
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

12-2016

Deep collective inference
John A. Moore
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Moore, John A., "Deep collective inference" (2016). Open Access Theses. 879.
https://docs.lib.purdue.edu/open_access_theses/879

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/879?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F879&utm_medium=PDF&utm_campaign=PDFCoverPages

DEEP COLLECTIVE INFERENCE

A Thesis

Submitted to the Faculty

of

Purdue University

by

John A. Moore

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2016

Purdue University

West Lafayette, Indiana

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . vi

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 4

2.1 Relational Machine Learning . 4

2.2 Neural Networks . 6

2.3 Recurrent Neural Networks . 7

2.4 Related Work . 10

3 DEEP COLLECTIVE INFERENCE . 14

3.1 Problem Definition and Input Specification 14

3.2 RNN for Collective Inference . 15

3.3 Label Skew Corrections . 16

3.3.1 Data Augmentation . 16

3.3.2 Balanced Cross Entropy . 18

3.4 DCI Semi-supervised Learning . 18

3.5 Time Complexity . 21

4 MAIN EMPIRICAL EVALUATIONS . 22

4.1 Data . 22

4.2 Evaluation Methodology . 23

4.3 DRI Variants . 24

4.4 DCI and Alternatives . 26

4.5 Main Results . 28

4.5.1 Comparison to Other Methods 28

iii

Page

5 DCI VARIANTS EVALUATIONS . 31

5.1 Data Oriented Variants . 31

5.1.1 DCI Variants on Smaller Datasets 31

5.2 Algorithmic Variants . 33

5.2.1 Swapping vs Objective Function Balancing 33

5.2.2 DCI vs RNCC Variants . 34

5.2.3 DCI Initialization Variants 35

5.2.4 Utilizing Maximum Entropy 37

5.2.5 Hidden State Propagation 39

6 SUMMARY . 43

REFERENCES . 44

iv

LIST OF TABLES

Table Page

4.1 Datasets . 23

v

LIST OF FIGURES

Figure Page

2.1 RNN example for a sequence of two inputs from [4]. 8

2.2 LSTM memory cell from [24]. 10

3.1 Illustration of model structure. 15

4.1 DRI compared to its variants on Facebook, IMDB, Amazon DVD, and
Amazon Music datasets. 25

4.2 DRI compared to its variants on the Patents dataset. 26

4.3 DCI compared to its alternatives LP, LR, LR+N2V, RNCC, PLEM, and
PLEM+N2V. 29

4.4 DCI-10 compared to its alternatives PLEM+N2V and PLEM on Patents
dataset. 30

5.1 DCI compared to its variants on Facebook, IMDB, and Amazon datasets 33

5.2 DCI-S and DCI-B compared to its variants on Facebook, IMDB, Amazon
DVD, and Amazon Music datasets . 35

5.3 DCI-S and DCI-B compared to its variants on the Patents dataset . . 36

5.4 DCI variants compared to its variants as well as RNCC variants on Face-
book, IMDB, Amazon DVD, and Amazon Music datasets 37

5.5 DCI compared to its variants on Facebook, IMDB, and Amazon datasets 38

5.6 DCI variants compared to the Maximum Entropy variants on Facebook,
IMDB, Amazon DVD, and Amazon Music datasets 40

5.7 DCI variants compared to the Maximum Entropy variants on the Patents
dataset . 41

5.8 DCI variants compared to its hidden state propagation variants on Face-
book, IMDB, and Amazon datasets 42

vi

ABSTRACT

Moore, John A. MS, Purdue University, December 2016. Deep Collective Inference.
Major Professor: Jennifer Neville.

Collective inference is widely used to improve classification in network datasets.

However, despite recent advances in deep learning and the successes of recurrent neu-

ral networks (RNNs), researchers have only just recently begun to study how to apply

RNNs to heterogeneous graph and network datasets. There has been recent work on

using RNNs for unsupervised learning in networks (e.g., graph clustering, node em-

bedding) and for prediction (e.g., link prediction, graph classification), but there has

been little work on using RNNs for node-based relational classification tasks. In this

paper, we provide an end-to-end learning framework using RNNs for collective in-

ference. Our main insight is to transform a node and its set of neighbors into an

unordered sequence (of varying length) and use an LSTM-based RNN to predict the

class label as the output of that sequence. We develop a collective inference method,

which we refer to as Deep Collective Inference (DCI), that uses semi-supervised learn-

ing in partially-labeled networks and two label distribution correction mechanisms

for imbalanced classes. We compare to several alternative methods on seven net-

work datasets. DCI achieves up to a 12% reduction in error compared to the best

alternative and a 25% reduction in error on average over all methods, for all label

proportions.

1

1. INTRODUCTION

Collective inference is widely used to improve classification in network datasets (see

e.g., [1]). This is because many network datasets have nodes with attributes val-

ues that are correlated across the links. For example, in protein-protein interaction

networks, the functions of interacting proteins in the cell are typically correlated.

Similarly in social networks, friends tends to share similar interests and preferences.

Thus in a partially labeled network where the attribute values of some nodes are

observed, but others are unobserved, it is often helpful to learn a statistical relational

model (see e.g., [2]) and apply the model using collective classification (see e.g., [3])

to jointly make predictions about the set of unlabeled nodes.

Recently, the use of recurrent neural networks (RNNs) and deep learning for both

supervised and unsupervised tasks have produced significant performance gains across

domains such as speech translation, image processing, and natural language process-

ing [4–8]. While research on neural network models has been active for decades,

recent achievements with the models are due to the availability of larger datasets,

combined with several insights on how to structure the form of the model, initialize

the weights, guide the optimization process to avoid overfitting, and fix problems such

as vanishing gradients.

However, in the majority of domains where RNNs have been applied successfully,

the examples are structured either as vectors, sequences, or matrices. Due to hetero-

geneous structure of graph data, it is still a relatively open question as to how to best

design and exploit RNNs for learning in graphs with heterogeneous structure. There

has been work on using neural networks for unsupervised learning in networks (e.g.,

graph clustering [9], node embeddings [10, 11]). However, when these methods have

been applied for classification (e.g., link prediction [12], graph classification [13], node

classification [14]), it is typically based on using the output of unsupervised learning

2

as features in a basic predictive model (e.g., logistic regression). The majority of

previous methods for collective classification have been based on graphical models

(e.g., [15]; [16]; [17]). There has been relatively little work on neural network models

for supervised, end-to-end classification in partially-labeled relational graphs. One

exception is the work of [18] on Recurrent Neural Collective Classification (RNCC).

In this work, we develop an RNN for semi-supervised collective inference in at-

tributed networks. Specifically, we consider the node classification problem, where

given a single partially-labeled attributed network, the goal is to learn a model to

jointly predict the remaining unlabeled nodes in the network. We propose an RNN

approach that uses semi-supervised learning to jointly model relational structure and

attributes. Our main insights are: (1) to transform a node and its set of neighbors into

a random order (i.e., sequence of varying length) and use an LSTM-based RNN [19] to

predict the class label as the output of that sequence, (2) to use a data augmentation

or objective function balancing to adjust for skewed class label distributions, and (3)

to initialize predictions of unlabeled nodes with a basic relational RNN, instead of

using only the known class label values for the first round of learning.

We compare our proposed method to several baselines and alternatives, includ-

ing state-of-the-art approaches to semi-supervised relational learning [20], network

embedding [14], and RNCC [18]. We show that our approach achieves a significant

reduction in classification error. We consider seven network datasets and observed

up to a 12% reduction in error compared to the best alternative and a 25% reduction

in error on average—over all competing methods, for all label proportions. Our main

contributions are the following:

• We develop an LSTM-based RNN for node-based relational learning and col-

lective inference, which we refer to this method as Deep Collective Inference

(DCI).

3

• We show DCI outperforms state-of-the-art methods for semi-supervised col-

lective classification using: graphical models, node embeddings, and recurrent

neural networks.

• We evaluate the efficacy of our modeling choices and show that: (1) sequences of

neighbors based on random orderings work better than ordering by connectiv-

ity, (2) a combination of data augmentation and cross entropy balancing helps

to offset class label skew significantly during learning, (3) initializing class label

predictions for unknown labels using a basic relational model improves perfor-

mance compared to stacking [21] where class probabilities are used as features

instead.

4

2. BACKGROUND AND RELATED WORK

We define a graph G = 〈V,E〉 where vi ∈ V with i ∈ [1, n] is a node and E ⊆ V×V

is the edge set. If eij ∈ E, there is an edge between vi and vj, otherwise there is

not. Let Ni correspond to the set of neighbors of vi, that is Ni = {vj | eij ∈ E}. Let

F,Y be the feature and label set over the nodes, respectively. Each vi ∈ V has a

corresponding feature vector fi ∈ F. For relational classification, the input network is

partially labeled and thus only some of the nodes have an associated class label (i.e.,

if yj ∈ Y then vj is labeled). The goal of relational classification is to learn a model

from the partially labeled network and use the model to make predictions ŷ for the

unlabeled nodes {vk} s.t. yk /∈ Y. In this work we assume that Y is binary and can

only take values {0, 1}. Each prediction also takes values ŷi ∈ {0, 1} and is obtained

from probabilistic models by selecting the class label with highest probability for vi.

Let VU,VL refer to nodes that are unlabeled and labeled, respectively.

2.1 Relational Machine Learning

Relational machine learning (RML) methods seek to jointly model user labels

given their attributes and relational structure [2]. In particular, for our given prob-

lem, semi-supervised learning (SSL) RML approaches (e.g., [20]), have been developed

for partially-labeled networks. These method utilize the full network and simultane-

ously estimate the parameters of the model while making predictions for the class

labels of unlabeled nodes. Collective classification methods (e.g., [3]) iteratively up-

date the predictions of unlabeled nodes and then use these predictions in features of

neighboring nodes.

The relational SSL approach of [20] comprises a templated model that ties the

parameters across a set of local component conditional models. A number of rela-

5

tional local conditional models exist, and most can be viewed relational extensions

to common independent models (e.g., relational naive Bayes [1] or relational logistic

regression [22]).

The most intuitive and naive examples of component conditional models are Re-

lational Logistic Regression (RLR; [22]) and Relational Naive Bayes (RNB; [1]). Each

of the two exemplify the two main ways that RML handle variable length neighbors.

RLR summarizes neighbors by computing features such as the proportions for each

label and total degree. RLR can also incorporate neighbor features by avereraging

over these feature vectors. Aggregation features thus depend on the researcher’s sub-

jective choice of aggregation feature(s). The second way to handle varying neighbors

is to incorporate them in a product of probabilities.

More formally, let node vi correspond to the node in consideration. In Relational

Naive Bayes, we let:

P (Yi|F) = P (Yi|fi,Ni) ∝ P (fi,Ni|Yi)P (Y)

= P (fi|Yi)P (Y)
∏
j∈Ni

P (Yj|Yi)

by the conditional independence assumption.

Hence, one only needs to estimate attribute vector given label probability, P (fi|Yi),

prior probability P (Y), and neighbor’s corresponding probabilities P (Yj|Yi).

To perform relational learning for a partially labeled network, a natural extension

of basic RML methods utilizes the unlabeled data to make better predictions within

the network. The most common form utilizes expectation maximization (EM). EM

iteratively updates the parameter estimates by utilizing the expected values of the

unlabeled examples to relearn the parameters and can be divided into two basic

steps: an E-Step that uses collective classification and an M-Step that optimizes

the parameters given the predicted labels.

Pseudolikelihood Expectation Maximization ([20]) is currently one of best per-

forming relational EM methods. One can further improve the method by incorporat-

6

ing a Maximum Entropy constraint in the inference step to produce better calibrated

probability estimates. Maximum Entropy coupled with Pseudolikelihood Expecta-

tion Maximization (PLEM) is the current best performing SSL RML method for

large-scale partially-labeled networks [20].

2.2 Neural Networks

Multilayer Perceptrons (MLPs) or vanilla neural networks are simply composi-

tions of non-linear and linear functions [23]. Let x be a fixed length vector input,

W i weights, bi bias terms, acti a non-linear differentiable activation function, and l

corresponds to the last layer.

Then an MLP consists of a set of activation functions that produce continuous

output zs such as:

Consider z1 = act1(b1 +W 1x),

z2 = act2(b2 +W 2z1),

...

zl = actl(bl +W lzl−1).

The output of these hidden units are transformed into a probability distribution

using softmax.

ŷ = softmax(bl+1 +W l+1zl),

where softmax(z)j = ezj∑
ezi

for the jth entry in vector z.

Or

For binary labels,

ŷ = logistic(bl+1 +W l+1zl),

where logistic(z) = 1
1+e−z

.

The logistic function is used for binary labels such that weights and bias terms

are restricted to bl+1 ∈ R1×1, W l+1 ∈ R1×w, zl ∈ Rw×1, w is hidden node size.

To learn MLPs, various objective functions can be used such as Cross Entropy.

This is combined with backpropagation, which differentiates the objective function

7

and subsequently applies the chain rule to backpropagate until the input of the neural

network is reached.

CrossEntropy(y, ŷ) = 1
n

∑|VLs |
i=1 yilog(ŷi) + (1− yi)(log(1− ŷi))

VLs is any subset of VL or VLs ⊂ VL

We sometimes call MLPs, Deep Neural Networks if l is large.

2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) have been used extensively in sequence pre-

diction problems. The vanilla RNN can be thought of as an unfolded feedforward

neural network through time where recurrent edges that share weights exist at each

time step. Each node at time t receives input from the current element in the se-

quence, x(t), and also the network’s previous state h(t−1). For prediction, the output

ŷ(t) at each timestep t is calculated given current hidden node values h(t). Since all

previous inputs, x(0), ...,x(t−1) are encoded in h(1), ...,h(t) via recurrent connections,

all previous inputs influence the prediction ŷ(t). We can rewrite the hidden states:

h(t) = σ(W hxx(t) +W hhh(t−1) + bh)

ŷ(t) = softmax(W yhh(t) + by)

Or

ŷ(t) = logistic(W yhh(t) + by)

for binary label classification as described in the previous section. Here σ is the

continuous, differentiable activation function, and in our work we used the standard

hyperbolic tangent (tanh) function. W hx is the matrix of weights between input and

hidden layer, W hh is the matrix of recurrent weights between hidden to hidden layers,

while W yh is the matrix of weights between hidden to output layers. bh and by are

bias parameters that allow every node to learn offset parameters. In Figure 2.1, we

8

Fig. 2.1.: RNN example for a sequence of two inputs from [4].

show an RNN example with a sequence of 2 inputs. As you can see, previous hidden

units and inputs feed into the next layers to produce outputs.

Since RNNs can be unfolded into a feedforward network, one can simply apply the

backpropagation algorithm to an unfolded recurrent network through time (BPTT).

However, this approach suffers from the exploding and vanishing gradients problem

when backpropagating error through many timesteps. Since recurrent weights are

shared across time steps, the effect of an input at time τ on the label ŷ(t), where t > τ

either explodes or approaches zero, exponentially fast with respect to t−τ . Therefore,

gradients during backpropagation either explode or vanish as well [4]. There have been

many approaches to addressing this problem. However, the approach that has gained

the most recent attention are Long Short Term Memory (LSTM) networks [19].

LSTM networks overcome the exploding and vanishing gradients problem by care-

fully designing the hidden units such that gradients do not explode or vanish. LSTMs

can therefore be regarded as RNNs except for these modifications that allow back-

propagation to behave well. The name long-short term memory is derived from the

fact that an LSTM has the ability to remember important long-term and important

short-term information. That is intuitively, the LSTM can decide, which pieces of

information are important to remember for the short-term and which are important

for the long-term. Hidden units in LSTMs are referred to as memory cells, and are

9

modified to have an input node g(t), an input gate i(t), a forget gate f (t), output gates

o(t), and internal state s(t). Current LSTMs have the corresponding update equations:

g(t) = tanh(W gxx(t) +W ghh(t−1) + bg)

i(t) = sigmoid(W ixx(t) +W ihh(t−1) + bi)

f (t) = sigmoid(W fxx(t) +W fhh(t−1) + bf)

o(t) = sigmoid(W oxx(t) +W ohh(t−1) + bo)

s(t) = g(t) � i(i) + s(t−1) � f (t)

h(t) = tanh(s(t) � o(t))

where � is pointwise multiplication.

The input node g(t), takes input and the previous hidden layer in the standard

way. Tanh is used here, but other activation functions can be used as well. The

internal state s(t) consists of a self-connected recurrent edge with fixed unit weight.

This allows error to flow in backpropagation through time steps easily and solves the

problem of vanishing or exploding gradients. The input gate i(t), helps to modulate

how much of the input that we should utilize since it is pointwise multiplied by g(t)

when calculating s(t). If i(t) consists of 0s, then we completely disregard the current

input. If it consists of 1s, we utilize the whole current input. Similarly, forget gates

f (t), allow us to forget unneeded past internal state. Lastly, the output gate o(t) allows

us to remember important information when calculating the next hidden state h(t).

The standard softmax can then be applied to obtain predictions.

Many have noted that recent breakthroughs in sequence prediction for various

problems have been due to LSTMs, not RNNs [5]. Currently LSTMs are viewed as the

start of the art in speech translation [6], machine translation [25], image captioning

[7], and question answering systems [8]. All of these problems consist of sequence

problems and LSTMs have performed very well on each of these.

10

Fig. 2.2.: LSTM memory cell from [24].

2.4 Related Work

The majority of the domains where RNNs have been applied successfully involve

examples that are structured as vectors, sequences, or matrices. Due to the hetero-

geneous structure of graph data, research involving neural networks for graph data

has only recently begun to be explored.

There has been some recent work on using RNNs for graph clustering [9], labeling

graphs [13], and link prediction [12]. However, this work typically focuses on learning

models of the graph structure alone and has not considered the development of node-

based predictive models.

There has been some work on unsupervised learning of node embeddings, which

are then used afterwards as features when learning predictive models for node predic-

tion. Line [11] uses a two-stage approach to learning an embedding such that nodes

that are either well-connected or share many neighbors are close. Structural Deep

Network Embedding (SDNE) [26] generates a network embedding via an auto-encoder

architecture where 1st and 2nd order neighbors are used in their objective function.

DeepWalk [10] uses random walks and a skip-gram based approach. Node2Vec [14]

extends the skip-gram architecture from DeepWalk and performs various sampling

strategies to sample neighborhoods differently. Currently, SDNE and Node2Vec are

state of the art node embedding methods. While these methods have been shown

to produce an embedding that is useful for subsequent classification, they do not di-

11

rectly learn to optimize class label predictions (i.e., the embedding is unsupervised).

Rather, one hopes that the embeddings learned are useful for classification. Fur-

thermore, they do not consider node attributes in their models. However, a typical

application of node embeddings for node classification is to simply use the learned

embeddings and node attributes in a standard classification method. Other appli-

cations of embeddings involve graph clustering [9], graph prediction [13], and link

prediction [12].

The Graph Neural Network (GNN; [27]) is a specially designed recurrent neural

network for graph data. The model assumes there are node attributes and optionally

specifies attributes for edges and edge types. The model takes a whole graph as

input and naturally propagates information about each node in each hidden state.

More formally, the update for a hidden state at time k for each node vi is denoted

as: h
(k)
i = f ∗(ai, aCO(i), aNBR(i),h

(k−1)
NBR(i)), where ai is the attribute for vi, aCO(i)

refers to the attributes of the edges incident on vi, aNBR(i) refers to the attributes of

neighbors connected to vi by an edge, and h
(k−1)
NBR(i) is the previous hidden states for

vi’s neighbors. Unfortunately, GNNs are infeasible to apply to very large networks on

a GPU since the whole graph must be used as input into the GNN at once. Therefore,

GNN’s will have memory issues when run on a GPU (as of right now GPUs have max

12gb). The time complexity of this model is O(|E| + |V |), which is relatively fast.

Furthermore, the GNN cannot be directly applied to the node classification problem

since the graph is partially labeled and training examples for GNNs consist of entire

labeled graphs.

Another line of work related to our proposed methods is the Search Convolutional

Neural Network (SCNN) [28]. This neural network extends the idea of convolution

to graphs and subsequently searches over H hops from a given node. SCNNs have a

computational complexity of O(N2F), where F is the size of a feature vector. While

SCNNs can be used for relational classification, they currently do not employ any kind

of collective inference. Future work could incorporate the DCI approach to collective

12

learning and inference into the SCNN model to ascertain if the predictions and class

labels of neighbors can further improve classification performance.

The work most closely related to ours is the Recurrent Neural Collective Classi-

fication (RNCC) method [18]. During our initial work on DCI, we were unaware of

the RNCC method, but the two methods are similar in that they both use neighbor

information in an LSTM structure, for collective classification. However, there are

a number of key algorithmic differences between the two methods. We outline these

below. See section 3.1 for a more detailed description of DCI.

• Data: RNCC does not adjust for imbalanced class label distributions, while

DCI does.

• Architecture: RNCC’s LSTM architecture models a node vi’s features separately

from its neighbors’ features (i.e., with separate weights). DCI’s architecture

models them jointly with shared weights. In addition, RNCC uses the hidden

representation of neighbors as input features, while DCI does not.

• Learning : RNCC performs collective inference on every epoch of learning (i.e.,

epoch=collective iteration). In contrast, DCI waits until parameter estimation

has locally converged in terms of epochs in order to perform the next round

of collective inference. Also, RNCC uses a generalized LSTM learning algo-

rithm [29], while DCI uses the standard LSTM backpropgation through time

algorithm [4].

In our experimental evaluation (see Section 4.5.1), we compare directly to RNCC

and also investigate the impact of a number of these algorithmic decisions in ablation

studies.

One final area of related work is the use of data augmentation to improve learning

in neural networks. The use of data augmentation to produce similar and noisy images

in image classification [30] motivates some aspects of our DCI algorithm. In image

classification, there is often not enough training data for classification algorithms.

13

Images may be represented by large n×m matrices composed of pixel values. If every

pixel value is used as features in a learning algorithm, then the curse of dimensionality

takes effect and there is often not enough training examples for consumption by the

learning algorithm [31]. Therefore, researchers perform data augmentation methods,

which takes as input pixel matrices and produces a similar image but with noise

added in some way. [30] modifies pixel value intensities and generate images with

translations and horizontal reflections. In DCI, we will use a similar approach to

generate additional training examples when learning from networks with skewed label

distributions.

14

3. DEEP COLLECTIVE INFERENCE

In this work, we develop a deep collective inference (DCI) method, which uses an

RNN for collective classification in relational network data. We refer to weights in

any RNN as both the weights and bias terms.

3.1 Problem Definition and Input Specification

We assume as input a partially labeled graph < G,F,Y >. The goal is to learn a

predictive model from the labeled nodes VL and use the model to make predictions

for the unlabeled nodes VU = V −VL. We first specify a non-collective version of

our method to generate seed predictions known as Deep Relational Inference (DRI).

Examples are constructed as follows: for a node vi, the target output is the class

label yi and the input is the node’s features fi and the features of its neighbors

{fj |vj ∈ Ni}. We introduce a model to learn a mapping of the inputs [fi, {fj}vj∈Ni] to

the output yi. Since each node has a different number of neighbors, we will transform

the input into an unordered sequence (of varying length). First, we randomly order

the list of neighbors (i.e., [vj1 , vj2 , ..., vj|Ni|]) and then we use the associated features

as a sequential input to the model:

xi = [fj1 , fj2 , ..., fj|Ni| , fi]

= [x
(0)
i ,x

(1)
i , ...,x

(|Ni|)
i] (3.1)

Note the last feature vector in the sequence fi corresponds to the features of the

target node. Here x(t) refers to the tth neighbor (i.e., element) in the sequence and

x
(|Ni|)
i refers to the target node. Thus the resulting inputs to the RNN will be a set of

15

d

e

f

b
h

ia

g

j

c

xd = [< fb,yb >, < ff,yf >, < fi,yi >, < fe,ye >, < fa,ya >, < fd,yd >]
 = [xd , xd , xd , xd , xd , xd](0) (1) (2) (3) (4) (5)

^

(a) Example network and
unordered sequence for
node vd.

x(0) x(1) x(|Ɲ|-1) x(|Ɲ|)

...

y

(b) Sequential structure of
RNN.

f0 f1 ... fp y

h1 ... hw
r1

...

rw

x(|Ɲ|)

ŷ

^

LSTM

(c) Internal details of RNN
structure at end of se-
quence.

Fig. 3.1.: Illustration of model structure.

feature vector sequences: XL = {xi |∀vi ∈ VL}. We train DRI using a canonical RNN

learning algorithm outlined in Algorithm 1. Then we perform inference to generate

seed predictions on the test set, ŷi
0 ∀ vi ∈ VU. Predictions are obtained from the

class with highest probability for vi.

3.2 RNN for Collective Inference

To extend DRI to the collective inference setting we augment each feature vector

with a class label value, i.e.,

xi =
[
[fj1 , yj1], [fj2 , yj2], ..., [fi, ŷi]

]
= [x

(0)
i ,x

(1)
i , ...,x

(|Ni|)
i] (3.2)

In this case, if vj ∈ VL then we append the true class label yj. Otherwise, we can

append ŷj. For the target instance vi, we use ŷi, since using the true class would lead

to obvious overfitting. This is illustrated for a small network in Figure 3.1a, where

the sequence for node vd is specified based on a random ordering of its neighbors.

The structure of the RNN is illustrated in Figure 3.1b and 3.1c. r is the previous

recurrent output and h refers to the hidden nodes. Any generic RNN architecture

can be used; however, we specify an LSTM so that gradients behave well with hidden

16

node size, w = 10 used in evaluations. Similar to other templated models, the length

of the model is determined by the length of each sequence. Each square in Figure 3.1b

represents a local RNN, with parameters W that are shared across each the replication

in the sequence. Figure 3.1c shows the details of the local RNNs at the end of the

sequence. The input consists of the feature vector for the example at that point in

the sequence—the length depends on the number of node features in G. On the final

hidden output of the RNN, the w outputs are aggregated using softmax to produce

a predicted class label ŷ.

3.3 Label Skew Corrections

Skewed class label distributions motivated us to explore two different ways of cor-

recting for skewed labels. The first involves generating more data from the rare class

via data augmentation, while the second involves changing the objective function to

balance between the classes. Our algorithm learns which method to use by evaluating

their performance on a held out dataset where labels are known. We call this held out

set VLV2
in Algorithm 3. It is constructed from a portion of the original validation

set.

3.3.1 Data Augmentation

In image classification, researchers perform data augmentation by adding noise in

some way to an image and using the noisy image as another training example [30].

We follow this approach and generate additional training examples by replicating

examples (nodes) and then add noise by swapping some attribute values (neighbors)

across examples from the same class.

Algorithm 2 details our approach to data augmentation. It randomly selects two

examples from the minority class, duplicates them, and then swaps at most 50% of

the x attribute values across the vectors. This corresponds to randomly swapping

the neighbors of the two duplicated nodes. In the line 23 of Alg. 2, the augmented

17

Algorithm 1 RNNTrain(Xt, Xv, Y, maxItr, performSwap)

1: if performSwap then
2: Specify Canonical Cross Entropy as objective
3: else
4: Specify Balanced Cross Entropy as objective
5: end if
6: repeat
7: Initialize the structure of the RNN with random gaussian weights W.
8: Intialize Scores = int array of length maxItr ; Initialize te = 0 ;
9: Train RNN with 1 epoch over Xt to optimize over labels using specified objective function
10: Scores[te] = Calculate loss on Xv ; te++ ;
11: until [earlyStopMet(Scores, tol)] OR [te ≥ maxItr]
12: return RNN with learned weights W

Algorithm 2 SwapAug Method(XL,YL)

1: counts0 = countClasses(YL, 0)
2: counts1 = countClasses(YL, 1)
3: smallLabel = 0
4: if counts0>counts1 then
5: smallLabel = 1
6: end if
7: classDiff = | counts0− counts1 |
8: Let XS ⊆ XL be the set of sequences that have smallLabel
9: initialize newX to list of size=classDiff+1
10: j = 0
11: while j < length(newX) do
12: j+= 2
13: n1, n2 = Select two integers at random ∈ [0, length(XS)− 1]
14: xt1 = copy(XS[n1]), xt2 = copy(XS[n2])
15: numSwaps = min(length(xt1)/2, length(xt2)/2)
16: t1Idxs = sample numSwap integers ∈ [0, length(xt1)− 1]
17: t2Idxs = sample numSwap integers ∈ [0, length(xt2)− 1]
18: for each (t1idx, t2idx) in (t1Idxs, t2Idxs) do

19: swap

(
x
(t1idx)
t1

,x
(t2idx)
t2

)
20: end for
21: Append xt1 , xt2 to newX
22: end while
23: Xret = Sample (counts0+counts1) sequences randomly from newX + XL

24: return Xret

dataset Xret is formed by downsampling to get to the original size of XL. We use

downsampling to ensure a fair comparison (i.e., equal training sizes) to other methods

that do not use data augmentation. The algorithm returns the set Xret, which has a

balanced class distribution. We can then simply train on Xret whenever an RNN is

trained in Algorithm 3.

18

3.3.2 Balanced Cross Entropy

We use balancing to adapt the objective function to imbalanced classes and there-

fore gradient updates when performing backpropgation. Here, we specifically modify

the Cross Entropy objective function, but the adaptation is general and can be ap-

plied to any objective function, which has separate terms for each class. Recall that

the cross entropy objective is:

CE =
1

n

|VL|∑
i=1

yilog(ŷi) + (1− yi)(log(1− ŷi))

where yi is the true label of node vi and ŷi is the corresponding prediction. To balance

the gradient updates, we can simply take the frequency of positive labels (C+) and

negative labels (C−) in the training and validation sets and use these to scale the

terms in the objective function. The new balanced objective function is then:

CEB =
1

n

|VL|∑
i=1

C−yilog(ŷi) + C+(1− yi)(log(1− ŷi))

In our experiments C+ ≤ C−, but the adapted objective is general and isn’t specific

to a given class. Intuitively in our case, since positive labels occur less frequently,

we want to upweight their effect by using C−, and since negative labels occur more

frequently, we want to downweight their effect by C+. The net effect is that both sets

of positive and negative examples have equivalent impact on the gradient updates.

The modified objective is used in Algorithm 1 if specified.

3.4 DCI Semi-supervised Learning

We now outline our algorithm to learn a deep collective inference (DCI) model.

Algorithm 4 is a wrapper method that chooses the mechanism DCI should use to

adjust for imbalanced classes. Nodes with yi ∈ YL are split into training VLT
,

19

Algorithm 3 DCI Apply(G, F, Y, VU , VLT
, VLV1

, VLV2
, maxItr, tol, perform-

Swap)

1: //Train a DRI RNN to initialize seed predictions
2: Form X by constructing an unordered input sequence xi from trainNodes, F, Y.
3: Form Xval similarly except with VLV1

4: if performSwap then
5: X = SwapAug(X, YL)
6: end if
7: M = RNNTrain(X, Xval, YL, maxItr, performSwap)
8: Use M to predict ŷ0i for each vi ∈ VU

9: Intialize both ScoresV1, ScoresV2 = int arrays of length maxItr; tc = 0 ;
10: Initialize the structure of the RNN with random weights Wtc .
11: //Start collective learning
12: repeat
13: if tc! = 0 then
14: Set Wtc = Wtrained

tc−1

15: end if
16: Form X̃ by constructing xi from VLT

, F, Y, Ŷtc

17: Form X̃val similarly except with VLV1

18: if performSwap then
19: X̃ = SwapAug(X̃, YL)
20: end if
21: Let RNN, Wtrained

tc
= RNNTrain(X̃, X̃val, YL, maxItr, performSwap)

22: Use the RNN to predict ŷtc+1
i for each vi ∈ VU to form Ŷtc+1

23: ScoresV1[tc] = Calculate loss on VLV1

24: ScoresV2[tc] = Calculate loss on VLV2

25: tc++
26: until [earlyStopMet(ScoresV1, tol)] OR [tc ≥ maxItr]
27: Let tbest be best collective model on VLV1

based on BAE

28: return RNN with learned weights Wtbest , predictions Ŷtbest , ScoresV2[tbest]

Algorithm 4 DCI(G, F, Y, VU , val1%, val2%, maxItr, tol)

1: Form VLT
, VLV1

, and VLV2
from YL based on val1% and val2%

2: DCI S RNN, Ŷ
tbest
S , score S = DCI Apply(G, F, Y, VU , VLT

, VLV1
, VLV2

, maxItr, tol, True)

3: DCI B RNN, Ŷ
tbest
B , score B = DCI Apply(G, F, Y, VU , VLT

, VLV1
, VLV2

, maxItr, tol, False)

4: if score S < score B then
5: return DCI S RNN, Ŷ

tbest
S

6: else
7: return DCI B RNN, Ŷ

tbest
B

8: end if

validation 1 VLV1
, and validation 2 VLV1

in line 1. In lines 2-3, we learn a model

using either swapping or the balanced objective by calling Algorithm 3. In order to

select the Swapping or Balanced Cross Entropy approach, we simply return the model

that performs best on the held out validation set VLV2
(lines 4-8).

Algorithm 3 describes how to learn a DCI model from a partially-labeled network

with a specified approach to adjusting for imbalanced class distributions. First, a DRI

model is learned and applied to initialize the unlabeled prediction set Y0
U (lines 1-8).

20

Then, the algorithm starts the semi-supervised collective inference process (lines 12-

26). One iteration of collective inference consists of the following steps. New attribute

input examples, X̃ and X̃val, are formed by concatenating the current predictions Ytc
U

and the labels YL to F (lines 16-17). Note that neighbor orders are random when

constructing X̃ on each collective iteration. If SwapAug is used in line 19, then X̃ is

transformed to reflect swapping. Otherwise, it is not transformed and CEB is instead

used as the objective function.

Next parameters are re-estimated (line 21) by training the RNN. Let the parame-

ters of the RNN at iteration tc be Wtc . We perform backpropagation and utilize early

stopping methods based on the validation set. Any type of early stopping method

(denoted earlyStopMet) on the validation set can be used. For each iteration, tc, we

obtain ŷtci for each vi ∈ VU from the collective RNN by performing inference on the

unlabeled set (line 22). The predictions on the unlabeled set are used in the next

collective iteration.

Except for the first iteration, note that we initialize weights according to the

previous iteration’s trained weights, i.e., let Wtc+1 = W trained
tc instead of initializing

randomly in lines 13-15.

We repeat collective inference until the early stopping criteria is met on the val-

idation set, VLV1
, or until maxItr is reached. We return the RNN with predictions

that performed best in terms of BAE on the validation set VLV1
(line 28).

The DCI algorithm is simultaneously learning the parameters of the RNN and

making predictions for the unlabeled nodes—thus it is a semi-supervised approach

to learning based on the full, albeit partially-labeled, graph. In addition, DCI uses

an initialization approach where the predictions are initialized with the DRI model,

which DCI uses on its first iteration of collective inference.

There are a number of DCI variations that are possible depending on different

algorithmic decisions. We evaluate the algorithmic choices and found that they each

improve performance significantly. See Section Empirical Evaluation for more details.

21

3.5 Time Complexity

DCI is scalable especially if run on a GPU. DCI takes O(|E| + |V|) time since

it’s bottleneck is performing |E| + |V| backpropagations. This could potentially be

reduced to b ∗ |V | if performing truncated backprop to only b steps, which essen-

tially corresponds to throwing away sequence input for large degree nodes. In the

above analysis, we assume that the number of iterations for collective inference is

constant and the number of epochs over training data is also constant. In practice,

the constants are relatively large; however, GPUs help to parallelize and reduce these

constants.

22

4. MAIN EMPIRICAL EVALUATIONS

4.1 Data

We employ seven datasets in our evaluations, all from [20]. Table 4.1 reports the

number nodes, edges, and positive label proportion of each dataset.

The Facebook dataset is a snapshot of the Purdue University Facebook network.

Users have two attributes: religious views, and gender, and a class label: political

views. The labels are political views, while religious views and gender are features.

This is the smallest network. The network consists of 5906 nodes and 73394 edges.

The Internet Movie Database (IMDB) is a movie dataset where we predict if a

movie will have a gross revenue ≥ $50 million. Each movie (node) has 29 genre

attributes and 9 boolean variables that record whether the average rating is greater

than a particular value. Edges are created between movies that share two or more

producers.

Amazon DVD 20000 is a subset of the Amazon co-purchase data gathered by

[32]. Nodes correspond to DVD items and edges are created via DVD copurchases.

Each node has 24 attributes describing the movie’s genres. The prediction task is

to determine whether the item has an Amazon salesrank < 20000. This network

has about 50/50 label distribution. The network consists of 16,118 nodes and 75,596

edges.

Amazon DVD 7500 is the same as Amazon DVD 20000 except that the threshold

for class labels is salesrank < 7500. This changes the class label distribution.

Amazon Music 64500 dataset is another subset of the Amazon data where nodes

are song items, and each node has 22 attributes describing its styles. The class label

threshold is salesrank < 64500. This network has about 50/50 label distribution.

This network is the second largest and consists of 56,891 nodes and 272,544 edges.

23

Table 4.1.: Datasets

Dataset |V | |E| density P (+)
Facebook 5906 73,374 4.2e-3 0.32
IMDB 7934 122,230 3.9e-3 0.164

Amz DVD 20000 16,118 75,596 5.8e-3 0.5
Amz DVD 7500 16,118 75,596 5.8e-3 0.21
Amz Music 64500 56,891 272,544 1.7e-4 0.5
Amz Music 7500 56,891 272,544 1.7e-4 0.08

Patents 881,187 5,302,712 1.4e-5 0.169

Amazon Music 7500 is the same as Amazon Music 64500 except it uses the thresh-

old for class labels is salesrank < 7500.

The Patents citation network consists of patent nodes and citations among them.

Each patent has an attribute vector which records the TF/IDF values of it’s top

50 words. Edges are created through citations. We consider the ”Computers” clas-

sification task where patents are predicted to be filed in ”Primary Category 2” (a

computer related category) or not. This network is by far our largest network with

881,187 nodes and 5,302,712 edges.

4.2 Evaluation Methodology

We use Balanced Absolute Error (BAE) as our error statistic, which normalizes

error across classes, and measures the absolute error of a classifier C. Let κ be the

set of label classes and V is a node set. BAE is defined as:

BAEC =
∑
y∈κ errC(y,V)

|κ| where errC(y, V) =
∑

vi∈VU
PC(yi 6=y)I(yi=y)∑

vi∈V
I(yi=y)

We also calculate reduction in overall error in section 4.5.1. Let reduction(mi) =

1
|methods|

∑|methods|
j=0 gain(mi,mj) for method mi, which is DCI in our case. Furthermore

let gain(mi,mj) = 1
|datasets|

∑|datasets|
k=0 gain(mj,mi, dk) where gain(mi,mj) shows the

overall gain of method mi over mj. Finally let

gain(mj,mi, dk) = 1
|Xbae|

∑
x∈Xbae

baexi−baexj
baexi

where gain(mj,mi, dk) shows the average

gain given dataset, dk. baexi and baexj are the bae values at point x for each method

mi and mj. Xbae is the set of points tested on the plots.

24

We run Algorithm 3 and plot performance for DRI and DCI using LSTMs. We use

10 trials for all datasets. For each trial, nodes are randomly assigned to the labeled

set, VL, Then the unlabeled set is formed from the remainder: VU = V −VL. The

following plots show performance as the proportion of the data used in the training

set size is varied (i.e., |VL|
V

). For example, 0.2 corresponds to 20% labeled nodes

and 80% unlabeled in the network. For DCI, 12% and 3% of nodes of the whole

dataset is used for VLV1
and VLV1

, respectively, which accounts for a total of 15%

for validation. Thus when the training proportion is 0.2, DCI uses 5% for training,

15% for validation, and 80% for testing. Degree is concatenated to each fi ∈ F to

compare to previous work [20]. For our implementation, we use Theano under the

library known as Blocks [33]. All evaluations are performed using three computer

clusters with 20 Xeon cores each and memory ranging from 64gb-256gb ram.

4.3 DRI Variants

We first evaluate on variants of DRI vs variants of logistic regression (LR). We

do so to show even DRI can outperform simple baselines. This also verifies that

the non-linear way of summarizing neighborhoods is better than simply averaging

neighbor vectors and use this as input to Logistic Regression. Each of the DRI

models have the same hyperparameters and learning parameters. Weights of LSTMs

are initialized with sampled values from the Gaussian distribution. We apply Batched

Gradient Descent where batch size = 100. The maximum number of epochs for any

network is 200. Early Stopping is used to check if performance on the validation set

does not improve in the last 10 epochs. If no improvement, training stops early, and

the model performing best on the validation set is chosen. Because of the size of the

Patents data, for efficiency we perform DCI-10, which only uses a subset of at most

10 neighbors (randomly selected).

• DRI-WSB: DRI learned without data augmentations or cross entropy balancing

• DRI-S: DRI learned with swapping

25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.41

0.42

0.43

0.44

0.45

0.46

B
A

E

DRI
DRI-P

LRAVG All
LR

LRAVG + Orig

(a) Facebook

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

0.40

0.42

B
A

E

DRI
DRI-P

LRAVG All
LR

LRAVG + Orig

(b) IMDB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.36

0.38

0.40

0.42

0.44

0.46

B
A

E

DRI
DRI-P

LRAVG All
LR

LRAVG + Orig

(c) Amazon DVD 20000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.36

0.38

0.40

0.42

0.44

0.46

B
A

E

DRI
DRI-P

LRAVG All
LR

LRAVG + Orig

(d) Amazon DVD 7500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.40

0.42

0.44

0.46

0.48

B
A

E

DRI
DRI-P

LRAVG All
LR

LRAVG + Orig

(e) Amazon Music 64500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

B
A

E

DRI
DRI-P

LRAVG All
LR

LRAVG + Orig

(f) Amazon Music 7500

Fig. 4.1.: DRI compared to its variants on Facebook, IMDB, Amazon DVD, and
Amazon Music datasets.

• DRI-B: DRI learned with balancing the cross entropy objective function

• LR: An independent logistic regression baseline that uses only node features

(no relational data) to predict the label optimized using L2 regularization.

26

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.20

0.25

0.30

0.35

0.40

0.45

B
A

E

DRI
DRI-P

LRAVG All
LR

LRAVG + Orig

(a) Patents

Fig. 4.2.: DRI compared to its variants on the Patents dataset.

• LRAVG-A: Recall that xi = [fj1 , fj2 , ..., fj|Ni| , fi]

For each training example for LR, we simply average the attribute vectors, ie

xiavg =
fi+

∑|Ni|
k fjk

|Ni|+1

• LRAVG-O: Averaging all neighbor attribute vectors in X and concatenating

the original node’s attributes as input, ie xiavgc = [
∑|Ni|
k fjk
|Ni| , fi]

Figures 4.1 and Figure 4.2 show a comparison between DRI-WS, DRI-P, LR,

LRAVG-A, and LRAVG-O. DRI-P tends to perform the best or equal to DRI-WS. In

the balanced datasets (Amazon DVD 20000 and Amazon Music 64500), both DRI-

WS and DRI-P. However, on imbalanced and smaller datasets (facebook, IMDB,

Amazon DVD 7500), DRI-WS performs better or has around the same performance

as the Logistic Regression alternatives. Both DRI-WS and DRI-P have clear gains

when compared to on the biggest datasets (Amazon Music data and Patents), with

DRI-P having the best performance. These experiments illustrate the effectiveness of

using a non-linear way of aggregating inputs or RNNs.

4.4 DCI and Alternatives

We compare our proposed method DCI to the following baseline and state-of-the-

art alternative methods:

27

• LP: A label propagation baseline that uses a weighted vote of the predicted/true

labels of neighbors to make predictions [1].

• LR: Logistic Regression, same as in section 4.3

• LR+N2V: LR but utilizing new attributes by concatenating node2vec [14] fea-

tures of size 128 with default hyperparameters and the original attribute vectors

of each node.

• PLEM: The MaxEntInf adjusted semi-supervised relational learning method

from [20], specially designed for data with imbalanced class labels which is

currently state-of-the art.

• PLEM+N2V: PLEM with added node2vec features. Note that this is not an ex-

isting method, we add node embedding features to PLEM to ascertain whether

they improve relational learning methods.

• DCI: Weights of LSTMs are initialized (except after first iteration of collec-

tive inference) with sampled values from the Gaussian distribution. We apply

Batched Gradient Descent where batch size = 100. The maximum number of

epochs for any network is 200. Early Stopping is used to check if performance

on the validation set does not improve in the last 10 epochs. If no improve-

ment, training stops early, and the model performing best on the validation set

is chosen. DCI was run for 100 collective iterations with the same early stop-

ping criterion. We used w = 10 (number of hidden nodes). We did not perform

hyperparameter optimization, though this could further improve results. DCI

further splits VL into training VLT
, validation 1 VLV1

, and validation 2 VLV2

sets.

• RNCC: RNCC is a similar model to DCI [18]. We implement a version as

close to it as possible. We use their RNN architecture where a given node

vi’s attributes ai are modeled via separate weights than neighborhood node’s

attributes. We utilize hidden states learned from a non-collective version of

28

RNCC as the first hidden states to be used in collective inference. However,

we use a canonical LSTM and standard backpropagation for learning, rather

than the specific learning rules from [18]. RNCC is learned with exact same

hyperparameters and learning settings as described for DCI, with the exception

of collective iterations. Since epoch=collective iteration for RNCC, we utilize

Max Collective iteration = 200. Lastly, training and validation sets are exactly

similar to DCI’s, except that VLV1
and VLV2

are merged and used as one

complete validation set.

4.5 Main Results

The mean and standard errors of the BAE measure are plotted on each dataset.

We plot results for the same train/test splits in each model.

4.5.1 Comparison to Other Methods

We compare DCI to the baselines LP, LR, LR+N2V, RNCC, PLEM, and

PLEM+N2V. Figure 5.1 reports the results. The mean and standard errors of the

BAE measure are plotted on each dataset. We use the same train/test splits in each

model.

It’s important to note that amazon DVD 20000 and amazon Music 64500 both

have about 50/50 class distributions, while the rest of the datasets are imbalanced. In

these cases, the performance gap between DCI and competing methods is significant

and clear. Amazon DVD 7500 is the only dataset where DCI does not outperform

PLEM+N2V on the majority of label proportions. However, DCI does outperform it

when the training size is high enough. This is possibly due to small data, large class

imbalance, and/or low network density. These may not be problems for PLEM+N2V

since node2vec explores more of the network besides just neighbors. However, on all

other datasets DCI outperforms other state-of-the art methods for most if not all

training/test splits, especially when it is not sparsely labeled.

29

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.35

0.40

0.45

0.50

0.55

B
A

E
LR
LP
LR+N2V

PL-EM-M
PL-EM-M+N2V

RNCC
DCI

(a) Facebook

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.20

0.25

0.30

0.35

0.40

0.45

B
A

E

LR
LP
LR+N2V

PL-EM-M
PL-EM-M+N2V

RNCC
DCI

(b) IMDB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

B
A

E

LR
LP
LR+N2V

PL-EM-M
PL-EM-M+N2V

RNCC
DCI

(c) Amazon DVD 20000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46
B

A
E

LR
LP
LR+N2V

PL-EM-M
PL-EM-M+N2V

RNCC
DCI

(d) Amazon DVD 7500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.25

0.30

0.35

0.40

0.45

0.50

B
A

E

LR
LP
LR+N2V

PL-EM-M
PL-EM-M+N2V

RNCC
DCI

(e) Amazon Music 64500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.20

0.25

0.30

0.35

0.40

0.45

0.50

B
A

E

LR
LP
LR+N2V

PL-EM-M
PL-EM-M+N2V

RNCC
DCI

(f) Amazon Music 7500

Fig. 4.3.: DCI compared to its alternatives LP, LR, LR+N2V, RNCC, PLEM, and
PLEM+N2V.

30

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.06

0.08

0.10

0.12

0.14

B
A

E

PL-EM-M
PL-EM-M+N2V

DCI-10 RNCC-10

Fig. 4.4.: DCI-10 compared to its alternatives PLEM+N2V and PLEM on Patents
dataset.

It’s interesting to see that the RNCC implementation does not outperform PLEM

for most datasets. This indicates that the algorithmic decisions for DCI allow DCI

to significantly outperform RNCC.

Again, because of the size of the Patents data, for efficiency we perform DCI-10 and

RNCC-10, which only uses a subset of at most 10 neighbors (randomly selected). For

DCI-10, we also only run for 10 collective iterations, while keeping the rest of RNCC’s

learning parameters the same. We compare DCI-10 to PLEM and PLEM+N2V. See

Figure 4.4 for the results. Note that we did not include the more naive methods in the

plot, since their BAE values were too high and masked the performance of the other

methods. LR has ≈0.4 BAE and LR+N2V has ≈0.19 BAE for all proportions. For

this network, it is interesting that with only 10 hidden units and truncated backprop-

agation, DCI-10 eventually outperforms PLEM and PLEM+N2V. We expect further

improvement if all neighbors are used.

In summary, our evaluation show that, across seven network datasets, DCI resulted

in an up to a 12% reduction in error compared to the best alternative (PLEM+N2V).

Moreover, DCI achieved an average of 25% reduction in error over all methods, all

datasets, and all label proportions. These results demonstrate the impact of our

proposed method for improving collective inference in large-scale networks.

31

5. DCI VARIANTS EVALUATIONS

In this set of evaluations we compare variants of our proposed methods. The same

evaluation methodology is used from Section Evaluation Methodology. We split our

evaluations into two categories: Data Oriented Variants and Algorithmic Oriented

Variants. We study how different variants affect performance and how this motivates

our decisions for the DCI algorithm. Not every combination of decisions can be

explored easily. Therefore, once we find an inferior decision, we tend not to consider it

in later evaluations. For example, we find that page rank orders don’t help empirically;

therefore, we do not consider this in combination with swapping.

5.1 Data Oriented Variants

5.1.1 DCI Variants on Smaller Datasets

We evaluate several variants of our proposed DCI method on smaller datasets to

assess initial algorithmic choices. All other variants of DCI do not perform any label

distribution corrections and use the whole validation set for early stopping instead of

separating out a portion for VLV2
. We test on all but the largest dataset in order

to compute personalized page rank vectors for each node, which is computationally

intensive on large datasets. (ie O(|V |2 + |V ||E|)).

• DCI-WSB: Learned without data augmentations or cross entropy balancing

(WSB)

• DCI-ST: WSB version learned with stacking predictions instead of using pre-

dicted class labels

32

• DCI-A: WSB version learned by ordering the neighbors in ascending order with

respect to personalized page rank instead of random ordering

• DCI-D: WSB version learned by ordering the neighbors in descending order with

respect to personalized page rank instead of random ordering

• DCI-10-WSB: Uses only a subset of at most 10 neighbors (randomly selected)

rather than the full set.

• DRI-WSB: Learned without label distribution corrections.

Recall that Page Rank satisfies the discrete-time Markov Process ([34]) where

z(t+1) = αPz(t) + (1 − α)c, where P is the transition matrix and c is a vector

representing teleportation probabilities. To utilize page rank we run a Personalized

Page Rank ([35]) for every node in the network. The transitions equations are now

for each vi, z
(t+1)
i = αPz

(t)
i + (1 − α)ci, where cii = 1 and cij = 0∀j 6= i. Setting ci

this way, intuitively, enables PPR to find nodes that are ”close” to vi. For DCI-A,

we simply order the top (highest PR valued) neighbor nodes according to page rank

in ascending order to determine neighbor order. For DCI-D, we do the same except

order in descending order. Note that the last feature vector in each sequence still

corresponds to the feature of the target node itself as fi.

Figurea 5.1 show a comparison between DCI, DCI-WSB, DCI-ST, DCI-A, DCI-D,

DCI-10-WSB, and DRI-WSB. DRI-WSB performs worst in all evaluations compared

to all collective methods, which indicates that collective inference is improving per-

formance. In all datasets, specifying an order and running DCI-A or DCI-D result

in about the same or worse performance than all other collective methods, which

suggests that a page rank does not improve and sometimes degrades performance.

It is important to notice that it is not so clear to determine which is best among

DCI-ST, and DCI-WSB. Therefore, we summarize results by reduction in error.

gain(mDCI−WSB,mDCI−ST) = 0.0162357 or about a 1.6% gain of DCI-WSB over

DCI-ST.

33

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.35

0.40

0.45

0.50

B
A

E

DCI-D
DCI-A
DCI-WSB

DCI-WSB-10
DCI

DCI-ST
DRI-WSB

(a) Facebook

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.25

0.30

0.35

0.40

B
A

E

DCI-D
DCI-A
DCI-WSB

DCI-WSB-10
DCI

DCI-ST
DRI-WSB

(b) IMDB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

0.40

B
A

E

DCI-D
DCI-A
DCI-WSB

DCI-WSB-10
DCI

DCI-ST
DRI-WSB

(c) Amazon DVD 20000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-D
DCI-A
DCI-WSB

DCI-WSB-10
DCI

DCI-ST
DRI-WSB

(d) Amazon DVD 7500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

B
A

E

DCI-D
DCI-A
DCI-WSB

DCI-WSB-10
DCI

DCI-ST
DRI-WSB

(e) Amazon Music 64500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.20

0.25

0.30

0.35

0.40

0.45

B
A

E

DCI-D
DCI-A
DCI-WSB

DCI-WSB-10
DCI

DCI-ST
DRI-WSB

(f) Amazon Music 7500

Fig. 5.1.: DCI compared to its variants on Facebook, IMDB, and Amazon datasets

5.2 Algorithmic Variants

5.2.1 Swapping vs Objective Function Balancing

We evaluate our two main variants or label distribution correction methods of

DCI, swapping (DCI-S) and balanced cross entropy (DCI-B).

34

• DCI-WSB: Learned without data augmentations or cross entropy balancing

(WSB)

• DCI-S: Learned only with data augmentations

• DCI-B: Learned only with balanced cross entropy

• DCI: The main DCI method which uses both data augmentations and balanced

cross entropy

DCI and DCI-WSB are plotted for reference as well. For smaller datasts IMDB,

swapping tends to perform better, while for Amazon Music 7500, balanced cross en-

tropy tends to perform better. For all other datasets, there doesn’t seem to be

noticeable differences between the two. Figures 5.2 and 5.3 show a comparison of

DCI-S and DCI-B.

5.2.2 DCI vs RNCC Variants

We compare DCI with label distribution correction methods to RNCC with the

same methods.

• DCI-WSB: Learned without data augmentations or cross entropy balancing

(WSB)

• DCI-S: Learned only with data augmentations

• DCI-B: Learned only with balanced cross entropy

• RNCC: The main RNCC method

• RNCC-S: Learned with data augmentations

• RNCC-B: Learned with balanced cross entropy

The RNCC variants tend to perform worse and sometimes the label distribution

correction methods don’t improve performance significantly. Figure 5.4 show a com-

parisons of the DCI and RNCC variants.

35

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

0.40

0.42

B
A

E

DCI-WSB
DCI-B

DCI-S DCI

(a) Facebook

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

B
A

E

DCI-WSB
DCI-B

DCI-S DCI

(b) IMDB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-WSB
DCI-B

DCI-S DCI

(c) Amazon DVD 20000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-WSB
DCI-B

DCI-S DCI

(d) Amazon DVD 7500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-WSB
DCI-B

DCI-S DCI

(e) Amazon Music 64500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.25

0.30

0.35

0.40

B
A

E

DCI-WSB
DCI-B

DCI-S DCI

(f) Amazon Music 7500

Fig. 5.2.: DCI-S and DCI-B compared to its variants on Facebook, IMDB, Amazon
DVD, and Amazon Music datasets

5.2.3 DCI Initialization Variants

We evaluate random initialization variants of DCI to show that initialization pre-

dictions by DRI helps to improve performance. We evaluate the following variants

36

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.06

0.08

0.10

0.12

0.14

B
A

E

DCI-WSB
DCI-B

DCI-S DCI

(a) Patents

Fig. 5.3.: DCI-S and DCI-B compared to its variants on the Patents dataset

• DCI-WSB: Learned without data augmentations or cross entropy balancing

(WSB)

• DCI-R: WSB version that uses randomly initialized prediction for the unlabeled

set (to compare to default of making initial predictions with DRI)

• DCI-S: Learned only with data augmentations

• DCI-S-R: Swapping version with randomly initialized prediction for the unla-

beled set

• DCI-B: Learned only with balanced cross entropy

• DCI-B-R: Balanced cross entropy version with randomly initialized prediction

for the unlabeled set

Figure 5.5 show a comparison of random initialization vs DRI initializations.

It is not so clear to determine if the random variants do as well. Therefore, we

summarize results by reduction in error. gain(mDCI−WSB,mDCI−R) = 0.0006495 or

about a 0.06% gain of DCI over DCI-R. gain(mDCI−S,mDCI−S−R) = 0.0156055 or

about a 1.78% gain of DCI-S over DCI-S-R. gain(mDCI−B,mDCI−B−R) = 0.0082923

or about a 1.04% gain of DCI-B over DCI-B-R. The overall gain of these methods or

average of these gains is 0.00818 or 0.82% gain. Therefore, we have considered the

non-random initialization procedure as part of our main DCI algorithm.

37

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.35

0.40

0.45

0.50

B
A

E

DCI-B
RNCC-B

RNCC
DCI-WSB

RNCC-S
DCI-S

(a) Facebook

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.25

0.30

0.35

0.40

B
A

E

DCI-B
RNCC-B

RNCC
DCI-WSB

RNCC-S
DCI-S

(b) IMDB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

B
A

E

DCI-B
RNCC-B

RNCC
DCI-WSB

RNCC-S
DCI-S

(c) Amazon DVD 20000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

B
A

E

DCI-B
RNCC-B

RNCC
DCI-WSB

RNCC-S
DCI-S

(d) Amazon DVD 7500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.25

0.30

0.35

0.40

0.45

0.50

B
A

E

DCI-B
RNCC-B

RNCC
DCI-WSB

RNCC-S
DCI-S

(e) Amazon Music 64500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.25

0.30

0.35

0.40

B
A

E

DCI-B
RNCC-B

RNCC
DCI-WSB

RNCC-S
DCI-S

(f) Amazon Music 7500

Fig. 5.4.: DCI variants compared to its variants as well as RNCC variants on Face-
book, IMDB, Amazon DVD, and Amazon Music datasets

5.2.4 Utilizing Maximum Entropy

We evaluate utilizing the Maximum Entropy correction from [20]. Any version of

DCI may have an appending MEF to denote the method utilized Maximum Entropy.

38

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

0.40

0.42

B
A

E

DCI-S-R
DCI-B

DCI-WSB
DCI-S

DCI-WSB-R
DCI-B-R

(a) Facebook

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-S-R
DCI-B

DCI-WSB
DCI-S

DCI-WSB-R
DCI-B-R

(b) IMDB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-S-R
DCI-B

DCI-WSB
DCI-S

DCI-WSB-R
DCI-B-R

(c) Amazon DVD 20000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-S-R
DCI-B

DCI-WSB
DCI-S

DCI-WSB-R
DCI-B-R

(d) Amazon DVD 7500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-S-R
DCI-B

DCI-WSB
DCI-S

DCI-WSB-R
DCI-B-R

(e) Amazon Music 64500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-S-R
DCI-B

DCI-WSB
DCI-S

DCI-WSB-R
DCI-B-R

(f) Amazon Music 7500

Fig. 5.5.: DCI compared to its variants on Facebook, IMDB, and Amazon datasets

Given output probabilities for positive labels for each node, Qi(+), we calculate zi =

log(Qi(+)
1−Qi(+)

), the pivot index, φ = argminr(
∑|
i=1 VU |I(i≤r)
|VU |

− P (−))2, and the updated

probabilities Qi(+) := σ(zi − zφ), where P (−) is the proportion of negative labels,

σ is the sigmoid function, and zφ corresponds to the pivot index when z is sorted

39

in ascending order. MaxEntInf allows for better calibrated probabilities in [20]. We

compare and explore whether Maximum Entropy can improve DCI methods.

• DCI-WSB: Learned without data augmentations or cross entropy balancing

(WSB)

• DCI-S: Learned only with data augmentations

• DCI-B: Learned only with balanced cross entropy

• DCI-WSB-MEF: Learned without data augmentations or cross entropy balanc-

ing (WSB) but performing the maximum entropy constraint on the final output

probabilities.

• DCI-S-MEF: Learned only with data augmentations but performing the maxi-

mum entropy constraint on the final output probabilities.

• DCI-B-MEF: Learned only with balanced cross entropy but performing the

maximum entropy constraint on the final output probabilities.

It appears as though DCI-WSB-MEF has some improvement over DCI-WSB on

IMDB, Amazon Music 7500, and Patents. However, DCI-WSB-MEF does not out-

perform DCI-S and DCI-B. In most cases, the MEF version of DCI-S and DCI-B

appear to do worse. This is probably because DCI-S and DCI-B already perform

a label distribution “correction.” Figures 5.6 and 5.7 show a comparison of DCI

variants and MEF variants.

5.2.5 Hidden State Propagation

In each collective inference step, we obtain the last hidden state for the LSTM for

each node. We then experiment with propagating these hidden states in collective

inference similar to how propagation of predictions is done. Each node has a hidden

vector representation that is also concatenated to each attribute vector. Since hidden

40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

B
A

E

DCI-B
DCI-WSB

DCI-WSB-MEF
DCI-S-MEF

DCI-S
DCI-B-MEF

(a) Facebook

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.20

0.25

0.30

0.35

0.40

0.45

B
A

E

DCI-B
DCI-WSB

DCI-WSB-MEF
DCI-S-MEF

DCI-S
DCI-B-MEF

(b) IMDB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

B
A

E

DCI-B
DCI-WSB

DCI-WSB-MEF
DCI-S-MEF

DCI-S
DCI-B-MEF

(c) Amazon DVD 20000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

B
A

E

DCI-B
DCI-WSB

DCI-WSB-MEF
DCI-S-MEF

DCI-S
DCI-B-MEF

(d) Amazon DVD 7500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

B
A

E

DCI-B
DCI-WSB

DCI-WSB-MEF
DCI-S-MEF

DCI-S
DCI-B-MEF

(e) Amazon Music 64500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.20

0.25

0.30

0.35

0.40

0.45

B
A

E

DCI-B
DCI-WSB

DCI-WSB-MEF
DCI-S-MEF

DCI-S
DCI-B-MEF

(f) Amazon Music 7500

Fig. 5.6.: DCI variants compared to the Maximum Entropy variants on Facebook,
IMDB, Amazon DVD, and Amazon Music datasets

layer size is 10, the corresponding hidden state for each node in prediction is also of

size 10. We evaluate two variants, DCI-W and DCI-WR. Both do not perform any

label distribution correction mechanisms.

41

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.05

0.10

0.15

0.20

0.25

0.30

B
A

E

DCI-10-WSB-MEF
DCI-10-S

DCI-10-S-MEF
DCI-10-WSB

DCI-10-B
DCI-10-B-MEF

(a) Patents

Fig. 5.7.: DCI variants compared to the Maximum Entropy variants on the Patents
dataset

• DCI-WSB: Learned without data augmentations or cross entropy balancing

(WSB)

• DCI-W: Has initial hidden states for the first iteration of collective inference set

to DRI’s last hidden states.

• DCI-WR: Sets the first hidden states for each node to a vector of all 0’s.

Figure 5.8 show a comparison of hidden state variants and DCI-WSB. The results

indicate that DCI-WSB is significantly better than DCI-W; however, it is not so clear

among DCI-WSB and DCI-WR. We calculate reduction in error here as well.

gain(mDCI ,mDCI−W) = 0.0333145 or about a 3.3% gain of DCI over DCI-W.

gain(mDCI ,mDCI−WR) = 0.0029219 or about a 0.291% gain of DCI over DCI-WR.

42

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

B
A

E

DCI-WSB DCI-W DCI-WR

(a) Facebook

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.26

0.28

0.30

0.32

0.34

0.36

0.38

B
A

E

DCI-WSB DCI-W DCI-WR

(b) IMDB

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

B
A

E

DCI-WSB DCI-W DCI-WR

(c) Amazon DVD 20000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38
B

A
E

DCI-WSB DCI-W DCI-WR

(d) Amazon DVD 7500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.32

0.34

0.36

0.38

0.40

B
A

E

DCI-WSB DCI-W DCI-WR

(e) Amazon Music 64500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Train Set Proportion

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

B
A

E

DCI-WSB DCI-W DCI-WR

(f) Amazon Music 7500

Fig. 5.8.: DCI variants compared to its hidden state propagation variants on Face-
book, IMDB, and Amazon datasets

43

6. SUMMARY

Recurrent neural networks have recently produced impressive performance gains but

have also been traditionally used for sequential problems where order is generally

important and well-suited for structured inputs such as vectors or matrices. In this

work, we provided an end-to-end learning framework by using RNNs for collective

classification as opposed to a two-stop process of finding a node embedding, then

using this representation in another model. Deep Collective Inference (DCI) is devel-

oped for semi-supervised learning in partially labeled networks. We proposed a data

augmentation scheme and a Balanced Cross Entropy objective to balance the classes,

which improves performance.

We conducted experiments across seven network datasets with varying levels of

label availability and class proportions. We compare to other state-of-the-art methods

in relational learning, node embeddings, and RNNs. Our results are clearly superior

to other methods except in sparsely labeled networks. DCI provides up to a 12%

reduction in error compared to the best state-of-the-art alternative (PLEM+N2V)

and a 25% reduction in error on average over the six competing methods, across all

label proportions.

REFERENCES

44

REFERENCES

[1] S. A. Macskassy and F. Provost, “Classification in networked data: A toolkit
and a univariate case study,” The Journal of Machine Learning Research, vol. 8,
pp. 935–983, 2007.

[2] L. Getoor and B. Taskar, Eds., Introduction to Statistical Relational Learning.
MIT Press, 2007.

[3] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Col-
lective classification in network data,” Artificial Intelligence Magazine, vol. 29,
no. 3, p. 93, 2008.

[4] Z. C. Lipton, “A critical review of recurrent neural networks for sequence
learning,” Computing Research Repository, vol. abs/1506.00019, 2015. [Online].
Available: http://arxiv.org/abs/1506.00019

[5] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated re-
current neural networks on sequence modeling,” Computing Research Repository,
vol. abs/1412.3555, 2014. [Online]. Available: http://arxiv.org/abs/1412.3555

[6] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent
neural networks.” in Proceedings of the 31st International Conference on Machine
Learning, vol. 14, 2014, pp. 1764–1772.

[7] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural
image caption generator,” Computing Research Repository, vol. abs/1411.4555,
2014. [Online]. Available: http://arxiv.org/abs/1411.4555

[8] M. Ren, R. Kiros, and R. S. Zemel, “Image question answering: A visual
semantic embedding model and a new dataset,” Computing Research Repository,
vol. abs/1505.02074, 2015. [Online]. Available: http://arxiv.org/abs/1505.02074

[9] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep representations
for graph clustering.” in Proceedings of the 28th Association for the Advancement
of Artificial Intelligence Conference on Artificial Intelligence, 2014, pp. 1293–
1299.

[10] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social rep-
resentations,” in Proceedings of the 20th International Conference on Knowledge
Discovery and Data Mining, 2014, pp. 701–710.

[11] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale
information network embedding,” in Proceedings of the 24th International Con-
ference on World Wide Web, 2015, pp. 1067–1077.

45

[12] X. Li, N. Du, H. Li, K. Li, J. Gao, and A. Zhang, “A deep
learning approach to link prediction in dynamic networks.” in Proceedings
of the 2014 Society for Industrial and Applied Mathematics International
Conference on Data Mining, vol. 14, 2014, pp. 289–297. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9781611973440.33

[13] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings of the
21st International Conference on Knowledge Discovery and Data Mining, 2015,
pp. 1365–1374.

[14] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,”
in Proceedings of the 22nd International Conference on Knowledge Discovery and
Data Mining, 2016.

[15] B. Taskar, P. Abbeel, and D. Koller, “Discriminative probabilistic models for re-
lational data,” in Proceedings of the 18th Conference on Uncertainty in Artificial
Intelligence, 2002, pp. 485–492.

[16] M. Richardson and P. Domingos, “Markov Logic Networks,” Machine Learning,
vol. 62, no. 1-2, pp. 107–136, Feb. 2006.

[17] J. Neville and D. Jensen, “Relational dependency networks,” Journal of Machine
Learning Research, vol. 8, pp. 653–692, May 2007.

[18] D. D. Monner and J. A. Reggia, “Recurrent neural collective classification,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 12,
pp. 1932–1943, Dec 2013.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[20] J. J. Pfeiffer, III, J. Neville, and P. N. Bennett, “Overcoming relational learning
biases to accurately predict preferences in large scale networks,” in Proceedings
of the 24th International Conference on World Wide Web, 2015, pp. 853–863.
[Online]. Available: http://doi.acm.org/10.1145/2736277.2741668

[21] Z. Kou and W. W. Cohen, “Stacked graphical models for efficient inference in
markov random fields.” in In Proceedings of the 2007 Society for Industrial and
Applied Mathematics International Conference on Data Mining, 2007, pp. 533–
538.

[22] S. M. Kazemi, D. Buchman, K. Kersting, S. Natarajan, and D. Poole, “Relational
logistic regression,” in International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 2014.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. MIT Press, 1986, pp. 318–362.
[Online]. Available: http://dl.acm.org/citation.cfm?id=104279.104293

[24] F. Gers and J. Schmidhuber, “Recurrent nets that time and count,” in Proceed-
ings of the International Joint Conference on Neural networks, vol. 3, 2000, pp.
189–194 vol.3.

46

[25] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” Computing Research Repository, vol. abs/1409.3215, 2014.
[Online]. Available: http://arxiv.org/abs/1409.3215

[26] D. Wang, P. Cui, and W. Zhu, “Structural deep network embed-
ding,” in Proceedings of the 22nd International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 1225–1234. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939753

[27] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1109/TNN.2008.2005605

[28] J. Atwood and D. Towsley, “Search-convolutional neural networks,” Com-
puting Research Repository, vol. abs/1511.02136, 2015. [Online]. Available:
http://arxiv.org/abs/1511.02136

[29] D. Monner and J. A. Reggia, “A generalized LSTM-like training algorithm for
second-order recurrent neural networks,” Neural Networks, vol. 25, pp. 70–83,
Jan. 2012. [Online]. Available: http://dx.doi.org/10.1016/j.neunet.2011.07.003

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2012, pp. 1097–1105. [Online].
Available: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf

[31] R. E. Bellman, Dynamic Programming. Dover Publications, Incorporated, 2003.

[32] J. Leskovec, “The dynamics of viral marketing,” Association for Computing Ma-
chinery Transactions on the Web, p. 5, 2007.

[33] B. van Merriënboer, D. Bahdanau, V. Dumoulin, D. Serdyuk, D. Warde-Farley,
J. Chorowski, and Y. Bengio, “Blocks and fuel: Frameworks for deep learning,”
Computing Research Repository, vol. abs/1506.00619, 2015. [Online]. Available:
http://arxiv.org/abs/1506.00619

[34] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999, previous number = SIDL-WP-1999-0120. [Online].
Available: http://ilpubs.stanford.edu:8090/422/

[35] G. Jeh and J. Widom, “Scaling personalized web search,” in Proceedings of the
11th International Conference on World Wide Web, 2002, pp. 271–279.

	Purdue University
	Purdue e-Pubs
	12-2016

	Deep collective inference
	John A. Moore
	Recommended Citation

	gs-form30
	thesis

