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ABSTRACT 
 
 

Ng, Ka Ho.  M.S., Purdue University, December 2016.  Dopamine D1 Receptor 
Activity in the Basolateral Amygdala is Important for Mediating Fear, Reward and 
Safety Discrimination Learning.  Major Professor:  Susan Sangha. 
 
 
Post traumatic stress disorder (PTSD) patients frequently show impairment in safety 

learning (Jovanovic, Kazama, Bachevalier, & Davis, 2012).  Since the amygdala is 

known to be critical for emotional processing(Wassum & Izquierdo, 2015) and 

dopamine signaling in the amygdala is important for mediating both fear and reward 

learning, current experiments examined the role of dopamine signaling in the BLA in 

mediating both safety learning and reward seeking.  We manipulated dopamine D1 

receptor activity with a D1 receptor agonist (SKF 38393) or D1 receptor antagonist 

(SCH23390) either systemically or infused directly into the BLA 20 minutes prior to 

training rats in a fear-safety-reward cue discrimination learning task (Sangha, Chadick, 

& Janak, 2013). Systemic administration of either the D1 receptor agonist or antagonist 

impaired fear and safety discrimination learning.  The systemic administration of the 

D1 receptor agonist, but not the antagonist, also impaired discriminative fear and 

discriminative reward seeking.  BLA infusion of the agonist, but not the antagonist, 

replicated the impairment in fear and safety discrimination learning but not 

discriminative reward seeking.  This study demonstrates that D1 receptor activity in the 
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BLA is not needed for fear learning, safety learning or discriminative reward seeking, 

but an increase in dopamine D1 receptor activity within the BLA impairs fear 

suppression in the presence of the safety signal.   
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INTRODUCTION 
 
 

Current drug therapy for posttraumatic stress disorder (PTSD) lacks specificity, 

and more targeted treatment is needed. The results of a 2016 meta-analysis study 

indicate that SSRI and SNRI antidepressants are most commonly recommended for the 

treatment of PTSD (Lee et al., 2016). The two most effective medications, Venlafaxine 

and Nefazodone, lack sustained benefits and can trigger severe side effects, 

respectively (Lee et al., 2016). A better understanding of the underlying neural circuit 

would allow the development of more specific drugs to rescue dysregulations in fear 

suppression.  This approach may lead to the development of drugs with longer lasting 

benefits upon treatment completion and with less side effects. Given that PTSD affects 

approximately 8.7% of the general population within their lifetime(Kessler et al., 

2005), there is a critical need to map out the neural circuitry underlying emotional 

regulation to stimulate development of more targeted drug treatments.  PTSD patients 

have an inability to discriminate between danger and safety (Jovanovic et al., 2009), 

and they have impairments in fear extinction(Morriss, Christakou, & Van Reekum, 

2015). Current literature has mostly focused on the reward and fear learning circuits 

separately. Integrating the safety circuit with the fear and reward circuit is essential for 

understanding how safety signals elicit approach behaviors and inhibit avoidance 

behaviors. Without an understanding of the integrated fear-reward-safety circuitry, we 



2 

will continue to have knowledge gaps with respect to fear dysregulation by safety 

signals in PTSD patients.  

Overview of Neural Circuitry of Emotion Learning (Figure 1) 

The amygdala is critical for both fear and reward learning (Wassum & 

Izquierdo, 2015). It receives input from the sensory insular cortex (SI)(Kong, Monje, 

Hirsch, & Pollak, 2014), prefrontal cortex (PFC) (Vertes, 2004), hippocampus 

(Ishikawa & Nakamura, 2006), and ventral tegmental area (VTA)(Abraham, Neve, & 

Lattal, 2014). Inputs from those brain structures into the amygdala are critical in 

mediating complex emotional learning.  The SI receives sensory input from different 

modalities and is important for safety expression (J. P. Christianson et al., 2008). The 

infralimbic cortex (IL) of the PFC is important for fear extinction(Kong et al., 2014). 

The hippocampus is important for fear extinction (Corcoran & Maren, 2001). The 

dorsal hippocampus, in addition to being involved with fear learning (Rossato, 

Bevilaqua, Izquierdo, Medina, & Cammarota, 2009), is also involved with reward 

learning (Luo, Tahsili-Fahadan, Wise, Lupica, & Aston-Jones, 2011). Similar to the 

amygdala, the VTA also responds to both valences.  Dopamine neurons in the dorsal 

portion of the VTA  are responsive to rewards and dopamine neurons in the ventral 

portion are responsive to aversive events (Abraham et al., 2014).  All of these inputs 

converge in the amygdala and will affect the outputs to the nucleus accumbens (NAc) 

(Wassum & Izquierdo, 2015) and periaqueductal gray (PAG)(Herry & Johansen, 

2014), among others,  for behavioral expression.  The NAc mediates both appetitive 

and avoidance behaviors (Richard & Berridge, 2011) and the PAG is necessary for 

conditioned freezing expression(Pape & Pare, 2010).     



3 

General Overview of the Amygdala in Emotion Learning 

The amygdala can be roughly divided into central amygdala (CeA) and 

basolateral amygdala (BLA). This structure is important for detecting salient stimuli, 

and eliciting approach or avoidance behaviors in response to either reinforcing or 

aversive environmental signals (Janak & Tye, 2015; Weymar & Schwabe, 2016).  The 

CeA, which is divided into the lateral portion (CeL) and medial portion (CeM), is made 

up of mostly GABAergic neurons(Janak & Tye, 2015). The CeA is necessary for fear 

expression and conditioned orientating responses to the reward CS. It receives direct 

input from the BLA as well as indirect BLA input via GABAergic intercalated cells 

located between the BLA and CeA (Amano, Unal, & Paré, 2010; Janak & Tye, 2015). 

In contrast, the BLA which includes the basal amygdala (BA), basomedial amygdala 

(BM) and lateral amygdala (LA) is mostly made up of glutamatergic principal neurons 

and inhibitory interneurons (Janak & Tye, 2015). Glutamatergic principle neurons 

make up approximately 80 percent of the cells in the BLA, and they make connection 

with each other through excitatory projections.  They also relay inputs from the LA to 

the BM.  The remaining 20 percent are GABAergic interneurons (Pape & Pare, 2010).  

The BLA is critical for fear expression (Sierra-Mercado, Padilla-Coreano, & Quirk, 

2011) and avoidance expression (Bravo-Rivera, Roman-Ortiz, Brignoni-Perez, Sotres-

Bayon, & Quirk, 2014). There is evidence showing that fear memories are stored 

within the BLA.  Reactivation of fear memories followed by infusion of a protein 

synthesis inhibitor, anisomycin, into the BLA disrupts memory in future tests.  This 

effect is observable for both newly formed and older memories (Nader, Schafe, & Le 

Doux, 2000). 
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The LA is an important sensory input area of the BLA for receiving both 

conditioned stimulus (CS) and unconditioned stimulus (US) information. CS input 

enters the LA through projections from the medial geniculate nucleus(MGn) and 

auditory cortex (AC) (Tsvetkov, Carlezon, Benes, Kandel, & Bolshakov, 2002).   

Optical stimulation of inputs from AC and MGn to the LA can effectively replace an 

auditory CS during fear conditioning (Nabavi et al., 2014).  There are at least two 

sources of plasticity within this pathway during learning.  It has been demonstrated that 

the synaptic input from the AC to the LA shows long term potentiation(LTP) during 

fear conditioning (Tsvetkov et al., 2002). Inducing long term depression (LTD) or 

inducing LTP at the synaptic input  to the LA following paired training can abolish or 

reactivate conditioned suppression, respectively (Nabavi et al., 2014).  There is 

evidence showing that the learning induced LTP in the synapse from auditory cortex to 

the LA is attributed to the increase in presynaptic neurotransmitter release probability, 

but not quantal amplitude (Tsvetkov et al., 2002). Stress exposure can enhance this 

LTP by increasing the number of postsynaptic NMDA receptors in LA principal 

neurons leading to the overall facilitation in fear consolidation (Suvrathan et al., 2014).  

This fear facilitation might contribute to the resistance in fear extinction observed in 

individuals with anxiety disorders.   

In addition to synaptic changes in the inputs to the LA, plasticity can also be 

observed downstream within the LA.  During fear conditioning, the LA shows an 

increase in short latency activity to the auditory CS.   This effect can be observed in as 

little as five fear conditioning trials and the increase in LA activity persists even when 

conditioning continues for 70 more trials.  This further supports the idea that fear 
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memories are established and stored within the LA (Maren, 2000).   In addition, the LA 

receives US input from the spinal/ trigeminal dorsal horn through the periaqueductal 

gray(PAG) during fear conditioning (Herry & Johansen, 2014). The optical stimulation 

of LA pyramidal neurons within the amygdala can effectively replace a footshock US 

and cause animals to subsequently show conditioned freezing to an auditory CS that 

was previously paired with the optical stimulation (Johansen et al., 2010).  Taken 

together, this pairing of CS and US leads to the strengthening of CS input to the LA 

during fear conditioning, and it becomes easier for the CS to activate the LA without 

the unconditioned stimulus (US) input to the LA (Janak & Tye, 2015). The finding that 

LA activation can serve as an effective US, producing conditioned freezing responses, 

supports the idea that CS activation of LA pyramidal neurons during conditioning is 

critical for driving fear memory formation (Johansen et al., 2010).   

In addition to fear learning, the amygdala plays a role in reward learning.  It 

encodes reward value and neurons in the amygdala respond to the visual presentation 

of food only when it’s palatable (Wassum & Izquierdo, 2015).  The neurons in the 

BLA have been found to encode information for reward anticipation and reward 

contingency (Hernádi, Grabenhorst, & Schultz, 2015; Sugase-Miyamoto & Richmond, 

2005). BLA neurons also show increases in firing to the reward cue during paired 

training (Tye & Janak, 2007), and encode changes in reward value by encoding both 

positive and negative prediction error(Wassum & Izquierdo, 2015). With respect to 

reward, there is a population of BLA neurons that are responsive to the cue only when 

the animal is seeking reward, and a different population of BLA neurons that are 

responsive to the reward cue regardless if the animal is seeking reward (Tye & Janak, 
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2007). Projections from the BLA to the NAc shell (NAs) is necessary for reward 

seeking extinction expression(Millan & McNally, 2011) . 

Taken together, the BLA regulates both positive and negative emotions.  This 

idea was also supported by a recent publication from our lab looking at fear-reward-

safety discrimination learning in rats.   We found that the BLA contains fear neurons 

that show selective responses to the fear cue, safety neurons that show selective 

responses to the safety cue, and safety + reward neurons that show selective responses 

to the safety and reward cues (Sangha, Chadick, & Janak, 2013). In addition, the BLA 

receives projections from the prelimbic cortex (PL) and the infralimbic cortex 

(IL)(Vertes, 2004). Follow up local inactivation studies from our lab have shown that 

the PL is necessary for fear expression and discriminative reward seeking, and the IL is 

necessary for fear and safety discrimination (Sangha, Robinson, Greba, Davies, & 

Howland, 2014). These findings suggest that inputs from upstream BLA structures may 

contribute to the learning related changes observed in the BLA during fear, safety and 

reward discrimination. 

Dopamine Signaling 

Midbrain dopamine neurons are predominantly located in the VTA, substantia 

nigra pars compacta (SNc) and retrorubral field (RRF) (Lammel, Lim, & Malenka, 

2014).  They are responsive to reward cues and to the unexpected delivery of rewards 

(Schultz, 2013).  Past studies have identified dopamine neurons based on the presence 

of Ih current and responsiveness to dopamine application.  However, not all dopamine 

neurons show these characteristics(Lammel et al., 2014).  In addition, dopamine 
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neurons can be GABAergic or glutamatergic and therefore can release GABA or 

glutamate in addition to dopamine(Lammel et al., 2014).   

A typical dopamine response can be divided into two components.  The faster 

stimulus detection component is important in directing attention and allowing a quicker 

response to the potential reward. The magnitude of this component is dependent on the 

intensity of the signal, similarity with other reward signals, presentation context, and 

novelty of the cue (Schultz, 2016).   The slower component encodes prediction error, 

which reflects the difference between expected and obtained. An increase in firing can 

be observed when an obtained reward is higher than expected, and decreased firing can 

be observed when an obtained reward is lower than expected. No change is observed 

when an obtained reward is fully expected (Schultz, 2013, 2016).  This prediction error 

serves as a teaching signal and provides feedback about changes in reward delivery to 

drive learning.  Mimicking a prediction error by activating dopaminergic neurons 

during reward delivery leads to an enhancement in cue driven reward seeking 

(Steinberg et al., 2013).  In addition, midbrain dopaminergic neurons are responsive to 

unpleasant stimuli.  Since this increase in firing occurs at the end of an aversive 

stimulus, this might be due to the reinforcing effect from removal of the aversive 

stimulus (Schultz, 2013).  

Dopamine Receptors 

There are five subtypes of dopamine receptors: D1, D2, D3, D4 and D5.  

Binding of dopamine to D1 or D5 receptors activates stimulatory G proteins and leads 

to the stimulation of adenylate cyclase activity and production of cyclic adenosine 

monophosphate (cAMP).   In contrast, binding of dopamine to D2, D3 or D4 receptors 
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activates inhibitory G proteins and decreases adenylate cyclase activity (Abraham et 

al., 2014).  Dopamine receptors can be found throughout the brain. Dopamine D1 and 

D2 receptors are both expressed in the PFC, NAc, intercalated cells of the amygdala, 

hippocampus, and striatum.  D2 receptors are more selectively expressed in the CEA, 

substantia nigra, and VTA, whereas D1 receptors are more selectively expressed in the 

BLA (Weiner et al., 1991).  Dopaminergic signaling within the BLA is important for 

both fear and reward learning.  Within the BLA, dopamine levels increase during fear 

conditioning (de Oliveira et al., 2011) and D1 receptor activity within the BLA is 

needed for the acquisition of fear extinction(Hikind & Maroun, 2008).  Both D1 and 

D2 receptor activity modulates risk decisions during a reward uncertainty task(Larkin, 

Jenni, & Floresco, 2016).  

Dopaminergic Circuits  

The VTA is a critical upstream structure since it sends dopaminergic 

projections to diverse brain regions regulating both reward and aversive learning.  The 

VTA has projections to both the prelimbic (PL) and infralimbic (IL) cortex through the 

mesocortical pathway (Abraham et al., 2014). The PL and the IL in turn project to the 

BLA (Vertes, 2004).  Local inactivation studies have shown that the PL is necessary 

for fear expression and discriminative reward seeking, and the IL is necessary for fear 

and safety discrimination(Sangha, Robinson, et al., 2014). The VTA also has direct 

projections to the BLA, CEA, hippocampus and the NAc through the mesolimbic 

pathway (Abraham et al., 2014). This projection from the VTA to the BLA is important 

for fear learning. Normally, dopamine levels in the BLA increase during fear 

conditioning (de Oliveira et al., 2011). An increase in D2 receptor activity in the VTA 
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has been shown to block both conditioned freezing and the learning related increases in 

dopamine levels within the BLA (de Oliveira et al., 2011). The BLA also receives a 

direct projection from the ventral hippocampus (Ishikawa & Nakamura, 2006), as well 

as an indirect projection from the ventral hippocampus (Verwer, Meijer, Van Uum, & 

Witter, 1997) via the PFC (Brinley-Reed, Mascagni, & McDonald, 1995).  Dopamine 

receptor activity in the NAc has also been implicated in regulating opposing emotions.  

D1 receptor activity is needed for consumption behavior in the anterior portion of the 

NAc. Both D1 and D2 receptor activities are needed for the expression of fear 

behaviors in the posterior NAc (Richard & Berridge, 2011). In addition, the VTA also 

projects to the dorsal striatum through the nigrostriatal pathway (Abraham et al., 2014).  

Dopaminergic neurons within the dorsal striatum are needed for discriminative reward 

learning (Eagle, Olumolade, & Otani, 2015).  It has also been demonstrated that 

cocaine administration leads to plasticity in the VTA to medial NAc pathway, and 

painful injection, such as formalin leads to plasticity in the VTA to mPFC pathway 

(Lammel et al., 2014).  Taken together, these data suggests that dopamine signaling is 

implicated in both fear and reward learning.  

Dopamine in Learning 

Dopamine is critical for both LTP and LTD in certain brain structures.  In the 

striatum, D1 is necessary for LTP and D2 is necessary for LTD (Schultz, 2013). The 

VTA also provides necessary dopamine signals to other downstream structures such as 

PFC, amgydala and NAc contributing to different aspects of fear learning.  D1 receptor 

activity in the amygdala is critical for fear learning (Abraham et al., 2014). D1 receptor 

activity in the dorsal hippocampus and BLA are necessary for the acquisition of 
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contextual fear conditioning(Heath et al., 2015). In addition, restoring dopamine 

function in the NAc and BLA in mice with impaired dopamine synthesis can rescue 

impairments in long term memory of fear potentiated startle.  This demonstrated that 

dopamine signaling in the NAc and BLA is necessary for forming long term memory 

of fear potentiated startle (Fadok, Darvas, Dickerson, & Palmiter, 2010). Dopamine is 

also involved with fear extinction. Dopamine levels in the PFC typically increase 

during fear extinction training.  Blocking D1 receptor activity after or blocking D2 

receptor activity before extinction training in the IL impairs fear extinction 

consolidation (Abraham et al., 2014).   

Dopamine D1 signaling in the amygdala, Nac, PFC and hippocampus, are 

implicated in reward learning.   D1 receptor activity in the NAs, dmPFC and BLA is 

necessary for the reinstatement of drug seeking during stress(Tobin, Sedki, Abbas, & 

Shalev, 2013).  D1 receptor activity in the BLA, CeA, and ventral subiculum of the 

hippocampus is necessary for the acquisition of conditioned approach behavior 

(Matthew E. Andrzejewski & Ryals, 2016).  D1 receptor activity in the BLA and CeA 

is needed for the acquisition of conditioned lever press (M. E. Andrzejewski, Spencer, 

& Kelley, 2005).  

Dopamine release in the NAc is also important in reward learning. 

Inappropriate dopamine release in the NAc is linked to drug abuse (Lammel et al., 

2014).  NAc dopamine release is modulated by learning. It has been shown that 

learning results in a larger dopamine release, but overtraining decreases the learning 

related facilitation in dopamine release(A. L. Collins et al., 2016). During 

discriminative reward learning, the NAc  also shows a pattern of enlarged dopamine 
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release to the discriminative stimulus (Jones et al., 2010). This learning related increase 

in dopamine level in the NAc is amygdala dependent, and it can directly affect reward-

seeking behavior.  Ipsilateral BLA inactivation prior to training can diminish the 

learning related increase in dopamine level to the discriminative stimulus and also 

impaired approach behavior to the port (Jones et al., 2010).  

There is a glutamatergic projection from the BLA to NAc.  Optical activation of 

this pathway is reinforcing because rats will learn to enter the port for the optical 

stimulation of this pathway. Optical inhibition of the same pathway decreased cue 

driven reward consumption(Stuber et al., 2011). D1 receptor activity in the NAc is 

needed for the stimulation to be effective because animals with D1 antagonist infusion 

into the NAc showed a decrease in cue-driven nose poke activity to the active port 

(Stuber et al., 2011). This demonstrated that the optical induction of reward seeking 

behavior is mediated by dopamine D1 receptor activity in the BLA-NAc projection. 

Taken together, dopamine signaling from the VTA affects a wide range of brain 

structures in regulating both reward and aversive learning.  

Fear Conditioning 

In Pavlovian fear conditioning, the conditioned stimulus (CS) signals the 

occurrence of a threat(LeDoux, 2014).  The CS is usually a tone or light and the threat 

US is usually a mild footshock.  The repeated pairing of the two results in a learned 

defensive response to the CS in anticipation to the threat (LeDoux, 2014).  For an 

auditory CS, sensory information travels from the inferior colliculus (IC) through the 

posterior intralaminar (PIN) and medial division of medial geniculate nucleus (MGm) 

into the LA (Pape & Pare, 2010).  It can also travel indirectly from MGm or ventral 
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division of medial geniculate nucleus (MGv) to LA through the auditory cortex (Herry 

& Johansen, 2014).  US information travels from the spinal/trigeminal dorsal horn 

through the PAG and converges with CS information in the LA (Herry & Johansen, 

2014).  Fear learning induces plasticity within the LA prior to the observed CS 

facilitation in auditory cortex and auditory thalamus. The facilitation in LA is 

associative because paired training leads to higher CS responding than unpaired 

presentations.  Even in discrimination training, CS facilitation in LA is only observed 

toward CS and not to the CS- that signals the absence of the US (D. R. Collins & Paré, 

n.d.). The LA has indirect projections to the CEm via the CEl, BA and ITC cells(Pape 

& Pare, 2010). During fear consolidation and reconsolidation, theta activity has been 

shown to synchronize between the dorsal hippocampus (CA1) and BLA.  This CA1-

BLA activity is then phase locked with the IL during fear extinction (Lesting et al, 

2011; Sangha et al 2009; Narayanan et al 2008).  Lastly, CEA output is necessary for 

producing different conditioned fear behaviors. Outputs to the lateral hypothalamus 

and PAG selectively affects blood pressure and conditioned freezing, 

respectively(LeDoux, Iwata, Cicchetti, & Reis, 1988).   

Reward Conditioning 

There is no standard behavioral paradigm for studying reward learning.  

However, reward learning typically contains a CS such as a tone or light that signals 

the occurrences of a reward delivery, or signals an opportunity that executing a certain 

behavior results in the delivery of reward.  Reward learning is an amygdala dependent 

activity. While the CEA is required for reward learning that involves forming 

associations between the CS and a broader anticipatory response such as approach 
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behavior, arousal, and changes in heart rate (Balleine & Killcross, 2006), the BLA is 

required for reward learning that involves forming associations between the CS and the 

specific aspects of US consumption responses, such as licking and chewing (Balleine 

& Killcross, 2006).  The BLA is also needed when a specific reward outcome is 

required to guide the operant response (Wassum & Izquierdo, 2015). Although lacking 

evidence, it has been suggested that the general arousal and anticipatory responses 

mediated by the CEA may facilitate US specific reward learning that is BLA-mediated 

(Balleine & Killcross, 2006). In addition, the BLA has projections to other brain 

structures that can influence different aspects of reward learning. Projections to the 

dorsal medial striatum (DMS) and insular cortex affect learning of operant response- 

outcome association.  Projections to the OFC affect impulsivity, and disruption in this 

pathway shifts the preference to choosing a smaller and quicker reward over a larger 

delayed reward(Wassum & Izquierdo, 2015).   

Conditioned Inhibition 

A conditioned inhibitor is an inhibitory CS that signals the absence of the US.   

It is distinguished from the lack of excitation in that it is an active suppression process 

(Schwartz, Wasserman, & Robbins, 2002) that must pass both a summation test and 

retardation test(J. P. Christianson et al., 2012).  In contrast, a conditioned exciter 

signals the occurrence of the US. This allow the animal to anticipate in advance. A 

summation test can be performed by presenting a compound stimulus consisting of 

both the conditioned exciter and conditioned inhibitor.  The compound stimulus should 

elicit a smaller magnitude of conditioned responding than conditioned exciter alone.  

The retardation test uses the conditioned inhibitor as a conditioned exciter to be paired 
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with the US.  Pairing the US with the previously used inhibitor should result in slower 

learning (J. P. Christianson et al., 2012).   

Safety Conditioning 

Safety cues signal the absence of a threat. This can be induced with unpaired 

training, backward conditioning, discrimination training or avoidance training (Kong et 

al., 2014).   A learned safety cue is a type of conditioned inhibitor and is an active fear 

suppressor that can be verified with the summation and retardation tests  (J. P. 

Christianson et al., 2012).  In addition, since the fear and reward systems reciprocally 

suppress each other, suppression of fear via a safety cue will indirectly excite the 

reward system (Dickinson & Michael, 1979; Dickinson & Pearce, 1977; Gray, 1987), 

providing learned safety cues with reinforcing properties (J. P. Christianson et al., 

2012). It has been demonstrated that animals would preferentially spend more time in 

the chamber that has a safety signal playing (Rogan, Leon, Perez, & Kandel, 2005).  In 

addition, animals will preferentially choose a lever that also delivers the safety signal 

when provided with two levers that can both prevent shock occurrence (A. B. P. 

Fernando, Urcelay, Mar, Dickinson, & Robbins, 2014). Presenting a safety signal has 

been shown to encourage exploratory behavior to the aversive center region in an open 

field task (Rogan et al., 2005) and safety conditioning has been shown to rescue 

impairments in social exploration resulting from prior exposure to inescapable tail 

shocks(J. P. Christianson et al., 2008).    

The amygdala and striatum have opposing functions in safety and fear learning.   

Imaging studies have identified that the amygdala shows more activity to the fear CS 

and a decrease in blood oxygenation level dependent activity to the safety CS.  The 
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striatum shows the opposite, with more activity to the safety CS and increased blood 

oxygenation level dependent activity to the safety CS (Kong et al., 2014).  This is 

consistent with electrophysiological data demonstrating that the LA shows decreases in 

CS evoked field potential amplitude and slope during safety training, and an increase in 

CS evoked field potential amplitude and slope during fear training (Rogan et al., 2005).  

This study also demonstrated that the caudoputamen(CP) shows an increase in CS 

evoked field potential amplitude and slope during safety training, but no change to fear 

conditioning.   The SI is another area critical for safety expression.  It has projections 

to the amygdala (John P Christianson & Greenwood, 2014).  .  The hippocampus may 

be another structure critical for safety. There is evidence that neurogenesis within the 

hippocampus is necessary for safety conditioning (Pollak et al., 2008).  In addition, 

lesion studies have demonstrated that NAc is not necessary for safety learning and 

expression(Josselyn, Falls, Gewirtz, Pistell, & Davis, 2005). However, this structure 

still plays a role in expressing the rewarding effects of a safety cue.  Both d-

amphetamine or GABA antagonist administration into the NAs reduces avoidance 

lever pressing in the presence of a safety cue, demonstrating NAs’s role in modulating 

avoidance behaviors that is reinforced by safety signals (A. B. Fernando, Urcelay, Mar, 

Dickinson, & Robbins, 2014).  The PFC also receives considerable attention for safety 

learning.  Among people with PTSD, their impairment in safety learning has been 

attributed hypoactivity in the PFC along with hyperactivity in the amygdala (J. P. 

Christianson et al., 2012). Patients with generalized anxiety disorder also show lower 

activity in the vmPFC than control patients to an aversive tone during discrimination 

learning(Laufer, Israeli, & Paz, 2016).  The IL within this structure is also necessary 
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for fear extinction(Kong et al., 2014). However, the role of PFC on safety learning has 

been controversial.    There is a group that found that inactivating both the PL and IL 

together during safety learning does not impair the safety effect showing that the 

ventromedial prefrontal cortex is not needed for safety learning(J. P. Christianson et 

al., 2008).  However, there is a different group that found that inactivating the IL and 

PL separately revealed the IL is necessary for fear and safety discrimination 

learning(Sangha, Robinson, et al., 2014).The discrepancy could be due to differences 

in training paradigms.  It is possible that inactivation both IL and PL concurrently 

could have also impair fear expression since the PL and IL have differential roles in 

fear expression and safety learning, respectively.   

Different Than Extinction 

In fear extinction, a previously learned CS is no longer followed by the US.  As 

a result, the animals gradually show less conditioned fear responses to the CS.  

However, this fear reduction in fear extinction have distinct impacts and mechanisms 

than that of learned safety.  Fear extinction only inhibits fear to the once previously 

conditioned signal. In contrast, learned safety has broader antidepressant and reward 

effects because it can inhibit innate fear and facilitate reward behaviors(Kong et al., 

2014). These two types of learning are mediated by distinct neural circuits.     

 Electrophysiological data from the BLA have demonstrated the presence of 

neurons that are responsive to the safety cue, combined fear + safety cue and reward 

cues in the BLA indicating that the BLA has an overlapping neural circuit encoding 

safety and reward learning (Sangha et al., 2013), further supporting an old idea that a 

safety cue has rewarding properties (Rescorla, 1969). As a result, unlike extinction, the 
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presence of safety cues can elicit approach behaviors and facilitate the acquisition of 

operant tasks (J. P. Christianson et al., 2012). In addition, the number of BLA neurons 

that show selective responding to the fear cue normally increase during 

extinction(Sangha, 2015). However, the proportion of neurons within the BLA that 

switch to become fear cue responsive does not differ between safety neurons and other 

neurons during fear extinction(Sangha, 2015).  This demonstrates that safety learning 

and fear extinction likely involve independent circuits within the BLA.  

Taking everything together, these findings suggest that dopamine signaling 

within the BLA should modulate safety-fear-reward cue discrimination.  Since there is 

a high concentration of D1 receptors, but little to no expression of D2 receptors, in the 

BLA (Abraham et al., 2014; Weiner et al., 1991), the current project focuses on the 

effect of manipulating D1 receptor activity within the BLA.   

Our program’s long-term goal is to better understand comorbid disorders 

arising from emotional dysregulation. Our objective in this study is to identify the 

contribution of BLA dopamine D1 receptor activity in mediating safety-fear-reward 

cue discrimination using a rodent model. Our central hypothesis is that dopaminergic 

D1 receptor activity in the BLA is essential for safety-fear-reward cue discrimination.  

Our rationale for this research is to guide future research to better target the necessary 

pathway(s) to manipulate and electrophysiologically monitor. This is essential for 

linking cellular level changes to behavioral expression. We propose to test our central  

hypothesis with the following two aims:  
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Specific Aims 
 
 

Aim 1. Hypothesis: A) Since dopamine D1 receptor activity in 

the amygdala, NAc, and hippocampus mediates fear learning(Fadok et 

al., 2010; Heath et al., 2015), increasing dopamine D1-receptor 

activity globally with an agonist should enhance fear learning and 

impair safety learning. Decreasing D1 receptor activity with an 

antagonist globally should produce the opposite effect of enhancing 

safety learning and impairing fear learning.  B) Since dopamine D1 

receptor activity in the PFC, NAc, amygdala and hippocampus mediates 

reward learning(Matthew E. Andrzejewski & Ryals, 2016; Tobin et al., 

2013), increasing dopamine D1 receptor activity globally with an 

agonist should enhance discriminative reward seeking.   Blocking 

dopamine D1 receptor activity globally with an antagonist should 

produce the opposite effect of impairing discriminative reward 

learning.  This will be tested by using subcutaneous administration of a 

D1 receptor agonist, D1 receptor antagonist or saline 20 minutes prior to 

each discrimination session where rats are learning about cues signifying 

safety, fear or reward using the procedure previously published (Sangha 

et al., 2013; Sangha, Robinson, et al., 2014).  In contrast to only 

administering the drug prior to the last discrimination session, 

administrating the drug prior to each discrimination session allows us to 

examine the drug’s impact during discrimination acquisition. 
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Aim 2. Hypothesis: Dopamine D1 receptor activity in the BLA is 

needed for both fear learning (Heath et al., 2015) and reward learning 

(Matthew E. Andrzejewski & Ryals, 2016). Dopamine levels in the BLA 

increase during fear learning (de Oliveira et al., 2011), and BLA neurons 

contribute to encoding reward prediction error (Wassum & Izquierdo, 

2015).  Increasing dopamine D1-receptor activity in the BLA with 

an agonist should enhance fear learning and impair safety learning,  

whereas decreasing BLA D1 receptor activity with an antagonist 

should enhance safety learning and impair fear learning.  In 

addition, increasing dopamine D1 receptor activity in the BLA with 

an agonist should enhance discriminative reward seeking, while   

blocking dopamine D1 receptor activity in the BLA with an 

antagonist should impair discriminative reward learning.  This will 

be tested by local BLA infusions of a D1 receptor agonist, D1 receptor 

antagonist or saline 20 minutes prior to each discrimination session 

where rats are learning about cues signifying safety, fear or reward using  

the procedure similar to Aim 1.  
 
 
For both Aims 1 and 2, it is predicted that fear/safety discrimination will be 

impaired when D1 receptor activity is induced with an agonist. In addition, fear 

learning and discriminative reward activity is expected to be impaired when D1 

receptor activity is blocked with an antagonist in the BLA. 
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MATERIALS AND METHODS 
 
 

Subjects 

Fifty-four Long Evans male rats (Harlan) weighing 300-350 g were single 

housed (12h light/dark cycle, lights on 09:00) and handled for 1 week before 

commencing experiments. All procedures were performed during the light cycle and 

approved by the Purdue Animal Care and Use Committee.  Rats had ad libitum access 

to food and water up until the first training session, when they were restricted to 20 g 

of food per day for the remainder of the experiment. 

Apparatus 

Operant chambers were Plexiglas boxes (32 cm length x 25 cm width x 30 cm 

height) encased in sound-attenuating chambers (Med Associates, ST Albans, VT). 10% 

liquid sucrose was delivered through a recessed port 2 cm above the floor in the center 

of one wall. Port entries and exits were monitored through an infrared beam. Two 

lights (28v, 100mA) located 10.5 cm from floor on either side of the port served as the 

20-s continuous light cue.  A light (28v, 100 mA) 27cm above the floor on the wall 

opposite the port provided constant illumination. Auditory cues were delivered via a 

“tweeter” speaker (ENV-224BM) located 24 cm from the floor on the same wall as the 

port. Footshocks were delivered through a grid floor via a constant current aversive 
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stimulator (ENV-414S).  A side video camera located on the door of the sound-

attenuating cubicle recorded the rat’s behavior for offline video analyses.   

Surgery 

Rats were anesthetized with isoflurane and stereotaxically implanted bilaterally 

with stainless steel 27- gauge guide cannula dorsal to the BA (AP -2.2mm; ML +/-4.9; 

DV -7.5). During infusions, 32 gauge needles extended 1 mm beyond the guide 

cannulas into the BA. Rats were allowed 7 – 10 days to recover in which they had ad 

libitum access to food and water. Stainless steel 32-gauge dummy cannulas were 

inserted into the guide cannulas between infusions.  

Behavioral Training Paradigm 

The three cues signifying reward, fear or safety were a 20 s continuous 3 kHz 

tone (70dB), a 20 s pulsing 11 kHz tone (200 ms on, 200 ms off; 70 dB), or a 20 s 

continuous light (28V, 100 mA), respectively.  The stimuli were not counterbalanced 

for this study since our previous study did not find significant differences in 

conditioned freezing among any of the cues (Sangha et al, 2013).   

Rats were trained in 3 phases. Phase 1 consisted of a reward session 

administered on 5 separate days.  Each session had 25 paired presentations of a 20s 

reward cue with a 3 s delivery of 10% sucrose solution (100 µL) into the port 

accessible to the animals. Sucrose delivery commenced pseudorandomly 10 to 20 s 

after reward cue onset.  The intertrial interval (ITI) was 90 -130 s.  Phase 2 consisted of 

a single habituation session.  Animals continued to receive 25 trials of reward cue-

sucrose pairings as well as 5 additional trials each of the fear cue presented alone and 

safety cue presented alone (ITI, 90-130 s). This procedure allows the animals to 
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habituate and reduce their baseline freezing to the novel cues but does not contain 

enough presentations to produce latent inhibition.  Phase 3 consisted of four sessions of 

discrimination training. For each session, delivered on separate days, rats received: 15 

trials of reward cue-sucrose pairings, 4 trials of fear cue-footshock pairings (20 s cue + 

0.5 s, 0.45 mA footshock at cue offset), 15 trials of simultaneous presentation of the 20 

s fear and safety cues without footshock, and 10 trials of the 20 s safety cue presented 

alone without footshock (total 44 trials, ITI 100 – 140 s). Inclusion of trials where the 

safety cue was presented alone was to provide the animal with additional trials with a 

safety cue- no shock contingency and to assess if freezing developed to the safety cue. 

Systemic Injections 

Systemic s.c. injections of a D1 receptor agonist (10mg/kg SKF-38393)(Doty et 

al., 1998; Inoue, Izumi, Maki, Muraki, & Koyama, 2000), antagonist (3. 33µg/kg SCH-

23390) (Sciascia, Mendoza, & Chaudhri, 2014)or saline were administered 20 m prior 

to each DC session. Previous study have shown that systemic administration of SKF-

38393 can increase and systemic administration of SCH-23390 can decrease Ach 

release in striatal neurons in as little as 20 minutes, respectively (Johnson & Bruno, 

1995).  This provides support that our 20 minute wait time after systemic injection 

should be sufficient to allow both the D1 receptor agonist and antagonist to reach the 

brain.  To acclimate the animals to the injection procedure, all rats also received saline 

injections 20 minutes prior to the last reward training and habituation training. 

BLA Infusions 

D1 dopamine receptor agonist SKF38393 was dissolved in 0.9% sodium 

chloride with concentrations of 1 μg/0.5μL (Zarrindast, Rezayof, Sahraei,  
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Haeri-Rohani, & Rassouli, 2003).  The antagonist SCH 23390 was dissolved in 0.9% 

sodium chloride with concentrations of 0.25 μg/0.5μL (Hikind & Maroun, 2008).  

Twenty minutes prior to each DC session, 0.5 µL of the mixture was infused (0.25 

μL/s) into the BLA bilaterally. The injectors were left in place for 2 min post-infusion 

to allow for drug diffusion. A separate group of animals received saline infusions 

instead.  In order to habituate animals to the infusion procedure, all animals received 

sham infusions 20 min prior to the last reward session and habituation session. 

Histology 

Rats were deeply anesthetized with sodium pentobarbital, and then perfused 

with PBS followed by 10 % formalin.  Tissues were then post-fixed in 30% sucrose 

formalin and sectioned at 50 µm with a cryostat.  Sections were then plated on glass 

slides and stained with cresyl violet.  Slides were examined under a light microscope to 

verify placements.  27 out of 48 rats had verified bilateral cannula placements in the 

BLA and only these subjects were included in the analyses.  

Data Analysis 

Fear behavior was assessed offline from videos by measuring freezing, defined 

as complete immobility with the exception of respiratory movements, which is an 

innate defensive behavior (Blanchard & Blanchard, 1969; Fendt & Fanselow, 1999).  

The total time spent freezing during the presentation of each 20 s cue was quantified. 

Measuring the total time the animal spent inside the reward port and at the entrance of 

the port with nose positioned at port entrance to assess reward behavior.  We also 

calculated a fear discrimination ratio (% Freezing to the fear cue/ (% Freezing to the 

reward cue + % Freezing to the safety cue + % Freezing to the fear + safety cue)) and 
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reward discrimination ratio (% Port to the reward cue / (% Port to the fear cue + % Port 

to the safety cue + % Port to the fear + safety cue)) for each animal and each session. 

Six individuals blind to drug treatment and cannula placement performed the 

behavioral scoring. Pearson’s correlations of freezing and reward behavior values 

between scorers were greater than r = 0.80.   Behavioral data were analyzed with two 

way ANOVAs followed by Dunnett’s post-hoc tests with GraphPad Prism.  In our 

discrimination paradigm, saline animals typically start to show evidence of safety 

learning during DC3, with maximal discrimination among the different cues evidient in 

DC4 (Sangha, Robinson, et al., 2014).  Thus, we focused on testing for behavioral 

differences in DC4. In contrast, using repeated measures among all four DC sessions 

increases the number of unnecessary comparisons and compromising the likelihood of 

detecting the learning related effect in the last session. We anticipated that the animals 

will show more freezing to the fear cue than all other cues, and will show more port 

activity to the reward cue than all other cues. In order to reduce numbers of 

unnecessary comparisons, we used Dunnett’s test instead of Tukey to selectively 

compare the activity to a specific cue against all other cues.   
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RESULTS 

Locomotor Effects of the D1 Receptor Agonist and Antagonist 

To examine possible locomotor impairment from systemic or local 

administration of D1 receptor agonist, D1 receptor antagonist or saline, we analyzed 

the motion activity in the first and last five minutes of each session.  The five minutes 

windows were chosen because the number five is a prime number and its multiple is 

easy to work with for potential normalizing or comparison.  Analyzing the last five 

minutes allows us to verify the duration of action of the drug throughout the entire 

training session.  If a drug influence locomotor activity in the first 5 minutes, we expect 

it should have the same influence in the last 5 minutes.   

Systemic Injection 

A two way repeated measures ANOVA (time by treatment) was performed on 

motion activity during the first and last five minutes of each DC session to look at the 

effect of drug on locomotor activity. There was a significant main effect of time across 

all DC sessions (DC1: F(1, 24) = 80.98, p < 0.0001; DC2: F(1, 24) = 79.05, p < 

0.0001); DC3: F(1, 24) = 74.32, p < 0.0001; DC4: F(1, 24) = 76.83, p < 0.0001).  Post 

hoc comparison with Bonferroni correction showed that animals from each treatment 

condition exhibited more locomotor activity in the first five minutes than the last five 

minutes (p < 0.05).  Since this effect was also seen in the saline group, this effect is 

most likely due to reduced exploration of the conditioning chamber over time. There 



26 

was also a significant main effect of treatment in DC4 (F(2, 24) = 4.36, p < 0.05), but 

not DC1, 2 or 3.  Post hoc comparison with Bonferroni correction showed that saline 

animals had more locomotor activity than antagonist animals in the last 5 minutes (p < 

0.05) for only DC4.   This reduction in locomotor activity from the antagonist could 

lead to the artificial increase in freezing score to all cues toward the end of DC4.  

Taken together, these data indicate that systemic administration of D1 receptor agonist 

or antagonist does not affect overall locomotor activity.   

BLA Infusion  

A two way repeated measures ANOVA (time by treatment) was performed on 

motion activity during the first and last five minutes of each DC session to look at the 

effect of drug on locomotor activity. There was a significant main effect of time across 

all DC sessions (DC1: F(1, 24) = 44.67, p < 0.0001; DC2: F(1, 24) = 55.1, p < 0.0001); 

DC3: F(1, 24) = 80.41, p < 0.0001; DC4: F(1, 24) = 138.1, p < 0.0001). Post hoc 

comparison with Bonferroni correction showed that animals from each treatment 

condition exhibited more locomotor activity in the first five minutes than the last five 

minutes (p<0.05). Similar to what was seen with systemic injections, since this effect 

was also seen in the saline group, this effect is most likely due to reduced exploration 

of the conditioning chamber over time. No main effects of treatment were found.  

These data indicate that BLA infusion of D1 receptor agonist or antagonist has no 

effect on overall locomotor activity.   

  



27 

Systemic Injection of D1 Receptor Agonist or Antagonist Blocks  

Fear and Safety Discrimination 

Twenty minutes prior to the start of each discrimination training session, rats 

received a systemic injection of a D1 receptor agonist (10mg/kg SKF-38393; N = 8), 

antagonist (3. 33µg/kg SCH-23390; N = 7) or saline (N = 12).  During discrimination 

training, rats were presented with cues signifying fear, reward, safety and the combined 

fear + safety.  The percent time spent freezing for each cue was calculated (Figure 2), 

as well as the percent time spent in the port in response to each cue (Figure 3). Since 

asymptotic level of learning occurred during the last session of discrimination training, 

current analysis will focus on DC4. Two-way ANOVAs on percent time spent freezing 

for each cue during DC4 (Figure 2) showed significant cue by treatment interactions 

(F(6, 72) = 2.54, p < 0.05). A main effect of cue was found for DC4( F(3, 72) = 299, p 

< 0.0001). Post hoc Dunnett’s multiple comparisons to the fear cue showed that saline 

treated animals displayed significantly more freezing to the fear cue than all the other 

cues (p < 0.05 each), indicating good fear discrimination.  Animals with systemic 

injections of the D1 receptor agonist or antagonist showed more freezing to the fear cue 

than the reward cue and safety cues (Dunnett’s multiple comparison to fear cue, p < 

0.05 each).  However, neither group showed significantly more freezing to the fear cue 

than the combined fear + safety cue (p > 0.05).  This indicates that systemic injections 

of a D1 receptor agonist or antagonist impair fear suppression in the presence of the 

safety cue. A main effect of treatment was also found for DC4 (F(2, 24) = 14.95, p < 

0.0001).  Post hoc Dunnett’s multiple comparisons to the saline group showed that D1 

receptor agonist treated group had higher levels of freezing to the reward, safety, and 
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fear + safety cue than saline animals.  Even though we previously reported that 

antagonist animals had reduced locomotor activity toward the end of DC4, but current 

results suggested that the reduced locomotor activity did not appear to increase freezing 

scores in the antagonist group.   

To further assess fear discrimination behavior, we also calculated 

discriminative fear ratios for a broader comparison of freezing levels to the fear cue 

relative to the sum of freezing to all other cues. The ratios were calculated for each 

animal then averaged (Figure 2).  A fear discrimination ratio larger than one indicates 

more freezing to the fear cue than all other cues and would be indicative of good 

discrimination.  One-way ANOVAs on the fear discrimination ratios during DC4 

showed a significant effect of treatment (F(2, 24) = 7.21, p < 0.01). Post hoc Dunnett’s 

multiple comparisons to the saline group showed that fear discrimination ratios were 

significantly lower in the D1 receptor agonist treated animals (p < 0.05) but not the D1 

receptor antagonist treated animals (p > 0.05).  

We have used two methods to quantify fear discrimination behavior: 1) 

averaged percent time freezing to the fear cue versus the combined fear+safety cue 

and, 2) within animal fear discrimination ratios of freezing to the fear cue compared to 

all other cues.  Fear discrimination, as assessed by comparing averaged percent time 

freezing relative to the combined fear+ safety cue, was impaired by systemic injections 

of either the D1 receptor antagonist and agonist. In addition, systemic injections of a 

D1 receptor agonist significantly lowered the fear discrimination ratio. Taken together, 

both the agonist and antagonist impair fear discrimination behavior.  
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For the same DC4 session, discriminatory reward seeking was also analyzed. 

Two-way ANOVAs on percent time spent in the port for each cue during DC4 (Figure 

3) showed a significant cue by treatment interaction (F(6, 72) = 7.58, p < 0.001).  A 

main effect of cue was found for DC4 (F(3, 72) = 38.99, p < 0.0001). Post hoc 

Dunnett’s multiple comparisons to the reward cue showed that the saline group showed 

more port activity to the reward cues than all the other cues (p < 0.05 each), which was 

also seen in the D1 receptor antagonist group (p < 0.05 each).  The D1 receptor agonist 

group did not show more port activity during the reward cue than all other cues (p > 

0.05). These data indicate that systemic injection of a D1 receptor agonist decreased 

discriminative port activity. A main effect of treatment was also found for DC4 (F(2, 

24) = 7.52, p < 0.01 ). Post hoc Dunnett’s multiple comparisons showed that saline 

animals had higher port activity to the reward cue than D1 receptor agonist treated 

animals (p < 0.05).  

Reward discrimination ratios were calculated using the ratio between port 

activities in response to the reward cue versus the sum of port activity in response to 

the other cues for each animal (Figure 3).  One-way ANOVAs on reward 

discrimination ratios for each DC session showed a significant treatment effect during 

DC4 (F(2, 24) = 7.77, p < 0.01).  Post hoc Dunnett’s multiple comparisons to the saline 

group showed significantly lower reward discrimination ratios in the D1 receptor 

agonist treated animals (p < 0.05) but not the D1 receptor antagonist treated animals (p 

> 0.05). These data indicate that systemic injection of a D1 receptor agonist, but not 

antagonist, impairs discriminative reward seeking.    
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Systemic Injection of D1 Receptor Agonist or Antagonist During DC1-3  

Systemic Freezing 

There were significant cue by treatment interactions for sessions DC 2-3 (DC2: 

F(6, 72) = 2.58, p < 0.05; DC3: F(6, 72) = 3.40, p < 0.01) , but not DC 1 (F(6, 72) = 

2.07, p = 0.07). A main effect of cue was found for DC1-3 sessions (DC1: F(3, 72) = 

40.38, p < 0.0001; DC2: F(3, 72) = 187.9, p < 0.0001; DC3: F(3, 72) = 249.1, p < 

0.0001). Post hoc Dunnett’s multiple comparisons to the fear cue showed that saline 

treated animals displayed significantly more freezing to the fear cue than all the other 

cues (p < 0.05 each) during sessions DC2, and DC3. Animals with systemic injections 

of the D1 receptor agonist or antagonist showed more freezing to the fear cue than the 

reward cue and safety cues (Dunnett’s multiple comparison to fear cue, p < 0.05 each) 

during sessions DC2 and DC3. However, neither group showed significantly more 

freezing to the fear cue than the combined fear + safety cue (p > 0.05) during sessions 

DC1, DC2, or DC3. A main effect of treatment was also found for DC1, 2 and 3. 

(DC1: F(2, 24) = 6.30, p < 0.01, DC2: F(2, 24) = 8.11, p < 0.01, DC3: F(2, 24) = 

12.36, p < 0.001).  Post hoc Dunnett’s multiple comparisons to the saline group 

showed higher levels of freezing to the fear cue in the saline group than the antagonist 

group during DC1, DC2, and DC3. Saline animals showed lower levels of freezing to 

the reward and safety cues than the D1 receptor agonist treated group during sessions 

DC2 and DC3. One-way ANOVAs on the fear discrimination ratios during each DC 

session showed a significant effect of treatment during DC2 (DC2: F(2, 24) = 4.72, p < 

0.05), but not DC 1 or 3 (DC1: F(2, 24) = 0.39, p = 0.68; DC3: F(2, 24) = 2.40, p = 

0.11). For DC2, post hoc Dunnett’s multiple comparisons to the saline group showed 
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fear discrimination ratios were significantly lower in the D1 receptor agonist treated 

animals (p < 0.05) but not the D1 receptor antagonist treated animals (p > 0.05). 

Systemic Port 

Two-way ANOVAs on percent time spent in the port for each cue during each 

DC session (Figure 3) showed a significant cue by treatment interaction for DC1-3 

(DC1: F(6, 72) = 3.11, p < 0.01; DC2: F(6, 72) = 2.56, p < 0.05; DC3: F(6, 72) = 7.93, 

p < 0.001).  A main effect of cue was found for DC1-3 (DC1: F(3, 72) = 46.95, p < 

0.0001; DC2: F(3, 72) = 38.41, p < 0.0001; DC3: F(3, 72) = 22.29, p < 0.0001). Post 

hoc Dunnett’s multiple comparisons to the reward cue showed that the saline group 

showed more port activity to the reward cues than all the other cues (p < 0.05 each) 

during DC1-3.The D1 receptor antagonist groups showed more port activity to the 

reward cues than all the other cues during DC1 and 2 (p < 0.05 each), but not DC3 (p > 

0.05).  The D1 receptor agonist group did show more port activity during the reward 

cue than all other cues (p < 0.05) during DC1, but not during DC2-3 (p > 0.05). A main 

effect of treatment was also found for DC1-3 (DC1: F(2, 24) = 4.56, p < 0.05; DC2: 

F(2, 24) = 7.48, p < 0.01; DC3: F(2, 24) = 19.87, p < 0.0001). Post hoc Dunnett’s 

multiple comparisons to the saline group showed that saline animals had higher port 

activity to the reward cue than D1 receptor agonist treated animals (p < 0.05) during 

sessions DC1, DC2, and DC3. One-way ANOVAs on reward discrimination ratios for 

each DC session did not show significant treatment effect during any DC1-3 (DC1: 

F(2,24) = 1.83, p = 0.18; DC2: F(2, 24) = 0.83, p = 0.45; DC3: F(2, 24) = 1.91, p = 

0.17). 
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Taken together systemic injections of the D1 receptor agonist, SKF-38393, and 

antagonist, SCH-23390, both impair suppression of freezing to the fear cue when in the 

presence of the safety cue (Figure 2). The D1 receptor antagonist did not significantly 

impair reward seeking during the reward cue when compared to the other cues. The D1 

receptor agonist, however, did appear to significantly suppress reward seeking during 

all cues (Figure 3). Since D1 receptor agonist animals did show a high level of 

discriminative reward seeking behaviors and local motor activities during the first 

session of discrimination, the observed impairment over subsequent days could be due 

occlusion of reward seeking behavior.   To minimize the negative influence of the non-

specific effects of the drugs on behavioral expression, the same drugs were infused 

directly into the BLA in Experiment 2.     

BLA Infusion of a D1 Receptor Agonist, but not Antagonist,  

Impairs Discriminative Fear Learning 

Dopamine signaling within the BLA has been implicated in fear learning, fear 

extinction and reward learning.  The systemic administration of D1 receptor agonist or 

antagonist could be producing its impairment in fear suppression and reward seeking 

by exerting its effects through the BLA.  To localize the effect of D1 receptor activity, 

twenty minutes prior to the start of each DC session, 0.5 µL of D1 receptor agonist (1 

μg/0.5μL SKF-38393; N = 9), antagonist (0.25 μg/0.5μL  SCH-23390; N = 8) or saline 

(N = 10) were infused directly into the BLA bilaterally.  Only animals with confirmed 

bilateral placements of cannula tips in the BLA were included in the analyses (27 of 48 

animals; Figure 4). During discrimination training, rats were presented with cues 

signifying fear, reward, safety and the combined fear + safety.  The percent time spent 
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freezing for each cue was calculated (Figure 5), as well as the percent time spent in the 

port in response to each cue (Figure 6). 

Since asymptotic level of learning occurred during the last session of 

discrimination training, current analysis will focus on DC4. Two-way ANOVAs on 

percent time spent freezing for each cue during DC4 (Figure 5) showed significant 

main effect of cue (F(3, 72) = 102.2, p < 0.001).  Post hoc Dunnett’s multiple 

comparisons to the fear cue showed that the saline group froze significantly more to the 

fear cue in comparison to the other cues (p < 0.05).  Similarly, the D1 receptor 

antagonist group showed more freezing to the fear cue in comparison to the other cues 

(p < 0.05).  The D1 receptor agonist group, however, only showed more freezing to the 

fear cue compared to the reward and safety cues, and not the fear+safety cue.  Together 

this indicates that BLA infusion of a D1 receptor agonist, but not antagonist, impairs 

fear suppression in the presence of safety cue.  A main effect of treatment was also 

found for DC4 (F(2, 24) = 4.46, p < 0.05).  Post hoc Dunnett’s multiple comparisons to 

the saline group showed that D1 receptor agonist treated animals had higher levels of 

freezing to the reward cue and to the safety cue.  One way ANOVAs on fear 

discrimination ratios for DC4 showed a significant main effect of treatment (F(2, 24) = 

5.70, p < 0.01)).  Post hoc Dunnett’s multiple comparisons to the saline group showed 

that saline animals had higher fear discrimination ratios than agonist animals but not 

antagonist animals in DC4.   This indicates that infusion of the agonist directly into the 

BLA impairs discriminative freezing to the fear cue relative to the other cues. 

A two way ANOVA on percentage of time spent in the port (Figure 6) showed 

a significant main effect of cue for DC4 (F(3, 72) = 20.86, p < 0.0001).  Post hoc 
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Dunnett’s multiple comparisons to the reward cue showed that the saline and 

antagonist groups exhibited more port activity to the reward cue in comparison to the 

other cues.  The agonist group also showed more port activity to the reward cue than 

the fear + safety and safety cues, but not the fear cue.  One way ANOVAs on reward 

discrimination ratios for each DC session showed no significant main effects of 

treatment during DC4 ( F(2, 24) = 1.89, p <  0.17).  Overall, this indicates that infusing 

an agonist or antagonist into the BLA does not impair discriminative reward behavior.   

BLA infusion of D1 Receptor Agonist or Antagonist During DC1-3 

Infusion Freezing 

Two-way ANOVAs on percent time spent freezing for each cue during DC 1- 3 

(Figure 5) showed significant main effect of cue (DC1: F(3, 72) = 14.01, p < 0.0001; 

DC2: F(3, 72) = 45.44, p < 0.0001; DC3: F(3, 72) = 55.17). Post hoc Dunnett’s 

multiple comparisons to the fear cue showed that the saline group froze significantly 

more to the fear cue in comparison to the other cues (p < 0.05) during sessions DC1 

and DC3. A main effect of treatment was also found for DC1-3 (DC1: F(2, 24) = 4.75, 

p < 0.05; DC2: F(2, 24) = 7.09, p < 0.01; DC3: F(2, 24) = 3.61, p < 0.05). Saline 

treated animals showed more freezing to the fear cue than the reward cue and safety 

cue during DC2. The D1 receptor antagonist group showed more freezing to the fear 

cue in comparison to the other cues (p < 0.05) during DC2. This group also showed 

more freezing to the fear cue than the reward cue and safety cue, but not the combined 

fear + safety cue during DC3.  The D1 receptor agonist group showed more freezing to 

the fear cue than the reward cue and safety cue during DC1, DC2 and DC3.  This group 

also showed more freezing to the fear cue than the combined fear + safety cue during 
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DC3, but not DC1 and DC2. Post hoc Dunnett’s multiple comparisons to the saline 

group showed that D1 receptor agonist treated animals had higher levels of freezing to 

the combined fear + safety cue than the saline group during DC1 and DC2.  In 

comparison to the saline group, the agonist group also showed higher levels of freezing 

to the fear cue during DC2 and reward cue during DC3.  The D1 receptor antagonist 

group, on the other hand, showed less freezing to the fear cue than saline animals 

during DC1. One way ANOVAs on fear discrimination ratios for each DC session 

showed a significant main effect of treatment for DC2 (F(2, 24) = 3.45, p < 0.05) but 

not DC1 and DC3 (DC1: F(2, 24) = 0.41, p = 0.67; DC3: F(2, 24) = 2.73, p = 0.09).   

Infusion Port 

A two way ANOVA on percentage of time spent in the port (Figure 6) showed 

a significant main effect of cue for DC1-3 (DC1: F(3, 72) = 48.08, p < 0.001; DC2: 

F(3, 72) = 41.92, p < 0.001; DC3: F(3, 72) = 16.24, p < 0.0001).  Post hoc Dunnett’s 

multiple comparisons to the reward cue showed that the saline and antagonist groups 

exhibited more port activity to the reward cue in comparison to the other cues during 

DC1, DC2 and DC3.  The agonist group also showed more port activity to the reward 

cue than the other cues during DC1 and DC2.  This group also showed more port 

activity to the reward cue than the fear + safety and safety cues, but not the fear cue, 

during DC3.  One way ANOVAs on reward discrimination ratios for each DC session 

showed no significant main effects of treatment during DC1-3 (DC1: F(2, 24) = 0.81, p 

=  0.46; DC2: F(2, 24) = 0.67, p = 0.52; DC3: F(2, 24) = 0.31, p = 0.74). 

Taken together, the impairment in discriminative fear that was seen during 

systemic injection of the D1 receptor agonist, SKF-38393, was replicated when the 
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agonist was infused directly into the BLA.  However, the D1 receptor antagonist, SCH-

23390, only had an effect on fear and safety discrimination during systemic 

administration and not during direct BLA infusion.  This indicates that the fear 

discrimination impairment seen in the systemic D1 receptor antagonist group could be 

having its effect on areas outside the BLA.  In addition, the D1 receptor agonist only 

had an effect on discriminative reward seeking when it was administered systemically 

but not when it was directly infused into the BLA.  This indicates that dopamine D1 

receptor activity in the BLA is not critical for discriminative reward behavior.    

Correlation of Movement With Fear Learning  

To examine the possible relationship between contextual freezing and cue 

induced conditioned freezing, correlation coefficient r was calculated for each 

treatment condition to measure the strength of association between the first five minute 

of locomotor activities and freezing to the fear cue in DC4. No significant correlation 

was found for any of the treatment conditions in either systemic or BLA infusion 

conditions in DC4. 

Comparing Behavior Between the First Half and Second Half  

of Each Discrimination Session 

As an additional way to verify that the effect of the drugs last throughout the 

entire training session, we also compare freezing level and port activity to each of the 

cues between the first half and second half of each session.  Dividing the time into first 

half and second half of the session allow us to look at potential recovery of learning as 

the drug effect reduces. Post hoc tests with Bonferroni corrections were used to 

compare the differences in freezing or port levels among cues between the first half and 
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the second half of each session.  Post hoc Dunnett’s test was used to compare the 

differences in percent time spent freezing among different cues against percent time 

freezing to the fear cue.  If there is an increase in generalized freezing to all cues from 

the first half to the second half of the session, the main effect of time should be 

statistically significant.  In contrast, if there is a selective and discriminative increase in 

freezing to the fear cue relative to other cues, the time by cue interaction should be 

statistically significant. Post hoc Dunnett’s test was also used to compare the 

differences in percent time spent on port activity among different cues against percent 

time spent on port activity to the reward cue.  Similar to freezing mentioned above, 

increased in generalized port activity to all cues from first half to the second half of the 

session  should result in the main effect of time, and discriminative increase in port 

activity to the reward cue relative to the other cues should lead to time by cue 

interaction.  

Discriminative Freezing After Systemic Injection 

A two way repeated measures ANOVA (time by cue) was performed on percent 

time spent freezing for each treatment condition during each DC session.  The results 

are summarized in Table 2.  Saline animals showed a significant time by cue 

interaction during DC1 and a significant main effect of time during DC1 and 2.  These 

results reflect within session learning because saline animals were not under drug 

influence.  They also showed more freezing to the fear cue in the second half than the 

first half of the DC1.  During DC3 and 4, saline animals no longer show significant 

time by cue interactions or significant main effects of time, indicating that the 

magnitude of freezing to the fear cue did not change during the first half to the second 
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half of DC3 and DC4.  Both agonist and antagonist animals showed significant time by 

cue interactions and main effects of cues during DC1 indicating that changes in 

freezing occurred within DC1.  However, no significant time by cue interactions or 

main effects of time during DC2 to 4 for either the agonist or antagonist animals were 

observed, indicating that no detectable changes in freezing occurred within those 

subsequent DC sessions.     

Discriminative Reward Seeking After Systemic Injection  

The same analyses done for percent time in port and the results are summarized 

in Table 3.  There was a significant main effect of time and time by cue interaction 

during DC1 for saline animals, and DC1 and 2 for antagonist animals. Again, these 

effects reflect within session learning during earlier DC sessions, but not in DC3 or 4.  

Agonist animals showed significant cue by time interaction during DC2, and a main 

effect of time during DC3.   These indicate that the systemic administration of agonist 

occludes the behavioral expression of port behavior.  Agonist animals showed more 

port activity to the reward cues than to some of the other cues only during the first half 

of DC1 and DC2.  

Discriminative Freezing After BLA Infusion 

A two way repeated measures ANOVA (time by cue) was performed on percent 

time spent freezing for each treatment condition during each DC session.  The results 

are summarized in Table 4. Saline animals showed significant cue by treatment 

interaction during DC3 and 4, but not DC1 and 2. This again reflects within session 

learning. Antagonist animals showed a significant cue by treatment interaction during 

DC3 only.  These indicate that there was some learning related changes during the later 
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DC sessions.  Agonist animals had a significant main effect of time in DC2 only.  This 

also reflects some within session learning in DC2.   

Discriminative Reward Seeking After BLA Infusion  

The same analyses were done for percent time in port and the results are 

summarized in Table 5. No significant main effects of time or time by cue interactions 

were detected for saline animals in any DC session.  A main effect of time was 

detected in antagonist animals during DC4.  A significant main effect of time and time 

by cue interaction was detected in agonist animals during DC2 only.   

Summary 

If the administered drug has a short lifespan, we expect to see significant cue by 

time interaction with more freezing or port activity to the respective cues in the second 

half than the first half of the session.  An overall increase in freezing or port activity 

from the first half of the session to the second half would be reflected as a main effect 

of time, and a selective increase in freezing or port activity to the conditioned cue from 

the first half to the second half would be reflected as a time by cue interaction.  

Animals with systemic injections of the D1 receptor agonist or antagonist showed more 

freezing to the fear cue than the reward cue and safety cues (Dunnett’s multiple 

comparison to fear cue, p<0.05 each) during sessions DC2, DC3 and DC4.  However, 

neither group showed significantly more freezing to the fear cue than the combined 

fear + safety cue (p>0.05) during sessions DC1, DC2, DC3, or DC4.  These indicate an 

impairment in fear suppression during DC2, 3 and 4. Since no significant main effect 

of time or time by cue interaction was detected during those sessions for antagonist and 

agonist animals, there were no within session changes.  This suggests that the effects of 
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the systemically administered drugs last throughout the entire two hour training 

session. During BLA infusion, the D1 receptor agonist group showed more freezing to 

the fear cue than the reward cue and safety cue during DC1, DC2, DC3 and DC4.  This 

group also showed more freezing to the fear cue than the combined fear + safety cue 

during DC3, but not DC1, DC2 and DC4.  Since no significant main effects of time or 

time by cue interactions were detected for these animals during DC3 or 4, the effect of 

BLA infused agonist persisted throughout the entire two hour training session.  On the 

other hand, BLA infusion of the antagonist did not produce any impairment in 

conditioned freezing or reward seeking.  The current within session analysis only 

showed time by cue interaction in freezing activity during DC3, but not in any other 

sessions.  Overall, there are no evidence of the BLA antagonist effect diminishing in 

the second half of the two hour training session.   
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DISCUSSION 
 
 

To investigate BLA dopamine D1 receptor activity in mediating fear-reward-

safety discrimination learning, we hypothesized that increasing dopamine D1 receptor 

activity in the BLA should impair fear/safety discrimination learning, enhance fear 

learning, and enhance discriminative reward seeking.  Decreasing dopamine D1 

receptor activity in the BLA should impair fear learning, enhance fear/safety 

discrimination learning and impair discriminative reward seeking. Animals that 

received a systemic injection or BLA infusion of saline showed good discrimination 

learning: they froze more to the fear cue and spent more time at the port during the 

reward cue compared to the other cues. Since saline animals showed more freezing to 

the fear cue than the combined fear + safety cue, they demonstrated learned safety by 

suppressing fear in the presence of the safety signal.  These are consistent with 

previous findings (Sangha et al., 2013; Sangha, Greba, Robinson, Ballendine, & 

Howland, 2014; Sangha, Robinson, et al., 2014). In addition, the systemic injection of 

a D1 receptor agonist or antagonist blocked fear/safety discrimination learning. 

Systemic administration of the agonist, but not antagonist, also impaired the 

discriminative fear and reward ratios.  When the agonist was infused directly into the 

BLA, we replicated the impairments in fear/safety discrimination and the 

discriminative fear ratio, but not the impairment in discriminative reward seeking.     
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BLA infusion of the antagonist had no effect on the fear/safety discrimination, fear 

discrimination ratio or discriminative reward seeking.   These data support our 

hypothesis that increasing dopamine D1 receptor activity in the BLA impairs fear and 

safety discrimination behavior.  However, our data does not support the hypothesis that 

decreasing dopamine D1 receptor activity impairs discriminative reward seeking 

behavior.  

Taken together, these data suggest that dopamine D1 receptor activity in the 

BLA is not necessary for discriminative reward seeking, safety learning or 

discriminative fear learning.  Blocking D1 receptor activity in the BLA with a D1 

receptor antagonist did not impair discriminative reward seeking, fear and safety 

discrimination or discriminative fear learning.  However, increasing D1 receptor 

activity, either systemically or directly in the BLA, impairs fear and safety 

discrimination.  We found a similar impairment in the discriminative fear ratio when 

comparing freezing behavior to the fear cue against freezing behavior to all other cues 

regardless if the agonist was administered systemically or infused locally in the BLA. 

Animals that received systemic or BLA administration of the agonist were still able to 

show more freezing to the fear cue than the reward and safety cues, demonstrating 

some level of fear discrimination.  However, these animals did not show increased 

freezing to the fear cue relative to the fear+safety cue, demonstrating a selective 

impairment in suppressing freezing to the fear cue in the presence of the safety cue. 

This impairment in fear suppression may be due to increased activity in the amygdala 

through D1 receptor activation.  Since the amygdala typically shows a higher CS 

evoked field potential to a fear CS compared to a safety CS (Rogan et al., 2005), the 
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stimulation of D1 receptors may prevent the necessary decrease in amygdala activity 

during safety learning, leading to behavioral impairments in safety but not fear 

behavior. Increasing D2 receptor activity in the VTA blocks learning related increases 

in dopamine levels within the BLA during fear conditioning (de Oliveira et al., 2011), 

implying that BLA dopamine levels are mediated by the VTA.  

The impairment in fear and safety discrimination with a systemic D1 receptor 

antagonist injection was due to impairment in safety learning since animals were still 

able to showing discriminative fear with respect to both the reward cue and safety cue 

during discrimination training session two, three and four.  D1 receptor antagonist 

systemic drug action could be acting through the PFC to produce impairment in safety 

discrimination.  The IL is necessary for fear and safety discrimination(Sangha, 

Robinson, et al., 2014) and it receives dopaminergic projection from the VTA 

(Abraham et al., 2014) as well as projecting directly to the BLA (Vertes, 2004). D1 

receptor activity in the IL is necessary for fear extinction consolidation(Abraham et al., 

2014).  The systemic administration of the D1 receptor antagonist could produce 

receptor action in the IL leading to the impairment we observed in safety 

discrimination.   

For discriminative reward behavior, it appears that D1 receptor activity in the 

BLA is not needed.  Neither systemic nor BLA administration of the D1 receptor 

antagonist had an effect on the reward discrimination ratio. The impairment we 

observed in discriminative reward seeking with the systemically administered D1 

receptor agonist is likely due to impairment in behavioral expression.  These animals 

showed discriminative port activity similar to saline and antagonist treated animals 
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during the first discrimination training session.  Then, all port activity diminished over 

each subsequent session. This impairment in discriminative reward seeking is not due 

to D1 receptor action in the BLA because BLA infusion of the D1 receptor agonist had 

no effect on the discriminative reward ratio.  The impairment could however be due to 

receptor action in the NAc. D1 receptor activity in the NAc is necessary for 

consumption behavior (Richard & Berridge, 2011) and the reinstatement of drug 

seeking during stress (Tobin et al., 2013). Dopamine levels in the NAc also gradually 

increase during different phases of operant behavior that lead to reward outcome(A. L. 

Collins et al., 2016).  This change in dopamine levels is influenced by the BLA and it 

is D1 receptor activity dependent (Stuber et al., 2011).  Activation of this pathway 

induces reward seeking (Stuber et al., 2011) and inactivation of BLA using 

muscimoml/baclofen mixture impairs approach behavior to the port (Jones et al., 

2010). In light of these findings, it is possible that increasing D1 receptor activity in the 

NAc via a systemically administered D1 receptor agonist during reward seeking may 

be reinforcing on its own and may occlude reward seeking behavioral expression.    

Our current study indicates that increasing dopamine D1 receptor activity in the 

BLA may be a potential mechanism that leads to the impairment in fear and safety 

discrimination seen with PTSD patients.  Since the VTA is the primary source of 

dopamine for the BLA, the VTA might be providing safety information to the BLA.  

The alteration in dopamine release in the VTA-BLA pathway may contribute to the 

impairment in fear/safety discrimination in people with PTSD.  Enhanced dopamine 

release may occlude the necessary phasic increase in dopamine release in the VTA-

BLA pathway during fear learning whereas decreased dopamine release may occlude 
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the necessary phasic decrease in dopamine levels in the VTA-BLA pathway during 

safety learning.  This would indicate that the VTA-BLA dopamine signaling pathways 

may be potential therapeutic target sites for treating PTSD.   

Manipulating dopamine receptor activity has been reported to affect locomotion 

activity(Pezze, Marshall, & Cassaday, 2016; Tran et al., 2005).  To avoid this problem, 

we used dosages that have been published by other labs using the same method of 

administration as the current study.  In addition, examining the first five minutes of 

locomotor activity prior of each training session did not show impairment in 

locomotion activity for any treatment conditions.     

In conclusion, we have identified that increasing D1 receptor activity in the 

BLA impairs fear/safety discrimination.  Currently, it is unclear if inactivating the 

dopaminergic pathway from the VTA to BLA drives safety behavior.  It is also unclear 

if increased dopamine D1 receptor activity in the NAc interferes with reward seeking. 

Future studies will use a retro-DREADD approach to activate the VTA to BLA 

dopamine pathway during fear, safety and reward discrimination to assess if the same 

impairment in fear/safety discrimination is observed.  Future studies can also use retro-

DREADDs to activate the BLA to NAc pathway during fear, safety and reward 

discrimination to investigate if it impairs reward seeking.   An impairment would 

indicate the decrease in reward seeking seen during systemically administered D1 

agonist is being mediated by the BLA-NAc pathway. 
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Table 2 

Comparison of Freezing Percentage to Each of the Cues Between the First Half and 

Second Half of Each DC Session for Animals That Received Systemic Administration of 

D1 Receptor Agonist, D1 Receptor Antagonist, or Saline 
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Table 3 

Comparison of Port Percentage to Each of the Cues Between the First Half and 

Second Half of Each DC Session for Animals That Received Systemic Administration of 

D1 Receptor Agonist, D1 Receptor Antagonist, or Saline 
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Table 4 

Comparison of Freezing Percentage to Each of the Cues Between the First Half and 

Second Half of Each DC Session for Animals That Received BLA Infusion of D1 

Receptor Agonist, D1 Receptor Antagonist, or Saline 
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Table 5 

Comparison of Port Percentage to Each of the Cues Between the First Half and 

Second Half of Each DC Session for Animals That Received BLA Infusion of D1 

Receptor Agonist, D1 Receptor Antagonist, or Saline 
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Appendix B 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1. Wiring diagram for critical structures with upstream projections to the BLA 

(color red) and output projection from the BLA (color blue).  Structures with reciprocal 

projection with the BLA are colored green.  
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Note.  (A) Animals received 5 sessions of paired reward trainings followed by habituation and 
discrimination trainings. 20 minutes prior to the start of discrimination trainings, animals received either 
systemic administration of D1 receptor agonist, antagonist or saline. To habituate the animals to the 
injection procedure, saline injections were given 20 minutes prior to the last session of reward and 
habituation session.  (B-E, left panels) Saline treated animals (n = 12) show good fear discrimination.  
They showed more % freezing to the fear cue than all the other cues during sessions DC2, DC3 and 
DC4.  Systemic injections of a D1 receptor agonist (10mg/kg SKF-38393; N = 8) or antagonist (3. 
33µg/kg SCH-23390; N = 7) impair fear suppression in the presence of the safety cue. Animals with 
systemic injections of the D1 receptor agonist or antagonist showed more % freezing to the fear cue than 
the reward cue and safety cues during sessions DC2, DC3 and DC4.  However, neither group showed 
significantly more % freezing to the fear cue than the combined fear + safety cue during sessions DC1, 
DC2, DC3, or DC4. (B-E, right panels) The fear discrimination ratio was only impaired in agonist 
treated animals.  For sessions DC2 and 4, D1 receptor agonist treated animals, but not the D1 receptor 
antagonist treated animals, had significantly lower fear discrimination ratios than saline animals. 
 
 
Figure 2.  Freezing behavior after systemic injection of dopamine D1 receptor agonist, 

antagonist or saline.   

  



67 

 

 

 

  
 
Note.  (A) Training and injection paradigm is same as data presented in Figure 2.  (B-E, left panels) 
Discriminative port activity to the reward cue is learned early. Animals in all treatment conditions 
showed more % port to the reward cue than all other cues during DC1.  Systemic injection of a D1 
receptor agonist (10mg/kg SKF-38393; N = 8), but not antagonist (3. 33µg/kg SCH-23390; N = 7), 
impairs discriminative reward seeking.  Systemic injection of a D1 receptor agonist decreased % port 
over subsequent days of training during DC2-4. On the other hand, saline treated animals showed more 
% port to the reward cues than all the other cues during every DC session. The D1 receptor antagonist 
groups showed more % port to the reward cues than all the other cues during DC1, 2 and 4, but not DC3.  
(B-E, right panels) The reward discrimination ratio was only impaired for D1 receptor agonist treated 
animals not the D1 receptor antagonist during session DC4 compare to saline animals.  
 
 
Figure 3.  Port percentage after systemic injection of dopamine D1 receptor agonist, 

antagonist or saline. 
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Figure 4.  Placement of infusion needle tips for BLA infusion of dopamine D1 receptor 

agonist, antagonist or saline.  Only animals with confirmed bilateral hits were included 

in the analysis.  
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Note.  (A) Animals received 5 sessions of paired reward trainings followed by habituation and 
discrimination trainings. 20 minutes prior to the start of discrimination trainings, animals received either 
BLA infusion of D1 receptor agonist, antagonist or saline. To habituate the animals to the infusion 
procedure, sham infusions were given 20 minutes prior to the last session of reward and habituation 
session.  (B-E, left panels) Saline treated animals (N = 10) are showing good fear discrimination.  Saline 
group froze significantly more to the fear cue in comparison to the other cues during sessions DC1, DC3 
and DC4.  Saline treated animals also showed more % freezing to the fear cue than the reward cue and 
safety cue during DC2. BLA infusion of a D1 receptor agonist (1 μg/0.5μL SKF-38393; N = 9), but not 
antagonist (0.25 μg/0.5μL SCH-23390; N = 8), impairs fear suppression in the presence of safety cue.  
The D1 receptor agonist group showed more % freezing to the fear cue than the reward cue and safety 
cue during DC1, DC2, DC3 and DC4.  This group also showed more % freezing to the fear cue than the 
combined fear + safety cue during DC3, but not DC1, DC2 and DC4. In addition, the D1 receptor 
antagonist group showed more % freezing to the fear cue in comparison to the other cues during DC2 
and DC4.  This group also showed more % freezing to the fear cue than the reward cue and safety cue, 
but not the combined fear + safety cue during DC3.  (B-E, right panels) The fear discrimination ratio 
was only impaired for agonist animals. During DC2 and DC4, that saline animals had higher fear 
discrimination ratios than agonist animals but not antagonist animals in DC4.   
 
 
Figure 5.  Freezing percentage after BLA infusion of dopamine D1 receptor agonist, 

antagonist or saline. 
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Note.  (A) Training and injection paradigm is same as data presented in Figure 5.  (B-E, left panels) 
Infusion of D1 receptor agonist (1 μg/0.5μL SKF-38393; N = 9) or antagonist (0.25 μg/0.5μL  SCH-
23390; N = 8) into the BLA does not impair discriminative reward seeking.  Saline and antagonist 
groups exhibited more % port to the reward cue in comparison to the other cues during DC1, DC2, DC3, 
and DC4.  The agonist group also showed more % port to the reward cue than the other cues during DC1 
and DC2.  This group also showed more % port to the reward cue than the fear + safety and safety cues, 
but not the fear cue, during DC3 and DC4.  (B-E, right panels) BLA infusion of D1 receptor agonist or 
antagonist did not significantly impair reward discrimination ratio.  
 
 
Figure 6.  Port percentage after BLA infusion of dopamine D1 receptor agonist, 

antagonist or saline. 
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Note.  Systemic D1 receptor agonist or antagonist administration impairs fear and safety discrimination.  

Systemic D1 receptor agonist administration also impairs fear discrimination and reward discrimination.  

BLA infusion of agonist but not antagonist impairs fear and safety discrimination.  Reward  

discrimination is not affected by either BLA treatment.   
 
 
Figure 7.  Summary of results from systemic administration or BLA infusion of D1 

receptor agonist or antagonist. 
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