

disturbances (22:00). Differing letters indicate within day differences, bars with 

asterisks indicate between day differences (Tukey, P<0.05). Data represented are 

LSM and SE. ............................................................................................................ 69 

Figure 2.13: Nest scores affected by sex, lights, and day. Solid bars represent lights on 

and filled bars represent lights out. Differing letters indicate within day 

differences, bars with asterisks indicate between day differences (Tukey, P<0.05). 

Data represented are LSM and SE. ......................................................................... 70 

Figure 3.1: Sleep apparatus viewed from above (1A) and a close up side view of an 

individual mouse cage (1B). Sugary cereal used for the sucrose preference test 

can be seen in 1B .................................................................................................... 97 

Figure 3.2: Experimental Timeline. Lists all measurements made on each day of 

experiment. Day -1 is considered baseline. Mice arrive on day -4. Abbreviations: 

BWT – bodyweight; SM – sleep monitoring; TINT – Time to Integrate Nesting 

Material Test; FC – food consumption; SC – sucrose consumption; SX – surgery; 

AT – analgesia treatment; Euth – euthanasia; TC – tissue collection. ................... 98 

Figure 3.5: Average proportion of time spent sleeping by lights on/off and day of 

experiment. Different letters indicate significant (Tukey, P<0.05) differences 

within categories. Data presented are LSM and SE. .............................................. 99 



xii 

 

Figure                                                                                                                                      Page 

Figure 3.6: Average sleep bout length by lights on/off and day of experiment. Different 

letters indicate significant (Tukey, P<0.05) differences within categories, bars 

indicate differences between categories. Data were angularly transformed for 

analysis, Y-axis is backtransformed for clarity. Data presented are LSM and SE. 100 

Figure 3.7: Mean activity level by lights on/off and day of experiment. Different letters 

indicate significant differences within categories, bars with asterisks indicate 

differences between categories (Tukey, P<0.05). Data were square root 

transformed for analysis; y-axis is backtransformed. Activity level is a linear 

measurement from 0 to 3; higher values indicate higher levels of activity. Data 

presented are LSM and SE. ................................................................................... 101 

Figure 3.8: Activity level by day of experiment, sex, and analgesia treatment. Bars with 

asterisks indicate differences between categories (Tukey <0.05). Data were 

square root transformed for analysis; y-axis is backtransformed. Activity level is a 

linear measurement from 0 to 3; higher values indicate higher levels of activity. 

Data presented are LSM and SE. .......................................................................... 102 

  

 



xiii 

 

ABSTRACT 

Robinson-Junker, Amanda L. M.S., Purdue University, December 2016. The Impact of 
Sleep Disruption on Mouse Physiology, Behavior, and Welfare. Major Professor: Brianna 
Gaskill. 
 
 

Laboratory mice are nocturnal, spending most of their daylight hours asleep. But 

they live in the diurnal world of human investigators and husbandry staff, who primarily 

work during this rest period. In humans, lack of sleep or sleep that occurs outside the 

normal circadian sleep period (as in shift work) has adverse effects. These include 

increased risk of cardiovascular disease, cancer, metabolic disorder, mood disorders, 

type II diabetes, and obesity. However, it is unknown if mice experience sleep disruption 

due to these human activities, and, if so, what the adverse effects may be. This is an 

important question, not only to ensure good welfare for laboratory mice, but also to 

improve experimental validity. If researchers are inadvertently inducing physiological or 

cognitive changes in mice through sleep disruption, we may be confounding 

experimental results in unpredictable fashions. This is particularly relevant to biomedical 

research, as only eleven percent of drug trials that pass the animal testing stage go on to 

pass human trials. Part of this discrepancy may be due to sleep disruption-induced 

changes in mice.
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In Chapter 2, we tested two different disruption times, one during the day (their rest 

period) and one at night (their active period). These changes in disruption time 

produced no differences in overall amounts of sleep, though there were changes in 

sleep timing based on sex and type of mouse. These results suggest that disturbance 

timing does affect sleep, but that response isn’t uniform across strains or sexes. 

However, it is possible that our brief welfare checks may have been too predictable and 

inconsequential to induce true sleep disruption.  

 In light of these results, our next experiment (Chapter 3) involved testing more 

extensive and unpredictable disruptions, as well as using both physiological and 

behavioral measures, as well as sleep monitoring. In this project, mice were exposed to 

either a week of predictable disruptions, or a week of those same disruptions, 

consolidated at the beginning and the end of the day. After 4 days of disruption, we 

performed a biopsy punch procedure on them to assess wound healing, with mice being 

assigned to an analgesia or control group. Again, overall sleep did not change for mice in 

response to disruption. They did, however, display a decrease in activity levels, likely 

due to the stress of handling and restraint for manual analgesia injection. Additionally, 

male mice who received analgesia spent more time sleeping than their female 

counterparts, suggesting that an adequate dose for males may not be sufficient for pain 

relief in females.
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 LITERATURE REVIEW 

1.1 Abstract 

While ethology often measures lying or resting behavior, sleep is a rarely discussed 

welfare indicator. This review investigates the idea of using sleep as a scientific measure 

of welfare, in an effort to make use of this prevalence. Sleep functions as a period of 

restoration, memory consolidation, immune activation, and energy conservation. Sleep 

timing and duration are controlled by both external and internal factors. As sleep 

disruption is known to produce adverse outcomes in humans, this is a potentially critical 

aspect for domesticated animals.  Their environment is frequently outside of their 

control, which may affect their ability to sleep normally.  Sleep is challenging to 

accurately identify externally, but with validated criteria it should be possible. However, 

while reliable, we feel that sleep is too plastic under various conditions, and too varied 

within and between species,  to be used as a standalone assessment tool. That doesn’t 

mean that it can’t be used, though. Like many other welfare measures, such as 

glucocorticoid levels, when compared to baselines and used in context with other 

criteria, it has the potential to be a powerful tool in the welfare scientist’s toolbox. 

Keywords: Animal welfare, sleep assessment, circadian rhythms 
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1.2 Introduction 

Welfare science relies upon the ability to devise and evaluate metrics that permit 

researchers to objectively assess animal well-being. To get an accurate picture of overall 

welfare, researchers must evaluate multiple aspects of an animal’s physical, mental, and 

behavioral well-being 1. This can involve multiple techniques, some of which are labor, 

time, and/or money intensive. Therefore, to make efficient and effective decisions 

regarding which welfare assessment tools to use, it’s to the advantage of welfare 

scientists to continue investigating new methods of measurement that may be simpler 

or measure multiple aspects of welfare with one test. An effective welfare 

measurement should fulfill the same criteria as an effective diagnostic test; it must be 

reliable and valid. Furthermore, a measure that can be used across species broadens its 

usefulness. One potential such measure that fits these criteria is sleep. 

All terrestrial mammals (under normal circumstances) sleep for at least part of a 24-

hour day, making this behavior a potential welfare measure that is advantageous across 

species. In addition, sleep is a familiar behavior that is easy to recognize by those who 

are not formally trained to identify and measure behavior such as animal husbandry 

personnel, who are likely the ones to be utilizing this behavior as a measure. This review 

aims to discuss sleep, its features and functions, and to assess its suitability as a welfare 

measure in captive terrestrial animals.  

Marine mammals have dramatically different sleep physiology and patterns than 

terrestrial mammals. In order to breathe while sleeping, marine mammals display sleep 

in one hemisphere of the brain at a time2, 3. They may go for extended periods of time 
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without sleeping at all, particularly after parturition2, 3.  They even appear to display 

little to no REM sleep2, 3. Therefore, we will only review the sleep of terrestrial mammals 

or marine mammals while they are on land (such as seals and sea lions). For those 

interested in in further information, Siegel3 and Siegel2 both cover marine mammal 

sleep in general. For a short comparison of sleep across taxa, including non-mammalian 

species, we suggest Siegel2. Campbell and Tobler4 also cover phylogenetic variation of 

sleep duration. 

 

1.3 Sleep Form and Function 

1.3.1 Defining Sleep 

Sleep is visually characterized by three factors: a characteristic body position (such as 

lying down, or hanging upside down), dramatically reduced physical activity, and an 

elevated stimulus response threshold3, 5. However necessary they may be, these criteria 

are not sufficient to identify sleep. Visually distinguishing a sleeping animal from an 

animal that is quietly resting may be effectively impossible; some species sleep standing 

up and lying down, rendering the postural criteria ambiguous; and an increased stimulus 

threshold may also happen for other physiological reasons. Therefore, physiological 

criteria are needed to correctly identify true sleep. 

The gold standard of sleep identification uses electroencephalogram (EEG) recordings, 

which track the electrical activity in the brain. By convention, sleeping waveforms are 

typically classified by their frequency as alpha, beta, theta, and delta waves (Figure 1). 

Beta waves occur at the highest frequency, at over 13 Hz. Alpha is the next highest at 8-
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13 Hz, followed by theta waves at 3.5-7.5 Hz, and delta waves at less than 3 Hz6.  There 

are also morphological classifications of waveforms. K-complexes are large amplitude 

(tall) delta waves that signal a partial arousal from sleep. Spindles are groups of waves 

of increasing and then decreasing waves that, taken as a group, resemble a spindle6. 

Researchers use these classifications to score sleep depth, duration, and bout 

frequency6. 

In animals, sleep is typically classified into two stages, non-REM sleep (NREMS) and REM 

sleep (REMS). While an awake animal’s brain displays low-voltage, fast activity7,  “slow 

wave sleep” (SWS) or “delta sleep”, is marked by slow, rhythmic delta waves – this 

occurs during NREMS. REMS (rapid eye movement sleep) is named for its characteristic 

rapid eye movements. REMS EEG waves are asynchronous, meaning that rather than 

different electrodes presenting a similar pattern and level of activity as they do in 

NREMS, brain activity is out of sync and very active, much more similar to what is seen 

in an awake individual. REMS is also marked by lack of muscle tone in most voluntary 

muscles5.That has led to REMS also being referred to as “paradoxical sleep”, because 

the level of brain activity doesn’t match the level of the rest of the body’s activity. While 

human EEGs allow for discernment of these distinct states via a large number and varied 

placement of electrodes, animal studies generally use an electromyogram (EMG) 

electrode to detect muscle movement and electrooculogram (EOG) electrodes to record 

eye movement; these additional readings can allow for dissection of NREMS and REMS. 

Mammals experience sleep cycles, which are periods of NREMS followed by REMS; more 

than one cycle may happen in any given sleep period8. 
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1.3.2 Physiological Changes During Sleep 

The various stages of sleep are also marked by physiological changes. During NREMS, 

heart rate, blood pressure, and respiratory rate decrease, eye movement is a slow 

rolling pattern, and muscle tone is reduced. During REMS, eye movement is frequent, 

heart rate, blood pressure, and respiratory rate approach near-waking levels, and 

muscle tone is absent. Not all physiological changes are universal across species, 

however. For instance, rats experience penile erections during REMS9, but in armadillos 

those erections occur during NREMS10. In humans, growth hormone release is linked to 

NREMS2, but in dogs it occurs during waking hours11. 

Metabolically, sleep also presents drastic changes. Glucocorticoid levels drop during 

sleep, and begin to rise again an hour or two before waking. Epinephrine and 

norepinephrine levels also drop over this period. In the meantime, growth hormone 

(GH), prolactin, melatonin, and leptin levels rise. The increase in these hormones 

supports immunological effects, including increased production of proinflammatory 

cytokines, such as IL-1 and tumor necrosis factor (TNF), and T helper cytokines like 

interferon (IFN) 7, 12-14. 

1.3.3 Control of Sleep 

A significant amount of research has been aimed at trying to determine what exactly 

induces sleep7, 12, 15-34; the results of that work indicate that there is no one single 

chemical or neurotransmitter that controls sleep and waking, but rather it is a complex 

and multi-faceted process. Currently, sleep is thought to be controlled by 2 different 

processes – Process C, which drives our waking processes and is governed by circadian 
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rhythms, and Process S, the endogenous drive for sleep that increases as we are 

awake18 (for a more in depth review of the control mechanisms of sleep see Brown7. 

1.3.3.1 Process C 

Circadian rhythms are patterns that occur with a period of approximately 24 hours. 

While the sleep/wake cycle is one of the most obvious examples of a circadian pattern, 

it’s far from the only one. Circadian patterns in gene expression have been found in 

explanted liver, kidney, spleen, thyroid, adrenal, heart, and stomach tissues35. Keeping 

all of these “clocks” synchronized is the job of the area of the brain called the 

suprachiasmatic nucleus (SCN). The SCN communicates with these peripheral oscillators 

using a combination of neurotransmitters and hormone secretion to maintain a unified 

time sense; some of these substances include gamma-aminobutyric acid (GABA), orexin, 

histamine, serotonin, epinephrine, norepinephrine, acetylcholine, glutamate,  and 

cortisol releasing hormone (CRH). Studies have shown that lesioning the SCN eliminates 

circadian locomotor patterns, and SCN transplantation into lesioned animals restores 

them35. The SCN itself also oscillates, with a period of a bit more than 24 hours with no 

external cues; typically it uses information about environmental light/dark status to 

entrain itself to the 24 hour day. This information comes from specialized 

photosensitive retinal ganglion cells in the eye that project to the SCN and detect the 

presence or absence of light, regardless of visual acuity of the organism36. This 

entrainment is why changing time zones requires an adjustment period before we sleep 

normally again – our SCN is adjusting to a shift in light/dark timing37. 
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1.3.3.2 Process S 

Separate from our circadian rhythms is our internally driven need for sleep. The longer 

we are awake, the stronger that drive grows, and the longer and deeper our sleep, the 

more quickly it dissipates. That drive is referred to as Process S. Process S is governed by 

the mutual inhibition of sleep- and arousal-enhancing neurological systems. Some of the 

major actors in Process S include adenosine, nitrous oxide (NO), prostaglandin D2 

(PGD2), and cytokines, including IL-1β and tumor necrosis factor (TNF) α 7. Recent work 

has also shown that in C57BL/6 mice, not only does the ionic composition of the 

cerebrospinal fluid (CSF) change during sleep, but by infusing an artificially created CSF 

with the ionic composition of a sleeping mouse, they could also induce sleep in waking 

mice15. 

1.3.3.3 C and S Combined 

The combination of Processes C and S works to consolidate sleep in humans. Process S 

“tells” us to sleep, and Process C “tells” us when to do it. This duality means that getting 

sufficient sleep, but at the “wrong” time can lead to detrimental effects (as seen in shift 

work 38-41); so too does getting sleep at the “right” time, but not enough of it 42-44. 

1.3.4 Functions of Sleep 

For such an ubiquitous behavior, the functions of sleep are not immediately obvious. 

Entering a stage of consciousness where an organism may be more vulnerable to 

predation, as well as sacrificing hunting, foraging, or mating time, would seem to induce 

a dramatic drop in organismal fitness. The fact that it persists, coupled with the 
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conservation of sleep throughout the terrestrial mammalian taxa, strongly suggests that 

sleep serves an adaptive function3, 5, 45. 

1.3.4.1 NREMS Function 

NREMS may act as a metabolic rate control. Animals with higher metabolic rates 

produce metabolic byproducts at a similarly higher rate; these byproducts include 

reactive oxygen species (ROS) which have been implicated in aging. Sleep provides an 

opportunity for high-metabolism animals to repair the damage done by these ROS, 

synthesize protective factors, and pre-emptively slow production of ROS 3.  However, 

others have argued46 that the studies that produced these results had dramatically 

different environmental conditions, and once those confounds are controlled for, sleep 

duration correlates negatively with basal metabolic rate. They argue that instead sleep 

duration is a mix of trade-offs between foraging time and predation risk, and that 

species that sleep for shorter durations may compensate for that by sleeping more 

deeply when they do sleep46. For nocturnal animals, sleep may provide a dual function 

of both energy conservation and predator avoidance. Many predators are diurnal, so 

sleeping through their active period leads to decreased risk of predation47. The early 

phases of NREMS also seem to be a period of immune system activation; pro-

inflammatory cytokines increase and sleep deprived individuals have a decreased 

response to immunization12-14, 48-50. Finally, recent work has shown that sleeping mice 

(whether naturally sleeping or under anesthesia) experience a 60% increase in the 

interstitial space of their brains. This leads to a convection current effect with their CSF, 
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increasing clearance of metabolites including β-amyloid, a major factor in the 

progression of Alzheimer’s51. This suggests that sleep may also provide an opportunity 

for the brain to clear metabolites and refresh the CSF for the demands of the next 

waking period. 

1.3.4.2 REMS Function 

REMS is not as obviously adaptive as NREMS, and there has certainly been disagreement 

in the sleep study field over it52-56. Part of the question involves the fact that, during 

REMS, the brain uses nearly as much energy as when it is in a waking state. This would 

seem to counteract at least some of the energy-saving potentially accomplished during 

NREMS. One potential function of REMS is memory consolidation. Studies have found 

that REMS deprivation in rodents reduces their spatial memory consolidation57, 58; 

however, others have argued that, since rodent results haven’t been reproduced in 

humans, this may not be a universal function59, 60. 

Another potential function of REMS is developmental. Species with altricial (less 

developed) young tend to have more REMS than those with precocial (more developed) 

young, a trend which continues into adulthood 3. Guinea pigs, who are highly precocial, 

have 1 hour of REMS per day, while the altricial platypus gets 8 hours of REMS per day3. 

Further supporting the developmental hypothesis are studies in monocularly deprived 

kittens; with one eyelid sewn shut and deprived of REMS, they had a greater reduction 

in neuronal tissue along the visual pathway than those who were not deprived of 

REMS61.  
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The patterning of sleep stages also suggests a possible function for REMS – preparing 

the organism for abrupt waking by providing lower stimulus threshold periods during 

the sleep period62. Rats in REMS respond to a startle-inducing stimulus more quickly 

than those in NREMS 63, which would be an adaptive advantage for a prey species. Even 

humans have longer REMS periods as the night progresses, until the period length peaks 

at the end of the sleep phase3. 

1.4 Sleep Dysfunction 

In 2004, an estimated 4.52 billion dollars was lost in both direct and indirect costs due to 

sleep disorders – in Australia alone64. This makes sleep disorders an active field of study. 

In fact, most of our knowledge about the functional consequences of sleep comes from 

research into sleep dysfunction; we manipulate the organism’s sleep, and then 

investigate the subsequent changes. This review is by no means exhaustive in regards to 

all the types of sleep disorders, but is instead focused on the dysfunctions that are most 

relevant to the animal welfare field. 

1.4.1 Sleep Deprivation/Restriction 

Sleep deprivation refers to the absence of sleep, whether it be total sleep deprivation or 

REMS deprivation. Partial sleep deprivation, also known as sleep restriction or insomnia, 

is also frequently studied. Sleep restriction is typically achieved experimentally through 

the same methods as sleep deprivation, except the deprivation is induced over a shorter 

period, permitting some sleep (restriction) instead of none (deprivation).  

Total sleep deprivation has varying effects, depending upon the species in question. Rats 

who are completely sleep deprived lose weight, in spite of an increase in appetite; they 
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develop lesions on their paws and tails; their core body temperature rises and then falls; 

and will die if deprivation is continued for as short a period as 5 days65, 66. Even 

restricted sleep will kill rats after 4-5 weeks 65. Sleep deprived rodents also show a 

decrease in memory acquisition tasks57. Male offspring from pregnant rats who are 

REMS deprived had fewer ejaculations and a longer latency to intromission when 

exposed to a receptive female than those whose dams were not REMS deprived 67. Mice 

perform poorly on novel object place recognition tests if they are REMS deprived after 

the first object exposure58. However, total sleep deprivation in humans shows fewer 

physiological effects, primarily decreased glucose metabolism in the brain; the main 

effects in humans are cognitive and psychological, including increased negative affect, 

decreased performance on cognitive tasks, and decreased memory performance43. Why 

there is a difference between animal and human responses to sleep deprivation isn’t 

clear. However, ecology and psychology may offer some clues.  

Recent work has shown that apes sleep less than other primates, and humans sleep the 

least of all the apes68. These researchers hypothesize that the reason behind that is that, 

as our common ancestors became terrestrial rather than arboreal, sleeping individuals 

became even more vulnerable to predation. This increased vulnerability imposed 

selective pressure to decrease the duration of sleep. This paper contends that humans 

compensated by developing the ability to sleep more “intensely” than other primates. 

By that, they mean that we oscillate back and forth between NREMS and REMS more 

frequently, permitting the maximal advantages (cognitive and physiological) conferred 
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by both states. Perhaps this sleep intensity also provides a protective effect against 

deprivation. 

From a psychological perspective, we know that lack of choice or control over the 

environment induces stress in animals69-71. Humans who are sleep deprived typically 

have more options for coping with the effects of sleep deprivation than animals do, 

particularly in experiments where the environment is tightly controlled. That freedom of 

choice could alleviate some of the stress that may be experienced by an animal who is 

highly motivated to sleep, but cannot. Additionally, a human under experimental 

conditions understands why they are being deprived; an animal has no context for its 

experience of deprivation, which may make the experience more stressful and cause 

more adverse effects. 

1.4.2 Sleep Fragmentation 

Sleep fragmentation refers to sleep that occurs in small bouts, rather than longer, 

consolidated chunks. Total sleep duration may or may not be affected by sleep 

fragmentation. Sleep fragmentation in humans has been shown to impact healing 72, 73, 

as well as lead to daytime sleepiness 74. Mouse studies of sleep fragmentation have 

shown increases in insulin resistance 75, disorganization of endothelial tissues in their 

aortas and increased blood pressure76, and an increase in pro-inflammatory cytokine 

responses in the hypothalamus, as well as an increase in circulating glucocorticoid 

levels77. This glucocorticoid increase can become a vicious cycle, as increased 

glucocorticoids lead to reduced sleep78. 
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1.4.3 Circadian Mismatch 

Circadian mismatch occurs when an individual sleeps at a time that doesn’t align with its 

innate circadian rhythms. A diurnal animal may stay awake at night, or a nocturnal 

animal might sleep at night. There are concerns about animals in urban landscapes 

being exposed to dim light at night from street lights, buildings, and cars having their 

circadian cycles unentrained to the day79-83. This mistiming is more thoroughly 

documented in humans, however, as we have social factors that affect our sleep in ways 

other animals don’t. Individuals who work the night shift, travel across time zones, or 

stay up late and sleep in later are all situations that animals will rarely encounter. 

In humans, mistimed sleep (whether from shiftwork or jet lag) is correlated with 

increased rates of type II diabetes and metabolic disorder 84, 85, increased risk of breast 

cancer41, increased risk of cardiovascular disease85, and increased prevalence of mood 

disorders39. One potential mechanism of these outcomes is that the desynchronization 

of the internal oscillators means that, not only is the SCN not synced with peripheral 

oscillators, but the peripheral oscillators aren’t synchronized with each other86. For 

instance, the stomach is prepared for digestion while the liver is beginning glycogen 

conversion for the sleep phase, causing a drop in blood glucose. Another outcome of 

this desynchronization may be that cell cycles,  which are highly influenced by circadian 

cycles, become disordered, leading to abnormal cell replication and growth, and 

cancer87. 
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1.5 Evaluating Sleep as a Welfare Indicator 

As a fundamental physiological process in land mammals, sleep holds great potential as 

a welfare indicator. However, whether a measure is useful depends upon both its 

reliability and validity88-90. We will discuss those aspects of sleep as a welfare indicator, 

addressing multiple techniques as well as their advantages and disadvantages. 

1.5.1 Reliability 

Reliability revolves around the consistency of results of a measure, whether it be when 

measured by two different people (inter-rater reliability) or the same person repeatedly 

(test-retest reliability)89. Sleep has the potential to be a very reliable measure. Given a 

consistent ethogram, EEG scoring method, or computerized algorithms, obtaining the 

same measures of sleep repeatedly is as plausible as for any other behavior. 

1.5.2 Validity 

Assessing the validity of a measure asks the question “does this actually measure the 

variable of interest? 89” An invalid measure will lack predictive power, whether for 

outcomes, similar measures, or both. Convergent validity is achieved if the measure of 

interest gives findings that agree with other validated measures of that indicator and 

external validity if the findings can be generalized to other situations. Specificity  means 

that the measure accurately reports only the attribute of interest. A measure may have 

discriminant validity if the measure does not measure unrelated factors, and sensitivity 

if it reflects changes in the variable in question90, 91. 
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1.5.3 Identifying and Measuring Sleep 

The gold standard of sleep identification is EEG recording. In animals, the electrodes 

necessary for this are typically surgically implanted. However, these are expensive, 

require skill to insert, and necessitate general anesthesia with a subsequent recovery 

period. Furthermore, at least one study has shown that the gauge of the transmitter 

cable can affect the behavior of mice that are connected to it92, making generalization 

across studies complex. EEG implants will also likely preclude social housing, as multiple 

animals would likely tangle their transmitter cables; this may alter behavior as well as 

sleep. Highly social animals, particularly rodents93-97, production animals98, 99, and non-

human primates100, 101, display dramatically altered behavior when housed individually. 

This may well confound any measures obtained under those circumstances. While some 

efforts have been made to address this complication 102, they still do not allow for group 

housing, at least for small animals (large animals may potentially be able to carry their 

recording devices in a backpack or similar device).  

One validated alternative to implanted EEG electrodes is adhesive, external electrodes. 

These have been used to good effect in cattle103, 104 and owls105. These systems do not 

require anesthesia and permit social housing. While cattle did sometimes rub an 

electrode off, redundancy allowed data to continue to be collected. The owl study 

showed an attenuation of signal over time, likely due to feather and skin regrowth at 

the attachment point. While an improvement over implanted electrodes, these systems 

are too large to use with small animals like rodents, and cost and convenience may limit 

their use outside of research settings in larger animals.  
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Another alternative, though potentially less valid, is abdominal transponders. These 

contain accelerometers and electrodes and are also used to detect inactivity and/or 

sleep. Accelerometer data alone is not sufficient to accurately assess sleep status, but 

with transponders that include electrodes, EEG recording is possible.  These too require 

surgical implantation by a trained individual, with a corresponding recovery time before 

valid results can be obtained. While each transponder often has its own receiver, 

allowing animals to be housed socially, these transponders are heavy relative to smaller 

animals like rodents (1.5-7.8 g, which can approach 10% of their bodyweight) and thus 

may alter activity patterns. One study has shown that mice with telemetry implants for 

5 weeks had heavier spleens than those in control surgical conditions (anesthesia alone, 

or anesthesia plus sham surgery)106, suggesting that there may be physiological effects 

from the presence of the transmitter in the body.  

A newer technique for detecting sleep states (though only in mice) has been a 

combination of infrared beam breaking and video analysis107, which is up to 90% 

accurate in determining a mouse’s sleep/wake state. A similar technique, using only 

video data, can also discern NREMS from REMS in mice with similar success108. These 

systems may prove a viable alternative, but are predicated upon having the animal in 

view at all times, precluding the use of a shelter or a nest. Additionally, these animals 

must be individually housed for the automated scoring process to work. Both the lack of 

refuge and individual housing are potential welfare concerns, as well as potentially 

sleep-altering confounds, and must be evaluated accordingly.  
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Another non-invasive technique for detecting sleep in mice is a piezoelectric device that 

detects mouse movements, analyzes their patterns, and uses those patterns to discern 

whether the mouse is awake or asleep109, 110. This method has been validated in mice 

with EEG/EMG and visual observations. Unlike the video systems, this does allow for 

mice to be provided with shelters and/or nesting material, but still necessitates 

individual housing.  

EEG, accelerometer, beam breaking and video monitoring, and piezoelectric devices can 

all provide valid sleep measurements, but they are not without their drawbacks in other 

arenas. One possible solution to this is a combination of techniques; a physiological 

measure, such as EEG, combined with behavioral analysis may allow for sufficient 

correlation between brain activity and visual assessment to allow subsequent studies to 

use visual assessment alone. However, a researcher pursuing that strategy should keep 

in mind the caveats that visual assessment correlation is unlikely to be valid between 

different environments, species, or possibly even strains of the same species. 

Another challenge in validating sleep as a measure is choosing what to measure. Total 

amount of time spent sleeping, sleep bout length, sleep bout number, time spent in 

different sleep stages, latency to sleep, latency to REMS, circadian patterns of sleep –are 

all potential measures of sleep, and care must be taken that both within a study, and 

when generalizing outside of it, the same measurements are being used and compared. 

This is because different measures can indicate different things – if two animals spend 

the same proportion of time sleeping, but one has shorter sleep bouts than the other, 

that suggests sleep fragmentation43. An animal with increased latency to REMS may be 
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suffering from adrenal insufficiency111, while a decreased REMS latency has been 

associated in humans with both major depression and PTSD111, 112. This does mean that, 

to properly assess sleep measurements, the evaluator must have some idea of what 

baseline is for that species (or individual). For captive species in particular, this may be a 

challenge. Laboratory rodents are nocturnal, but are often disturbed during their normal 

daytime sleep period by husbandry and research procedures. Cattle need to lie down in 

order to achieve REMS113, but spend less time lying down when dry bedding is not 

available114. Producers control light cycles, bedding substrate, and space allocation, all 

of which may be inadvertently altering sleep from baseline. 

Sleep measures are not necessarily convergently valid. Sleep behavior and inactive 

behavior correspond; this has been shown in multiple studies in the process of 

validating non-invasive sleep monitoring equipment103, 107, 108, 115-117. However a review 

of inactivity as a measure of welfare by Furiex and Meagher118 notes, inactivity may 

have a positive or negative valence for the animal 118. Meaning that while sleep and 

inactivity increase, welfare may either be positively or negatively affected, with 

additional measures needed to assess the directionality of the welfare change. 

Furthermore, these symptoms in humans are correlated with depression119. However, 

they may also be an indication of recuperation after a stressful experience111, 112, 120. To 

distinguish between those two possible states, a researcher would need additional 

measures, both in humans and animals. Tests like sucrose preference121, cognitive 

bias122, 123, and glucocorticoid assessment124 would provide needed context for the 

changes in sleep behavior. 



19 

 

The external validity of sleep varies. Sleep varies with age3, species2-4, 46, 125, and 

environment (see next section), so generalizations about changes in sleep must take 

these factors into account. For instance, a researcher may find that a particular 

intervention leads to an increase in daytime sleeping, a positive welfare finding for 

nocturnal mice. If that same intervention should lead to the same outcome in a diurnal 

orangutan 126, that would suggest a negative welfare state. Sleep decreases with age; 

young animals tend to sleep more than adults, and aging humans and mice sleep less, 

and in a less circadian fashion,  than younger animals127. It’s not clear what the 

mechanisms of those changes are, but they may be related to vision loss as animals age; 

this may decrease the amount of information that the SCN receives from 

photoreceptors in the retina about the environmental light cycle. Additionally, a 

decrease in sleep may result from a fear-inducing stimulus128 or recovery from an 

illness129; context is required to interpret results correctly. For these reasons, sleep data, 

like glucocorticoid levels, is unlikely to be accurately indicative of welfare when used in 

isolation. Individual variation could also complicate generalizing sleep findings. Within 

humans, there are certainly differential responses to sleep loss43, 44; it’s not 

unreasonable to suspect that other animals may have substantial inter-specific 

variation.  

Sleep is sensitive to perturbations in animal environment, health, and even mood; when 

those factors change, sleep often changes with them. Horses housed on straw spend 

more time in lateral recumbancy (and therefore able to achieve REMS) than those 

housed on shavings130, while rats housed on corncob bedding have reduced NREMS 
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compared to those housed on aspen chips131. Gilts with choices of 1, 4, 40, or 400 lux 

compartments were more often inactive in the 1 or 4 lux areas132. Rats exposed to a 

continuous noise condition had decreased sleep (both REMS and NREMS) after 3 days of 

exposure32, and when exposed to an increased noise condition in the morning showed a 

dramatic drop in REMS133. Altitude sickness may cause insomnia134, a potential concern 

when transporting animals. Pair-housed beagles in a research environment slept more 

than those individually housed135. All of these findings illustrate how sleep may be 

impacted by even minor environmental changes. 

Health status also plays a large role in sleep behavior, contributing to sleep’s sensitivity 

as a measure. Pain has a negative impact on sleep; rats in a rheumatoid arthritis model 

slept the same amount as controls, but that sleep was fragmented and spread 

throughout the day instead of in a circadian fashion28. In another study of arthritis 

model rats, those injected with Freund’s adjuvant displayed less overall sleep, and an 

increased latency to fall asleep; these effects attenuated as time after injection 

increased 136. Illness tends to increase sleep; pro-inflammatory cytokines like TNF-α and 

IL-1 promote sickness behaviors like hypersomnia in both mice and humans14, 137, 138, 

and mice who have been knocked out for those receptors sleep less than controls17. 

Sows sleep more as pregnancy progresses139, with sows sleeping significantly more from 

week 9 of pregnancy on than they did the first week.  

Also contributing to sleep’s sensitivity as a welfare measure is stress. Stress has a 

tremendous impact on sleep. Activation of the HPA axis decreases sleep78, 112, though 

not in a linear fashion; adrenalectomy leads to decreased sleep, as do elevated 
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glucocorticoid levels140. Furthermore, steadily increasing levels of stress do not lead to 

steadily decreasing levels of sleep, and an animal experiencing chronic stress may have a 

sleep rebound as they begin to acclimate112. Stressed rats also have a decreased latency 

to REMS, as well as an increase in fragmentation of sleep during the day141. 

Measures of sleep have ambiguous discriminant validity. For instance, some studies 

have shown that dim light at night doesn’t affect mouse sleep142. However, other 

studies have shown that dim light at night induces negative affective changes in mice 

and grass rats83. If both of these studies are correct, then the lack of change in sleep in 

the mice doesn’t preclude the development of negative affect. 

1.6 Implementing Sleep as a Welfare Indicator 

Sleep is extremely plastic. Humans have dramatically different sleeping patterns 

depending upon their culture; infants and children are encultured into the sleeping 

habits of their peoples, whether that involves a comparatively fixed rest period or one 

involving waking and resting as other events prove interesting or disruptive 143. If sleep 

weren’t comparatively flexible, we would expect humans, regardless of their 

environment, to sleep in a similar fashion to one another. Food deprived rats decrease 

their amount of time spent sleeping, but once food is available again, their sleep returns 

to normal144.  Some wild rats have even shifted their activity to a diurnal pattern in 

order to avoid fox predation145. This would suggest that, while there is an intrinsic need 

for and adaptive function of sleep, the amount and timing of it is at least somewhat 

flexible. This makes sense from an evolutionary standpoint – an animal that couldn’t 

adapt its period of decreased awareness and immobility to current environmental 
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conditions would have lower fitness than one that was more plastic8. It has been noted 

that there is no universal amount of “enough” sleep for any particular species, either44; 

need for sleep varies based upon individual needs and context. This suggests that we 

may need to treat sleep according to the Hughes and Duncan146 model of motivation, 

with sleep as the behavior that leads to the functional consequences of increased 

immune function, memory consolidation, CSF renewal, or other factors we aren’t aware 

of yet. Taking that into account, sleep should be treated as any other motivated 

behavior, with appetitive precursors. If we do that, then perhaps rather than using sleep 

directly, we can look at its appetitive indicators as clues to whether or not an animal is 

experiencing a drive to sleep but cannot satisfy it. 

Appetitive behaviors of sleep are already documented in the literature. Apes build nests 

to varying degrees126, 147, 148; rodents do as well106, 149-151, though they do not provide the 

same exclusive function for sleeping as ape nests. Cattle lie down for REMS113, as do 

horses130; dogs often circle and cats seek out a high, secure sleeping place152-154. A 

diurnal ape nest-building in the middle of the day might be a clue that something has 

gone awry for that animal, whether their sleep was disturbed at night and thus their 

sleep drive remains high, or they are feeling unwell and exhibiting related lethargy or 

other sickness behavior. Similarly, an ape denied access to nest-building materials, 

without the ability to express the appetitive precursors to sleep, may display decreased 

motivation to sleep, until the need for the functional consequences becomes too great. 

Sleep doesn’t appear to have sufficiently robust external validity to use as a standalone 

indicator of welfare for individual animals. Its variability to changes in welfare, as well as 
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its plasticity, mean that there is too much potential for false positives and negatives 

when used in isolation. But that doesn’t make it unique among welfare indicators. 

Mason and Mendl155 addressed ambiguous measures quite eloquently, particularly in 

regards to corticosteroid levels, heart rates, weight loss, and prolactin levels.  Broom156 

used the excellent example of domestic dog tail wagging as a measure that, alone, is 

insufficient to identify positive or negative welfare. The presence of stereotypic 

behavior157 is another specific measure that, in and of itself, is not diagnostic of the 

animal’s current welfare. Sleep is yet another measure that can be added to the 

“insufficient in isolation” list. However, used as an indicator of change in the animal’s 

life, it can provide useful information about which individuals may require further 

attention. 
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 OUT LIKE A LIGHT? THE EFFECTS ON SLEEP OF BEING A NOCTURNAL 
MOUSE IN A DIURNAL LAB 

2.1 Abstract 

Laboratory mice are nocturnal animals living in the diurnal world of investigators and 

husbandry staff. However, it is unknown if mouse sleep is disrupted by normal human 

schedules or if this affects their welfare. We hypothesized that the timing of human 

disruptions would alter mouse sleep patterning. We predicted that mice disturbed 

during their normal rest period (light period) would either sleep less overall or spend 

more time sleeping during their typical active period (dark period). We utilized a non-

invasive sleep apparatus to continuously monitor sleep, and video recording to monitor 

behavior, in 48 mice. We used a factorial design to test 2 main treatments: disruption 

treatment (disturbed with routine husbandry at either 10:00 or 22:00) and nesting 

material treatment (3, 6, 9, or 12 g). Nesting material was included in the event that a 

refuge could provide an ameliorating effect. All mice were exposed to each sleep 

treatment for one week. We tested both sexes of 3 types of mice (CD-1, C57BL/6, and 

BALB/c).  C57BL/6 mice, regardless of sex or disruption timing, slept less overall 

compared to other mice, and their sleep percentage did not change between 

treatments. CD-1 female and BALB/c male mice slept more during the day when
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disturbed at 10:00; their opposite sex counterparts slept more during the day when 

disturbed at 22:00. Sleep analysis over 24 hours showed multiple differences, 

particularly in the periods immediately after lights on and including either disturbance 

time. Nesting material increased sleep bout length in CD-1 mice with 12 g compared to 

those with 3 g. Disruptions did not influence frequency of stereotypic or nesting 

behavior, though mice disturbed at night spent more time inactive during lights on than 

those disturbed during the day. These results suggest that disturbance timing does 

affect sleep, but varies between mouse type and sex, and our brief disruptions may 

have been too predictable and inconsequential to induce true sleep disruption.  

Keywords: animal welfare, mouse sleep, circadian rhythms, sleep disruption 

2.2 Introduction 

Sleep is a critical physiological state for terrestrial mammals 1. Consequences of 

sleep disruption or deprivation can include metabolic dysfunction, altered physiology, 

impaired cognition , and even death2-4. Shift work in humans (and its subsequent 

nighttime exposure to light and disruption of circadian rhythms) has been associated 

with increased cardiovascular disease5; increased risk of breast cancer6; increased 

prevalence of depression and anxiety7; increased prevalence of gastrointestinal 

disorders 8; and impaired glucose metabolism 9.  Laboratory mice are nocturnal, 

therefore our manipulation of them during daylight hours, and subsequent forcing of 

them to be active during their natural inactivity period, suggests an analogy to shift 

work. Furthermore, there is the potential for similar negative consequences in mice. By 

the Fraser et al.10 definition, these conditions lead to decreased welfare by negatively 
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impacting physical and mental wellbeing. While this alone is a sufficient reason to be 

concerned with sleep patterning in laboratory mice, sleep disruption may also be 

altering their utility as model organisms. Therefore, adequate and appropriate sleep for 

laboratory mice is a crucial component for both applicable and ethical research. 

Provision of a refuge or shelter has been shown to decrease exhibition of stress 

behaviors in cats 11 and a decrease in anxiety behaviors during open field tests in mice 12, 

13; it seems plausible that a refuge (in the form of a fully enclosed nest) may ameliorate 

some of these potential negative outcomes in laboratory mice. The amount of nesting 

material provided is integral to its effectiveness 14; knowing this, we chose to test 

varying amounts of nesting material, in an effort to determine how much material may 

be required to offset resting period disruptions for mice. 

Previous research performed on sleep in laboratory animals has involved 

implantation of electrodes and/or transmitters in order to perform EEG and EMG testing 

15-24. Anesthesia alone has been shown to disrupt mouse thermoregulatory processes 

for a week after implantation of a transmitter 25. Bioenergetic homeostasis may take 

longer to re-establish; mice in one study never achieved the same weight as their non-

implanted counterparts 25, and mice in another study didn’t show any effect of 

treatment until four weeks post-operatively 26. Another complication of transmitter 

implantation is the weight of the transmitter itself. Commercially available transmitters 

can weigh as much as 3.4 g; for a 20 g mouse, this is a body weight increase of ~ 15%. 

Abruptly increasing bodyweight in this fashion creates an unknown energetic demand 

on mice, further complicating the interpretation of experimental data. While time is 
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typically given in experiments to allow animals to return to thermal and energetic 

homeostasis, it’s difficult to assess how much time is “enough”, as well as what effects 

monitoring equipment itself may have upon behavior.  

Video monitoring provides a non-invasive method of observing behavior, and has 

also been used for rodent sleep assessment 27-29. Although non-invasive, this method 

requires the animal to be visible to the camera at all times. The subjectivity of 

identifying a sleeping animal exclusively through behavioral monitoring by necessity 

entails the difficulty of discerning an animal at quiet rest from one that is sleeping. 

Additionally, the need to be able to see subjects would preclude the use of any sort of 

nesting material or opaque structure as enrichment, as well as bedding substrate that 

could be used to build a nest.  

These complications from surgical implantation or video monitoring meant that we 

were interested to try a different, non-invasive form of sleep monitoring apparatus, 

where mice are able to move freely and have nesting material without interfering with 

data collection. 

We hypothesized that the timing of disturbances for routine husbandry would alter 

the sleep patterning of mice, and that increasing provision of nesting material would 

provide increasing protection from this disturbance. We predicted that mice disturbed 

during the day (their natural inactive period) would have disrupted sleep patterns 

compared to those disturbed at night (their natural active period). 
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2.3 Materials and Methods 

2.3.1 Ethical Statement 

This study was approved by the Purdue Animal Care and Use Committee, and 

conformed to all guidelines put forward by both the committee and the Guide for the 

Care and Use of Laboratory Animals 30. At the start of study, animals were free of a list 

of common mouse infectious agents; further details may be found at 

http://www.criver.com/files/pdfs/rms/hmsummary.aspx. All mice were monitored daily 

by trained members of the research team for food and water consumption and overall 

health status, with no adverse conditions or health outcomes noted. 

2.3.2 Animals and Housing 

This experiment utilized 2 different strains and 1 stock of mice, BALB/cAnNCrl 

(BALB/c), C57BL/6NCrl (C57BL/6), and Crl:CD-1(ICR) (CD-1) of both sexes, obtained at 6 

weeks of age (Charles River, Kingston, NY). We also tested 4 different amounts of 

nesting material: 3, 6, 9, and 12 g (Enviro Dri, Shepherd Specialty Papers, Watertown, 

TN). Each treatment combination of variables (type of mouse, sex, and nesting material 

amount) had two replicates for a total of 48 mice (Table 2.1). This factorial design 

enabled us to maximize statistical power while minimizing use of animals. 

Mice were housed in one of two non-invasive sleep monitoring apparatuses (Figure 

2.1, Signal Solutions, Lexington KY). Each apparatus individually houses 4 mice, allowing 

8 mice to be tested simultaneously. We chose to use this non-invasive sleep assessment 

apparatus that allowed us to determine sleep disruptions and changes without surgical 

implantation or increased burden on the mice (Flores et al., 2007).  The apparatus uses a 
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piezoelectric mat underneath the cage to detect vibrational movement of the mouse. 

Customized software (MouseRec Data Toolbox, Signal Solutions, Lexington KY) uses an 

algorithm to process the signal and discern sleeping respiratory patterns from waking 

respiratory patterns; this algorithm has been validated using EEG, EMG, and visual 

evaluation 31. Visual barriers were in place between cages, but audible and olfactory 

contact was still possible. Each cage included a built in food hopper and water bottle 

opening. Because the apparatus detects movement through pressure rather than video 

signal, it also allows mice in a sleep study to have vision-obstructing nesting material. 

Provision of nesting material improves mouse thermoregulatory abilities 26, 32 and 

provides valuable behavioral enrichment 12, 33-37. Additionally, because this apparatus 

scores sleep via an algorithm, there is no opportunity for observer bias, as there is with 

video coding. This provides an opportunity for unaltered, continuous sleep assessment 

over several weeks. However, this apparatus does require mice to be housed singly, 

rather than socially. It is also sensitive to vibrations from other sources, so care must be 

taken with placing the apparatus away from wind currents and not on surfaces with 

equipment that generates vibrations, such as computers or fans. Mice were also 

continuously video recorded while in the apparatus using a DVR system (USA Vision 

Systems, Inc, Irvine CA) and 8 IR CCTV cameras (ClearVision CV-BC700VIRA), one for 

each cage.  

Each cage was bedded with 32 g of laboratory grade aspen shavings (Envigo, 

Indianapolis IN) with the experimental amount of nesting material added. Mice were 

provided with an 18 % protein laboratory diet (Harlan 2018, Indianapolis IN) and reverse 
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osmosis filtered water ad libitum. Lights were kept on a 12:12 light/dark cycle, with 

lights on at 07:00 and off and 19:00 hours. The room was maintained at 68-74° F, and 

28-65 % humidity. A homemade red (750 nm) LED light box 

(http://www.diyphotography.net/build-a-pro-quality-light-source-with-this-awesome-

diy-led-light-panel-tutorial/) on an automatic timer provided illumination from 22:00 to 

23:00 hours during both the acclimation and testing period to allow the experimenter to 

see in the room without introducing a white lighting source. 

2.3.3 Procedures 

Mice were weighed upon arrival, and then placed into their randomly assigned 

cages within the sleep apparatus and their assigned nesting treatment. Assignment to 

cages and nesting treatment amounts was done utilizing a random integer list generator 

(www.random.org). After 4 days of acclimation, continuous sleep and behavioral data 

recording began. During acclimation, mice were exposed to the opposite condition of 

their first assigned disturbance treatment; this ensured that the first day of recording 

involved a change of disruption time treatment for all groups. 

Disturbance treatments consisted of checking food, water, and animal health and 

conducting husbandry tasks between either 10:00 - 11:00, the day disturbance 

condition, or 22:00 - 23:00 hours, the night disturbance condition. Those windows 

corresponded to either 3 hours after lights on and 3 hours after lights off. We chose this 

timing because 3 hours after lights on, mice have completed their peak nest building 

activity and are settling in for their sleep period38. Three hours after lights off, they are 

well into their active period and likely to be awake38. The first treatment phase that 
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mice were exposed to was randomized to compensate for order effects and balanced 

across the six groups. After 7 days, the disturbance treatment was switched to the 

opposite timed disturbance, so that each mouse experienced both disturbance times. 

On days 1 and 8, investigators weighed mice, performed a wellness exam, and provided 

clean bedding and new nesting material. At the conclusion of treatments, BALB/c and 

C57BL/6 mice were euthanized using inhaled carbon dioxide to effect. CD-1 mice were 

retained for subsequent testing in a different study. 

2.3.4 Data Collection 

Behavioral data were collected from a total pool of 14 days (per animal) of 24-hour 

video recordings. Focal animal scan sampling at 20 minute intervals was used to create a 

behavior time budget consisting of general activity, nest building activity, and 

maintenance behaviors, as well as animal location in or out of nest (Table 2.2). One-zero 

sampling was used to document stereotypic behavior over a two-minute interval prior 

to the time budget scan sample every 20 minutes. Behavioral data collection was limited 

to days 1, 3, and 6 of each disruption treatment. Video coders achieved >90% inter-rater 

agreement prior to video analysis, and were blinded to which sleep disruption the mice 

were experiencing while they coded. Nests were also scored from video at 2 time points 

(1:00 and 13:00), and scored according to previously developed criteria39, 40. Briefly, the 

nest is scored by assessing how close to a complete dome the nest is. Nesting material 

that has not been interacted with at all is a 0, material that has been interacted with but 

not built with is a 1, a flat nest is a 2, a cup-shaped nest whose sides are less than half of 
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a sphere is a 3, an incomplete dome nest, whose walls are more than half a sphere is a 

4, and a complete dome is 5. 

Sleep data were collected continuously over the full two weeks for each group of 

mice. 

2.3.5 Statistical Analysis 

2.3.5.1 Sleep Data 

Sleep data were analyzed using JMP statistical software (JMP®, Version 10). We 

used a General Linear Model (GLM) with full factorial combinations of: type of mouse, 

sex, nesting material amount, lights on/off, day of treatment, 2 hour epoch, and 

disturbance treatment was conducted for mean total bout length, mean daytime bout 

length, mean nighttime bout length, mean total sleep percentage, mean daytime sleep 

percentage, and mean nighttime sleep percentage. Because we only collected 

behavioral data on days 1, 3, and 6 of each disturbance treatment, we also limited our 

sleep analysis to those days. Type of mouse, sex, and amount of nesting material were 

nested within cage (the experimental unit) and cage was treated as a random factor. 

Apparatus and cage location were included as blocking factors, and removed from 

analysis if they were non-significant. The assumptions of GLM (normality of error, 

homogeneity of variance, and linearity) were confirmed post-hoc41. Sleep bout length 

was angularly transformed in order to meet these assumptions. Significant (P<0.05) 

effects were then analyzed using post-hoc Tukey tests or Bonferroni-corrected test 

slices, as needed. All values are given as least squares means and standard error. 
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2.3.5.2 Behavioral Data 

The number of observations for each category (general activity, maintenance, 

nesting behavior, inactive, unknown) were divided by the total number of 

observations for each mouse on a daily basis. Unknown observations were excluded 

from the behavioral analysis to preserve independence. Similarly, number of 

observations made in the nest were divided by total observations to calculate a 

proportion of time spent in nest. Stereotypic behavior observations (present or 

absent) were analyzed using a Generalized Linear Model (GLIM) as a binomial 

logistic regression with logit link function and Firth-adjusted bias.  

Behavioral data were analyzed using JMP statistical software (JMP®, Version 10). A 

full factorial GLM analysis of the following factors: type, sex, nesting material 

amount, and disturbance timing was conducted on proportion of time spent in 

different behavioral categories, nest scores, and proportion of observations of the 

mouse in nest.  Type of mouse, sex, and amount of nesting material were again 

nested within cage. Cage (and therefore individual mouse) was treated as a random 

factor. Apparatus and cage location were included as blocking factors. Nest score 

was included as a covariate in the analysis of location in or out of the nest, to 

determine if better built nests altered nest usage. Assumptions of GLM (normality 

of error, homogeneity of variance, and linearity) were confirmed post-hoc41. 

Significant effects (P<0.05) were then analyzed using post-hoc Tukey tests and 

Bonferroni corrected test slices and pairwise comparisons. All values are given as 

least squares means and standard error. 
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2.4 Results 

2.4.1 Overall Sleep 

The only significant main effect on the overall percentage of time spent sleeping 

over the full week of treatment was type. C57BL/6 mice spent less time sleeping than 

BALB/c or CD-1 mice (GLM, F(2, 23) = 15.87,  P < 0.0001). Overall bout length had a 

significant four-way interaction between type, sex, disturbance time, and amount of 

nesting material (GLM, F(6,24) = 4.12, P = 0.0055). Test slices (F(15,35.13) = 3.33, P = 0.0016) 

indicated those differences arose within CD-1 mice only. Bonferroni-corrected pairwise 

comparisons within CD-1 mice showed male mice with 12 g of nesting material had 

longer bout lengths when they were disturbed at night than those with 3 g. 

2.4.2 Nighttime Sleep 

When we analyzed the percentage of time spent sleeping at night, we found a 

significant interaction of sex, type, and disturbance time (GLM, F(2, 24) = 90.8, P < 0.0001). 

Post-hoc Tukey tests showed that all males of all three types slept differently depending 

upon when they were disturbed; C57BL/6 and CD-1 males slept more at night when they 

were disturbed at night, while BALB/c males slept more at night when they were 

disturbed during the day. Female BALB/c and CD-1 mice also differed with disturbance 

time, with BALB/c mice sleeping more at night when they were disturbed at night, while 

CD-1 mice slept more at night when disturbed during the day. There was no difference 

in sleep for C57BL/6 females. Additionally, there were differences in nighttime sleep 

within the types. BALB/c females disturbed during the day slept less at night than their 

male counterparts, and CD-1 females disturbed during the day slept more at night than 
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the males. When they were disturbed at night, female BALB/c mice slept more at night 

than males. C57BL/6 and CD-1 female mice slept less than their male counterparts did at 

night when they were disturbed at night. We also found a significant four way 

interaction between sex, type, disturbance time and nesting material (GLM, F(6,24)=2.66, 

P=0.04); however, Bonferroni-corrected pairwise t-tests showed that this significance 

arose solely from type differences, rather than nesting material or disturbance time 

differences. 

Nighttime bout length also had a four way interaction between sex, type, 

disturbance time, and nesting material amount (GLM, F(6,24)=5.17, P=0.0015). 

Bonferroni-corrected pairwise comparisons showed that this difference was, as in 

overall bout length, a difference between male CD-1 mice with 3 and 12 g of nesting 

material who were disturbed at night. 

2.4.3 Daytime Sleep 

Percentage of time spent sleeping during the day also had a significant 

interaction between type of mouse, sex, and disturbance time (GLM, F(2,24)=60.86, 

P<0.0001, Figure 2.2). Post-hoc Tukey tests found that female C57BL/6, female CD-1, 

and male BALB/c mice all slept more during the day when disturbed at night, while male 

C57BL/6, male CD-1, and female BALB/c mice slept more during the day when disturbed 

during the day. 

Daytime bout length also showed a significant three way interaction between 

sex, type of mouse, and disturbance time (GLM, F(2,24)=22.68, P<0.0001, Figure 2.3). 

Among the male mice, BALB/c had longer bout lengths when disturbed at night than 
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when disturbed during the day; there was no difference in bout length for male C57BL/6 

and CD-1 mice. For female mice, there was no difference within the types of mice 

between daytime and nighttime disruption. Within types, male BALB/c mice had longer 

daytime bout lengths than females when they were disturbed at night, and CD-1 males 

had longer daytime bout lengths than females when disturbed during the day. There 

were no differences between male and female C57BL/6 mice. 

2.4.4 Sleep Over 24 Hours 

Analyzing the percentage of time spent sleeping over 2 hour epochs throughout 

the entire day showed two significant interactions – type of mouse by 2 hour epoch 

(GLM, F(22,811)=4.69, P<0.0001, Figure 2.4), and sex by 2 hour epoch by disturbance time 

(GLM, F(11,811)=4.07, P<0.0001, Figure 2.5). For type of mouse by epoch, we used 

Bonferroni-corrected test slices to determine which epochs had significant differences. 

Those test slices showed that epochs 7-8 (F(2,715.7)=5.65, P=0.0037), 9-10 (F(2, 715.7)=17.44, 

P<0.0001), 11-12 (F(2,715.7)=15.17, P<0.0001), 13-14 (F(2,715.7)=5.92, P=0.0028), and 23-0 

(F(2,715.7)=7.65, P=0.0005) were all significant. From there, we performed Bonferroni 

corrected pairwise t-tests to determine from where that significance arose We took a 

similar approach to the sex by epoch by disturbance time interaction. In this case, the 

test slices indicated that the only difference was in the 19-20 epoch. Bonferroni 

corrected pairwise t-tests showed that, in that epoch, male mice disturbed at night slept 

more than when they were disturbed during the day, and that male mice disturbed 

during the day slept less than female mice disturbed during the day. We also found an 

interaction between day of treatment and 2 hour epoch (GLM, F(66, 7454)=5.63, P<0.0001, 
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Figure 2.6). Test slices narrowed the differences down to the 7-8 (F(6,7454)=3.30, 

P=0.003), 9-10 (F(6,7454)=5.26, P<0.0001), 11-12 (F(6,7454)=6.03, P<0.0001), 17-18 

(F(6,7454)=3.60, P=0.001), 19-20 (F(6,7454)=24.20, P<0.0001), and 21-22 (F(6,7454)=13.06, 

P<0.0001) epochs, and Bonferroni-corrected pairwise t-tests allowed us to tell that in 

the 7-8 epoch, mice slept more on day 1 than day 6; in the 9-10 epoch, mice slept more 

on days 1 and 3 than 6; in the 11-12 epoch, mice slept more on day 3 than on days 1 or 

6; in the 17-18 epoch, mice slept more on day 6 than day 1; in the 19-20 epoch, mice 

slept more on day 6 than on day 3, and more on day 3 than on day 1; and finally, in the 

21-22 epoch, mice slept more on day 6 than on either 1 or 3.  

We also analyzed sleep bout length over two-hour epochs. We found a 

significant effect of type of mouse by 2 hour epoch (GLM, F(22, 811)=8.85, P<0.0001, 

Figure 2.7), as well as type of mouse by sex by nesting material amount (GLM, 

F(6,20)=3.73, P=0.012). For the latter, the differences all arose from C57BL/6 mice having 

shorter bout lengths than the other two types of mice. For the former, test slices and 

Bonferroni-corrected pairwise comparisons showed differences in the 1-2 epoch 

(F(2,443.8)=11.13, P<0.0001), with CD-1 mice having longer bouts then; the 5-6 epoch 

(F(2,443.8)=5.84, P=0.0031), with C57BL/6 mice having shorter bouts than BALB/c mice; 

the 7-8 epoch (F(2,443.8)=14.93, P<0.0001), with C57BL/6 mice having shorter bouts than 

BALB/c mice; the 9-10 (F(2,443.8)=32.10, P<0.0001), 11-12 (F(2,443.8)=33.05, P<0.0001), 13-

14 (F(2,443.8)=31.39, P<0.0001), 15-16 (F(2,443.8)=42.20, P<0.0001), and 17-18 

(F(2,443.8)=25.89, P<0.0001) epochs, with C57BL/6 mice having shorter bouts than BALB/c 

and CD-1 mice; the 19-20 epoch (F(2,443.8)=10.64, P<0.0001), with C57BL/6 mice having 
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shorter bouts than CD-1 mice; and the 23-0 epoch (F(2,443.8)=14.55, P<0.0001), with CD-1 

mice having shorter bouts than the other strains.  

2.4.5 Behavior 

Type of mouse and sex significantly affected the behavior budget (GLM, F(6, 

1993)=6.50, P<0.0001; Figure 2.8). CD-1 male mice were inactive more and performed 

maintenance behaviors less than females. Female C57BL/6 mice spent more time in 

general activity than males; and BALB/c mice spent more time in general activity than 

CD-1. A significant  sex by nesting material by behavior interaction (GLM, F(9,1993)=1.95, 

P=0.041), indicated that male mice with 12 g of material spent more time inactive than 

males with other amounts, or females with any amount. The interaction of ype of 

mouse by nesting material by behavior (GLM, F(18, 1993) = 4.10, P < 0.0001) showed that 

C57BL/6 mice with 12 g of nesting material spent more time inactive than those with 9 

or 3 g, but not 6. It also showed that C57BL/6 mice with 3 g of nesting material spent 

more time in maintenance behavior than those with 12 g, BALB/c mice with 6 g spent 

more time in maintenance behaviors than those with 12 g, CD-1 mice with 12 g spent 

more time in maintenance behaviors than BALB/c or C57BL/6 with 12 g, CD-1 mice with 

3 and 12 g of material spent less time in general activity than their BALB/c counterparts. 

For type of mouse by lighting status by behavior (GLM, F(6, 1993) = 23.65, P < 0.0001, 

Figure 2.9), all types of mice spent more time inactive during lights on than lights off, 

and BALB/c mice spent less time inactive during lights off than the other types of mice. 

CD-1 mice in the dark phase spent more time in maintenance than the other two types 

after lights off, and all three kinds spent more time in maintenance during lights off than 
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lights on. All mice spent more time in general activity during lights off, and BALB/c mice 

spent more time in general activity during lights off than the other kinds of mice. 

Nesting material by lighting status by behavior (GLM, F(9, 1993) = 2.49, P = 0.0078) showed 

similar results, with all mice inactive more often during lights on than lights off, and 

mice with 12g of nesting material inactive more than those with lesser amounts. Mice 

also engaged in maintenance behaviors and general activity more often during lights off 

than lights on.  Evaluating disruption time by lighting status by behavior (GLM, F(3, 1993) = 

7.42, P < 0.0001), we found that mice disturbed at night spent more time inactive during 

lights on than those disturbed during the day. Finally, lighting status by behavior by day 

of treatment (GLM, F(6, 1993) = 2.11, P = 0.0049) was significant, with mice spending more 

time inactive during lights on days 3 and 6 than they did on day 1, and more time 

inactive after lights off on day 6 than on 1 and 3. Mice engaged in more maintenance 

and general activity during lights off than lights on regardless of day of treatment. 

When analyzing the stereotypy observation data, we found one significant 

factor, lighting status (Χ2(1)=5.52, P=0.019), with mice being more likely to be observed 

stereotyping during lights off than lights on. 

In or out of nest observation data also yielded multiple significant interactions. 

Sex by type of mouse by lighting status (GLM, F(2, 418)=5.94, P=0.0029) showed an effect, 

but post-hoc Tukey tests indicated that the differences here were all due to lighting 

status, with mice being observed in their nests more with the lights on than off.  Sex by 

nesting material by lighting status (GLM, F(3, 418)=3.10, P=0.027) and  type of mouse by 

nesting material by lighting status (GLM, F(6, 418)=4.18, P=0.0004) had the same post-hoc 
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results.  Sex by disruption time by lighting status (GLM, F(1, 418.1)=5.55, P=0.019) revealed 

that male mice were observed in their nests more often during lights on when they 

were disturbed at night, rather than during the day. Finally, disruption time by lighting 

status by day of treatment (GLM, F(2, 418.4)=4.96, P=0.0074) showed that, once again, 

mice were more often observed in their nests during lights on than lights off, but mice 

disturbed during the day were observed in their nests during lights on less often on day 

1 than day 3 or 6 of treatment. The covariate of nest score was also significant (GLM, F(1, 

435.7)=25.07, P<0.0001), with proportion of observations in the nest increasing with nest 

score. 

Nest scores had one significant two way interaction between nesting material 

amount and day of disruption (F(6,419)=2.85, P=0.0099). Post-hoc Tukey test showed that 

all the differences arose on day 1 of treatment, with mice with 12 and 9g of nesting 

material having higher scores than those with 3g.  There were also several 3-way 

interactions. Strain by lighting status by day of treatment (F(4,419)=3.06, P=0.016) was 

significant, with post-hoc Tukey showing that all those differences arose on day 1, with 

mice having lower nest scores during lights off on day 1 than any other times. We also 

found an interaction of disruption time by lighting status by day of treatment 

(F(2,419)=7.74, P=0.0005, Figure 2.10), again with day 1 having lower scores than day 3 or 

6. Sex by lighting status by day of treatment (F(2,419)=4.33, P=0.015, Figure 2.11) showed 

that on day 1, mice of both sexes had lower nest scores when the lights were off rather 

than on, and female mice scored lower than males with lights off on that day. 

Additionally, overall nest scores were lower on day 1 than day 3. 
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2.5 Discussion 

This project took on the challenge of a lack of baseline knowledge about “normal” 

sleep for laboratory mice. Presumably undisturbed lab mice would, eventually, settle 

into a circadian rhythm that would reflect their natural tendencies. What’s not known is 

whether those natural tendencies are actually observed in the laboratory. It seems likely 

that they have diverged at least some from their wild-type cousins, either from 

inadvertent selection for mice who tolerate daytime disruptions or through mutations, 

like the loss of melatonin in C57BL/6 mice 42.  

Our primary hypothesis, that mice who were disturbed during their normal rest 

period during the day would sleep less than those disturbed after dark, was not 

supported by our data. In some ways, this is a positive welfare finding, as it means that 

the timing of current husbandry practices may not be as disruptive as we feared. 

However, the shifts in sleep patterning between disruption treatments do suggest that 

mice are affected even by very short and mild human activities; even so, their responses 

to these disruptions are not uniform across type of mouse or sex. It’s not clear if this 

means that some types of mice are more sensitive than others, though that seems 

likely, particularly in the case of BALB/c mice who are often used as anxiety models 43. 

That does not explain, however, the sex differences in BALB/c and CD-1 mouse 

responses to disturbances. 

Percentage of time spent sleeping over 24 hours roughly paralleled bout length 

(Figures 4 and 7). This is another positive welfare finding, in the sense that, as 

percentage of time spent sleeping increased, so did bout length. This implies sleep 
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consolidation instead of fragmentation. Fragmentation leads to adverse effects in 

humans and mice 2, 18, 44-46, so the lack of fragmentation in these mice is positive. 

We also did not find that increasing amounts of nesting material decreased the 

effects of disruption on sleep. There are several potential explanations for this. First, it’s 

possible that our disruptions weren’t strong enough for a retreat space to have any 

benefit. It’s also possible that there was some protective effect, but it was less than the 

disruptive effect of our actions. Or it may be that, by providing nesting material, we 

blunted the effects of disruption without eradicating them. We believe the most likely 

positive effects from nesting substrate would have been found with Enviro-Dir, as 

Enviro-Dri provides an opportunity for naturalistic nesting behavior as well as improved 

quality nests 39. It may, however, be worthwhile to compare our results to those of mice 

who have already been tested with the same apparatus but given other types of 

material and see if those results are comparable. 

Considering our behavioral data, there are several findings of note. Firstly, 

maintenance behaviors were observed more often in CD-1 mice than in the other 

strains. In this study, maintenance behaviors included grooming, drinking, and eating. 

This last is particularly relevant, as three CD-1 mice developed food-grinding behavior 

over the course of the study. In mice, food-grinding occurs when a mouse chews but 

does not consume its pelleted diet, resulting in increased food use without concomitant 

weight gain, as well as a large amount of crumbs, or “orts”, remaining on the cage floor 

47, 48. In our study, CD-1 mice who did not food grind used an average of 98.3g over 2 

weeks; food-grinding mice however averaged 177g over the same period of time. These 
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mice likely spent more time at the food hopper as they performed this behavior, 

inflating maintenance behavior for CD-1 mice.  

Inactive behavior of male mice with 12g of nesting material was increased 

compared to males with lesser amounts. This may be a reflection of mice with larger 

amounts of material feeling more secure and therefore resting more soundly, but this is 

not reflected in the sleep data. Another possibility is that a mouse with 12g of material 

was able to build a nest with a large enough central cavity that they could perform some 

subtle movement without moving the exterior of the nest, thus causing us to code them 

as “Inactive” when they were not. The provision of nesting material makes this an 

unavoidable conundrum. 

Stereotypic behavior was rare among these mice, with mice stereotyping more 

when lights were off, corresponding with their typical active period. This relative lack of 

stereotypic behavior may be related to the relatively young (6 weeks) age of these 

animals. ICR(CD-1) mice at 40 days old were spending less than 10% of their time 

engaged in stereotypic behavior49. Additionally, CD-1 mice (who may be driven to 

perform wire-gnawing behavior in particular49, 50) may have been stymied in this case 

because the lid of the apparatus is a metal plate with circular holes cut out for 

ventilation, rather than the typical wire bars.  

We were also interested to see the differences in behavior based upon day of 

treatment. Day 1 involved the mouse being weighed and having its cage changed, while 

days 3 and 6 consisted solely of a visual welfare check and food and water 

supplementation as needed. That mice spent less time inactive during lights on day 1 
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makes sense for the week where disruptions happened during daylight hours. But one 

would expect a concurrent decrease in inactive time during lights off during the other 

week of treatment; this doesn’t appear to have been the case. It appears that these 

mice found the cage change and weighing disruptive enough that, even hours after cage 

change, though they were already likely awake and active when it occurred, they had 

difficulty settling down into their nest. Sleep data separated by day and 2 hour epoch at 

least partially supports this (Figure 6), as there are clearly visualized differences 

between days. Interestingly, as time since cage change increases, sleep shifts later into 

the day, and further into the period immediately after lights out. Day 1 also shows a 

clear drop in sleep in the 9-10 epoch, when cage change would occur for the daytime 

disruptions, but doesn’t show any irregularities in the 21-22 epoch, when cage change 

occurred during nighttime disruptions. So, even if the mice find both disruptions times 

equally stressful, it would appear that only the daytime one affected their sleep 

patterning. However, we must note that cage changes and disruption time changes 

occurred on the same day – day 1. It is possible that the combination of cage change 

and change in disruption time produced an effect where only one or the other would 

not. But this was the case for the transition into both daytime and nighttime 

disruptions, so either way, the daytime disruption was different for some reason than 

the nighttime was. 

Finally, an increase in the amount of nesting material provided did not increase 

the amount of nesting behavior observed, nor did it change the number of observations 

of the mouse in the nest. However, observations in the nest did co-vary with nest score. 
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This suggests that supplying a larger quantity of nesting material does not necessarily 

lead to more performance of behavioral enrichment, nor does it mean a mouse will 

spend more time in its nest. However, once the nest is built, a higher-scoring nest does 

seem to correlate with the mouse spending more time in the nest. It’s not clear if this is 

causative – a higher scoring nest alleviates cold stress better 26, 32, so perhaps the mouse 

then chooses to spend more time in it. Or perhaps a mouse that spends more time on 

building also spends more time in its nest; however, our data don’t support this 

conclusion. The only significant effect of nesting material treatment on nest scores was 

on the first day mice received the material. Mice with 12 or 9g had higher nest scores on 

day 1 than those with 6 or 3g; but those differences disappear by day 3. This may be 

why we saw little effect on sleep due to amount of nesting material; the mice were able 

to make adequate nests even with the smaller amounts.  

This study illustrates the complexity of sleep and welfare assessment in laboratory 

mice. Our hypotheses about sleep deprivation were not supported, but there was 

clearly a response to disturbance timing in these mice. The fact that mild disruptions 

(daily welfare check) can elicit a change suggests that mice are more sensitive to our 

actions than we may give them credit for, and even minor disturbances, especially if 

frequent, should be considered, particularly in sleep and behavioral research. 
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Table 2.1: Factorial combinations of treatments. Each amount of nesting material was 
used with 2 males and 2 females. 

Mouse Type CD-1 C57BL/6 BALB/c 

Nesting Material 3, 6, 9, 12g 3, 6, 9, 12g 3, 6, 9, 12g 

Sex Male Female Male Female Male Female 

Replicates 2 2 2 2 2 2 

 

Table 2.2: Ethogram for behavior coding. Includes both scan sampling and 1/0 sampling 
behaviors. Maintenance and nesting categories had subsets of behaviors, but subsets 
were binned into categories for analysis. 

Behavior 
Category 

Description Measurement 

General Activity Animal is actively engaged in 
behavior that is not maintenance or 

nesting behavior. Includes 
stereotypy. 

Scan sampling, 20 minute 
intervals 

Maintenance Animal is engaged in eating, 
drinking, or grooming 

Scan sampling, 20 minute 
intervals 

Nesting Animal is engaged in manipulating 
or processing nesting material 

Scan sampling, 20 minute 
intervals 

Inactive Animal is not moving, except for 
respiration 

Scan sampling, 20 minute 
intervals 

Unknown Animal is engaged in activity, but the 
specific behavior cannot be 

determined 

Scan sampling, 20 minute 
intervals 

Stereotypy Animal is engaged in apparently 
functionless, repetitive (at least 3 

repetitions) behavior 

1/0 sampling, 2 minute 
periods at 20 minute 

intervals 
In Nest Fifty percent or more of animal’s 

body is in contact with nest 
1/0 sampling, 20 minute 

intervals 
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Figure 2.1: Sleep apparatus, top view (L) and C57BL/6 mouse in apparatus with nesting 
material (R) 

 

 

Figure 2.2: Average percentage of time spent sleeping during daylight hours. Solid bars 
represent daytime disturbances (10:00) and hashed bars represent nighttime 
disturbances (22:00). Differing letters indicate within sex differences, bars with asterisks 
indicate between sex differences (Tukey, P<0.05). Data represented are LSM and SE. 
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Figure 2.3: Average sleep bout length during daylight hours. Solid bars represent 
daytime disturbances; hashed bars represent nighttime disturbances. Differing letters 
indicate within group differences, asterisks indicate between group differences (Tukey, 
P<0.05). Data represented are LSM and SE. 
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Figure 2.4: Average percentage of time spent sleeping per 2 hour interval. Open bar on 
the x-axis indicates lights on and the closed bar indicates lights off. Arrows indicate 
disruption times. Asterisks indicate sleep differences between types of mice in that 
epoch (Bonferroni corrected test slices, P<0.004). Data presented are LSM. 
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Figure 2.5: Average percentage of time spent sleeping per 2 hour interval. Open bar at 
the bottom indicates lights on, closed bar indicates lights off. Arrows indicate 
disturbance times. Asterisks indicate differences in bout length during that interval 
(Bonferroni corrected test slices, P<0.004). Solid lines indicate daytime disturbance, 
hashed lines indicate nighttime disturbance. Data presented are LSM. 
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Figure 2.6: Percentage of time spend sleeping per 2 hour interval by day of treatment. 
Open bar at the bottom indicates lights on, closed bar indicates lights off. Arrows 
indicate disturbance times. Asterisks indicate differences in sleep in that epoch 
(Bonferroni corrected test slices, P<0.004). Data presented are LSM. 
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Figure 2.7: Average bout length by 2 hour interval. Open bar at the bottom indicates 
lights on, closed bar indicates lights off. Arrows indicate disturbance times. Asterisks 
indicate differences in bout length during that epoch (Bonferroni corrected test slices, 
P<0.004). Data were angular transformed, y-axis is backtransformed for clarity. Data 
presented are LSM. 
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Figure 2.8: Proportion of observations of behavior categories. Solid bars indicate males, 
shaded bars indicate females. Different letters indicate significant (P<0.05, Tukey) 
differences within groups. Data presented are LSM and SE. 
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Figure 2.9: Proportion of time observed in behavior categories. Solid bars indicate lights 
on, shaded bars indicate lights off. Different letters indicate significant (P<0.05, Tukey) 
differences within groups. Data presented are LSM and SE. 
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Figure 2.10:  Nest scores affected by lights, disruption time, and day of treatment. Solid 
bars represent daytime disturbances (10:00) and hashed bars represent nighttime 
disturbances (22:00). Differing letters indicate within day differences, bars with asterisks 
indicate between day differences (Tukey, P<0.05). Data represented are LSM and SE. 
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Figure 2.11: Nest scores affected by sex, lights, and day. Solid bars represent lights on 
and filled bars represent lights out. Differing letters indicate within day differences, bars 
with asterisks indicate between day differences (Tukey, P<0.05). Data represented are 
LSM and SE. 
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  SLEEPING THROUGH ANYTHING: THE EFFECTS OF UNPREDICTABLE 
DISRUPTIONS ON MOUSE SLEEP, HEALING, AND AFFECT 

3.1 Abstract 

Many aspects of the laboratory environment are not tailored to rodent needs, 

behaviorally or physiologically.  Mice are nocturnal, but live in a diurnal environment to 

accommodate human activity. However, it’s unknown how disruptions from the human-

mouse circadian mismatch affect mouse physiology and welfare. There is a real potential 

that unpredictable human activities during the day may disrupt mouse sleep, inducing 

physiological changes like slowed wound healing, as well as decreasing affect. We tested 

32 C57BL/6 mice of both sexes in a non-invasive sleep apparatus to see if this was the 

case. Mice were exposed to 7 days of either predictable or unpredictable disruptions, 

with a biopsy punch procedure on day 4 of the week to allow us to assess wound 

healing. We also tested administration of a non-steroidal analgesic against a control 

group, to see if there was an interaction between pain and sleep disruption. On day 7, 

mice were euthanized and we collected both the wound tissues as well as the adrenal 

glands. We found that the predictability of disruption had no effect on mouse sleep, 

wound healing, or adrenal cortex:medulla ratio in this experiment. It’s possible that the 

disruption period didn’t last long enough to induce chronic stress responses in these 
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mice. Analgesia did have an effect however, with male mice who received analgesia 

sleeping more than their female counterparts; this may be related to sex differences in 

pain perception. Overall, these were positive welfare findings, since the mice didn’t 

show any signs of chronic stress with either disruption treatment. 

3.2 Introduction 

Many aspects of the laboratory environment are not tailored to rodent needs, 

behaviorally or physiologically.  Mice experience cold stress at normal laboratory 

temperatures, depleting their energetic resources for reproduction1-3. Routinely 

provided corncob bedding is aversive and decreases sleep4, 5, and typical handling6, 7 

induces stress. Furthermore, laboratory mice are nocturnal, but live in a diurnal 

environment to accommodate human workers. However, it’s unknown how disruptions 

from the human-mouse circadian mismatch affect mouse physiology and welfare. Sleep 

fragmentation (the interruption of sleep either through waking or transitioning to a 

lighter sleep stage) induces physiologic, metabolic, and (if experienced during gestation) 

epigenetic effects, including slowed wound healing8-12. Other stressors are also known to 

slow wound healing, including restraint stress 13, 14 and pain  15-20. However, there is a 

major gap in the literature regarding the impact of routine human activity on mouse 

sleep. 

Sleep fragmentation in mice has typically been studied as a model for humans 

with frequent arousals from sleep (every 1-2 minutes), similar to what is experienced by 

individuals with sleep apnea or periodic limb movements 21. Mechanized disruptions are 

generally used to study sleep fragmentation in mice 8, 9, 22, and therefore disruptions are 
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potentially predictable. This detail is important because it is not an accurate 

representation of the environment mice in a vivarium are exposed to. Mice probably 

experience some level of predictability, since human work often happens on a regular 

schedule, but certainly not to the degree of being awakened precisely every 2 minutes 

over 12 hours. Additionally, these mechanically awakened mouse studies did not include 

the presence of humans, which is dramatically different from what a typical laboratory 

mouse experiences. This may be an important aspect of investigations since Chesler et 

al. 7 found that 42 % of data variability in a thermal nociception study was attributed to 

environmental factors, primarily due to different people running parts of the 

experiment. 

We know that unpredictability is stressful for animals;  rats who receive unpredictable 

shocks develop ulcers23 and anhedonia24, and rats given a choice of shock will choose a 

predictable shock over an unpredictable shock25, 26. Typical vivariums involve multiple 

unpredictable disruptions. Animals from several projects may be housed in the same 

room, meaning researcher activities may not be coordinated. Running water, cleaning 

equipment, and even who caretakers are can vary on a daily basis. Not only are mice 

experiencing unpredictability of disruption, but these disruptions are also occurring 

during the light phase of the day, when mice would ordinarily be sleeping. This 

combination may be sufficient to induce sleep fragmentation and stress that we aren’t 

accounting for in welfare assessment or experimental design. 

One method of assessing the physiological effects of stress is through measuring 

wound healing; increased stress leads to slow or imperfect healing27-32. However, 
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another factor in wound healing is pain. Pain slows the healing process in humans 18-20 

and alters general behavior. After experiencing a painful procedure, mice burrow less 

and build less complex nests33-36, and are slower to incorporate new nesting material 

into an existing nest37. Additionally, pain interferes with sleep 38, 39, and sleep deprivation 

can induce hyperalgesia in rats40. This suggests that a vicious cycle may exist between 

these factors and requires that the interaction between pain, sleep, and healing be 

considered in this area of research.  

The effects of sleep disruption are not solely physiological. Work in both humans 

41-44 and rodents 45 has shown cognitive changes after sleep deprivation and disruption, 

and sleep dysfunction is also associated with mood disorders in humans 46-48. These 

findings indicate that an investigation of the potential welfare implications of sleep 

disruption should also include assessment of changes in mental well-being.  

Our hypotheses were that unpredictable disruptions are more disruptive to 

mouse sleep than predictable disruptions. We also hypothesized that pain following 

from lack of post-operative analgesia would negatively affect nesting behavior and sleep 

patterning. We predicted that mice who experienced frequent, unpredictable 

disruptions during their normal rest period would sleep less and/or have more 

fragmented sleep during the day and have higher indicators of stress than those whose 

disruptions occurred at predictable times. We also predicted that mice who received 

analgesia (rather than a saline ?  injection) would sleep more during their normal rest 

period and have lower indicators of stress. 
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3.3 Materials and Methods 

3.3.1 Ethical Statement 

This study was approved by the Purdue Animal Care and Use Committee, and 

conformed to all guidelines put forward by both the committee and the Guide for the 

Care and Use of Laboratory Animals 49. At the start of study, animals were free of a list 

of common mouse infectious agents; further details may be found at 

http://www.criver.com/files/pdfs/rms/hmsummary.aspx. All mice were monitored daily 

by trained members of the research team for food and water consumption and overall 

health status, with no adverse conditions or health outcomes noted. 

3.3.2 Experimental Design, Animals, and Housing 

Two main treatments, in a factorial design, were assessed in C57BL/6NCrl mice 

of both sexes (6 weeks of age; Charles River, Kingston, NY); 1) sleep disruption 

(unpredictable or predictable) and 2) analgesia administration (analgesia or saline). Each 

factorial combination had four replicates for a total of 32 mice (Table 3.1). Mice were 

tested from May to June of 2016. 

Mice were housed in one of the two sleep monitoring apparatuses (Figure 3.1). 

Each apparatus houses 4 mice, allowing us to test 8 mice simultaneously. The apparatus 

uses a piezoelectric mat underneath the cage to detect vibrational movement of the 

mouse and therefore mice must be housed singly. Customized software (MouseRec 

Data Toolbox, Signal Solutions, Lexington KY) uses an algorithm to process the signal and 

discern sleeping respiratory patterns from waking respiratory patterns; this algorithm 

has been validated using EEG, EMG, and visual evaluation 50. A different algorithm also 
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permits quantification of activity level, where higher numbers indicate greater intensity 

of activity. Visual barriers were in place between cages, but audible and olfactory 

contact was still possible. Each cage included a built in food hopper and water bottle 

opening. Each cage was bedded with 32g of laboratory grade aspen shavings (Harlan, 

Indianapolis IN) and 8g of nesting material (Enviro Dri, Shepherd Specialty Papers, 

Watertown, TN). Mice were provided with an 18% protein laboratory diet (Harlan 2018, 

Indianapolis IN) and reverse osmosis filtered water ad libitum. Lights were kept on a 

12:12 light/dark cycle, with lights on at 05:00 and off and 17:00 hours. The room was 

maintained at 72± 2° F, and 36-64% humidity. Upon arrival (Day -4 – see Figure 3.2), 

mice were randomly assigned to an analgesia treatment using a random number 

generator (www.random.org). Mice were weighed and placed in their cage within the 

sleep apparatus, no longer than 1 hour before the lights were turned off.  

3.3.3 Procedures 

3.3.3.1 Disruption Treatments 

Sleep disruptions began immediately after arrival. Because all testing was 

conducted in a single room, all 8 mice in a test group were exposed to the same 

disruption treatment (unpredictable or predictable) simultaneously. Both treatments 

consisted of daily exposure to 4 of a possible 8 disruptions – presence of a stranger, a 

recorded conversation playing in the room, a radio playing pop music, cage changing 

noises, presence of a t-shirt that was worn by a man, running water, a running cage 

changing station with ventilation hood, and floor disinfection (Table 3.2). These 
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disruptions were chosen based upon activities that occur in a typical vivarium and 

factors that are known to alter mouse behavior (such as the presence of a male 

investigator, or a shirt worn by one 51). The order and duration of the disruptions were 

initially scheduled in a random fashion, but the schedule itself was consistent across 

disruption treatments. For instance, all mice experienced the same disruptions on the 

same day during the experiment, for the same durations. The only difference was 

whether they were spread throughout the day (unpredictable) or consolidated at the 

beginning and end of the day (predictable).  No disruption was repeated in the same 

day, and there were a total of 4 disruptions per day. Potential durations of disruption 

were 15, 30, 45, or 60 minutes; floor disinfection and running water only lasted 15 

minutes due to practical and environmental considerations. In the unpredictable 

disruption group, the interval between disruptions was also randomized, with intervals 

between them of either 45, 60, 90, or 120 minutes. For the predictable disruption 

group, disruptions occurred between 2.5-3.5 hours after the lights were turned on (7:30 

– 8:30) or within an hour of turning the lights off (16:00-17:00), with two disruptions 

scheduled for the morning period, and two for the evening period. The exception to this 

schedule was on the morning of the punch biopsy procedure; no disruptions were 

scheduled.  

3.3.3.2 Punch Biopsy Procedure 

After 4 days of acclimation and disruptions (Day 0), all mice were anesthetized 

with isoflurane in an induction chamber and maintained on isoflurane administered via 
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nose cone. We clipped and sterilized the cervical area of each mouse, placed them in 

lateral recumbency, and pulled the dorsal skin away from the animal, as if scruffing 

them. We then utilized a 3mm biopsy punch (Sklar Surgical Instruments, West Chester, 

PA) to push through both layers of skin, creating 2 symmetrical 3 mm full-thickness 

wounds. The wounds were not sutured, stapled, or glued. Surgical order was 

randomized to account for order effects. During this procedure, we used a chemical 

hand-warmer (HotHands, Kobayashi Americas, Dalton GA) to provide thermal support to 

the mice. Mice then received an analgesic injection of carprofen at 10mg/kg or an 

equivalent volume of saline subcutaneously, depending upon the animal’s assigned 

analgesia treatment; these injections were located on the caudal part of the mice, to 

avoid manipulating the biopsy area post-operatively or any possible leakage of 

medication from the biopsy sites. All mice, regardless of analgesia group, received 0.05 

mL of 2% lidocaine gel topically applied to each wound for short-term local analgesia. 

Mice were then moved to heated recovery cages until they were ambulating normally. 

Once mice recovered, they were returned to their home cage. Two post-operative 

anesthesia recovery checks were performed two hours apart.  Sleep disruptions 

resumed as scheduled.  

3.3.3.3 Analgesia Treatment 

Mice assigned to the analgesia treatment group received 10 mg/kg carprofen 

subcutaneously on Day 0 (after wounding), Day 1, and Day 2. Mice in the analgesia 

control group received an equal volume of saline subcutaneously on the same days as 
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the analgesia mice. On Day 1 and 2, a dorsal access mouse restrainer (Braintree 

Scientific, Braintree MA) was used to hold the mice while we administered a 

subcutaneous injection in the caudal region, avoiding manipulation of the biopsy area 

and any risk of medication leaking from the surgical site. 

3.3.3.4 Behavioral Testing 

Sleep and activity data were collected continuously via the sleep apparatus. We 

began data collection once the final mouse was housed on Day -4 (prior to 17:00) and 

ended it by 9:00 the morning of Day 3, prior to euthanasia. 

Mice were TINT tested37 to assess pain and general welfare. In brief, in the TINT 

we provide a small amount of new nesting material to mice 2-3 hours after lights on and 

give them 10 minutes to integrate this new material into the existing nest. A positive 

TINT score means the material has been incorporated, and suggests positive welfare. A 

negative TINT score suggests that the mice in that cage are experiencing more negative 

welfare, and personnel should investigate further.  For this project, an investigator 

would enter the room, cut a Nestlet (Ancare, Bellmore, NY) into 4 equal squares, deliver 

one of those pieces to each cage, and leave the room for 10 minutes. Upon returning to 

the room, we assessed whether or not the Nestlet had been integrated into the nest. In 

this case, ‘integrated’ means had been transported to the main body of the nest. TINT 

testing occurred daily at 8:00. This time corresponds with peak nest-building behavior 

36. The scores on Days -3 to -1 were considered ‘practice’, as mice have been shown to 



80 

 

shorten their latency to incorporate material with repeated exposures 37, 52, so data 

presented from day -1 are used as their baseline TINT.  

Sucrose preference testing was used to assess anhedonia53. We did this by 

providing mice with 5g of sugary cereal (Froot Loops, Kelloggs, Battle Creek MI) between 

16:00 and 17:00  (prior to lights out), and then weighing the remainder between 7:30 

and 8:00 the next morning. This allowed us to calculate the amount of cereal consumed 

each night; a decrease in consumption is indicative of anhedonia. We conducted these 

tests on Day -1, Day 1, and Day 2. 

3.3.3.5 Tissue Collection 

On Day 3, mice were euthanized via carbon dioxide anoxia. Immediately after 

euthanasia, mice were weighed and the punch biopsy area was excised, as well as 

surrounding tissues. Adrenal glands were also collected, in order to assess HPA axis 

activation54, 55.  

All tissues were fixed in 10% neutral buffered formalin and embedded in 

paraffin. Sections 5 μm thick were stained with hematoxylin and eosin according to 

standard methods. Microscopic examination was performed by a board-certified 

veterinary pathologist and the interpretation was based on standard histopathological 

morphology. The pathologist was blinded to the treatment groups. Wound width and 

re-epithelialization were quantified for all mice. Wound width was defined as the 

distance between wound margins in which the original epidermis was intact. Re-

epithelialization was calculated as amount of newly formed epidermis as a percentage 



81 

 

of the wound margin. Newly formed epidermis was defined as less than 3 cell layers 

thick of squamous epithelium devoid of stratum corneum. 

Both adrenal glands were sectioned en toto and representative sections were 

cut 50 micrometers deep. One adrenal gland per mouse was used to calculate an 

average cortex to medulla length ratio. Three cortical lengths and 3 cross-sectional 

medulla lengths were averaged and a ratio was calculated for each mouse. 

3.3.4 Statistical Analysis 

All data, with the exception of TINT success/failure, were analyzed using up to 3rd 

degree factorial General Linear Model (GLM) in JMP (version 11, SAS Institute Inc) of the 

following factors: sex, disruption treatment, analgesia treatment, experiment day and 

(for sleep and activity data) lights on or off. To calculate food consumption, regular diet 

and sucrose cereal consumption were combined to calculate the total intake, where 

applicable. Individual mouse was the experimental unit and was used as a random 

factor, with sex, disruption treatment, and analgesia treatment nested within it. Cage 

location and sleep apparatus were used as blocking factors. Bodyweight was included as 

a covariate with food consumption, sucrose consumption, and adrenal cortex:medulla 

ratio. We used square root transformation for sleep bout length and activity level data, 

and log transformation for adrenal cortex:medulla ratio, in order to meet the 

assumptions of GLM. The assumptions of GLM (normality of error, homogeneity of 

variance, and linearity) were confirmed post-hoc56. Significant effects were then 

analyzed using post-hoc Tukey tests. All values are given as least squares means and 

standard error. 
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TINT success/failure was analyzed using up to 3rd degree factorial Generalized 

Linear Model (GLIM) for binomial logistic regression, with Firth-adjusted bias, for the 

following factors: sex, disruption treatment, analgesia treatment, and day of 

experiment. Cage was used as a fixed factor, with sex, disruption treatment, and 

analgesia treatment nested within it. Cage location and apparatus number were used as 

blocking factors. Non-significant 3rd degree interactions were removed from the model, 

which produced a lower AICc number, denoting an improved model fit57. Pairwise 

planned contrasts were subsequently conducted on levels of significant factors to assess 

where differences arose, and were Bonferroni corrected for multiple comparisons.  

3.4 Results 

3.4.1 Sleep Measures 

We found multiple effects on proportion of time spent sleeping. Sex by analgesia 

treatment (GLM, F(1, 21)=6.38, P=0.0196) showed that males who received analgesia slept 

more than females with analgesia. No other differences between control animals or 

within the sexes were observed. Sex by lights on/off was also significant (GLM, F(1, 

184)=5.34, P=0.0219), with males sleeping more during lights off than females. Lights 

on/off by day of experiment (GLM, F(3, 184)=26.99, P<0.0001; Figure 3.3) showed that 

animals slept less during lights on on Day 1 than baseline, or Days 2 or 3. Additionally, 

animals slept less during lights off at baseline than they did on days 2 and 3. And mice 

slept more during lights on than lights off for Days 1, 2, and 3. Finally, I found a 3 way 

interaction between disturbance treatment, analgesia treatment, and lights on/off 



83 

 

(GLM, F(1, 184)=14.32, P=0.0002). However, this effect was solely due to lights on/off, with 

mice sleeping more when lights were on.  

Mean sleep bout length had multiple significant interactions. Lights on/off by 

day of experiment (GLM, F(3, 184)=18.42, P < 0.0001; Figure 3.4) showed that, during 

lights on, mice had the shortest bout lengths on Day 1; during lights out, their bout 

lengths were shortest on Day 2. There was also a significant interaction between sex, 

analgesia treatment, and lights on/off (GLM, F(1, 184)=4.48, P=0.0356). However, post-hoc 

Tukey analysis showed no differences between groups. Sex by analgesia treatment 

(GLM, F(1,78.49)=5.59, P=.0205) showed that female mice who received analgesia had 

shorter sleep bouts than those in the control group; there was no difference in the male 

mice, or within treatments. 

3.4.2 Activity Levels 

Mean activity level analysis showed several significant factors. Lights on/off by 

day of experiment (GLM, F(3, 184)=8.41, P<0.0001; Figure 3.5) showed a decrease in 

activity during lights off for Days 1 and 3. During lights on, mice were more active on 

Day 1 than on Days 2 or 3. Additionally, sex by analgesia treatment by day of experiment 

(GLM, F(3,184)=3.64, P=0.0139; Figure 3.6) demonstrated that female mice in the 

analgesia control group were less active on Day 1 than they were at baseline, and males 

in the analgesia treatment group were less active on Day 3 than at baseline. Finally, 

disruption treatment by analgesia treatment by lights on/off (GLM, F(1, 184)=5.85, 

P=0.0166) showed only one difference – that mice in the unpredictable disruption plus 
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analgesia control group were more active during lights off than lights on; there were no 

other differences between lights on/off or treatment groups. 

3.4.3 Sucrose Consumption 

Sex (GLM, F(1,24 )=5.49, P=0.0277) was a significant main effect on sucrose 

consumption, with females (2.3 g, ± 0.07) consuming more than males (2.06 g, ± 0.07). 

Day of experiment was also significant (GLM, F(2,50)=10.78, P=0.0001), with mice 

consuming more sucrose on Days 1 (2.33 g, ± 0.07)and 2 (2.24 g, ± 0.07) than at baseline 

(1.98 g, ± 0.07). Bodyweight was included as a covariate, but was not significant. 

3.4.4 TINT Scoring 

TINT success analysis had multiple significant effects. Mice at baseline were 

more likely to pass their TINT than on Days 1, 2, or 3 (GLIM, Χ2(3)=25.17, P<0.0001). 

Assessing sex by disruption treatment (GLIM, Χ2(1)=6.82, P=0.0090), Bonferroni-

corrected contrasts were not significant. Sex by analgesia treatment (GLIM, Χ2(1)=11.98, 

P=0.0005) showed that males given analgesia were more likely to succeed than controls. 

Additionally, females in the control group were more likely to successfully integrate 

nesting material than their male counterparts. Finally, disruption treatment by analgesia 

treatment (GLIM, Χ2(1)=7.84, P=.0051) was significant, but Bonferroni-corrected 

contrasts were not significant.  

3.4.5 Food Consumption 

Total food consumption had two significant main effects, sex (GLM, F(1, 

20.91)=4.99, P=0.0366) and day of experiment (GLM, F(3, 77.35)=40.90, P<0.0001). Female 

mice (3.84 g, ±  0.10) consumed more than males (3.46 g, ± 0.10); mice at baseline (4.22 
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g, ± 0.10) and Day 2 (4.04 g, ± 0.10) consumed the most, followed by those on Day 3 

(3.55 g ± 0.10) and then Day 1 (2.78 ± 0.10). Bodyweight was a significant covariate 

(GLM, F(1, 21.76)=8.86, P=0.007); as bodyweight increased, so did food consumption. 

3.4.6 Bodyweight 

Bodyweight was affected by 3 main effects. Sex (GLM, F(1, 27.71)=53.26, P<0.0001) 

showed that males (20.36 g ± 0.26) were heavier than females. Day of experiment (GLM, 

F(3,75)=32.21, P<0.0001) indicated that mice weighed more at baseline (19.0 g ± 0.18) 

than Day 1 (18.74 g ± 0.18), and less than on Days 2 (19.30 ± 0.18) and 3 (19.46 ± 0.18). 

Finally, disruption treatment (GLM, F(1, 27.71)=7.81, P=0.0093) was significant, with mice 

in the unpredictable disruption group (20.36 g ± 0.26) weighing more than those in the 

predictable group (18.49 g ± 0.26). 

3.4.7 Histopathology 

There were no significant factors in either percent re-epithelialization or adrenal 

cortex:medulla ratio. 

3.5 Discussion 

Few of our hypotheses were supported by our results. Proportion of time spent 

sleeping and sleep bout length were unaffected by disruption treatments, which was 

where we had expected to see the strongest results. This may be an example of 

anthropomorphism on our part. For instance, when we would expect the opposite,  

Pajor et al58 found that yelling at dairy cattle was more aversive than a control 

condition, while being struck on the rump was not. It would seem that we similarly 
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misjudged how disruptive these mice would find the presence of humans making noise 

in the room with them.  

 Interestingly, analgesia turned out to be significant, even for a minor procedure 

like a biopsy punch. Punches are used for wound healing studies13, 14, 28, 29, 59-62, but also 

for identification49. However, there is no consensus on analgesia protocols for mice who 

have had this procedure13, 63, 64. This seems to be a concern, since male mice who 

received analgesia spent more time sleeping than their female counterparts. 

Additionally, females who got analgesia had shorter sleep bout lengths than controls. 

This may be related to sex differences in pain perception. Females, in both humans and 

rodents, have been reported to perceive pain more intensely than males 65-68. So while 

male mice might have experienced sufficient pain relief from the carprofen dosage, the 

females may not. Although other literature suggests that the dosage of carprofen we 

used may not completely eliminate pain following a laparatomy69, we felt that a punch 

biopsy would be a less painful procedure; this was namely because, while it does break 

the skin, it does not pierce a muscle layer as in a laparotomy. Higher doses were 

considered before the start of the experiment but concerns of gastrointestinal upset 

and renal toxicity ultimately resulted in our choice of a more moderate dose69. After 

consulting with our attending veterinarian, we decided to provide a higher dose than 

what is recommended by ACLAM70 (5mg/kg) but less than a dose that might cause the 

toxic effects of an overdose.  Opioid analgesics, such as buprenorphine, were also 

considered but due to its associated behavioral changes 71-73, it was likely to have 

interfered with our behavioral measures. In the future, either higher doses of analgesia 
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or perhaps a combination of non-steroidal and opioid medication could achieve 

effective relief, particularly for female mice, without altering behavior. 

 Histopathology measures were unaffected by any of our treatments. The sleep 

disruptions, and subsequent stress that these treatments were meant to induce, may 

not have been sufficient enough to induce adrenal morphology changes, and were more 

acute than chronic. In studies where adrenal changes have been noted, durations of 

stressors have been at least 2 weeks74-77, and when a stressor only lasted for one week, 

changes were not observed78. As far as the wound re-epithelialization, the location of 

the wound may have affected our results. We hoped to avoid having the mice 

exacerbate their wounds and delay healing by placing the punch closer to the neck than 

the flanks. However, wound healing is dependent upon multiple factors, and particularly 

in rodents, wounds contract quickly due to their panniculus carnosus29. This is a layer of 

muscle that permits their skin to contract for healing. A wound splint process may have 

been helpful to prolong the healing process and more accurately assess re-

epithelialization (more like in humans), 29. However, it’s also possible that we didn’t 

induce sufficient stress in the mice, and therefore wound healing was not impaired. 

 Sucrose consumption results were also unexpected. We predicted that mice 

would have higher baseline consumption than any post-operative time point, regardless 

of treatments. Instead, we found exactly the opposite. Perhaps these mice needed 

repeated exposures to overcome any food neophobia79, needing time to learn that the 

cereal was highly palatable. Alternatively, this sucrose consumption pattern may be a 

reflection of how long mice actually need to acclimate to a new environment after 
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transport. Baseline sucrose testing began for our mice approximately 3 days after 

arrival, with disruptions already occurring. These mice may not have been disturbed 

enough to change their sleeping patterns, but still were stressed in some fashion and 

therefore consumed less sucrose. A potential caveat to these theories, however, is that 

glucose is required for the physiological stress response. Wilcox, et al.  found that 

socially stressed calves consumed more molasses than control calves80, presumably in 

order to fuel that adrenal response. Perhaps that mechanism was at play in these mice; 

rather than not expressing anhedonia, they were expressing a stress response. 

However, this increased glucose consumption secondary to chronic stress has not been 

demonstrated in mice, and our other measures seem to agree that this was not a 

particularly stressful experiment for our mice. It may be worthwhile to explore this 

potential interaction between stress and sucrose preference in mice further, however. 

 Similarly, our results for TINT success rate were lower than expected. The 

validation work on TINT demonstrated that mice at baseline were successful the 

overwhelming majority of the time37, 52; this was not the case for our mice. However, 

the mice in the referenced work had been present at the study facility for much longer 

than ours had (personal communication from the author) and were almost certainly 

more acclimated to their environment. 

 One thing that was not surprising was the decrease in activity levels on days 2 

and 3. While perhaps counterintuitive, because presumably the mice were healing and 

should have been feeling better, those days corresponded with the first restraint and 

injections the mice received. Mice responded negatively to these events, urinating, 
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defecating, and vocalizing. This was the only time vocalizations were observed during 

the project. This suggests that the mice found the restraint extremely aversive, and their 

subsequent activity levels may be a reflection of that. We know that mice react 

differently to different types of handling81, and that nest scores can be reduced after 

being handled by a novel individual6; this drop in activity may be a manifestation of their 

apparent aversion to unconditioned handling. 

 While our results didn’t support our hypotheses, they do raise some interesting 

questions regarding acclimation periods, sex differences in pain response, and just how 

disruptive human activity actually is to mice. This project would suggest that direct 

interaction and restraint with the mice is more stressful than mere investigator 

presence or noise. However, this was only conducted with one strain of mice, over a 

relatively short time period. It is possible that mice in longer term projects may 

experience those events differently. At this time, we can’t make many 

recommendations, other than considering longer acclimation periods prior to 

commencing research, and investigating the longer term effects of carprofen use at 

higher doses for effective analgesia, particularly for female mice.  
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Table 3.1: Factorial design with number of replicates per combination 

Disruptions Predictable Unpredictable 

Sex Male Female Male Female 

Analgesia Y N Y N Y N Y N 

Replicates 4 4 4 4 4 4 4 4 

 

  



96 

 

Table 3.2: Disruption descriptions, durations, and number of occurrences. When 
disruptions occurred more than once, different durations were possible; if that was the 
case, all duration times are listed. All mice experienced all disruptions. 

Disruption Description Duration Number of 
Occurrences 

Cage change Investigator removes mice from 
cage, supplies fresh bedding and 
nesting material, replaces 
mouse 

30 min 1 

Cage change 
noise 

Investigator rattles cages 
containing corncob bedding and 
lids 

45 min, 60 min 3 

Conversation Smartphone used to play back 
each of two specific stand up 
comedy tracks (65-72 dB at cage 
level) 

45 min 2 

Exhaust fan Exhaust fan of cage changing 
station turned on (62 dB at cage 
level) 

30 min, 60 min 3 

Floor cleaning Investigator uses power washer 
to distribute cleaning solution, 
scrubs floors with scrub brush, 
rinses with bucketed water, then 
squeegees floor dry 

15 min 1 

Male t-shirt Investigator places t-shirt that 
was worn the night before in the 
room near the cages 

30 min, 60 min 3 

Music Antenna radio tuned to local 
rock music station 

15 min, 30 min, 45 
min, 60 min 

4 

Running water Water left running in stainless 
steel sink (58-62 dB at cage 
level) 

15 min 3 

Stranger Unfamiliar person sits or stands 
quietly in room without 
interacting with mice 

15 min, 45 min 2 

Unfamiliar smell Investigator sits quietly in room 
while wearing strongly scented 
lotion 

30 min 1 
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Figure 3.1: Sleep apparatus viewed from above (1A) and a close up side view of an 
individual mouse cage (1B). Sugary cereal used for the sucrose preference test can be 
seen in 1B
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Sleep disruptions occur

Pre-surgical period Post-surgical period

Figure 3.2: Experimental Timeline. Lists all measurements made on each day of experiment. Day -1 is considered 
baseline. Mice arrive on day -4. Abbreviations: BWT – bodyweight; SM – sleep monitoring; TINT – Time to Integrate 
Nesting Material Test; FC – food consumption; SC – sucrose consumption; SX – surgery; AT – analgesia treatment; 
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Figure 3.3: Average proportion of time spent sleeping by lights on/off and day of 
experiment. Different letters indicate significant (Tukey, P<0.05) differences within 
categories. Data presented are LSM and SE. 
  

A
ve

ra
ge

 P
ro

po
rti

on
 o

f T
im

e
S

pe
nt

 S
le

ep
in

g

0.2

0.3

0.4

0.5

0.6
Base
Day 1
Day 2
Day 3

a
a

a

b

a

a,b a,b
b

Lights On Lights Off



100 

 

 

Figure 3.4: Average sleep bout length by lights on/off and day of experiment. Different 
letters indicate significant (Tukey, P<0.05) differences within categories, bars indicate 
differences between categories. Data were angularly transformed for analysis, Y-axis is 
backtransformed for clarity. Data presented are LSM and SE. 

 

  

M
ea

n 
S

le
ep

 B
ou

t L
en

gt
h

0

100

400

900

Base
Day 1
Day 2
Day 3

a

c

b

a

a ab
b

ab

*

*

*

Lights On Lights Off



101 

 

 

Figure 3.5: Mean activity level by lights on/off and day of experiment. Different letters 
indicate significant differences within categories, bars with asterisks indicate differences 
between categories (Tukey, P<0.05). Data were square root transformed for analysis; y-
axis is backtransformed. Activity level is a linear measurement from 0 to 3; higher values 
indicate higher levels of activity. Data presented are LSM and SE. 

 

  

M
ea

n 
A

ct
iv

ity
 L

ev
el

0.56

0.72

0.90

1.10

1.32

1.56

1.82

Base
Day 1
Day 2
Day 3

a

ab

b

b
abc

ab

bc

c

Lights On Lights Off

*
*

*



102 

 

 

Figure 3.6: Activity level by day of experiment, sex, and analgesia treatment. Bars with 
asterisks indicate differences between categories (Tukey <0.05). Data were square root 
transformed for analysis; y-axis is backtransformed. Activity level is a linear 
measurement from 0 to 3; higher values indicate higher levels of activity. Data 
presented are LSM and SE. 
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 CONCLUSIONS 

Sleep is an important consideration in animal welfare. The effects of not getting 

enough sleep, or having sleep displaced into abnormal time periods, are well 

documented in humans1-5; we have few reasons to think some of those may not apply 

to animals as well. 

But sleep is also an important consideration for the validity of animal-based 

research. If we are altering animal physiology by changing their sleep patterns, we may 

be confounding our research in ways that we aren’t accounting for in experimental 

design or analysis. This concern was what led to our studies of the effects of human 

activities on mouse sleep. 

For these mice, the findings were positive. When they were disturbed during their 

rest period, they still slept the same amount as when they were disturbed during their 

active period. There were no differences in the incidence of stereotypy during the 

daytime and nighttime disruptions, and even mice with small amounts of nesting 

material got the same overall amount of sleep as mice with larger amounts. However, 

there was a clear difference in sleep patterning on the first day of treatment, compared 

to days 3 and 6. While this may reflect the change in disruption time, that seems 

unlikely, since the differences only show up after the morning disruption.  This does 
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suggest that the mice found  cage change and weighing more disruptive during the day 

than at night.  

Our study on unpredictable disruptions also turned up positive results for the mice. 

Unpredictable disruptions didn’t affect sleep, activity, or affect any more than 

predictable ones did. In fact, the biggest stressor for those mice appears to have been 

the handling and restraint involved with analgesia administration. We also saw a 

disparate response to analgesia between male and female mice, suggesting that the 

pain relief that we chose wasn’t equally effective across the sexes. 

These projects raise some interesting new questions to explore. What if we moved 

the restraint and handling to the dark period? Cage change seemed to be less disruptive 

after dark, perhaps handling would be as well.  

Also, the safety of higher doses of non-steroidal anti-inflammatory drugs should be 

explored. As opioids are frequently inappropriate for behavioral studies, and female 

rodents experience pain more intensely than males do6-10, it’s important to know if the 

higher doses described by Matsumiya et al11 are safe for prolonged use.  

Finally, we would urge more work on acclimation periods and stress in laboratory 

rodents. The mice in our second experiment didn’t TINT successfully at the rate that 

previous work has shown, for either solo or group housed animals12, even with practice 

sessions prior to baseline assessment. It’s possible that the mice hadn’t yet fully 

acclimated to their new environment, even though we waited the standard 72 hours 

before baseline testing. 
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While we didn’t find dramatic changes in sleep duration or patterns in our projects, 

this was a very small subset of mouse populations and potential disruptions. Disruptions 

that include handling the mice, such as injection, gavage, and blood collection, should 

be included in future work. It seems likely that those will be perceived as more stressful, 

and therefore have more impact on sleep. The effects on sleep of unpredictable high-

stress experiences should also be explored, as predictability and control have 

tremendous influence over welfare13-18. It’s possible that, even with aversive 

experiences like gavage or blood collection, predictability of the stressor could 

ameliorate any subsequent sleep disruption. 

From an alternative perspective, animal welfare scientists have been addressing the 

replication crisis that biomedical sciences are experiencing; one possible cause of this is 

that we have restricted variability too much in our models19. Perhaps we can help 

address that lack of variability by artificially inducing mild changes in sleep patterning, or 

by adjusting laboratory light cycles and routines to mimic outdoor conditions. Perhaps 

giving mice the cues to adopt seasonal patterns of sleep and other behavior, as humans 

have the ability to do, would make transitioning drug trials from animals to humans 

more successful. 

The work described in this thesis is only the tip of the iceberg of mouse sleep and 

welfare research, but it addressed some of the very basic questions, and suggests future 

directions to explore. We can hope that this research will provide the foundation for 

further work on animal welfare, as well as information for current researchers about the 

welfare of their animals. 
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