
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

12-2016

Towards a software development methodology for
projects in higher education institutions
Daniela Rivera Alvarado
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Rivera Alvarado, Daniela, "Towards a software development methodology for projects in higher education institutions" (2016). Open
Access Theses. 890.
https://docs.lib.purdue.edu/open_access_theses/890

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/890?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Daniela Rivera Alvarado

TOWARDS A SOFTWARE DEVELOPMENT METHODOLOGY FOR PROJECTS IN HIGHER EDUCATION
INSTITUTIONS

Master of Science

Alejandra J. Magana
Chair

John A. Springer

Mitchell L. Springer

Alejandra J. Magana

Jeffrey L Whitten 10/9/2016

TOWARDS A SOFTWARE DEVELOPMENT METHODOLOGY FOR

PROJECTS IN HIGHER EDUCATION INSTITUTIONS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Daniela Rivera Alvarado

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2016

Purdue University

West Lafayette, Indiana

ii

To my husband Juan, who has been my source of inspiration and encouragement

throughout this journey. Thank you for always being there to support me, for

believing in me, for your immense patience and continuous love.

To my parents Jorge and Grace, for sacrificing so many things to allow me become

the person I am now and for your unconditional love.

To my sister Laura and my brothers Ernesto, Javier, Andres and Jorge, because

your love and support has allowed me to keep on going every single day.

And last, but not least, to my daughter Cristina. Your only presence has made me a

better person. For you is that I want to keep on growing and expanding, so I can be

your guide though the years to come. Together we will explore the world and learn

together. I love you to the moon and back.

iii

ACKNOWLEDGMENTS

To my advisor, Alejandra Magana, for giving me the chance to be part of

this program and for all to her understanding and support over the last five years.

Thank you for never giving up on me.

To my friend, Jody Couch, for her constant words of encouragement and for

always being there for me when I needed a person the most. I would have never

completed this degree without you.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABBREVIATIONS . viii

GLOSSARY . ix

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1
1.1 Scope . 1
1.2 Significance . 3
1.3 Research Questions . 3
1.4 Assumptions . 3
1.5 Limitations . 4
1.6 Delimitations . 5
1.7 Summary . 6

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 7
2.1 Software Development in Higher Education 7
2.2 Software Development Methodologies 9

2.2.1 Known Software Development Methodologies 12
2.3 Comparing Existing Software Development Methodologies 15
2.4 Summary . 20

CHAPTER 3. THEORETICAL ANDMETHODOLOGICAL FRAMEWORKS 22
3.1 Activity Theory . 22

3.1.1 Activity Theory in Software Development 25
3.2 Case Study Research . 27
3.3 Summary . 29

CHAPTER 4. METHODS . 31
4.1 Case Study . 31
4.2 Participants . 33
4.3 Data Collection Methods . 33

4.3.1 Interview Protocol . 34
4.4 Procedures . 34
4.5 Data Analysis Methods . 36

v

Page
4.6 Summary . 37

CHAPTER 5. DATA ANALYSIS . 38
5.1 Data Processing . 38
5.2 Themes Identification . 38
5.3 Compilation and Coding . 39
5.4 Credibility . 40

5.4.1 Credibility of Researcher . 41
5.4.2 Intra-Rater Reliability . 41

5.5 Summary . 42

CHAPTER 6. RESULTS . 43
6.1 Resulting Categories . 43

6.1.1 Team Demographic Data . 44
6.1.2 Most Common Stakeholders 45
6.1.3 Methodologies Currently Used 46
6.1.4 Current Processes . 47
6.1.5 Advantages of the Current Process 48
6.1.6 Disadvantages of the Current Process 49
6.1.7 Biggest Challenges Faced . 50

CHAPTER 7. DISCUSSION AND IMPLICATIONS 56
7.1 Creation of the Selection Instrument 57
7.2 Resulting Methodology . 58

7.2.1 Recommendation for the Documentation of Requirements . . 60
7.2.2 Recommendations for the Organization of Work 62
7.2.3 Recommendations of the Level of Formality 63
7.2.4 A Proposed Software Development Methodology For Higher

Education . 65
7.3 Methodology Validation Through Activity Theory 66
7.4 Summary . 67

CHAPTER 8. CONCLUSIONS . 70
8.1 Future Research Recommendations 72

LIST OF REFERENCES . 77

vi

LIST OF TABLES

Table Page

2.1 Kennedy’s Comparison . 17

2.2 Kennedy’s Comparison . 18

2.3 Boehm and Turner’s Comparison . 21

4.1 Interview Protocol . 35

5.1 First Axial Coding Round . 39

5.2 Axial Coding . 40

6.1 Biggest Challenges . 51

vii

LIST OF FIGURES

Figure Page

3.1 The structure of a human activity system 24

7.1 Selection instrument . 58

7.2 Comparison of SDMs with selection criteria 59

7.3 Recommended software development methodology for higher education
institutions. 68

7.4 Activity system model applied to proposed methodology 69

viii

ABBREVIATIONS

AT Activity theory

CSR Case study research

SDLC Software development life cycle

SDM Software development methodology

ix

GLOSSARY

Activity theory Cross-disciplinary theoretical

framework that studies the actions of

people, using an activity as the unit of

analysis (Sam, 2012)

Case study research Research strategy concentrated in

the analysis and understanding of

the dynamics found in single settings

by reviewing single or multiple

cases.(Eisenhardt, 1989)

Software development life cycle Model created to follow a systematic

and disciplinary approach in the

creation of software solutions, meant

to reduce the probability of chaos and

failure and that takes a project solution

from its inception to its retirement

(Mahanti, Neogi, & Bhattacherjee,

2012)

Software development methodology Recommended and proven way to

successfully achieve the development

of a system throughout the whole life

cycle of a project (Vavpotic & Bajec,

2009)

x

Thematic analysis Qualitative and inductive methodology

that allows to identify, analyze and

report patterns and overarching themes

within data collected. (Braun &

Clarke, 2006)

xi

ABSTRACT

Rivera Alvarado, Daniela M.S., Purdue University, December 2016. Towards a
Software Development Methodology for Projects in Higher Education Institutions.
Major Professor: Alejandra J. Magana.

All educational institutions in the United States have certain particularities

that di↵erentiate them from many other public and private institutions. Some of

these particularities include, among many others: academic year cycles that set very

specific constraints and hard deadlines to the delivery of any tangible and intangible

projects the institution is trying to accomplish; an always changing population of

constituents that will be associated with the institution for a limited amount of

time; and federal and state laws that are always evolving and that require the

institutions to promptly act and adapt to fulfill the expectations set, in order to

avoid severe lawsuits and fines.

As any other teams working in projects for educational institutions, software

development teams are also heavily constrained by these particularities. This makes

the adoption of Software Development Methodologies that perfectly fit other

industries a daunting challenge, if not almost impossible, for these teams. Software

development teams in higher education are always in the need of finding a way to

adapt to these challenges and e�ciently perform their projects in order to address

the rapid changes occurring not only in the education sector, but also in the

technology industry in general.

The purpose of the research in this thesis was to identify opportunities and

challenges of software development methodologies used in higher education and to

recommend a software development methodology to be used by software

development teams working for those institutions.

1

CHAPTER 1. INTRODUCTION

The purpose of this research was to identify opportunities and challenges of

software development methodologies used in higher education and to recommend a

software development methodology to be used by software development teams

working for those institutions. In this chapter the author presents the scope and

significance of this project, followed by its research question and the di↵erent

assumptions, limitations and delimitations that were put under consideration.

1.1 Scope

All educational institutions in the United States have certain particularities

that di↵erentiate them from many other public and private institutions. Some of

these particularities include, among many others, (a) academic year cycles that set

very specific constraints and hard deadlines to the delivery of any tangible and

intangible projects the institution is trying to accomplish; (b) an always changing

population of constituents that will be associated with the institution for a limited

amount of time; and (c) federal and state laws that are always evolving and that

require the institutions to promptly act and adapt to fulfill the expectations set, in

order to avoid severe lawsuits and fines.

As any other teams working in projects for educational institutions, software

development teams are also heavily constrained by these particularities. This makes

the adoption of Software Development Methodologies (SDMs) that perfectly fit

other industries a daunting challenge, if not almost impossible, for these teams.

Software development teams in higher education are always in the need of finding a

way to adapt to these challenges and e�ciently perform their projects in order to

2

address the rapid changes occurring not only in the education sector, but also in the

technology industry in general.

Software, as indicated by Holcombe (2008), is an essential element in the

success of many businesses and organizations, which poses extra pressure in software

development teams to deliver good quality applications in a minimum amount of

time. In this research, the author tried to understand how the particularities of

educational institutions a↵ect software development teams at Purdue University, a

land-grant higher education institution located in West Lafayette, Indiana. To

accomplish this and while using a qualitative approach based on a case study

research (CSR), a total of ten di↵erent interviews to software development team

managers and developers were performed. These interviews served to gather

information about the advantages and challenges these people face in their software

development life cycles (SLDCs) while developing applications for the institution, as

well as information about the methodologies their teams use to accomplish their

projects.

After the data was collected, the information obtained was analyzed using a

thematic analysis qualitative methodology. At the same time and based on existing

literature, a review of known software development methodologies was done, where

advantages and disadvantages were determined for each, resulting in an instrument

that was later used by the author to analyze the themes identified from the

interview data.

With the results obtained from this analysis and with the help of Activity

Theory (AT), the author developed a proposed software development methodology

that will help to address the challenges most commonly identified during data

gathering, while incorporating the advantages of existing software development

methodologies, helping to facilitate its easy adoption by software development

teams in higher education.

3

1.2 Significance

Higher education institutions usually have one or more software development

teams serving their in-house software development needs. Unfortunately, not much

research has been done to explore the challenges these software development teams

face on a day-to-day basis, given the particularities that surround higher education,

and the restrictions these environments impose. In addition to this, not much

research has been done either to determine which and how software development

methodologies could better adapt to these particularities and constraints in order to

make software development teams more e↵ective and e�cient in the delivery of their

projects, within scope, time and budget.

The main goal of this research was to analyze the challenges software

development teams currently face within their institutional environments and

determine the best way to address them. Then, with the help of the AT theoretical

framework, propose a methodology that could be adopted by any software

development team in higher education institutions that would help them to easily

overcome those challenges.

1.3 Research Questions

The following research questions are answered by this research project:

• How are software development methodologies currently being used by software

development teams working for higher education institutions?

• How are these methodologies supporting or limiting the team’s performance

and outcomes?

1.4 Assumptions

The following assumptions were identified as key components and big

influencers of this research:

4

• Based on the literature reviewed, a software development methodology that

addresses the specific challenges and needs of software development teams

creating applications for higher education institutions is yet to be developed.

• The participant subjects of this study provided an unbiased opinion on the

opportunities and challenges their teams experience while developing software

for higher education, and their answers were not a↵ected by whether or not

they knew or had interacted with the author of this research before.

• The data obtained through the collection methods was meaningful and it

allowed the author to draw enough information to answer the questions posed

as part of this research.

• The instrument used in the assessment of existing software development

methodologies was properly designed and all results obtained were valid and

meaningful.

• An IRB approval has been received from the O�ce of the Vice President for

Research at Purdue University, that allowed the use of human subjects (in this

case the managers and developers of software development teams at Purdue

University) to participate in this research study.

• A total of five managers and five developers of software development teams at

Purdue University demonstrated interest in participating in this research

study.

• All participants had experience or had been exposed to at least one software

development methodology and were familiar with the concept.

1.5 Limitations

Similar to the assumptions, the following limitations were identified as key

players for the successful completion of this research:

5

• A qualitative study, following a case study research approach was selected as

the best methodology for this research. This allowed the author to understand

in depth, by collecting verbal descriptions, the challenges faced by software

development teams creating systems for higher education institutions and it

helped to develop a methodology that would address these challenges and

needs.

• AT was selected as the theoretical framework to be utilized to sustain the

creation of the software development methodology to be developed in this

research project.

• CSR was selected as the methodological framework to be utilized to obtain

the data to be utilized in the creation of the software development

methodology to be developed in this research project.

• The number of participants for this study was limited to a total of five

software development managers and five software developers that were part of

teams developing applications for Purdue University.

• The software development methodology to be created in this research project

would be based on a combination of other existing methodologies.

1.6 Delimitations

Similar to the assumptions and limitations, this research was performed by

acknowledging the following delimitations:

• No software development teams from institutions other than Purdue were

included in the data collection phase of this research.

• This research project does not set the expectation for Purdue University to

adopt the software development methodology proposed as the only

methodology to be used in the development of software applications.

6

• An implementation to test the e↵ectiveness of the software development

methodology developed in this study was not included as part of this research

project.

• This research study cannot be considered a final solution to the di↵erent

collaboration and organizational problems that can be found during the

software development cycles of teams in higher education.

1.7 Summary

This chapter provided a review of the scope, significance, research question,

assumptions, limitations, delimitations, definitions, and other background

information for this research project. In the next chapter, a review of the literature

relevant to the project is presented.

7

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

In this chapter the author provides a review of the main di↵erent areas of

argumentation that support this research project. The review begins by outlining

how software development relates to higher education in general, putting some

attention into the challenges associated with it. The review then proceeds to

highlight the research that has been done to address software development for this

higher education in general.

Following this review, the chapter continues with an examination of SDMs,

which are frameworks that are used by software development teams to plan and

execute their projects. The goal is to deliver the systems in time, within budget, full

in scope, and with the expected quality. Of importance is analyzing why software

development methodologies are needed and the current gaps in research related to

the current methodologies that could easily adapt to a specific area like higher

education.

In a subsection, this chapter talks about the most well-known software

development methodologies used by the industry nowadays, in order to provide

some context of the di↵erent approaches that have been followed by software

development teams.

The chapter finishes with the comparison of existing SDMs, utilizing two

di↵erent but complementing approaches found in previous studies done in this

research area.

2.1 Software Development in Higher Education

The nature of higher education is always changing (Kennedy, 1998). New

students join higher education institutions every year, coming from very diverse

8

backgrounds, interests and motivations. For this reason, software has moved from

being a fringe asset in higher education to being a core component that tries to

successfully address the needs of the new and always changing student populations

(Kennedy, 1998). As mentioned by Kamat and Sardessai (2012), in any education

system, the most important processes and areas of work are teaching/learning,

evaluation and administration. As mentioned by Trevvett (2013), higher education

institutions make significant investments, that range in the millions of dollars, while

trying to successfully implement software systems in these areas. All of this is done

without considering the internal cost of sta↵ hours needed to make the project

successful. Consequently, higher education institutions have found themselves in the

need of multi-disciplinary software development teams to build software applications

that adapt to their more particular needs. And for this, the identification or

creation of a SDM that fulfills their software development needs with a single,

unique approach results imperative.

Kennedy (1998) presented a view of the challenges software development

teams in higher education could and would experience. They also did an analysis of

di↵erent SDMs to identify the advantages and disadvantages those methodologies

would present to teams developing software for this type of institutions. However,

his recommendations were focused only on the analysis of teams dedicated solely to

the creation of student learning software, leaving out all other software development

teams that provide solutions for the remaining operations of the institutions they

support, like assessment, research and administration.

Similar to this, Ibrahim and Oxley (2010) developed a methodology meant to

be used by higher education institutions as well as libraries. However, this

methodology targeted the development of mash-ups only, which are user

applications that allow the combination of di↵erent sources of information, all of

which can come from local or remote sources. Given that this methodology only

addresses data aggregation needs, it cannot be considered a proper solution for more

complex scenarios.

9

Other case studies, like Farrugia and Al-Jumeily (2012); Matijasevic,

Roncevic, and Orel (2007); Pavolka, Mount, Neymeyr, and Rhodes (2005)

presented stories where the use of certain SDMs for the creation of higher education

software were successful. Farrugia and Al-Jumeily (2012) presented the case of a

project meant to develop a web-based student-teacher’s ePortfolio system for a

university in Malta. The development group followed a rapid iterative process based

on an Analysis-Design-Development-Implementation-Evaluation (ADDIE) model,

resulting in an application described by the users as useful and easy to use and learn.

Similar to this, the study of Matijasevic et al. (2007) described the case of a

project team that had to develop an information system to accommodate the

demands of the the Bologna Declaration in Croatia, with the intend to make the

educational programs of higher education institutions in Europe more unified and

compatible. The project team decided to adopt an agile development methodology,

resulting in a system delivered in three months and that has been widely adopted

by the higher education community.

Finally, in his study, Pavolka et al. (2005) presented the case of a university

that started the transition to a new enterprise-wide application that combined

content management, electronic portfolios and collaboration and learning. Because

of the di↵erent challenges experienced throughout the project by the team, they

decided at some point to adopt a Rapid Collaborative Prototyping model, resulting

in valuable user feedback to help to drive decision making.

Even though all three projects resulted in very successful systems, none of

the articles addressed the need of having a single SDM that would properly mitigate

all the challenges associated to the development of applications for higher education.

2.2 Software Development Methodologies

Although every software project is very di↵erent and unique (Dyck &

Majchrzak, 2012), common patterns can be found among them. These patterns

10

have been identified throughout the years and put together in the form of SDMs. A

SDM defines a set of best practices for the development of software, with a high

level of abstraction (Magdaleno, Werner, & Mendes de Araujo, 2012). They can be

viewed as recommended and proven practices to successfully achieve the

development of a system throughout the whole life cycle of the project (Vavpotic &

Bajec, 2009). SDMs provide support and structure to projects by describing the

di↵erent processes through which each one of them should go through (Dyck &

Majchrzak, 2012). They also help in the regulation and control of those processes

during the development of systems (Hannan, 2011). These methodologies are often

defined by di↵erent activities performed by the project team, and contain definition

elements that go from phases and iterations, to roles, standards and expected

results.

Independent of the size, type, complexity or industry, nowadays a good

percentage of software projects are still failing, and only 39% of all projects are

considered a success (Lynch, 2013). The constant need to improve the quality of

the software (Magdaleno et al., 2012) and to avoid project failure has been the

primary drivers for the creation and adoption of SDMs (Dyck & Majchrzak, 2012).

The nature of the software industry, instead of simplifying, is getting more complex

every day, and the development of large-scale, distributedly-developed systems adds

even more complexity to the equation (Magdaleno et al., 2012).

Unfortunately, no single methodology has been developed to successfully

address all this complexity or that can be easily adapted to all kinds of software

projects (Glass, 2004). This is the reason why Vavpotic and Bajec (2009) indicated

that many software development organizations do not use or have stopped using

formal SDMs as part of their development life cycles altogether. They also

explained that the risk of non-SDM adoption relates in the majority of the cases to

two di↵erent aspects. In the first place, existing SDMs are not technically tailored

to the specific organizational needs. And, in second place, existing SDMs do not fit

the social features of the organization and their development teams.

11

The software development life cycle (SDLC), as defined by Hannan (2011),

“is a structure imposed on the development of a software product” (p. 249). SDLCs

are in most cases models created to follow systematic and disciplinary approaches in

the creation of software solutions, meant to reduce the probability of chaos and

failure of projects (Mahanti et al., 2012). Most SDMs do not cover all the phases of

the SDLC and just a very few of the SDMs available cover all the

development-related phases. Many SDMs tend to forget about the phases that come

after development has finished, like operations, maintenance, enhancements and

replacement. These, too, are part of the SDLC (Dyck & Majchrzak, 2012).

Many have attempted to develop a universal criterion that would allow

software development teams to choose a SDM that better adapts to their needs, but

all the di↵erent approaches have shown to have weaknesses, including limited scope,

lack of transparency, and lack of detail (Dyck & Majchrzak, 2012). As pointed out

by Mahanti et al. (2012), there has not been a model that could universally fit all

development environment setups and that can be considered adequate in all

situations. Thus, a SDM that adapts to the specific needs of an industry and that

provides full coverage of all the SDLC, while at the same time faciliates the

management of projects by the team or project manager is yet to be developed.

Vavpotic and Bajec (2009) tried to develop a framework for SDM evaluation

that would allow teams to determine the best SDM for them to use. However, their

scope of review was relatively small. Additionally, the evaluation was very extensive

and extremely time consuming, making it almost impossible for organizations to use

their approach in a timely manner to determine the most suitable SDM for their

project needs.

Unfortunately, the challenges presented by Vavpotic and Bajec (2009) seem

to be the norm. Hardly any practitioner is able nowadays to implement a SDM the

way it is presented in its theoretical description, mostly because of the nature of the

organization itself, the way they do business, and the di↵erent processes of software

engineering (Dyck & Majchrzak, 2012). This enforces the idea that, instead of

12

trying to look for generalization in all industries, SDMs should be adapted and

adopted to the convenience of software development teams, at least to a level that

better fits their organizational needs. This adaptation, in some cases, may need the

mix of two or more SDMs for it to properly fit to the needs of the organization.

2.2.1 Known Software Development Methodologies

Since the invention of software, any system that goes beyond trivial user

needs will always evolve, even while still in development (Davis, Berso↵, & Comer,

1988). This becomes the main reason why many projects are behind schedule (as

developers try to accommodate new requirements under the same time frame) and

also the reason why systems fail to meet the expectations set by the customers (as

developers may not acknowledge some of the changes and end up developing

obsolete functionality). To address this, SDMs have been created. These

methodologies provide a series of basic guidelines to develop software. These

guidelines use engineering techniques, resulting in a sequence of stages and software

evolution (Mahanti et al., 2012).

Davis et al. (1988) identified five as the most well-known SDMs used by the

industry:

• The classical waterfall model, which is considered by many as the backbone of

all SDMs (Mahanti et al., 2012). This methodology structures all phases of

the SDLC as a cascade, where the output of a phase becomes the input of the

next one, without allowing any process backtracking.

• Iterative waterfall model, which is an adaptation of the classical waterfall

model but that allows a way to go back to preceding phases of the project to

facilitate the correction of errors found. After detecting a problem, the team

must fix the problem at the root, and then update all information for the

subsequent phases.

13

• Rapid throwaway prototyping proposes an approach to ensure that software

products will meet the users’ needs by allowing quick and dirty

implementations (or prototypes) of the functionality desired. Once users

interact with the prototype and provide feedback, developers will then

implement the real functionality to reflect the user needs.

• Incremental development is a methodology that encourages the partial

implementation of a system and that allows for slow additions in functionality

and performance in an incremental way.

• Evolutionary prototyping is pretty similar to rapid throwaway prototyping in

and incremental development. It allows developers to construct a partial

implementation of a system (mostly of well understood requirements) and

then lets the users make use of this implementation to provide feedback and

make sure the requirements were well understood.

• Automated software synthesis is a methodology where requirements are

transformed from a high-level description into operational code by using

knowledge or algorithmic techniques.

This list, although slightly di↵erent, presented many commonalities to a

similar list explained by Kennedy (1998).

Mahanti et al. (2012), expanded the list of existing methodologies to include

a few more:

• Code and Fix model, which describes the beginning of software development

in general, where developers simply write code and then try to fix problems

found. Because of its simplicity, this model is considered a two-phase

methodology.

• V-shape model is similar to the classic waterfall model by providing a

sequential path of execution of processes, although it di↵erences by providing

a stricter concentration in the testing of each phase.

14

• Unified process model, which is a use case-driven methodology, concentrated

in the architecture of the application, using an iterative and incremental

approach. This model consists of five phases: Inception, elaboration,

construction, transition and production.

• Spiral development involves the repetition of the most common phases of the

classic waterfall model, until the system is complete.

• Agile software development, which encompasses a set of guidelines and

philosophies to encourage customer satisfaction, incremental software

development, small and highly empowered teams, informal methods, minimal

upfront planning and simplicity at its most.

When looking for a way to group this methodologies, they can be classified

in many di↵erent ways. One of these categorizations is the provided by Ramsin and

Paige (2008). They classify SDMs as fundamental methodologies (including

Waterfall and Spiral Model), integrated methodologies (including Rational Unified

Process and V-Model), and agile methodologies (including Scrum and Extreme

Programming).

A more simplified approach is provided by Boehm and Turner (2003), on

which software development methodologies are classified in only two di↵erent

categories: plan-driven methods (which are considered the traditional way to

develop software by establishing a well-defined process to follow during the SDLC),

and agile methods (which consist of all the methods that focus in rapid prototyping

and development, and that define the development of applications more as a craft

than a process as seen in other industries).

Boehm and Turner (2003) proceed to expand into the di↵erences between

these two methods by the most common characteristics found on each. For

plan-driven methods, the authors identify a very systematic engineering approach,

on which the development of software has to carefully follow specific processes and

phases until its full completion. A project is considered complete if not only the

15

code but also all its associated documentation is finished. Given its strong focus in

documentation and process following, plan-driven methods depend heavily in a

strong management of the process in order to be successful. These process must be

constantly reviewed and analyzed in order to adapt them to the most current

environmental circumstances.

In agile methods, the main approach is to provide a more flexible and

adaptable environment for the development of software that better fits the rapidly

changing nature of the software industry. These methods characterize as very

usually being lightweight processes with short iterative cycles. The proponents of

agile methods identified as the four major values of agility the interaction of

individuals over process creation and tools, the development of code over

comprehensive documentation, the focus in customer collaboration over contract

negotiation, and the ability to respond to change over sticking to a predefined plan

(Martin & Turner, 1986).

Based on all this, it is pretty clear that both the software development and

the software engineering communities in general have no consensus not only on

what methodologies exist and better adapt to the development of projects, but also

on how the existing ones can be grouped and classified for better user understanding

and selection.

2.3 Comparing Existing Software Development Methodologies

As presented in the previous sections, there is a wide range of known SDMs,

as well as of di↵erent ways to classify them, in order to facilitate common user

understanding. This makes the selection of a single methodology to be followed by

software development teams a daunting task, becoming one of the many reasons

why software development teams decide not use SDMs in real practice and, if they

do, they do not follow them rigorously, as explained by Vavpotic and Bajec (2009).

This is particularly true for those methodologies whose purpose is to be as generic

16

as possible, instead of concentrating in solving the needs of a particular

organizational type or project, as well as the social characteristics and needs of the

team themselves (Vavpotic & Bajec, 2009).

When trying to address the specific needs of higher education in the selection

of a SDM that would adapt well to the development of teaching and learning

software, Kennedy (1998) proceeded to compare four typical models regularly used

in software development:

• Linear sequential model, better known as the waterfall model

• Prototyping Model

• Rapid Application Development, also known as RAD

• Evolutionary software process models, most commonly known as Incremental

and/or Spiral model

As part of this comparison, the author analyzed the advantages and

disadvantages of each model. Table 2.2 summarizes their findings.

17

Table 2.1.
Kennedy’s SDM comparison

Model Advantages Disadvantages
Linear Sequential
Model

Provides a template for all the
di↵erent phases of the SDLC.
It is widely used and
well-known.
It is better than not using a
SDM at all.

Real projects are never linear.
Any type of iteration causes
confusion in the process.
Stating all requirements
upfront and correctly is very
di�cult.
First versions of the project
are delivered very late in the
project time-span, so major
problems are discovered too
late.
Even the smallest delays
will a↵ect the whole project
schedule.

Prototyping
Model

Fits well projects with fuzzy
requirements.
The prototype serves as
requirement representation
mechanism.
Evaluation initiates early, so
users can influence the final
product.

Users get a wrong perception
of how long it takes to
develop software because of
the prototype speed.
Bad practices used in the
prototype code may remain in
the final software.
Users get wrong expectations
of what can be done with the
allocated time and money
When prototypes are finished,
teams may lose enthusiasm.

Rapid
Applications
Development
Model

A first version of the product
can be demonstrable in a
short period of time.
Design and development is
done incrementally.
Users are involved early and
throughout the project.

The model relies on re-usable
components.
Scope and requirements must
be constrained for it to work.
It works better for business
applications.
It may require multiple teams
working concurrently in larger
projects.

18

Table 2.2.
Kennedy’s SDM comparison (continued)

Model Advantages Disadvantages
The Incremental
Model

Uses the linear organizational
components of the linear
sequential model with the
iterative approach of the
prototyping model.
It can produce a usable
product quickly, although
with limited functionality.
Each iteration delivers an
operational product.
Feedback from users and
usability testing comes early
so product can be adapted.
User involvement starts early
in the process.
Increments can be planned
ahead easily.

It is di�cult to pre-empt what
functionality will be needed in
the future.
Integration of di↵erent
components can be di�cult.
The scope and requirements
of the project must be
constrained for the project to
succeed.
The model works better for
systems that can be delivered
as a series of interoperable
components.

Spiral Model Uses the iterative approach of
the prototyping model with
the technical and systematic
components of the linear
sequential model.
Allows rapid development and
prototypes that can then be
evaluated by the users.
Users can provide early
feedback in the project.
Supports long term projects
that will require a lot of
changes and adaptation.
It is a better representation of
the life cycle of a project

It is not as recognized as some
of the other models.
Lack of detail and process
may cause a bad perception
among stakeholders.
Risk assessment is vital early
in the project.
The success of the project
relies heavily in the project
manager’s knowledge and
expertise.

19

Although this analysis provided a good perspective on the advantages and

disadvantages software development teams developing teaching and learning

technologies for higher education would face while following one of the

methodologies previously mentioned, the author fails to address how well these

methodologies would fit teams developing software for other key areas, like

administration and research. Hence, for the purpose of this study and in order to

provide a more holistic review of SDMs that could be used by higher education

teams, there is a need to supplement Kennedy (1998)’s analysis with one that

provides a more generalized review of SDMs in general.

In an intent to explain SDMs from a more simplistic but yet philosophical

perspective, Boehm and Turner (2003) categorized all SDMs in only two di↵erent

categories: plan or discipline-driven methodologies and agile-driven methodologies

(both briefly described in the literature review chapter). In order to compare these

two categories, the authors identified four project characteristics to be considered,

those being:

• The application characteristics, which include the primary project goals, its

size, as well as the application environment

• The management characteristics, which include customer relations, project

planning and control and project communications

• The technical characteristics, referring to techniques used for requirement

definition, development and testing

• The personnel characteristics (which include the customer and developer

characteristics, as well as the organizational culture)

The summary of the comparison presented by Boehm and Turner (2003) can

be found in Table 2.3.

20

Boehm and Turner (2003) did not define the set of characteristics used in

this comparison with any specific industry in mind. Because of this and the fact

that their approach also encapsulates all the di↵erent methodologies discussed by

Kennedy (1998) in their review, their comparison could be used as a good

supplement to provide more complete selection criteria for software development

teams working for higher education to decide what SDM works better for their

needs. This is especially true for those teams developing software for areas that

were not specifically addressed by Kennedy (1998) in their study.

2.4 Summary

This chapter provided a review of the literature that supports the main

argument of this research project. In first place, an outline on how software

development relates to higher education was presented, as well as an overview of

existing literature related to this area. This was then followed by an examination of

SDMs, and a quick introduction to the most well-known SDMs was given. The

chapter ends with the comparison of comparison of existing SDMs, utilizing two

previous studies done around this topic.

In the next chapter, the author proceeds to explain the theoretical and

methodological framework used in this research project.

21

Table 2.3.
Boehm and Tuner’s SDMs comparison

Type Characteristics Agile-Driven Plan-Driven
Application Primary Goals Rapid value.

Responding to change.
Predictability, stability
and high assurance.

Size Smaller teams and
projects.

Large teams and projects.

Environment Turbulent.
High change.
Project-focused.

Stable.
Low-change.
Project/organization
focused.

Management Customer
Relations

Dedicated on-site
customers.
Focused on prioritized
increments.

As-needed customer
interactions.
Focused on contract
provisions.

Planning and
Control

Internalized plans.
Qualitative control.

Documented plans.
Quantitative control.

Communication Tacit interpersonal
knowledge.

Explicit documented
knowledge.

Technical Requirements Prioritized informal
stories and test cases.
Undergoing
unforeseeable change.

Formalized project,
capability, interface and
quality.
Foreseeable evolution
requirements.

Development Simple design.
Short increments.
Refactoring assumed
inexpensive.

Extensive design.
Longer increments.
Refactoring assumed
expensive.

Testing Executable test cases
define requirements.

Documented test plans and
procedures.

Personnel Customers Dedicated and
collocated.

Not always collocated.

Developers Tends to need a richer
mix of higher-skilled
people.

Are able to operate with
less-capable people.
Still needs a few highly
skilled resources.

Culture Comfort and
empowerment via many
degrees of freedom.

Comfort and
empowerment via
framework of policies
and procedures.

22

CHAPTER 3. THEORETICAL AND METHODOLOGICAL FRAMEWORKS

Relevant to this study is a discussion on the concept of Activity Theory (AT)

as a theoretical framework. This approach studies the actions of people using

activities as the units of analysis and how this framework can be adapted to define

software development activities. First in this chapter, the author will provide a

quick review of AT, followed by an analysis on how this theoretical framework has

been utilized so far in the area of software development.

Following, the chapter continues with a review of Case Study Research

(CSR) as this study’s methodological framework. CSR is a type of qualitative

research focused in the investigation of phenomena happening in real life, by

providing a description, understanding, predictability and control of the di↵erent

entities under review. As the research methodology to be used in this study, the

author explains how CSR, compared to other qualitative research approaches, is the

most appropriate one to address the research questions of this study.

3.1 Activity Theory

As described by Levy (2008), “activities are the center of human behavior”

(p. 1664). They are understood as the relationship between a subject and an object

that transform both entities (Kaptelinin & Nardi, 2012). A subject, described in a

simplistic way, is an agent that undertakes an activity, trying to reach an outcome

(Barthelmess & Anderson, 2002). This outcome requires the transformation of an

object. An object could be from something material, to something less tangible or

totally intangible. The main characteristic an object must have is to be sharable for

23

manipulation and transformation by the subjects involved in an activity (Kuutti,

1996). Communities, which are groups of subjects, usually share an object and

collaboratively work together to transform it. This process as a whole can be

considered an activity.

Activities, in a narrow sense, are units of subject and object interaction

defined by a motive. They are considered a system of processes oriented towards a

motive where the meaning of any individual component of the system is determined

by its role in attaining the motive (Kaptelinin & Nardi, 2012). Activities, as

defined by AT, provide enough contextual information to make an analysis

meaningful, while avoiding a narrow focus on an individual or too broad a focus on

whole social systems (Barthelmess Anderson, 2002). Fjeld et al. (2002) outlined

two types of activities: goal-direction and goal-derived activities. In goal-directed

activities, actions are derived from a goal setting, while in a goal-derived activity,

the goal settings are derived from the actions.

Human activities are the primary concept in Activity Theory (AT)

(Barthelmess & Anderson, 2002). AT can be defined as a philosophical and cross

disciplinary framework (not a theory as its own name might imply) for studying

di↵erent forms of human practices as development processes, with both individual

and social levels interlinked at the same time (Kuutti, 1996). It is a social theory

that describes human consciousness as the product of the interaction of a subject

with other people and objects, all this while using artifacts to facilitate everyday

activities (Kaptelinin & Nardi, 2006). Its core idea is that, by analyzing the

context of outcome-driven activities, a full understanding of the actions and

operations individuals take to reach such outcome will be obtained (Döweling,

Schmidt, & Göb, 2012).

24

Central to the concept of activity theory, is the concept of mediation

(Barthelmess & Anderson, 2002). The shaping of all human experience is defined by

the tools and sign systems we use (Nardi, 1996). The role of mediators is to connect

humans to the world, in an organic and intimate way. The relationships between a

subject, an object and their community are mostly mediated by the instruments

used, the rules imposed and the agreed division of labor. These mediators are used

by the subject and the community to achieve a desired set of transformations to an

object. This mediation is better exemplified in the structure of a human activity

system diagram provided by Engeström (2015) and shown in Figure 3.1.

Figure 3.1. The structure of a human activity system

The mediating artifacts between subjects and objects are not static entities.

They are constantly revised and transformed to better meet the always changing

needs of the community by embodying their collective experience (Bardram, 1997).

In this mediation, community refers to virtually all of the people directly involved in

the particular activity being analyzed, while instruments are the entities that shape

the way that people interact with reality. Along with this, rules are the

25

domain-specific knowledge that must be captured somehow by the subjects, while

the division of labor refers to the cooperation and specialization occurring in an

activity (O’Leary, 2010).

The relationship drawn between the elements described above reflects a set

of activities, actions and operations undertaken by a subject while producing an

outcome. Activities are the highest order frame for objectives, while actions and

operations designate lower level acts embedded in activities. Subjects rely on

instruments to help reach objects, while instruments help to mediate activities

between subjects and objects (Tan & Melles, 2010). Activity theory thus allows for

a rich description of an activity system utilizing these terms, allowing to describe

activities as products of the intentions of acting human agents (Nardi, 1997). This

description is achieved by visualizing the various levels of activity in professional

practice situations, firstly by understanding how subjects utilize tools, and secondly

by focusing on the social dynamics of subjects in context (Redmiles, 2002).

Being AT a research approach and framework that can adapt to multiple

disciplines (Barthelmess & Anderson, 2002), it has been commonly utilized for the

study of activities of work and technology (Engestrom, 2000).

3.1.1 Activity Theory in Software Development

As described before, AT is a framework to analyze human activities based on

the interactions between subjects with objects and other subjects, while using tools

and following rules. A way to exemplify these interactions is the development of a

software application by a team. In software development, multiple subjects

(software developers, team leaders, project managers and, in some cases, customers)

work collectively (during the project lifecycle) to reach the transformation of an

intangible object, which is the software itself.

26

AT is particularly useful in the analysis and understanding of collaborative

contexts, independent of the field. Given the complexity of current software

applications, software development is, in most cases, a highly collaborative

environment. This argument is used by Barthelmess and Anderson (2002) to

analyze software development from this perspective. Döweling et al. (2012)

acknowledged that humans by nature, and usually in collaborative environments,

try to reach their goals and objectives by organizing their work in tasks or activities,

which supports the reasoning behind the use of AT to shape software development

as a collaborative activity.

AT also helps to highlight the context perspectives of a process-oriented

environment, which di↵ers significantly from product-oriented approaches commonly

found in software engineering (Barthelmess & Anderson, 2002). In software

development, a process-centered environment is mostly concentrated in developing

the right processes used to produce and maintain systems, more than in the product

to be developed. However, no literature was found that provided a good model to

allow organizations to shape process-oriented software development environments to

their specific needs using AT.

Hannan (2011) explained this a little further by pointing out that an activity

in AT can be represented as a big task (e.g., the development of a software

application) or as a small task (the implementation of a specific functionality of the

application). The author considered this one of the biggest limitations of AT, as it

does not demonstrate consensus among researchers on the correct definition and

scope of the activity term within an AT content. Barthelmess and Anderson (2002)

disagreed with this perspective. They believed one of the biggest advantages of AT

in the study of software development methodologies is its lack of a strict definition

of what an activity is. By avoiding to narrow the focus of the analysis on just

27

individuals and by broadening the focus to social groups, AT provides enough

contextual information to make meaningful the analysis of any methodology,

including those for software development.

3.2 Case Study Research

As defined by Yin (2009), case study research (CSR) “is an empirical inquiry

that investigates a contemporary phenomenon within its real life context, especially

when the boundaries between phenomenon and context are not clearly evident”

(p.13). Woodside (2010) proceeded to expand on this definition by indicating that

this type of inquiry focuses not only on the investigation of the contemporary

phenomena but also in the description, understanding, predictability and control of

the individuals under review, which is the main and final objective of CSR. This

type of research strategy can involve either single or multiple cases and can also

employ multiple levels of review under the same study, with the main purpose of

understanding the dynamics between the di↵erent settings (Eisenhardt, 1989).

CSR, as any other empirical research, has a research design. A research

design is the sequence of steps to be followed to connect the data collected to the

research questions and draw a conclusions based on the results (Yin, 2009). The

research design for CSR contains five especially important components: (a) the

study questions, (b) the study propositions, (c) the units of analysis, (d) the logic to

link the data collected to the propositions, and (e) the criteria used to interpret the

findings (Yin, 2009).

As any other research methodology, CSR faces several criticisms, being the

most important ones: (a) it fails to confirm the independency of the results obtained

from the only case studied, and (b) it fails to gain deep understanding of the

mechanics involved in the process under study (Woodside, 2010). Researchers using

28

CSR as their research approach can counter these criticisms by avoiding

generalization of conclusions and results.

CSR typically combines di↵erent data collection methods to create

saturation and validate the evidence found (Eisenhardt, 1989) and it is mostly used

to provide description of a phenomenon, test an existing theory or develop theory

by itself. For the generation of theory, Eisenhardt (1989) defined a process that can

be summarized as a sequence of the following steps:

• Definition of research questions, which allows the researcher to look for the

specific data relevant to the study.

• Selection of cases, to identify the set of entities from which the research

findings will be drawn.

• Craft of data collection instruments and protocols, to provide a stronger

substantiation of data to support the research constructs and hypotheses by

providing multiple data entries.

• Data collection and analysis overlap, to provide the researcher an early start

in the data analysis while still gathering information, as well as to allow the

researcher to take advantage of data collection flexibility while still on the

field, based on the preliminary analysis.

• Case analysis, which allows the research to start looking for the answers to the

research questions by identifying unique patterns that emerge within the data

collected, giving the research a deep familiarity with the case under study.

• Hypothesis shaping, which allows the researcher to compare the theory with

the data collected, in order to start creating the new form of concepts and

valid theory.

29

• Enfolding of literature, to compare the new concepts and theory with existing

ones, in order to examine possible conflicts and contradictions that could

jeopardize the validity of the study.

• Research conclusion, which summarizes the process and brings the study to

closure, once data and case saturation have been reached and no further

information can be drawn.

This research project has concentrated in the creation of a theory for a

particular research context, more specifically, in the development of a SDM for

teams working in higher education. This, along with the connection between the

reality of the environment, subject’s experience and existent research as the main

drivers of this approach, clearly makes CSR the qualitative research approach of

preference for this study, particularly when applying the process suggested by

Eisenhardt (1989) for this specific purpose.

3.3 Summary

This chapter described AT as a theoretical framework that allows the

analysis of the interactions between subjects and objects, and how those

interactions can be a↵ected by the community surrounding them, as well as by the

twenty two artifacts used and the rules imposed to those interactions. These section

also explained the value AT can provide to the development of new SDMs, given the

nature of software itself and the interactions needed between the di↵erent actors

involved in the development of applications. The chapter closed with a review of

CSR, and the reasoning behind selecting this approach as the most appropriate one

to address the research questions of this study.

30

In the next chapter, the author proceeds to explain the methodology used in

this research project.

31

CHAPTER 4. METHODS

This chapter describes the di↵erent procedures used in this research project

to answer the questions: How are software development methodologies currently

being used by software development teams working for higher education

institutions? How are these methodologies supporting or limiting the team’s

performance and outcomes? What is the most e↵ective way for these teams to

develop software in order to minimize the limitations most commonly found, while

at the same time leveraging some of the advantages provided by existing software

development methodologies?

As one of the goals of this research project was to understand how the

peculiarities of a higher education setup can a↵ect software development teams at

Purdue University, a qualitative approach was determined to the best method to

collect the data needed to address the goal established. This chapter explains how

data was collected for that purpose and how the results obtained were analyzed to

build the case and accomplish the goals set.

4.1 Case Study

As Eisenhardt (1989) indicated, organizational research revolves around the

development of theory, and this is accomplished by combining existing literature,

common sense and people’s expertise. The intimate connection between the data

collected during this type of research and its empirical reality is what allows to

develop valid theory that is relevant and testable. As this research project was of

organizational research nature and tried to determine the best way to design a

32

software development methodology that addressed the most common challenges

teams faced while developing software for higher education institutions, it was

determined that a case study qualitative research approach was the most

appropriate methodology to accomplish this goal.

For the case study, data collection was accomplished in the form of

interviews to current software development team managers and developers at

Purdue University. Information about the advantages and challenges these people

and their teams faced on their software development life cycles (SLDCs) while

developing applications for the institution was gathered, as well as information

about the methodologies these teams used to accomplish their projects.

After the collection of the data, the information gathered was analyzed using

a qualitative methodology known as thematic analysis. At the same time and based

on existing literature, a review of well-known software development methodologies

was done, where advantages and disadvantages were determined for each, resulting

in an instrument that was later used by the author to analyze the themes identified

from the data obtained during the interviews. This analysis helped to determine

what components of the methodologies reviewed could better address the challenges

found in the di↵erent themes.

With the results obtained from this analysis and with the help of AT, the

author then developed a new SDM. This methodology addressed for the most part

the challenges most commonly identified during the interviews. It incorporated

some advantages of existing software development methodologies and was designed

in such a way to facilitate easy adoption by software development teams in higher

education.

With this approach, all the steps in the process of building theory from case

study research described by Eisenhardt (1989) were met: definition of research

33

questions, selection of cases, craft of data collection methods, overlap of data

collection and analysis, case analysis, shape of hypothesis, enfolding of literature

and conclusion.

4.2 Participants

Homogenous sampling was defined as the method to be used for the selection

of the team leaders, managers and developers that were invited to participate in the

interview phase. The idea behind the homogenous sampling method is to describe a

particular subgroup in depth (Patton, 2002). As most managers and leaders in

charge of software development teams at Purdue are usually in charge of the

selection of the software development methodologies used by their teams, they were

considered to be the subgroup from which more in depth information should be

obtained. Even though each team is considerably di↵erent from all the other ones,

they all have the common purpose of serving the software development needs of

di↵erent areas at Purdue. Thus, this sampling strategy was considered to be the

most adequate one.

4.3 Data Collection Methods

Interviewing can be defined as a conversation that has a specific purpose and

this purpose is to gather information of interest (Berg, 2009). Given that Purdue

University has multiple software development teams on campus, purposeful

conversations with the leaders and members of those teams provided an insight on

what are the biggest challenges they face while developing software for the

institution, what steps have they taken to address those challenges, and if, how they

have adopted software development methodologies to overcome those as well.

34

Given the constraints in time and resources, the number of interviews was

narrowed to ten. The interviews targeted teams that support di↵erent areas at the

university, including two academic areas, two administrative areas and one

research-related area.

All interviews were semi-standardized, meaning that even though a

predetermined set of questions had been selected and each question was asked to

each interviewee in a systematic and consistent order, the interviewer was allowed

some freedom to digress and deviate from the interview protocol to probe far

beyond the answers received from the interviewees (Berg, 2009).

4.3.1 Interview Protocol

A first version of the interview protocol was prepared and presented to three

subject matter experts for their review and correction. All three reviewers, which

included Professor Je↵rey L. Whitten, Professor Kevin C. Dittman and Professor

Je↵rey L. Brewer, full time professors of the College of Technology at Purdue

University, who provided meaningful suggestions and feedback to the interview

protocol. The resulting protocol can be found in Table 4.1.

As for the columns of the protocol, RI stands for relevant information, PM

stands for project management, AT for activity theory and SDM for software

development methodology.

4.4 Procedures

A one-hour interview was scheduled with each one of the selected developers

and team leads, managers or directors during the month of August, 2016. The

interview protocol presented in the previous section was used on each interview and

35

Table 4.1.
Final Interview Protocol

Question RI PM AT SDM
Please provide a description of your job duties X
How many years of experience do you have in
application/software development as a manager and/or
developer?

X

Could you please describe your team in terms of:

• Team Size

• Skills

• Location (Collocated, Remote, Distributed)

• Sta↵ Mix (Full Time, Temporary, Consultant,
Contractor)

• Average Development E↵orts (0-3 months, 3-6
months, 6-12 months, 12+ months)

X X

Are software applications developed by your team
managed as projects? If not, how are they managed?

X

Could you please provide a list of the di↵erent
stakeholders and groups that get involved in your
software projects? Please remember to include
stakeholders as other IT peer groups (security, customer
relations, infrastructure) as well as other university
entities (internal audit, HR, business services)

X X

What are the most common challenges and the biggest
problems your team faces while developing applications
for Purdue University?

X X

How do any of the stakeholders you mentioned contribute
to the most common challenges and biggest problems that
you mentioned above?

X X

Does your team follow any software development
methodologies while working on your software
development e↵orts?

X X

If Yes Could you please provide a detailed description of the
di↵erent activities that take place during a normal project
that would follow such methodology?

X X X

Have you changed this methodology from its theoretical
description to better adapt to the needs of your team?

X X

What advantages have you found in this methodology? X
What disadvantages have you found in this methodology? X

If No Could you please explain why a methodology is not being
followed?

X X

How willing would you be to adopt a software
development methodology that has been specially
tailored to software development projects in higher
education?

X X

36

each interviewee accepted the interview to be voice recorded. After each interview,

the audio was transcribed by the author and stored in a digital format to be used

for future reference. All recordings were properly discarded after each transcription.

4.5 Data Analysis Methods

Thematic analysis with a post-positivist approach was the method used for

data analysis and interpretation of the data collected during the interviews.

Thematic analysis is a process for encoding qualitative information (Boyatzis, 1998)

that helps to identify, analyze and report themes (or patterns) within the data

(Braun & Clarke, 2006). A post-positivist approach allows researchers to look for

patterns in human actions and behaviors.

As one of the goals of this research project was to understand what are the

biggest challenges of the software development methodologies currently in use by

software development teams working for Purdue University, it was considered that

with the use of thematic content analysis, di↵erent themes or patterns could be

identified from the raw transcript data obtained from the interviews. This allowed

the author to identify the most common challenges the software development teams

at Purdue University faced, and how the teams have tried to address these

challenges, with or without the use of software development methodologies. As this

research looked to understand the behaviors of the di↵erent interviewees and their

teams under the given circumstances, a post-positivist approach was the best fit for

the needs of the project.

Once the themes were identified, they were validated against an instrument

developed by the author using existing literature on well-known software

development methodologies. In this review, advantages and disadvantages of each

methodology were determined and compiled to determine the assessment criteria.

37

This instrument helped the author review the di↵erent themes found on the

interview data and determine what components of the methodologies reviewed

better addressed those themes.

With the results obtained in this analysis and with the help of AT, a new

software development methodology to be used by teams developing solutions for

higher education institutions was developed. That is, elements of AT were mapped

to specific findings and the components of the new methodology were explained

through an AT lens in the data analysis chapter.

4.6 Summary

This chapter provided a review of the methods used in the research study.

The author explained the selection of case study as the approach to reach the

research goals and then proceeded to expand on how participants for the study were

selected, what procedures were used, how data was collected and how it was also

analyzed to draw the final conclusions and results.

In the next chapter, the author proceeds to explain how the data obtained for

this study was analyzed and then proceeds to explain the logic behind the resulting

methodology proposed in the study, and the di↵erent steps taken to define it.

38

CHAPTER 5. DATA ANALYSIS

After the completion of the interviews scheduled with all ten participants

that participated in the study, the author proceeded analyze the results obtained.

This chapter provides a summary of the di↵erent steps taken by the author to do

the data analysis and provides some arguments to confirm the validity and

reliability of the study.

5.1 Data Processing

First, the author proceeded to transcribe the voice-recordings of each

interview into a text document. Once all transcriptions were completed, the author

proceeded to properly discard the voice recordings to protect the participants’

privacy and also to reduce bias in later phases of the analysis, given that no

interview could be easily traced to a specific person, based on the deep level of

aggregation the data analysis process reached.

5.2 Themes Identification

Once all the transcriptions were ready, the author then proceeded to read the

interviews one by one, and started to identify and highlight the di↵erent topics or

themes that were mentioned and discussed by each participant. After this initial

review, the author then proceeded to review the text of each interview again, and

started to breakdown the data into concepts and categories, based on the di↵erent

topics found during the interviews. To do this, the author first gave each interview a

39

unique numeric identifier that could be used as a reference in the future, in case a

review of the original text of the interview was necessary. After this code

assignment, the author then proceeded to compile the di↵erent concepts or themes

found in the interviews following an open coding structure. An example of this

structure can be found in Table 5.1.

Table 5.1.
First level concepts

Open Code 1 2 3 4 5 6 7 8 9 10
Stakeholders do not understand the
scope of their project

P7 P3 P5

Continuous improvement of existing
applications is fairly common

P4 P6 P11 P6

Following a methodology only for
standard to complex projects

P12 P3 P9 P2

5.3 Compilation and Coding

As part of the compilation and coding phase, the author reviewed the text of

each interview again and started to track each concept found in the conversations as

a new row in the coding structure. Following, the author recorded the page number

where the concept was mentioned in the interview under the column that identified

the specific interview where it came from (demonstrated in the example with the

numbers one to ten). If the concept was mentioned multiple times during the same

interview, the author proceeded to track each page where it was mentioned. If the

concept had already been mentioned in a di↵erent interview and was already being

tracked in the coding structure, the author only added the page number where it

was referenced under the corresponding column for the given interview.

40

Once this code compilation phase was completed, the author proceeded to

count the number of times each concept was mentioned in di↵erent interviews, to

help identify how commonly was the given theme recognized by the participants.

After this, the author proceeded to classify each of these concepts into di↵erent

categories using axial coding. A short example of this exercise can be found in

Table 5.2.

Table 5.2.
Axial coding

Axial Code Open Code Count
Biggest challenges Customer indecision 3
Development e↵orts Continuous improvement of existing

applications is fairly common
4

Methodologies Following a methodology only for standard to
complex projects

4

Process Requirements gathering 6
Tools Project management tool for tracking 1
Current Process Advantages Flexibility 3
Current Process Disadvantages Process is not rigid, it lacks formality 2

A total of 180 themes were identified out of the di↵erent interviews and were

classified in seven di↵erent axial codes.

5.4 Credibility

As mentioned by Patton (2002), validity and reliability are the two

measurement instruments of which the quality of qualitative research depends on.

The majority of the Methods and Data Analysis chapters were dedicated to

fundament the di↵erent decisions made by the author around those two vital areas

of this research study. The decisions there were sustained in the selection of well

41

respected and recognized methods and data collection techniques. However, the

author is yet to address the steps taken by the author in this study in order to

secure its credibility and demonstrate its validity and reliability. Such steps are

explained in the following sub sections.

5.4.1 Credibility of Researcher

With over twelve years of experience in the development of software, of

which eight of those years had been managing software development teams and five

were working for a higher education institution, the author of this study fit what

was described by Eisner (1991) as connoisseurship, which is one who has extensive

knowledge about a particular domain of interest. In the case of this study those

areas were software development and its particular application to higher education.

Although it is left up to the reader to decide if the author’s experience and

background was relevant to the study, the author completed this research project

with the hope that both the combination of experience and well recognized methods

and data collection and analysis techniques provided enough of an argument to

sustain its credibility.

5.4.2 Intra-Rater Reliability

In order to verify the reliability of the information obtained from the

interviews, the author proceeded to do the codification of the data and compilation

of themes twice. The purpose of this exercise was to validate that the codification

and theme identification had been done properly and no key information was left

out during the first review of the data collected in the interviews. After the second

round of codification and theme compilation was done, the author proceeded to

42

compare the results of each exercise and adjusted the themes with any information

that was missed during the first round of data analysis.

5.5 Summary

In this chapter the author proceeded to review the di↵erent data analysis

techniques used in this study, in order to obtain meaningful information out of the

data collected in previous phases. The author also proceeded to provide di↵erent

arguments in order to validate the credibility of this qualitative study.

In the following chapter, the author explains how the themes found during

the analysis of the data were utilized to obtain the results that would fundament

the final proposal made for study.

43

CHAPTER 6. RESULTS

In this chapter, the author provides an overview of the results found in the

review and analysis of the data obtained during the interviews done for this study.

These results will then be tied in the next chapter with the review of SDMs

presented in the literature review chapter, in order to define an instrument that will

later be used to make a final recommendation on the SDM teams developing

software for higher education should follow to increase their chances of success.

6.1 Resulting Categories

With the information obtained during data analysis, the author was able to

identify seven main categorizes based on the information provided by the di↵erent

interviewees:

• Team demographic data

• Most common stakeholders

• Methodologies currently used

• Current processes

• Advantages of the current process

• Disadvantages of the current process

• Biggest challenges faced

44

Each one of these categories and themes captured data that served in one

way or the other to develop the final recommendation of this study. Next is a

description of each category found, as well as the information expected to be

obtained from the data.

6.1.1 Team Demographic Data

From the demographic data obtained in this study, the author was able to

identify that, in average, teams developing software for Purdue University have

around ten team members, not counting their lead, manager and/or director.

Nine out of the ten interviewees indicated that their teams were all

collocated in the same building to facilitate collaboration, meaning that distributed

teams were very rare. As one of the interviewees indicated: “We are all in the same

room, we have an open environment. Everybody can talk to each other, which is

good and bad”. Also, although o↵ered as an option, telecommuting was seen by at

least half of the interviewees as something their team members could only use under

special circumstances, like extreme weather conditions or household needs.

A vast majority of the teams (n=9) concentrated their e↵orts in the

development of web applications and defined their e↵orts as projects, as also

indicated by the interviewees. These projects were usually never longer than six

months, and a third of the interviewees indicated that the majority of their projects

would usually take three months or less.

With this information, the author was able to get an idea of the average size

of teams developing software for higher education, as well as the the size of the

projects they were working on. This information was a key component in the design

of the selection instrument created to determine the most suitable parts and pieces

of existing SDMs, that would better fit the team’s need.

45

6.1.2 Most Common Stakeholders

Given that this study tried to have a good representation of software

development teams that served the most important areas of the university, including

teaching and learning, research and administration, it was expected the range of

stakeholders to be mentioned by the interviewees to be very broad, and that was

exactly the case. When the participants were asked to provide a list of their most

common stakeholders, these were the most commonly mentioned:

• Faculty

• Academic sta↵

• Students

• Administrative sta↵ (including high ranks)

• Extension o�ces

When the interviewees were asked to expand this list with stakeholders from

other peer groups that are also commonly involved in their projects, all of them

mentioned other IT groups on campus, like Infrastructure Services and Security and

Compliance, and seven out of the ten mentioned some of the vendors they have to

work with on a regular basis.

With this information, the author got a fair understanding of the di↵erent

parties that get to participate in the development cycle of software applications for

higher education and, with the help AT, was able to define the most proper

development methodology that would help better facilitate the interactions between

the di↵erent people involved.

46

6.1.3 Methodologies Currently Used

When the author requested the participants to indicate if their teams used

any particular SDM at the moment of the interview, eight of them indicated that

their groups did, but followed this methodology loosely. As indicated my one of the

interviewees: “we use the agile methodology loosely. It is not a hit and fast but

thats what we use for the most part”. Only one participant indicated that their

group did not follow any particular methodology, although they had a good

understanding of the existing ones, and only one participant indicated that their

group followed a methodology exactly as it was theoretically defined.

Interviewees indicated that for the methodologies they used, in many cases

they had to adapt it to better fit their group’s needs. As said by one of the

participants: “we have been gradually adapting and maturing our methodology

based on what has been working”. Some of the methodologies that were most

commonly mentioned were waterfall and agile methodologies. The participants also

indicated that, even though they followed some of the principles behind these

methodologies, they were not necessarily following them on every step of the SDLC.

Half of the participants also indicated that role definition was fairly common

in their projects, being the role of Project Manager one of the most prominent ones,

especially for complex projects. Other roles mentioned throughout the interviews

included architects, leads, quality engineers and developers.

With this information the author was able to understand how familiar teams

developing software for higher education were with the concept of SDMs, with the

di↵erent SDMs available for use, and to which extent these teams were currently

using SDMs as part of their daily activities. This information also allowed the

author to get a perspective on how open would teams in higher education be to the

possible adoption of an SDM targeted to their own needs.

47

6.1.4 Current Processes

When the interviewees were asked to explain the process that they followed

to complete their assigned projects, their answers gave a clear picture of the

disparity between each team’s practices. Although a good majority of them

described the di↵erent phases of the SDLC as being part of their regular activities

to complete a project, the biggest di↵erences were noticed in the level of formality

used by each group, especially during the first phases of the project (including

project review, initialization and analysis) and the last few phases (testing and

maintenance).

Elements of linear development methodologies (including minimum to none

customer involvement during the development phase of the project and testing

being executed as a separate phase in the development cycle) as well as of agile

development methodologies (including biweekly delivery cycles and strong customer

involvement during all phases of the projects) were commonly found in many of the

processes mentioned.

Also, teams with extra levels of formality usually put more time and e↵ort

into the review, initialization and analysis phases, while interviewees working for

teams with less formalized processes usually started explaining the steps followed to

complete their projects from the project analysis and design phases. Design was the

only phase of the SDLC that most interviewees acknowledge their teams did in a

consistent way among all their di↵erent projects.

Nine of the ten interviewees mentioned testing as one of their steps during

their development cycle, although exactly when this testing happened varied widely

among groups. For example, two of the interviewees indicated that their teams

started their testing during the project development phase, while the other seven

indicated that they did it just after the all requirements were fully implemented.

48

Finally, only two of the participants included the support of the systems

delivered as one of the phases of their processes. This could be possibly justified by

the fact that over half of interviewees indicated that most of their projects went

through several iterations. This meant that once the project was completed, it was

very likely the team would have to work on a new version of the system in the

future, reason why they did not consider support as part of the process, but a new

project by itself.

This information was a key component for the author to understand that

there does not seem to be a standardized way of developing software between teams

at Purdue University, or even between the steps each one of the teams followed to

complete their projects. This analysis also allowed the author to identify the phases

of the projects that were considered to be the most important ones by the di↵erent

teams, as well as those phases that each team considers vital for the success of their

projects.

6.1.5 Advantages of the Current Process

After going through an overview of the process followed by their teams while

working on software projects, the interviewees were asked to identify the biggest

advantages they saw in following such processes. The responses varied widely

between participants, making it di�cult to identify common themes among them,

but both having the ability to react to quickly to change and unknowns, as well as

the ability to narrow the project scope to what is really needed were the two themes

that got the most number of mentions, with over fifty-four percent of the

participants indicating these to be advantages. As one of the participants

mentioned: “The biggest advantages we have found is in our responsiveness”.

49

Six out of the ten interviewees indicated that for them to be successful in

their jobs, their processes and methodologies had to allow them to be flexible,

adaptable and to be able to react quickly to unknowns. This also includes

unforeseen extra time needed to solve a particular problem, as well as time they

would have to spend providing fixes for systems that were currently in maintenance.

Also, three of the participants considered as an advantage that, depending on

each project, the teams could adapt the level of formality needed for each project,

and cut unnecessary documentation if considered appropriate for the project’s

success.

6.1.6 Disadvantages of the Current Process

Same as with the advantages, the interviewees were asked to comment on the

disadvantages they most commonly experienced with the processes their teams

followed while working in software projects. The results obtained were as scattered

as the ones obtained for the advantages, but with one very interesting characteristic:

interviewees who indicated that their teams followed less formalized processes for

the development of systems indicated this lack of formality as one of their major

disadvantages; and interviewees who indicated that their teams followed very

formalized processes indicated this much formality to be a disadvantage as well.

The lack of formalized quality assurance was another disadvantage

recognized by a third of the participants. Although considered one of the most

important phases of the SDLC, next to the development of the systems themselves,

the interviewees recognized that their processes allocated minimum to no time to

assure the quality of the systems, and that institutional support to have resources

dedicated to these tasks had not been received at that point.

50

Some other minor but yet still important disadvantages acknowledged by the

interviewees included scope creep and the lack of a supporting structure. With

scope creep, the participants indicated that giving customers the opportunity to

revisit and change the requirements of a project at any point throughout the

development cycle could result in major changes to already existing functionality,

causing significant delays in the final delivery of the systems. With the lack of a

supporting structure, the interviewees indicated that when a project gets completed,

they immediately have to start working on new assignments while, at the same

time, having to deal with the support needs of the recently released systems. Many

times project deadlines and estimations do not take in consideration the e↵ort main

resources have to invest supporting existing applications, and this constantly has an

impact on their ability to deliver systems within the given deadlines.

6.1.7 Biggest Challenges Faced

In order to understand what are the limiting factors software development

teams in higher education have to face in order to successfully complete their

projects, we asked the interviewees to comment on the most common challenges

they face while developing their systems. We also asked them to reflect on those

challenges, keeping in mind the interactions they have with the di↵erent

stakeholders that were usually involved in their projects.

When asked this question, the interviewees shared in length their thoughts,

allowing the author to collect the majority of the data for this study in this

particular section of the interview. After identifying all the di↵erent challenges

mentioned by the interviewees and categorizing them as such, the author then

proceeded to classify the di↵erent themes found in this category into di↵erent

subcategories. For this, the author reviewed each gathered concept again and

51

proceeded to determine a more intrinsic meaning behind it, resulting in a

subcategorization of the theme. Once all themes were reclassified into these

subcategories, the author proceeded to aggregate the data even further by counting

the number of times each subcategory was mentioned. The results of this exercise

can be found in Table 6.1.

Table 6.1.
Biggest challenges found

Challenge Times Mentioned
Customer interaction and lack of engagement 23
Resource constraints 13
Poor planning 12
Organizational issues 11
Collaboration with other groups 8
Scope definition 5
Process deficiencies 4
Lack of supporting structure 4
Poor change management 3
Lack of proper communication 3
Poor prioritization 3
Unclear governance 2
Vendor constraints 2
Fierce competition 2
Lack of influence 1

From this table the author could clearly identify what type of challenges

were considered by the interviewees as the most important ones, given the number

times they were mentioned. Customer interaction was considered the most

important challenge of all. As expressed by half of the interviewees, customers

tended to have a poor understanding of their projects and what they were really

looking out of them, as well as of the overall impact their requests could possibly

have for the university as a whole. Teams usually struggled trying to understand if

the requirements given by the customers were a good representation of what they

52

really want, especially when customers kept changing the requirements over and

over again. Customers also tended to request help from development teams by

providing what they considered would be the best way to solve a specific problem,

but when asked, they were not able to articulate the problem itself. As expressed by

one of the participants: “they will often come to us with a proposed solution,

instead of coming and defining a problem”. A lack of understanding of the scope of

the project, its impact, and the di↵erent parties involved also a↵ected on a regular

basis the capacity of software development teams to deliver a product that satisfies

the customer’s needs.

One particular area of customer interaction that was commonly mentioned

among the interviewees was the lack of engagement from the customers soon after

their projects got approved. Customers struggled making a true time commitment

with the development teams to help not only clarify requirements but also help the

team during the di↵erent phases of the SDLC, including testing. This lack of

engagement forced the teams to make decisions on their own, resulting in the

development of unnecessary or badly design features, a lot of project rework and

significant delays in the project deadlines.

Interviewees also identified as one of their major challenges constraints in the

availability of qualified resources. This goes from the number of people available to

develop software in their teams compared to the overwhelming number of project

requests they receive, to the talent of the resources themselves and the constant

turnover that a↵ected their ability to deliver projects successfully. Many resources,

including managers and directors, had to play multiple roles in the organization,

a↵ecting their overall e↵ectiveness in executing their assigned duties. This constraint

usually a↵ected the teams’ ability to adapt and react to the many other changes

they have to face on a day to day basis. As one of the interviewees indicated: “The

53

only real bottleneck we have in the [] team are resources, we just need more of us.

The demand for what we are doing is really high and there is just so many of us”.

The interviewees considered poor planning as the third challenge they most

commonly had to deal with. This included not only bad execution within the

planning phase of the projects, but also lack of planning from the decision makers,

who would constantly change their priorities and would come up with last minute

requests, expecting them not to cause any major impact in the current project

deadlines.

In fourth place, the author found that organizational issues also represented

one most common challenges mentioned by the participants. In this case the

organization represents the institution they worked for, Purdue University. Here,

the interviewees proceeded to explain how the lack of consistent standards to follow,

excessive bureaucracy, the university’s internal structure, as well as its slowness

adapting to change, represented major constraints in their ability to deliver

successful projects. Some of the interviewees also mentioned specific problems

within the IT organization itself, including their lack of a central authority to

determine common practices, their disconnect from the real customers (including

faculty and students), as well as the number of groups that are extremely territorial

about their scope and that are not willing to collaborate with groups who have

ideas on how things could be done better.

Collaboration represented the fifth most common challenge found. The

participants indicated that collaborating with other groups always represented a

limitation in terms of timing, resources available and communication. As mentioned

by one of the participants: “We are very siloed [...] software in general is meant to

pull things together and tie things together, but we are in such vertical alignments in

various places that that becomes really di�cult”. They also indicated that response

54

times from other groups could significantly impact their own schedules, and how,

when necessary, the sharing of resources between groups was extremely di�cult, in

many cases because of the organizational challenges presented previously.

Many other challenges were also mentioned at a lower scale by the

interviewees, including problems with scope definition (where stakeholders wanted

to be provided with a solution that would solve every single problem as well as one

that serves many purposes, resulting in an always changing scope); several process

deficiencies (including having to circumvent obsolete university processes to be more

e�cient and deliver better service); lack of a supporting structure (where the parties

involved in the project decision making never planned in advance for the

maintenance cost the systems would have); poor change management (where no

analysis is done on how di↵erent users would react to system changes, as well as a

lack of understanding on what the real impact is for any decision and change made);

lack of proper communication within the university (which includes project teams to

customers and vice versa, as well as between di↵erent IT teams); poor prioritization

(resulting in ever changing priorities); unclear governance (causing customers to be

extremely confused on what the real process behind the approval of projects is),

vendor constraints (in both the ability to adapt vendor applications to the

university needs, as well as to the vendor’s ability to solve di↵erent issues found),

fierce competition (for those teams developing products that are more than

information systems) and the inability to influence other parties to meet their

deadlines so project commitments can be met.

In the next chapter the author proceeds to combine the information obtained

during the literature review and data analysis chapters to create a selection tool

that would be used to make a recommendation on a SDM or combination of SDMs

that software development teams working for higher education institutions could use

55

to smooth their SDLC and address the multiple challenges they face while

developing software solutions.

56

CHAPTER 7. DISCUSSION AND IMPLICATIONS

This research project had set as one of its objectives to determine what

would be the most e↵ective way for software development teams working for higher

education institutions to develop software, while minimizing the limitations they

most commonly find, and also while leveraging some of the advantages provided by

the existing software development methodologies they use. In order to accomplish

this goal, it became necessary to compare the characteristics of the di↵erent SDMs

reviewed in the literature review chapter with the results obtained during data

analysis phase of this research project.

To facilitate such comparison, the author needed to create an instrument

that would allow them to determine, for each specific result obtained during the

data analysis phase, the SDM that would better fit the needs of each particular

topic. The creation of this selection instrument is explained in the first section of

this chapter.

With the instrument in place, the author then expected to determine which

SDM or combination of SDMs would better fulfill the needs of the teams working in

software projects for higher education institutions, and derive a final

recommendation based on the results. The review and analysis of the application of

the selection instrument, as well as the resulting SDM are presented in the second

and last section of this chapter, followed by a final validation of the results using the

activity theory system.

57

7.1 Creation of the Selection Instrument

As mentioned in the literature review chapter, many are the SDM that have

been created over the years. Unfortunately, up to this date, there is still not

consensus among the software development and software engineering communities

on which SDMs better adapt to the development of software projects, as well as on

the best way to group and classify them for better understanding and selection.

This lack of consensus became a crucial point during the creation of the selection

instrument, given that the author needed to decide up to which level of detail they

wanted the instrument to base on. If the author decided to create the instrument

based on Kennedy (1998)’s approach, the level of detail the instrument would have

would be significantly high, raising the possibility of obtaining scattered results. On

the other hand, if the author decided to create the instrument based on Boehm and

Turner (2003)’s approach, the level of SDMs detail included in the instrument would

be much lower, increasing the chances of having more consolidated results.

For that reason, the author decided to create an instrument that merged

both approaches into a single selection instrument. This would allow them to easily

compare and determine if one approach would bring more benefit to the study than

the other one by easily comparing all the results obtained after using the selecting

tool.

When this approach was decided, the author then proceeded to select the

topics out of each section covered during the data collection that received the most

mentions by the interviewees. These selected topics were then used as the criteria

through which the methodologies in both approaches would be compared against.

The resulting selection instrument can be found in figure 7.1

With the instrument created, the author then proceeded to compare each

one of the di↵erent methodologies against the defined selection criteria and mark,

58

Figure 7.1. Selection instrument

for each topic, if the SDM in review was a good fit to address the given need. The

result of this exercise can be found in figure 7.2

Once all SDMs in the selection instrument were reviewed, the author

proceeded to count how many of each one of the topics the SDM was a good fit for.

The analysis of these results are explained in the next section of this chapter.

7.2 Resulting Methodology

With the results obtained from applying the selection instrument created in

the previous section, the author was able to determine that none of the SDMs

reviewed in this research project would be able to fully address the needs found in

the data gathered from the interviews. The results were clearly scattered and

ranged widely between methodologies. These findings highlighted the necessity for

the design of a custom methodology that would address the needs of the teams

59

Figure 7.2. Comparison of SDMs with selection criteria

under review, and that would serve as a guideline for them to use while working in

their software development projects.

With this exercise it also became clear that, out of all the methodologies

under review, the ones proposed by Boehm and Turner (2003) were the ones that

had the most matches with the selection criteria, and were also complements of each

other, in the sense that where one methodology lacked in ability to fulfill a need, the

other one was able to do it. This was not the case with the SDMs suggested by

Kennedy (1998), where the comparison among methodologies left important gaps in

multiple parts of the selection criteria.

Given that each one of the findings in the data analysis could be addressed in

one way or the other by parts and pieces of at least one of the SDMs categories

suggested by Boehm and Turner (2003), it would not necessary to come up with a

new set of principles and guiding rules from scratch for the new methodology to be

60

created. With an appropriate combination of the most important aspects of each

methodology that addressed a particular need, the author would be able to develop

a new methodology for recommendation. The creation of custom methodologies,

according to Boehm and Turner (2003), is becoming a common practice among

organizations of all kind, especially those who find themselves in the need of

addressing the perplexity that surfaces while trying to select the SDM that would

better address their organizational needs.

7.2.1 Recommendation for the Documentation of Requirements

During the review of the selection instrument results, the author was able to

identify that software development teams creating solutions for higher education

needed aspects of plan-driven methodologies, as mentioned by Boehm and Turner

(2003), to be able to narrow the scope of their projects and avoid scope creep.

Plan-driven methodologies characterize by explicitly and fully documenting the

project requirements upfront, and by clearly defining the processes to follow in case

a change in such requirements is needed. Unfortunately, the level of formality

needed by plan-driven methodologies would be extremely hard to follow by the

teams reviewed in this research, given the majority of the teams are very small (10

people or less), and they lack resources that could be dedicated to writing such deep

levels of documentation. For these particular team characteristics, agile-driven

methodologies would adapt better to their needs. Based on this, given that some

level of documentation is needed to avoid scope problems, but at the same time the

teams lack resources to write such documentation to higher extends, it is

recommended for the teams to follow the use of user stories.

A user story, as defined by Ramsin and Paige (2008) ”’defines a feature of

the system as seen from the customers point of view. User stories are written by the

61

customer [...] and are nothing but short descriptions (about three sentences) of a

certain chunk of functionality needed to be delivered by the system”’. The detail

level that goes into user stories is just enough to allow team members to provide a

semi reliable estimation of the time and e↵ort needed for the implementation of the

story. For such reason, the descriptions that go into the user stories remain very

lean and to a very high-level of the requirements; yet they can be used to drive most

of the planning, design and development activities of a project.

User stories, as mentioned before, would help the teams provide an early

rough estimation of the amount of e↵ort it would take them to complete the

project, all of it backed up by the requirements provided in the story. This, from

very early stages of the project, would also help the team deal with unrealistic

deadlines imposed by the stakeholders, as well as with poor analysis sometimes

made by the team itself, where they wrongly estimate the e↵ort it would require to

complete the project and do not realize of many aspects that have to be kept under

consideration to make the project succeed.

Given that the interviewees also mentioned the lack of talented available sta↵

as one of their major challenges, relying on tacit interpersonal knowledge is simply

not an option for their teams, and explicit documented knowledge becomes a must

Boehm and Turner (2003). With the use of user stories, teams would be able to keep

memories of knowledge properly documented. These memories could be used not

only in the present for the implementation of the issues, but they could also be used

as a reference in the future by new team members, as well as other collaborators,

when trying to understand the specifics of a system already implemented.

62

7.2.2 Recommendations for the Organization of Work

Continuing with the analysis of the selection instrument results, the author

was able to determine that agile-driven methodologies would allow teams to easily

adapt to change (a characteristic highlighted by many interviewees as critical for

their success), as well as to properly react to unforeseeable changes in the project’s

scope. This, along with the need of keeping stakeholders highly involved in the

project to answer questions and provide feedback, gave the author and indication

that once the team is working on a project that has entered the development phase,

they should define a short, regular cadence of work. This work cadence would allow

them at the beginning of each cycle to determine which tasks they would be able to

work on next (based on project priorities, as well as on any unforeseen changes in

the scope and the project environment). At the end of these cycles, the teams would

be able to meet with the stakeholders, show progress, gather feedback, and adapt

quickly to the feedback obtained by incorporating it in the next work cycle or

iteration. These interactions would, among other things, allow the teams to foster

stakeholder ownership and involvement.

Based on these findings, sprints would be a good match for the teams under

review. A sprint, as defined in agile-driven methodologies, is typically a short

iteration of work that delivers an established amount of progress, satisfying a subset

of the requirements defined for the project (Ramsin & Paige, 2008). Their length

usually ranges from two weeks to a month and it involves a sprint planning session,

where all parties involved in the project get to decide together what would be

included in the sprint; the sprint development, where the team does the actual

implementation of the agreed tasks; and a sprint review, where again, all parties

involved meet to review progress, retrospect and adapt to existing or upcoming

changes.

63

With sprints, cross-team collaborations and the sharing of resources would

also become more predictable and simpler, and response times would clearly

improve. With the implementation of these short cycles of work, each team involved

in some sort of collaboration with another team would be able to raise a particular

need and get it accommodated within the upcoming cycles of the other teams work,

avoiding having to wait long periods of time for a response and the provision of the

work needed.

7.2.3 Recommendations of the Level of Formality

Interviewees indicated that, from an organizational level, the biggest

challenges they usually experienced related mostly to slowness around change, as

well as the lack of standards to be followed. Although plan driven methodologies

would alleviate the need of formality in standards and processes, they tend to

contribute to the slowness around change, given the significant amounts of time

needed for documentation and other levels of formality. On the opposite end, even

though agile driven methodologies are great proponents of change and adaptability,

their lack of formality around documentation and processes can cause perplexity

among teams developing software applications. For these reasons, the author found

a need for the inclusion of certain levels of formality in the processes followed while

developing software for higher education institutions. Those processes, although

needed, had to be to be small enough not to impact the speed of changes that need

to happen and addressed promptly.

To not incur in an excessive amount of work for both the stakeholders in

need of the software solution, as well as for the team in charge of developing the

software, the author recommended a well-defined process at the beginning of the

64

software development lifecycle, as well as when changes out of the scope of the

projects are being requested, and finally at the end of the project.

Several interviewees indicated that, during project initialization, one of the

steps they struggled the most with was trying to get a clear idea of what exactly the

stakeholders wanted out of a project they have requested, as well as trying to

determine where in their priorities this project would fall. For such reason, the

author proposes a formal mechanism of project requests, where stakeholders would

have to clearly state the purpose of their project along with other meaningful

information, including the benefit such project would bring, its impact, a timeline

for when it would be needed as well as any other information considered appropriate

by each team. With this formalized process, stakeholders would be forced to put

more thought into their requests, and assess the true benefits of implementing their

proposal.

Once a stakeholder has submitted their project request, their proposal would

have to be reviewed and prioritized by an approval organism. This organism could

be the team itself, a steering committee defined by the organization the team serves,

or another arrangement of interested parties that together could determine not only

if the project is viable and reasonable, but also where exactly this project would fall

when compared with all the other priorities the software development team already

has. The cadence on how often these reviews would happen, as well as how often

the priorities would be reviewed, is left to be decided by each organization, but

should be often enough to review proposals within just a few weeks from

submission, in order to promptly determine the viability of the request.

If a project is approved and already in the process of being implemented, the

author proposed the formalization of the steps through which stakeholders can

request one or more major changes to the scope of the project originally requested.

65

Interviewees indicated in multiple occasions that one of the reasons why their

projects often got delayed was due to the inclusion of new requirements to the

project, without having them being formally reviewed and sized in order to

determine how much of an impact such change would have in the originally

estimated delivery date. With a formalized change request process, stakeholders

would have to verbalize the reason behind the change in scope and justify its

importance . Such reasons would have to be then reviewed and approved again by

the organism that approved the project in the first place, and the team would have

to provide a revised estimation of e↵ort, which would include the changes in

question.

Finally, at the end of each cycle, the author proposes a formalized process for

the closure of the project. During this meeting or series of meetings, the

development team along with the stakeholders, end users and any other parties

involved in the project would get together to do a post-mortem review of the overall

project experience, and would document both the parts of the process and the

project that worked well, as well as those areas where improvement would be needed

for future projects. As part of this session, all parties would declare the project

considered as finished and any new versions of the system, as well as any other work

necessary, would have to be handled through the change request process previously

described.

7.2.4 A Proposed Software Development Methodology For Higher Education

After the analysis of the selection instrument results and in an e↵ort to bring

to life all the three elements discussed in the sections above, the author created a

software development methodology as a proposal to be used by teams developing

66

software for higher education institutions. Such methodology can be found in figure

7.3.

7.3 Methodology Validation Through Activity Theory

In order to validate how well the di↵erent aspects of the proposed

methodology would help software development teams alleviate the most common

challenges they face while developing solutions for higher education institutions, the

author proceeded to apply activity theory analysis to the proposed methodology by

mapping it with the activity system model. The results of this exercise can be found

in figure 7.4

With the results of this analysis it became clear that the new methodology

has a well defined activity system, making clear the roles of the subject (software

development team), the community (project, IT and external stakeholders, end

users and the team as well), the object (the project itself) and the desired outcome

(a system that fulfills the stakeholder needs). It also became clear that the activity

structure is well formed, allowing to easily identify the di↵erent actions and

operations needed at each step of the activity, something that the existing processes

used by the teams lacked or had significant gaps in.

With the analysis it was also found that the definition of mediators in terms

of tools, rules and roles had been properly defined. Even though some of the

existing processes and methodologies had some well-established mediators, they did

not necessarily have one of each, while others had mediators defined at a more

ad-hoc basis, often causing confusion in the di↵erent parties involved.

The system dynamics of the proposed methodology were also properly

defined, leaving nothing to surprise. The relationships between members are

explicitly set, the context in which each one of the steps of the methodology must

67

be followed is clearly stated, and the expected result of each interaction is explicit in

the model. Some of the methodologies currently used by the teams included in the

study, as explained by the interviewees, had not clearly set the dynamics of the

activity, leaving multiple inconsistencies between projects executed by the same

team.

Based on this results, the software development methodology seems to be

well found and properly designed, based on the principles behind activity theory

and its defined system.

7.4 Summary

In this chapter, the author proceeded to analyze the results obtained from

the data collection and analysis phases of this research project. After this and with

the creation of a selection instrument that would help the author determine the

SDM or combination of SDMs that would better adapt to the needs of software

development teams in higher education, the author then proceeded to describe what

they considered the most appropriate factors to be kept in mind for a new SDM.

This new SDM was mean to help to alleviate the most common challenges faced by

teams in higher education, while at the same time leverage the advantages of the

existing methodologies in use. With all this data, the author proceeded to make a

recommendation for a SDM that could be used by teams in higher education and

presented such methodology in the last section of the chapter. Such proposal was

then reviewed with the help of activity theory in order to validate its form and

foundation.

in the next chapter, the author proceeds to summarize the findings of this

research work and make some final recommendations.

68

F
ig
u
re

7.
3.

R
ec
om

m
en
d
ed

so
ft
w
ar
e
d
ev
el
op

m
en
t
m
et
h
od

ol
og
y
fo
r
h
ig
h
er

ed
u
ca
ti
on

in
st
it
u
ti
on

s.

69

Figure 7.4. Activity system model applied to proposed methodology

70

CHAPTER 8. CONCLUSIONS

As stated at the beginning of this study, the purpose of this research was to

analyze the opportunities and challenges the di↵erent SDMs used in higher

education had, and to recommend a SDM that could be adopted by software

development teams working for those institutions. Such methodology should be able

to help them overcome the challenges they experience most commonly during their

day-to-day operations, as wells as to adapt well to their particular team

characteristics.

Throughout this research project, the author explored multiple existing

SDMs, and assessed their di↵erent advantages and challenges. They also tried to

identify any literature work that demonstrated the existence of a methodology that

had been tested in higher education and that had demonstrated to meet the needs

in all areas of such institutions, but up to this date, no such work had been done.

Because of that, the author developed a new SDM, based on data collected from

interviewing software developers and manager/team lead/directors from Purdue

University, a land grant institution located in West Lafayette, Indiana. This SDM

was developed step by step following the findings of the interviews, addressing the

di↵erent needs mentioned by the interviewees during the data collection phase by

utilizing parts and pieces of existing SDMs that were identified to be successful in

those particular areas. The resulting SDM was then validated with the help activity

theory analysis.

The world of software development, as we have known it traditionally, has

been drastically changing (Boehm & Turner, 2003). Software systems are being

71

imagined and created di↵erently than just a few years back. And as part of this

evolution, software development teams are constantly trying to evolve the way they

meet their goals while trying to keep up with this trend. The selection of the

instruments that would help them succeed is not an easy task, given the infinite

number of available options. For software development teams working for higher

education in particular, this perplexity increments by the myriad of other di↵erent

challenges they face while developing software for their particular field.

As it was analyzed in this study, these software development teams have

tried to establish a way of developing software that works best for them, and their

current processes vary widely from one to another. Unfortunately, up to this date

and regardless of their current e↵orts to follow particular industry practices, these

di↵erent approaches have not been able to address all their needs. Based on the

findings of this study, the author believes one of the reasons behind their lack of

success relies on the fact that these teams have tried to follow methodologies as

presented in their theoretical description, and have not tried to combine

methodologies to meet their particular challenges. In their book, Boehm and Turner

(2003) make a case for the importance of finding middle ground between

methodologies to better match an organization’s needs, particularly between those

organizations that follow plan-driven or agile-driven methodologies. Boehm and

Turner (2003) incites organizations to use their common sense when evaluating the

value behind each approach, and highlights the importance of combining discipline

driven methods with agile driven ones, in order to adapt to the fast pace of

technology.

Learning from Boehm and Turner (2003) insights and by reviewing the

results of the data analysis done for this study, it became clear to the author that a

mix of methodologies would be the best way for software development teams in

72

higher education to proceed with their projects, and based the methodology

proposed in this study in all this information. With the proposed approach, the

teams in review will have a tool at hand that has been catered to their particular

needs and that they can take on an adapt as the software industry keeps evolving.

It is important to note that the adoption of the proposed methodology would

probably have to start as a grass roots initiative by the software development teams.

As some of the challenges mentioned during the interviews held for this study, a

lack of consistency in standards, as well as the missing presence of a central

authority at the university who can dictate some of these rules, forces teams to have

to make this type of decisions on their own. This is contradictory to what many

other types of organizations do, where the way of doing work by the software

development teams is clearly dictated from an executive level. Even though the lack

of guidance can be explained as a way of empowering the di↵erent teams, the results

of this study highlighted the need seen by the teams to have a clearer vision on how

software should be developed within the institution.

Finally, it is important to mention that, for a tool or methodology like the

one proposed in this research study to succeed, it will become vital for the teams to

properly educate their di↵erent stakeholders into the di↵erent steps they are

expected to participate, and set the expectations clearly from the beginning of each

project. Without stakeholder buy in and participation, the methodology here

proposed would not succeed.

8.1 Future Research Recommendations

The SDM created and presented in the results section of the previous chapter

is yet to be tested and evaluated by software development teams at Purdue

University in order to determine its value, accuracy and validity of results. It is

73

recommended that, as the methodology is put to practice by the di↵erent teams,

further revisions and iterations of the methodology are created until a refined

version reaches a level of maturity high enough that significantly increases the

chances of success for in-house projects at the institution. It is also recommended

that, upon verification of success of the presented methodology at Purdue

University, the SDM presented in this research project is also taken and applied to

other universities to validate its generality.

In addition, future work could be done utilizing the same results obtained in

this study, but modifying the selection instrument in such a way that each one of

the selection criteria has a weight to determine its level of importance. This would

di↵er from the work done by the author in this research where each selection criteria

were weighted the same, without putting extra emphasis in the criteria that seemed

to be of more importance to the participants. The results of this exercise could then

be compared with the ones presented in this study, and an analysis of the

discrepancies could provide some insight in future improvements to be made to the

proposed SDM.

Based on the information gathered, the biggest majority of the teams

included in this research work had ten or less team members. The author

recommends further study where a body of teams whose size is bigger than ten is

selected and have them apply the proposed methodology to analyze how well it

would adapt to di↵erent team sizes as well.

Finally, once a sizable body of results is obtained from applying the

recommended methodology to multiple projects in higher education, a quantitative

analysis could be done as a further expansion of this work. Such work could help

compare the project success rates of teams using the suggested methodology versus

74

those who are using other existing methodologies to corroborate the benefit behind

utilizing the proposed methodology.

APPENDICES

75

APPENDIX A. INVITATION TO PARTICIPATE IN RESEARCH PROJECT

76

APPENDIX B. INSTITUTIONAL REVIEW BOARD APPROVAL

LIST OF REFERENCES

77

LIST OF REFERENCES

Bardram, J. E. (1997). Plans as situated action: An activity theory approach to
workflow systems. Datalogisk Afdeling.

Barthelmess, P., & Anderson, K. M. (2002). A view of software development
environments based on activity theory. Computer Supported Cooperative
Work (CSCW), 11 (1-2), 13–37.

Berg, B. L. (2009). Qualitative research methods for the social sciences (7th ed.).
Boston, MA: Pearson.

Boehm, & Turner, R. (2003). Balancing agility and discipline: A guide for the
perplexed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis
and code development. Thousand Oaks, CA: Sage Publications.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
Research in Psychology , 3 (2), 77–101.

Davis, A. M., Berso↵, E. H., & Comer, E. R. (1988). A strategy for comparing
alternative software development life cycle models. Software Engineering,
IEEE Transactions on, 14 (10), 1453–1461.

Döweling, S., Schmidt, B., & Göb, A. (2012). A model for the design of interactive
systems based on activity theory. Proceedings of the 2012 ACM Conference
on Computer Supported Cooperative Work , 539–548.

Dyck, S., & Majchrzak, T. A. (2012). Identifying common characteristics in
fundamental, integrated, and agile software development methodologies.
Proceedings of the 45th Hawaii International Conference on System Sciences ,
5299-5308.

Eisenhardt, K. M. (1989). Building theories from case study research. Academy of
Management Review , 14 (4), 532–550.

Eisner, E. W. (1991). Taking a second look : educational connoisseurship revisited.
National Society for the Study of Education.

Engestrom, Y. (2000). Activity theory as a framework for analyzing and redesigning
work. Ergonomics , 43 (7), 960-74.

Engeström, Y. (2015). Learning by expanding: an activity-theoretical approach to
developmental research (Second ed.). Cambridge University Press.

78

Farrugia, A., & Al-Jumeily, D. (2012). The design, implementation and evaluation
of a web-based student teachers’ eportfolio (step). 2012 International
Conference on Education and e-Learning Innovations (ICEELI), 1-7. doi:
10.1109/ICEELI.2012.6360612

Fjeld, M., Lauche, K., Bichsel, M., Voorhorst, F., Krueger, H., & Rauterberg, M.
(2002). Physical and virtual tools: Activity theory applied to the design of
groupware. Computer Supported Cooperative Work (CSCW), 11 (1-2),
153–180.

Glass, R. L. (2004). Matching methodology to problem domain. Communications of
the ACM , 47 (5), 19–21.

Hannan, M. (2011). Analysis of the collaborative activities in software development
processes from the perspective of chronotopes. Computers in Human
Behavior , 27 (1), 248–267.

Holcombe, W. M. L. (2008). Running an agile software development project.
Hoboken, N.J.: Wiley.

Ibrahim, R., & Oxley, A. (2010). Proposed development methodology for higher
education and library mash-ups. 2010 International Symposium in
Information Technology (ITSim), 1 , 1–6.

Kamat, V., & Sardessai, S. (2012). Agile practices in higher education: A case
study. Proceedings of the Agile India 2012 Conference, 48–55.

Kaptelinin, V., & Nardi, B. A. (2006). Acting with technology. Cambridge, MA:
MIT Press.

Kaptelinin, V., & Nardi, B. A. (2012). Activity Theory in HCI: Fundamentals and
reflections. San Rafael, CA: Morgan & Claypool Publishers.

Kennedy, D. M. (1998). Software development teams in higher education: An
educator’s view. FlexibilITy: The next wave, 373–385.

Kuutti, K. (1996). Activity theory as a potential framework for human-computer
interaction research. Context and consciousness: Activity theory and
human-computer interaction, 17–44.

Levy, Y. (2008). An empirical development of critical value factors (CVF) of online
learning activities: An application of activity theory and cognitive value
theory. Computers & Education, 51 (4), 1664–1675.

Lynch, J. (2013). Chaos manifesto. The Standish Group. Boston.

Magdaleno, A. M., Werner, C. M. L., & Mendes de Araujo, R. (2012). Reconciling
software development models: A quasi-systematic review. Journal of Systems
and Software, 85 (2), 351–369.

Mahanti, R., Neogi, M., & Bhattacherjee, V. (2012). Factors a↵ecting the choice of
software life cycle models in the software industry-an empirical study.
Journal of Computer Science, 8 (8), 1253.

Martin, P. Y., & Turner, B. A. (1986). Grounded theory and organizational
research. The Journal of Applied Behavioral Science, 22 (2), 141–157.

79

Matijasevic, B., Roncevic, H., & Orel, O. (2007). Agile software development
supporting higher education reform. 29th International Conference on
Information Technology Interfaces , 375–380.

Nardi, B. A. (1996). Context and consciousness: Activity theory and
human-computer interaction. MIT Press.

Nardi, B. A. (1997). Studying context : a comparison of activity theory, situated
action models, and distributed cognition. MIT Press.

O’Leary, D. E. (2010). Enterprise ontologies: Review and an activity theory
approach. International Journal of Accounting Information Systems , 11 (4),
336-352.

Patton, M. Q. (2002). Qualitative evaluation and research methods. Thousand
Oaks, CA: Sage Publications.

Pavolka, R., Mount, V., Neymeyr, A., & Rhodes, C. (2005). From waterfall to rapid
prototyping: supporting enterprise-wide adoption of the oncourse
collaboration and learning (CL) environment at Indiana University.
Proceedings of the 33rd Annual ACM SIGUCCS Fall Conference, 312–319.

Ramsin, R., & Paige, R. F. (2008). Process-centered review of object oriented
software development methodologies. ACM Computing Surveys (CSUR),
40 (1), 3.

Redmiles, D. (2002). Introduction to the special issue on activity theory and the
practice of design. Computer Supported Cooperative Work , 11 (1/2), 1-11.

Sam, C. (2012). Activity theory and qualitative research in digital domains. Theory
Into Practice, 51 (2), 83–90.

Tan, S., & Melles, G. (2010). An activity theory focused case study of graphic
designers’ tool-mediated activities during the conceptual design phase.
Design Studies , 31 (5), 461-478.

Trevvett, D. (2013, August). Enterprise application projects in higher education
(Research report). EDUCAUSE Center for Analysis and Research.

Vavpotic, D., & Bajec, M. (2009). An approach for concurrent evaluation of
technical and social aspects of software development methodologies.
Information and Software Technology , 51 (2), 528–545.

Woodside, A. G. (2010). Case study research: Theory, methods, practice. Emerald
Group Publishing.

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). Sage.

	Purdue University
	Purdue e-Pubs
	12-2016

	Towards a software development methodology for projects in higher education institutions
	Daniela Rivera Alvarado
	Recommended Citation

	Blank Page

