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ABSTRACT 

Mutascio, Holly E. M.S., Purdue University, December 2016. Modeling Relative Habitat 

Suitability and Movement Behavior of Invasive Burmese Pythons in Southern Florida. 

Major Professor: Patrick A. Zollner. 

 

 

 Invasive Burmese pythons are established in the Everglades and are altering the 

ecology of southern Florida. Their distribution in Florida is expanding northward into 

more urbanized and fragmented habitats. An understanding of the suitability of habitat 

throughout southern Florida for Burmese pythons and their interaction with Florida’s 

landscapes through movement behavior is vital for predicting the python’s ability to 

persist in habitats outside of the Everglades. In this thesis, we use ecological modeling to 

predict habitat suitability and to investigate personality-dependent dispersal.  

 First, we used presence-only ecological niche modeling with correction for 

sampling bias to identify the key landscape variables in predicting habitat suitability for 

pythons at the present stage of the invasion. We found estuarine habitat and freshwater 

wetlands to be the important variables to contribute to python habitat suitability when 

considered at the scale of a Burmese python’s home range.  

 Then we used an individual based model to explore risk-taking behavior on a shy-

bold continuum of animal personality of dispersing juvenile Burmese pythons on the 

leading edge of the population’s expansion from the Everglades into Homestead and 

south Miami, Florida. We observed that a behaviorally plastic strategy best resembled 
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empirically derived patterns of the python’s expansion into increasingly urbanized 

landscapes. 
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CHAPTER 1. MODELING RELATIVE HABITAT SUITABILITY FOR INVASIVE 

BURMESE PYTHONS (PYTHON MOLURUS BIVITTATUS) CORRECTING FOR 

SAMPLING BIAS 

1.1 Introduction 

Invasive Burmese pythons (Python molurus bivittatus) are causing serious 

environmental impacts throughout southern Florida. Burmese pythons have been 

established in the region since the mid-1980s (Willson et al. 2011) as evidenced by 

regular observations in Everglades National Park (ENP) (Snow et al. 2007b) an 

increasing number of sightings in progressively northern locations of the state (Andreadis 

2011), observations of individuals from a variety of size classes (Meshaka et al. 2000), 

and documented breeding (Andreadis 2011; Engeman et al. 2011). Burmese pythons are 

highly successful invaders due to their evasive behavior, cryptic coloration, flexible 

dietary preferences, broad habitat utilization, low energetic requirements, long lives, and 

high fecundity (Reed 2005; Willson et al. 2011; Reed et al. 2012). They are known to 

consume many species of birds, mammals, and American alligators (Alligator 

mississippiensis) (Snow et al. 2007a; Dove et al. 2011). They are thought to be 

responsible for the severe declines of several mammal populations in ENP (Dorcas et al. 

2012; McCleery et al. 2015) and could worsen the decline of the endangered Key Largo 

woodrat (Neotoma floridana smalli) (Greene et al. 2007). There is also concern that 

Burmese pythons may compete with other top predators, including the American alligator
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the Florida panther (Puma concolor coryi), and the federally threatened eastern indigo 

snake (Drymarchon corais couperi) (Reed 2005; Snow et al. 2007b), and that ecological 

changes associated with their invasion may impact restoration activities in the Everglades 

and Florida Keys (Harvey et al. 2009).   

To develop effective management strategies for the Burmese python, there is a 

need to understand their ecological requirements, particularly of their habitat use in 

Florida. In their native range, Burmese pythons are habitat generalists and occupy a 

variety of landscapes such as estuarine mangrove forests, marshes, swamps, scrub jungle, 

rainforests, and grasslands (Wall 1921; Whitaker 1978; Bhupathy and Vuayan 1989; 

Ernst and Zug 1996; Snow et al. 2007b). They are also skilled swimmers and usually 

occupy areas located near a permanent water source (Minton 1966; Snow et al. 2007b). 

Florida’s Everglades offer similar habitat types to the python’s native landscape and 

given that python density is high in ENP (Reed et al. 2010), it can be ascertained that its 

landscape features provide suitable habitat. As large numbers of pythons now occupy 

areas in southern Florida dissimilar to the Everglades, such as the greater Naples area 

(Conservancy of Southwest Florida 2015), these areas must also contain suitable habitat. 

Linking python presence to specific landscape features will elucidate python habitat use 

in these areas beyond the Everglades system. 

Ecological niche models (ENM), also known as species distribution models 

(SDM) or habitat distribution models, can be useful tools for understanding invasive 

species distributions (Baldwin 2009; Václavík and Meentemeyer 2009). ENMs relate 

environmental variables to species occurrences and statistically or theoretically predict 

geographic distribution by approximating the species niche (Peterson 2006; Sillero 2011). 
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These models have frequently been employed in the field of invasion biology to predict 

the potential ranges of invasive species. To achieve this, researchers commonly use 

“climate matching”, which estimates a species’ native climate space using its native 

distribution in order to project the climate space onto new geographic areas that are 

vulnerable to invasion (Peterson 2003; Rodda et al. 2011). Predicting the potential 

invasive range of a species based on its native range using climate-matching and other 

ENM techniques has been met with heavy criticism due to subtle differences in modeling 

approaches (e.g., using maximum entropy versus maximum likelihood when making 

claims of species occurrence; Fitzpatrick et al. 2013) and mistakes made when making 

inferences about a species’ niche (Rodda et al. 2011). Furthermore, inferences from 

presence-only data, which are often the only datasets available on invasive species, are 

built on assumptions that are often violated. Appropriate analysis of presence-only data 

requires that sampling effort and detection probability are known, or are constant relative 

to the environmental variables being considered (Yackulic et al. 2013). These 

assumptions can be particularly difficult to meet when little is known about the extent 

and magnitude of an invasion. 

ENMs can be used to understand the relative habitat suitability of an invasive in a 

novel environment to gain a better understanding of their habitat use and ecological 

requirements (Peterson 2006). Species select specific habitats because their features 

facilitate particular behaviors such as foraging, predator avoidance, thermoregulation, and 

reproduction (Hansen and Urban 1992; Krausman 1999; Morris 2003). Thus an 

understanding of an invading species’ habitat use can be valuable to elucidating its 

invasion success and allows researchers to identify areas where invasives are most likely 
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to occur in order to conduct targeted behavioral studies. This is particularly important for 

the Burmese python system as this species’ cryptic behavior makes it difficult to study its 

ecology and to find effective population management solutions.  

The expansion of Burmese pythons throughout southern Florida provides a well-

explored example of the challenges of the application of ENMs, and particularly the use 

of program MaxEnt (Phillips et al. 2004; SJ Phillips et al. 2006), to predict invasions. 

Rodda et al. (2008) first used an early ENM climate envelope modeling technique to 

identify areas vulnerable to python establishment. They fit a climate envelope around 

presence locations of Indian pythons in their native range and projected the climate 

envelope onto the US in order to identify areas climatically suitable for Burmese python 

habitat (Rodda et al. 2008). Their results suggested that pythons could potentially invade 

much of the southern US. However, these models were criticized for being under-

parameterized which in turn over-predicted the python’s native range (Pyron et al. 2008). 

Using a similar technique that is also rooted in ecological niche theory with the same end 

goal as Rodda et al. (2008), Pyron et al. (2008) used program MaxEnt to model the 

distribution of pythons in their native range and projected this model onto the US. Their 

results predicted a smaller potential range in the US, confined to a small area of southern 

Texas and to southern Florida. This finding was also criticized because the models were 

over-parameterized, the projected climate space was based on the realized rather than 

fundamental niche, pseudo-absence points were selected from a global rather than 

localized pool, and some of their presence records were of blood pythons (Python 

brongersmai) instead of Indian pythons (Rodda et al. 2011). Finally, the current range of 

pythons in Florida has already expanded beyond Pryon et al. (2008) predicted range. The 
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results of these two studies demonstrate the importance of the accuracy and relevancy of 

the parameters, particularly pseudo-absence points, being used in ENMs. They also 

emphasize the need to consider of the type of niche being modeled when interpreting the 

results of a particular ENM application. 

More recently, researchers and managers have redirected their efforts from 

predicting the Burmese python’s potential range to understanding its habitat use. Hart et 

al. (2015) and Walters et al. (2016) examined python home ranges and habitat use using 

locational data from radio-tagged pythons within ENP and identified important fine-scale 

landscape features selected for by pythons. These were primarily slough, coastal, and tree 

islands (Hart et al. 2015) and broad-leafed, edge, and elevated habitats (Walters et al. 

2016). These results provided valuable insights for the Everglades python population, but 

python populations have expanded their range outside of this core area where habitat use 

is less understood.  

In this study, we used presence-only ENM to identify key environmental variables 

in predicting suitable habitat for pythons in the southern half of Florida to understand 

python habitat preference at a broad scale and across a wide geographical area at the 

current stage in the invasion. Because habitat selection of a given species is most 

effectively understood at multiple spatial resolutions (Mayor et al. 2009), we hope to 

build on current knowledge of python habitat use in the southernmost areas of Florida 

while forming a basis for future studies of python habitat in the northernmost part of their 

present range. Our models predict suitability at a broader resolution than telemetry 

studies, but at a finer resolution than previous ENM modeling in the python system. Our 

goal was to create ENM predictions with rigorous criteria for background point selection 
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in order to correct for geographical sampling bias. We also aimed to make appropriate 

inferences by considering the relationship between the ENM predictions and the 

continued expansion of the Burmese python population in Florida. By doing so, we are 

not specifically predicting a potential range of this species; rather, we aim to build our 

knowledge of relative habitat suitability in order to guide future behavioral research and 

management efforts.  

Based upon current understanding of the python’s native range, we predict that 

variables such as proximity to water and land cover classes comprising wet areas will be 

the strongest predictors of habitat suitability. We also expect that environmental variables 

considered at the home range scale will best reflect python habitat use, and have the 

strongest influence on our models. Habitat at the presence location is not necessarily 

representative of the habitat used by pythons across their life history since they move 

throughout a large area and make long distance movements (Pittman et al. 2014; Hart et 

al. 2015). 

 

1.2 Methods 

1.2.1 Study area 

 Southern Florida is a mosaic of urbanized, agricultural, forested, and wetland 

landscapes, bordered by estuarine and coastal land habitats. It exhibits wet and dry 

seasonality, with average annual precipitation of approximately 1,412 mm and an average 

temperature of 23.9°C (www.usclimatedata.com/climate/naples/florida/united-

states/usfl0338/2016/1). 
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 We selected the geographical extent to model by drawing a minimum convex 

polygon around our presence points (see: 1.1.1 Burmese python presence data) and 

adding a 4.22 km buffer, the radius of Hart et al.’s (2015) home range estimate of 22.5 

km2. This allowed for the consideration of the home range of pythons on the edge of the 

study extent. 

 

1.2.2 Burmese python presence data 

 We used presence-only occurrence data sourced from the Early Detection & 

Distribution Mapping System (EDDMapS) database. This web-based mapping system 

pools data on invasive species presence locations from multiple databases, organizations, 

and volunteer-submitted observations (EEMapS 2015). All data are reviewed and verified 

by experts and are made publically available (C. Bargeron, Center for Invasive Species 

and Information Technology, personal communication). Observations often include 

information about the method used to verify the record, the precision of the geographic 

coordinates, and written comments about the geographic location and physical 

description of the animal recorded. More than 2,000 sightings of Burmese pythons have 

been entered into EDDMapS with most observations occurring after the mid-2000s. Due 

to their evasive and secretive behavior (Dorcas and Willson 2013) and the difficultly in 

traversing Florida’s terrain, the majority of sightings occurred on or along roads or in 

urban areas. It can be assumed that the majority of living pythons reported were captured 

and likely euthanized; therefore, these data can be considered independent sightings 

(Florida Fish and Wildlife Conservation Commission n.d.; Harvey et al. 2009). 
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 We inspected each occurrence and eliminated points from our final dataset if they 

fell under the criteria outlined in Table 1-1 to ensure our model included only presences 

from “wild” pythons rather than released pets. These criteria also allowed us to examine 

location accuracy given that reviewers sometimes need to estimate coordinates, 

particularly those reported from a systematic method or verbal description (L. Connor, 

Florida Fish and Wildlife Conservation Commission, personal communication). After 

evaluating these criteria, we still suspected that some coordinates had been recorded with 

locational error, particularly when a set of points were located parallel to a road segment 

instead of overlapping the segment. We reexamined all data points located off-road to 

determine if the observation in fact occurred on a road. If, based on written comments or 

location descriptions, it was clear that the snake was initially spotted on a road, we 

reassigned the observation’s coordinates to the nearest location on a road using programs 

Geospatial Modeling Environment (GME) v. 0.7.3.0 (Beyer 2012) and ArcMap v. 10.2.2 

(ESRI, Redlands, CA, USA). 

 Our final python presence dataset was downloaded from EDDMapS on October 

15, 2015. Using our selection criteria, we determined that 2,014 of the presences 

satisfactorily met our criteria to be included in our analyses. Presences ranged from the 

Florida Keys to just west of Sarasota and north of Port St. Lucie, but nearly all search 

effort to date has been concentrated within ENP and the Homestead region (~90%), and 

the greater Naples metropolitan area (~2.5%) (Figure 1-1).  
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1.2.3 Environmental variables 

 Previous applications of predictive habitat distribution modeling to the south 

Florida Burmese python invasion (e.g. Pyron et al. 2008, Rodda et al. 2008, Rodda et al. 

2011) have relied exclusively on climate variables. These studies aimed to predict the 

range of Burmese pythons throughout North America whereas our study aims to predict 

relative habitat suitability within southern Florida. We used land cover variables because 

these factors capture the variability of the geographic space being modeled at this 

intermediate scale in comparison to variables such as climate, which are more appropriate 

at broader scales (Peterson 2011). We obtained land use/land cover (LULC) data from the 

Florida Cooperative Land Cover Map, version 3.0 

(myfwc.com/research/gis/applications/articles/Cooperative-Land-Cover) and merged 

additional geospatial data on canals and ditches from the South Florida Water 

Management District (South Florida Water Management District GIS Data Catalogue, 

http://www.sfwmd.gov/gisapps/sfwmdxwebdc/dataview.asp?query=unq_id=1959), St. 

Johns River Water Management District (St. Johns River Water Management District 

GIS Development and Data Collection, 

ftp://secure.sjrwmd.com/disk6b/lcover_luse/lcover2009/), and Southwest Water 

Management District (Southwest Water Management District Shapefile Library, 

https://www.swfwmd.state.fl.us/data/gis/libraries/physical_dense/lu11.php). We 

aggregated habitat classifications into 18 categories (see: Appendix A). 

 We chose three landscape variables to model habitat suitability: fine-scale land 

cover, home range-level land cover, and distance to open freshwater or wetland. The fine-

scale land cover variable comprised of the cover classification within each 30-m cell. The 
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home range-level land cover variable considered the cover classification most prominent 

within a circle the size of a python home range surrounding each 30-m pixel. We used 

focal statistics in the Spatial Analyst extension in ArcMap to calculate the majority 

LULC type with a moving circular window analysis of radius 4.22 km, based on Hart et 

al.’s (2015) home range estimate of 22.5 km2. Considering python presence at the home 

range-level accounts for pythons’ ability to make long distance movement. It also 

accounts for the likelihood that pythons are primarily sighted on roads that intersect their 

home ranges rather than in habitat characteristics that are correlated with roads. The 

distance to open freshwater or wetland variable comprised of the Euclidean distance in 

meters to the closest source of fresh water (lakes, ponds, streams, rivers, canals, ditches) 

or freshwater wetland. Although it has been shown that wild-caught Burmese pythons 

from Florida are capable of surviving in brackish water with no access to freshwater for 

several months, we did not include brackish water in this variable since it is assumed that 

individuals in brackish water will eventually need access to freshwater (Hart et al. 2012). 

We calculated distance using the Euclidean Distance tool in the Spatial Analyst extension 

in ArcMap. We chose this variable because Burmese pythons are semi-aquatic and their 

movements have been linked to presence of surface water (Hart et al. 2015). 

 We ran correlation analyses on our 3 environmental variables using the 

correlation test in the program ENMTools v. 1.3 (Warren et al. 2010; Warren and Seifert 

2011). All three pairwise comparisons had Pearson correlation coefficients <0.7 and thus 

were not spatially associated.  
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1.2.4 Habitat suitability modeling 

 We used MaxEnt version 3.3.3k because it has become widely accepted as one of 

the highest performing and accurate ENM methods (Pearson et al. 2007; Wilting et al. 

2010; Elith et al. 2011), particularly when assumptions of sampling bias are addressed in 

model implementation (Clements et al. 2012; Kramer-Schadt et al. 2013; Syfert et al. 

2013). Within MaxEnt, we used all feature types, 5000 iterations, 10-5 convergence 

threshold, 0.5 prevalence, and a regularization multiplier of 3 to build habitat suitability 

models for each bias correction method using the same set of python presence points and 

environmental variables. (Phillips et al. 2004; SJ Phillips et al. 2006; Phillips and Dudík 

2008). It has been demonstrated that a regularization multiplier of 3, rather than 1, lowers 

the risk of over-fitting while also smoothing the model output across the landscape (Elith 

et al. 2011; Merow et al. 2013). We also tested a range of regularization multipliers but 

the value did not impact final model performance. Each model scenario was replicated 10 

times.  

 

1.2.5 Correcting for geographical sampling bias 

 Caution must be exercised in ENM to ensure that model assumptions are met. 

Presence-only models assume that data are random or at least representative of the range 

of environmental variables exploited by the focal species (Syfert et al. 2013). Burmese 

python data in EDDMapS exhibit strong geographical sampling bias due to the 

inaccessibility of much of Florida’s landscape and changes in effort to search for and 

report pythons over time (Willson et al. 2011). Sightings occurred predominantly along 
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roads, most notably along ENP’s main park road. Outside of ENP and nearby Big 

Cypress National Preserve (BCNP), sightings largely occurred in urban landscapes.  

 It is possible to correct for bias in presence-only data collection if some 

knowledge of sampling effort is known (Yackulic et al. 2013; Stolar and Nielson, 2014). 

MaxEnt makes use of background points to gather information on the set of 

environmental conditions available to the focal species in the region being analyzed in 

order to relate habitat suitability to the available environment (Phillips et al. 2009). 

Background point selection can thus be manipulated to match the bias inherent in the 

presence input data, allowing MaxEnt to focus on the differentiation between the 

presence distribution and the background distribution rather than the sampling bias 

(Phillips 2008). 

 We tested several scenarios for biasing background point selection that made use 

of MaxEnt’s default, bias grid option, or “samples with data” (SWD) format. Table 1-2 

describes the 10 bias correction scenarios we tested, how each accounts for the sampling 

effort in our dataset, and how each was integrated into the modeling process. All spatial 

and statistical analyses described in Table 1-2 were conducted in ArcMap, GME, and R 

v. 3.1.1 (R Development Core Team 2011). We compared the 10 bias correction 

scenarios to determine which captured the sampling effort in the EDDMapS dataset best.  

 

1.2.6 Model analysis 

 MaxEnt model performance is commonly evaluated using the area under (AUC) 

the receiver operating characteristic (ROC) curve (Elith et al. 2011; Baldwin et al. 2009). 

We used MaxEnt’s default cross-validation setting, which splits the presence only dataset 
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into training data, in order to fit the model, and into test data, in order to evaluate the 

model’s predictions (Merow et al. 2013). While AUC values are generally considered to 

be good statistical measures of discrimination ability, the use of this approach alone has 

been heavily criticized in ENM because it incorrectly treats background points as true 

absence points (Peterson et al. 2008; Lobo et al. 2014; Fourcade et al. 2014). Instead, we 

employed a partial ROC (pROC) approach as recommended by Peterson et al. (2008). 

pROC evaluates the predictive performance of a model iteratively by only considering 

omission errors and the areas proportionally predicated as suitable (Escobar et al. 2013). 

When ≥95% of the replicated pROC AUC ratios are >1.0, models can be considered to 

perform better than null models (Escobar et al. 2013). We calculated pROCs for each 

model scenario with Barve’s (2008) pROC software using 1000 iterations and a 5% 

omission error. As long as model performance was positively confirmed by the pROC, 

we were confident using the AUC values generated by the default cross-validation setting 

in program MaxEnt to compare between model scenarios and to choose our best model 

since the only differences between scenarios was in background point selection. 

 We evaluated model output similarity between scenarios using the niche overlap 

analysis in ENMTools. Although traditionally used to compare niches between different 

species, we used this analysis to determine if our bias scenarios generated niches that 

differed from one another. This analysis calculates Schoener’s (1968) D index, an 

ecologically meaningful measure, as well as the Hellinger similarity statistic I (Van der 

Vaart 1998), a statistically robust measure (Warren et al. 2010). Both indices provide a 

value between 0 (no overlap) to 1 (complete overlap) (Thompson et al. 2011).  
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 We assessed the relative significance of each environmental variable using 

percent contribution jackknife tests (Elith et al. 2011). MaxEnt provides a heuristic 

measure of variable importance by quantifying the increases in gain by each variable 

within the model (Baldwin 2009). When used in combination with heuristic gain, the 

jackknife test excludes variables from analysis one at a time, thereby determining the 

relative strengths of each variable in explaining the model output (Yost et al. 2008; 

Baldwin 2009).  

1.3 Results 

1.3.1 Selection of best habitat suitability model 

All of the bias correction scenarios yielded pROC AUC ratios above 1.0, indicating that 

the habitat suitability models performed significantly better than random predictions 

(Figure 1-2). Therefore, we did not eliminate any models from consideration based on 

pROC values. First, we narrowed down the best grid values for the binary bias grid 

scenario (B-1:0 through B-1000:1, Table 1-2). The B-1:0 scenario had similar pROC 

AUC ratios and AUC values to the B-100:1, B-500:1, and B-1000:1 scenarios (Figure 1-

2; Table 1-3). Scenarios B-5:1, B-10:1, and B-20:1 performed better, and the B-5:1 

scenario performed the best with an AUC value of 0.817. Despite these differences in 

model performance, all final suitability maps had high degrees of overlap with 

Schoener’s D indices and Hellinger similarity statistics (I) above 0.800 (Table 1-3). 

 Next we applied the 5:1 scale to the interpolated surface of roads bias grid 

scenario (KERN5) and compared the model performance to the KERN1 scenario. These 

two models had very similar pROC AUC ratios, the same AUC value (0.816), and 100% 
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overlap according to the D and I indices (Figure 1-2), indicating that these two scales 

generated the same habitat suitability model for this particular bias file scenario. 

  Lastly, we compared the overlap between all 10 of the bias correction scenarios 

using the B-5:1 binary bias grid scenario. All comparisons had I statistics over 0.900 and 

most had D indices above 0.800 (Table 1-4). Ten comparisons had D indices below 

0.800. All of these comparisons were between an SWD strategy and a bias grid strategy. 

All 4 SWD scenarios yielded the highest AUC values, the only scenarios above 0.900. 

We chose the B-SWD scenario as the overall best model for habitat suitability because it 

had an AUC of 0.938, although the LOG-RD-SWD had the second highest AUC of 

0.923. 

 

1.3.2 Habitat suitability factors 

 Home range-level land cover was the most important environmental variable to 

influence our final habitat suitability model with 63.3% overall variable contribution. 

Distance to open freshwater or wetland contributed 24.7% and fine-scale land cover 

contributed 12.1%. At the home range-level scale, estuarine habitat and freshwater non-

forested wetlands were the most important cover types that contributed to python habitat 

suitability (Table 1-5). Estuarine habitat remained a powerful predictor of suitability at 

the fine-scale in addition to all 3 freshwater wetland cover types. Urbanized habitats, 

bodies of water, and natural rivers or streams were poor predictors of habitat suitability, 

although canals and ditches were relatively important predictors at the fine-scale. The 

probability of suitability was approximately 0.616 within 30-m of open freshwater and 
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wetland and sharply decreased to 0.383 at a distance of 125-m (Figure 1-3). Probability 

of suitability rose to 0.554 as distance increased to 3700-m from an open water source. 

 The probability of habitat suitability map was highly concurrent with the home 

range-level habitat layer (77.2% of all grid cells classified as estuary and 91.3% of all 

grid cells classified as freshwater non-forested wetland at the home range-level had a 

probability of habitat suitability above 0.5; Figure 1-4). Regions of high suitability were 

also associated with the most important fine-scale land cover types (97.7% of all grid 

cells classified as estuary, 21.5% of all grid cells classified as canal/ditch, and 52.0% of 

all 3 freshwater wetland habitats at the fine-scale had predicted probability of habitat 

suitability above 0.5). This output demonstrates the model’s predictive ability in 

associating python occurrence in Florida with realistic habitat variables, given that high 

suitability is in the Everglades region where pythons are confirmed as established (Snow 

et al. 2007b). The majority of known python occurrences from the EDDMapS dataset 

occur in regions with relative habitat suitability between 0.50-0.75 (Figure 1-5). This 

figure is disproportionate to the availability of habitat classified as 0.50-0.75 suitable, 

demonstrating the high density of pythons in the Everglades region. 

 

1.4 Discussion 

 The goal of this study was to identify the key environmental variables for 

predicting Burmese python habitat suitability in southern Florida at the present stage of 

invasion. As expected, habitat variables considered at a home range-level scale 

contributed the most to our model of relative habitat suitability. Current home range 

estimates show that individual Burmese pythons range throughout a large spatial area and 
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it has been demonstrated that they are capable of making long distances movements over 

a single day (Pittman et al. 2014; Hart et al. 2015). Kapfer et al. (2010) studied the 

relationship between home range size and habitat preferences in bullsnakes (Pituophis 

catenifer sayi), a mobile snake similarly often found in an agricultural/natural landscape 

mosaic. Bullsnake home range size increased as proportion of unsuitable habitat within 

their range increased, suggesting that individuals needed to travel further to reach more 

preferable habitat (Kapfer et al. 2010). Longer dispersal distances in mammals are also 

linked to large home range size (Bowman et al. 2002). This relationship between 

movement and home range size could explain why the Burmese python invasion is 

moving northward (Conservancy of Southwest Florida 2015) and why some of the 

EDDMapS occurrence points intersect with habitat of relatively low suitability (Figure 1-

5). As python density in the Everglades likely reaches carrying capacity, individual 

dispersers may need to travel further to find enough suitable habitat to meet their resource 

needs. 

 Overall, python presence was strongly influenced by water availability and most 

associated with freshwater non-forested wetlands and estuarine habitat at the home range-

level. These cover types are widely available in the Everglades and are likely similar to 

the mangrove forests, marshes, and swamps from their native range (Snow et al. 2007b). 

At the 30m x 30m resolution estuarine habitat remained highly indicative of python 

presence while agricultural lands and canals became important predictors. Recent radio 

telemetry studies on adults have shown that pythons will often use agricultural levees and 

canals to make straight-line movements (Pittman et al. in review). Reed et al. (2011) 

noted high python densities in agricultural fields east of ENP and suggested that pythons 
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may have been attracted to these areas by high rodent abundance (which, in turn, was 

associated with vegetable availability and generally high primary productivity). Other 

fine-scale land cover types that were moderately associated with python presence 

included forested and shrub/scrub landscapes. Particularly within a freshwater wetland or 

estuarine matrix, these pockets of habitat may be important refuges for avoiding 

predation or nesting, or for avoiding detection by prey due to their propensity to ambush 

predation (Walters 2016). 

 

1.4.1 Correcting geographical sampling bias 

 Given extensive criticism of MaxEnt’s default settings (e.g., Rodda et al. 2011; 

Merow et al. 2013; Syfert et al. 2013), we expected that our DEF scenario would be the 

lowest performing scenario. In contrast, our usage of MaxEnt’s default background point 

selection performed relatively well and generated a habitat suitability map with high 

niche overlap compared to the other scenarios that made use of bias grids or the SWD 

format. However, our use of the default settings did include a minimal correction for 

geographical sampling bias. MaxEnt draws background points from across the user-

defined modeling extent. Instead of selecting points from across the globe, or even from 

the full area of Florida, we limited the extent of our sampling area at the start of the 

modeling process to a buffered MCP around the range of Burmese python presences. In 

turn, this reduced background selection to a localized geographical area within Florida. 

 We expected the LOG and LOG-RD scenarios to be among the strongest models 

but they were in fact the lowest performing scenarios. In contrast, the LOG-SWD and 

LOG-RD-SWD scenarios were the fourth and second best models respectively. The 
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logistic regression of sampling effort was meant to capture not only the bias associated 

with the correlation between sightings and presence of roads, but also the bias associated 

with effort to survey roads for pythons. Very little to no effort to systematically and 

randomly sample locations in Florida for pythons has taken place to date, and most 

conscious effort to look for pythons has disproportionately occurred in the ENP and 

Naples areas. When we created the distance of surveyed roads variable to input into our 

logistic regression, we took roads surveyed by the Everglades Invasive Reptile and 

Amphibian Monitoring Program and by dedicated researchers from the Conservancy of 

Southwest Florida into consideration. These two areas are located in the southern region 

of our modeling extent, thus creating bias in the sampling points found in EDDMapS. 

The logistic regression used to generate the LOG and LOG-RD scenarios reflects this 

latitudinal bias in sampling effort; therefore, it was surprising that the LOG and LOG-RD 

models performed poorly relative to the other models and our LOG-SWD and LOG-RD 

scenarios were not the top 2 best models. Despite this, the LOG-RD-SWD scenario 

generated results very similar to the best performing model (Figure 1-4). 

 More generally, bias correction scenarios that made use of a bias file did not 

perform as well as scenarios that made use of the SWD format. When the SWD format is 

used, all 10,000 background points spatially represent the sampling bias they are 

correcting and are all weighed equally by program MaxEnt. In contrast, MaxEnt 

randomly scatters 10,000 background points across a bias grid and uses the grid’s value 

to determine how much a given point should be weighed. Although this assigns more 

influence to the background points that best represent the sampling bias, this means that 

only a portion of the 10,000 background points are explaining the bias while other 
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background points are still able to exert an albeit small influence on the model’s 

predictions. Our results suggest that the SWD method may be superior to using a bias file 

and highlight the need to further explore the efficacy of bias correction techniques with 

MaxEnt. This may also explain why the LOG and LOG-RD scenarios did not perform as 

well as expected; it is possible that the use of the bias grid by MaxEnt explains more 

about the poor performance of the scenario rather than the failure of the logistic 

regression to capture the sampling effort inherent in the occurrence data. 

 

1.4.2 Interpretation and application of relative habitat suitability 

 We emphasize that our predictive surface of habitat suitability is not meant to 

forecast a potential range of the Burmese python invasion. ENM assumes that the 

population being considered is in equilibrium within its environment and that the 

presence data reflect all favorable environmental conditions occupied by the species 

(Araujo and Pearson 2005; Phillips et al. 2008; Václavík and Meentemeyer 2009; Elith et 

al. 2010; Robinson et al. 2010; Rodda et al. 2011; Václavík  and Meentemeyer 2012). 

This assumption is a challenge when using ENM for an invasive species because 

invasives are inherently expanding their range; thus, the stage of an invasion heavily 

influences the extent to which a species’ full realized niche can be modeled (Václavík  

and Meentemeyer 2012). Data collected from a species in earlier stages will likely reflect 

only a small portion of the conditions it may be able to inhabit in comparison to a wider 

range of conditions it could inhabit when in later stages (Ficetola et al. 2010; Václavík 

and Meentemeyer 2012). Evidence suggests that the Florida Burmese python population 

is still growing and expanding northward (Conservancy of Southwest Florida 2015), 
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thereby supporting the notion that this invasive population is not in equilibrium with this 

novel environment. Given this, the results of our ENM only reflect the current habitat use 

by pythons in southern Florida and the most appropriate interpretation is that these 

habitat factors reflect current relative habitat suitability. 

 We further stress that the factors of habitat suitability we have identified should 

not be interpreted as the only suitable habitats that pythons are currently using or will 

exclusively use in the future. Mladenoff et al. (2009) modeled habitat use of recolonizing 

gray wolves (Canus lupus) in the northern Great Lakes region over several years and 

found that habitat suitability changed over time. Wolves preferentially occupied the most 

suitable habitats during the early stages of colonization but gradually used less suitable 

areas as the population’s density in the region increased (Mladenoff et al. 1995, 1997, 

1999). Invasive cane toads (Chaunus [Bufo] marinus) in Australia are showing signs of 

post-introduction evolution and increasingly occupying areas once considered to be 

physiologically unsuitable (BL Phillips et al. 2006; Urban et al. 2007). Given these 

examples, pythons on the expanding front of the invasion may preferentially select the 

most suitable areas first and less suitable areas later as high densities force individuals to 

move to previously unoccupied areas. It is also possible that pythons are still 

encountering habitat types that are novel to them. For example, pythons have recently 

been found occupying gopher tortoise (Gopherus polyphemus) and armadillo (Dasypus 

novemcinctus) burrows (Metzger 2013). These burrows may provide highly suitable 

habitat for pythons, particularly for overwintering, but we lack the appropriate occurrence 

data to test this hypothesis through our MaxEnt models.  
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 Similarly, the python’s niche in their introduced habitat may be evolving as they 

adapt to the Floridian environment. The python population in the core, southernmost 

areas of our study extent are likely at or closer to equilibrium than pythons in the 

northernmost regions. This uneven spread of stage of invasion may help to explain the 

greater coverage of suitability in the southern part of our predictive surface compared to 

the sparser predictions further north. In addition, land use change over time has been 

shown to influence the distribution of invasive species (Domènech et al. 2005; Ficetola et 

al. 2010; Hill et al. 2012). Florida’s landscape is rapidly being developed, particularly 

due to urbanization in the central and northern parts of the state. Some landscape features 

associated with this type of development, such as canals and levees, may help to facilitate 

the spread of pythons while others, such as dense road networks (Shepard et al. 2008), 

may serve as dispersal barriers and force pythons to increase their home range size and 

use suboptimal areas.  

 The results from our study can inform management activities and more targeted 

studies of python habitat use and behavior. Identifying the cover types with which python 

presence is correlated may help to efficiently locate areas where pythons may first occur 

in higher densities, particularly in northern Florida’s fragmented landscapes. This could 

allow for targeted surveillance and removal activities (Wiens and Graham 2005) and help 

researchers to detect study sites outside of the core Everglades population. The latter is 

especially important because there is still a need to understand what characteristics make 

these cover types suitable for python use, particularly in the context of different 

behaviors.  
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Table 1-1. Criteria used to determine if python presences recorded in EDDMapS were 

either inaccurately recorded or likely a newly released pet. Presence points downloaded 

from EDDMapS in spreadsheet format contain extensive metadata that can be used to 

evaluate the efficacy of a particular data entry. 

 

Uncertainty Metadata category Reason to eliminate from analysis 

Coordinates Precision  Entries were listed as either “Accurate” or 

“Approximate”. Approximate coordinates 

were not accurate to 30ma, the resolution 

modeled in this study, and were thus 

eliminated from analysis. If nothing was 

entered in this category, the data point was 

also eliminated. 

 

 Coordinate Uncertainty Most data points did not list a coordinate 

uncertainty. If an entry was considered to have 

“accurate precision” but listed a coordinate 

uncertainty >30m, it was eliminated from 

analysis. 

 

 Comments If written comments indicated that the 

coordinates were uncertain or that the 

coordinates had been taken from a different 

location from where the animal was found, the 

entry was eliminated from analysis. 

 

Possible newly released 

pet 

Comments The albino morph is a popular skin pattern 

associated with pet Burmese pythons. As a 

recessive gene, it is not commonly found in 

wild snakes and can be associated with 

reduced fitness. We assumed that any data 

entries describing an albino or “yellow” snake 

were thus recently released pets and could not 

be considered to be a part of the established, 

breeding population. 

 

 Photographs Some entries were verified with photographs 

that were also available on EDDMapS’s 

interactive webmap. If the photograph showed 

a yellow/albino morph, the data point was 

eliminated from analysis. 

 

Species identification Identification credibility Entries were listed as “Credible”, “Delete”, 

“Possible”, or “Verified”. Any entries listed as 

possible or delete were eliminated from 

analysis as well as any entries without an 

identification credibility listed.  

 

 Comments If comments mentioned that the observer was 

unsure if it was a Burmese python, and there 

were no photographs to verify the observation, 

the entry was eliminated from analysis. 
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Table 1-2. Description of the 10 bias correction scenarios tested and how they were 

implemented in the modeling process. 

 
 

Strategy 

 

Scenario 

Scenario 

abbrev. 

Application to 

python system 

 

Explanation of process 

 

References 

Random 

sampling 

of 

background 

points 

Default DEF Default setting 

of MaxEnt. 

Program MaxEnt 

randomly selects 10,000 

background points from 

the entire extent of the 

study area being 

modeled.  

 

Elith et al. 

2011 

Bias grid Binary bias 

(Yes/No 

roads/off-

road) 

B-1:0  

B-5:1  

B-10:1  

B-20:1  

B-100:1  

B-500:1  

B-1000:1 

Pythons are 

primarily found 

on roads, thus 

assume roads 

are the only 

bias. 

Converted roads polyline 

feature into a raster grid 

where roads were given a 

value higher than non-

road cells. We tested a 

number of combinations 

(road cells: non-road 

cells) of values to 

determine if any one 

combination resulted in a 

better performing grid: 

1:0.001 (because MaxEnt 

requires positive, non-

zero values); 5:1, 10:1, 

20:1, 100:1, 500:1, 

1000:1. When a bias grid 

is entered into the 

program, MaxEnt will 

still randomly select 

10,000 background 

points within the 

modeling extent, but the 

value of the cell a given 

point intersects 

determines how strongly 

it influences the model. 

 

Clements 

et al. 2012; 

Elith et al. 

2010; Elith 

et al. 2011; 

Fourcade 

et al. 2014 

 Binary bias 

(Yes/No 

roads/off-

road), 

based on 

percentages 

PER Pythons are 

primarily found 

on roads, but 

they can be 

encountered off-

road a certain 

percentage of 

the time. 

Similar to binary bias 

grid scenario, except road 

cells were assigned a 

value of 0.866 and non-

road cells 0.134 to 

correspond with the 

percentage of python 

presence points on and 

off road. 

 

Fourcade 

et al. 2014 

 

 

 



36 

 

3
6
 

Table 1-2 continued 

 

Strategy 
 

Scenario 

Scenario 

abbrev. 

Application to 

python system 

 

Explanation of process 

 

References 

Bias grid, 

continued 
Interpolated 

surface of 

roads 

KERN1 

KERN5 

Python presences 

are biased 

mainly to roads, 

thus assume the 

likelihood of 

encountering one 

decreases with 

increasing 

distance from 

road. 

 

Derived a kernel density 

map of the road polyline 

feature, representing a 

gradual decrease in 

sampling intensity as 

distance increased from a 

point on a road. We scaled 

the values assigned to 

each cell from 1 to 

approaching zero 

(KERN1), and also tested 

the best set of values from 

the binary bias grid 

scenario as an alternative 

scale (KERN5). 

 

Elith et al. 

2010; 

Fourcade 

et al. 2014 

 Logistic 

regression 

of sampling 

effort 

LOG Certain variables 

related to 

sampling can 

predict the 

likelihood of 

encountering a 

python. 

Estimated sampling effort 

for the EDDMapS data set 

using logistic regression in 

R with the following 

predictor variables 

(independent of those used 

in the ENM): speed limit 

of road, annual average 

daily traffic of road, 

Euclidean distance to 

road, population density, 

and distance to surveyed 

roadsa. Applied the final 

model to geospatial layers 

in ArcMap to generate 

bias grid. 

 

Stolar and 

Nielson 

2014 

 Logistic 

regression 

of sampling 

effort on 

roads 

LOG-RD Pythons are 

primarily found 

on roads, but 

there are certain 

variables related 

to sampling that 

can predict the 

likelihood of 

encountering a 

python on a road. 

Converted a roads 

polyline feature into a 

raster grid and merged it 

with the logistic 

regression of sampling 

effort layer such that 

pixels off road were given 

a value of 0.001 (i.e., 

effectively zero) and 

pixels on a road were 

given a value based on the 

logistic regression’s 

estimate of sampling 

effort 

Fourcade 

et al. 2014; 

Stolar and 

Nielson 

2014 
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Table 1-2 continued 

 

Strategy 

 

Scenario 

Scenario 

abbrev. 

Application to 

python system 

 

Explanation of process 

 

References 

SWD 

format 

(“samples 

with 

data”) 

Binary bias 

(Yes/No 

roads/off-

road) 

B-SWD Pythons are 

primarily found 

on roads, thus 

assume roads are 

the only bias. 

Randomly generated 

10,000 background points 

that intersected with roads 

polyline feature in 

ArcMap. Used GME to 

merge environmental 

information with the 

geographic coordinates of 

each point and directly 

inputted into MaxEnt 

via .csv files. 

 

Fourcade 

et al. 2014 

 Binary bias 

(Yes/No 

roads/off-

road), 

based on 

percentages 

P-SWD Pythons are 

primarily found 

on roads, but 

they can be 

encountered off-

road a certain 

percentage of the 

time. 

86.6% of python 

observations were on 

roads, while 13.4% were at 

an off-road location. 

Randomly generated 8,660 

background points that 

intersected with roads and 

1,340 that were not located 

on a road in ArcMap. Used 

GME to merge 

environmental information 

with the geographic 

coordinates of each point 

and directly inputted into 

MaxEnt via .csv files. 

 

Fourcade 

et al. 2014 

 Logistic 

regression 

of sampling 

effort 

LOG-SWD Certain variables 

related to 

sampling can 

predict the 

likelihood of 

encountering a 

python. 

Randomly generated 

10,000 background points 

that were locationally 

biased based on the 

logistic regression estimate 

of sampling bias across the 

geographical modeling 

extent. Used GME to 

merge environmental 

information with the 

geographic coordinates of 

each point and directly 

inputted into MaxEnt 

via .csv files. 

 

Stolar and 

Nielson 

2014 
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Table 1-2 continued 

 

Strategy 

 

Scenario 

Scenario 

abbrev. 

Application to 

python system 

 

Explanation of process 

 

References 

SWD 

format 

(“samples 

with 

data”), 

continued 

Logistic 

regression 

of 

sampling 

effort on 

roads 

LOG-RD-

SWD 

Pythons are 

primarily found 

on roads, but 

there are certain 

variables related 

to sampling that 

can predict the 

likelihood of 

encountering a 

python on a road. 

Randomly generated 

10,000 background points 

that intersected with roads 

and that were locationally 

biased based on the logistic 

regression estimate of 

sampling bias across the 

geographical modeling 

extent. Used GME to 

merge environmental 

information with the 

geographic coordinates of 

each point and directly 

inputted into MaxEnt 

via .csv files. 

 

Fourcade 

et al. 2014; 

Stolar and 

Nielson 

2014 

aSee: Appendix B. 
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Table 1-3. Calculated Schoener’s D indices (above gray blocks), Hellinger similarity 

statistics (I) (below gray blocks), as indicators of model similarity among the binary bias 

grid scenarios. AUC values generated by the default cross-validation setting in MaxEnt 

are measures of relative model performance, reported here to compare between model 

scenarios. 

 

 

Model B-1:0 B-5:1 B-10:1 B-20:1 B-100:1 B-500:1 B-1000:1 
B-1:0  0.810 0.846 0.887 0.960 0.986 0.989 

B-5:1 0.961  0.962 0.922 0.848 0.822 0.818 

B-10:1 0.973 0.998  0.959 0.884 0.859 0.855 

B-20:1 0.984 0.994 0.998  0.925 0.899 0.895 

B-100:1 0.996 0.978 0.987 0.994  0.974 0.969 

B-500:1 0.998 0.968 0.979 0.988 0.999  0.995 

B-1000:1 0.999 0.966 0.977 0.987 0.999 0.999  
AUC value 0.759 0.817 0.810 0.801 0.779 0.760 0.759 
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Table 1-4. Calculated Schoener’s D indices (above gray blocks), Hellinger similarity statistics (I) (below gray blocks), as indicators of 

model similarity among the 10 bias correction scenarios. AUC values generated by the default cross-validation setting in MaxEnt are 

measures of relative model performance, reported here to compare between model scenarios. 

 

 
 

Model 
 

DEF 
 

B-5:1 
 

PER 
 

KERN1 
 

LOG 
 

LOG-RD 
 

B-SWD 
 

P-SWD 
 

LOG-SWD 
LOG-RD-

SWD 
DEF  0.944 0.931 0.975 0.893 0.815 0.764 0.823 0.807 0.805 

B-5:1 0.997  0.985 0.962 0.870 0.817 0.796 0.855 0.839 0.826 

PER 0.995 1.000  0.949 0.859 0.816 0.805 0.864 0.843 0.831 

KERN1 0.999 0.998 0.997  0.881 0.815 0.782 0.841 0.824 0.824 

LOG 0.992 0.987 0.985 0.990  0.894 0.686 0.737 0.743 0.743 

LOG-RD 0.972 0.974 0.973 0.972 0.988  0.661 0.707 0.733 0.734 

B-SWD 0.997 0.957 0.960 0.950 0.917 0.917  0.914 0.913 0.913 

P-SWD 0.968 0.979 0.981 0.973 0.945 0.939 0.994  0.917 0.917 

LOG-SWD 0.960 0.972 0.974 0.965 0.944 0.946 0.986 0.992  0.955 

LOG-RD-

SWD 
0.956 0.969 0.972 0.962 0.944 0.954 0.985 0.988 0.991  

AUC value 0.822 0.817 0.814 0.816 0.779 0.749 0.938 0.919 0.914 0.923 
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Table 1-5. Home-range level and fine-scale cover type suitability scores for each habitat 

classification for the B-SWD bias correction scenario. 

 

 

Habitat classification Home-range level Fine-scale 
          Natural or artificial lakes & ponds 0.074 0.153 
          River or stream - 0.209 
          Canal or ditch - 0.484 
          Estuarine 0.179 0.860 
          Freshwater non-forested wetland 0.455 0.455 
          Freshwater forested wetland 0.021 0.456 
          Freshwater non-vegetated wetland - - 
          Hardwood forested uplands - 0.456 
          High pine and scrub 0.074 0.456 
          Pine flatwoods and dry prairie 0.074 0.262 
          Mixed hardwood and coniferous 0.074 0.322 
          Shrub and brushland - 0.470 
          Barren 0.074 0.456 
          Coastal - 0.456 
          Agriculture 0.074 0.507 
          Rural lands 0.005 0.326 
          Low intensity urban 0.008 0.278 
          High intensity urban 0.011 0.333 
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Figure 1-1. Map of Burmese python presences used in MaxEnt modeling scenarios in 

relation to roads and Everglades National Park and Big Cypress National Preserve. Data 

were downloaded from EDDMapS on October 15, 2015 and were culled for inaccurate 

entries. Note that the roads displayed in this figure are a subset of the final roads polyline 

feature used in all analyses. 
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Figure 1-2. Summary of partial ROC AUC ratios for each bias correction scenario 

(n=1000). When >95% of AUC ratios are above 1.0, the model is better than a random 

prediction. 
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Figure 1-3. (a) Distribution of python occurrences and (b) relative suitability of habitat as 

a function of distance to open freshwater or wetland for the B-SWD bias correction 

scenario. 
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Figure 1-4. Comparison of the current predicted relative habitat suitability of southern Florida for the (a) B-SWD and (b) LOG-RD-

SWD bias correction scenarios. 
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Figure 1-5. Proportion of Burmese python occurrence points from the EDDMapS 

database (dark gray) and grid cells from the B-SWD predicted suitability surface (light 

gray) that occurred/were classified for each relative suitability value. 

 

 



 

 

47 

4
7
 

CHAPTER 2.  INVESTIGATING MOVEMENT BEHAVIOR OF INVASIVE 

BURMESE PYTHONS ON A SHY-BOLD CONTINUUM USING INDIVIDUAL 

BASED MODELING 

2.1 Introduction 

 Invasion biology has a long tradition of identifying traits that could explain 

between-species dissimilarities in species’ abilities to succeed as invaders (Kolar and 

Lodge 2001; Hayes and Barry 2008; Cote et al. 2010). However, examining the average 

behavioral response of a population as a whole masks the variation between individuals 

that likely drives invasion dynamics, particularly those characteristics that may only be 

advantageous in certain phases of the invasion. The process of an invasion is composed 

of several stages starting with initial introduction and spread, establishment, and ending 

with integration into the ecological community (Vermeij 1996). Researchers are 

increasingly focusing on different behaviors that help invaders complete and transition 

from one stage to another while recognizing that these behaviors may not be as beneficial 

to the persistence of the invasive population in the next phase of the invasion (Cote et al. 

2010).  

 Personality-dependent dispersal, where personality types such as boldness, 

aggressiveness, and sociability are linked to the propensity to disperse, is particularly 

relevant in studying the spread of invasive populations (Cote and Clobert 2007; 

Duckworth and Badyaev 2007; Cote et al. 2010; Sih et al. 2012). The ability of an 
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invasive population to spread is characterized by both high dispersal rates and long-

distance dispersal (Neubert and Caswell 2000; Rehage and Sih 2004; Cote et al. 2010). 

The net movement of the most dispersive individuals of a population determines its rate 

of expansion, even when long-distance dispersal events are rare (Neubert and Caswell 

2000; Bartón et al. 2012). Fraser et al. (2001) demonstrate that movement behavior is 

heterogeneous within a population, thus intraspecific differences in demography, 

behavior, or personality are important to describing dispersal kernels for an invading 

population. For example, recolonizing western bluebirds (Sialia mexicana) on an 

expanding front across the western United States were more likely to be aggressive and to 

thus outcompete sister taxa; however, individuals behind the front in the established 

range were more likely to be less aggressive because high aggressiveness was correlated 

with poor parental care in males (Duckworth and Badyaev 2007). Invasive cane toads 

(Chaunus [Bufo] marinus) in Australia employ a range of sociality depending on their 

position along the colonization front (González-Bernal et al. 2014). Boldness has been 

linked to dispersal tendency in a variety of species including pumpkinseed sunfish 

(Lepomis gibbosus; Coleman and Wilson 1998), gobies (Neogobius melanostomus; 

Myles-Gonzalez et al. 2015), great tits (Parus major; Dingemanse et al. 2003), and swift 

foxes (Vulpes velox; Bremner-Harrison et al. 2004).  

 Boldness is the tendency of organisms to explore and move through unfamiliar 

space and novel situations (Wilson et al. 1993). Bold individuals tend to move greater 

distances and to be riskier in how they explore unfamiliar landscapes and in their 

antipredator response (Rehage and Sih 2004; Bartón et al. 2012; Edelsparre et al. 2013). 

While bolder dispersers move greater distances, they also have higher probabilities of 
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mortality (Azevedo and Young 2006). For example, in reintroduced swift foxes in 

Montana, the boldest individuals moved the furthest from their release sites but 

experienced lower survival compared to individuals who limited their movements 

(Bremner-Harrison et al. 2004). Bold male elk (Cervus elaphus) in Alberta, Canada had 

higher movement rates and greater use of risky landscapes compared to shy male elk and 

were more likely to be harvested by hunters (Ciuti et al. 2012). Clearly, behaviors that 

maximize an individual’s dispersal distance are not as advantageous to individual 

survival (Bartón et al. 2012). This suggests that the expansion of a population is driven 

by within-individual variation in balancing risk and dispersal distance (Zollner and Lima 

2005), or that boldness varies between-individuals with those on the expanding front 

bolder than the average individual in the core population and the rare, bold survivor 

driving the expansion (Fraser et al. 2001; Bartón et al. 2012; Lindström et al. 2013).  

 Among the most significant biological invasions currently taking place in the 

eastern United States is the Burmese python in southern Florida. Pythons are already well 

established in the Everglades, but they appear to be expanding their range northward into 

more urbanized and heterogeneous landscapes (Dorcas and Willson 2011). While south 

Florida’s habitat is ideal for the python in some respects (e.g. abundant prey, similar 

climate as native range, pockets of less disturbed habitat), it is not without risks of 

mortality (e.g., predators, road networks, farming/moving equipment).  

 Knowledge of resource distribution as well as habitat suitability is important in 

predicting the python population’s ability to persist in novel, fragmented habitats outside 

of the Everglades, but it is also just as important to understand their movement and 

behavior (Taylor et al. 1993; Fahrig 2002; Knowlton and Graham 2010). It is 
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increasingly recognized that dispersal and movement are key processes involved in 

measuring landscape connectivity for a particular species (Henein and Merriam 1990; 

Taylor et al. 1993). However, little is known about the behavior and movement of 

dispersing juvenile Burmese pythons due to their evasiveness and their use of habitat that 

is difficult for researchers to access. Studying the behavioral components of how pythons 

move through Florida’s landscape thus contributes to our understanding of their ability to 

spread into other habitat that we do not currently recognize as suitable. Additionally, 

knowledge of the patterns of dispersal aids in our ability to plan targeted control methods 

that could prevent or at least manage the spread of Burmese pythons and other invasive 

species in the state (Reed et al. 2011; Hudina et al. 2014).  

 Our objective was to use a spatially explicit individual based model (IBM) to 

investigate boldness on the edge of the expanding range of Burmese pythons in southern 

Florida as the population expanded from the Everglades into more human-dominated 

landscapes. Employing an IBM allows one to investigate the interaction between 

individual behaviors and landscape configuration and characteristics, an interaction that 

drives animal movement behavior (Zollner and Lima 1999), and to examine how the 

patterns of individual behaviors generate a system’s dynamics. Our goal was to simulate 

individual behaviors on the leading edge so we could observe the rare dispersal events 

that drive a population’s expansion. We predicted that individuals on the expanding front 

characterized as bold would move faster and further than individuals who were 

characterized as shy, and that the rate of expansion of bold individuals would most 

closely resemble the one observed in the Burmese python population between 2004-2013. 

We also predicted that the final range occupied by pythons as facilitated by bold 
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dispersers would most closely resemble the observed range occupied by pythons during 

this same time frame. We expected bolder individuals to experience higher rates of 

mortality, to make longer distance movements, and to establish home ranges further away 

from their release locations in comparison to shyer individuals.  

 

2.2 Methods 

2.2.1 Model overview 

 Our goal was to simulate risk-taking behavior in dispersing juvenile Burmese 

pythons on the leading edge of an expanding front. We created 6 behavioral scenarios on 

a shy-bold scale and modeled dispersal of 25 virtual pythons per scenario per dispersal 

season. We only modeled individuals on the leading edge of the front; at the beginning of 

each dispersal season, we determined the new leading edge and selected a new random 

sample of 25 individuals. In doing so, we were able to simulate python expansion across 

our study site while restricting our focus to virtual snakes on the leading edge of the 

population. 

 

2.2.2 Modeling framework 

 We used the spatially explicit individual-based model Spatially Explicit Animal 

Response to Composition of Habitat (SEARCH). SEARCH simulates animal dispersal 

and home-range establishment on a virtual landscape with a high degree of behavioral 

complexity (Pauli et al. 2013). The program interfaces with ArcGIS (ESRI, Redlands, 

CA, USA) to build a virtual landscape, which is comprised of vector-based maps 

representing animal movement, foraging opportunities, risk of mortality, habitat 
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suitability, and exclusive occupancy of resident animals (Pauli et al. 2013). Each map 

contains specific field definitions based on different GIS classifications, and virtual 

animals individually alter their behavior or physiology based on these parameters (Pauli 

et al. 2013). Dispersers can be introduced to the landscape via a point release map or may 

be “born” on the landscape through the reproduction of resident animals (Pauli et al. 

2013). Each individual generates its own memory map. This represents the information it 

perceives from its environment and is used in making decisions. Virtual animals respond 

to per timestep mortality and energetics and change behavioral states (e.g., searching vs. 

foraging, risky vs. safe) as they interact with the landscape (Pauli et al. 2013). Parameters 

governing behavior, energetics, home-range requirements, and resident reproduction can 

be modified to include heterogeneity in animal response caused by gender, time, and 

behavioral state (Pauli et al. 2013; Blythe et al. 2011). 

 

2.2.3 Model study area 

 We simulated dispersal and home range establishment of juvenile pythons on an 

agricultural and urban interface in southern Florida between the southeastern Everglades, 

Homestead, and south Miami. Southern Florida is located in a subtropical climate 

characterized by a wet and a dry season. This section of the Everglades is comprised of 

freshwater sloughs, marl prairies, tropical hardwood hammocks, and pinelands. 

Agricultural lands and low-density urban development characterize Homestead, Florida, 

while urbanization intensity increases rapidly as Homestead connects to southern Miami 

and approaches the city center. These areas are anthropogenically connected via a dense 

road network and canal waterways.  
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 We chose this study area because it was comprised of land cover types from 

which we had empirical data on juvenile python movement (see: 2.2.4 Model study 

system). The Early Detection & Distribution Mapping System (EDDMapS) database also 

provided extensive presence data recorded over 10 years in this location that we used to 

pattern-match (Grimm and Railsback 2013) our model outputs (see: 2.2.4 Model study 

system and 2.2.8 Analysis). 

 We selected the modeling extent by first identifying the invasion front in the 

EDDMapS dataset from the natural land cover types associated with the Everglades into 

the more heavily altered landscapes of Homestead and south Miami. The study area 

borders were selected based upon their clear delineation of an observed annual 

progression of pythons across an area of feasible size to simulate at our desired 

resolution. We calculated 99% kernel density estimates (KDE) around presence points for 

each year successively from 2002 until the present. We visually estimated that the 2004 

KDE isopleth best represented the initial presence of pythons in this study area. Likewise, 

we estimated that the 2013 KDE isopleth best represented the expansion of the python 

population across the study area. Therefore, we simulated dispersal by pythons between 

2004 and 2013. 

 

2.2.4 Model study system 

 The model was calibrated using empirical telemetry data from a two-year field 

study. During July of 2014 and 2015, 28 juvenile pythons (14 snakes per year, 7 snakes 

per clutch and site) were implanted with radio transmitters and released at their capture 
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sites (Pittman et al. in review). Juveniles were radio-tracked on agricultural lands, 

suburban landscapes, and natural habitats with less anthropogenic influence. 

 

2.2.5 Simulation scenarios 

 A given simulation scenario represented a replicate for one of 6 behavioral types 

on the shy-bold continuum as defined in section 2.2.7 Behavioral scenarios and 

parameterization. Each scenario ran for a dispersal season of 6 months over a 10-year 

period from 2004 – 2013. We used a time step of 12 hours to accommodate the pythons’ 

low movement patterns associated with ambush behavior, digestive requirements, 

shedding, and basking and program SEARCH’s need for a 24-hour awake-sleep cycle. 

 

2.2.6 Map inputs 

 SEARCH requires one point map and four polygon maps (Pauli et al. 2013). The 

point map designates locations where dispersing animals not born to resident females on 

the map are released. This map is often used to specify locations of translocated animals 

or to ensure the origin of virtual dispersers in desired locations for specific research 

objectives. The four polygon maps were created by aggregating and reclassifying land 

cover types from a 30-m2 land use/land cover map derived from the Florida Cooperative 

Land Cover Map, version 3.0 (myfwc.com/research/gis/applications/articles/Cooperative-

Land-Cover), which had additional geospatial data on canals and ditches from the South 

Florida Water Management District (South Florida Water Management District GIS Data 

Catalogue, http://www.sfwmd.gov/gisapps/sfwmdxwebdc/dataview.

asp?query=unq_id=1959). 
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2.2.6.1 Release 

 The release map defines the release points, or starting locations, for each 

individual virtual python at the start of a given simulation. For the first year of each 

simulation scenario, we randomly selected 25 release sites within 1-m of the 2004 KDE 

isopleth using the Create Random Points tool from the Data Management toolbox in 

ArcMap 10.2.2. For each subsequent year, we chose a new random sample of 25 

individuals on the new leading edge. We determined the new front by buffering the 

previous years’ isopleth by the furthest distance traveled by a virtual python that survived 

the simulated dispersal season. The new 25 release sites were then randomly selected 

within 1-m of the new leading edge. 

 Release sites could only occur on areas defined as suitable for home range 

establishment. However, sometimes there was a lack of suitable habitat within 1-m of the 

leading edge for simulations run in the years 2012 and/or 2013. In this case, virtual 

animals were released within 1-m of the leading edge onto any habitat except where open 

water occurred. 

 

2.2.6.2 Movement 

 We scaled up the 30-m2 LULC map to a 100-m2 resolution in order to cut down 

on computer processing when running our simulations. The 100-m2 map was then 

aggregated and reclassified into seven land cover types: canals, agricultural lands, low 

intensity urban, high intensity urban, naturally-dominated habitat, open water, and core-

population barrier (Figure 2-1 and Appendix C). Although our models ran at 12-hour 

timesteps (see: 2.2.5 Simulation scenarios), our movement parameters were calculated 
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based on a 24-hour period. This is due to SEARCH’s need for a 24-hour sleep-awake 

cycle; therefore, virtual animals would move during a given day’s first timestep, or 12-

hour period, and would “sleep”, and thus remain stationary, during the second timestep. 

We calibrated movement parameters using a subset of the 2014 & 2015 telemetry data. 

The animals in this study were primarily radio-tracked 1-2 times per week; however, they 

were radio-tracked for 3-10 days successively after initial release (Pittman et al. in 

review). These locations provided the initial parameterization for our movement model 

and we used pattern matching to adjust our final parameters. 

 

2.2.6.2.1 Penetrable land cover 

 Virtual pythons were able to move through canals, agricultural lands, low 

intensity urban, high intensity urban, and naturally dominated habitat. The likelihood of 

entering or leaving a particular habitat type was determined by the boundary crossing 

ranking. The probability that a virtual snake will cross over the boundary of one habitat 

type to another is defined by the following equation, 

p = n/c 

where p is the probability of crossing the boundary, n is the rank of the new habitat, and c 

is the rank of the current habitat (Blythe et al. 2011). A random number, r, is drawn from 

a uniform distribution, and if r is greater than p, the animal remains in its current habitat 

and vice versa if r is less than p (Blythe et al. 2011). Observations of juvenile Burmese 

pythons suggest that they use canals as corridors to make long distance movements, and 

that they favor agricultural lands over natural habitat and are least likely to enter high 

intensity urban (Pittman et al. in review) Thus, canals were parameterized to have an 
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extremely high boundary crossing ranking (200; Table 2-1) compared to the other habitat 

types. This parameterization retained virtual snakes within the canal boundary for several 

timesteps, mimicking empirical movement data. Agricultural lands were given the next 

highest boundary crossing ranking (7), followed by natural habitat, low intensity urban, 

and high intensity urban (Table 2-1). 

 Animals in SEARCH move via a correlated random walk with turning angles 

between successive timesteps selected from a wrapped Cauchy distribution (see: 

Batschelet 1965; Pauli et al. 2013). In the field, pythons moved faster and straighter in 

landscapes with heavier anthropogenic alteration (i.e., agricultural lands and urban 

landscapes) compared to those with less human influence (i.e., naturally dominated 

habitat) (Table 2-1). In particular, they moved the furthest and the straightest through 

canals. Pattern matching during model testing revealed that we needed to parameterize 

our models with a lower than expected per timestep mean vector length (MVL), 0.9799, 

in order to keep pythons inside the boundary of the canal polygon. Because this per 

timestep MVL caused virtual pythons to regularly encounter and reflect off the canal 

boundary, we tripled the mean step length (MSL) estimated from the telemetry dataset 

(empirical: 76-m, modeled: 228-m) (Table 2-1; Pittman et al. in review). This pattern-

matching process emphasized matching realistic movement patterns across the duration 

of an animal’s movement in a canal rather than per timestep sinuosity, which was a better 

fit for the temporal resolution of the movement data, we used for model parameterization. 
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2.2.6.2.2 Impenetrable land cover   

 Open water was impenetrable by virtual pythons in our simulations. While 

pythons are excellent swimmers (Minton 1966; Snow et al. 2007) and have been sighted 

in estuaries (EDDMapS 2015), water bodies were not classified as suitable habitat in 

maximum entropy modeling for relative habitat suitability using the presence-only 

EDDMapS dataset (see: Chapter 1).  

 The core-population barrier was an artificial land cover type created to represent 

the area on the map behind the leading edge of the invasion. This polygon acted as a 

reflective boundary that prevented virtual dispersers from entering the population core. 

This strategy ensured that the simulated snakes were always contributing to the spread of 

the population’s range which was consistent with our goal to only simulate a random 

sample of pythons on the front of the expanding population. The population-core barrier 

was derived from the buffered KDE used to determine the release points for each year’s 

simulation run (see: 2.2.6.1 Release). Thus, each simulated year had a unique movement 

map that was based upon the output of the previous year’s simulations. 

  

2.2.6.3 Food 

 No data were available on the energetics of dispersing juvenile pythons. Thus, for 

the purposes of this study, we chose to disregard energetic considerations. To accomplish 

this, the food map in each of our simulation scenarios was uniform with a constant 

probability of capturing food and a constant amount of energy gained. All animals were 

parameterized at the beginning of the simulation to have an excess amount of energy to 

sustain them through the dispersal season without the risk of starvation.  
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2.2.6.4 Risk 

 The risk map represented two types of mortality common to Burmese pythons in 

southern Florida: predation and mortality due to interactions with anthropogenic 

machinery. We were only able to determine the probability of mortality per timestep for 

human-dominated landscapes versus naturally dominated landscapes. Therefore, our risk 

map was binary, containing only these two habitat types. Risk was 2.8x greater in human-

dominated areas versus naturally dominated (Table 2-2; Pittman et al. in review).  

 

2.2.6.5 Social 

 The social map defines areas that are suitable or unsuitable for home range 

establishment. The criterion for suitability is based on habitat quality and the occupancy 

of resident animals. If a given area is classified as unsuitable, a virtual disperser is unable 

establish a home range and needs to find an area classified as suitable. We used the 

distribution of relative habitat suitability scores from maximum entropy modeling using 

the presence-only EDDMapS dataset (Chapter 1) to build our base habitat suitability 

map. Pixels were classified as suitable in SEARCH if their value corresponded to or was 

greater than 2 standard deviations below the mean suitability score across all of southern 

Florida. 

 We added some variability to this suitability landscape in order to account for the 

existence of non-simulated pythons occupying territories at the leading edge of the 

invasion front. These pythons were not explicitly modeled as dispersers in our 

simulations, but they were nonetheless influencing home range establishment of the 

virtual dispersers. To represent these non-simulated snakes, we randomly assigned 100-
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m2 areas the designation “unsuitable” with a greater probability of an area being selected 

as unsuitable the closer to the southwestern corner of our modeling extent (i.e., the 

territory closest to the Everglades where python populations are assumed to be at their 

densest). We then merged this map layer with our maximum entropy-derived suitability 

map in ArcMap. 

 

2.2.7 Behavioral scenarios and parameterization 

 In order to examine risk-taking behavior of dispersing juvenile pythons, we 

created six behavioral scenarios representing a gradient of responses to risk on a shy-bold 

scale: most shy, somewhat shy, behaviorally plastic, overall intermediate, somewhat 

bold, and most bold (Table 2-3). These behaviors can be implemented in SEARCH by 

manipulating criteria for dispersers’ tendency to switch from or remain in “risky” or 

“safe” modes and modifying movement behaviors and risk of mortality within these 

modes. Animals switch modes based on user-defined probabilities. We initially selected 3 

probabilities (0.1, 0.01, and 0.001) to implement a 3x3 fully-crossed design, but model 

testing revealed that 3 of the combinations resulted in duplicate behaviors. Therefore, we 

focused our investigation upon the 6 combinations that best reflected the spectrum of shy 

to bold we wished to investigate.  

 Virtual animals in SEARCH switch between behavioral states depending on their 

sensitivity to perceived risk based on “close calls” from prior time-steps (Blythe et al. 

2011). Close calls are determined by comparing a random number drawn from a uniform 

distribution and the per timestep risk of mortality multiplied by a user-defined modifier 

that is associated with being in risky or safe mode, depending on the current state of the 
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virtual animal at that particular timestep. While in risky mode, individuals moved faster 

than baseline conditions as parameterized in the movement map and were subjected to a 

greater risk of mortality (Table 2-4). In safe mode, virtual snakes moved slower than 

baseline conditions and had a lower risk of mortality (Table 2-4). 

 In our simulations, bolder individuals on the shy-bold continuum were less risk 

adverse than shyer individuals. This meant that bolder individuals had a lower trigger for 

switching from safe to risky mode while shyer individuals had a higher trigger for 

switching from safe to risky mode. Likewise, bolder individuals had a higher trigger for 

switching from risky to safe mode while shyer individuals had a lower trigger for 

switching from risky to safe mode. Behaviorally plastic individuals had the same low 

trigger for switching between risky to safe and safe to risky modes, while overall 

intermediate individuals had a the same median trigger for switching (Table 2-3). 

 

2.2.8 Analysis 

 In SEARCH, animals are subjected to a number of fates during and at the end of 

each simulation. If they survive a given dispersal season, they either successfully 

establish home ranges or they fail to establish a home range and die during the inter-

dispersal period. Mortality throughout the dispersal season can be caused by starvation or 

mortality as represented in the risk map. For our simulations, we categorized animals 

who established home ranges or failed to establish home ranges as “alive” at the end of a 

given dispersal season, and animals who succumbed to predation/mortality as “dead”. 

 We used a pattern-oriented approach to compare model outputs to empirical data 

from the EDDMapS dataset (Grimm and Railsback 2013). Patterns are viewed as 
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foundational to the structure and processes of a system; therefore, if a particular pattern 

observed empirically is not observed in a particular modeling scenario, that model is 

presumed to perform unrealistically and can be discarded. (Semeniuk et al. 2012).  

 We compared the simulated rate of expansion from each scenario to the observed 

spread of the python population. We quantified an index of the rate of expansion of the 

population’s distribution in both the EDDMapS dataset and the output of each simulation 

scenario. First, we determined the distance between all presence points from each year 

compared to all presence points from the preceding year. For each point from the 

subsequent year, we measured its distance to all of the points in in the previous year and 

calculated the median of all of these distances. We then averaged all of these medians 

across all of the points from the subsequent year and used that value as the rate of 

expansion between the two years. Next, we took the difference between successive values 

of that calculation for each annual increment. These differences were averaged to 

represent an index of the annual expansion of the population. See Appendix D for a 

visual representation of how we calculated this index. To pattern-match, we compared the 

thusly calculated metric from each simulation scenario using end points of virtual 

pythons who survived the dispersal season to the calculated metric of the empirical 

dataset to determine which behavioral type best represented dispersing pythons in 

southern Florida. 

 We also matched the range occupied by Burmese pythons in the EDDMapS 

dataset to the range occupied by the virtual pythons in each behavioral scenario. The 

empirically derived range was defined as the area covered by the 99% KDE polygons 

merged over 2004 through 2013. The simulated ranges were defined as the buffered core-
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population barrier polygons merged over the same time period. We compared raster maps 

at a 100-m2 resolution of these ranges by computing omission and commission errors and 

map agreement between the empirical range and each behavioral scenario’s range using 

the square contingency table workbook, PontiusMatrix41.xlsx (available at 

http://www2.clarku.edu/~rpontius/; Pontius and Santacruz 2014). We defined 4 

categories to compare: Non-invaded area, Phase 1 (the combined ranges from 2004-

2007), Phase 2 (the combined ranges from 2008-2010), and Phase 3 (the combined 

ranges from 2011-2013). We chose these categories over comparing the range for each 

incremental year in order to focus the map comparison on the location of the leading edge 

instead of pixel-to-pixel agreement of each year’s range. 

 

2.3 Results 

2.3.1 Summary statistics 

 When interpreting the results across the gradient of behaviors, we will generally 

use the term “bolder” to refer to individuals on the bold end of the shy-bold continuum, 

and “shyer” to refer to those on the shy end of the continuum. If we are referring to a 

particular behavioral scenario, we will use the category named in Table 2-3. 

  Bolder virtual pythons traveled greater distances and moved further from their 

release locations than shyer virtual pythons (Figures 2-2a and 2-2b). Shyer and bolder 

virtual pythons switched infrequently between modes (Figure 2-2c) where shyer pythons 

spent most of their time in safe mode and bolder pythons in risky mode (Figure 2-2d). 

Animals from the behaviorally plastic scenario switched frequently between safe and 

risky modes, and spent about half of their time in each mode (Figures 2-2c and 2-2d). 
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However, animals from the overall intermediate scenario did not switch frequently 

between modes; they remained in one mode for most of their dispersal period with a bias 

towards remaining in risky mode (Figures 2-2c and 2-2d).  

 Shyer pythons took a greater number of timesteps in comparison to bolder 

pythons (Figure 2-2e). A greater proportion of pythons from the most shy and somewhat 

shy scenarios were able to establish home ranges while a greater proportion of somewhat 

bold and most bold pythons died due to predation or other causes of mortality (Figure 2-

2f). Individuals from the behaviorally plastic and overall intermediate scenarios 

experienced high mortality as well, with greater than 50% of individuals being subjected 

to mortality (Figure 2-2f).  

 Shyer virtual pythons that traveled the furthest distance from the prior year’s 

leading edge were more likely to be alive at the end of the dispersal season in comparison 

to bold pythons, who were more likely to have died (Figure 2-3). The most dispersive 

behaviorally plastic pythons also were more likely to have died by the end of the season. 

Accordingly, the most dispersive shy animals from one year were more likely to 

determine the next year’s leading edge while the most dispersive bold animals were more 

likely to succumb to mortality and have no contribution to the next year’s leading edge.  

 

2.3.2 Pattern matching 

 The empirically derived index of the annual rate of expansion of the Burmese 

python population as represented in the EDDMapS data set showed that rate of spread 

increased by 0.257 km  year-1 (Table 2-5). The two shyer behavioral scenarios also 

showed an increasing rate of spread, but the behaviorally plastic simulation scenario most 



 

 

65 

6
5
 

closely resembled the empirically derived index, only differing by 0.499 km  year-1. In 

contrast, the two bolder scenarios yielded slowing rates of spread: the rate slowed by 

nearly 6.5x for the somewhat bold scenario and by 11.5x for the most bold scenario. 

 Overall, the simulated ranges had low overall map agreement with the empirical 

range (Table 2-6). Agreement was highest between non-invaded and Phase 1 pixels, but it 

decreased over time from Phase 1 through Phase 3 (i.e., from 2004 – 2013). While the 

behaviorally plastic scenario had the third highest overall agreement with the empirical 

data, it consistently had the first or second highest agreement with Phases 1 through 3. 

Agreement within each phase was also second highest for bolder behavioral scenarios. 

However, the shyer behavioral scenarios had greater overall agreement because they had 

the greatest agreement with non-invaded area. Figure 2-4 shows the population ranges of 

the EDDMapS dataset and each of the behavioral scenarios.  

 

2.4 Discussion 

 Our IBM supported our predictions of how personality-dependent dispersal can 

impact the spread of an expanding population. Along the shy-bold continuum, bolder 

virtual snakes spent a greater proportion of time in risky mode. While spending more 

time in risky mode resulted in greater dispersal distances, it also resulted in higher rates 

of mortality. This meant that the individuals who traveled the furthest in the somewhat 

bold or most bold scenarios did not always contribute to the annual advancement of the 

front since they would die before the end of the dispersal season. Even so, the bolder 

survivors dispersed consistent with our expectations compared to individuals from the 
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shyer scenarios since the expanding edge still advanced further across the modeling 

extent in the bolder behavioral scenarios. 

 Low map agreement between the geographical extent of the empirical dataset’s 

population range and across the 6 behavioral scenarios is likely due to the differences in 

how we constructed the geographical extent of EDDMapS data versus the simulated 

datasets for each year. Our empirical population’s extent was determined by calculating 

99% KDEs whereas our simulated populations’ extents were created by buffering the 

original, empirically-derived KDE from the 2004 EDDMapS data points. This difference 

resulted in greater coverage of the modeled study area by the simulated pythons and a 

more even distribution of the simulated population compared to what was observed in the 

EDDMapS dataset. 

 We expected the most bold scenario to be the best match with our empirically 

observed patterns of annual rate of spread and the geographical extent of the python 

population. Instead, the behaviorally plastic scenario was the best fit. This result is based 

upon its closest match to the observed rate of expansion and the population’s 

geographical extent, indicating strong support that Burmese pythons with adaptive 

flexibility in their dispersal behavior are driving the expansion of the population into 

south Florida’s urbanized landscapes. This is further supported by the relative 

performance of the collectively shyer and bolder scenarios simulated during different 

phases of the expansion: shyer snakes produced population extents similar to empirical 

observations in Phase 1 while bolder snakes generated extents more similar to empirical 

observations in Phases 2 and 3. This demonstrates the success of a mixture of behaviors 

within the same population at different stages of a population’s expansion.  
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 Animal personality is equated to consistency in behaviors, but it is a common 

misconception in behavioral ecology that animal personality and behavioral plasticity 

exist separate from one another (Sih et al. 2004; Dingemanse et al. 2010). There is 

increasing evidence that animals can be relatively consistent in their behaviors while still 

retaining flexibility at the same time (Briffa et al. 2008). Plasticity and personality may 

even be linked (Sih and Bell 2008; Dingemanse et al. 2010). Animals may adjust their 

personality-dependent behaviors depending on social situations (e.g., social context and 

aggression in mice, Natarajan et al. 2009), learning (e.g., prior experience and boldness in 

rainbow trout, Oncorhynchus mykiss, Frost et al. 2007), predation risk (e.g., activity level, 

stress, and anti-predation behavior in Chaffinch, Fringilla coelebs, Quinn and Cresswell 

2005), environmental variables (e.g., wind velocity and dispersal in salt marsh wolf 

spider, Pardosa purbeckensis, Bonte et al. 2007; temperature and boldness in lemon 

damselfish, Pomacentrus moluccensis, Biro et al. 2010), and environmental stability 

(Koolhaas et al. 1999; Sih and Bell 2008).  

 Broadly speaking, landscape connectivity is understood to emerge from the 

interaction of animal behaviors, particularly movement rules and landscape structure 

(Taylor et al. 1993). Fragmentation and human disturbance also impact landscape 

connectivity on an individual level: movement and dispersal can vary between 

individuals between landscape types and even within the same landscape (Baguette and 

Van Dyck 2007; Knowlton and Graham 2010). Therefore, our result that the behaviorally 

plastic scenario best matched the empirically observed population patterns demonstrates a 

challenge for estimating realized connectivity of landscapes for invasive species in 

landscapes that are being rapidly altered by human activity. If successful invasive species 
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demonstrate high degrees of behavioral plasticity, particularly by shifting between 

movement strategies in different circumstances, a successful definition of landscape 

connectivity may require concomitant flexibility that is not traditionally considered in 

estimating connectivity. Following up on this idea through the use of IBMs on the 

Burmese python system would benefit from explicitly relating behaviors to specific 

landscape characteristics and environmental variables. This would lead to a more specific 

knowledge of how landscape factors drive the behavioral plastic strategy and contribute 

to our overall understanding of how heterogeneous landscapes support viable populations 

(Knowlton and Graham 2010). This approach would allow future modelers to perform 

sensitivity analysis on the parameters for the behavioral scenarios represented in this 

IBM. 

 While bold individuals are more likely to explore novel situations, they are not 

necessarily better equipped to survive; rather, individuals with greater behavioral 

flexibility have better responses to novel conditions (Sih et al. 2004). The spread of a 

species may be best facilitated by populations comprised of within-species variation in 

traits between dispersers on the leading edge, particularly when different dispersal 

strategies are more successful at particular phases of an expansion and at specific 

population densities and disperse (Fogarty et al. 2010). Thus, it is better for an 

individual’s fitness to balance risk and dispersal plastically than to adhere to a fully 

consistent behavior. This is especially true when animals are dispersing through 

fragmented landscapes where risk is heterogeneous across the landscape. For example, 

moving slowly and exhibiting vigilance or other anti-predator behaviors is beneficial 

when moving through risky matrix, but it is not as beneficial to an individual to partake 
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in these behaviors when moving through higher quality and less risky habitat (Zollner 

and Lima 2004). In their own IBM, Jepsen and Topping (2014) observed that populations 

of roe deer (Capreolus capreolus) with flexible behavioral strategies had higher 

population sizes, population persistence, and to abilities to cope with patchy landscapes 

than populations who were not behaviorally flexible. Burmese pythons in Florida 

similarly make trade offs as they move through Florida’s landscape. For example, 

pythons use canals to make long distance movements between suitable habitat patches, 

but canals are risky due to the prevalence of American alligators (Alligator 

mississippiensis) (Pittman et al. in review).  

 Although our IBM did not support our initial prediction that bold dispersers 

would best describe the Burmese python population on the leading edge of an expansion, 

our results do not contradict the literature supporting risky movement and boldness. We 

were not modeling an invasive population spreading from its point of introduction. The 

population we modeled is best described as a core population pushing out of a naturally 

dominated landscape into an increasingly urbanized landscape. As established in the 

literature, this is the type of situation for which behavioral plasticity is most beneficial to 

the persistence of a population (Jepsen and Toppings 2014). It is also plausible that the 

patterns associated with our bolder scenarios are simply not represented in the EDDMapS 

dataset because bold individuals on the expansion front were subjected to mortality 

before they were able to establish and/or be observed. Bolder dispersers may also 

colonize empty patches first and later be followed by more fit individuals who persist in 

the patches (Fogarty et al. 2010). Further fieldwork and modeling in the Burmese python 

system will be needed to elucidate our understanding of within-individual behavioral 
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plasticity and the mechanism that may be driving the adaptive advantage for individual 

dispersers in displaying plastic behavioral syndromes. Nonetheless, our result that 

simulated behaviorally plastic individuals best matched empirical patterns implies a need 

for more flexible definitions of connectivity that not only specifically emphasize the 

importance of behavior but also recognize that the influence of behavior can be dynamic 

and circumstance-specific. These trends may be particularly true for invasive species 

spreading from naturally dominated landscapes into human dominated landscapes, as was 

the situation in our Burmese python case study. 
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Table 2-1. Simulation parameters coded into the vector-based movement map’s attribute 

table and read by the individual-based model SEARCH. Movement parameters were 

based on land cover type and were parameterized based on field data from a radio 

telemetry study. 

 

 

 

Land cover type 

Daily mean 

vector length 

(MVL)  

Daily mean step 

length (MSL), 

in meters 

 

Boundary 

crossing ranking 

Canal 0.9799 228 200 

Agricultural lands 0.99 45 7 

Low Intensity Urban 0.9999 32 4 

High Intensity Urban 0.9999 32 2 

Naturally-dominated 

habitat 

0.9 19 5 
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Table 2-2. Simulation parameters coded into the vector-based risk map’s attribute table 

and read by the individual-based model SEARCH. Risk parameters were parameterized 

based on 2014-2015 data from a radio telemetry field study. 

 

 
 

Land cover type 
 

Description 
Probability of mortality 

per timestep (12-hour) 

Human-

dominated 

habitat 

Correspond to the following land cover types 

defined by the movement map: agricultural 

lands, urban landscapes, and canals. These 

areas are heavily influenced by human 

activities. 

 

0.0019 

Naturally-

dominated 

habitat 

Correspond to the natural habitat cover type 

defined by the movement map. These areas 

have less anthropogenic influence in 

comparison to altered habitats. 

0.0053 
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Table 2-3. Description of behavioral types on a shy-bold scale in relation to the model 

parameters corresponding to the probabilities of switching between safe/risky modes. 

 

 
 

 

Behavioral type 

Probability of 

switching from risky 

to safe mode 

Probability of 

switching from safe 

to risky mode 

 

 

Description 
     Most shy 0.1 0.001 Animals in risky mode are most 

likely to switch to safe mode; 

once in safe mode, animals are 

most likely to remain in safe 

mode. 

 

     Somewhat shy 0.1 0.01 Animals in risky mode are less 

likely to switch to safe mode 

compared to the “most shy” 

animals; once in safe mode, 

animals are just as likely to 

remain in safe mode as the 

“most shy” animals. 

 

     Behaviorally 

plastic 

0.1 0.1 Animals switch back and forth 

between risky and safe mode 

with the same likelihood. 

 

     Overall 

intermediate 

0.01 0.01 Animals switch back and forth 

between risky and safe mode 

with the same likelihood, but 

they switch less than 

“Behaviorally plastic” animals. 

 

     Somewhat 

bold 

0.01 0.1 Animals in safe mode are less 

likely to switch to risky mode 

compared to the “most bold” 

animals; once in risky mode, 

animals are just as likely to 

remain in risky mode as the 

“most bold” animals. 

 

     Most bold 0.001 0.1 Animals in safe mode are most 

likely to switch to risky mode; 

once in risky mode, animals are 

most likely to remain in risky 

mode. 
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Table 2-4. Behavioral modifiers for virtual snakes while in risky and safe modes. The 

base parameter in the movement map for MSL (i.e., movement speed) and the base 

parameter in the risk map for per timestep risk of mortality are multiplied by the 

respective modifier corresponding to the current mode of an animal. 

 
 

 

Risky Mode Safe Mode 

Movement speed Risk of mortality Movement speed Risk of mortality 

    Modifier 2.5 2.5 0.25 0.25 
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Table 2-5. Index of the annual rate of expansion of each behavioral scenario compared to the observed index of rate of expansion of 

the EDDMapS presence-only dataset. 

 
 Empirical 

Data 

Most 

shy 

Somewhat 

shy 

Behaviorally 

Plastic 

Overall 

Intermediate 

Somewhat 

bold 

Most 

bold 

Annual rate of  

expansion (km  year-1) 

 

0.257 

 

-0.306 

 

0.912 

 

0.757 

 

-2.122 

 

-1.624 

 

-2.976 

 

Observed – Predicted  

(km  year-1) 

 

- 

 

-0.563 

 

0.655 

 

0.499 

 

-2.379 

 

-1.881 

 

-3.233 
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Table 2-6. Map agreement and omission and commission errors between the empirically 

derived geographical extent of the Burmese python population’s range and the 6 

simulated behavioral scenarios’ ranges. 

 

 
  Omission (% of 

domain) 

Agreement (% of 

domain) 

Commission (% 

of domain) 

Non-invaded Most shy 13 31 14 

 Somewhat shy 16 28 11 

 Behaviorally 

plastic 

27 17 0 

 Overall 

intermediate 

35 9 0 

 Somewhat bold 30 15 0 

 Most bold 28 17 0 

Phase 1 Most shy 7 22 12 

2004 – 2005  Somewhat shy 7 23 14 

 Behaviorally 

plastic 

6 23 16 

 Overall 

intermediate 

4 25 23 

 Somewhat bold 5 24 20 

 Most bold 4 26 26 

Phase 2 Most shy 14 5 8 

2008 – 2010  Somewhat shy 15 4 7 

 Behaviorally 

plastic 

11 7 19 

 Overall 

intermediate 

14 4 15 

 Somewhat bold 12 7 23 

 Most bold 16 3 11 

Phase 3 Most shy 7 1 7 

2011 – 2013  Somewhat shy 6 1 12 

 Behaviorally 

plastic 

4 4 14 

 Overall 

intermediate 

4 3 20 

 Somewhat bold 6 2 9 

 Most bold 4 4 14 

Overall Most shy 42 58 42 

 Somewhat shy 44 56 44 

 Behaviorally 

plastic 
49 51 49 

 Overall 

intermediate 
58 42 58 

 Somewhat bold 52 48 52 

 Most bold 51 49 51 
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Figure 2-1. The Movement map input for SEARCH modeling showing land cover types 

and an example of a core-population barrier.  
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Figure 2-2. Summary of the (a) mean total distance traveled, (b) mean straight-line 

distance traveled, (c) mean number of switches between modes, (d) mean proportion of 

time spent in risky mode, (e) mean number of timesteps, and (f) proportion of fates, 

across all individuals within each behavioral scenario.  
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Figure 2-3. Fates of the virtual python that traveled the furthest straight-line distance 

from the previous year’s leading edge across all 10 years for each behavioral scenario. 
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Figure 2-4. Geographical extent of population ranges by year from the empirical 

EDDMapS dataset and the 6 simulated behavioral scenarios. 
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Appendix A. Aggregated Florida Cooperative Land Cover Map (CLC) habitat 

classifications. 

 

 We used the CLC v. 3.0, developed by the Florida Fish and Wildlife Conservation 

Commission (FWC) and the Florida Natural Areas Inventory (FNAI). The CLC uses a 

hierarchical habitat classification system that is based on those currently used by the 

FWC, the FNAI, and Florida’s water management districts.  

 We aggregated and reclassified land cover types into 18 categories as outlined in 

Table A-1. Land classes with the “Exotic Plants” categorization were cross-walked with 

the 2011 National Land Cover Database (NLCD) and we assigned the NLCD class the 

most related CLC cover type (Table A-2) 
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Table A-1. Aggregated CLC habit classifications. 

Final higher classification Lower classifications 

Natural or Artificial Lakes & Ponds Natural Lakes and Ponds, Artificial Lakes and Ponds  

Estuarine  Keys Tidal Rock Barren, Saltwater Marsh, Mangrove 

Swamp  

Hardwood Forested Uplands Rockland Hammock  

High Pine & Scrub Scrub, Sandhill  

Pine Flatwoods & Dry Prairie Mesic Flatwoods, Scrubby Flatwoods, Pine Rockland, 

Dry Prairie 

Mixed Hardwood-Coniferous Tree Plantations 

Shrub & Brushland - 

Coastal Uplands Beach Dune, Coastal Berm, Coastal Strand, Maritime 

Hammock, Sand Beach 

Barren  

Freshwater Non-Forested Wetland Prairies and Bogs, Wet Prairie, Marl Prairie, 

Freshwater Marshes, Coastal Interdunal Swale, 

Floodplain Marsh, Glades Marsh  

Freshwater Forested Wetland Cypress/Tupelo, Strand Swamp, Other Coniferous 

Wetlands, Wet Flatwoods, Other Hardwood Wetlands, 

Hydric Hammock, Other Wetland Forested Mixed, 

Wet Coniferous Plantation 

Freshwater Non-Vegetated Wetland - 

Natural Rivers & Streams - 

Canal/Ditch - 

Low Intensity Urban  - 

High Intensity Urban - 

Rural Lands Improved Pasture, Unimproved/Woodland Pasture, 

Transportation, Communication, Utilities, Extractive 

Agriculture - 
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Table A-2. New classification for “Exotic Plants” cover class, originally from the CLC. 

Grid cells classified as “Exotic Plants” were cross-walked with the NLCD, and based on 

the NLCD classification, they were assigned the most related CLC cover type. 

 
NLCD cover classification Final CLC cover classification 

Open Water Natural or Artificial Lakes & Ponds 

Developed, Open Space Rural Lands 

Developed, Low Intensity  Low Intensity Urban 

Developed, Medium Intensity  High Intensity Urban 

Developed, High Intensity  High Intensity Urban 

Barren Land Barren 

Deciduous Forest Hardwood Forested Uplands 

Evergreen Forest Mixed Hardwood-Coniferous 

Mixed Forest Mixed Hardwood-Coniferous 

Shrub/Scrub Shrub & Brushland 

Grassland/Herbaceous Pine Flatwoods & Dry Prairie 

Pasture/Hay Agriculture 

Cultivated Crops Agriculture 

Woody Wetlands Freshwater Forested Wetland 

Emergent Herbaceous Wetlands Freshwater Non-Forested Wetland 
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Appendix B. Estimating sampling effort using a logistic regression model for 

Chapter 1 bias correction scenarios.  

 

 

 We estimated the sampling effort of the EDDMapS Burmese python dataset 

predicting occurrences of python using a logistic regression model. The predictor 

variables we selected are represented in Figure B-1.  

 The final logistic regression model was used to build the bias grids inputted into 

MaxEnt for the LOG and LOG-RD scenarios and to bias the randomly selected 

background points for the LOG-SWD and LOG-RD-SWD scenarios. We selected the 

best logistic regression model based on the log-likelihood (logLik), Akaike information 

criterion score (AICc), the difference between models relative to the most parsimonious 

model (ΔAICc), and the Akaike weight (w). Table B-1 shows the competing models. 

Figure B-2 shows (A) the final logistic regression bias grid and (B) the final logistic 

regression of roads bias grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

91 

9
1
 

Table B-1. Competing logistic regression models for the LOG and LOG-RD bias grids 

and background point selection for the LOG-SWD and LOG-RD-SWD scenarios. 

 

 

 

 

 

 

Traffic = average annual daily traffic of a road segment 

Speed = speed limit of a road segment  

Rd = Euclidean distance to closest road 

Surv = Euclidean distance to surveyed road 

Pop = Human population density  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model df logLik AICc ΔAICc w 

Traffic + speed + rd + surv + pop 6 -1390.10 2792.22 0.00 1 

Traffic + rd + surv + pop 5 -1401.67 2813.36 21.15 0 

Speed + rd + surv + pop 5 -1467.36 2944.73 152.51 0 

Rd + surv + pop 4 -1472.10 2952.21 159.99 0 

Rd + surv 3 -1591.79 3189.58 397.36 0 

Traffic + rd + pop 4 -2383.37 4774.76 1982.54 0 

Traffic + rd 3 -2512.53 5031.07 2238.85 0 

Speed + rd + pop 4 -2559.62 5127.24 2334.03 0 

Speed + rd 3 -2779.53 5565.06 2772.84 0 

Speed + rd 3 -2779.53 5565.06 2772.84 0 

Intercept only 1 -2790.61 5583.22 2791.01 0 
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Figure B-1. Predictor variables for the logistic regression model estimating sampling 

effort: (A) average annual daily traffic & speed limit of roads; (B) Euclidean distance to 

roads (m); (C) Euclidean distance to surveyed roads; and (D) population density.  

A B 

C D 
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Figure B-2. (A) Logistic regression of sampling effort bias grid and (B) logistic regression of sampling effort of roads bias grid. 
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Appendix C. Aggregated LULC classifications for movement map used in 

SEARCH models in Chapter 2.  

 

 In Chapter 1, we aggregated and reclassified the Florida Cooperative Land 

Cover Map (CLC) into 18 land cover types (see: Appendix A). In order to increase 

computer processing speed for our SEARCH simulations, we needed fewer land 

classifications to decrease the number of boundaries virtual animals would encounter. 

Table C-1 summarizes the reclassification of the CLC into 6 land cover types. Note 

that the movement map actually contains 7 land cover types, but the core-population 

barrier was an artificial cover type that we created as described in Chapter 2, section 

2.2.6.2, Movement. 
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Table C-1. Aggregated land cover types. 

SEARCH movement 

map classification 

 

CLC classification 

Open Water Natural or Artificial Lakes & Ponds, Estuarine, Natural Rivers & Streams 

Canal Canal/Ditch 

Agricultural Lands Agriculture, Rural Lands 

Low Intensity Urban Low Intensity Urban 

High Intensity Urban High Intensity Urban 

Naturally-dominated 

Habitat 

Hardwood Forested Uplands, High Pine & Scrub, Pine Flatwoods & Dry Prairie, 

Mixed Hardwood-Coniferous, Shrub & Brushland, Coastal Uplands, Barren, 

Freshwater Non-Forested Wetland, Freshwater Forested Wetland, Freshwater Non-

Vegetated Wetland 
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Appendix D. Visual representation of the calculated index to represent the annual 

expansion of the Burmese python population. 

 

 

 In this appendix, we visually demonstrate the calculation of the index we used 

for pattern matching the annual rate of expansion. 

 The examples in Tables D-1 and D-2 and Figure D-1 are a subset of the 

EDDMapS dataset for the years 2004 and 2005 for demonstration purposes. The 

remainder of the examples shows the results for the entire EDDMapS dataset 

examined.  

 First, we determined the distance between all presence points from each year 

compared to those in the subsequent year (Table D-1; Figure D-1).  

 

Table D-1. 

    Figure D-1. 

 

 

 

2005 2004 Distance (km) 

A a 0.571 

 b 0.999 

 c 0.821 

 d 2.603 

 e 2.865 

B a 0.278 

 b 0.774 

 c 0.641 

 d 2.323 

 e 2.561 

C a 1.978 

 b 2.318 

 c 1.098 

 d 0.999 

 e 1.356 

D a 2.604 

 b 2.767 

 c 1.986 

 d 0.247 

 e 0.114 
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Then we calculated the median of all the distances from the previous year for each 

point from the subsequent year (Table D-2). 

 

Table D-2. 

 

 

 

 

These median distances were next averaged, representing the rate of expansion 

between two years (Table D-3). 

 

Table D-3.  

Pairs of years Rate of expansion (km) 

2005-2004 34.689 
2006-2005  30.135 
2007-2006  34.959 
2008-2007  43.245 
2009-2008  39.129 
2010-2009  40.064 
2011-2010  40.250 
2012-2011  41.077 
2013-2012  36.747 

 

 

 

 

 

 

 

2005 

Median distance between 2004 

points (km) 

A 1.572 

B 1.315 

C 1.550 

D 1.544 
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Next, we took the difference between successive values for each annual rate of 

expansion between years (Table D-4). 

 

Table D-4.  

Pairs of pairs of years  Calculation (km – km) Difference (km) 

[2006-2005] – [2005-2004] 30.135 – 34.689 - 4.554 

[2007-2006] – [2006-2005] 34.959 – 30.135   4.824  

[2008-2007] – [2007-2006] 43.245 – 34.959   8.286 

[2009-2008] – [2008-2007] 39.129 – 43.245 - 4.116 

[2010-2009] – [2009-2008] 40.064 – 39.129   0.935 

[2011-2010] – [2010-2009] 40.250 – 40.064   0.186 

[2012-2011] – [2011-2010] 41.077 – 40.250   0.827 

[2013-2012] – [2012-2011] 36.747 – 41.077 - 4.330 

 

Lastly, these differences were averaged and represented the overall average annual 

rate of expansion for the given simulation scenario, or in this example, the empirical 

dataset we compared against our simulation scenarios’ outputs (Table D-5).  

 

Table D-5. 

 

Scenario 

Annual rate of 

expansion (km) 

Empirical dataset 0.257 
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