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ABSTRACT 

Frappier, Ann M. M.S.E., Purdue University, December 2016. An Investigation of 
Composite Failure Analyses and Damage Evolution in Finite Element Models. Major 
Professor: Vikas Tomar. 
 
 
This paper presents a composite conical structure used commonly in flight-qualification 

testing.  This structure’s overall load-displacement behavioral response is characterized.  

Mixed-mode multidelamination in a layered composite specimen is considered in 

Abaqus/Explicit through both the Virtual Crack Closure Technique and Cohesive 

Elements.  The Virtual Crack Closure Technique and Cohesive Elements are compared 

against experimental test results presented in literature.  Further, a thorough comparison 

in which the effects of failure criteria type, through-thickness mesh density, and finite 

element type on the progressive failure response of this composite assembly is discussed.  

Lastly, Abaqus/Standard and Helius PFA are compared in order to gain confidence into 

which analytical model’s failure theories best predicts the different scales of failure, both 

local/microscale and global/macroscale. 

 



1 

 

 

 INTRODUCTION CHAPTER 1.

1.1 Background 

In 1991 the UK Science and Engineering Research council (known today as the 

Engineering and Physical Sciences Research Council) and the UK Institution of 

Mechanical Engineers (I Mech E) met concerning the subject of “Failure of Polymeric 

Composites and Structures: Mechanisms and Criteria for the Prediction of Performance 

[7].”  The outcomes and continuing work from which are compiled in Failure Criteria in 

Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise [7]. The 

meeting aimed to establish confidence in academia and industry in the present 

methodology for failure prediction of Fiber Reinforced Composites.  This meeting 

demonstrated two key findings [7]:  

1. Skepticism in the present failure criteria in use 

At the lamina or even the laminate level, attendees determined evidence was 

insufficient to demonstrate which criteria, if any, could produce meaningful and 

accurate failure predictions. 

2. No universal definition of a composite ‘failure’ 

In brevity, a designer would state that ‘failure’ is the moment at which the 

structure stops fulfilling its function.  This definition of failure is use specific.  As 

such, attendees determined that this definition did not establish the



2 

 

 needed link between events at the lamina level and the many invoked definitions 

of structural failure. Therefore, at the meeting’s conclusion, this link remained to 

be established. 

These findings might be surprising to some considering that for the past fifty 

years there has been a large amount of research into composite materials as primary load 

bearing structures.  Everyday items such as airplanes, boat hulls, etc use composite 

materials [7].  However, failure theories are often used to initially ‘size’ a component 

while after such a ‘sizing’ they are disregarded in accurately predicting the ultimate 

strength of the structure. Furthermore, beyond this ‘sizing’, experimental tests on 

coupons or structural elements are often used to determine the global design allowables.  

The aerospace industry widely uses this approach to establish large databases of 

composite materials’ allowables, such as the Advanced General Aviation Technology 

Experiements (AGATE) database, at great expense.  This ‘make and test’ approach and 

use of generous safety factors is common; however, in niche markets confidence has built 

up in failure theory predictions and is leading to reduced margins [7]. 

In the recent past minimal motivation has been invested into the need for 

researching and developing improved failure theories.  Some have adopted the 

perspective that failure theories are more of an academic curiosity than a practical design 

aid.  This belief for the most part has begun to alter.  The need for the use of failure 

theories in design has increased due to the demand to reduce the time and cost associated 

with bringing new components to the market.  Similarly, the ‘make and test’ approach is 

widely reducing in number due to time and cost constraints.  There is a need to improve 

design methods.  This cannot be accomplished without the use of analytical modeling [7]. 
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Analytical models for fiber composite structures have been widely available for 

more than fifteen years [7].  There are numerous analytical software products available.  

These range from small software codes, which represent laminate plate theory, to large 

software codes that have the capability to simulate the structural response of an entire 

composite assembly.  For the most part, these software packages consist of one or more 

failure theories which the developer has chosen to implement from literature.  The 

selected failure theories’ implementation into a software code can influence the code’s 

failure predications.  Therefore, there is no guarantee that a Finite Element (FE) 

idealization of a theory in an analytical model will produce identical results [7].  Thus, it 

is of particular interest to study the ability of a FE code to capture the failure response 

behavior of a composite structure [7]. 

1.2 Motivation 

The last fifteen years has seen an overwhelming amount of activity in the subject 

of composites research.  This activity has predominantly been in the development of 

composite progressive damage analysis methods (PDA) [27].  During the year 2014-2015 

the Air Force Research Laboratory (AFRL) conducted a program entitled “Damage 

Tolerance Design Principles (DTDP)” to evaluate the existing technology in composite 

damage progression modeling and prediction [27].  AFRL’s research on this topic is 

motivation for this current study in which it is of interest to evaluate existing analytical 

tools in order to compare and find confidence in them to support present damage growth 

analysis needs. 

In FE Modeling the progressive failure response of a composite structure is 

affected by failure criteria type, through-thickness mesh density, and finite element type.  
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In most composite structures, catastrophic macroscale failure is prompted by the onset 

and growth of microscale or localized matrix and fiber constituent failures.  Two scales 

of failure are the motivators for this research [1]: 

1. Microscale Failure (local failure at a Gaussian integration point): 

a. Matrix Constituent Failure 

b. Fiber Constituent Failure 

2. Macroscale Failure (Catastrophic Failure, discrete reduction in global stiffness of 

the structure) 

1.3 Overview 

The Air Force Research Laboratory Space Vehicles Directorate (AFRL/RV) 

directed CSA Engineering to perform structural failure testing on key large aerospace 

composite structures, specifically one of which was a composite conical assembly (Figure 

1.1 [3]). 

 

Figure 1.1 AFRL/CSA Composite Adapter Failure Test Articles [3] 

  This type of quasi-static monotonically increasing load testing is critical in determining 

applied flight and qualification load levels and is typically conducted until structural 

failure is achieved.  Further, this type of test is typically driven by data attained through 

composite coupon tests, which are uninspired by analytical techniques.  Additionally, the 
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design of these tests is often encompassed by company specific knock-down factors.  

These knock-down factors inevitably contain a host of potential issues, real or assumed.  

Therefore, through instrumentation and video cameras used in testing events, data is 

collected to determine failure initialization and propagation to correlate with analytical 

predictions of structural response and ultimate failure.  In this manner it can be 

ascertained if the composite structure’s design is overly conservative or appropriate for 

the intended application [3]. 

AFRL’s research on damage progression modeling and prediction [27], 

AFRL/CSA’s composite assembly [3], its corresponding structural flight-qualification 

loading event [3], and noticeable lack of confidence in the use of analytical models to 

predict failure and reliance on accompanying testing of structures, as noted in key finding 

number one of the World-Wide Failure Exercise (WWFE) [7], are the inspiration for this 

research.  Therefore, it is of interest to model a design of a composite assembly (similar 

to that shown in Figure 1.1) that would be used in this type of flight-qualification event.  

Further, it is desired to study the ability of Abaqus/Explicit to predict mixed-mode 

multidelamination in a layered composite specimen.  This study will be accomplished via 

the Virtual Crack Closure Technique (VCCT) and via Cohesive Elements (CE).  This 

information will prove pertinent should a delamination-type event arise during flight-

qualification testing.  Additionally, an exploration in the ability of FE Modeling to 

predict failure via matrix constituent failure, fiber constituent failure, and global failure 

observing the effects of: linear elastic analysis, first failure analysis, through-thickness 

mesh density, and element type is of curiosity.  Lastly, various failure theories: Maximum 

Stress, Tsai-Wu, Multicontinuum Theory, and Hashin will be compared in order to build 
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confidence into which failure theory is best suited to predict the behavioral response of 

this composite structure. 

1.4 Objective 

A group of quasi-static monotonically increasing loads on a composite structure is 

imposed.  From this it is possible to capture the structure’s overall response characterized 

by the displacement of certain points on the structure.  Catastrophic failure is found by a 

noticeable discontinuity in the structure’s load-displacement curve indicative of a 

significant decrease in the total stiffness of the structure.  The objective of such an 

investigation is to: 

1. Determine Abaqus/Explicit’s ability to predict mixed-mode multidelamination in 

a layered composite specimen through the employment of the VCCT and CE. 

2. Determine the effects of failure criteria type, through-thickness mesh density, and 

finite element type on the progressive failure response of the composite assembly. 

3. Use software applications Abaqus/Standard and Helius PFA to understand the 

different types of failure (local, microscale and global, macroscale) predictions 

and compare their results. 

1.5 Scope 

The conic part is modeled as a sandwich construction (See Chapter 5, Section 1).  

The loads are simulated based on flight-qualification testing using four actuators (See 

Chapter 5, Section 4).  Further, the loads are quasi-static and are linearly ramped.   

A side-study will be performed to assess the ability of Abaqus/Explicit in 

predicting a mixed-mode multidelamination event in a layered composite specimen via: 

1. Virtual Crack Closure Technique (VCCT) 
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2. Cohesive Elements (CE) 

To analyze the effect of failure criteria type, through-thickness mesh density, and 

finite element type on the progressive failure of this conical composite the following 

analyses will be performed: 

1. Linear Elastic Analysis 

2. First Failure Analysis 

3. Effect of Through-Thickness Mesh Density 

4. Effect of Element Type 

Additionally, different scales of failure theories will be assessed and their results 

compared.  This composite structure will be analyzed with the following linear elastic, 

microscale (local) failure theories: 

1. Max Stress 

2. Tsai-Wu 

3. Multicontinuum Theory (MCT) 

Macroscale (Catastrophic) progressive damage model theories will also be 

considered and their results compared.  The composite structure will be analyzed with the 

following: 

4. Hashin 

5. Multicontinuum Theory (MCT) 
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Finally, the conclusion of the above efforts will showcase a thorough comparison 

of linear elastic failure theories with progressive damage models in an effort to 

understand the capabilities of analytical modeling.  The scope of the above efforts is 

presented below in Figure 1.2. 

 

Figure 1.2 Scope of Project 

 



9 

 

 FINITE ELEMENT METHODS DAMAGE ANALYSIS CHAPTER 2.

2.1 Delamination in Composite Structures 

Modern aircraft structures are trending towards the substitution of composite over 

metallic materials.  This is for the reason that composites exhibit superior structural 

properties: increased permissible stress, increased fatigue and damage tolerance, 

decreased sensitivity to corrosion, etc. [2]. 

These compelling reasons to use composites; however, do have a drawback when 

compared with metallic materials.  Composites can delaminate.  In fact, this failure mode 

is typical.  Inter-laminar delamination, more commonly called delamination, is a loss of 

cohesion between adjacent plies in a laminate.  The origination of delamination is most 

often caused by design features prone to develop inter-laminar stresses.  Examples of 

these could be: curved sections, drop-offs, free edges, among others.  However, 

origination can also be from manufacturing defects, such as: matrix shrinkage during cure, 

formation of resin-rich areas, etc.  Even still accidents such as tool impacts can cause 

delamination.  Cyclic loading behavior can cause debonding (interfacial failure) and 

microscale damage to the matrix, which ultimately induces delamination.  Hence, inter-

laminar delamination can be caused by a variety of reasons and as such should be 

carefully studied and understood in composite structures [2]. 

Part of understanding delamination in composite structures is to consider how it 

diminishes material properties which correspond to decreased load capacity. Furthermore,
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 a delamination tends to propagate under compression and out of plane loads.  Presently, 

it is rule of thumb in the aircraft industry to use a strain design approach to cover impact 

damage and to avoid delamination growth.  For monolithic laminates this limit is 

typically 3,500-4,000 με.  Lower limits are often used for other laminates such as 

honeycomb panels [2]. 

In composites another area of concern for many aircraft structures is bonded joints.  

These tend to be stiffened panels, such as skin-ribs, skin-spar, etc.  These joints are 

complicated to analyze for the reason that the stress distribution at the joints is complex 

typically showing high stress concentrations at its edges.  The resulting progressive 

debonding is difficult to simulate [2]. 

Conservative designs are often the answer as was noted in the WWFE [7] due to 

the presumed shortage of accurate and dependable simulation methodologies.  However, 

ample research has been performed in the recent past to develop suitable methods to 

simulate delamination type events [2].  It is in dealing with these complex composite 

structures and their corresponding damage (i.e. inter-laminar delamination) that FE 

techniques are often employed.  VCCT and CE are two of the most common FE methods 

used to simulate delamination and debonding [4]. 

2.2 Virtual Crack Closure Technique (VCCT) 

VCCT is derived from linear fracture mechanics and requires the calculation of 

the Strain Energy Release Rates (SERR) to predict delaminations or debonding growth.  

Pure modes of fracture (i.e. mode I, model II, and mode III) are the basis for calculating 

the SERRs.  VCCT requires a pre-damaged structure.  As such, damage onset is not able 

to be predicted with this theory [4, 11-13, 28]. 
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In commercial FE software, such as Abaqus/Explicit, the SERR ( ) is compared 

with fracture toughness ( ) of the material being analyzed for either mode I, mode II, or 

mode III.  Delamination is noticed when  exceeds or is equal to  as shown in Equation 

2.1 [9]. 

  (2.1) 

Each mode has its own respective fracture mode.  These fracture modes are each 

defined by the energy released.  The energy released for each mode is the work done by 

the nodal forces needed to close the crack tip.  As such, the fracture modes for mode I, 

mode II, and mode III are as follows in Equations 2.2-2.4 respectively [9]: 

 
∆

 (2.2) 

 
∆

 (2.3) 

 
∆

 (2.4) 

Where: 

 = specimen thickness 

 = magnitude of nodal forces pairs at nodes  and  in the , , and  direction 

 = nodal displacement before nodes  and  are pulled together 

, , and  = nodal displacement before nodes  and  are pulled together 

Figure 2.1 [9] below is a visual representation of the calculation of the energy 

release rate using VCCT. 
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Figure 2.1 Energy Release Rate Calculation using VCCT [9] 

Once , , , have been determined, the total energy release rate can be 

calculated as seen in Equation 2.5 [9]: 

  (2.5) 

Afterwards, as previously provided, delamination can be found if the condition in 

Equation	2.1 is found to be true [9]. 

2.3 Cohesive Elements 

CE, known commonly as the Cohesive Zone Model (CZM), is derived from 

damage mechanics [4, 26, 30] and considered to originate from the works of Hilleborg 

[25].  In contrast to VCCT it does not require a pre-damaged structure to predict 

delamination and debonding growth.  This allows for damage onset to be determined [4]. 

This study focuses on the commercial FE software Abaqus/Explicit.  In 

Abaqus/Explicit cohesive elements capture relations that provide a description of the 

evolution of tractions ( ) generated across the faces of a crack as a function of the crack 

face displacement jump ( ).  The implementation of cohesive elements requires the use 

of additional bulk finite elements.  These elements are necessary to model [9, 14-24]: 

1. Stage surrounded by cohesive surface elements (see Figure 2.2 and Figure 2.3 

below [9]) 

2. Crack initiation 



13 

 

3. Crack evolution 

4. Complete failure 

 

Figure 2.2 CZM of Fracture [9] 

 

Figure 2.3 Cohesive Law [9] 

Equation 2.6 represents the contribution of the internal virtual work for bulk 

elements [9]: 

 lim∆ → ∆
 (2.6) 

The contribution of the cohesive surface elements to the internal virtual work is 

given by Equation 2.7 [9]: 

Where the Governing Cohesive 
Parameters are: 

= Cohesive Fracture Energy 
= Peak Stress (Cohesive Strength of 

Material) 
∆ = Critical Opening Displacement 

 and  are values that dictate the 
shape of ∆  
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 :	 	 	 	 0 (2.7) 

Where: 

 = virtual strain defined in the domain Ω associated to the virtual displacement u 

 = virtual crack faces normal displacement jump along the crack line Γc 

 = traction vector along the cohesive zone 

 = external traction vector 

Therefore, the FE formulation can be rewritten as Equation 2.8 [9]: 

 	 	
∆
	 	 	 	 	  (2.8) 

Where: 

 = matrix of shape functions for bulk elements 

= matrix of shape functions for cohesive elements 

 = derivative of N 

 = nodal displacements 

 = tangential stiffness matrix for bulk elements 

∆
 = Jacobian stiffness matrix 

Thus, in order to fully employ the use of this method the contribution of cohesive 

elements to the tangent stiffness matrix and force vector is acquired from the numerical 

implementation of the CE method [9].
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 MATHEMATICAL FOUNDATIONS: FINITE ELEMENT CHAPTER 3.
APPROACHES FOR COMPOSITE FAILURE ANALYSIS 

Composite failure theories have been a subject of concern for nearly fifty years.  

There are a variety of published theories to choose from when performing an analysis of 

a composite structure.  However, none of these theories have successfully predicted the 

full range of observed behavior of a composite laminate [6].  Therefore, this section seeks 

to provide the mathematical background necessary to delve into the results presented in 

Chapter 7, Comparison of FE Approaches, using such criteria as: Maximum Stress, Tsai-

Wu, Multicontinuum Theory (MCT), and Hashin in order to understand the assumptions 

and effects of the proposed theories in commercial FE codes. 

3.1 Maximum Stress Failure Criterion 

The Maximum Stress Criterion identifies composite material failure caused by 

three possible modes (longitudinal failure, transverse failure, and shear failure) of loading 

[1, 5]. 

Longitudinal failure occurs when [1, 5]: 

  (3.1) 

Or 

  (3.2) 

Transverse failure occurs when [1, 5]: 

   (3.3) 



16 

 

Or 

  (3.4) 

Shear failure occurs when [1, 5]: 

 | | | | (3.5) 

Where: 

 = Maximum tensile strength in the fiber direction  

 = Maximum compressive strength in the fiber direction  

 = Maximum tensile strength transverse to the fiber direction  

 = Maximum compressive strength transverse to the fiber direction  

 = Maximum in-plane shear stress 

3.2 Tsai-Wu Failure Criterion 

Unlike the Maximum Stress Criterion the Tsai-Wu Criterion does not distinguish 

between different modes of failure.  Instead it is a quadratic, interactive stress-based 

criterion that identifies failure. 

Failure occurs when [1]: 

 2 1 (3.6) 

Where: 

 ≡  (3.7) 

 ≡  (3.8) 

 ≡  (3.9) 

 ≡  (3.10) 

 ≡  (3.11) 
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The interaction term  is defined as [1]: 

For biaxial failure stress (  =  = ) 

 ≡ 1 (3.12) 

 

Otherwise [1] 

 ≡ ∗  (3.13) 

Where: 

-0.5≤ ∗≤0 

 =  at longitudinal tensile failure  

 =  at longitudinal compressive failure  

 =  at transverse tensile failure  

 =  at transverse compressive failure  

	 = | | at longitudinal shear failure  

3.3 Multicontinuum Theory (MCT) Failure Criterion 

The basis of a multicontinuum is to reflect the distinctly different materials that 

coexist within a Representative Volume Element (RVE).  A unidirectional fiber 

composite material can be viewed as two interacting continua (a fiber continuum and a 

matrix continuum) that coexist in a RVE.  In such a RVE there are three different volume 

averages relevant to the mechanics of the composite material.  They are as follows [1]: 

1. Physical quantities of interest are averaged over the whole RVE that represents 

the composite material.  Traditionally, these quantities are ‘homogenized’ 

composite quantities and represent the overall averages of the physical quantities 



18 

 

as they vary over the fiber and matrix constituents of the microstructure within the 

RVE. 

2. Physical quantities of interest are averaged specifically over the fiber continuum 

within the RVE of the composite material.  These are fiber average quantities. 

3. Physical quantities of interest are averaged specifically over the matrix continuum 

within the RVE of the composite material.  These quantities are matrix average 

quantities. 

Multicontinuum Theory augments traditional continuum mechanics by adding [1]: 

1. The development of connections between various constituent average quantities 

of interest. 

2. The development of connections that associate composite average quantities to 

constituent average quantities. 

Fiber reinforced composite materials contain substantial differences in the 

strengths of their individual constituent materials.  Based upon this fact a widely accepted 

approach is formulating failure criteria for the constituent materials (i.e. the fiber and 

matrix).  However, limited success has been reached in basing constituent failure criteria 

on the composite average stress state.  This is due to the fact that the composite average 

stress state is not solely relevant to the fiber or matrix constituent materials.  Instead the 

composite average stress state represents the stress that would be present in a fictitious, 

statically equivalent, smeared material.  In this regard, what should be done is base the 

constituent failure criteria on the constituent average stress state.  This approach is what 

the software program Helius PFA uses.  Explicitly stated, Helius PFA uses separate 
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failure criteria for each constituent material and bases the constituent failure criteria on 

the constituent average stress state [1]. 

3.3.1 Matrix Constituent Failure Criterion for Unidirectional Composites 
In developing the Matrix Constituent Failure Criterion there exist the following 

assumptions [1]: 

1. Matrix failure is assumed to be influenced by all six of the matrix average stress 

components σ11
m, σ22

m, σ33
m, σ12

m, σ13
m, and σ23

m. 

2. The matrix constituent material is assumed to be transversely isotropic.  The 

contributions of σ22
m and σ33

m or σ12
m and σ13

m to matrix failure are not 

distinguishable. 

3. The influence of the matrix average normal stresses (σ11
m, σ22

m, and σ33
m) in 

producing matrix failure depends upon whether the normal stresses are tensile or 

compressive. 

4. The matrix constituent is assumed to be transversely isotropic; however, matrix 

failure is assumed to be an isotropic event.  When matrix failure occurs, each of 

the matrix average moduli (E11
m, E22

m, E33
m, G12

m, G13
m, G23

m) are reduced to a 

user-defined percentage of their original values, while the matrix average Poisson 

ratios (ν12
m, ν13

m, ν23
m) are assumed to remain unchanged.  Note: This stiffness 

reduction scheme infers that there is only one matrix failure mode regardless of 

the stress components that cause matrix failure and it results in a uniform 

degradation of matrix stiffness. 

The Matrix Failure Criterion is then [1]: 

 1 (3.14) 
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Where: 

1, 2, 3, 4  are transversely isotropic invariants of the matrix average stress state. 

 ≡  (3.15) 

 ≡  (3.16) 

 ≡ 2  (3.17) 

 ≡  (3.18) 

1,2, 3, 4, 5  are adjustable coefficients of the matrix failure criteria 

Note: The Matrix Failure Criterion contains ten adjustable coefficients (  and ) 

that must be determined using measure strengths of the composite material [1]. 

3.3.2 Fiber Constituent Failure Criterion for Unidirectional Composites 
In developing the Fiber Constituent Failure Criterion there exist the following 

assumptions [1]: 

1. Fiber failure is assumed to be influenced by the fiber average stress components 

σ11
f, σ12

f, and σ13
f. 

2. Fiber failure is assumed to be independent of the fiber average stress components 

σ22
f, σ33

f, and σ23
f. 

3. The contribution of σ11
f in producing fiber failure depends upon whether σ11

f is 

tensile or compressive. 

4. The fiber constituent is assumed to be transversely isotropic.  The contributions of 

σ12
f and σ13

f to fiber failure are not distinguishable. 

5. The fiber constituent is considered to be a transversely isotropic material; 

however, fiber failure is assumed to be an isotropic event.  When fiber failure 

occurs, each of the fiber average moduli (E11
f, E22

f, E33
f, G12

f, G13
f, G23

f) are 
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reduced to a user-defined percentage of their original values, while the fiber 

average Poisson ratios (ν12
f, ν13

f, ν23
f) are assumed to remain unchanged. 

Note: This stiffness reduction scheme infers that there is only one fiber failure 

mode regardless of the stress components that cause fiber failure and it results in a 

uniform degradation of all fiber moduli. 

The Fiber Failure Criterion is then [1]: 

 1 (3.19) 

Where: 

1,4  are two transversely isotropic invariants of the fiber average stress state. 

 ≡  (3.20) 

 ≡  (3.21) 

1,4  are adjustable coefficients of the fiber failure criteria. 

Note: The Fiber Failure Criterion contains three adjustable coefficients (  and ) that 

must be determined using measure strengths of the composite material [1].  The fiber 

average stress components that make up the invariants are total stress terms (i.e. both 

mechanical and thermal stresses) [1]. 

3.3.3 Failure Criteria for Unidirectional Composites 
The combination of the above Fiber Failure Criteria and Matrix Failure Criteria 

encompass the Failure Criteria for Unidirectional Composites.  As such, thirteen 

constituent failure constituents are required using thirteen independent strength 

measurements.  However, Helius PFA has adopted the approach that the strength data 

available for composite materials is in most cases limited to the following six industry-

standard strength tests [1]: 
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1.  = longitudinal tensile strength (in the fiber direction) 

2.  = longitudinal compressive strength (in the fiber direction) 

3.  =  = transverse tensile strength (transverse to the fiber direction) 

4.  = = transverse compressive strength (transverse to the fiber direction) 

5.  =  = longitudinal shear strength 

6.  = transverse shear strength 

Provided the above the makers of Helius PFA have developed highly successful 

empirical relationships using industry standard strength measurements to approximate 

composite strengths under various biaxial loads [1]. 

3.4 Hashin Failure Criterion 

Four different modes of failure (tensile fiber failure, compressive fiber failure, 

tensile matrix failure, and compressive matrix failure) are identified by the Hashin 

Criterion [1, 10]. 

 

If  ≥ 0 then the Tensile Fiber Failure Criterion is [1, 10]: 

 1 (3.22) 

Where: 

α = contribution of the longitudinal shear stress to fiber tensile failure. The allowable 

range is 0 ≤ α ≤ 1.  A default value for α is 0. 

 

If   0 then the Compressive Fiber Failure Criterion is [1, 10]: 

 1 (3.23) 
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If  +  ≥ 0 then the Tensile Matrix Failure Criterion is [1, 10]: 

 1 (3.24) 

 

If  +   0 then the Compressive Matrix Failure Criterion is [1, 10]: 

 1 1 (3.25) 

 

Where for all the above: 

 =  at longitudinal tensile failure  

 =  at longitudinal compressive failure  

 =  at transverse tensile failure  

 =  at transverse compressive failure  

 = | | at longitudinal shear failure  

 = | | at transverse shear failure
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 FINITE ELEMENT METHOD DAMAGE ANALYSIS MODELS CHAPTER 4.

This study [4] illustrates the use of Abaqus/Explicit in the prediction of mixed-

mode multidelamination in a layered composite specimen.  Crack propagation analyses 

via the VCCT and via CE are employed. 

4.1 Virtual Crack Closure Technique Model 

4.1.1 Structural Description 
The layered composite specimen (Figure 4.1 [8]) is 200 mm long with a total 

thickness of 3.18 mm and a width of 20 mm.  The thickness direction is composed of 

twenty-four layers.  The model has two initial cracks.  The first crack has a length of 40 

mm and is positioned at the mid-plane of the specimen at the left end.  The second crack 

has a length of 20 mm and is located to the right of the first and two layers below.  The 

model is composed of a top part consisting of twelve layers, a middle section consisting 

of two layers, and a bottom part consisting of ten layers.  The FE Model can be seen in 

Figure 4.2.  It is important to note that for the VCCT to be assigned in this model contact 

clearances must be defined, cohesive behavior properties must be specified, and crack 

propagation criteria with general contact must also be specified [4, 8, 29].
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Figure 4.1 Multidelamination Geometry [8] 

 

 

Figure 4.2 Multdelamination VCCT FE Model Geometry and Mesh 

4.1.2 Mesh 
The layers previously mentioned consist of C3D8R, reduced integration 

continuum elements.  The middle section consists of one element in the width direction. 

4.1.3 Material Properties 
The material data [4, 8, 29] used for this study is shown below in Table 4.1 and  

Table 4.2. 

L=200 mm 
a1=40 mm 
a2=20 mm 
width = 20 mm 

P 

-P 

All displacements of nodes in width 
direction are constrained to zero 
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Table 4.1 Bulk Material Properties for HTA913 Carbon Epoxy Composite (024) 

Bulk Material Properties for HTA913 Carbon-Epoxy Composite (024) 
E1 115.0 GPa 
E2 8.5 GPa 
E3 8.5 GPa 
ν12 0.29 
ν13 0.29 
ν23 0.3 
G12 4.5 GPa 
G13 3.3 GPa 
G23 4.5 GPa 

 

Table 4.2 Material Data for Employment of VCCT 

Material Data for Employment of VCCT
G1c 0.33*103 N/m 
G2c 0.80*103 N/m 
G3c 0.80*103 N/m 
α 2 
t01 3.3 MPa 
t02 7.0 MPa 
η 2.284 

  

4.1.4 Loads 
The loading is shown above in Figure 4.2.  The layered composite specimen is 

loaded by equal and opposite displacements in the thickness direction at one end.  The 

maximum displacement is set equal to 40 mm in the monotonic loading case. 

4.1.5 Boundary Conditions and Contact 
All the nodes in the width direction are constrained to simulate the plane strain 

condition (Figure 4.2).  Additionally, the applied loading nodes are constrained in the 

length direction.  Lastly, contact is specified between the open faces of the second, pre-

existing crack to avoid penetrations should the faces compress against one another during 

the analysis. 

Where: 
= Ratio of Half Crack 

Length to Half Width of 
Specimen 

= Strength of Interface 
= Exponent of 

Benzeggagh-Kenane (B-K) 
Law
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4.1.6 Virtual Crack Closure Technique Model Results 
The data predicted using the VCCT agrees well with the experimental results 

presented in [4, 8, 29].  (See Figure 4.3.) 

 

Figure 4.3 Experimental [8] and VCCT Model Results 

Referring to Figure 4.3 above it can be seen that the main delamination grew in 

Zone A up to 4 mm, 52 N.  Afterwards it can be noticed that it advanced a few 

millimeters before the start of the secondary delamination, at which it can be seen that 

there was an unstable jump of approximately sixteen millimeters (Zone B).  Additionally, 

the main delamination is seen to be growing above the secondary delamination (seen in 

Zone C).  Further, as this main delamination approached the end of the secondary 

delamination it grew in the direction of propagation of the initial delamination.  Both of 

which eventually grew together leading to the main Zone D [29]. 

 Note that the curve (Figure 4.3) obtained by applying the VCCT shows a 

discontinuous trend in the experimental data during the multiple delamination process.  It 

A

B

C

D
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is of interest that the VCCT does not allow for a real simultaneous advancement of the 

first and second crack.  Therefore, in order to avoid this hindrance, adaptive re-meshing 

processes should be used in each increment, increasing computational time [8]. 

4.2 Cohesive Elements Model 

The CE Model (Figure 4.4 [4]) is the same as noted above for the VCCT model.  

However, there are a number of key differences.  These are as follows: 

1. The CE Model is modeled in three dimensions using solid elements to represent 

the bulk behavior and cohesive elements to capture the potential delamination at 

the interfaces between the tenth and eleventh layers and between the twelfth and 

thirteenth layers, from the bottom. (Figure 4.5). 

 

Figure 4.4 Multidelamination with CE Geometry [4] 

 

Figure 4.5 Multidelamination CE FE Model Geometry and Mesh 

2. The initially un-cracked portions of the two interfaces are each modeled by one 

layer of COH3D8, 8-node three-dimensional cohesive elements that share nodes 

All displacements of nodes in width 
direction are constrained to zero 

P 

-P 
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with the adjacent solid elements.  The top and bottom layer consists of C3D8R, 

reduced integration continuum elements.  The middle section consists of one 

element in the width direction. 

3. The response of the cohesive elements in the model is defined by the cohesive 

section definition as “traction-separation” response type.  

4. The elastic properties of the cohesive layer material [4] are provided in terms of 

the traction-separation response with the stiffness values as appearing in Table 4.3: 

Table 4.3 Elastic Properties of Cohesive Layer Material 

Elastic Properties of Cohesive Layer Material 
E/Enn 850 MPa/m 
G1/Ess 850 MPa/m 
G2/Ett 850 MPa/m 

 

5. The quadratic traction-interaction failure criterion is selected for damage initiation 

in the cohesive elements; and a mixed-mode, energy-based damage evolution law 

based on a power law criterion is selected for damage propagation.  The material 

data [4] pertinent to this is in Table 4.4. 

Table 4.4 Material Data for Employment of CE 

Material Data for Employment of CE
N0 3.3 MPa 
T0 7.0 MPa 
S0 7.0 MPa 
G1c 0.33*103 N/m 
G2c 0.80*103 N/m 
G3c 0.80*103 N/m 
α 1.0 

 

Where: 
N0= Ult. Strength I Direction 
T0= Ult. Strength II Direction 
S0= Ult. Strength III Direction 
G1, G2c, and  G3c are the mode 
dependent energy release rates. 

= Exponent in Power Law 
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4.2.1 Cohesive Elements Model Results 
The data predicted (Figure 4.6) relates well to the experimental results presented 

in [4].  A distinct drop in the reaction force is observed at 20 mm.  Furthermore, the 

reaction force values seem to be under-predicted by approximately 30% in comparison 

with the experimental data in [4].  A reason for this deviation which happens to coexist 

with the synchronous generation of the first and second crack is related to a fairly large 

number of cohesive elements failing in an extremely short duration of time [4]. 

 

Figure 4.6 Experimental [8] and CE Model Results 

Similar to Figure 4.3, it can be seen in Figure 4.6 that the main delamination grew 

in Zone A up to 5 mm, 48 N.  Afterwards it can be noticed that it advanced a few 

millimeters before the start of the secondary delamination, at which it can be seen that 

there was an unstable jump of approximately fourteen millimeters (Zone B).  

Additionally, the main delamination is seen to be growing above the secondary 

delamination (seen in Zone C).  Further, as this main delamination approached the end of 

A 

B

C

D
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the secondary delamination it grew in the direction of propagation of the initial 

delamination.  Both of which eventually grew together leading to the main Zone D [29]. 

For convenience the VCCT model results from Figure 4.3 are plotted with the CE 

model results from Figure 4.6 along with the experimental data below in Figure 4.7. 

 

Figure 4.7 Experimental [8], VCCT Model, and CE Model Results 
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 ABAQUS/STANDARD MODEL CHAPTER 5.

5.1 Structural Description 

This study [1] considers a composite structure’s flight-qualification testing.  Part 

of which is a load-controlled test.  Therefore, a representative composite assembly is 

loaded by a quasi-static axial compressive load which is monotonically increased until 

catastrophic failure occurs [1]. 

An adapter is used to join the load head and conic part.  Further, there is an access 

door cut through the side of the conic (Figure 5.1). 

 

Figure 5.1 Composite Assembly 

The conic part is a sandwich panel construction.  The through-thickness profile of 

the sandwich panel (Figure 5.2 and Figure 5.3) is uniform in both the axial and hoop 

directions on the conic.  The inner and outer composite faces of the sandwich

Access Door 
(cut-out opening) 

Conic 
(blue) 

Load Head 
(red) Adapter 

(yellow) 
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construction are a [(90/0)4] layup as defined from the inside surface.  Note that 0° is in 

the axial direction and 90° is in the hoop direction. 

 

Figure 5.2 Composite Part Sandwich Panel Construction 

 

Figure 5.3 Composite Part Sandwich Panel Construction 

5.2 Mesh 

The load head and adapter are both meshed using C3D8R, Linear Hexahedral 

Elements.  The conic is meshed using a combination of C3D8R, 8-node linear brick, 

reduced integration, hourglass control elements and C3D8RC3, 8-node linear brick, 

reduced integration, hourglass control, composite elements.  Note that the C3D8RC3 

Elements have only one integration point per ply.  The mesh of this assembly can be seen 

in Figure 5.1. 
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5.3 Material Properties 

In order to simplify the model, the adapter and load head are assumed to be rigid 

in comparison to the conic.  As such, a large elastic modulus was chosen at random to 

designate the isotropic material used for both the adapter and load head (Table 5.1). 

Table 5.1 Adapter and Load Head Material Properties 

Rigid Material 
E 1 E 10 (psi)
ν 0.3 

 

Each composite ply is 0.0075” thick and composed of carbon/epoxy AS4-3501-6.  

The 1” thick core is Rohacell 110 WF, an isotropic foam material.  Material properties [1] 

for AS4-3501-6 and Rohacell 110 WF are in Table 5.2 and Table 5.3.  A post failure 

stiffness ratio of 0.1 is used for matrix failure [1].  Meanwhile, a 0.01 post failure 

stiffness ratio is used for fiber failure [1]. 

Table 5.2 Conic Part Material Properties 

AS4-3501-6 Rohacell 110 WF 
E11 1.84 E 7 (psi) E 2.61 E 4 (psi) 

E22 = E33 1.62 E 6 (psi) ν 0.286 
ν12 = ν13 0.279 - - 
ν23 0.531 - - 

G12 = G13 9.51 E 5 (psi) - - 
G23 5.28 E 5 (psi) - - 
S11

+ 2.83 E 5 (psi) - - 
S11

- 2.15 E 5 (psi) - - 
S22

+ = S33
+ 6.96 E 3 (psi) - - 

S22
- = S33

- 2.90 E 4 (psi) - - 
S12 = S13 1.15 E 4 (psi) - - 

S23 7.25 E 3 (psi) - - 
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Table 5.3 AS4-3501-6 Constituent Properties 

Fiber Matrix 
E11 3.06 E 7 (psi) E11 3.95 E 5 (psi) 

E22 = E33 2.46 E 6 (psi) E22 = E33 6.84 E 5 (psi) 
ν12 = ν13 0.247 ν12 = ν13 0.323 
ν23 0.197 ν23 0.486 

G12 = G13 2.62 E 6 (psi) G12 = G13 3.55 E 5 (psi) 
G23 1.03 E 6 (psi) G23 2.30 E 5 (psi) 

 

5.4 Loads 

In this composite assembly’s flight-qualification testing four actuators deliver 

vertical compressive point loads to the load head (Figure 5.4). 

 

Figure 5.4 Composite Assembly Loading 

The compressive loads [1] applied at four locations on the load head are shown in 

Table 5.4. 

Table 5.4 Load Head Compressive Forces 

Load Actuator Azimuth Total Load 
000 090 180 270 

0% 0 kips 0 kips 0 kips 0 kips 0 kips 
50% -250 kips -250 kips -250 kips -250 kips -1000 kips 
100% -500 kips -500 kips -500 kips -500 kips -2000 kips 

270°

180° 

90° 

0° 
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Note that the loading is linearly ramped and is quasi-static.  Also, a negative sign 

demonstrates a compressive load.  These loads produce a uniform vertical compressive 

load where 100% loading correlates to a cumulative vertical compressive load of 2000 

kips. 

5.5 Boundary Conditions 

The composite assembly is constrained by its entire bottom surface using a fixed 

boundary condition (Figure 5.5).  Therefore, displacements and rotations in the one, two, 

and three directions are constrained to be zero. 

 

Figure 5.5 Composite Assembly Boundary Condition

Fixed Boundary Condition 
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  MODEL COMPARISON CHAPTER 6.

6.1 Linear Elastic Analysis 

Abaqus/Standard has a three-dimensional continuum element, C3D8R (reduced 

integration element), which can use a multilayer composite lay-up.  Continuum elements 

record all six stress components (σ11, σ22, σ33, σ12, σ13, σ23) which allow the material 

failure criteria to use the transverse stress components (σ33, σ13, σ23).  These are only 

estimated in conventional or continuum shell elements.  The importance of recording 

transverse stress components is demonstrated by a linear elastic analysis.  This analysis 

allows for the juxtaposition of magnitudes of the in-plane and transverse stress 

components in the greatest stressed region of the model.  The FE Model for this analysis 

is as described before.  It is worth mentioning that the element type is C3D8R and the 

through-thickness mesh density for both the composite facesheets and foam core is one 

element [1]. 

6.1.1 Linear Elastic Analysis Results 
The results are presented for the stress state of element 5240 (Table 6.1 and 

Figure 6.1-Figure 6.6 ).  This element lies in the topmost surface ply near the left-hand 

corner of the access door of the assembly.  Fiber failure is dependent on the stress 

components: σ11, σ12, σ13. Upon closer inspection it can be seen that the transverse shear 

stress, σ13, is negligible when compared to the in-plane stresses.  As such, transverse
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stresses will not donate a notable contribution to fiber failure.  Conversely, matrix failure 

is propelled by all six stress components.  Through the comparison of the magnitude of 

the out-of-plane stresses:  σ33, σ13, σ23 with the magnitude of the in-plane stresses: σ22, σ12, 

it can be noted that the out-of-plane stresses contribute significantly to matrix failure.  

After a matrix failure the matrix stiffness significantly drops and the stress is 

redistributed.  This subsequently causes an increase in stress in the fibers.  Therefore, in 

order to most accurately predict structure-level failure, matrix failure must be 

appropriately captured [1]. 

Table 6.1 Linear Elastic Analysis Results 

Stress 
Component 

Value 
(psi) 

Normalized 
(|σij/σ11|) 

Normalized 
(|σij/σ22|) 

Normalized 
(|σij/σ12|) 

σ11 -260,063 100.0% 4245.2% 1548.6% 
σ22 -6,126 2.4% 100.0% 36.5% 
σ33 780 0.3% 12.7% 4.6% 
σ12 16,793 6.5% 274.1% 100.0% 
σ13 -352 0.1% 5.7% 2.1% 
σ23 945 0.4% 15.4% 5.6% 

 

 

Figure 6.1 σ11 Linear Elastic Analysis Results 
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Figure 6.2 σ22 Linear Elastic Analysis Results 

 

Figure 6.3 σ33 Linear Elastic Analysis Results 

 

Figure 6.4 σ12 Linear Elastic Analysis Results 
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Figure 6.5 σ13 Linear Elastic Analysis Results 

 

Figure 6.6 σ23 Linear Elastic Analysis Results 

6.2 First Failure Analysis 

An analysis is performed to examine first failure.  An initial endeavor at a 

progressive failure analysis explicitly consists of a through-thickness mesh density of one 

element per facesheet and one element for the core.  This is a total of three elements 

through the thickness of the sandwich construction.  In this case, the C3D8R (reduced 

integration element) is used.  This first failure analysis will provide a base-line estimate 

that will be used for correlating further modeling attempts [1]. 
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6.2.1 First Failure Analysis Results 
Table 6.2 shows the load level at which matrix failure, fiber failure, or global 

failure is predicted respectively. 

Table 6.2 First Failure Analysis Results 

Model 
Element 

Type 

#Elements #Elements Matrix 
Failure 
(Load 
Level) 

Fiber 
Failure 
(Load 
Level) 

Global 
Failure 
(Load 
Level) 

(Facesheet) (Core) 

1 Element 
Face_1 

Element Core 
C3D8R 1 1 49% 57% 58% 

 

The prediction of failure is based on the Multicontinuum Theory (MCT) Failure 

Criterion presented in Chapter 3, Section 3.  Please note that the table indicates at which 

load the localized fiber or matrix failure is first detected.  The first occurrence of a fiber 

or matrix failure happens at a single Gaussian integration point within one of the material 

plies of an element in the model.  In a large composite assembly containing many 

Gaussian integration points, an overwhelming number of localized constituent failures 

are needed to detect a distinct alteration in the global stiffness of the assembly [1]. 

Assembly global failure is determined for this study to be a significant 

discontinuity (large drop) in the overall vertical load-displacement curve (Figure 6.7 

below).   
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Figure 6.7 First Failure Analysis Results 

Overall the vertical deformation is evaluated using the vertical displacement at the 

load head labeled 0° (Node 17).  Since, both the load head and adapter are assumed rigid, 

a large discontinuity witnessed in the load-displacement curve hints at an accelerated 

growth of localized material failures occurring during a distinct load increment [1].  Thus, 

degradation in the overall stiffness of the composite assembly can be witnessed. 

Figure 6.7 shows this overall vertical load-deflection curve.  It should be noted 

that the cumulative response of the assembly looks linear to load level 57%.  At this load 

level global failure occurs.  Referring to Table 6.2 it is noticed that the first localized 

matrix failure occurs at a load level of 49% and conversely the first localized fiber failure 

occurs at a load level of 57%.  The localized failures that occurred in the range from 49% 

to 57% were not adequate in producing a noticeable difference in the assembly’s overall 

load-deflection response.  However, when the load level was increased from 57% to 58% 

subsequent failures occur.  These continuous failures that occur significantly reduce the 

57%

Global 
Failure 

-------1 Element Face_1 Element Core 
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vertical stiffness of the assembly by 92%.  This behavioral response, in which the 

composite assembly stays fairly linear up to global failure, is typical among brittle 

composite materials [1]. 

6.3 Effect of Through-Thickness Mesh Density 

The prediction of progressive failure response of the conical composite is 

performed through the use of four separate FE models.  The models differ in the number 

of elements through the thickness of the sandwich panel.  For example, the materials, 

element type, in-plane mesh density, and boundary conditions for all four models are the 

same.  The different levels of through-thickness mesh density are the following [1]: 

1. Initial model – 1 element per facesheet for the entire layup and 1 element for the 

core (3 elements through-thickness). 

2. 1st Modification – Core mesh density increased to allow for 4 elements (6 

elements through-thickness). 

3. 2nd Modification – Facesheet mesh density increased to allow for 2 elements (8 

elements through-thickness). 

4. 3rd Modification – Facesheet mesh density increased to allow for 4 elements (12 

elements through-thickness). 

Note that each of the four models uses C3D8R reduced integration elements.  

6.3.1 Effect of Through-Thickness Mesh Density Results 
Table 6.3 below shows the load level at which the matrix, fiber, and global 

failures are predicted for the four separate FE models. 
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Table 6.3 Through-Thickness Mesh Density Failure Analysis Results 

Model 
Element 

Type 

#Elements #Elements Matrix 
Failure 
(Load 
Level) 

Fiber 
Failure 
(Load 
Level) 

Global 
Failure 
(Load 
Level) 

(Facesheet) (Core) 

1 Element 
Face_1 

Element Core 
C3D8R 1 1 49% 57% 58% 

1 Element 
Face_4 

Element Core 
C3D8R 1 4 48% 61% 64% 

2 Element 
Face_4 

Element Core 
C3D8R 2 4 52% 60% 60% 

4 Element 
Face_4 

Element Core 
C3D8R 4 4 59% 60% 60% 

 

Figure 6.8 below shows the overall vertical load-displacement curves for the four 

separate FE models considered in this through-thickness mesh density study for the 

composite assembly. 
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Figure 6.8 Through-Thickness Mesh Density Failure Analysis Results 

Observations can be made from the above results.  First, commencement of 

localized matrix and fiber failure is estimated at higher load levels as the through-

thickness mesh density is increased.  As the number of elements through the thickness of 

the laminate is increased the transverse shear stiffness of the assembly decreases quicker 

than the in-plane stiffness.  Therefore, as the through-thickness mesh density is increased, 

the assembly exhibits an increase in transverse shear deformation at the cost of in-plane 

deformation.  As such, the net outcome of this tendency is that the magnitude of the in-

plane stresses at their peaks tends to decrease as the through-thickness mesh density 

increases.  Thus, higher load levels are predicted for localized failure [1]. 

Second, mesh density does not have an extreme affect on global failure.  Even 

though it was shown that through-thickness mesh density contributes to slower local 

failure initiation for both the fiber and matrix, the global failure prediction is only slightly 

-------1 Element Face_1 Element Core 
-------1 Element Face_4 Element Core 
-------2 Element Face_4 Element Core 
-------4 Element Face_4 Element Core 
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affected.  This suggests, that the subsequent failures from local failure to global failure 

occurs quicker as the through-thickness density is increased.  It is then expected that local 

failures progress into global failures at a quicker rate for a higher mesh density.  As such, 

a denser mesh allows for a more defined failure path for an assembly.  This is for the 

reason that the number of Gaussian integration points has been increased for failure 

criterion evaluation.  Thus, a more defined path allows for a quicker progression of 

failure and consequently an accelerated progression of local failures into global failures 

[1]. 

6.4 Effect of Element Type 

The prediction of the progressive failure response of the conical composite is 

further considered through the use of three FE models.  The models differ in element type 

used.  Expressly stated, the materials, mesh density, and boundary conditions are 

explicitly the same in each model.  Three different Abaqus element types were 

considered [1]:  

1. C3D8R, 8-node linear brick, hourglass control, reduced integration continuum 

elements 

2. C3D8, 8-node linear brick, fully integrated continuum elements 

3. SC8R, 8-node quadrilateral in-plane general-purpose reduced integration 

continuum shell, finite membrane strains 

The three models all use four elements for the core and each facesheet is divided 

into two elements.  This creates a total of eight elements through the thickness of the 

sandwich panel. 
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6.4.1 Effect of Element Type Results 
Table 6.4 below shows the load level at which the matrix, fiber, and global 

failures are predicted for the three separate FE models. 

Table 6.4 Element Type Failure Analysis Results 

Model 
Element 

Type 

#Elements #Elements Matrix 
Failure 
(Load 
Level) 

Fiber 
Failure 
(Load 
Level) 

Global 
Failure 
(Load 
Level) 

(Facesheet) (Core) 

2 Element 
Face_4 
Element 

Core 

C3D8R 2 4 52% 60% 60% 

C3D8 C3D8 2 4 41% 47% 56% 
SC8R SC8R 2 4 42% 62% 72% 

 

Figure 6.9 below shows the overall vertical load-displacement curves for the three 

separate FE models considered in this element type study for the composite assembly. 

 

Figure 6.9 Element Type Failure Analysis Results 

-------C3D8R 
---------C3D8 
---------SC8R
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Comparing the C3D8R elements vs. C3D8 elements allows for a couple of 

observations to be made.  First, the C3D8 element exhibits both matrix and fiber local 

failure occurrences happening at lower load levels.  Additionally, the C3D8 element uses 

more Gaussian integration points when compared with the C3D8R element.  If both 

elements result in the same element average stresses, the C3D8 element will show a 

higher local peak stress than the C3D8R element.  This is for the reason that it has a 

greater amount of Gaussian integration points and whose Gauss points are closer to the 

element’s boundaries.  Recall that at an element’s boundaries the linear stress distribution 

reaches maxima.  Therefore, the C3D8 element will show localized failure initializing at 

a lower load level than that of the C3D8R element [1]. 

Second, the C3D8 element shows global failure occurring at a lower load level.  

The difference in the global failure prediction by the two different elements is primarily 

due to the differences in the local failure commencement load.  It is important to recall 

that a C3D8R element has a single Gauss point per material ply.  This provides a more 

discretized representation of subsequent failure.  For example, when failure occurs in a 

material ply of a C3D8R element, the stiffness of the whole ply is reduced and there is a 

large quantity of load re-distribution.  However, in an example when failure occurs at one 

of the Gauss points in a material ply of a C3D8 element, only a portion of the material 

ply encounters the stiffness reduction and as a consequence only a small quantity of load 

re-distribution [1]. 

Additional observations can be made in comparing the C3D8R elements with the 

SC8R elements.  First, the SC8R elements predict the initialization of local failure at 42 % 

load level compared to the C3D8R elements at 52% load level.  Recall that both elements 
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use the same group of Gaussian integration points.  However, the SC8R elements predict 

higher in-plane stress components than that of the C3D8R elements.  This is because of 

the differences in the transverse shear stiffness and transverse normal stiffness of the two 

elements.  The C3D8R element has transverse stiffness which is a result of integrating the 

individual material plies over the volume of the element.  Meanwhile, the SC8R element 

has transverse stiffness as the result of a user input that applies to the entire element.  

This inhibits the ability for both elements to have identical transverse stiffness.  Therefore, 

any alteration in the transverse stiffness of an element will conclude in a division of the 

element’s total strain energy into in-plane and out-of-plane components differently for 

the two elements.  As such, if the two elements have distinct transverse stiffness, they 

will have distinct in-plane stress components.  In regard to this study, the initial matrix 

failure is a consequence of in-plane shear stress which is greater in the SC8R element 

than in the C3D8R element.  Thus, the SC8R element predicts localized matrix failure 

earlier [1]. 

Second, continuum shell elements show global failure to occur at a higher load 

level despite local failures occurring at lower load levels.  The SC8R element shows local 

constituent failure initiating at a lower load level than that of the C3D8R element.  

However, despite this, the SC8R element shows that global failure will occur at 72% load 

level compared to the 60% load level of the C3D8R element.  The reason for the SC8R 

element predicting a slower failure is because the local material failures do not alter the 

transverse stiffness (E33, G13, G23) in the SC8R element.  (Recall here that it is a 

requirement in Abaqus that these stiffness values are constant in the SC8R element.) [1].  

Therefore, the transverse stiffness does not exhibit any degradation.  The SC8R elements 
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can readily welcome load re-distribution without influencing further local failures.  Thus, 

it is noticed that the C3D8R and SC8R elements show a substantial difference in failure 

behavior [1].
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 COMPARISON OF FINITE ELEMENT APPROACHES CHAPTER 7.

Two commercially available FE analytical tools will be discussed and compared 

in terms of their failure criteria and progressive damage results.  These analytical tools 

are Abaqus/Standard and Helius PFA 2016.  Note that Helius PFA is a plugin for Abaqus 

and uses a parallel pre-processor; however, Helius does use Abaqus’ solver.  Figure 7.1 

below provides a high-level flowchart regarding the interaction of these tools. 

 

Figure 7.1 Abaqus/Standard and Helius PFA 2016 Relationship Flowchart 

7.1 Results Using Linear Elastic Abaqus Failure Criteria and Helius PFA’s MCT 

Criterion 

Abaqus/Standard provides five failure criteria to use in linear elastic analyses.  

Four of these failure criteria are stress-based and the remaining criterion is strain-based.  

The ability to use these failure criteria is limited due to the fact that they only anticipate 
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the incidence of localized failure not global failure.  Otherwise put Abaqus’ failure 

criteria do not predict an accompanying stiffness reduction after a failure occurs.  

Therefore, it does not capture progressive failure.  However, a software plugin to Abaqus, 

Helius PFA (through its MCT criterion) predicts both localized failure and an 

accompanying stiffness reduction.  Furthermore, the homogenized composite state of 

stress or strain is used to anticipate failure of a homogenized material in Abaqus’ linear 

elastic failure criteria while the MCT criterion uses constituent average stress to 

independently anticipate failure of each constituent [1, 4]. 

In the composite assembly examined here, it can be assumed that the material is 

linearly elastic leading up to global failure.  In this regard, the onset of failure can be 

compared between Abaqus’ linear elastic failure criteria and the MCT criterion.  The 

failure criteria provided by Abaqus are generally applied to orthotropic materials; 

however, for this assembly a transversely isotropic material is used for both Abaqus’ 

linear elastic failure criteria and the MCT criterion.  It should be noted that Abaqus’ 

linear elastic failure criteria is based on a presumed condition of plane stress.  This is a 

hindrance as these failure criteria can then only be used in a plane stress state with 2-D 

continuum or shell elements.  On the other hand, the MCT criterion uses these elements 

and a 3-D state of stress in SC8R elements in its applicable failure criteria [1, 4]. These 

are used in the results presented below as to form a more direct comparison with the 

shortcomings of Abaqus’ linear elastic failure criteria. 

In general for composite laminates, laminate failure is said to be first ply failure.  

To be concise, only Abaqus’ Maximum Stress criterion and Tsai-Wu failure criterion 

(both stress-based criteria) are compared with Helius PFA’s MCT failure criterion. 



53 

 

Table 7.1 below shows the predicted load level for each type of failure using 

Maximum Stress, Tsai-Wu, and MCT respectively.   

Table 7.1 Linear Elastic Failure Analysis Results 

Model Criterion 
Element 

Type 

#Elements #Elements Matrix 
Failure 
(Load 
Level) 

Fiber 
Failure 
(Load 
Level) 

Global 
Failure 
(Load 
Level) 

(Facesheet) (Core) 

Stress 
Based 
Failure 

Max 
Stress 

SC8R 2 4 43% 43% N/A 

Tsai-Wu SC8R 2 4 45% 45% N/A 
SC8R MCT SC8R 2 4 42% 62% 72% 

 

Figure 7.2 shows the vertical load-displacement curves for the load application 

location of 0° on the load head. 

 

Figure 7.2 Linear Elastic Failure Analysis Results 

It can be seen from Figure 7.2 that before global failure is achieved at 72% load 

level both Abaqus’ linear elastic failure criteria and the MCT criterion predict similar 

-------Max Stress/Tsai-Wu 
----------------SC8R (MCT) 

Local Failure Initiation: 
43% -Max Stress 

45% -Tsai-Wu 
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overall structural stiffness.  As such it is important to recall that using the linear elastic 

material failure criteria; the material stiffness reduction is not considered.  In this manner, 

the failure analysis is only able to be run up to the instance when localized failure 

initiation is predicted.  However, the MCT criterion has the advantage to reduce material 

stiffness at integration points that have failed (both matrix and fiber) which then can be 

used to accurately predict the advancement of local failure initiation into global failure.  

Here it is imperative to recall that a composite structure has the ability to retain the 

majority of its structural stiffness beyond the instance of local failure initiation.  

Furthermore, composite designs based off of first-ply failure tend to be over-conservative 

in nature and the full capability of the composite is not understood.  Thus, in this 

circumstance, it is advantageous to use the MCT criterion in the prediction of global 

failure as the description of post-failure behavior of this composite assembly is not 

available within Abaqus’ linear elastic failure criteria [1]. 

7.2 Results Using Abaqus’ Progressive Damage and Helius PFA’s MCT Criterion 

Progressive damage modeling is accomplished in Abaqus through the use of the 

Hashin criterion.  The Hashin criterion predicts the initiation of four different constituent 

failure modes (tensile fiber failure, compressive fiber failure, tensile matrix, and 

compressive matrix failure) and uses damage evolution equations to predict the stiffness 

reduction which is a result of the evolution of damage from these modes [1]. 

It is important to note the many differences between Abaqus’ progressive damage 

model and the instantaneous progressive failure model that is available via Helius PFA.  

They are as follows [1]: 
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1. In the Hashin criterion the material stiffness is reduced slowly as deformation 

accumulates after the initiation criterion has been met.  Meanwhile, in the MCT 

criterion a rapid stiffness reduction is driven by the constituent that failed.   

2. In the Hashin criterion, damage initiation and evolution of both the matrix and 

fiber constituents are predicted using the composite average states of stress and 

strain.  However, in the MCT criterion the constituent average stress states are 

used to predict failure in the individual constituents, both matrix and fiber. 

3. In the Hashin criterion, the prediction of damage initiation and evolution is based 

on the in-plane stress and strain components.  The additions of the transverse 

stress and strain components are ignored.  This is not the case in the MCT 

criterion.  MCT predicts the constituent failure using a 3-D constituent average 

stress state. 

4. In the evolution of progressive damage in the Hashin criterion the stiffness 

reduction is only accounted for in the in-plane stiffness (E11, E22, G12).  This 

leaves the transverse stiffness (E33, G13, G23) unaltered.  However, the MCT 

criterion allows for stiffness reduction in both the in-plane and transverse stiffness. 

5. Lastly, progressive damage modeling through the Hashin criterion is only 

available with the use of 2-D continuum elements and shell elements.  In contrast, 

the MCT criterion can use both of these element types as well as 3-D continuum 

elements. 

In regard to the composite assembly examined here, the Hashin criterion and 

MCT criterion are each used to simulate failure.  It is for reason four and reason five 

stated above that SC8R elements are used in the Hashin criterion and MCT criterion.  
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Therefore, the differences expressed in reasons four and five can now be neglected.  

Therefore, any differences captured between the results of the Hashin criterion and the 

MCT criterion are due to the differences expressed in reasons one through three above. 

In the Hashin criterion after the first localized matrix failure happened a 

converged solution could not be obtained.  As a result, the data documented here does not 

include a global failure through the use of the Hashin criterion.  Table 7.2 below shows 

the predicted load level for each type of failure using the two different progressive 

damage models after local matrix failure.  Note that by turning off *DAMAGE 

EVOLUTION in the Abaqus progressive damage model and using the Hashin criterion to 

flag matrix and fiber failure, neglecting the reduction in the material stiffness after local 

failure, it is possible to approximately conclude when fiber failure would occur.  It is 

important to state that this value is approximate since a material stiffness reduction due to 

local matrix failure has the ability to cause fiber failure to initiate early [1]. 

Table 7.2 Progressive Damage Failure Analysis Results 

Model Criterion 
Element 

Type 

#Elements #Elements Matrix 
Failure 
(Load 
Level) 

Fiber 
Failure 
(Load 
Level) 

Global 
Failure 
(Load 
Level) 

(Facesheet) (Core) 

Hashin Hashin SC8R 2 4 50% 75% N/A 
SC8R MCT SC8R 2 4 42% 62% 72% 
 

Table 7.2 presents and Figure 7.3 below shows that the Hashin criterion’s 

prediction of localized matrix failure occurs at 50% load level compared to the 42% load 

level as predicted by the MCT criterion.  This difference can be explained.  It is largely 

due to the differences that are inherent to the matrix constituent failure criteria used by 
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the Hashin and MCT criterion respectively.  Explicitly, the difference is the composite 

average stress vs. the constituent average stress and the stress-based failure criterion used 

in each model [1]. 

It can be seen that the Hashin criterion predicts the first localized fiber failure to 

occur at load level 75%.  However, the MCT criterion predicts the first localized fiber 

failure to occur at 62% load level.  This discrepancy in the load level of local fiber failure 

initiation is the result of two primary reasons.  The first reason is that the Hashin criterion 

uses the homogenized composite average stress state.  Meanwhile, the MCT criterion 

uses the fiber average stress state.  The second reason is that the MCT criterion predicts 

an instantaneous stiffness reduction with localized matrix failure.  As such, the load is re-

distributed to the fibers at a quicker rate than the Abaqus progressive damage evolution 

model, Hashin criterion, predicts [1]. 

An interesting observation to note from Figure 7.3 is that the Hashin criterion 

predicts localized fiber failure to occur at load level 75%.  However, MCT predicts global 

failure to occur at load level 72%.  In this case, an emphasis should be made on the fact 

that after localized matrix failure begins; a converged solution for Abaqus’ progressive 

damage model could not be obtained.  Therefore, global failure could not be determined.  

Thus, the turning off of *DAMAGE EVOLUTION and using the Hashin criterion to flag 

matrix and fiber failure to ultimately determine when fiber failure would occur is most 

likely responsible for the increased load level related to the localized fiber failure load 

levels [1]. 
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Figure 7.3 Progressive Damage Failure Analysis Results 

7.3 Comparison of Liner Elastic Failure Analysis Results vs. Progressive Damage 

Failure Analysis Results 

Table 7.3 and Figure 7.4 below provide the data and the vertical load-

displacement plot for Abaqus’ Max Stress Criterion, Tsai-Wu Criterion, and Helius 

PFA’s MCT criterion, respectively. 

Table 7.3 Comparison of Linear Elastic Failure Analysis Results vs. Progressive Damage 

Failure Analysis Results 

Model Criterion 
Element 

Type 

#Elements #Elements Matrix 
Failure  
(Load 
Level) 

Fiber 
Failure 
(Load 
Level) 

Global 
Failure 
(Load 
Level) 

(Facesheet) (Core) 

Stress 
Based 
Failure 

Max 
Stress 

SC8R 2 4 43% 43% N/A 

Tsai-Wu SC8R 2 4 45% 45% N/A 
Hashin Hashin SC8R 2 4 50% 75% N/A 
SC8R MCT SC8R 2 4 42% 62% 72% 

----------------Hashin 
--------SC8R (MCT) 

Local Matrix 
Failure 
Initiation: 

50% -Hashin

Local Fiber 
Failure 
Initiation: 

75% -Hashin 
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Figure 7.4 Comparison of Linear Elastic Failure Analysis Results vs. Progressive 

Damage Failure Analysis Results 

It is interesting to observe the overlay of these failure theories.  In doing so, it can 

be observed: First, Abaqus’ stress-based criteria are only viable until localized failure 

initiation is predicted.  This introduces over-conservatism into the composite design.  

Second, Abaqus’ progressive damage model did not converge to a solution.  Data could 

only be reported for the Hashin Criterion through Abaqus if matrix and fiber failures 

were flagged and reduction in material stiffness after local failure was neglected.  This 

created approximation tends to predict fiber failure to initiate early.  Lastly, Abaqus’ 

progressive damage model is not able to predict an instantaneous stiffness reduction with 

local matrix failure.  As a result, the load is re-distributed to the fibers at a slower rate.  

Thus, the fiber failure load level is over-predicted.

-------Max Stress/Tsai-Wu 
------------------------Hashin 
----------------SC8R (MCT) 
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 CONCLUSION CHAPTER 8.

This paper has presented a composite structure used in flight-qualification testing.  

This structure’s overall load-displacement response has been characterized.  It has been 

found that Abaqus/Explicit is able to predict mixed-mode multidelamination in a layered 

composite specimen through both the VCCT and CE fairly close to the results obtained in 

experimental test in literature.  Further, a thorough comparison has been provided in 

which the effects of failure criteria type, through-thickness mesh density, and finite 

element type on the progressive failure response of this composite assembly have been 

discussed.  Lastly, Abaqus/Standard and Helius PFA were compared in order to gain 

confidence into the capabilities of these analytical models in determining different scales 

of failure (local/microscale and global/macroscale).
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 FUTURE WORK CHAPTER 9.

It is of interest to explore further topics related to those presented herein.  It would 

be worthwhile to pursue the following: 

1. A study on the similarities and differences associated with short and long fiber 

composites (i.e. Scale Dependent Analyses). 

2. A study is performed in Abaqus/Explicit in which mixed-mode 

multi/delamination is predicted through the use of VCCT and CE for a short fiber 

composite. 

3. A study performed in Abaqus/Explicit in which mixed-mode multi/delamination 

is predicted through the use of the Extended Finite Element Method (XFEM) via 

short and long fiber composites. 

4. The effect of failure criteria type, through-thickness mesh density, and finite 

element type on the progressive failure of this conical composite is considered 

using a short fiber composite. 

5. A comparison is done for short and long fibers composites for the work presented 

herein and that obtained from above.
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