
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

12-2016

Evaluation of a cool-season grass-white clover
mixture for low-nitrogen input lawns
Gabriel Adam Macke
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Agronomy and Crop Sciences Commons, and the Horticulture Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Macke, Gabriel Adam, "Evaluation of a cool-season grass-white clover mixture for low-nitrogen input lawns" (2016). Open Access
Theses. 875.
https://docs.lib.purdue.edu/open_access_theses/875

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/145190913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F875&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F875&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F875&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F875&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F875&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/105?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F875&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/875?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F875&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of 
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): 

Approved by:

Head of the Departmental Graduate Program Date

Gabriel Macke

EVALUATION OF A COOL-SEASON GRASS-WHITE CLOVER MIXTURE FOR LOW-NITROGEN INPUT LAWNS

Master of Science

Cale A. Bigelow
Chair

Douglas S. Richmond

Keith D. Johnson

Hazel Y. Wetzstein

Cale A. Bigelow

Hazel Y. Wetzstein 11/7/2016





EVALUATION OF A COOL-SEASON GRASS-WHITE CLOVER MIXTURE FOR LOW-

NITROGEN INPUT LAWNS 

 

A Thesis 

Submitted to the Faculty 

of 

Purdue University 

by 

Gabriel A. Macke 

 

In Partial Fulfillment of the 

Requirements for the Degree 

of 

Master of Science 

 

December 2016 

Purdue University 

West Lafayette, Indiana 



ii 
 

TABLE OF CONTENTS 

 
 
               Page 

LIST OF TABLES .......................................................................................................................... iv 

LIST OF FIGURES ......................................................................................................................... v 

ABSTRACT .................................................................................................................................... vi 

CHAPTER ONE - LITERATURE REVIEW .................................................................................. 1 

Benefits of Turfgrass .......................................................................................................... 1 

Turfgrass Fertilization ......................................................................................................... 2 

Concerns with Fertilization ................................................................................................. 3 

Legumes Used in Pasture and Forage System .................................................................... 4 

Grass-White Clover Mixtures ............................................................................................. 7 

Barriers and Obstacles to Adopting Grass-White Clover Lawns........................................ 8 

Project Goals and Research Objectives .............................................................................. 9 

CHAPTER TWO - EVALUATION OF A COOL-SEASON LAWN SPECIES MIXTURE AS 
TROGEN FERTILIZATION ... 11 

Abstract ............................................................................................................................. 11 

Introduction ....................................................................................................................... 12 

Material and Methods ....................................................................................................... 14 

Data Collection and Management ..................................................................................... 15 

Results and Discussion ..................................................................................................... 18 

General Turf Responses .................................................................................................... 19 

Dry Matter Yield ............................................................................................................... 19 

Visual Appearance ............................................................................................................ 24 

Clover Population Changes............................................................................................... 26 

Flower Production ............................................................................................................. 27



iii 
 

 

Page 

Canopy Greenness ............................................................................................................ 28 

Summary and Conclusions ............................................................................................... 31 

CHAPTER THREE  SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 
OPPORTUNITIES ......................................................................................................................... 40 

REFERENCES .............................................................................................................................. 45 

APPENDIX .................................................................................................................................... 52



iv 
 

LIST OF TABLES 

 

 

Table               Page 

1. Overall summary of dry matter yield, visual turf quality and canopy greenness for a cool-
season lawn species mixture grown with and without white clover (Trifolium repens L.-

 ................................. 32  
 
2. Seasonal dry matter yield over two growing seasons for a cool-season lawn species mixture 
grown with and without white clover (Trifolium repens L.-  at two annual nitrogen 
(N) rates ......................................................................................................................................... 33 
 
3. Seasonal changes in visual turf quality for a cool-season lawn species mixture grown with and 
without white clover (Trifolium repens L.-  at two annual nitrogen (N) rates over 
two growing seasons ...................................................................................................................... 34 
 
4. Temporal variation of clover populations over two years using the line-intersect method, and 
yield component analysis of white clover present in dry matter yield harvests at three sampling 
dates in a traditional cool-season lawn species mixture grown with white clover (Trifolium repens 
L.-  .......................................................... 35 
 
5. Visual white clover (Trifolium repens L.- -season lawn 
species mixture grown at two annual nitrogen (N) rates over two growing seasons ..................... 36 
 
6. Seasonal changes in canopy greenness for a cool-season lawn species mixture grown with and 
without white clover (Trifolium repens L.-  at two annual nitrogen (N) rates over ....  
 ....................................................................................................................................................... 37



v 
 

LIST OF FIGURES 

 

 

Figure               Page 

1.  Average (A) temperature (T) (°C) and rainfall (R) (cm) from April to November in 2014 and 
2015 compared to the 20 year average (1995-2015) in West Lafayette, IN .................................. 38 
 
2. Cumulative seasonal dry matter yield (2014-2015) from a cool-season lawn turf .................... 39 
 



vi 
 

ABSTRACT 

 

Macke, Gabriel A. M.S. Purdue University, December 2016. Evaluation of a Cool-Season Grass-
White Clover Mixture for Low-Nitrogen Input Lawns. Major Professor: Cale A. Bigelow. 

 

 

 Turfgrass lawns require supplemental nitrogen (N) to maintain green color and seasonal 

shoot density.  Improper lawn fertilization with excess N or phosphorus has the potential to 

contaminate both surface and groundwater. Thus, to reduce the reliance on supplemental N 

fertilization, alternative strategies or novel turf systems like grass-legume mixtures need 

explored.  White clover (Trifolium repens L.) is a stoloniferous legume that biologically fixes N 

from the atmosphere and adds N into the soil via mineralization.  The objective of this field study 

was to evaluate the persistence and feasibility of a cool-season grass-clover lawn mixture. A lawn 

grass mixture with and without a novel white clover  (MC) was grown at two 

annual N rates (0 and 98 kg N ha-1 yr-1) for two growing seasons.  Dry matter yield (DMY), yield 

component analysis (YCA), visual appearance, canopy greenness, clover populations, and flower 

production were measured.  Total DMY ranged from 3815 to 15583 kg ha-1  and turf that received 

supplemental N produced the most DMY, 15583 and 13136 kg ha-1, respectively, for turf with 

and without MC. By contrast, unfertilized turf with and without MC produced 8754 and 3815 kg 

ha-1, respectively.  The YCA in year two showed that MC contributed approximately
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 15% to DMY in unfertilized turf, and 3% in turf receiving supplemental N.  All treatments 

except the unfertilized turf without MC demonstrated acceptable visual quality and where 

supplemental N was applied, the highest  visual quality was observed.  In year two, the 

unfertilized grass-only turf lacked vigor and was affected by two leaf blighting diseases, red 

thread and dollar spot, resulting in localized patches of brown, dead turf which negatively 

impacted visual appearance.  Canopy greenness was highest in turf with MC receiving 

supplemental N, and lowest in unfertilized turf without MC, while unfertilized turf with MC and 

turf without MC receiving supplemental N were identical.  Clover populations decreased over the 

two years regardless of supplemental N.  Clover in the turf receiving supplemental N decreased 

substantially (17 to 1%), while slightly less in the unfertilized turf (14 to 5%), which also affected 

subsequent flower numbers measured in year two.  

 In a second study, the effect of annual N-rate (0, 98, 146, 195 kg N ha-1 yr-1) on MC 

population changes was assessed using a poultry manure fertilizer. Although the MC populations 

again decreased over time, roughly 25 to 11 % across all treatments, there was surprisingly no 

difference due to any N-rate. This observation, demonstrates that in the future, various N-sources 

deserve further exploration for their compatibility with grass-legume systems.   

Overall, these results highlight the influence of traditional N fertilization practices on 

DMY, visual quality, canopy greenness, and MC persistence in a cool-season lawn grass mixture 

with and without MC. Further, this study demonstrated that a grass-MC lawn can persist and 

provide reasonable visual lawn quality and is a potentially feasible option for lawns in the cool-

humid region where minimal supplemental N is the goal.      
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CHAPTER ONE - LITERATURE REVIEW 

 

Turfgrass covers 1.9% of the total U.S. surface area (Milesi et al., 2005) or approximately 

10 to 16 million hectares (Robbins and Birkenholtz, 2003). Compared to other vegetation, 

turfgrasses survive because they possess the ability to persist as ground cover under regular 

mowing and traffic (Turgeon, 2008).  Turf use can be divided into three major categories: 

functional, ornamental, and recreational. The specific turf use affects the maintenance intensity 

for an area and in general lower inputs are desired for all uses. Further, each of these uses 

provides numerous environmental and other benefits (Beard and Green, 1994). 

 

Benefits of Turfgrass 

Turfgrasses provide humans with aesthetic, functional, and recreational benefits and have 

been used in lawns and gardens for centuries (Beard, 1973).  Functional benefits provided by 

turfgrasses include soil erosion control, groundwater protection, carbon sequestration, soil 

remediation, heat dissipation, and noise abatement (Beard and Green, 1994).  The turfgrass plant 

provides effective soil erosion control with its extensive fibrous root system and high shoot 

density that holds together the upper layer of soil and reduces lateral water movement (Beard, 

1973). Furthermore, the plant  morphology enables it to trap and hold surface runoff, protect 

groundwater by improving water infiltration and percolation through the soil profile, and 

simultaneously filters sediment such as chemical precipitates and pollutants.  One of the most 

beneficial functions of turfgrasses is the ability to remediate soil.  Over time, roots and plant 

tissue decompose and turnover into organic matter increasing the soils fertility. The use of
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 turfgrasses as a vegetative cover to increase soil fertility is a practice that has been adapted 

around the world (Gould, 1968).  Turfgrasses also have an important impact in urban 

communities with their ability to dissipate heat and abate noise.  Beard and Green (1994) report 

that on average urban areas can be as much as 5 to 7 °C warmer than neighboring rural areas. 

Using transpiration as a cooling process, turfgrasses are able to dissipate high levels of radiant 

heat and have been found to be 21 °C cooler than brown dormant turf, and 39 °C cooler than a 

synthetic surface (Johns and Beard, 1985).  Lastly, turfgrass surfaces have the ability to abate 

noise or absorb sound better than hard surfaces such as pavement or bare ground (Cook and 

Haverbake, 1971; Robinette, 1972).  Turfgrasses perform these processes best when they are 

taking up adequate nutrients and actively growing.  However, native and disturbed urban soils 

often do not supply adequate N to the turfgrass plant to satisfy needs or provide acceptable 

landscaping appearance (Carey et. al., 2012).  Therefore, as a means to supply the plant with 

adequate nutrients to meet aesthetic standards and expectations, the practice of providing 

supplemental fertilization, primarily N, by humans is a necessity 

Turfgrass Fertilization 

The nutrient that a turfgrass plant requires in the greatest amount is nitrogen (N) 

(Marschner, 2012), and is often the limiting factor in growth and quality (Easton and Petrovic, 

2004) followed by phosphorus (P) and potassium (K).  N uptake is directly correlated with 

vertical top growth, leaf color, and shoot density (Beard, 1973).  A mature established cool-

season lawn in the Midwest region of the U.S.A. requires approximately 49 to 245 kg N ha-1 yr-1 

depending on the desired level of maintenance and aesthetic expectations (Bigelow et al., 2013).  

Several studies point to the importance of supplying adequate N to achieve and maintain a high 

shoot density and gain maximum benefits from the turfgrass plant and promote environmental 

stewardship (Bierman et al., 2010).   Porshè et al. (2012) demonstrated that a highly maintained 

dense uniform tall fescue (Festuca arundinaceae) lawn receiving 105 kg N ha-1 yr-1 reduced 
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frequency of runoff, total runoff volume, and nutrient losses during natural rain fall when 

compared to a lower maintained tall fescue lawn receiving 86 kg N/ ha-1/yr-1, slightly lower than 

the recommended rate (122 to 147 kg N ha-1/yr-1) for tall fescue in that region.  Furthermore, 

Bierman et al. (2010) reported Kentucky bluegrass (Poa pratensis) receiving annual N and K 

rates of 146 and 56 kg ha-1 respectively, reduced total annual P runoff compared to fertilizer 

programs applying identical rates of N and K, but with high and low rates of P as well as 

unfertilized turf.   

 

Concerns with Fertilization 

In recent years, supplemental lawn fertilization has been viewed negatively for its 

possible contribution to non-point source (NPS) pollution and eutrophication of recreational and 

drinking water supplies. NPS pollution often results from surface runoff and consists of rainfall or 

snowmelt moving over or through the soil picking up organic and synthetic pollutants and 

depositing them in lakes, rivers, wetlands, coastal waters, and watersheds (Pollution Runoff, 

2016).  Significant runoff can occur in both traditional agriculture and urban settings. Agricultural 

land has been identified as a major contributor to NPS pollution (Daniel et al., 1998).  Beard and 

Green (1994) report that runoff water from agricultural and urban areas account for 64 and 5%, 

respectively, of the NPS surface water pollution of rivers in the USA; and 57 and 12%, 

respectively, of the NPS surface water pollution of lakes in the USA.  The United States 

Environmental Protection Agency states that agricultural land is the main source of lake and river 

pollution, and the primary reason the Clean Water Act is unable to meet water quality goals 

(USEPA, 1988). 

Application of fertilizer to turfgrass is also a potential source of both surface and ground 

water contamination (Petrovic, 1990).  Both N and P can effect ground and surface water at low 

levels (Sharpley et al., 1994; Parry, 1998). N in the form of nitrate (NO3
-), is the most mobile 
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nutrient applied to turfgrass (Watschke et al., 2000), and is capable of leaching through the soil 

profile and contaminating ground water.  Through surface runoff, excess P is known to cause 

algal blooms (Bush and Austin, 2001), and eutrophication at levels as low as 0.01 to 0.035 mg L-

1(Mallin and Wheeler, 2000), the exact amount that results from supplemental lawn fertilization is 

uncertain.  As a result, this has resulted in some states implementing laws that restrict or prohibit 

supplemental P application without a laboratory soil test (e.g. MN, WI, MI, NJ, VA, PA, DE). 

Further, industry leading companies have frequently removed P from commercial fertilizer 

products. 

By contrast, the growth habit and thatch forming capabilities of a well-cared for turf 

make it a very effective filter for reducing sediment and slowing runoff (Easton and Petrovic, 

2004).  For example, Ebdon et al., (1999) reported a dense stand of Kentucky bluegrass to be 

highly efficient at removing water from the soil, reducing soil moisture and in response 

decreasing runoff and leaching. Additionally, Vietor et al., (2002) reported Kentucky bluegrass to 

sequester up to 50% of applied N and 88% of applied P dependent on fertilizer application rate.  

Furthermore, Gross et al., (1990) found runoff losses of NO3
- to be less than 1% of applied 

fertilizer.  

Under responsible fertilization practices, NPS pollution can be mitigated in both rural and 

urban settings. As the public spotlight on urban fertilization and its potential to negatively impact 

water quality continues, there is also a strong desire to provide more sustainable or lower input 

turf areas. Thus, there is a need to explore alternative turfgrass nutrient management practices or 

species systems that supply the necessary nutrients with minimal environmental impact is desired. 

 

Legumes Used in Pasture and Forage Systems 

The use of legumes as a means for soil improvement and benefiting subsequent crops has 

been dated as far back as 37 B.C. during the Roman Empire (Fred et al., 1932).  When 
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considering land that is suitable for growing crops, forage legumes make up 20 ha-1x106 across 

the world and produce 605 Mt x106 (Graham and Vance, 2003).  They are an excellent source of 

protein, fiber, and energy that benefit animal health (Wattiaux and Howard, 2001).  When 

compared to annual and perennial cool-season and warm-season grasses, legumes were reported 

to have the highest range of total digestible nutrients (Ellis and Lipke, 1976).   As a result, forage 

legumes have played an important role in the diet of livestock responsible for meat and dairy 

production for centuries (Russelle, 2001).   

Besides being an integral part of the diet of livestock and benefiting livestock production, 

legumes also have the unique ability to biologically fix their own N (BNF), from the atmosphere 

and generally do not require supplemental N.  BNF is the natural phenomena of a leguminous 

plant species and a Rhizobia bacterial strain forming a symbiotic relationship. Rhizobia remove 

N2 gas from the atmosphere producing ammonia (NH3) which is used by the legume for plant 

growth.  In return, the rhizobia infect the root hairs of the legume developing nodules that serve 

as a source of energy in the form of carbohydrates produced from photosynthesis (Evers, 2011).  

Further, BNF can improve soil N, replace N lost by crop removal, and reduce the dependency on 

supplemental N fertilization (Ledgard and Steele, 1992). This would therefore reduce leaching, 

volatilization, runoff, and denitrification that are potential byproducts of N fertilization (Peoples 

et al., 1995; Westhoff, 2009). For these reasons, the inclusion of legumes in grass systems 

appears to be both environmentally and economically responsible (Graham and Vance, 2003).  

Due to the growing dependency on N fertilization and potentially negative environmental 

impacts, there is an increasing interest in both Europe and the U.S.A. of the use of legumes in 

pastures. New Zealand and Australia have already adapted and extensively rely on the use of 

legumes in pastures to support low input sustainable agriculture and low cost farming systems 

(Ledgard and Steele, 1992).   
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BNF in legumes has been extensively studied. Russelle (2008) reports that BNF has a variable 

range from 0 to over 500 kg ha-1 due to a complex interaction of legume species, rhizobia strain, 

soil type, and climate.  Among these factors, soil type and climate are the most influential on 

amount of N fixed. Legume species are more soil specific than grasses (Evers and Smith, 1998), 

and are more sensitive to soil pH and micronutrient deficiencies, especially molybdenum and 

boron (Evers, 2011).      

The inclusion of legumes in grass systems to increase productivity has been well studied. 

Additionally, a pure legume stand will fix more N than a grass-legume mixture because of 

competition for water, nutrients, and light (Evers, 2011).  Due to the popular use of grass-legume 

pastures being used in agricultural forage and pasture systems, the impact of BNF on associated 

grasses in grass legume mixtures has been researched extensively as well.  Possible pathways of 

N transfer from legumes to associated grasses is the death or decay of legume herbage, roots, or 

nodules (Butler et al., 1959; Dubach and Russelle, 1994).  Other pathways include N excretion 

from legume roots and nodules (Ta et al., 1986), hyphal links that directly transferred to non-

legume roots via arbuscular mycorrhizal fungi (Haystead et al., 1988), and ammonia loss from 

legume herbage and reabsorption by grass herbage (Wedin and Russell, 2007).  These pathways, 

however, have not been well studied in lawn systems that are regularly mowed (e.g. weekly) 

during the growing season. 

Additionally, the desirable characteristics of a white clover cultivar would differ from 

pastures to lawn systems. While a variety with rapid top growth may be a desired growth habit in 

a forage system, it is not desired in a lawn system because it will likely lead to more frequent 

mowing or excess clipping production.  Instead, a variety with a slower growth rate or more 

prostrate habit is desirable.  For these reasons has 

been developed as a means to provide a clover that would be more compatible with lawn grasses 

 commonly planted in forage 
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possesses smaller leaves and a more prostrate growth habit that appears 

compatible with the growth and mowing requirements of turfgrasses found in cool-season lawns. 

 

Grass-White Clover Mixtures and Nitrogen Transfer 

A legume commonly mixed with grasses in temperate zones in pastures used for dairy 

farming around the world is Trifolium repens L., or white clover (WC), due to its feed quality and 

ability to fix nitrogen (Gibson and Cope, 1985; Ledgard and Steele, 1992).  In grass-WC 

mixtures, WC can fix up to 400 kg N ha-1 yr, and productive systems, on average, fix 100 to 200 

kg N ha-1 yr (Whitehead, 1995). Three primary factors affect BNF by legumes in mixed pastures. 

These include the present soil N status, legume persistence and production, and competition for 

light with the associated grass (Ledgard and Steele, 1992).  For example, WC mixed with 

perennial ryegrass fixed 23, 187, and 177 kg N ha-1during the seedling, first, and second 

production years. While WC in a pure stand fixed 28, 262, and 211 kg N ha-1 in the three years 

(Jorgensen et al., 1999).  Apparent annual N transfer from WC to perennial ryegrass on a clay soil 

ranged from 57 to 104 kg N ha-1 (Elgersma and Scheplers 1997; Elgersma, Nassiri, and Scheplers 

1998).  Additionally, 33% of fixed nitrogen was transferred to the associated grass, reed 

canarygrass.  In the second year of the four year study, Ladino WC mixed with reed canarygrass 

fixed 150 kg N ha-1 yr-1 and transferred 50 kg N ha-1 yr-1 (Heichel and Henjum, 1991).  Nitrogen 

fixation decreases in soils with high levels of inorganic and mineral N commonly found in 

fertilized systems.   

The benefits of including WC into a grass mixture as a solution to provide a more 

sustainable turf system requiring less N fertilization has been studied. Nitrogen fixation of WC in 

mixtures gradually decreases as nitrogen fertilization increases (Sincik and Acikgoz, 2007).  

When comparing low and high N rates, 20 and 400 kg N ha-1 yr, applied to WC-grass mixtures, N 

fixation is significantly reduced under high N fertilization. Under low fertilization WC fixed 118-
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161 kg N ha-1 yr-1, WC under high fertilization fixed 31-72 kg N ha-1 yr-1 (Hogh-Jensen and 

Schjoerring).  N applications have been reported to decrease rhizobia activity and N fixation. 

Furthermore, soils with high levels of mineral N can inhibit root-hair infection and nodule 

development (Miller and Heichel, 1995). 

 

Barriers and Obstacles to Adopting Grass-White Clover Lawns 

While the potential benefits of a grass-legume system for reduced supplemental N are 

apparent, there are potential barriers and public acceptance of this system could be difficult. 

Currently, the presence of WC in urban lawns and grass seed mixtures in the United States is 

considered an impurity or weedy species (Robinson, 1947).  Furthermore, current ideology or 

expectations for urban lawn systems entails a uniformly green, dense, monoculture of turfgrass 

species free of broadleaved ted plant species.  Like clover it is believed that 

changing homeowner and  be achieved through public outreach 

efforts. For the economic and environmentally conscious homeowner, the benefits of saving time 

and money by reducing the need for supplemental fertilization and simultaneously being more 

environmentally responsible by not applying excess nutrients may be an attractive incentive for 

adapting a grass-WC lawn mixture.   

 By contrast, there are several factors that pose a threat to the mainstream adoption of 

grass-WC lawn mixtures in urban environments. These factors include; an increase in pollinators 

such as bees, attaining the consistent balance of clover populations in a grass-WC lawn mixture, 

and the inability to control other weed species via broadcast application of broadleaf herbicides.  

For example, during the flowering period of WC, the flower serves as a resource to bees by 

providing it nectar and pollen. In return, the bees collect the pollen and transfer it other nearby 

plants in fertilizing the female reproductive organs and completing the pollination process.  This 

natural phenomena is very important in production of fruit that both animals and humans eat, 
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especially as the population of bees is decreasing, endangering the balance of the entire 

ecosystem.  Unfortunately, homeowners with small children or melissaphobia, fear of bees or bee 

stings, may not be keen in the increased activity of bees or other insects in their lawn during the 

summer while their children and pets are playing outside or they are trying to relax and enjoy the 

great outdoors, thus hindering the adaption of grass-WC lawn mixtures in residential areas.    

 a visually acceptable and beneficial clover 

populations in a grass-WC lawn may also be a challenge. Finding the ideal balance of inputs that 

mediates interspecific competition between grass and WC, and how much WC is actually needed 

in a grass-WC stand to provide a sustainable low-input lawn has not been identified.      

 Lastly, because the presence of WC disrupts the uniformity of a grass system it is 

considered a weed. Clover is susceptible to selective broadleaf herbicides like 2-4 D, dicamba, 

and mecoprop (MCPP), which are commonly used in urban turf systems to control broadleaf 

weeds such as dandelion, plantain, ivy, thistle, and clover. As a result, broadcast applications of 

these herbicides to control non-clover broadleaf weeds would not be possible in grass-clover lawn 

mixtures without severely damaging or eradicating the clover populations. Other management 

practices could still be used to maximize clover populations in lawns. The practice of 

or individually selecting and spraying a specific non-clover unwanted plant, is still a 

viable option. This practice would reduce the amount of herbicide used on the lawn, ultimately 

saving the applicator time, product and money, while maintaining the desired beneficial clover 

populations.  

 

Project Goal and Research Objectives 

The overall goal of this project was to explore alternative lawn systems to reduce reliance 

on supplemental N fertilization. Prior research with grass-clover lawn systems included studying 

the effects of supplemental N and WC inclusion on botanical composition and N cycling in a 



10 
 

bermudagrass (Cynodon dactylon) lawn in the southeastern region of the U.S.A. (McCurdy et al., 

2014). In addition, the carbon (C) and N release from the decomposition of WC in a 

bermudagrass lawn was also quantified (McCurdy et al., 2013). Other studies in Kentucky 

evaluated techniques to help establish WC into preexisting turfgrass stands like the impact of 

cultivation technique and planting date (Sparks, 2014).  There has been very little research 

examining the performance and persistence of a cool-season grass-WC lawn mixture when 

supplemental N-fertilizer practices are varied.    

Therefore, if the overall goal in the turf industry is to rely less on supplemental fertilizer 

inputs to maintain a dense aesthetically pleasing turf and mitigate the potential for environmental 

pollution and therefore protecting water quality, the feasibility of grass-WC lawn mixtures is 

justified. The specific objectives of this field study were to 1) evaluate the persistence and 

feasibility of a novel grass-clover lawn mixture and compare that system to a traditional cool-

season lawn grass species mixture under a conventional lawn fertilizer regime 2) measure 

differences in seasonal growth and appearance characteristics 3) and document the persistence of 

a WC population over time in a cool-season lawn mixture as affected by supplemental N-

fertilizer.  
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CHAPTER TWO - EVALUATION OF A COOL-SEASON LAWN GRASS SPECIES 

MIXTURE AS INFLUENCED BY 

FERTILIZATION 

  

Abstract 

Lawns require nitrogen (N) more than any other nutrient to maintain green leaf color and 

seasonal shoot density. Excess N fertilization can lead to surface and groundwater contamination, 

suggesting a need for alternatives to reduce the reliance on frequent N fertilization.  Legumes, 

such as white clover (Trifolium repens L.), biologically fix their own N and add N to the soil via 

mineralization. This two-year field study evaluated the growth, appearance characteristics and the 

persistence of a grass and grass-legume mixture with and without supplemental N 

fertilization (0 vs. 98 kg N ha-1 yr-1). T that received supplemental N 

produced the most (15583 kg ha-1)  dry matter yield (DMY) and the highest visual appearance 

ratings. By contrast, , (3815 kg 

ha-1,) and the lowest visual appearance which lacked vigor and was negatively affected by leaf 

blighting diseases. The u moderate growth and an 

acceptable visual appearance. Microclover populations decreased over time in both unfertilized 

and fertilized turf, but less where supplemental N was not applied.   The results of this study 

suggest that a cool-season lawn mixture combined can provide a persistent, 

visually acceptable lawn turf that would require less reliance on supplemental N fertilization.
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Introduction 

The nutrient that a turfgrass plant requires in the greatest amount is nitrogen (N) 

(Marshner, 2012). Increasing N is correlated with more vertical top growth, darker green leaf 

color, and shoot density (Beard, 1973), and therefore is the limiting factor for optimal growth and 

visual quality (Easton and Petrovic, 2004). Depending on the desired level of maintenance, an 

established cool-season lawn in the Midwest region of the U.S.A. requires approximately 49 to 

245 kg N ha-1 yr-1 (Bigelow et al., 2013).  The practice of supplemental N fertilization on lawns 

has received a negative reputation for its potential role in non-point source pollution, potential to 

contaminate both surface and groundwater and contribute to eutrophication (Petrovic, 1990). In 

general, properly nourished lawn grasses possess the growth habit and thatch forming capabilities 

that make them an effective filter for reducing the movement of water along the surface and 

through the soil profile (Easton and Petrovic, 2004).  Responsibly managed and fertilized lawn 

turf can mitigate sediment loss and minimize surface and groundwater contamination (Bierman, 

2010).  As the public spotlight on urban fertilization increases, the need to explore alternative 

turfgrass nutrient management practices or novel turf species that are more efficient nutrient users 

or supply the necessary nutrients with minimal negative environmental impact is needed. 

 Historically, legumes have been used as a means to improve soil and benefit subsequent 

crops (Fred et al., 1932). With their ability to biologically fix atmospheric N legumes can 

improve soil N levels, replace N lost by crop removal, and reduce dependency on supplemental N 

fertilization (Ledgard and Steele, 1992).  By reducing N fertilization needs, nutrient losses 

through leaching, volatilization, runoff, and denitrification can all be mitigated (Peoples et al., 

1995; Westhoff, 2009).  For these reasons along with reducing time and money spent on N 

fertilization, the use of legumes is considered both environmentally and economically responsible 

(Graham and Vance, 2003).
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One legume commonly mixed with pasture grasses in temperate zones around the world 

is Trifolium repens L., or white clover (WC), due to its feed quality and ability to fix N (Gibson 

and Cope, 1985; Ledgard and Steele, 1992).  In grass-WC mixtures, WC can fix up to 400 kg N 

ha-1, while on average 100 to 200 kg N ha-1yr is fixed (Russelle, 1994).   

The benefits of including WC into a grass mixture as a solution to provide a more 

sustainable turf system requiring less N fertilization has been previously studied.  For example, 

apparent annual N transfer from WC to perennial ryegrass on a clay soil ranged from 57 to 104 kg 

N ha -1 (Elgersma and Scheplers, 1997; Elgersma, Nassiri, and Scheplers, 1998).  Furthermore, 

 WC was mixed with reed canarygrass, 33% of fixed nitrogen was transferred to 

the associated grass. It was estimated that the legume fixed 150 kg N ha-1 and transferred 50 kg N 

ha-1 (Heichel and Henjum, 1991). 

The potential to use legumes in lawn grass systems has received some recent study 

(McCurdy et al., 2014; Sparks, 2014) There is little research, however, examining the 

performance and persistence of grass-WC lawn mixtures when different supplemental N 

fertilization practices are varied on a cool-season lawn mixture.  With the overall goal of 

decreasing the potential for environmental pollution from lawns and decreasing the reliance on N 

fertilization to provide a dense aesthetically pleasing turf, understanding the feasibility and 

persistence of grass-WC lawn mixtures is justifiable.  Therefore, the specific objectives of this 

field study were to 1) evaluate the persistence of a novel grass-WC lawn mixture compared to a 

traditional cool-season lawn grass species mixture under two supplemental N fertilizer programs 

and 2) measure the growth and appearance characteristics of these potential lawn turf systems.
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Materials and Methods 

A field study was conducted from Aug. 2013 to Oct. 2015 at the William H. Daniel 

Turfgrass Research and Diagnostic Center, Purdue University, West Lafayette, IN on a Starks-

Fincastle silt loam soil (fine-silty, mixed, mesic, Aeric Ochraqualf) with a pH of 7.2, 203 kg ha-1 

P, 503 kg ha-1 K, and 1.8% organic matter.   

 The research study area was planted on 10 Aug., 2013 at 440 kg ha-1 with a commercially 

available cool-

Coating, Marysville, OH).  Prior to planting, the grass seed was mixed with 5% by weight white 

 Inc., Halsey, OR), hereafter referred to as Microclover 

(MC) based on the aforementioned seeding rate, -24-24 

Knox Fertilizer Company Inc., Knox, IN) was surface applied to provide 24 kg N and 98 kg P2O5 

ha-1.  After seeding, the entire area received a liquid application of a crop legume inoculant 

(Alfalfa/True Clover inoculant-N-DURE; INTX MICROBIALS LLC, Kentland, IN) to provide 

0.34 kg of inoculant to 23 kg of seed.  Inoculant was prepared with water in a five gallon bucket 

to ensure agitation and applied using a 4-gallon piston pump back pack sprayer (SOLO 425 

SOLO USA, Newport News, VA). After all applications were made, the study area was covered 

with a geotextile cover to conserve moisture and promote uniform germination. The cover was 

removed after 28 days.    

Once a uniform cover of both grass and MC had established (e.g. in late autumn), 

individual plots measuring (0.9 x 3.05 m) were defined to create the grass only and grass-MC turf 

areas.  The grass only plots, and surrounding borders, were defined by chemically removing the 
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clover with a selective broadleaf herbicide (T-Zone: 4.7 L ha-1: containing triclopyr, 

sulfentrazone, 2, 4-D, and dicamba; PBI Gordon Inc., Kansas City, MO).  

The supplemental N-program was initiated 21 May, 2014.  Where the treatments 

specified supplemental inorganic N, the turf received five 19.6 kg N ha-1 applications evenly 

spaced across the growing season (e.g. mid-May, June, Aug., Sept., and October) to simulate a 

standard inorganic granular fertilizer program used by lawn care operators in the Midwest USA. 

Granular urea based N-fertilizer products (e.g. urea and/or sulfur coated urea (SCU)) were used. 

The specific urea N-source varied by application timing. A 50% SCU: 50% urea (w/w) mixture 

was applied in May and September, 100% SCU in the summer, June and Aug., and 100% urea in 

October.  The fertilizers were watered into the turf within 12 hours of application via an overhead 

irrigation system. 

 

Data Collection and Measurements 

Turf responses during the study were measured using both visual and quantitative 

methods. The specific evaluations and measurements for this study included dry matter yield 

(DMY), yield component analysis of DMY, visual appearance or quality, temporal changes in 

percentage clover, visual evaluations of the presence of white clover flowers and canopy 

greenness as reflectance. 

DMY was determined throughout the growing season by regularly harvesting fresh 

clippings from an entire plot at a 6.4 cm cutting height using a rotary lawn mower with a bagging 

attachment (Honda Quadracut System; Honda Motor Company Inc., Tokyo, Japan).  Fresh 

clippings were oven dried at 82°C in a forced-air drying oven for a minimum of 72 h.  Dry 

samples were weighed to the nearest gram, ground into fine pieces (e.g. < 12 mm) using a rotary
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 blender (Ninja Kitchen, Euro-Pro Operating LLC, Newton, MA) and returned to their respective 

plots and lightly raked back into the turf canopy to avoid any excess DMY that might affect 

subsequent DMY measurements. 

To better understand the contribution of clover to DMY, a yield component analysis 

(YCA) method was used. Samples were collected at four locations approximately 0.6 m apart on 

a transect down the center of each plot. The turf was allowed to grow to approximately 15 cm. A 

15 cm diameter by 6.4 cm tall PVC ring was pressed into the turf canopy until it came in contact 

with the soil surface.   All the vegetative tissue above the edge of the ring was manually harvested 

with scissors.  The grass was separated from the clover in each fresh sample, oven dried at 82°C 

in a forced-air drying oven for a minimum of 72 h, weighed to the nearest 0.0001 and the 

percentage of each component calculated.  

Visual turf quality ratings were recorded regularly during each growing season (e.g. 2-4 

times monthly) using a 0-10 scale where 10=optimum density, uniformity, and greenness, and 0= 

s were always 

recorded on freshly mowed turf following DMY harvest.  

Changes in percentage clover was determined using two methods, visual ratings on a 0-

100% linear scale where 100 = complete clover coverage with MC and line-intersect grid counts.  

Grid counts were recorded four times throughout the growing season (e.g. May, June, July, and 

October) using the line-intersect method (Tinney et. al., 1937). Grid dimensions were 0.9 X 1.8 

m2 with 11 vertical lines and 23 horizontal lines consisting of 253 total intersects spaced 0.03 m 

apart. Measurements were noted at individual intersects where presence of MC was recorded and 

divided over the total number of intersects to calculate the percentage of MC in stand of turf.   

Additionally, the presence of white clover flowers and turf disease were visually 

assessed. Flower prevalence was assessed by visually counting prior to DMY harvests. All 
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flowers falling within the plot borders were recorded.  Turf disease was rated visually when 

necrosis noticeably damaged the turf. Percentage turf blight was rated on 0-100% scale where 0 = 

no disease present 100% = entire plot damaged.  

Canopy greenness was also measured following each DMY harvest using a hand-held 

reflectance meter (Field Scout TCM-500 Spectrum Technologies, Aurora, IL).  Ten 

representative locations in each plot which were measured and averaged into a single plot value 

with canopy greenness expressed as a unitless color index. 

In the absence of regular rainfall, the area received supplemental irrigation via an 

overhead irrigation system to prevent severe drought stress and promote active growth. In June 

and July 2015 two leaf blighting diseases; red thread L. fuciformis and dollar spot S. 

homoeocarpa began to damage some plots and two curative fungicide applications 

(chlorothalonil followed by boscalid on a 14-d interval) were made to arrest the progress of these 

diseases and minimize any negative influences of blighted turf on DMY or appearance 

measurements.  

Weather data was recorded from April through November in both years, 2014 and 2015.  

High and low air temperatures were recorded each day and calculated to get a monthly average to 

compare to the historic twenty year average (Fig. 1).  Precipitation, measured as rainfall, was also 

measured each day and calculated as cumulative monthly rainfall (cm) to compare both study 

years, 2014 and 2015.  Lastly, seasons were defined by the astronomical seasons in the Northern 

hemisphere: spring (21 March to 19 June), summer: (20 June to 22) Sept., autumn: (23 Sept. to 20 

December), and winter: (21 Dec. to 20 March).      

supplemental annual fertilizer (0 vs. 98 kg N ha-1). Treatments were replicated four times and 

arranged in a randomized complete block design.  All data was subject to analysis of variance
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(ANOVA) using the general linear model in SAS (SAS Institute v. 9.4, Cary, North Carolina, 

 protected least significant difference (LSD) t-test at 

(P<0.05).  

 

Results and Discussion 

 Climate data for West Lafayette, IN shows that average monthly temperatures of April 

thru November of 2014 and 2015 varied at times from the 20 year average (Fig. 1).  In April, 

2014 and 2015 average temperatures were both similar to the 20 year average. In May and June 

of 2014, air temperatures were similar to the 20 year average, while May 2015 was slightly higher 

and June 2015 was slightly lower than the 20 year average. Average air temperatures in both July 

and August of 2014 and 2015 were lower than the 20 year average.  In September and October of 

2014, air temperatures were lower than the 20 year average, while in 2015 air temperatures in 

September and October were both higher.  Lastly, in November, 2014 was much lower than the 

20 year average, and by contrast 2015 was much higher. 

 Total monthly precipitation varied dramatically between the two the study years (Fig. 2). 

Rainfall totaled 81 and 67 cm yr-1 for 2014 and 2015 respectively. Differences in rainfall between 

2014 and 2015 were greatest from June to October.  June and July of 2015 received substantial 

amounts of rainfall (36 cm) compared to 2014 (22 cm) resulting in cooler air temperatures than 

the 20 year average. By contrast, in the late summer and fall months (August- October) 2015 

received very little rainfall (14 cm) compared to 2014 (59 cm).   
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General Turf Responses 

When the data are evaluated for the entire two years of this study, there were very highly 

significant effects (P<0.001) of MC and supplemental N on DMY, visual appearance and canopy 

greenness (Table 1). Total DMY values ranged from roughly 3800 to 15600 kg ha-1, mean visual 

quality values ranged from 5.6 to 8.3 (> 6.0 = acceptable lawn turf), and mean canopy greenness 

values ranged from 0.714 to 0.749.  

 

Dry Matter Yield 

When evaluating DMY for each individual year, DMY values ranged roughly from 2800 

to 7200 kg ha-1 in year one (Table 2).  The turf with MC and supplemental N resulted in the most 

DMY, and the unfertilized turf without MC resulted in the least DMY.  The unfertilized turf with 

MC, and the fertilized grass-only turf produced roughly equal DMY amounts, 5312 and 5119 kg 

ha-1 respectively. 

In year two, DMY values ranged from roughly 1000 to 8400 kg ha-1.  Again the fertilized 

turf with MC resulted in the most DMY, 8406 kg ha-1, and the fertilized grass only turf was 

slightly less, 8017 kg ha-1. The unfertilized turf without MC had the least DMY, 1037 kg ha-1 and 

the unfertilized turf with MC was intermediate with 3422 kg ha-1.   

 DMY data in this study is similar to previous findings Wolton and Brockman, (1970) 

and Laidlaw (1980.) Both studies reported higher DMY in mixed swards of grass/ white clover 

than grass only turf receiving supplemental N fertilizer ranging from 0-134.5 kg N   ha-1 yr-1.  

y turf 

receiving 0 supplemental N decreasing with each succeeding year. Slight differences in this data 

includes Wolton and Brockman reporting higher DMY in each successive year at all N fertilizer 



20 
 

rates in the white clover/ grass swards.  This study did report a higher DMY in year two than year 

one for the turf with MC receiving supplemental N fertilizer, but by contrast the unfertilized turf 

with MC did not produce a higher DMY in year two than year one. However, the unfertilized turf 

with MC DMY data findings are similar to (Elgersma and Scheplers, 1997) who found in a three 

year study that annual DMY of unfertilized grass/ white clover mixtures declined each successive 

year, 12396, 10669, and 8840 kg ha-1, respectively.  Furthermore, DMY of turf with and without 

MC receiving supplemental N fertilizer in this study was consistent with the findings of (Kopp 

and Guillard, 2002).  Kopp and Guillard reported using a similar cool-season lawn species 

mixture without MC consisting of bluegrass, ryegrass, and fescue on a fine sandy loam soil in a 

temperate humid climate similar to the Midwest in a two year field study examining the effects of 

N fertilizer rates and returned vs. removed clippings on DMY.  Over their two year study the 

average DMY of turf receiving 0 and 98 kg N ha-1 with clippings returned was approximately 

3000 and 6000 kg ha-1 respectively.  DMY can also be compared to (Walker et al., 2007) who in a 

two year field study examined above ground responses of cool-season lawn species to different N 

fertilizer rates and application timings.  Walker et al. (2007) reported substantially less DMY of 

grass only turf receiving supplemental N, but similar DMY values in unfertilized turf despite 

being in a temperate humid climate in the Midwest.  Using similar grass species, unfertilized 

Kentucky bluegrass-only turf produced 1864 and 1785 kg ha-1 in year one and two, respectively, 

for a study total of 4561 kg ha-1 while in the present study, unfertilized grass only produced 2777 

and 1037 kg ha-1 for year one and two respectively for a study total of 3815 kg ha-1.  Furthermore, 

Kentucky bluegrass receiving 123 kg N ha-1 yr-1 at different application timings did not produce 

as much DMY as the turf in the present study with or without MC receiving 98 kg N ha-1 yr-1. 

Kentucky bluegrass receiving 123 kg N ha-1 yr-1 at different times of the year, had a DMY ranging 

from 3134 to 3496 kg ha-1 in year one and 3588 to 3725 kg ha-1 in year two, for a study total of 

7842 to 8463 kg ha-1.  By contrast, in the current study studies turf with MC and grass-only turf in 
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this study receiving 98 kg N ha-1 yr-1, produced DMY values of 7177 and 5119 kg ha-1 in year 

one, and 8406 and 8017 kg ha-1 in year two, for a study total of 15583 and 13136 kg ha-1 

producing roughly double the DMY.  The differences in results could be due to N application 

timing.  N fertilizer was applied evenly over the course of the growing season, compared to 

autumn focused fertility.                  

To better understand how MC and N fertilizer affected DMY, the DMY data into three 

different growing periods (e.g. spring, summer, fall) for each individual year (Table 2.) In this 

study, there were 37 total harvests with 22 and 15 in year one and two, respectively.  Across all 

three growing periods in year one, fertilized turf with MC produced the most total DMY.  By 

contrast, unfertilized turf without MC produced the least DMY.  The unfertilized turf with MC 

produced more total DMY in spring and summer than fertilized turf without MC, but not in the 

fall. 

In the spring of year one, fertilized and unfertilized turf with MC had more DMY than 

fertilized and unfertilized turf without MC.  In the summer, fertilized turf with MC produced the 

most DMY, 3320 kg ha-1 and the unfertilized turf without MC the least 844 kg ha-1. The fertilized 

turf without MC and unfertilized turf with MC were intermediate. In the fall, fertilized turf with 

and without MC produced the highest DMY, with 1704 and 1620 kg ha-1 respectively. By 

contrast, unfertilized turf without MC produced the lowest DMY with 495 kg ha-1. 

In year two, total DMY values ranged from 1037 to 8406 kg ha-1. Across all three 

growing periods DMY results for unfertilized turf without MC and fertilized turf with MC were 

the same in year two as year one.  Fertilized turf with MC produced the highest DMY across all 

three seasons and unfertilized turf without MC produced the least.  What was different in year 

two was fertilized turf without MC produced significantly more DMY than in year one, as well as 

producing more DMY than unfertilized turf with MC which in year one produced statistically
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 similar DMY.  For example, in the spring, fertilized turf without MC and unfertilized turf with 

MC produced 2530 and 1184 kg ha-1, respectively, and were not statistically similar .  In 

year one fertilized turf without MC produced 1964 kg ha-1 of DMY in the summer period, and in 

year two produced 3842 kg ha-1.  By contrast, fertilized turf with MC produced 3320 and 3864 kg 

ha-1 in summers of year one and two respectively.  It is postulated that the large increase in total 

DMY for the fertilized turf without MC in the second year of the study, 5119 versus 8017 kg ha-1, 

is due to the effects of the supplemental N fertilizer becoming realized to the grass plants.  DMY 

values in the fall of year two, were nearly identical to year one even though the total number of 

harvests were fewer due to longer intervals between harvests.  Turf receiving supplemental N 

with and without MC produced the highest DMY, 1657 and 1645 kg ha-1, respectively.  These 

values were similar to year one, 1620 and 1704 kg ha-1 for the turf receiving supplemental N with 

and without MC. By contrast, the unfertilized turf without MC produced the lowest DMY 161 kg 

ha-1, and unfertilized turf with MC was the intermediate with 647 kg ha-1.  

By year two, fertilized turf with and without MC began to produce excessive clippings 

across all three seasons with respect to a low maintenance turf system. This suggests that the 98 

kg N ha-1 yr-1 was sufficient N for a lower maintenance turf system on this soil type in this 

geographic region. On the other hand, the unfertilized turf with MC produced substantially less 

DMY in year two than the fertilized treatments, yet this turf still sustained sufficient growth, 

density and an ability to resist disease.  These data suggest that a mixed sward of grass and MC 

appears to be a viable option for a persistent low maintenance lawn turf system. 

Additionally, changes in seasonal growth patterns of each lawn mixture as affected by N 

fertilization can be explained (Figure 1).  In the spring of year one, unfertilized and fertilized turf 

with MC produced DMY at a faster rate than unfertilized and fertilized turf without MC (Figure 

1). Progressing into the summer, fertilized turf with MC produced DMY at a faster rate than
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 unfertilized turf with MC, and fertilized turf without MC produced DMY at a faster rate than 

unfertilized turf without MC. N fertilizer was very highly significant in the summer explaining 

why the fertilized plots with and without MC produced more than their counterparts, unfertilized 

turf with and without MC.  Furthermore, MC was also had a significant impact on DMY in the 

summer, thus explaining why unfertilized turf with MC continued to produce DMY at a fast rate.  

In the fall, N fertilizer continued to have a very highly significant effect while MC only had a 

significant effect leading fertilized turf without MC to produce DMY at a faster rate than 

unfertilized turf with MC ending the year one with similar values for DMY.  Fertilized turf with 

and without MC produced similar DMY values in the fall, however, for the first time in year one 

there was significant interaction, (PLO 0.05) between MC and N explaining why fertilized turf 

with MC produced DMY at a slightly faster rate in the fall than fertilized turf without MC. 

 By the first harvest in the spring of year two, fertilized turf without MC surpassed 

unfertilized turf with MC in cumulative DMY.  Fertilized turf with and without MC produced 

DMY at the fastest and second fastest rate, respectively, while unfertilized turf with MC produced 

DMY at a slower rate than the fertilized turf but faster than unfertilized turf without MC.  In the 

summer and fall of year two, fertilized turf with or without MC produced DMY at the fastest rate 

and statistically similar values. Furthermore, unfertilized turf with MC continued to produce 

DMY at a rate less than the fertilized turf regardless of MC inclusion and greater than unfertilized 

turf without MC. The rate of DMY produced in the unfertilized turf without MC decreased from 

year one to year two. The decrease in DMY production was a result of the unfertilized turf 

without MC inability to take up adequate nitrogen for growth. Furthermore, the stand density of 

the unfertilized turf without MC was afflicted in late May and June by low N diseases, red thread 

L. fuciformis and dollar spot S. homoeocarpa.  Unfertilized turf with MC also produced DMY at a 

slower rate in year two than in year one. However, unfertilized turf with MC was not afflicted by
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 disease, still produced an acceptable ground cover, and did not visually appear to lose stand 

density. 

 In year two, yield component analysis (YCA) was measured at three sampling dates (8 

May, 28 July, and 7 Oct.) to understand how much MC foliage was contributing to the overall 

weight of the DMY harvests as a percentage, and how it was being affected by the N fertilizer 

(Table 4).  Results showed that in year two yield components were comprised of 9 to 18 percent 

by weight MC foliage in unfertilized turf with MC, and 1 to 5 percent by weight in fertilized turf 

with MC across the three sampling dates.  On 8 May and 7 Oct., yield components were 17 and 

18 percent by weight MC foliage in the unfertilized turf with MC, and 5 and 1 percent by weight 

in the fertilized turf with MC respectively. At these sampling dates N fertilizer had a significant 

effect on MC percentage by weight contribution to DMY harvests. By contrast, on 28 July MC 

contributed 9 percent by weight to the DMY harvest in unfertilized turf with MC, and 2 percent 

by weight in the fertilized turf with MC. At this sampling date N fertilizer did not have a 

significant effect on M

in MC percent by weight component of DMY could be due to the short interval between prior 

DMY harvest and the 28 July sampling date to determine YCA.          

 

Visual Appearance 

When evaluating the turf for appearance or visual turf quality (TQ), the mean TQ values 

for the study ranged from 5.6 to 8.3, with only the unfertilized grass only turf producing an 

unacceptable (< 6.0) quality (Table 3). When evaluating each individual year, mean visual quality 

in year one ranged from 6.6 to 8.1. The turf with MC receiving supplemental fertilizer N had the 

highest visual quality, 8.1, and the unfertilized turf without MC resulted in the lowest TQ, 6.6.
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The unfertilized turf with MC, and grass only turf receiving 98 kg N ha-1 had similar TQ values, 

7.6 and 7.5, respectively. 

In year two, mean TQ values ranged from 4.6 to 8.6.  Turf receiving supplemental N 

fertilizer either with or without MC resulted in the highest TQ, 8.6, and unfertilized turf without 

MC resulted in the lowest visual quality, 4.6.  The unfertilized turf with MC produced a mean TQ 

rating of 7.2, falling in between the lowest and highest visual quality ratings, and was different 

than all other treatments.  

When TQ is evaluated for the three different growing periods (e.g. spring, summer, fall) 

in each individual year the temporal and seasonal effects of treatments become apparent.  Across 

all three growing periods in year one, turf with MC and receiving supplemental N produced the 

highest TQ, and unfertilized turf without MC produced the lowest TQ.  All values, however, were 

deemed acceptable, > 6.0. The seasonal TQ values of grass only fertilized turf improved over the 

year as the N fertilizer responses began to take effect.  For example, in the spring of year one, the 

unfertilized turf with MC had a higher TQ than fertilized turf without MC, 7.2 versus 6.8, 

respectively. In the summer, however, they were similar, 7.8 and 7.6, respectively.  In the fall, the 

fertilized grass-only turf was superior to the unfertilized turf with MC, 9.0 versus 8.3, 

respectively.  The highest TQ values across all three growing periods was associated with the 

fertilized turf with MC which was superior to all treatments except in the fall when it was 

equivalent to the fertilized grass only turf. 

In year two, across all three growing periods, the trends in TQ values were similar to year 

one for the unfertilized grass only turf and fertilized turf with MC.  One difference in year two 

was that the values for the unfertilized turf without MC were slightly lower than year one and TQ 

was unacceptable in spring and summer. By contrast, the fertilized grass only turf had generally 

higher TQ values than in year one.  The fertilized grass only turf had higher TQ values than the 
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unfertilized turf with MC in all three growing periods and was similar to the fertilized turf with 

MC which had the highest TQ values for all treatments in both year one and two of the study.  

The increased TQ values for the fertilized grass-only turf was primarily due to the darker green 

color and density due to repeated supplemental fertilizer N applications.  

The lower TQ values of the unfertilized turf without MC in year two was due to a lack of 

vigor in this turf as evidenced in the DMY data (Table 2) but also associated with the presence of 

turf disease. The weather in year two was characterized by cool, wet weather (Figure 1 and 2).  In 

the spring and early summer red thread L. fuciformis and dollar spot S. homoeocarpa blighted the 

turf resulting in localized patches of dead, brown turf which negatively affected TQ ratings. For 

example on 18 June, 2015 percentage turf blight due to disease was 0.4% versus 9% for 

unfertilized grass with and without MC (data not shown). By contrast, there was no visible blight 

in the plots receiving supplemental N. Dollar spot and red thread are diseases commonly 

associated with turf that has low vigor and/or is N deficient (Smiley et al, 2005). Since this turf 

had not received supplemental fertilizer N since being planted in Aug. 2013, this response is not 

surprising. 

TQ results of this study were similar to the findings of (Sincik and Acikgoz, 2014). 

Unfertilized grass/ white clover turf mixtures produced significantly higher TQ ratings than 

unfertilized grass only turf across all seasons in a three-year study.  

 

Clover Population Changes 

In year one MC populations ranged from 7 to 17 percent in fertilized turf while MC 

populations in unfertilized turf had less variation ranging from 11 to 14 percent (Table 5).  MC 

populations were highest in mid-June in unfertilized turf, and late-May in fertilized turf.  
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Although MC populations decreased in each successive sampling in fertilized turf of year one, 

annual N rate did not have a significant effect on MC populations in year one when compared to 

unfertilized turf MC populations. 

 In year two, clover populations ranged from 1 to 5 percent in fertilized turf and 5 to 9 

percent in unfertilized turf.  Similar to year one, MC populations in fertilized turf continued to 

decrease throughout year two. On the first measurement date in June, the N fertilizer had a 

significant effect compared to the unfertilized turf.  Furthermore, as the season progressed N 

fertilizer had a significant effect on MC populations in late July and October reducing MC 

populations to just one percent by the end of year two.  Different from year one, MC populations 

were highest in unfertilized turf in May instead of June and steadily decreased from May to late 

July but remained constant from late July to October. 

 

Flower Production 

 Flower production (FP) was measured from June to August by visually counting the 

number of MC flowers present in each plot prior to DMY harvests.  In year one, FP ranged from 

12 to 52 in unfertilized turf with MC, and 1 to 18 in fertilized turf with MC.  For both fertilized 

and unfertilized turf with MC, FP was highest on 16 July and lowest on 20 Aug (Table 5). On 16 

July of year one N fertilizer had a significant effect on FP and continued to have a significant 

effect the rest of the year.  On average, unfertilized turf with MC produced 52 flowers while 

fertilized turf with MC only produced 18. This was further evident on 20 Aug. when unfertilized 

turf with MC on average produced 12 flowers and fertilized turf with MC produced only 1. 

 In year two, FP ranged from 26 to 80 in unfertilized turf with MC, and 1 to 6 in fertilized 

turf with MC. Similar to year one, FP for both fertilized and unfertilized turf with MC recorded
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 its highest FP in mid-July and its lowest FP in Aug.  In both year one and two, FP in fertilized 

turf with MC in Aug. only produced 1 flower. What was different in year two from year one was 

N fertilizer had a significant effect or very highly significant effect throughout all of year two on 

FP.          

 

Canopy Greenness 

Canopy greenness (CG) was measured as reflectance and data are presented as a unitless 

index value (Table 6). For the study, the CG values ranged from 0.714 to 0.749 with the 

unfertilized grass only turf having the lowest value and the fertilized turf with MC the highest 

value. When evaluating each individual year, in year one, CG ranged from 0.721 to 0.752.  Turf 

with MC receiving supplemental N resulted in the highest CG, 0.752, and unfertilized turf 

without MC resulted in the lowest CG, 0.721.  Grass only turf receiving supplemental N fertilizer 

and unfertilized turf with MC were intermediate and produced statistically similar CG values, 

0.738 and 0.744 respectively. Furthermore, they both produced statistically significant higher CG 

values than unfertilized turf without MC.  Grass only turf receiving supplemental N was not 

statistically similar to turf with MC receiving supplemental N while unfertilized turf with MC 

produced statistically similar CG values to fertilized turf with MC, 0.744 and 0.752 respectively.   

In year two, CG ranged from 0.706 to 0.746.  Same as year one, turf with MC receiving 

supplemental N fertilizer resulted in the highest CG.  Unfertilized turf without MC resulted in the 

lowest CG, and grass only turf receiving supplemental N fertilizer and unfertilized turf with MC 

produced intermediate values, 0.743 and 0.738 respectively.  What was different in year two, was 

grass only turf receiving supplemental N produced a higher CG in year two than year one and 

grass only turf receiving N fertilizer resulted in statistically similar CG values as fertilized turf
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 with MC, 0.743 and 0.746, respectively.  Unfertilized turf with MC produced a lower CG in year 

two than year one and was not statistically similar to fertilized turf with MC as it was in year one. 

When CG is evaluated for the three different growing periods (e.g. spring, summer, fall) 

in each individual year the effects of MC and N on treatments became apparent.  Across all three 

growing periods in year one, fertilized turf with MC produced the highest CG value.  By contrast, 

grass-only turf receiving supplemental N produced the lowest CG value in the spring, and 

unfertilized grass only turf produced the lowest CG value in summer and fall. 

In the spring of year one, unfertilized turf with and without MC produced intermediate 

CG values, 0.722 and 0.708 respectively. These CG values were lower than fertilized turf with 

MC, but still remained statistically similar. However, grass only turf receiving supplemental N 

fertilizer was statistically different from the other three treatments and produced the lowest CG 

value, 0.705, in the spring of year one.  In the spring of year one, MC had a significant effect on 

the treatments while the N fertilizer and the interaction between the two variables had not.  This 

explains why the fertilized and unfertilized turf with MC produced the two highest CG values, but 

does not explain why grass only turf without supplemental N still produced a statistically similar 

CG value to both of the turf treatments with MC.  In the summer, MC had a highly significant 

effect on the treatments.  Same as in the spring, unfertilized and fertilized turf with MC produced 

the two highest CG values, 0.748 and 0.742 respectively, and were statistically similar.  

Furthermore, N fertilizer also had a significant effect in the summer. Grass only turf receiving 

supplemental N increased its CG value from 0.705 to 0.731 from the spring to summer season 

becoming statistically greater than unfertilized grass only turf and statistically similar to 

unfertilized turf with MC, but not statistically similar to fertilized turf with MC.  Lastly, 

unfertilized grass only turf produced the lowest CG, 0.713, and was not statistically similar to any 

other treatment.  In the fall of year one, N fertilizer had a very highly significant effect. Fertilized 
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turf with MC and grass only turf receiving supplemental N fertilizer were statistically similar and 

produced the two highest CG values, 0.788 and 0.787 respectively.  Unfertilized turf with MC 

produced an intermediate value of 0.770.  For the first time in year one unfertilized turf with MC 

was not statistically similar to fertilized turf with MC. Lastly, similar to summer, unfertilized 

grass-only turf produced the lowest CG value, 0.751, and was not statistically similar to any other 

treatments. Similar to year one, fertilized turf with MC produced the highest CG values across all 

three seasons. Different from year one, unfertilized grass only turf produced the lowest CG values 

across all three seasons. In year two, N fertilizer continued to have a highly and very highly 

significant effect on CG causing seasonal CG of year one and year two to have multiple 

differences. For example, unfertilized and fertilized turf with MC and grass only turf receiving 

supplemental N all produced statistically similar CG values in the spring, 0.731, 0.739, and 0.739 

respectively. By contrast, unfertilized grass only turf produced the lowest CG, 0.712. In the 

summer, all three treatments effects were very highly significant. Fertilized turf with MC 

continued to produce the highest CG value, 0.748. Grass only turf receiving supplemental N and 

unfertilized turf with MC produced intermediate values, 0.743 and 0.741 respectively. However, 

grass only turf receiving supplemental N CG value was still statistically similar to fertilized turf 

highly significant effect and grass only turf receiving supplemental N and fertilized turf with MC 

produced statistically similar CG values, 0.770 and 0.766 respectively. Furthermore, MC alone 

did not have a significant effect in the fall concluding why unfertilized turf with MC was not 

statistically similar to fertilized turf with MC and grass only turf receiving supplemental N 

producing an intermediate CG value, 0.751.  Lastly, unfertilized grass only turf produced the 

lowest CG value, 0.736, and was not statistically similar to any of the other treatments.
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 Summary and Conclusion 

In conclusion, over the two growing seasons of this study, the turf with MC that received 

supplemental N, 98 kg N ha-1 yr-1, produced the most desirable appearance and DMY or shoot 

growth, which was at times excessive. The grass-only turf receiving the supplemental N program 

also produced a high quality visual appearance and shoot growth nearly similar to the grass-MC 

turf with supplemental N. The unfertilized turf without MC produced the least shoot growth and 

least desirable appearance. The lack of vigor in this turf resulted in significant damage from leaf 

blighting diseases in year two and required fungicides. The unfertilized grass-MC turf resulted in 

vigorous but non-excessive shoot growth and a seasonal appearance that would be more than 

acceptable for green color and uniformity. Further, it was observed that supplemental N 

substantially reduced MC populations, suggesting that to maintain the potential benefits of MC, 

minimal supplemental N should be applied. Ultimately, this study demonstrated that a persistent 

grass-MC lawn species mixture could be maintained and appears to be an alternative to traditional 

grass-only lawns that receive supplemental fertilizer N. These grass-MC lawns would require 

substantially less supplemental N fertilization and reduce the risk potential for NPS pollution due 

to excess lawn nutrient applications.
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CHAPTER THREE - SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

OPPORTUNITIES 

Turf (lawns, roadsides, sports fields, golf courses, parks, cemeteries, etc.) in the United 

States occupies a large acreage of land which is estimated to be > 20.2 million ha (National 

Turfgrass Federation, 2009). Of the various turf segments, lawns dominate in most states, 

accounting for roughly 66% of all areas which is then followed by roadsides. To survive and 

persist, turf areas require at least some level of minimal supplemental nutrition which is often 

supplied by applying fertilizer often with nitrogen.  The practice of lawn fertilization, if excess 

nitrogen (N) and/or phosphorus (P) is applied, has the capability to pollute surface water (Daniel 

et al., 1998), and ground water (Petrovic, 1990), disrupting the balance of rivers, lakes, and 

coastal estuary ecosystems.  By contrast, there is also evidence that sod forming grasses, such as 

turfgrasses, provided with sufficient nutrition to form a dense shoot canopy and/or thatch layer 

can be an effective filter for reducing surface runoff and sediment loss, increasing filtration, and 

removing water from the soil reducing leaching (Linde et al., 1995, 1998; Ebdon et al., 1999). 

Furthermore, properly fertilized turf (e.g. not applying excessive rates of fertilizer and only 

applying fertilizer to actively growing turf) has been shown not to contribute to excessive nutrient 

losses (Easton and Petrovic, 2004; Bierman et al., 2010).   

 Even with proper fertilization practices, the general public, however, has a negative view 

toward contemporary lawn fertilization practices. Thus, large numbers of land-owners are 

strongly interested in more sustainable turf care practices that are perceived to be more 

require less inputs (i.e. mowing and fertilization). The 
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challenge, however, is implementing these practices without compromising a high level of 

aesthetic or turf quality characteristics.  

If excess N is a genuine concern, then alternative fertilizer management practices or 

novel turf systems need to be studied and proven before the public can adopt these alternatives. 

This thesis compared a tradition cool-season lawn mixture with a grass-legume lawn system 

where grass was combined with a no (MC) and evaluated these turf 

areas receiving supplemental N fertilization (0 vs. 98 kg N ha-1yr-1). This MC, when compared to 

traditional forage-type white clover possesses smaller leaves and a more prostrate growth habit 

making it more compatible with most lawn systems. Specifically, the influence of MC and N 

were measured as dry matter yield (DMY) or clipping production, visual appearance 

characteristics, changes in MC populations, the expression of MC flowers, and canopy greenness 

(CG). 

For the entire two-year study, both MC inclusion and supplemental N had very highly 

significant effects on DMY.  DMY ranged from 3815 kg ha-1 in the unfertilized grass-only lawn 

mixture to 15583 kg ha-1 in the fertilized lawn mixture with MC.  Furthermore, in both year one 

and year two of the study, and when broken up into seasons, unfertilized turf without MC 

consistently produced the least DMY, while fertilized turf with MC consistently produced the 

highest DMY. 

 In year two, when the components of DMY (e.g. percentage MC or grass in the DMY) 

were evaluated, N had a significant effect on the amount of MC that was present in the harvested 

samples in May and October.  However, in July, N fertilization did not have a significant effect 

due to a shorter interval in between DMY harvests and lack of substantial growth in order for the 

treatments to separate.   
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 Visual appearance ratings for the entire study ranged from 5.6 in unfertilized turf without 

MC to 8.3 in fertilized turf with MC. For comparison, a value of 6 equals an acceptable lawn turf 

appearance and 10 equals optimal green color, density and uniformity. Similar to DMY, both MC 

and N had very highly significant effects on visual appearance,  and when split into seasons 

unfertilized turf without MC consistently had the lowest visual appearance and fertilized turf with 

MC had the highest appearance.  For the overall study, unfertilized turf with MC and turf without 

MC receiving supplemental N had the same visual quality suggesting grass-MC mixtures may be 

a suitable alternative to traditional supplemental N fertilization practices. 

 Clover populations decreased at a much quicker rate over the entire two year study where 

supplemental N fertilization occurred.  For example, there was 17 percent MC in May of year one 

and only 1 percent MC in October of year two.  In general, N fertilization did not have a 

significant effect on MC populations until year two of the study in June and N fertilizer continued 

to have an effect through the end of the study.  Clover populations in the unfertilized grass-MC 

turf also decreased during the study, but at a slower rate beginning at 13 percent in May of year 

one and ending at 5 percent in October of year two.  

 White clover flowers were most visible and prominent in the late-spring and summer 

months and when flowers were apparent, the highest flower counts occurred in mid-July and 

lowest in August. For the entire study, visual flower counts ranged from 12 to 80 flowers/plot in 

unfertilized turf with MC and 1 to 18 flowers/plot fertilized turf with MC.  By mid-July of year 

one N fertilization had taken a significant effect on the number of flowers produced, reducing 

flower production in fertilized turf with MC compared to unfertilized turf with MC.   

 Canopy greenness values ranged from 0.714 in unfertilized turf without MC to 0.749 in 

fertilized turf with MC for the two year study.   Similar to DMY and visual appearance 

measurements, MC and N fertilization effects were very highly significant for CG. Furthermore, 
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across all seasons in both study years CG was highest in the fertilized turf with MC, while 

unfertilized turf without MC was lowest, except in the spring of year one where unfertilized turf  

without MC was slightly higher than fertilized turf without MC because the supplemental N 

fertilizer effects had not yet begun to take manifest. 

 Future recommendations to build on from this study include; possibly modifying the 

practice of N fertilization with respect to annual rate (e.g. slightly lower rates), application 

season, and alternative N-sources, while continuing to measure the responses of DMY and 

interspecific competition between grass and MC to maximize the potential benefits of MC 

inclusion in a lawn turf. In this study, 98 kg N ha-1 yr-1 produced excessive DMY, especially in 

year two. If the goal is a low-maintenance lawn system, rapid growth, excess clippings and 

frequent mowing is not a desirable characteristic.  Instead of 98 kg N ha-1 yr-1, annual rates could 

possibly be applied as low as 13, 24, and 49 kg N ha-1 yr-1.  Furthermore, the timing of N 

application could also be examined. While this study applied 98 kg N ha-1 yr-1 in five even 

applications across the growing season with a goal of providing consistent, slow, sustainable 

growth and balancing a desired population of grass/clover it negatively affected MC populations. 

Lower N-rates might achieve this allow for more MC persistence.  Lastly, in this study inorganic 

granular urea-based N fertilizer products were applied, specifically urea and SCU which were 

applied as a mixture or alone.  Other N sources such as polymer coated urea, an inorganic urea 

based fertilizer with a slower release rate, or slow release, natural organic fertilizers could be used 

to control excess DMY and perhaps minimize the loss of MC over time.  

 Ultimately, this field study demonstrated the feasibility of a grass-legume lawn system 

where MC was combined with a cool-season lawn mixture for the cool-humid region. It also 

showed that lower supplemental N-rates could be applied to these grass-legume systems than 

traditionally accepted lawn fertilization practices (e.g. > 98 kg N ha-1 yr-1) for grass-only systems. 
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Many future ecological, environmental impact and soil health related studies could also be  

explored. The potential, however, for a grass-legume system to function as a refuge for 

pollinators in urban environments may be of particular interest 
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