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ABSTRACT 

Author: Redemann, Morgan, A. MS 
Institution: Purdue University 
Degree Received: December 2016 
Title: Evaluation of Thermal Process Lethality in Meat for Non-Pathogenic Escherichia 

Coli as a Surrogate for Salmonella 
Major Professor: Manpreet Singh 
 

Non-typhoidal Salmonella is the leading cause of foodborne illness in the United 

States, resulting in about 20,000 hospitalizations and nearly 380 deaths annually. The 

meat processing industry has been especially plagued by Salmonella, from meat-inherent 

sources and more alarmingly, cross-contamination. For ready-to-eat (RTE) meat products 

specifically, this can cause significant problems in processing facilities ensuring safe 

product for consumption, resulting in foodborne illness. 

The development of standard lethality compliance guidelines by the United States 

Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) within 

Appendix A assists processors in confirming that Salmonella is inactivated in RTE beef 

and poultry products, based on a “worst case” raw product contamination condition. 

While this is beneficial, means of thermal process validation are limited. However, the 

identification of five non-pathogenic E. coli strains isolated from cattle may provide a 

method of validation for processors. Previous studies have investigated the behavior of 

the isolates individually in response to a variety of microbial interventions, including 

cooking, fermentation, freezing, refrigerated storage, and antimicrobial treatments as 

compared to the behavior E. coli O157:H7 as well as Salmonella. Based on the results of 

these studies, it was sensible to study the behavior of the combined non-pathogenic E. 

coli isolates in ground beef at varying fat contents under thermal processing conditions 
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compared to Salmonella to determine its potential for use to validate thermal processing. 

Therefore, the objective of this study was to determine if the non-pathogenic E. coli 

isolates could be used as a surrogate for a mixed culture of Salmonella as means to 

validate thermal processing parameters in accordance with Appendix A.  

For lower temperatures outlined in Appendix A (130, 135, 140, 145°F (54, 57, 60, 

and 63°C)), the non-pathogenic E. coli inoculum has significantly different (P < 0.05) 

decimal-reduction values (D-values), in that they are significantly greater than 

Salmonella D-values across all five fat content levels (5, 10, 20, 25, 30%). At 

temperatures greater than 145°F (63°C), no significant differences (P > 0.05) existed 

between the inoculums across fat content, indicating that the two inoculums were being 

inactivated at similar rates. These results suggest that the most appropriate use of the non-

pathogenic E. coli surrogates would be for predicting, ensuring, and validating thermal 

processing for the inactivation of Salmonella at lower temperatures, specifically those 

that fall within the “danger zone” that support rapid bacterial growth (40 - 140°F (4 - 

60°C)). Beyond temperature 145°F (63°C), the non-pathogenic E. coli inoculum offers no 

substantial advantage, as it is being inactivated as rapidly as Salmonella. Due to its 

prolific growth and high-density yield, the absence of the E. coli inoculum can ensure the 

inactivation Salmonella at higher thermal processing temperatures. However, 

investigation of the effects of meat product attributes (pH, water activity, moisture, fat 

and muscle distribution) as well as considerations of additional variables, risks, and 

parameters of facility-conducted thermal processing trials is recommended to gain further 

insight on thermal processing behavior of both non-pathogenic E. coli inoculum and 

Salmonella. 
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CHAPTER 1. INTRODUCTION 

Non-typhoidal Salmonella is the leading cause of bacterial foodborne illnesses in the 

United States annually (Scallan and others 2011). Out of nearly 56,000 hospitalizations 

and 1,351 deaths due to foodborne illness, Salmonella was responsible for 35% and 28% 

of these cases, respectively. This has resulted in nearly $3.7 million for total cost of the 

Salmonella infections annually, accounting for medical and productivity costs (USDA 

2014). According to the Annual Foodborne Illness Surveillance Report, it has been 

estimated that there are 15.3 incidents of Salmonella-related illness per 100,000 

individuals, even surpassing the incidence rate of Camplyobacter of 13.3 incidents per 

100,000 individuals (CDC 2016a). As a result of this, in collaboration with the Office of 

Disease Prevention and Health Promotion (ODPHP), FoodNet constructed food safety 

objectives to reduce the incidence rate of foodborne illness through the “Healthy People 

2020” initiative in 2006. For Salmonella, the most recent 2015 food safety report card for 

the initiative has cited no change in the overall incidence rate, while other pathogens, 

such as Escherichia coli 0157:H7, have decreased. Many sources varying among many 

serotypes of Salmonella has been cited as a major factor for the static incident rate (CDC 

2016a). Thus, it is imperative to continue exploring means of ensuring food safety during 

processing.  

Salmonella is typically associated with poultry products, but in recent years, there 

has been outbreaks in more atypical products such as cucumbers, cantaloupe, and peanut 

butter, among others. Additionally, the infective dose of Salmonella can be as low as 15 

cells or as high as 105 cells, depending on the serotype (Mead and others 1999; Foley and 

Lynne 2008). Salmonella serovars belonging to S. enterica cause the most cases of 
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foodborne illness in humans, of which more than 2,500 serotypes have been identified 

(CDC 2015b). The National Antimicrobial Resistance Monitoring System (NARMS) has 

observed patterns of multi-drug resistance for serovars including but not limited to S. 

Enteritidis, S. Newport, and S. Typhimurium, stimulating a call to action to prevent 

microbial contamination in the food system.  

The Food Safety Inspection Service under the United States Department of 

Agriculture (USDA-FSIS) is primarily responsible for setting standards to ensure the 

safety of processed foods. The formal establishment of the Hazard Analysis Critical 

Control Points system (HACCP) for food processing facilities in 1996 has significantly 

impacted the safety and controls within the food industry. Validation, verification, and 

monitoring of processing systems are three essential overarching principles that 

encompass the means of identifying, quantifying, and mitigating or eliminating risks and 

risk factors.  

Surrogate and indicator organisms have been in use since the 1800s, originally 

developed as a measure of water quality and sanitation. Fecal contamination, identified 

by the presence of naturally occurring Escherichia coli, was specifically measured as an 

indicator organism. This concept evolved to its current form for processing and Good 

Manufacturing Practices (GMPs) integrity at food production facilities, and is now 

known as an “index organism” (Medema and Payment 2003). Surrogate organisms 

originated from this concept of the early indicator organism, but instead of being 

naturally occurring, they are introduced into a system undergoing evaluation as an 

inoculum (Busta and others 2003). Surrogate organisms are typically non-pathogenic, so 

that they can be used in processing facilities without risk to health and food safety. 
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However, easy preparation, enumeration and differentiation from other microflora as well 

as rapid, sensitive, and inexpensive detection is desired. Surrogate organisms should also 

exhibit similar behavior to the target organism demonstrated through thermal death time 

values, D-values, and z-values. Thus, their most appropriate application is for processing 

treatment evaluation (Busta and others 2003) The canning industry is a primary example 

of using surrogate organisms to validate the destruction of Clostridium botulinum spores.  

While various studies have analyzed microbial interventions in meat to 

characterize the five non-pathogenic E. coli strains individually (see Table 1 - P1, P3, P8, 

P14, and P68 isolated from beef cattle) little research has been completed to investigate 

their use for thermal processing validation. The purpose of this research is to determine if 

the non-pathogenic E. coli isolates can be used as surrogates for thermal processing 

validation and compare their thermal behavior to Salmonella. This research utilizes a five 

strain cocktail of the non-pathogenic E. coli isolates (Table 1) to correlate performance 

characteristics with a mixed culture of Salmonella in ground beef with varying fat content 

and at different lethality temperatures in accordance with the standards in Appendix A. 

Based on the comparison of the thermal death time of the surrogates and Salmonella, the 

secondary objective of this research is to determine if fat content level impacts microbial 

performance characteristics under thermal processing conditions. This will provide 

insight as to whether the non-pathogenic E. coli isolates could be used as surrogates for 

Salmonella to validate thermal processing in meat according to Appendix A. 

 

 

 



4 
 

CHAPTER 2.  LITERATURE REVIEW 

2.1 Introduction 

Each year, about 9.4 million cases of foodborne illness in the United States are 

caused by 31 major pathogens (Scallan and others 2011). About 3.6 million of these 

cases, nearly 39% of all foodborne illness, is caused by bacteria annually, of which, non-

typhoidal Salmonella composes 11% as the leading illness-causing pathogen (Scallan and 

others 2011). Thirty-five percent of hospitalizations and 28% of deaths were the result of 

non-typhoidal Salmonella (Scallan and others 2011). The meat industry specifically has 

been plagued with pathogen outbreaks, which is concerning for thermally processed, 

ready-to-eat (RTE) meat products. Acid/alkaline tolerance, low temperature tolerance, 

thermotolerance, and desiccated environment survival are some of the adaptations that 

Salmonella has been reported to develop through sublethal injury (Foster 2001; Phillips 

and others 1998; Wesche and Ryser 2013). These survival and adaptation mechanisms of 

Salmonella have compelled meat processing facilities to implement stringent controls and 

protocols to ensure thorough processing for complete inactivation. The implementation of 

the Hazard Analysis Critical Control Point (HACCP) System with good manufacturing 

practices (GMPs) and sanitation standard operating procedures (SSOPs) has provided 

more control for manufacturing facilities to improve food safety, and further 

developments in detection technologies continue to emerge. Of these technologies, real-

time methods to confirm pathogen inactivation have been developed as means to evaluate 

thermal processing efficacy, specifically the use of non-pathogenic surrogate 

microorganisms in processing facilities. The National Advisory Committee on 

Microbiological Criteria for Foods (NACMCF) established guidelines for the use of 
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microbial surrogate microorganisms in processing studies and validations that require 

further study. Appropriately selected surrogates have inactivation characteristics and 

kinetics that are used to predict those of the target pathogen, and also behave similarly to 

the target pathogen when exposed to processing parameters within a specific food 

product. This is specifically used for analyzing thermal death time values (D- and z-

values). Studies have been conducted to analyze the use of non-pathogenic Escherichia 

coli surrogates for specific treatments and processing of meats to control target pathogens 

such as E. coli 0157:H7 as well as pathogenic Salmonella serotypes. However, there is a 

lack of data that specifically addresses and complies with the mandates of Appendix A. 

The Appendix A guidelines provide time/temperature requirements to reduce specified 

microbial loads in RTE meats, and are recognized by the United States Department of 

Agriculture’s Food Safety Inspection Service (USDA-FSIS) as validated process 

schedules. Evidence demonstrating that the non-pathogenic E. coli organisms can be used 

as surrogates for Salmonella would continue to increase the confidence in food safety and 

processing validations and promote more effective processing and controls.    

2.2 Current Surveillance of Salmonella 

FoodNet, a collaborative program established in 1995 under the Center for 

Disease Control (CDC), conducts surveillance for major pathogens in the United States 

diagnosed by laboratory testing of samples from patients (CDC 2015a). Among these 

pathogens, Salmonella has continued to be the most frequent case of infection with 15.3 

cases per 100,000 individuals in the United States, according to the FoodNet 2014 

Annual Foodborne Illness Surveillance Report (CDC 2016a). Aligned with objectives 

from the Healthy People 2020 initiative (ODPHP 2016), the 2015 Food Safety Report has 
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concluded that there has been no change in the incidence of culture-confirmed infections 

since the 2006-2008 baseline studies and objective to decrease the incidence rate to 11.4 

cases per 100,000 individuals. Salmonella is the most frequent cause of infection, along 

with Campylobacter, due to its complexity of many sources varying by many serotypes.  

2.3 Salmonella 

Salmonella is a member of the family Enterobacteriaceae, which includes gram-

negative, non-spore forming-bacilli that are facultative anaerobes. Salmonella is further 

divided into two species categories, S. enterica and S. bongori (CDC 2016b; CDC 

2015c). S. bongori is most common to cold-blooded animals and can infect humans, but 

rarely, while over 99% of serotypes belong to the S. enterica species, which is associated 

with warm-blooded animals (CDC 2015c; Fookes and others 2011).  The S. enterica 

category causes most foodborne illness in humans and more than 2,500 serotypes have 

been identified (CDC 2015c), which can further be divided into typhoidal and non-

typhoidal categories. Typhoidal Salmonella causes systemic disease and the risk is 

relatively low in the United States, while non-typhoidal Salmonella is much more 

common. According to the CDC, non-typhoidal Salmonella is a leading cause of 

gastroenteritis worldwide and the infective dose is based on serotype, from as much as 

103 – 105 cells to as low as 15 - 20 cells (FDA 2015). This wide range is a cause of 

concern in RTE and thermally processed meat products, thus mandating guidelines such 

as Appendix A, providing time/temperature requirements to reduce specified microbial 

loads in RTE meats. 
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2.4 Salmonella Infection 

Consumption of contaminated food products, including meat, poultry, eggs, milk, 

seafood, and fresh produce accounts for 95% of human salmonellosis cases (Mead and 

others 1999; Foley and Lynne 2008). Disease syndromes from non-typhoidal Salmonella 

include gastroenteritis, bacteremia, and focal infections (Darwin and Miller 1999; Foley 

and Lynne 2008). Symptoms of diarrhea, fever, and abdominal cramps typically manifest 

themselves between 12 and 72 hours after infection, and usually lasts 4 to 7 days. Most 

individuals recover without treatment (symptoms are self-limiting), but the elderly, 

infants, and immunocompromised populations are more likely to experience severe 

illness (CDC 2016d). A low percentage of cases may result in septicemia and invasive 

infections of organs and tissues, which lead to extra-intestinal diseases such as 

osteomyelitis, pneumonia, and meningitis. The cause of this small percentage of cases in 

the past has been reported to due to S. Choleraesuis, as well as S. Typhimurium (Cohen, 

Bartlett, and Corey 1987). As the leading cause for bacterial foodborne illness, 

Salmonella has detrimental impact amongst regulatory agencies and consumers to trust in 

food processing systems. 

The fecal-oral transmission of Salmonella is the primary mode of infection in 

humans and animals, and the infective dose can range from 15 – 20 cells to 103 – 105 cells 

(Foley and Lynne 2008; FDA 2015). This range is partially influenced by serotype 

characteristics, as well as the nature of the contaminated food matrix (Giannella and 

others 1972; FDA 2015; Foley and Lynne 2008). The human stomach has inherent 

barriers to Salmonella colonization, including low pH and presence of organic acids 

(Foley and Lynne 2008). However, it has been reported that Salmonella has developed 

acid shock protein mechanisms over time to survive low pH environments and increase 
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acid tolerance (Foster 1991). Salmonella types that are able to adapt to the high acid 

environment colonize in the small intestine, colon, and cecum using fimbriae or pili 

(Darwin and Miller 1999). These mechanisms are constantly adapting through sublethal 

injury, paralleling the use of antimicrobials in medicine and agriculture. Therefore, there 

is a sense of urgency for study of serotypes developing resistance and adaptive 

mechanisms. 

2.5 Resistance and Adaptations 

Environmental stress and sublethal injury during processing induces development 

of a variety of adaptations in Salmonella. Several studies have investigated acid and 

alkaline resistance/tolerance, growth at sub-optimal temperatures, thermotolerance 

adaptations, and survival under desiccation. Salmonella has been observed to develop an 

Acid Tolerance Response through the production of Acid Shock Proteins (ASPs) during 

growth in log phase (Foster 2001). The sigma factor (σs) and rpoS gene have been found 

to be responsible for this adaptation (Foster 2001). The 1965 study conducted by Liston 

found Salmonella to be able to grow near refrigeration temperatures, affecting its 

metabolism (Liston 1965). Increased heat resistance has been found to be a result of a 

combination of factors, including nutrient deprivation, and acid/alkaline shock (Wesche 

and Ryser 2013). Wesche and Ryser also observed that sublethal injury encourages 

morphological changes which contribute to biofilm formation in manufacturing facilities 

(Wesche and Ryser 2013). Upregulation in nutrient-uptake transporter genes proU and 

osmU genes allow Salmonella to maintain osmotic balance to survive in low water 

activity environments (Deng and others 2012; Finn and others 2013a,b). These 

adaptations increase the likelihood of growth, spoilage, and development of bacterial 
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virulence factors (Wesche and Ryser 2013). Thus, there are more opportunities for 

pathogenesis, particularly foodborne illness upon product consumption. 

2.6 Sources of Salmonella 

Salmonella is typically associated with consumption of contaminated poultry, 

beef, pork, eggs, milk, seafood, nut products, and fresh produce (Foley and Lynne 2008). 

Recent outbreaks in food products include Cucumbers (S. Newport, 2014), Foster Farms 

Chicken (S. Heidelberg, 2013), Cantaloupe (S. Typhimirium and Newport, 2012), 

Turkish pine nuts (S. Enteritidis, 2011), and peanut butter (Salmonella Typhimurium, 

2009) (CDC 2016e). According to FoodNet/Foodborne Diseases Active Surveillance 

Network, the top 10 serotypes of culture-confirmed Salmonella infections include: 

Enteritidis, Typhimurium, Newport, Javiana, I 4, [5], 12:|:-, Heidelberg, Saintpaul, 

Infantis, Muenchen, and Oranienburg (CDC 2014). It has been reported that pathogens 

such as Salmonella and Clostridium perfringens are likely to be found in raw meat prior 

to processing, as well as in fermented sausages with high moisture (Jenson and others 

2014). International trade records have demonstrated that Salmonella and Shiga toxigenic 

Escherichia coli (STEC, VTEC, EHEC) are of most importance (Jenson and others 

2014). Primary sources of contamination from the animal include the gastrointestinal 

tract and hide, thus requiring careful separation from carcass meat (Jenson and others 

2014).  The hide has specifically been found to be the major source of carcass 

contamination, in which bacteria are introduced onto the carcass through initial cuts and 

hide removal(Arthur and others 2010). While animals are natural reservoirs for 

Salmonella, contamination can also occur through and by other means during processing. 

Due to demand for product, production pressures result in reducing cooking times, 
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extending production runs, and reducing cleaning frequency, which potentially 

compromises food safety (Bell and Kyriakides 2002). For RTE meat products, controls 

and processing validations are essential to mitigate or eliminate cross contamination. 

2.7 Current Methods for Mitigation of Salmonella and Meat-Inherent pathogens 

Supporting systems of Hazard Analysis Critical Control Point System (HACCP) 

include sanitation standard operating procedures (SSOPs), good manufacturing practices 

(GMPs), and a “zero-tolerance” policy for visible contamination of feces and ingesta 

(Jenson and others 2014). For the success of HACCP, pre-requisite programs such as 

SSOPs and GMPs must be practiced and followed by personnel in the manufacturing 

facility. A well-trained workforce is required for the success of all risk interventions and 

controls.  

To address cross-contamination along with sources of Salmonella and other 

pathogens, a variety of interventions and controls are integrated into the HACCP plan. 

On the personnel side, gloves and better hand washing practices reduce contamination 

from the hands. Cross-contamination from personnel and equipment must be closely 

monitored, incorporating careful practices of separating carcass meat from the hide and 

gastrointestinal tract. Pre-slaughter interventions such as stress minimization during 

transport (specifically for cattle), sourcing clean cattle, and management of hide 

contamination can minimize this introduction of bacteria during initial incising cuts 

(Arthur and others 2010). De-hairing (pork and goat processing) and chemical 

decontamination are additional means to minimize microbial loads on hides (Carlson and 

others 2008). In-process unit interventions include a multitude of sanitizing systems for 

knives, methods for separation of carcass meat, and specific handling procedures for the 
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removal of the gastrointestinal tract and other internal organs (Jenson and others 2014). 

To minimize the growth of microorganisms transferred to the carcass, rapid temperature 

reduction and maintaining low temperatures during shelf-life are essential. Reduced 

temperatures and periodic cleaning in the cutting room can reduce growth during this 

step. Carcass chilling, especially initial chilling, further reduces the risk of pathogenic 

growth; the carcass surface temperature should be below 7°C (45°F), the minimum 

growth temperature for Salmonella and E. coli (Arthur and others 2010). 

2.8 Regulatory Bodies in Meat Safety 

 The Food Safety and Inspection Service (FSIS) is an agency of the United States 

Department of Agriculture responsible for overseeing the safety and wholesome nature of 

meat, poultry, and egg products (USDA-FSIS 2016). One of the first federal consumer 

protection measures emerged in 1906 in response to Upton Sinclair’s novel, The Jungle, 

exposing the unsanitary conditions in meat-packing establishments. The Federal Meat 

Inspection Act (FMIA) established sanitary standards and inspection protocol for animal 

processors, including the requirement of continuous presence of government inspectors at 

all meat-manufacturing establishments (USDA-FSIS 2016). This could be a very early 

form of validation of meat safety during this era. In the early 1900s, methods relied 

heavily on organoleptic means, using sight, touch, and smell to prevent meat from 

diseased animals to enter the food supply. As processing technologies advanced into the 

late 1950s, there was a growing demand to keep pace with the industrialized meat 

processing methods. A study in 1976 by consulting firm Booz, Allen, and Hamilton 

recommended a delegation of inspection responsibilities from the inspectors to the 

establishment. Inspectors were now responsible for verification of meat safety (USDA-
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FSIS 2016). Microbiological criteria for finished product was also recommended. These 

recommendations were deemed radical at the time by consumer groups and FSIS, 

resulting in follow-through on only a few of the proposals (USDA-FSIS 2016). However, 

change in the meat industry was expedited in the 1990s after a large outbreak of E. coli 

O157:H7 that resulted in 4 children deaths and hundreds sickened. This led to structural 

changes within FSIS and the establishment of the HACCP System in 1996. The role of 

FSIS was to reduce the risk of foodborne illness in meat and poultry products by 

identifying potential hazard points and implementing standards at each processing step to 

mitigate or eliminate the hazard of interest (USDA-FSIS 2016).  

2.9 Hazard Analysis and Critical Control Points (HACCP) 

Development of HACCP led improvement of food safety in production facilities 

by providing structure for integration of measures to reduce the risk of not only 

biological, but also chemical and physical hazards in food. The system also invokes 

accountability for production facilities to maintain acceptable levels of food safety during 

processing (USDA-FSIS 2016). The seven principles that comprise the HACCP system 

are: 1) Conduct a hazard analysis, 2) Critical control point identification (CCP), 3) 

Critical limits established for preventative measures for each CCP, 4) Establish CCP 

monitoring requirements/procedures for using monitoring results to adjust 

processes/maintain control, 5) Establish corrective actions at times of deviation from a 

critical limit, 6) Maintain record procedures for the HACCP plan, and 7) Establish 

verification procedures for the HACCP plan (USDA-FSIS 2016). For the meat and 

poultry industries, FSIS mandated the utilization of HACCP in all meat and poultry 

production facilities.  
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At the core of the seven principles of HACCP lies the concept of validation, 

verification, and monitoring or reassessment (CFR 2016a). Validation confirms that the 

HACCP plan is ensuring that both plan and measures are purposeful and meeting 

intentions, while verification ensures the plan is adequate, i.e. “working as intended.” 

Overall process validation to ensure safety and quality of foods must be incorporated in 

the HACCP plan to ensure that it works correctly and fulfills its purpose. According to 

the National Advisory Committee on Microbiological Criteria for Foods (NACMCF), 

verification is defined as any activity, other than monitoring, that determines the validity 

of the HACCP plan and ensures that the HACCP system is operating according to the 

plan (Dickson 2013). It is also referred to as a set of methods, procedures, and tests to 

evaluate the HACCP system and determine if it is compliant with the plan (USDA-FSIS 

2016). Thus, validation is an activity that supports verification activities, utilizing data 

from studies and technical information to determine if the HACCP plan is able to control 

the food safety hazards (Dickson 2013). To ensure that CCPs, process validations, and 

the HACCP plan is under control, monitoring the system through observations and 

measurements is critical. In the case of misalignment and deviations, corrective actions 

must be taken to regain control of the deviated CCP in order to ensure the quality and 

safety of the product. As stated by 9 CFR 417 - HACCP Systems, the HACCP plan must 

be incorporated for numerous types of products and associated processes, from slaughter 

to thermally processed and fully cooked products (CFR 2016a). Initial validation is 

critical to the integrity of the HACCP plan, testing critical limits, monitoring results, and 

establishing corrective actions. 
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2.10 Ready-To-Eat (RTE) Meats 

Processes such as curing, comminuting, cooking, and drying are used to create 

RTE meats, which are readily available at grocery stores. Deli meats are included in this 

category. The convenience of RTE meats and the expectation that the consumers will 

minimally heat (if needed) these products makes it a high-risk product category for public 

health. As with many food products, there are chemical, physical, and microbiological 

hazards associated with RTE foods. Nitrite, a compound used in deli meats, is used to 

enhance color and prevent growth of Clostridium botulinum spores; the addition of nitrite 

is a CCP (Jenson and others 2014). The legal limit in the United States is not more than 

200 ppm for sodium nitrite, and not more than 500 ppm for sodium nitrate in finished 

meat products (CFR 2016b). Physical hazards can include contamination from processing 

equipment such as cutting blades, while microbiological hazards encompass an array of 

cross-contamination points, from raw materials to retail stores (Jenson and others 2014). 

One of the most prominent pathogens found in RTE meat, Listeria, could enter food 

manufacturing facilities and thrive in a variety of ways, including entrance via raw 

materials and ingredients, from the environment, and from food manufacturing staff. As a 

psychrotroph, it thrives in the most difficult areas to clean in refrigerated environments, 

in-process systems, as well as non-food contact areas (Jenson and others 2014). These 

include direct handling by operators, and inadequate processing and refrigeration (Jenson 

and others 2014). Pathogens more likely to be found in raw meat include Salmonella and 

C. perfringens (Jenson and others 2014).  
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2.11 Thermal processing 

Thermal processing includes different types of heat treatment, which controls 

microbial loads in foods. Heat is transferred to food via conduction, convection, or 

radiation to destroy microorganisms, extend shelf life, and to impart changes that 

improve food quality. Processes to extend shelf life include pasteurization, sterilization, 

and ultra-high temperature (UHT), and processes to improve food quality include 

blanching, cooking, baking, roasting, and frying (Sanguansri 2016). Thermal processing 

is a critical step in pathogen control in food processing and is typically a CCP in the 

HACCP plan for food safety management systems. Due to the critical nature of this unit 

operation, validation of thermal processes is important to obtain sufficient level of 

pathogen control without compromising product quality. A target pathogen, food spoilage 

organism, enzyme inactivation, or changes in food characteristics (texture, color, flavor) 

are used to determine the time-temperature combination required to ensure safe food 

(Sanguansri 2016). The main components of thermal processing include decimal 

reduction time (D-value), z-value, and lethality of a thermal process (F-value). 
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2.12  Decimal Reduction Time (D-value) 

Decimal reduction time, referred to as the D-value, is defined as the heating time 

required for the 90% reduction of the microbial concentration at a constant temperature 

(Sanguansri 2016). Where, N is the number of surviving cells at time t (Lewis 2006), the 

logarithmic reduction model is as follows: 

 

 

Factors that affect the D-value include the type of microorganism, temperature, and 

medium/food matrix, which encompasses pH, redox potential, and composition). It is 

widely accepted that microbial thermal destruction, in general, follows first-order kinetics 

(Lewis 2006). 

2.13 z-value 

The temperature increment specific to a microorganism required for a 10-fold 

change in the rate of thermal destruction is called the z-value (Lewis 2006). The z-values 

also refer to the temperature coefficient of different food components, such as Vitamin C, 

to describe the temperature increment required for change or destruction. Microbiological 

safety and quality z-values typically differ by 10 – 20°C, thus it is important to consider 

these values when developing an optimal thermal process (Tucker and Featherstone 

2011).  
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2.14 F-value: Lethality of Thermal Processes 

The time required to achieve a given reduction ratio in the number of 

microorganisms at a given constant temperature is the F-value (Lewis 2006): 

 

 

 

In terms of thermal processing, if the F-value is calculated at 250°F or 121°C, it is known 

as the sterilization value for foods. This is used as an indicator to determine alternate 

processing temperatures without compromising safety of the products. 

2.15 Guidelines and Validation for RTE meat 

As part of HACCP, RTE meats must comply with guidelines set forth by the 

USDA-FSIS Appendix A (USDA-FSIS 1999). These guidelines provide 

time/temperature requirements to reduce specified microbial loads in RTE meats. The 

guidelines are recognized by FSIS as validated process schedules and are expected to 

have been conducted for each product, utilizing a time-temperature relationship to deliver 

a ‘Listeria monocytogenes 6D cook’ or any other time-temperature combination which 

provides the same microbial destruction (USDA-FSIS 1999). This specific 6D cook 

encompasses other pathogens such as Salmonella and vegetative cells of C. perfringens, 

as these are more heat-labile than Listeria (Jenson and others 2014). For Salmonella, 

FSIS has implemented a minimum 6.5- log10 reduction in RTE beef products and a 7-

log10 reduction for fully and partially cooked poultry products (USDA-FSIS 2006). In-

plant validation is a key aspect of the HACCP plans to ensure processing plants are not 

compromising safety of processed foods. For validation of thermal processing of RTE 
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meat plants, probes and data loggers are used to record temperature data as secondary 

proof for adequate processing of foods and maintaining documentation. Each batch cook 

is verified to confirm that the specified time-temperature combination is being applied to 

the product.  

2.16 Thermal Process Validation: Surrogates, Indicators, and Markers 

The concept of a surrogate organism – a non-pathogenic substitute marker for the 

pathogen or organism of interest – stems from the concept of an indicator organism 

(Sinclair and others 2012). The difference is that an indicator organism is naturally 

occurring, while a surrogate is introduced into the system as an inoculum (Busta and 

others 2003). The indicator concept was developed in the 1800s, when quality and 

treatment of water was a large issue at hand (Medema and Payment 2003). The 1800s 

brought about an era of discovery with the paralleling of recognition of the scientific field 

of bacteriology and seeking ways to improve water quality and treatment (Medema and 

Payment 2003). At this point in history, it was understood that the pathogens in water 

were from fecal sources, and the levels of contamination led to the development of 

practices to measure fecal contamination levels using an indicator concept (Medema and 

Payment 2003). Early practices included the use of slow sand filtration to reduce the 

bacteria in water by greater than 90% to below 100 bacteria/ml (Medema and Payment 

2003). Additional studies of fecal microorganisms in conjunction with these findings led 

to the concept of the indicator organism, specifically using the category of Escherichia 

coli to indicate fecal pollution. E. coli was most appropriate for this application, as it is 

found in the feces of warm-blooded animals, therefore including human vectors, and 

demonstrates predominance over other thermotolerant coliforms in human and animal 
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excreta (Dufour 1977). The application and interpretation of E. coli levels in water were 

presence-driven, in that, when E. coli was absent, the pathogens were absent (Medema 

and Payment 2003). This specific application and interpretation is now defined by the 

term ‘index organism.’ The current interpretation of the presence of indicator organisms 

is more specifically related to the application of processing or treatment, in which its 

presence represents a failure of Good Manufacturing Practices (GMPs). Thus, the current 

and most appropriate use of the term ‘indicator organism’ is in conjunction with the 

process or treatment evaluated, including process indicator or disinfection indicator 

(Medema and Payment 2003). Used within the HACCP plan, index organisms, 

indicators, and surrogates provide valuable insight into the treatments and processing of 

products, when applied appropriately. However, the limitations of indicator organisms, 

such as their presence in very low numbers and uneven distribution in foods, makes it 

difficult to rely on indicator organisms to validate a process when trying to demonstrate 

high levels of log reductions following a process.  

2.17 Surrogates vs. Indicator Organisms 

Selection of surrogate microorganisms to validate a process requires consideration 

of many factors. The first step in surrogate selection is determining the pathogen of 

interest, which requires information about previous outbreaks, isolation of pathogens 

from the product, survival characteristics and environmental adaptations including effects 

of processing on survival (Busta and others 2003; National Advisory Committee on 

Microbiological Criteria for Foods 2010).   
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Specific criteria should be considered when selecting surrogates and have been 

outlined by Busta and others (2003) and the National Advisory Committee on 

Microbiological Criteria for Foods. These criteria are as follows: 

• Nonpathogenic: No risk to safety nor health in processing facility 

• Predict lethality of target pathogen using inactivation characteristics and kinetics 

• Similar behavior to target microorganism: Susceptible to injury under processing 

parameters similar to target pathogen, varying by food product (thermal death 

time values, D- and z- values)  

• Growth, populations: Genetically stable, stable and consistent growth for 

reproducibility; yield highly dense populations that remain constant until 

utilization  

• Detection: Easy to differentiate and enumerate, rapid enumeration, cost effective 

detection methods  

• Attachment to product:  Similar to target 

• Does not become a spoilage organism on processing equipment  

Surrogates organisms differ from index and indicator organisms in that they are 

introduced into a system as an inoculum. In the context of industry processing 

validations, it is essential that the surrogates selected are not pathogenic, since 

introducing pathogens to processing facilities is not advised. The non-pathogenic nature 

of surrogate organisms is a primary benefit to using them for processing validations. An 

additional benefit of surrogate organisms is that they can be used in “worst case” 

processing conditions studies in both lab and processing facility environments (Anderson 

and Lucore 2012). It is typically advisable that when using surrogate organisms for in-
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plant validation, the products in which the surrogate organisms are introduced are further 

processed and cooked to render them safe and prevent any public health issues.  

Unlike surrogate organisms, indicator organisms are typically naturally occurring 

in the product undergoing processing. Typical applications for indicator organisms 

include validation and verification of Good Manufacturing Practices (GMPs), Good 

Agricultural Practices (GAPs), Sanitation Standard Operating Procedures (SSOPs), and 

other food safety and hygiene integrity systems (Busta and others 2003). Indicator 

organisms, as opposed to surrogate organisms, are best used in these programs, which are 

essential to mitigating the risk of pathogenic contamination. Additionally, inadequate 

processing for safety is marked by the presence of indicators, providing evidence of 

failure to comply with the aforementioned programs (Busta and others 2003). It is 

expected that impacts and effects on the concentration of the indicator organisms will 

directly correlate to the target organism. The absence or low concentration of an indicator 

organisms demonstrates that the product was not exposed to circumstances that would 

risk contamination by the target pathogens (Busta and others 2003). Utilizing indicator 

organisms mandates dependence on the presence of the indicator organism in the food 

when the target pathogen may be present, and absent when the target is absent or 

eliminated after processing (Busta and others 2003).  

While indicators can be used for thermal processing validation, they provide more 

insight into process control attributes, such as GMPs and good product handling practice 

programs (Marshall and others 2005). Given the limitations of indicator organisms, 

surrogate organisms can provide a different type of control to processors and food safety 

overseers specifically for validation purposes, as it relies on a known inoculum level and 
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its relation to the target pathogen. Specifically, the most appropriate use for surrogates is 

to analyze effects and responses of processing conditions (Busta and others 2003).  

2.18 Surrogate Use 

Surrogate organisms are not a new concept, but their use has been more recently 

explored to address food safety needs as detection methods improve. Historically, 

surrogates have been used in the canning industry to validate the destruction of 

Clostridium botulinum spores in low acid foods, specifically C. botulinum include C. 

sporogenes and Bacillus stearothermophilus (Busta and others 2003). Produce 

processing, though it does not contain a kill step, utilizes surrogates to evaluate cleaning, 

sanitation, and disinfection of equipment, as they provide an added process control 

advantage (Busta and others 2003).  Additional foods using surrogate organisms include 

but not limited to: animal feed, poultry feed, almonds, dry roasted almonds, ground and 

formed beef jerky, whole muscle turkey jerky, and fresh meat (Marshall and others 2005; 

Anderson and Lucore 2012). Indicators or surrogates used in validation studies include: 

mesophilic aerobic bacteria (total plate count), coliforms, E. coli Biotype I/II, 

Enteroccocus faecium, Pediococcus spp., and lactic acid bacteria (Dickson 2013). Many 

surrogates are process-specific, thus research into the applications of the surrogates is 

essential to conduct a representative study and validation (Dickson 2013). Surrogates are 

not limited to processing efficacy evaluation; they can also be used for fermentation, 

freezing, and refrigerated storage studies (Keeling and others 2009).  

2.19 Non-Pathogenic E. coli Surrogates 

Research conducted by Marshall and others (2005) identified 113 isolates of E. 

coli from cattle for use as indicator organisms for E. coli O157:H7. The organisms were 



23 
 

characterized through combinations of selected microbial intervention treatments to 

evaluate temperature sensitivity and thermal death times. Out of the 113 isolates, five E. 

coli indicator isolates were validated for integrity as verification of current microbial 

intervention practices used in the meat industry. Four of the five isolated were found to 

be more versatile indicators of E. coli O157:H7 reduction on beef carcass tissue across 

seven different treatment conditions (Marshall and others 2005). Only one isolate was 

found to be significantly different for more than one treatment. Thus, these findings 

demonstrate that no single isolate can thoroughly represent microbial intervention 

efficacy, and the use of a cocktail of surrogates for validation provides an additional 

margin of safety.  

Many studies have been conducted using non-pathogenic E. coli surrogates in the 

meat industry to evaluate a variety of processing and storage conditions for validation 

purposes. These include antimicrobial treatments, cold storage (freezing and 

refrigeration), fermentation, cooking, and inoculated pack studies (Niebuhr and others 

2008; Keeling and others 2009; Dickson 2013). The five strains (American Type Culture 

Collection (ATCC) 1427, 1428, 1429, 1430, 1431) identified by Marshall and others 

were found to be representative of E. coli 0157:H7 and Salmonellae in meat products 

(Dickson 2013). Additionally, FSIS permits them for in-plant studies (Dickson 2013). 

These surrogates are all non-pathogenic and isolated from cattle hides with the objective 

to determine similarity to E. coli 0157:H7 (Marshall and others 2005). In terms of acid 

and heat tolerance, these 5 surrogates were found to be most similar to E. coli 0157:H7 

(Marshall and others 2005). A study conducted by Keeling and others (2009) found that 

these five surrogates provide a margin of safety due to greater survival demonstrated by 
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higher populations in cooking, fermentation, freezing, and refrigerated storage for meat 

(Keeling and others 2009). For refrigerated and frozen storage, the surrogates did not 

exemplify statistically lower populations compared to E. coli 0157:H7 (Keeling and 

others 2009). A study on fermentation showed that 4 of the 5 surrogates tested had less 

reduction than E. coli 0157:H7. For thermal processing across temperatures of 60, 65, 

and 71°C (140, 149, and 160°F), all surrogates had higher D-values than the pathogenic 

strains, demonstrating more thermal resistance as compared to E. coli 0157:H7, but were 

not statistically different from the D-values of the pathogen (Keeling and others 2009). 

Despite statistical differences among individual surrogates as compared to E. coli 

0157:H7, overall, they were found to be equivalent, conservative, or marginal to 

population reductions of the pathogen. Definitions of the aforementioned evaluations 

include equivalent as no statistical difference, conservative as demonstrating a lower 

population reduction or greater D-value than E. coli 0157: H7, and marginal as 

demonstrating a higher population reduction or lesser D-value as compared to E. coli 

0157:H7 (Keeling and others 2009). In the context of thermal inactivation, all surrogates 

across all temperatures in the study were found equivalent or conservative to E. coli 

0157: H7. Thus, the strains in combination would be useful and representative of the 

target organism in thermal processing validations. 

A study conducted by Niebuhr and others (2008) focused on these same 

organisms as surrogates for five strains of Salmonella enterica for antimicrobial 

treatments, fermentation, freezing, and refrigerated storage of meat. Antimicrobial 

treatments demonstrated population reduction specific to the surrogate as compared to the 

S. enterica cocktail based on the specific treatment (specific spray washes and tissue 
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types). Similar to Keeling (2009), fermentation resulted in 4 of the 5 surrogates having 

lower reductions than that of the target pathogen, in this case, S. enterica, therefore 

providing a margin of safety (Niebuhr and others 2008; Keeling and others 2009). It was 

found that these same surrogates could be used for specific process evaluations and 

validations for Salmonella (Niebuhr and others 2008). Freezing and refrigerated storage 

demonstrated greater and equivalent surrogate survival compared to S. enterica (Niebuhr 

and others 2008). 

The results of previously conducted studies by Keeling, and Niebuhr have looked 

at specific treatments to meat products to evaluate characteristics of E. coli surrogates as 

compared to target pathogens. Of the criteria provided by NACMCF, these specific 

studies addressed criteria requiring in-depth research, specifically evaluating inactivation 

characteristics and kinetics, and comparing behavior and responses of the surrogates to 

the target microorganism when subjected to processing parameters; thermal death time 

values, D-values, and z-values (Busta and others 2003; Dickson 2013). There is limited 

information and studies on the potential use of these E. coli surrogates to validate thermal 

processing targeting Salmonella for RTE meat products. To develop and establish food 

safety guidelines in accordance with Appendix A, research needs to demonstrate 

similarities between the E. coli isolates and Salmonellae for thermal lethality processes. 
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CHAPTER 3. THERMAL PROCESS LETHALITY IN GROUND 
BEEF FOR NON-PATHOGENIC ESCHERICHIA COLI AS A 

SURROGATE FOR SALMONELLA 

3.1 Abstract 

Food processors are seeking more technologically advanced ways to ensure food 

safety. In 1999, the Food Safety Inspection Service under the United States Department 

of Agriculture (USDA-FSIS) developed Appendix A, compliance guidelines for thermal 

lethality, specifically 6.5 and 7.0-log10 reductions of Salmonella for meat and poultry 

products. As pathogen detection in the food industry continues to improve, processors 

have more information available to ensure integrity and food safety in processing 

parameters. Five non-pathogenic E. coli isolates were identified by Marshall and others 

(2005) as potential indicators or surrogate organisms for E. coli O157:H7 in beef, and 

Niebuhr and others (2007) found the five E. coli isolates to have similar behavior of 

Salmonella for non-thermal microbial interventions. To continue to improve food safety 

in the meat industry, especially in ready-to-eat (RTE) products, the five E. coli isolates 

were evaluated for use as a surrogate for Salmonella in ground beef under thermal 

processing conditions. Ground beef at five fat content levels across nine temperatures 

from Appendix A was inoculated with either non-pathogenic E. coli inoculum or a 

cocktail of Salmonella and heated in a water bath at specific temperatures. Each 

fat/temperature combination for each inoculum was enumerated to determine the 

decimal-reduction values (D-values). The D-values of E. coli and Salmonella were 

compared to determine if significant differences existed, indicating whether the non-

pathogenic E. coli isolates could be used as a surrogate for Salmonella in compliance 
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with Appendix A. As expected, D-values for both inoculums decreased as temperature 

increased. Across fat content, significant differences (P < 0.05) existed at the lowest four 

temperatures (54, 57, 60, and 63°C (130, 135, 140, and 145°F)) but in general, 

temperatures above 63°C (145°F) demonstrated no significant differences (P > 0.05). At 

these temperatures, both E.coli and Salmonella were inactivated rapidly with similar D-

values. At the lower temperatures, E. coli D-values were consistently higher than those of 

Salmonella, which provides a margin of safety if they were to be used as surrogates for 

Salmonella. The E. coli surrogates have potential to become a technology for thermal 

processing validations in combination with Hazard Analysis Critical Control Point 

(HACCP) plans to ensure the safety of meat products. 

3.2 Introduction 

About 11% out of 3.6 million cases of foodborne illness annually are caused by 

pathogenic, non-typhoidal Salmonella (Scallan and others 2011) About 35% of 

hospitalizations and 28% of deaths have been the result of Salmonella, making it the 

leading illness-causing pathogen. FoodNet, under the Center for Disease Prevention and 

Control (CDC), has estimated there are 15.3 cases per 100,000 individuals of Salmonella-

related foodborne illness in the United States, according to the FoodNet 2014 Annual 

Foodborne Illness Surveillance Report (CDC 2016a). Aligned with objectives from the 

Healthy People 2020 initiative, the 2015 Food Safety Report has concluded that there has 

been no change in the incidence of culture-confirmed infections since the 2006-2008 

baseline studies and objectives to decrease the incidence rate to 11.4 cases per 100,000 

individuals (ODPHP 2016). Based on this recent report, Salmonella remains as the most 
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frequent cause of infection, along with Campylobacter, due to its complexity of many 

sources varying by many serotypes.  

Salmonella has been found in meat, poultry, eggs, milk, seafood, and a 

contaminant of fresh produce and processed foods containing contaminated ingredients 

(CDC 2016c). Salmonellosis symptoms include primarily mild to severe diarrhea (acute 

gastroenteritis), abdominal cramps, fever, as well as nausea, vomiting, and headache 

(CDC 2015b). Invasive Salmonellosis infections can result in bacteremia, meningitis, 

osteomyelitis, and septic arthritis, and most commonly occur in people who are very 

young or old, or have compromised immune systems. This has resulted in nearly $3.7 

million for total cost of the Salmonella infections annually, accounting for medical and 

productivity costs (USDA 2014). 

Improved food safety and process controls has been the result of implementing 

Hazard Analysis Critical Control Point (HACCP) programs in food production facilities. 

The core principles of HACCP include routine validation, verification, and monitoring of 

processing systems to ensure and improve food safety. As foodborne pathogen detection 

technologies continue to improve, validation and verification methods have also 

improved, becoming more preventative in nature. Using non-pathogenic bacteria as 

surrogate microorganisms for pathogens has provided an opportunity to validate thermal 

processing parameters, specifically for meat and poultry products. 

The United States Department of Agriculture Food Safety and Inspection Service 

(USDA-FSIS) established lethality standards for Salmonella in partial and fully cooked 

beef and poultry products in 1999 in Appendix A. The standards require a minimum 6.5 

log10 reduction for beef and 7.0 log10 reduction for ready-to-eat (RTE) poultry (USDA-
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FSIS 1999). Previous research has identified five non-pathogenic strains of Escherichia 

coli (Table 1) that has responded to meat processing antimicrobial interventions similar to 

E. coli 0157:H7 (Marshall and others 2005). An additional study investigated the use of 

the five strains individually as compared to Salmonella enterica for non-thermal 

interventions, including antimicrobial treatments, cold storage, and fermentation in meat 

with results suggesting potential for use in meat process validations for Salmonella 

reduction individually and collectively (Niebuhr and others 2007). Based on prior 

findings, it was reasonable to investigate the performance characteristics of the five 

strains under thermal processing as compared to Salmonella. Thus, to ensure compliance 

with Appendix A, non-pathogenic surrogate organisms present an opportunity to validate 

thermal processing without compromising food safety at a processing facility. The 

objective of this study was to compare the performance characteristics of the five non-

pathogenic E. coli isolates to a mixed culture of Salmonella at varying fat contents of 

ground beef at different lethality temperatures to determine if the E. coli isolates could be 

used as surrogates to validate thermal processing parameters.  

3.3 Materials and Methods 

Salmonella isolates were obtained from the American Type Culture Collection 

(ATCC, Manassas, VA) and non-pathogenic E. coli surrogates were obtained from Iowa 

State University. Isolates were stored at -80°C on sterile glass beads in cryotubes 

containing 20% glycerol. Tryptic Soy Agar (TSA; Neogen Corp., Acumedia, Lansing, 

MI, USA) slants were made for each of the five surrogates and five Salmonella strains. 
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3.3.1  Non-pathogenic E. coli Surrogates 

Table 1 contains the reference and ATCC accession numbers according to 

Marshall and others (2005) for the non-pathogenic E. coli surrogates. The five strains 

were originally isolated from cattle hides to be used as indicator organisms for E. coli 

O157:H7 (Marshall and others 2005). 

3.3.2 Salmonella Isolates 

The Salmonella isolate reference information can be found in Table 2. The 

cocktail was composed of five different strains: S. Enteritidis, S. Typhimurium, S. 

Heidelberg, S. Newport, and S. Choleraesuis. Four of the five strains (S. Enteritidis, S. 

Typhimurium, S. Heidelberg, S. Newport) are the most common serovars responsible for 

cases in the United States. S. Choleraesuis is not commonly found in the United States, 

but it is predominant in Asia, and is typically associated with pork products (Foley and 

Lynne 2008; Morrow and Funk 2001).  

3.3.3 Meat Preparation 

Ground beef with 5, 10, 20, 25, and 30% fat content, typical fat contents that 

would be found in retail for ground beef, was used in the study. The ground beef was 

inoculated with non-pathogenic E. coli surrogates and Salmonella isolates separately to 

conduct the thermal tolerance experiments. Frozen ground beef in 1-pound chubs were 

adjusted to the correct fat contents (5, 10, 20, 25, and 30% fat) at and obtained from the 

Iowa State University Meats Laboratory. For three replicates per temperature per fat 

content, frozen chubs for each fat content was subdivided into 40g batches in sterile 

Whirl-Pak bags for inoculation. Excess meat was held in frozen storage at -20°C (-4°F).  
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3.3.4 Inoculum Preparation (Non-Pathogenic E. coli Surrogates and Salmonella 
Cocktail) 

Starter cultures for both E. coli and Salmonella were sourced from the TSA slants. 

Individual tubes containing 10 ml of Tryptic Soy Broth (TSB; Neogen Corp., Acumedia, 

Lansing, MI, USA) were inoculated with one surrogate, and incubated at 37°C (98.6°F) 

for 18 – 24 hrs. From the 10 ml TSB test tubes, 100 µl of each surrogate was transferred 

into conical tubes (50 ml Nunc sterile propylene centrifuge tubes, Catalog No. 339653, 

ThermoFisher Scientific) containing 25 ml of TSB, then incubated at 37°C (98.6°F) for 

18 – 24 hrs. After incubation, the five conical tubes were centrifuged at 4700 xG for 10 

minutes at 4°C (40°F) to form a pellet (Sorvall Legend XTR, ThermoFisher Scientific, 

Asheville, NC). Excess TSB was removed, and the pellets were reconstituted with 10 ml 

of 0.1% peptone water (PW: Neogen Corp., Acumedia, Lansing, MI), then vortexed to 

create a homogenous mixture. Each conical tube containing one surrogate was dispensed 

into another 50 ml conical tube to combine the cultures to create the cocktail, and 

vortexed to mix. Target enumeration in the inoculum was 8 – 9 log10 CFU/ml. 

3.3.5 Meat Inoculation and Preparation for Heating 

Ground beef was inoculated with either E. coli surrogates or the Salmonella 

cocktail as separate bulk samples to achieve an inoculation level of 6 logs higher than 

background microflora levels. Target enumeration of the inoculum was 8 – 9 log10 

CFU/ml. Prior to inoculation, a 2g sample of non-inoculated meat was placed in a sterile 

Whirl-Pak filter bag (Nasco Whirl-Pak, 18 oz./532ml flat wire, No. B01341) to serve as 

the negative control. The bag was sealed tightly to prevent cross contamination during 

experimentation. Additionally, a temperature reference bag for the thermocouple of the 

data logger (HH80AU, Thermocouple Dual Input Meter with USB and DC Power Jack, 
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Type K Thermocouple, Omega Engineering) was prepared using 2g of non-inoculated 

meat. Following this, 30g of remaining meat was weighed and inoculated with 5 ml of 

the non-pathogenic E. coli or Salmonella inoculum (as separate bulk samples) resulting in 

a final average concentration prior to heating of Ca. ~ 9 – 12 log10 CFU/g and ~ 8 – 11 

log10 CFU/g, respectively. The inoculated bag was hand-massaged for 1 minute, and then 

subdivided into ten sterile bags (FisherBrand Sterile Sampling Bags 3 inch x 5 inch, No. 

14955175, Fisher Scientific) containing 2g of inoculated meat. Each 2g sample bag was 

flattened to remove air to a thin layer (approximately 1 – 2 mm in thickness). The 

flattened bags were heat sealed (ULine Tabletop Poly Bag Sealer, 20”, Model No. H-

306), then placed in a cold refrigerator at 4°C (40°F) for 42 – 48 hrs to simulate potential 

industry storage conditions and ensure attachment to the meat. 

3.3.6 Thermal Inactivation and Enumeration 

For each fat content of the inoculated ground beef, the ten 2g sample bags were 

placed in a temperature controlled water bath (Thermoscientific AC-150 Haake, A25B – 

Haake Bath, Asheville, NC) for thermal inactivation. The water bath was stabilized at the 

following temperatures for the studies: 54°C (130°F), 57°C, (135°F), 60°C (140°F), 63°C 

(145°F), 66°C (150°F), 68°C (155°F), 71°C (160°F), 74°C (165°F), 77°C (170°F). The 

come-up time (the time required for the reference bag to come up to the stabilized water 

bath temperature) was recorded, and the first sample removed was assigned at time t = 0. 

Temperature data was measured using the HH80AU temperature data logger with the 

thermocouple secured inside the temperature reference bag. The data logger HH800SW 

software recorded the real-time temperature data. Bags were removed from the water 
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bath at predetermined time intervals (temperature dependent) and immediately placed in 

an ice-water bath.  

After chilling the samples in the ice-water bath, samples were aseptically 

transferred into sterile Whirl-Pak filter bags with 10 ml of 0.1% PW and stomached 

(Seward, Stomacher 400 Circulator, Worthing, UK) for 1 minute at 260 rpm. The 

homogenized samples were then serially diluted in 0.1% PW, then enumerated by spread 

plating using the one-step thin agar layer (TAL) method (Kang and Fung 2000). Non-

inoculated meat was plated as negative controls, while the inoculated and untreated meat 

samples for each inoculum were plated as positive controls. The inoculum was plated to 

ascertain the populations of the non-pathogenic E. coli or Salmonella cocktail that was 

used in the study. Non-pathogenic E. coli surrogate-inoculated samples were enumerated 

on Violet Red Bile Glucose Agar (VRBG; Neogen Corp., Acumedia, Lansing, MI) with a 

non-selective overlay of TSA. Salmonella-inoculated samples were enumerated on 

Xylose Lysine Deoxycholate (XLD; Neogen Corp., Acumedia, Lansing, MI) with a non-

selective overlay layer of TSA. Plates were incubated at 37°C (98.6°F) for 18 – 24 hrs.  

The TAL method for enumeration was used to resuscitate heat-injured cells, 

which may otherwise inactivate when applied directly onto selective media (Kang and 

Fung 2000).  Thus, this method supports conservative estimates for bacterial 

enumeration, allowing for recovery of heat-injured bacteria that have the potential to 

cause disease upon human consumption.  
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3.3.7 Calculating D-values and z-values 

Thermal death time curves with a correlation coefficient of (r2) of 0.84 - 0.99 

were used to determine D-values. Bacterial counts from two plates from each sample 

point were used to calculate the average bacterial concentration/g, and then converted to 

log10 CFU/g. The z-value was estimated by determining the linear regression of the log10 

D-values against temperature (degrees Celsius), calculating the absolute value of the 

inverse of the slope. For the z-value calculation, temperatures 54 - 71°C (130 – 160°F) 

were used to determine the slope (in degrees Celsius), excluding tailing observed at 

temperatures greater than 71°C (160°F) to obtain the best fit line. 

3.3.8 Statistical Analysis 

Each temperature and fat content combination was independently replicated three 

times. Bacterial enumeration data was transformed to log10 CFU/g and analyzed via 

linear regression using Microsoft Excel 2016 software (Microsoft Corp., Redmond, 

Washington). The experiment was executed as a randomized complete block design with 

factor treatments of inoculum type (non-pathogenic E.coli or Salmonella), fat content, 

and temperature. Significance of the factors was set at (P < 0.05). Least-Squares Means 

was used for mean separation. The data was analyzed by analysis of variance (ANOVA) 

using SAS ® 9.3 (SAS Institute; Cary NC) to determine whether the non-pathogenic E. 

coli can be used as a surrogate for Salmonella across a range of temperatures and meat fat 

content to validate thermal processing parameters.  
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3.4 Results and Discussion 

Appendix A mandates a 6.5-log10 reduction in RTE beef and a 7.0- log10 

reduction in poultry for Salmonella for temperatures 54 - 74°C (130 - 165°F). The limit 

of detection for this study was set at 30 CFU/g, which provides a margin of safety when 

calculating D-values. As expected, increase in temperature resulted in decreasing D-

values for both the non-pathogenic E. coli surrogates and Salmonella disregarding fat 

content (Figures 1 - 9). Based on the analysis of variance (ANOVA) and Least Squares 

Means, significant differences between E. coli and Salmonella were determined within 

each temperature and across each fat content. The D-values of E. coli surrogates were 

observed to be higher than those for Salmonella. At temperatures 54, 57, 60, and 63°C 

(130, 135, 140, and 145°F), E. coli and Salmonella were significantly different (P < 0.05) 

across fat content of ground beef in this study (Figures 1 - 4). No significant differences 

(P > 0.05) existed between fat contents within each inoculum, apart from temperature 

57°C (135°F). The difference of fat content at 30% at 57°C (135°F) could be attributed to 

an enhanced protective effect that increases D-values, as observed in studies by Juneja 

and Eblen (2001) and Ahmed (1995). This effect was only seen at 57°C (135°F) (Figure 

2). Temperatures 66, 68, 71, 74, and 77°C (150, 155, 160, 165, and 170°F) in general 

demonstrate no significant differences (P > 0.05) between the two inoculums across fat 

content (Figures 5 – 9).  

For either inoculum, no apparent pattern or relationship was observed between z-

value and fat content (Table 3). The z-values of Salmonella were larger than those of the 

E. coli inoculum, meaning that a larger change in temperature is required to reduce the D-

value by 90% at all fat levels in comparison to the E. coli inoculum. The z-values paired 

by fat content between E. coli and Salmonella differ significantly (P < 0.05), in which 
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Salmonella z-values were greater than E. coli z-values; a larger change in temperature is 

required to reduce the D-value by 90% at all fat levels in comparison to the E. coli 

inoculum. 

In summary, significant differences (P < 0.05) in the D-value were observed 

between the two inoculums at lower temperatures (54, 57, 60, 63°C (130, 135, 140, and 

145°F)) within each fat content. At temperatures greater than 63°C (145°F) for the D-

value, no significant differences (P > 0.05) exist between the two inoculums. Paired by 

fat content, the z-values of E. coli and Salmonella differ significantly (P < 0.05); 

Salmonella z-values were greater than E. coli z-values. Thus, Salmonella demonstrated 

greater temperature stability than the non-pathogenic E. coli. Higher process lethality is 

achieved with a lower z-value as observed for the E. coli surrogates (less temperature 

stable than Salmonella); Salmonella D-values are consistently less than those observed 

for E. coli.  

Larger D-values observed at lower temperatures 54 - 63°C (130 -145°F)) for both 

inoculums are consistent with the finding that bacteria grow most rapidly in the “danger 

zone,” between temperatures 4 - 60°C (40 - 140°F) (USDA-FSIS 2013). For temperatures 

above the “danger zone,” the only significant differences (P < 0.05) between inoculums 

were at 68 and 71°C (155 and 160°F) at 5% fat. The minimal amount fat content may 

have promoted more effective heating for the inoculums, since water and solid materials 

have a higher thermal conductivity than fat (Potter and Hotchkiss 1998). In general, the 

effect of fat level on D-values is not significant (P > 0.05) for both inoculums, with the 

exception of temperature 57°C (135°F) (Figure 2). Within temperature 57°C (135°F) the 

D-value for non-pathogenic E. coli at 30% fat is significantly different (P < 0.05). It is 
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unclear why this particular fat content and temperature combination demonstrated 

significant difference (P < 0.05), but it could be attributed to the summation of a few 

factors, including inevitable experimental variation and the composition of the 2g 

samples. Juneja and Eblen (2000) observed that increased fat resulted in poor heat 

penetration, which resulted in an increased D-value (Juneja and Eblen 2000). Ahmed 

(1995) and Juneja and others (2001b) cite the protective effect as a potential reason for 

increased D-values at higher fat content for their studies, since fat has a lower thermal 

conductivity than water (Ahmed and others 1995; Juneja and others 2001a; Ma and 

others 2007). Though no significant differences (P > 0.05) were detected in this study, 

Salmonella had the highest D-values at 30% fat, as compared to the mixed results of E. 

coli. While previous studies conducted by Ahmed (1995), Juneja and others (2001b), and 

Juneja and Eblen (2000) found that in general, higher fat levels had a protective effect on 

Salmonella spp. inoculum, other studies acknowledge deviations from this conclusion or 

did not observe this distinct pattern. The results in the present study are in agreement with 

Vasan and others (2014), in which no significant differences (P > 0.05) were observed 

across fat levels within each inoculum, potentially due to methodology or strain selection 

(Vasan and others 2014). For the present study, these same factors of strain selection, 

methodology, or meat composition could also have resulted in lack of significant 

differences. Orta-Ramirez and others (2005), and Mogollón and others (2005) offer 

explanations related to physical properties of the meat used as well as chemistry based on 

fat content that could influence D-values (Orta-Ramirez and others 2005; Mogollón and 

others 2009). Comparing ground beef to whole muscle, Orta-Ramirez found that the 

homogeneous mixture of fat and muscle in ground beef may have a diluting effect instead 
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of a protective effect, whereas whole muscle fat distribution is more defined and 

separated, allowing for more effective attachment (Orta-Ramirez and others 2005). 

Mogollón found that whole muscle beef had a greater thermal resistance than coarsely 

ground beef, and cites that the osmotic potential across whole muscle cells may influence 

thermal resistance to increase (Mogollón and others 2009). This is exemplified in ground 

beef or pureed beef, in which the mixture is more homogeneous, which may result in 

more free water for suspension of the inoculum (Mogollón and others 2009). 

Consequently, the thermal conductivity of water would increase the susceptibility of the 

inoculum to thermal inactivation, thus mitigating time differences to inactivate 

microorganisms between varying fat levels (Mogollón and others 2009).  

There are no apparent patterns in the data between z-values and fat content (Table 

3), and the z-values were found to be larger than those cited in other studies including 

Murphy and others (2004) and Juneja and Eblen (2000). Using ground beef as the heating 

medium, Murphy and others (2004) used a six-strain cocktail of Salmonella spp. resulting 

in a z-value of 5.74°C, while Juneja and others (2000) used an eight-strain cocktail of S. 

Typhimurium DT104 and found the highest z-value to be 8.08°C. Juneja and others 

(2001b) determined the z-value to be 9.11°C for an 8-strain cocktail in ground beef. A 

study of thermal inactivation of Salmonella in ground poultry at varying fat levels by 

Juneja and others (2001a) also found that there was no statistically significant effect of fat 

content on z-values (Juneja and others 2001b). Inconsistencies among published literature 

has been attributed to varying degrees of heat resistance due to serotype, product 

formulation/composition, and temperature range utilized to calculate the z-value (Juneja 

and Eblen 2000; Juneja and others 2001b; Murphy and others 2004). As cited in such 
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studies, it must be emphasized that it is inappropriate to directly compare z-values across 

studies, since z-values are dependent on a variety of factors, including meat composition, 

strain selection, cell physiology, and thermal lethality methodology (Juneja and others 

2001b,  Murphy and others 2004). 

The aforementioned factors could also explain the lack of distinct patterns in this 

study for D-values. A sample size of 2g was used for each bag to achieve the thinnest 

layer possible, promoting equal heating of each individual sample in the water bath. 

Especially among higher fat contents, it is difficult to obtain a perfectly homogenous 

mixture of fat to tissue. Although air was removed by flattening the bag, it is inevitable 

that very small amounts of air could remain in the sample, permitting some variability. 

Fat has a lower thermal conductivity than water, and air has an even lower thermal 

conductivity than fat, thus the level of heat penetration efficacy may have led to 

variability (Potter and Hotchkiss 1998).  

Additional experimental limitations include the rapidity of removal times for 

samples from the water. It was more difficult to remove each sample with very short time 

intervals before all bacteria were inactivated (1 – 5 seconds). For some temperatures 

above 63°C (145°F), the limit of detection (30 CFU/g) was used to determine the D-

values to provide a margin of safety. For temperatures greater than 63°C(145°F), though 

no differences exist; the D-values for E. coli were consistently greater than the D-values 

for Salmonella. Beyond this temperature, the non-pathogenic E. coli inoculum offers no 

significant advantage, since it is inactivated as rapidly as Salmonella. However, 

inactivation of Salmonella can be ensured with the absence of the non-pathogenic E. coli 

at temperatures greater than 63°C (145°F). The 48-hr 4°C (40°F) incubation period could 
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have caused physiological changes to individual strains in both inoculum, including cold 

shock adaptations that modify growth dynamics in cold environments, which is well-

known in E.coli spp. (Beales 2004). Another factor could be variation in individual 

thermal resistance, which was also observed by Juneja and others (2001), and could also 

impact thermal lethality in this study (Juneja and others 2001a).  

Though direct comparison of the data to Appendix A is an oversight of several 

factors, the D-values of E. coli inoculum at 30% fat across temperatures were most 

similar to the ‘worst case’ product lethality compliance guidelines required for a 6.5 or 

7.0-log10 reduction. Studies conducted by Juneja and Eblen (2000), and Juneja (2001) 

have supported the conclusion that higher fat content reduces thermal conductivity, 

therefore resulting in increased D-values to inactivate bacteria. In this study, 30% fat 

content has the most conservative (larger) D-values, which ensures a margin of safety if 

these values were to be used for beef products regardless of fat content in accordance to 

Appendix A. In 2005, an update of Appendix A provided a range of fat levels (1 – 12% 

fat) for poultry and their respective lethality time/temperature combinations for reducing 

Salmonella. Again, it would be inappropriate to utilize direct comparison of calculated 

log-reductions of the surrogates from this study to the lethality times outlined in 

Appendix A (for both beef and poultry with fat levels) due to factors such as meat 

composition and fat level that may affect D-values. 

The guidelines in Appendix A are set for cooked beef, roast beef, and corned 

beef, disregarding fat content of each meat. These lethality time/temperature 

combinations are based on the most conservative estimates or “worst case” product to 

ensure inactivation of Salmonella. Based on this assumption, despite differences in the 
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meat type, the non-pathogenic E. coli inoculum could be used as a surrogate for 

Salmonella. D-values for E. coli are consistently higher and significantly different (P < 

0.05) than Salmonella up to temperature 63°C (145°F). As expected, D-values for both 

inoculums decrease with temperature increase. It was hypothesized that both E. coli and 

Salmonella would be almost immediately inactivated at temperatures greater than 63°C 

(145°F), thus mitigating differences in lethality times between the two inoculums. But 

because both inoculums are inactivated so rapidly at these higher temperatures, a higher 

lethality time is not necessarily required for the E. coli surrogates relative to Salmonella. 

At lower temperatures across all fat contents (54, 57, 60, and 63°C (130, 135, 

140, and 145°F)), E. coli D-values are at least two times greater than the Salmonella D-

values, serving as an acceptable surrogate. At higher temperatures (> 63°C (145°F)), as 

long as the D-value of E. coli is equivalent or greater than that of Salmonella, E. coli can 

be used as a surrogate for Salmonella. Based on the criteria determined by Busta and 

others (2003) and the NACMCF, the non-pathogenic E. coli surrogates meet many of the 

requirements. In addition to being non-pathogenic, the surrogates demonstrated thermal 

inactivation behavior (D-values) similar to or greater than Salmonella, with larger D-

values (more time required) for thermal processing, assuring that the inactivation of the 

E. coli surrogates ensures inactivation of Salmonella. The surrogates also demonstrate 

high density enumeration in comparison to Salmonella in the meat prior to t=0 (Ca. 9 – 

12 log10 CFU/g and 8 – 11 log10 CFU/g, respectively), stability in growth upon 

preparation, and it is easy to differentiate from native flora in ground beef once plated 

(Busta and others 2003). Based on the criteria fulfilled, the E. coli surrogates provide a 

margin of safety to ensure the thermal inactivation of Salmonella in RTE ground beef. 
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However, further research is required to determine if the surrogates behave similarly in 

different cuts of meat and poultry, in addition to comparison of additional strains of 

pathogenic Salmonella to compare thermal lethality and resistance characteristics. 

Investigation of ingredient additions (seasonings, oil, etc.) would provide further insight 

regarding effects on thermal lethality for more complex RTE meat products. More 

research is needed to investigate the effects of additional, specific components of RTE 

meat products (oils, seasonings, additional ingredients, etc.) that may impact thermal 

lethality of Salmonella or other pathogens. Finally, a scaled-up process or pilot plant trial 

would be beneficial to identify additional factors, risks, and critical control points as 

realistic measures to consider for thermal process validation using the E. coli surrogates  

Although the E. coli surrogates demonstrate the potential for thermal process 

validation of RTE beef products, its success is dependent on the HACCP plan in 

processing facilities. Appendix A compliance standards and any thermal processing 

validations can only be successful as long as the integrity of the HACCP plan is 

maintained. 
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3.5 Tables and Figures 

Table 1. Non-pathogenic E. coli strains isolated from beef cattle.  

E. coli Strains ATCC Accession 
Number 

P1 BAA-1427 

P3 BAA-1428 

P8 BAA-1429 

P14 BAA-1430 

P68 BAA-1431 

 

Table 2. Salmonella isolates obtained from ATCC and Iowa State University. 

Salmonella Strains Source 
S. Enteritidis 
 

ATCC 4931 

S. Typhimurium 
 

ATCC 700720 

S. Choleraesuis 
 

ATCC 13312 

S. Newport 
 

ATCC 6962 

S. Heidelberg 
 

Iowa State University 

 

Table 3. z-values for Escherichia coli surrogates and Salmonella for each fat content. 

Fat 
Content 

(%) 

E. coli 
surrogates Salmonella E. coli 

surrogates Salmonella 

z-value  
(°C) 

z-value 
(°C) 

z-value 
(°F) 

z-value  
(°F) 

5 6.74 10.3 15.2 25.4 
10 7.07 9.90 15.1 25.1 
20 6.9 10.5 17.3 28.9 
25 7.36 12.4 17.7 35.8 
30 6.9 10.4 16.8 29.2 
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Figure 1. D-values (min±std. dev.) of Escherichia coli surrogates and Salmonella in 
ground beef with varying fat content. 
 
Significant differences of E. coli or Salmonella at varying fat levels denoted by a or b 
Significant differences of a given pathogen (E. coli or Salmonella) at different fat 
contents denoted by 1 or 2 
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Figure 2. D-values (min±std. dev.) of Escherichia coli surrogates and Salmonella in 
ground beef with varying fat content. 
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Significant differences of a given pathogen (E. coli or Salmonella) at different fat 
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Figure 3. D-values (min±std. dev.) of Escherichia coli surrogates and Salmonella in 
ground beef with varying fat content. 
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Significant differences of a given pathogen (E. coli or Salmonella) at different fat 
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Figure 5. D-values (min±std. dev.) of Escherichia coli surrogates and Salmonella in 
ground beef with varying fat content. 
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Figure 6. D-values (min±std. dev.) of Escherichia coli surrogates and Salmonella in 
ground beef with varying fat content. 
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Figure 7. D-values (min±std. dev.) of Escherichia coli surrogates and Salmonella in 
ground beef with varying fat content. 
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Figure 8. D-values (min±std. dev.) of Escherichia coli surrogates and Salmonella in 
ground beef with varying fat content. 
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contents denoted by 1 or 2 
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Figure 10. Average D-values of Escherichia coli surrogates and Salmonella for lower 
temperatures 54 - 63°C (130 – 145 °F). 
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CHAPTER 4. OVERALL CONCLUSIONS 

The work of this thesis provides an investigation of the thermal lethality of five 

non-pathogenic E. coli isolates to be used as surrogates for Salmonella based on the 

compliance guidelines outlined in Appendix A for RTE meat products (USDA-FSIS 

1999). This thesis is among a few recent studies investigating the use of specific non-

pathogenic isolates as surrogates for pathogen lethality to be used in thermal processing 

operations in industry. It specifically provides additional information about the five non-

pathogenic E. coli isolates as related to Appendix A thermal lethality guidelines for meat 

and poultry to supplement other studies (Marshall and others 2005; Niebuhr and others 

2008; Keeling and others 2009) investigating the characteristics and potential use of the 

isolates in the food industry.  

Parameters used to develop guidelines for Appendix A were based on defined 

“worst case” raw product, using the highest levels of Salmonella in the data from their 

studies (USDA-FSIS 1998). No distinct patterns in the data were revealed in the present 

study in terms of fat within each temperature, apart from 30% fat, which generally 

required the most time for thermal inactivation. The study conducted by Vasan (2014) 

found no statistical difference in the effect of fat content on D-values, and though Juneja 

and Eblen (2000) determined significant difference of D-values with lag time based on 

fat content, some variation in D-values alone across fat was also observed (Juneja and 

Eblen 2000). Another factor that could have influenced the results is variation of thermal 

resistance of Salmonella strains selected for study, an aspect also observed also by Juneja 

and others (2001b). Comparing lethality D-values from this study directly to the 

time/temperature guidelines for 6.5 and 7.0-log10 reductions in Appendix A, 30% fat had 
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the most similar time/temperature profile for lethality; the D-values in general were 

highest at 30% fat for both inoculums. Previous studies by Juneja (2001) and Ahmed 

(1995) also found that in general, higher levels of fat in meat had a protective effect at 

lower temperatures, therefore more time was required to inactivate pathogens (Ahmed 

and others 1995; Juneja and others 2001). The time/temperature data for 30% fat could be 

considered as the “worst case” raw product for thermal inactivation of the non-pathogenic 

E. coli inoculum.  

The non-pathogenic E. coli was significantly different from Salmonella (P < 

0.05) and had consistently higher D-values than Salmonella for temperatures 54, 57, 60, 

and 63°C (130, 135, 140, and 145°F). Bacteria grow most rapidly in the temperature 

range of 4 - 60°C (40 - 140°F), which is considered the “danger zone,” therefore, it is that 

more time is required to inactivate pathogens at cooking temperatures within this range 

(USDA-FSIS 2013). The data is consistent with the conclusions of bacterial growth 

behavior within the “danger zone” - lower temperatures required longer periods of time 

to inactivate both non-pathogenic E. coli and Salmonella, with the E.coli isolates 

requiring two to ten times more time varying with fat content. The significant difference 

(P < 0.05) of E. coli to Salmonella, in this case, provide a margin of safety for pathogen 

inactivation at these temperatures. In general and as expected, temperatures greater than 

145°F (63°C) resulted in no significant differences (P > 0.05) between inoculums and fat 

content, as both E. coli and Salmonella were completely inactivated rapidly.  

Based on the findings, the non-pathogenic E. coli inoculum would be best used as 

a surrogate for lower processing temperatures (54, 57, 60, and 63°C (130, 135, 140, and 

145°F)). The time/temperature profile for the E.coli inoculum at 30% fat provides the 
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most conservative or “worst case” model to ensure thermal inactivation of Salmonella. 

Beyond 63°C (145°F), since no significant differences (P > 0.05) exist due to rapid 

inactivation of both inoculums, the non-pathogenic E. coli isolates offer minimal margin 

of safety relative to Salmonella. This is not necessarily a cause for concern, since both 

inoculum were inactivated rapidly at temperatures greater than 63°C (145°F). At 

temperatures greater than 63°C (145°F), the non-pathogenic E. coli inoculum offers 

minimal advantage as a surrogate, since it is inactivated as rapidly as Salmonella. 

However, with a high density population and prolific growth, the absence of the E. coli 

inoculum can be an indicator of the inactivation of Salmonella at higher temperatures. 

More research is needed to investigate the effects of additional, specific components of 

RTE meat products (oils, seasonings, additional ingredients, etc.) that may impact 

thermal lethality of Salmonella or other pathogens. Thus, this study provides insight on 

the potential of E.coli as a surrogate for Salmonella, but many factors must be considered 

such as type and cut of meat, product composition, strain selection, cell physiology, and 

methodology; a few examples of many factors that may be encountered in the food 

industry.  

Although the E. coli surrogates demonstrates the potential to validate thermal 

processing parameters, the integrity of the HACCP plan ultimately determines validation 

of processing parameters. This study offers specific means for thermal process validation, 

but it must be supported by HACCP plans in processing facilities. 
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CHAPTER 5. FUTURE RESEARCH 

To supplement the present study, further research is needed in more tangential 

aspects to gain further insight on effects on thermal lethality behavior of the surrogates 

and its relationship to meat quality. Attributes such as water activity, moisture content, 

humidity, and pH have different effects on the lethality performance of pathogens. 

Distribution of fat and muscle tissue also has been found to effect thermal processing of 

meat. Thus, proximate analysis of attributes would provide further insight into the factors 

affecting behavior of both E. coli surrogates and Salmonella to thermal processing. The 

meat in this study also contained minimal levels of native microflora, which could impact 

growth and lethality of the surrogate and pathogen inoculum. Additionally, identifying 

the most thermally resistant bacteria from the surrogates or Salmonella may provide 

insight into shared characteristics that resulted in thermal resistance.  

Different types and cuts of meat have a variety of effects on thermal inactivation 

of pathogens. Specifically for Salmonella, a study by Mogollón and others (2009) found 

that whole muscle thermal resistance was greater than thermal resistance of coarsely 

ground beef. This was in agreement with the conclusion from Orta-Ramirez and others 

(2005) that the physical arrangement of components within a food matrix may cause 

thermal resistance variation (Orta-Ramirez and others 2005). Since the composition is 

different than beef products, it is recommended that additional thermal lethality studies 

should be conducted with different cuts and types of meat to evaluate the effects of 

muscle and fat orientation and distribution on microbial inactivation.  

Development of an equation to model the relationship of the surrogates to 

Salmonella is another area that should be explored. This model should be simple, in that 
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an input value for temperature can predict the time required to eliminate the surrogates, 

thus inactivating the pathogens. A simple model that could be easily used and interpreted 

by processing facilities to confirm thermal processing parameters would be well-received 

and beneficial to the industry. 

A scaled-up, on-site trial of the study is recommended in the processing facility to 

compare thermal lethality data, and understand individual differences specific to the 

processing facility and equipment. The laboratory environment, while beneficial in 

controlling many parameters, lacks processing equipment that is used in manufacturing 

facilities to cook meat. Pilot plant trials or full-scale trials would be helpful to 

understanding additional risks that must be considered in the HACCP plan. Dickson 

(2013) cites that the log reductions and controlling variables and risks is more achievable 

in the smaller scale and highly controlled conditions of the lab environment, which may 

differ significantly from the full-scale operation (Dickson 2013). Additionally, processing 

equipment varies from facility to facility, therefore obtaining preliminary thermal 

inactivation data for the specific meat undergoing processing would be essential to create 

validation parameters.   

 It is important to understand the Appendix A compliance guidelines for lethality 

performance, and have a HACCP plan, but these parameters are only effective if they are 

implemented and utilized properly by the processing facility. Food safety can be ensured 

by the integrity of the HACCP plan in combination with compliance guidelines. 

Therefore, the efficacy of the HACCP plan is critical to the efficacy of Appendix A 

compliance guidelines as well as thermal processing validation.  
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APPENDIX 

Compliance Guidelines For Meeting Lethality Performance Standards For Certain Meat 
And Poultry Products (Temperatures 130 – 145°F): Appendix A (USDA-FSIS 1999) 

5.1.1.1 Introduction 

        Establishments producing ready-to-eat roast beef, cooked beef and corned 
beef products and certain ready-to-eat poultry products are required by FSIS to 
meet the lethality performance standards for the reduction 
of Salmonella contained in งง 318.17(a)(1) and 381.150(a)(1) of the meat and 
poultry inspection regulations. Further, FSIS requires meat and poultry 
establishments, if they are not operating under a HACCP plan, to demonstrate 
how their processes meet these lethality performance standards within a written 
process schedule validated for efficacy by a process authority (งง 
318.17(2)(b)and (c) and 381.150 (2)(c) and (d)). 

        To assist establishments in meeting the lethality requirements, FSIS is 
issuing these compliance guidelines, which are based upon the 
time/temperature requirements contained in previous regulations. 
Establishments may choose to employ these guidelines as their process 
schedules. FSIS considers these guidelines, if followed precisely, to be 
validated process schedules, since they contain processing methods already 
accepted by the Agency as effective. 

        Also within these guidelines, FSIS has provided discussion regarding 
disposition of product following heating deviations and advice for the 
development of customized procedures for meeting the lethality performance 
standards. 

5.1.1.2 Guidelines for Cooked Beef, Roast Beef, and Cooked Corned Beef 

1. Cooked beef and roast beef, including sectioned and formed roasts, 
chunked and formed roasts, and cooked corned beef can be prepared 
using one of the following time and temperature combinations to meet 
either a 6.5-log10 or 7-log10 reduction of Salmonella. The stated 
temperature is the minimum that must be achieved and maintained in all 
parts of each piece of meat for a least the stated time: 
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Compliance Guidelines For Meeting Lethality Performance Standards For Certain Meat 
And Poultry Products (Temperatures 130 – 145°F): Appendix A (Continued) 
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Compliance Guidelines For Meeting Lethality Performance Standards For Certain Meat 
And Poultry Products (Temperatures 146 – 160°F): Appendix A (Continued) 
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Compliance Guidelines For Meeting Lethality Performance Standards For Certain Meat 
And Poultry Products: Appendix A (Continued) 

* Past regulations have listed the minimum processing time for roast beef cooked to 
145°F as "Instantly." However, due to their large size, most of these roasts dwell at 
145°F, or even at higher temperatures, for at least 4 minutes after the minimum internal 
temperature is reached. FSIS has revised this time/temperature table to reflect this and 
emphasizes that, to better ensure compliance with the performance standard, 
establishments should ensure a dwell time of at least 4 minutes if 145°F is the minimum 
internal temperature employed. 

**The required lethalities are achieved instantly when the internal temperature of a 
cooked meat product reaches 158°F or above. 

2. Cooked beef, including sectioned and formed roasts and chunked and formed 
roasts, and cooked corned beef should be moist cooked throughout the process 
or, in the case of roast beef or corned beef to be roasted, cooked as in paragraph 
(3) of this compliance guide. The moist cooking may be accomplished by 
placing the meat in a sealed, moisture impermeable bag, removing the excess 
air, and cooking; by completely immersing the meat, unbagged in water 
throughout the entire cooking process; or by using a sealed oven or steam 
injection to raise the relative humidity above 90 percent throughout the cooking 
process. 

3. Roast beef or corned beef to be roasted can be cooked by one of the 
following methods: 

• Heating roasts of 10 pounds or more in an oven maintained at 250°F 
(121°C) or higher throughout a process achieving one of the 
time/temperature combinations in (1) above; 

• Heating roasts of any size to a minimum internal temperature of 145°F 
(62.8 °C) in an oven maintained at any temperature if the relative 
humidity of the oven is maintained either by continuously introducing 
steam for 50 percent of the cooking time or by use of a sealed oven for 
over 50 percent of the cooking time, or if the relative humidity of the 
oven is maintained at 90 percent or above for at least 25 percent of the 
total cooking time, but in no case less than 1 hour; or 

• Heating roasts of any size in an oven maintained at any temperature that 
will satisfy the internal temperature and time combinations of the above 
chart of this compliance guide if the relative humidity of the oven is 
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maintained at 90 percent or above for at least 25 percent of the total 
cooking time, but in no case less than 1 hour. The relative humidity may 
be achieved be use of steam injection or sealed ovens capable of 
producing and maintaining the required relative humidity. 

4. Establishments producing cooked beef, roast beef, or cooked corned beef 
should have sufficient monitoring equipment, including recording devices, to 
assure that the time (accuracy assured within 1 minute), the temperature 
(accuracy assured within 1°F), and relative humidity (accuracy assured within 5 
percent) limits of these processes are being met. Data from the recording 
devices should be made available to FSIS program employees upon request. 

5.1.1.3 Guidelines for Cooked Poultry Rolls and Other Cooked Poultry 
Products 

1. Cooked poultry rolls and other cooked poultry products should reach an 
internal temperature of at least 160 °F prior to being removed from the cooking 
medium, except that cured and smoked poultry rolls and other cured and 
smoked poultry should reach an internal temperature of at least 155°F prior to 
being removed from the cooking medium. Cooked ready-to-eat product to 
which heat will be applied incidental to a subsequent processing procedure may 
be removed from the media for such processing provided that it is immediately 
fully cooked to the 160 °F internal temperature. 

2. Establishments producing cooked poultry rolls and other cooked poultry 
products should have sufficient monitoring equipment, including recording 
devices, to assure that the temperature (accuracy assured within 1°F) limits of 
these processes are being met. Data from the recording devices should be made 
available to FSIS program employees upon request. 

 

 

 

 

 

 

 

 



64 
 

REFERENCES 

Ahmed NM, Conner DE, Huffman DL (1995) Heat-Resistance of Escherichia Coli 
O157:H7 in Meat and Poultry as Affected by Product Composition. J Food Sci 
60:606–610. doi: 10.1111/j.1365-2621.1995.tb09838.x 

 
Anderson D, Lucore LA (2012) Validating the Reduction of Salmonella and Other 

Validating the Reduction of Salmonella and Other Pathogens in Heat Processed 
Low-Moisture Foods.  

 
Arthur TM, Brichta-Harhay DM, Bosilevac JM, and others (2010) Super shedding of 

Escherichia coli O157:H7 by cattle and the impact on beef carcass contamination. 
Meat Sci 86:32–37. doi: 10.1016/j.meatsci.2010.04.019 

 
Beales N (2004) Adaptation of Microorganisms to Cold Temperatures, Weak Acid 

Preservatives, Low pH, and Osmotic Stress: A Review. Compr Rev Food Sci Food 
Saf 3:1–20. doi: 10.1111/j.1541-4337.2004.tb00057.x 

 
Bell C, Kyriakides A (2002) Industry Focus : Control of Salmonella.  
 
Busta FF, Suslow TV, Parish ME, and others (2003) The Use of Indicators and Surrogate 

Microorganisms for the Evaluation of Pathogens in Fresh and Fresh-Cut Produce. 
Compr Rev Food Sci Food Saf 2:179–185. doi: 10.1111/j.1541-
4337.2003.tb00035.x 

 
Carlson B, Ruby J, Smith G., Sofos J, Bellinger G, Warren-Serna W, Centrella B, 

Bowling R, Belk K. (2008) Comparison of antimicrobial efficacy to multiple beef 
hide decontamination strategies to reduce levels of Escherichia coli O157:H7 and 
Salmonella. Journal of Food Protection 71, 2223–2227 

 
CDC. Center for Disease Prevention and Control (2014) FoodNet–Number and Incidence 

of Salmonella Infections by Serotype 2013. Available from: 
http://www.cdc.gov/foodnet/data/trends/tables/2013/table5.html. Accessed 2016 
July 20.  

CDC Center for Disease Prevention and Control (CDC) (2015a) Foodborne Diseases 
Active Surveillance Network (FoodNet). Available from:  
http://www.cdc.gov/foodnet/about.html. Accessed 2016 October 4. 

  
CDC. Center for Disease Prevention and Control (2015b) Traveler’s Health – 

Salmonellosis (Nontyphoidal). Available from: 
http://wwwnc.cdc.gov/travel/yellowbook/2016/infectious-diseases-related-to-
travel/salmonellosis-nontyphoidal. Accessed 2016 October 4. 

 

http://www.cdc.gov/foodnet/data/trends/tables/2013/table5.html
http://www.cdc.gov/foodnet/about.html
http://wwwnc.cdc.gov/travel/yellowbook/2016/infectious-diseases-related-to-travel/salmonellosis-nontyphoidal
http://wwwnc.cdc.gov/travel/yellowbook/2016/infectious-diseases-related-to-travel/salmonellosis-nontyphoidal


65 
 

CDC. Foodborne Diseases Active Surveillance Network (CDC-FoodNet) (2016a) 
FoodNet 2014 Annual Illness Surveillance Report – Salmonella. Available from: 
http://www.cdc.gov/foodnet/reports/annual-reports-2014.html. Accessed 2016 
October 4. 

 
CDC. Center for Foodborne Diseases Active Surveillance Network (CDC-FoodNet). 

(2016b)  FoodNet 2015 Preliminary Data. Available from: 
http://www.cdc.gov/foodnet/reports/prelim-data-intro.html. Accessed 2016 
October 4.   

 
CDC. Centers for Disease Prevention and Control (2015c) Salmonella – Technical 

Information. Available from: 
http://www.cdc.gov/salmonella/general/technical.html#one. Accessed 2016 
October 4.  

 
CDC (Centers for Disease Control and Prevention) Foodborne Diseases Active 

Surveillance Network (FoodNet, CDC) (2016a) FoodNet 2014 Annual Illness 
Surveillance Report – Salmonella. Available from: 
http://www.cdc.gov/foodnet/reports/annual-reports-2014.html. Accessed 2016 
October 4. 

 
CDC - Foodborne Diseases Active Surveillance Network (FoodNet, CDC). (2016b)  

FoodNet 2015 Preliminary Data. Available from: 
http://www.cdc.gov/foodnet/reports/prelim-data-intro.html. Accessed 2016 
October 4.   

 
CDC. Center for Disease Prevention and Control (2016d) What is Salmonellosis? 

Available from: https://www.cdc.gov/salmonella/general/. Accessed 2016 August 
1.  

 
CDC. Center for Disease Prevention and Control (2016e) Reports of Selected Salmonella 

Outbreak Investigations. Available from: 
https://www.cdc.gov/salmonella/outbreaks.html. Accessed 2016 August 20. 

 
 
CFR. Code of Federal Regulations. Title 9, Ch. III, Part 417 (2016a) Hazard Analysis and 

Critical Control Point Systems. Available from: http://www.ecfr.gov/cgi-bin/text-
idx?c=ecfr&tpl=/ecfrbrowse/Title09/9cfr417_main_02.tpl. Accessed 2016 
October 22.  

 
CFR. Code of Federal Regulations. Title 21, Ch. I, Part 172. (2016b) Hazard Analysis 

and Critical Control Point Systems. Available from: 
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.
175. Accessed 2016 June 10. 

  

http://www.cdc.gov/foodnet/reports/annual-reports-2014.html
http://www.cdc.gov/foodnet/reports/prelim-data-intro.html
http://www.cdc.gov/salmonella/general/technical.html#one
http://www.cdc.gov/foodnet/reports/annual-reports-2014.html
http://www.cdc.gov/foodnet/reports/prelim-data-intro.html
https://www.cdc.gov/salmonella/general/
https://www.cdc.gov/salmonella/outbreaks.html
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&tpl=/ecfrbrowse/Title09/9cfr417_main_02.tpl
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&tpl=/ecfrbrowse/Title09/9cfr417_main_02.tpl
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.175
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.175


66 
 

 
Darwin KH, Miller VL (1999) Molecular Basis of the Interaction of Salmonella with the 

Intestinal Mucosa Molecular Basis of the Interaction of Salmonella with the 
Intestinal Mucosa. 12:405–428. 

 
Deng X, Li Z, Zhang W (2012) Transcriptome sequencing of Salmonella enterica serovar 

Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol 
30:311–315. doi: 10.1016/j.fm.2011.11.001 

 
Dickson J (2013) for Small and Very Small Processors : Validation of Antimicrobial 

Interventions. 33:95–104. 
 
Dufour AP. (1977) Escherichia coli: the fecal coliform. In: Bacterial indicators/health 

hazards associated with water. Hoadley, A.W. and Dutka, B.J. (Eds.) ASTM, 
Philadelphia. pp. 48-58. 

 
Finn S, Condell O, McClure P, and others (2013a) Mechanisms of survival, responses, 

and sources of salmonella in low-moisture environments. Front Microbiol 4:1–15. 
doi: 10.3389/fmicb.2013.00331 

 
Finn S, Hinton JCD, McClure P, and others (2013b) Phenotypic characterization of 

Salmonella isolated from food production environments associated with low-water 
activity foods. J Food Prot 76:1488–1499. doi: 10.4315/0362-028x.jfp-13-088 

 
Foley SL, Lynne AM (2008) Food animal-associated Salmonella challenges: 

pathogenicity and antimicrobial resistance. J Anim Sci. doi: 10.2527/jas.2007-0447 
 
Fookes M, Schroeder GN, Langridge GC, and others (2011) Salmonella bongori provides 

insights into the evolution of the salmonellae. PLoS Pathog. doi: 
10.1371/journal.ppat.1002191 

 
Foster JW (1991) Salmonella Acid Shock Proteins Are Required for the Adaptive Acid 

Tolerance Response. 173:6896–6902. 
 
Foster JW (2001) Acid Stress Responses of Salmonella and E. coli : Survival 

Mechanisms , Regulation , and Implications for Pathogenesis. J Microbiol 39:89–94. 
 
Giannella RA, Broitman SA, Zamcheck N (1972) Gastric acid barrier to ingested 

microorganisms in man: studies in vivo and in vitro. Gut 13:251–6. doi: 
10.1136/gut.13.4.251 

 
Jenson I, Vanderlinde P, Langbridge J, Sumner J (2014) Safety of Meat and Meat 

Products in the Twenty-first Century.  
 
 
 



67 
 

Juneja VK, Eblen BS (2000) Heat inactivation of Salmonella Typhimurium DT104 in 
beef as affected by fat content. Lett Appl Microbiol 30:461–7. doi: 10.1046/j.1472-
765x.2000.00755.x 

 
Juneja VK, Eblen BS, Marks HM (2001a) Modeling non-linear survival curves to 

calculate thermal inactivation of Salmonella in poultry of different fat levels. Int J 
Food Microbiol 70:37–51. doi: 10.1016/S0168-1605(01)00518-9 

 
Juneja VK, Eblen BS, Ransom GM (2001b) Thermal Inactivation of Salmonella spp . in 

Chicken Broth, Beef, Pork, Turkey, and Chicken: Determination of D- and Z-values. 
J Food Sci 66:146–152. doi: 10.1111/j.1365-2621.2001.tb15597.x 

 
Kang DH, Fung DY (2000) Application of thin agar layer method for recovery of injured 

Salmonella Typhimurium. International Journal of Food Microbiology. 54:127-132. 
 
Keeling C, Niebuhr SE, Acuff GR, Dickson JS (2009) Evaluation of Escherichia coli 

biotype 1 as a surrogate for Escherichia coli O157:H7 for cooking, fermentation, 
freezing, and refrigerated storage in meat processes. J Food Prot 72:728–32. 

 
Lewis MJ (2006) Thermal Processing. Food Process Handb 33–70. doi: 

10.1002/3527607579.ch2 
 
Liston J (1965) G rowth of SaImoneIIa. Science (80- ) 641–645. 
 
Ma L, Kornacki JL, Zhang G, and others (2007) Development of thermal surrogate 

microorganisms in ground beef for in-plant critical control point validation studies. J 
Food Prot 70:952–957. 

 
Marshall KM, Niebuhr SE, Acuff GR, and others (2005) Identification of Escherichia 

coli O157:H7 meat processing indicators for fresh meat through comparison of the 
effects of selected antimicrobial interventions. J Food Prot 68:2580–6. 

 
Mead PS, Slutsker L, Dietz V, and others (1999) Food-related illness and death in the 

United States. Emerg Infect Dis 5:607–625. doi: 10.3201/eid0505.990502 
 
Medema G, Payment P (2003) Safe drinking water: an ongoing challenge. … Drink 

Water 11–45. 
 
Mogollón MA, Marks BP, Booren AM, and others (2009) Effect of beef product physical 

structure on salmonella thermal inactivation. J Food Sci. doi: 10.1111/j.1750-
3841.2009.01253.x 

 
Morrow W, Funk J. (2001) Salmonella as a Foodborne Pathogen in Pork. Department of 

Animal Science, North Carolina State University. Available from: 
https://projects.ncsu.edu/project/swine_extension/publications/factsheets/816s.pdf. 
Accessed 18 November 2016.  

https://projects.ncsu.edu/project/swine_extension/publications/factsheets/816s.pdf


68 
 

 
Murphy RY, Martin EM, Duncan LK, and others (2004) Thermal process validation for 

escherichia coli o157:h7,salmonella, and listeria monocytogence in ground turkey 
and beef products. J Food Prot 67:1394–1402. 

 
National Advisory Committee on Microbiological Criteria for Foods (2010) Parameters 

for Determining Inoculated Pack / Challenge. J Food Prot 73:140–202. 
 
Niebuhr SE, Laury  a, Acuff GR, Dickson JS (2008a) Evaluation of nonpathogenic 

surrogate bacteria as process validation indicators for Salmonella enterica for 
selected antimicrobial treatments, cold storage, and fermentation in meat. J Food 
Prot 71:714. 

 
Niebuhr SE, Laury  a, Acuff GR, Dickson JS (2008b) Evaluation of nonpathogenic 

surrogate bacteria as process validation indicators for Salmonella enterica for 
selected antimicrobial treatments, cold storage, and fermentation in meat. J Food 
Prot 71:714. 

 
Office of Disease Prevention and Health Promotion (ODPHP). 2016. Food Safety. 

Available from: https://www.healthypeople.gov/2020/topics-objectives/topic/food-
safety/objectives. Accessed 2016 October 4. 

 
Orta-Ramirez A, Marks BP, Warsow CR, and others (2005) Enhanced Thermal 

Resistance of Salmonella in Whole Muscle Compared to Ground Beef. J Food Sci 
70:m359–m362. doi: 10.1111/j.1365-2621.2005.tb11480.x 

 
Phillips LE, Humphrey TJ, Lappin-Scott HM (1998) Chilling invokes different 

morphologies in two Salmonella enteritidis PT4 strains. J Appl Microbiol 84:820–
826. doi: 10.1046/j.1365-2672.1998.00417.x 

 
Potter NN and Hotchkiss JH. (1998) Heat Preservation and Processing. Food Science. 5th 

Edition. Springer. 
 
Sanguansri P (2016) Traditional Thermal Processing. Elsevier 
 
Scallan E, Hoekstra RM, Angulo FJ, and others (2011) Foodborne illness acquired in the 

United States-Major pathogens. Emerg Infect Dis 17:7–15. doi: 
10.3201/eid1701.P11101 

 
Sinclair RG, Rose JB, Hashsham SA, and others (2012) Criteria for selection of 

surrogates used to study the sate and control of pathogens in the environment. Appl 
Environ Microbiol 78:1969–1977. doi: 10.1128/AEM.06582-11 

 
Tucker G, Featherstone S (2011) 8 Cook Values and Optimisation of Thermal Processes.  
 
 

https://www.healthypeople.gov/2020/topics-objectives/topic/food-safety/objectives
https://www.healthypeople.gov/2020/topics-objectives/topic/food-safety/objectives


69 
 

United States Department of Agriculture - Food Safety and Inspection Service (USDA-
FSIS) (1998) Lethality and Stabilization Performance Standards for Certain Meat 
and Poultry Products : Technical Paper.  

 
USDA-FSIS (1999) Time-Temperature Tables for Cooking Ready-To-Eat Poultry 

Products. Available from: http://www.fsis.usda.gov/wps/wcm/connect/9ab2e062-
7ac8-49b7-aea1-f070048a113a/RTE_Poultry_Tables.pdf?MOD=AJPERES. 
Accessed 2016 October 4. 

 
USDA-FSIS (2013) "Danger Zone" (40°F - 140°F). Available from: 

http://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-
answers/food-safety-fact-sheets/safe-food-handling/danger-zone-40-f-140-
f/CT_Index. Accessed 2016 November 1.  

 
United States Department of Agriculture (USDA) (2014) Cost of foodborne illness 

estimates for Salmonella (non-typhoidal). Available from: 
http://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-
illnesses.aspx#48498. Accessed 2016 October 4. 

 
Vasan A, Geier R, Ingham SC, Ingham BH (2014) Thermal tolerance of O157 and non-

O157 Shiga toxigenic strains of Escherichia coli, Salmonella, and potential pathogen 
surrogates, in frankfurter batter and ground beef of varying fat levels. J Food Prot 
77:1501–11. doi: 10.4315/0362-028X.JFP-14-106 

 
Wesche A, Ryser E (2013) Stress adaptation, survival and recovery of foodborne 

pathogens. Guid to Foodborne Pathog 422–436. 
 

 

 

 

 

http://www.fsis.usda.gov/wps/wcm/connect/9ab2e062-7ac8-49b7-aea1-f070048a113a/RTE_Poultry_Tables.pdf?MOD=AJPERES
http://www.fsis.usda.gov/wps/wcm/connect/9ab2e062-7ac8-49b7-aea1-f070048a113a/RTE_Poultry_Tables.pdf?MOD=AJPERES
http://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses.aspx#48498
http://www.ers.usda.gov/data-products/cost-estimates-of-foodborne-illnesses.aspx#48498

	Purdue University
	Purdue e-Pubs
	12-2016

	Evaluation of thermal process lethality in meat for non-pathogenic Escherichia coli as a surrogate for Salmonella
	Morgan Alyse Redemann
	Recommended Citation


	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	CHAPTER 1. INTRODUCTION
	CHAPTER 2.  LITERATURE REVIEW
	2.1 Introduction
	2.2 Current Surveillance of Salmonella
	2.3 Salmonella
	2.4 Salmonella Infection
	2.5 Resistance and Adaptations
	2.6 Sources of Salmonella
	2.7 Current Methods for Mitigation of Salmonella and Meat-Inherent pathogens
	2.8 Regulatory Bodies in Meat Safety
	2.9 Hazard Analysis and Critical Control Points (HACCP)
	2.10 Ready-To-Eat (RTE) Meats
	2.11 Thermal processing
	2.12  Decimal Reduction Time (D-value)
	2.13 z-value
	2.14 F-value: Lethality of Thermal Processes
	2.15 Guidelines and Validation for RTE meat
	2.16 Thermal Process Validation: Surrogates, Indicators, and Markers
	2.17 Surrogates vs. Indicator Organisms
	2.18 Surrogate Use

	CHAPTER 3. THERMAL PROCESS LETHALITY IN GROUND BEEF FOR NON-PATHOGENIC eSCHERICHIA COLI AS A SURROGATE FOR SALMONELLA
	3.1 Abstract
	3.2 Introduction
	3.3 Materials and Methods
	3.3.1  Non-pathogenic E. coli Surrogates
	3.3.2 Salmonella Isolates
	3.3.3 Meat Preparation
	3.3.4 Inoculum Preparation (Non-Pathogenic E. coli Surrogates and Salmonella Cocktail)
	3.3.5 Meat Inoculation and Preparation for Heating
	3.3.6 Thermal Inactivation and Enumeration
	3.3.7 Calculating D-values and z-values
	3.3.8 Statistical Analysis

	3.4 Results and Discussion
	3.5 Tables and Figures

	CHAPTER 4. OVERALL CONCLUSIONS
	CHAPTER 5. FUTURE RESEARCH
	5.1.1.1 Introduction
	5.1.1.2 Guidelines for Cooked Beef, Roast Beef, and Cooked Corned Beef
	5.1.1.3 Guidelines for Cooked Poultry Rolls and Other Cooked Poultry Products

	REFERENCES
	CDC. Center for Disease Prevention and Control (2014) FoodNet–Number and Incidence of Salmonella Infections by Serotype 2013. Available from: http://www.cdc.gov/foodnet/data/trends/tables/2013/table5.html. Accessed 2016 July 20.


