
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

12-2016

Taming tail latency for erasure-coded, distributed
storage systems
Jingxian Fan
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Industrial Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Fan, Jingxian, "Taming tail latency for erasure-coded, distributed storage systems" (2016). Open Access Theses. 846.
https://docs.lib.purdue.edu/open_access_theses/846

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/846?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F846&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form 
30 Updated 12/26/2015 

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By  

Entitled 

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation  
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of  
Integrity in Research” and the use of copyright material. 

Approved by Major Professor(s): 

Approved by: 
   Head of the Departmental Graduate Program     Date 

JINGXIAN FAN

TAMING TAIL LATENCY FOR ERASURE-CODED, DISTRIBUTED STORAGE SYSTEMS

Master of Science in Industrial Engineering

VANEET AGGARWAL
Chair

CHRISTOPHER J. QUINN

  

GESUALDO SCUTARI
   

VANEET AGGARWAL

ABHIJIT DESHMUKH 11/30/2016





TAMING TAIL LATENCY FOR ERASURE-CODED, DISTRIBUTED STORAGE

SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Jingxian Fan

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Industrial Engineering

December 2016

Purdue University

West Lafayette, Indiana



ii

For everyone that have supported and guided me during my graduate study life.



iii

ACKNOWLEDGMENTS

This research on ”Taming Tail Latency for Erasure-Coded, Distributed Storage

Systems” has been given to me as part of the curriculum in my Master of Science

Degree in Industrial Engineering.

I have explored and worked hard on this topic for months. During this time, I

have been confronted with di�culties on theories and stepped into wrong directions

several times. But finally with many helps I managed to work this out.

First I would like to thank my major professor Vaneet Aggarwal, without whom

this research would never be started or completed. He gave me the chance to un-

derstand the model and figure out the problems. Not only he provided me with his

insights on this research, but also he has been very supportive and encouraged me

whenever a problem came out.

I would also like to thank my senior Wenqi Wang from our lab. Even though we

are focused on di↵erent topics, he mentored me with usage of software and o↵ered

some technical helps during the implementation of simulation.

Last but not the least, the CLAN lab has been like a family to me all the time. I

am grateful to have them in my graduate study life.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 MOTIVATION: TRANSITION FROM FULL DATA REPLICATION

TO ERASURE CODING . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 RESEARCH PROBLEM . . . . . . . . . . . . . . . . . . . . 3
1.1.2 RESEARCH QUESTIONS . . . . . . . . . . . . . . . . . . . 3

1.2 PREVIOUS RELATED WORK . . . . . . . . . . . . . . . . . . . . 3
1.3 ORGANIZATION OF THIS THESIS . . . . . . . . . . . . . . . . . 5

2 SYSTEM MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 DATA STORAGE AND ERASURE CODING . . . . . . . . . . . . 6
2.2 PROBABILISTIC SCHEDULING . . . . . . . . . . . . . . . . . . . 7
2.3 QUEUING MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 UNDER GENERAL SERVICE DISTRIBUTION: BOUNDS ON TAIL LA-
TENCY, OPTIMIZATION AND SIMULATION RESULTS . . . . . . . 10
3.1 UPPER BOUNDS ON TAIL LATENCY . . . . . . . . . . . . . . . 10
3.2 FORMULATION OF OPTIMIZED STORAGE SYSTEM . . . . . 11
3.3 ALTERNATING MINIMIZATION METHOD . . . . . . . . . . . . 13
3.4 ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 SIMULATION AND EVALUATION . . . . . . . . . . . . . . . . . 18
3.6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 UNDER SHIFTED EXPONENTIAL SERVICE DISTRIBUTION: BOUNDS
ON TAIL LATENCY, OPTIMIZATION AND SIMULATION RESULTS 22
4.1 UPPER BOUNDS ON TAIL LATENCY . . . . . . . . . . . . . . . 22
4.2 SHIFTED EXPONENTIAL SERVICE TIME DISTRIBUTION . . 23
4.3 FORMULATION OF OPTIMIZED STORAGE SYSTEM . . . . . 24

4.3.1 CONVEXITY PROOF of OBJECTIVE FUNCTION IN t . 25
4.3.2 CONVEXITY PROOF of OBJECTIVE FUNCTION IN ⇡ . 27



v

Page

4.4 ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 SIMULATION AND EVALUATION . . . . . . . . . . . . . . . . . 29

4.5.1 NUMERIC SETTINGS . . . . . . . . . . . . . . . . . . . . 29
4.5.2 WEIGHTED LATENCY TAIL PROBABILITIES . . . . . . 31
4.5.3 Tail Latency Reduction Speed of the Proposed Algorithm . . 33
4.5.4 EFFECT OF ARRIVAL RATES . . . . . . . . . . . . . . . 34
4.5.5 EFFECT OF NUMBER OF FILES . . . . . . . . . . . . . . 35
4.5.6 EFFECT OF FILE SIZES . . . . . . . . . . . . . . . . . . . 36

4.6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . 38
5.1 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



vi

LIST OF TABLES

Table Page

3.1 The Steps of Alternating Minimization Method . . . . . . . . . . . . . 14

4.1 Summary of parameters for nodes in our simulation (shift � in ms and
rate ↵ in 1/s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



vii

LIST OF FIGURES

Figure Page

1.1 Full Data Replication Storage vs. Erasure Coding Storage . . . . . . . 1

2.1 Erasure-coded storage of 2 files . . . . . . . . . . . . . . . . . . . . . . 7

2.2 An illustration of a distributed storage system equipped with 7 nodes and
storing 3 files using di↵erent erasure codes . . . . . . . . . . . . . . . . 9

3.1 Convergence of Algorithm TLO with Arbitrary Service Distribution for
varying X values from 0.5 to 4 seconds. . . . . . . . . . . . . . . . . . 18

3.2 Plot of Weighted Latency and X values for 3 methods. . . . . . . . . . 19

3.3 Trend of Weighted Latency and Arrival Rate of our algorithm and equal
probability distributed schedule policy. . . . . . . . . . . . . . . . . . 20

4.1 Weighted Latency Tail Probability vs x (in seconds) with Other Algo-
rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Weighted Latency Tail Probability vs x (in seconds) Near Mean Value. 32

4.3 Reduction Speed of Weighted Latency Tail Probability. . . . . . . . . . 33

4.4 Weighted Latency Tail Probability for di↵erent file arrival rates . . . . 34

4.5 Weighted Latency Tail Probability for di↵erent number of files. . . . . 35

4.6 Weighted Latency Tail Probability for di↵erent size of files. . . . . . . . 36



viii

SYMBOLS

r Number of files in system by i = 1, 2, ..., r

m Number of storage nodes

(n, k) Erasure code for storing files

�
i

Arrival rate of file i

⇡
ij

Probability of retrieving chunk from node j of file i

L
i

Latency of retrieving file i

x Some constant of latency

Q
j

Sojourn Time of node j

X
j

Service Time of node j

µ
j

Mean sojourn time of node j

⇤
j

Arrival rate on node j

↵
j

parameter of shifted exponential distribution of server j

�
j

parameter of shifted exponential distribution of server j

�
j

Second moment of sojourn time of node j

�̂
j

Third moment of sojourn time of node j

M
j

(t) Moment Generating Function for the service time of node j

⇢
j

Request intensity at node j

S
i

Set of storage nodes having chunks from file i

A
i

Set of nodes used to provide chunks from file i

!
i

weight of file i



ix

ABBREVIATIONS

MDS Maximum-Distance Separable

AMM Alternating Minimization Method

WLTP Weighted Latency Tail Probability Optimization

PEAP Projected, Equal Access-Probability

BNW Balanced Node Workload



x

ABSTRACT

Fan, Jingxian MS, Purdue University, December 2016. Taming Tail Latency For
Erasure-Coded, Distributed Storage Systems . Major Professor: Vaneet Aggarwal.

Nowadays, in distributed storage systems, long tails of responsible time are of

particular concern. Modern large companies like Bing, Facebook and Amazon Web

Service show that 99.9th percentile response times being orders of magnitude worse

than the mean. With the advantages of maintaining high data reliability and ensur-

ing enough space e�ciency, erasure code has become a popular storage method in

distributed storage systems. However, due to the lack of mathematical models for

analyzing erasure-coded based distributed storage systems, taming tail latency is still

an open problem.

In this research, we quantify tail latency in such systems by deriving a closed

upper bounds on tail latency for general service time distribution and heterogeneous

files. Later we specified service time to shifted exponentially distributed. Based on

this model, we developed an optimization problem to minimize weighted tail latency

probability of deriving all files. We propose an alternating minimization algorithm for

this problem. Our simulation results have shown significant reduction on tail latency

of erasure-coded distributed storage systems with realistic environment workload.



1

1. INTRODUCTION

1.1 MOTIVATION: TRANSITION FROM FULL DATA REPLICATION

TO ERASURE CODING

As the era of data explosion comes, emerging applications like big data analytics

and cloud computing demand distributed storage systems to o↵er multiple petabyte

level storage, and this need of storage is exponentially increasing. Traditionally,

to avoid the data loss caused by servers breaking down, system failures or other

unpredictable cause, distributed storage systems apply full data replication to achieve

high reliability. Under this storage method, if a file is replicated n times, it can be

recovered by accessing any of the n replicas. However, full data replication consumes

times of more storage which is not favored by modern data driven companies.

Figure 1.1. Full Data Replication Storage vs. Erasure Coding Storage



2

By comparison, erasure coding succeeds in reducing the cost of storage while main-

taining high reliability. This emerging method has been widely studied for distributed

storage systems and used by modern online applications such as Facebook and Google

because of its advantages of space-optimal data redundancy for data protection. It

has been showed that using erasure coding can e�ciently reduce the cost of stor-

age over 50% as a result of smaller storage space and data center footprint. For an

erasure-coded system uses an (n, k) code, each file is encoded into n equal-size data

chunks, allowing reconstruction from any subsets of k < n chunks. Whenever the file

is requested, the system needs to fetch k distinct chunks from di↵erent servers, which

ensuring high reliability because even some of the servers breaks down, the file can

still be recover from other k servers. And the storage is now n data chunks instead

of n replication of files. Figure 1.1 gives the comparison of full data replication and

erasure coding with an example of storing two files, file A and file B, both of 2 MB.

It shows file A and B takes 8 MB to securely store with full data replication while it

only takes 6 MB to store file A and B with the same reliability using a (3, 2) erasure

coding.

However, there exists a key tradeo↵ for erasure coding, the delay of retrieving files.

As data chunks are not stored in every server and the bandwidth between di↵erent

servers is limited, a significant delay in data access becomes critical when retrieving

the file, which can be perceived as poor quality of service. This long tail latency is of

particular concern to modern web applications. Google and Amazon have published

that every 500 ms extra delay causes a 1.2% user loss. Meanwhile, quantifying the

tail latency in erasure-coded data storage system remains an open problem. Despite

recent research e↵ort working on mean service latency but less focus on tail latency, an

analytical framework to quantify tail latency in distributed storage systems employing

erasure codes is still a problem to explore.

Therefore, this research focuses on the tail latency of erasure-coded, distributed

storage systems. Establishing a realistic system model, finding a valid upper bound

for this tail latency in closed form and optimizing all related parameters in this system



3

to minimize tail latency for better industrial applications are the main goals of this

research.

1.1.1 RESEARCH PROBLEM

Based on the previous motivation, the research problem of this thesis is defined

as below:

Build an analytical framework to quantify tail latency in erasure-coded, distributed

storage systems and optimize the tail latency.

1.1.2 RESEARCH QUESTIONS

To solve this problem, these research questions are defined:

Research Question 1: What is the mathematical system model for erasure-coded,

distributed storage system?

Research Question 2: What is the weighted upper bound of tail latency for

retrieving files from this system?

Research Question 3: After we have the upper bound, how to optimize it and

what is the optimal result?

1.2 PREVIOUS RELATED WORK

Recent research e↵ort provides bounds on mean service latency, however less is

known on tail latency. To provide upper bounds on mean service latency of homo-

geneous files, there are two major analysis from prior work: Fork-join queue analysis

and Queuing-Theoretic Analysis.

Fork-join queue analysis: The fork-join queue, [1] is one of the queuing models for

erasure-coded storage. In [2] the authors provided a heuristic transmission scheme

based on this model, in which a file request is forked to every storage node with



4

the file chunks. The file request exits the system when any first k chunks are pro-

cessed. Under this way, the model adjusts coding parameters dynamically and thus

improve latency performance. In [4], the authors applied this (n, k) fork-join queue

to model the latency performance of erasure-coded storage, provided a closed-form

upper bound of mean service latency in the case of systems with only homogeneous

files and exponentially distributed service time. But the approach has problems be-

ing applied to heterogeneous file systems because each file has a separate folk-join

queue and the queues of di↵erent files are highly dependent due to shared storage

nodes and joint request scheduling. The authors of [3] proposed a self-adaptive policy

that under dynamic workload status in erasure-coded storage systems, adjust chunk

size and number of redundancy requests dynamically to minimize queuing latency

in fork-join queues. Another work [5] used this fork-join queue to optimize threads

allocation to each file request. But the proposed greedy/shared scheme could waste

system resources because in fork-join queue there will always exist some threads with

unfinished downloads as a result of redundant assignment.

In addition, in [6] the authors proposed a model that analyzed the (n, k) Fork-

join queue model with heterogeneous files. From distinct classes under di↵erent

scheduling policies, like preemptive, First-Come-First-Serve and non-preemptive pri-

ority scheduling policies, they derived lower and upper bounds for the average latency

on jobs based on the analysis of mean and second moment of waiting time. But indi-

vidual file request must be served by all n nodes or a set of pre-specified nodes under

a folk-join queue, falling short to deal with dynamic load-balancing of heterogeneous

files.

Queuing-Theoretic Analysis: , the authors in [7] proved asymptotic results for

symmetric large scale systems that can be applied to provide a computable approxi-

mation for expected latency under an assumption of exponential service time distri-

bution with homogeneous files. But the assumption that chunk placement is fixed

and so is coding policy for all file requests is not true in reality. The authors in [8]

present a block-one-scheduling policy only allowing the one request at the head of



5

the bu↵er to move forward. They provided an upper bound on the mean latency of

storage system using queuing-theoretic analysis for erasure code scheme with fixed

k. Later this approach is extended in [9] to general (n, k) erasure codes, still for

homogeneous files. To provide numerical upper bounds on the mean latency, they

proposed a family of MDS-Reservation(t) scheduling policy that block all except the

first t of file requests. When t increases, the bound goes tighter but the number of

states in the queueing-theoretic analysis increases exponentially.

1.3 ORGANIZATION OF THIS THESIS

In this thesis, chapter 1 introduce the motivation of this research and gives the

layout of research problems. Chapter 1 also includes the related work on similar

topics.

Chapter 2 describes the mathematical system model of erasure coded, distributed

storage system. Chapter 3 focuses on a closed-formed upper bound of tail latency and

formulates the optimization under the assumption that the service time is arbitrary

distributed, which is the first stage and result of our analysis. Chapter 4 focuses

on a tighter upper bound of tail latency and formulates the optimization under the

assumption that the service time is shifted exponentially distributed, which explores

a better optimization performance. In both chapter 3 and chapter 4, the algorithms

for optimization and the simulation results is presented. In the last chapter, there

are conclusions for this thesis and future works to do.



6

2. SYSTEM MODEL

2.1 DATA STORAGE AND ERASURE CODING

In a distributed storage system, there are heterogeneous servers to store data and

process requests. Files are distributed among these servers and retrieved from them

whenever needed. In this research we consider a data center of m heterogeneous

storage servers, denoted by M = 1, 2, ...,m, also called storage nodes. This data

center is distributively stored with a set of r files, indexed by i = 1, 2, ...r. Each

file i is partitioned into k
i

fixed-size data chunks and then it is encoded using an

(n
i

, k
i

) MDS erasure code so it will generate n
i

distinct chunks of the same size for

file i. Then these encoded chunks are assigned to n
i

distinct storage nodes, denoted

by a set S
i

of storage nodes, which should satisfy S
i

✓ M and n
i

= |S
i

|. With the

use of (n
i

, k
i

) MDS erasure code, it enables the file to be rebuilt from any subset of

k
i

-out-of-n
i

chunks. At the mean time, it introduces a redundancy factor of n
i

/k
i

.

Thus, upon the arrival of each file request, k
i

distinct data chunks are selected by a

scheduler and retrieved to rebuild the desired file.



7

Figure 2.1. Erasure-coded storage of 2 files

Figure 2.1 is a erasure-coded storage data center of 2 files, A and B, partitioned

into two blocks and encoded using (4, 2) and (3, 2) erasure code scheme respectively.

Then encoded chunks are spread over all five storage nodes. File request for A and

B should be processed by 2 di↵erent nodes with desired chunks. Node 3 and Node 4

are shared thus can process requests of both files.

2.2 PROBABILISTIC SCHEDULING

Prior work on erasure-coded storage systems focuses on mean latency with two

main approaches, queuing-theoretic analysis and fork-join queue analysis. However

when analyzing tail latency, both approaches appear weak to quantify because the

states of the corresponding queuing model must encapsulate not only a snapshot of the

current system with chunk placement and queue requests, but also the past history of

how chunk requests have been processed by each storage nodes. As practical storage

systems are required to handle a huge number of files and nodes, this can easily lead



8

to a state-explosion problem. If a simple scheduling policy that accesses available

chunks with equal probability is applied, it will apparently lead to high tail latency

resulted by hot storage nodes with worst performance. Meanwhile, a policy that

load-balances the number of requests processed by each server does not necessarily

optimize tail latency of all files, as files that employ di↵erent erasure codes causing

di↵erent impact on service latency.

Since jointly request scheduling rule and the dependency of straggling fragment on

popular storage nodes make tail latency even harder to quantify with current analysis,

we use the Probabilistic Scheduling from [10] in this research. This probabilistic

scheduling policy: 1) dispatches each batch of chunk requests corresponding to the

same file request to a set of appropriate nodes with predetermined probabilities. This

set of nodes is denoted by A
i

of servers for file i and the predetermined probability

is denoted by P (A
i

) for set A
i

and file i; 2) each node bu↵ers requests in a local

queue and processes in order. The authors of [10] have shown that a probabilistic

scheduling policy with feasible probabilities {P (A
i

) : 8i, A
i

} exists if and only if there

exists conditional probabilities ⇡
i,j

2 [0, 1], 8i, j satisfying
mX

j=1

⇡
i,j

= k
i

8i and ⇡
i,j

= 0 if j /2 S
i

.

The file request is completed if all its chunk requests have been processed by every

node.

This probabilistic scheduling policy is used to provide an upper bound on mean

service time when first proposed but in this research we extend this policy and propose

an analytical model on tail latency allowing the optimization on tail latency.

2.3 QUEUING MODEL

Based on the distributed storage model system we now represent a queuing model

of requests and processes in the system. We assume that the arrival of client requests

for each file i follows an independent Poisson process with a known rate �
i

. We

consider chunk service time X
j

of node j with arbitrary distributions, whose statistics



9

can be obtained inferred from existing work on network delay and file-size distribution.

Under erasure codes, each file i can be retrieved from any k
i

distinct nodes that store

the file chunks. We model this by treating each file request as a batch of k
i

chunk

requests, so that a file request is served when all k
i

chunk requests in the batch are

processed by distinct storage nodes. All requests are bu↵ered in a common queue of

assumed infinite capacity.

Figure 2.2. An illustration of a distributed storage system equipped with
7 nodes and storing 3 files using di↵erent erasure codes

Figure 2.2 is a distributed file system with 7 nodes. 3 files are stored in this system

using (6, 4), (5, 3), and (3, 2) MDS codes respectively. All file requests arriving are

jointly scheduled to access k
i

-out-of-n
i

distinct chunks.



10

3. UNDER GENERAL SERVICE DISTRIBUTION:

BOUNDS ON TAIL LATENCY, OPTIMIZATION AND

SIMULATION RESULTS

3.1 UPPER BOUNDS ON TAIL LATENCY

We first quantify tail latency for erasure-coded storage systems with arbitrary

service time distribution (i.e., arbitrary known distribution of X
j

). Let Q
j

be the

(random) time the chunk request spends in node j, called sojourn time. Under prob-

abilistic scheduling, the service time of a file-i, denoted by L
i

request is determined

by the maximum chunk service time at a randomly selected set A
i

of storage nodes.

The latency tail probability of file i is defined as the probability that L
i

is greater than

or equal to x, for a given x.

For given weight w
i

for file i, this research wishes to minimize
P

i

w
i

Pr(L
i

� x).

Since finding Pr(L
i

� x) in closed form is hard for general service time distribution,

we further use an upper bound on this and use that instead of Pr(L
i

� x) in the

objective. We consider an upper bound of tail latency on file i as

Pr(L
i

� x)  Pr(L
UB,i

� x)

= Pr
A

i

,Q

j

(max
j2A

i

Q
j

� x)

= Pr
A

i

,Q

j

(Q
j

� x for some j 2 A
i

)

= E
A

i

,Q

j

[max
j2A

i

1(Q
j

�x)]

 E
A

i

,Q

j

X

j2A
i

[1(Q
j

�x)]

= E
A

i

X

j2A
i

[Pr (Q
j

� x)]

=
X

j

⇡
ij

[Pr (Q
j

� x)] (3.1)



11

Using Markov Lemma, Pr (Q
j

� x) is bounded by
E[Qk

j

]

x

k

for any k � 0:

Pr (Q
j

� x) 
E[Qk

j

]

xk

With these results, we can give a bound on file i from combinations of these moments

with di↵erent k’s.

Pr(L
i

� x) 
 
1�

NX

k=1

c
i,k

!
+

NX

k=1

c
i,k

P
j

⇡
ij

E[Qk

j

]

xk

(3.2)

for any N > 0, c
i,k

� 0 for k = 1, 2, · · · , N with
P

N

k=1 ci,k  1. Further moments of Q
j

are given by Pollaczek-Khinchine formula which gives the Laplace-Stieltjes transform

of the waiting time in terms of that for the service time as

eQ
j

(s) =
(1� ⇢

j

)fX
j

(s)s

⇤
j

fX
j

(s) + s� ⇤
j

(3.3)

whereX
j

(s) is Laplace-Stieltjes transform of the service time (with E[X
j

] = 1
µ

j

,E[X2
j

] =

�2
j

,E[X3
j

] = �̂3
j

and ⇢
j

= ⇤
j

/µ
j

), and ⇢
j

= ⇤
j

/µ
j

is the request intensity at node j.

Further,

E[Q
j

] =
1

µ
j

+
⇤

j

�2
j

2(1� ⇢
j

)
(3.4)

V ar[Q
j

] = �
j

2 +
⇤

j

�̂3
j

3(1� ⇢
j

)
+

⇤
j

2�
j

4

4(1� ⇢
j

)2
(3.5)

E[Q
j

2] = �
j

2 +
⇤

j

�̂3
j

3(1� ⇢
j

)
+

⇤
j

2�
j

4

2(1� ⇢
j

)2
+

1

µ
j

2
+

⇤
j

�2
j

µ
j

(1� ⇢
j

)
(3.6)

3.2 FORMULATION OF OPTIMIZED STORAGE SYSTEM

Let !
i

be the weight of file i, so !
i

is the fraction of file i requests, and upper

bound of probability for average latency of all files is given by
P

i

!
i

Pr(L
i

� x). By

adjusting weights !
i

, the proposed optimization allows us to explore a tail-latency

tradeo↵ between di↵erent files and to o↵er elastic Service Level Agreements (SLA)

to users with di↵erent tail latency preference. For instance, a large weight !
i

can be

assigned to a video streaming application requiring quick responses, while a small !
i

might be appropriate for online data backup that is latency insensitive.



12

Thus, the problem of finding the upper bound for average latency over all files is

now becoming a joint minimization problem:

min
X

i

!
i

 
(1�

NX

k=1

c
i,k

) +
NX

k=1

c
i,k

1

xk

X

j

⇡
ij

E(Qk

j

)

!
(3.7)

s.t.

NX

k=1

c
i,k

= 1 (3.8)

c
i,k

 0 (3.9)
X

j

⇡
i,j

= K
i

(3.10)

⇡
i,j

2 [0, 1] (3.11)

var. ⇡
i,j

, c
i,k

(3.12)

Denote U
ik

= 1
x

k

P
j

⇡
ij

E(Qk

j

), below follows the proof that U
i1, Ui2 are both sepa-

rately convex in ⇡
i,j

:

The following function, in whichX
j

= (X1j, X2J), X1j, X2j are functions of ⇤j

defined

as followed, is convex in ⇤
j

:

F (⇤
j

) =
⇤

j

�̂
[X

j

] (3.13)

X1j =
1

µ
j

+
⇤

j

�2
j

2(1� ⇢
j

)
(3.14)

X2j = �
j

2 +
⇤

j

�̂3
j

3(1� ⇢
j

)
+

⇤
j

2�
j

4

2(1� ⇢
j

)2
+

1

µ
j

2
+

⇤
j

�2
j

µ
j

(1� ⇢
j

)
(3.15)

In order to prove that F (⇤
j

) = ⇤
j

�̂

[X
j

] is convex in ⇤
j

,we already have the con-

clusion that we only need @

2
X

j

@⇤2
j

to be positive.

As X2j = V ar(Q
j

) +X2
1j ,according to the previous paper, [10]

@2X1j

@⇤2
j

=
µ2
j

�2
j

(µ
j

� �
j

)3
� 0 (3.16)

@2X2j

@⇤2
j

=
@2V ar(Q

j

)

@⇤2
j

+
@2(X2

1j)

@⇤2
j

� 0 (3.17)

So both U1, U2 are separately convex in ⇤
j

. As ⇤
j

=
P

i

�
i

⇡
i,j

, so U
i1, Ui2 are also

separately convex in ⇡
i,j

.



13

Here we minimize the upper bound of average file tail latency probability over

⇡
i,f

and c
i,k

. Since we already have the convergence proof of U
i1, Ui2, we may find

the minimization when k = 2.Then the joint minimization problem above is a convex

minimization problem where the decision variables vector is split into two blocks. To

solve this problem, we introduce the method of Alternating Minimization for Convex

Programming for our case.

3.3 ALTERNATING MINIMIZATION METHOD

To solve the convex problem and present the algorithm for our case, we first

introduce the Alternating Minimization Method as below:

For the following minimization problem:

min
y2Rn1

,z2Rn2H(~y, ~z) ⌘ f(~y, ~z) + g1(~y) + g2(~z), (1.1)

The steps of Alternating-Minimization method to find the minimization. Below Table

3.1 shows the detailed steps of Alternating-Minimization method.



14

Table 3.1.
The Steps of Alternating Minimization Method

Step 1: Initialization

~y0 2 dom g1,~z0 2 dom g2 such that ~z0 2 argmin
~z2Rn2 f(~y0, ~z) + g2(~z).

Step 2: General Step (k=0,1,...)

~y
k+1 2 argmin

~y2Rn1

f(~y, ~z
k

) + g1(~y),

~z
k+1 2 argmin

~z2Rn2

f(~y
k+1, ~z) + g2(~z)

Step 3: Decide the optimal set

The k-th iterate will be denoted by ~x
k

= (~y
k

.~z
k

), and we also consider the sequence

in between given by

~x
k+ 1

2
= (~y

k+1.~zk)

Since the generated sequence is monotone and satisfies:

H(~x0) � H(~x 1
2
) � H(~x1) � H(~x 3

2
) � . . .

When H(~x
k+ 1

2
)�H(~x

k

) ! 0 ,decide this ~x
k

is the optimal arg.

Then we provide the proof that the Alternating Minimization Method can be

applied to our minimization problem. To apply the Alt-Min Method on our mini-

mization problem, first translate the constraints of the problem into the the function.

Create function:

I(x) =

8
<

:
0 if x � 0

1 if x < 0



15

Change the problem into

min
c

i,k

,⇡

ij

X

i

!
i

 
(1�

NX

k=1

c
i,k

) +
NX

k=1

c
i,k

U
ik

!

+
X

i

I(1�
X

k

c
i,k

) +
X

i

X

k

I(c
i,k

)

+
X

i

I(K
i

�
X

j

⇡
ij

) +
X

i

I(
X

j

⇡
ij

�K
i

)

+
X

i

X

j

I(⇡
ij

) +
X

i

X

j

I(1� ⇡
ij

) (3.18)

3.4 ALGORITHM

The gradient and projection are repeatedly used in the algorithm, so first we

formulate them.

The gradient of f(c,⇧(k)) is :

when c = (1, 0, 0),

r(f0(c,⇧(k))) = 0 (3.19)

when c = (0, 1, 0),

r(f1(c,⇧(k))) = r(
X

i

w
i

c
i1

x
(
X

j

⇡
ij

(
1

µ
j

+
⇤

j

�2
j

2(1� ⇢
j

)
)))

=

P
i

w
i

x

"
1

µ
j

+
µ
j

�2
j

2
(
X

j

⇤
j

µ
j

(µ
j

� ⇤
j

)2
+

⇤
j

µ
j

� ⇤2
j

(µ
j

� ⇤
j

)2
)

#
(3.20)



16

when c = (0, 0, 1),

r(f2(c,⇧(k))) = r(
X

i

w
i

c
i2

x2
(
X

j

⇡
ij

(�
j

2 +
⇤

j

�̂3
j

3(1� ⇢
j

)
+

⇤
j

2�
j

4

2(1� ⇢
j

)2
+

1

µ
j

2
+

⇤
j

�2
j

µ
j

(1� ⇢
j

)
))

=

P
i

w
i

x2

"
�2
j

+
1

µ
j

+ (�2
j

+
�̂3
j

µ
j

3
)(
X

j

⇤
j

µ
j

(µ
j

� ⇤
j

)2
+

⇤
j

µ
j

� ⇤2
j

(µ
j

� ⇤
j

)2
)

#

+

P
i

w
i

x2

"
�4
j

µ2
j

2
(
X

j

2⇤2
j

⇧
ij

(µ
j

� ⇤
j

)3
+ (

⇤
j

µ
j

� ⇤
j

)2)

#
(3.21)

The projection is

z = ⇧(k)� ↵
k

r(f(c,⇧(k)) (3.22)

P
C

(z) = argmin
y2g2

kz � yk2 8y 2 g2 (3.23)

g2(⇡) = I(K
i

�
X

j

⇡
ij

) + I(
X

j

⇡
ij

�K
i

) + I(⇡
ij

) + I(1� ⇡
ij

) (3.24)

Once the value of z has been calculated,check if g2(z) == 0 ,if true,⇧(k + 1) =

z,else,use the convex function g2(⇡) with x to find the minimizer.



17

Algorithm 1 Tail Latency Optimization With Arbitrary Service Distribu-

tion
Require: µ, �, �, �, x

1: Initialize t = 0, ✏1 > 0, ✏2 > 0.

2: Initialize feasible c, ⇡ = argminc f(c,⇡) + g2(⇡)

3: Initialize feasible H(0), H(� 1
2 ), H(c, ⇡) =

P
i

!
i

Pr(L
i

 x)

4: while H(t) �H(t� 1
2 ) > ✏

5: i = 0

6: while(file i)

7: n = argmin
n

U
i,n

8: c(n) = 1

9: c(otherthan0n0) = 0

10: update i = i+ 1

11: end while

12: update H(t+ 1
2 ) = H(c,⇡)

13: Initialize feasible ⇧(1) = ⇡,⇧(0) = 0, k = 1,step-size ↵
k

= constant/t

14: while ⇧(k)� ⇧(k � 1) < ✏2

15: n = argmax
n

c(i, n)

16: z = ⇧(k)� ↵
k

r(f
n

(c,⇧(k)))

17: ⇧(k + 1) = Pc(z0)

18: update k = k + 1

19: end while

20: ⇡ = ⇧(k)

21: update H(t+1) = H(c,⇡)

22: update t = t+ 1

23: end while

Ensure: c, ⇡, H(t)



18

3.5 SIMULATION AND EVALUATION

With the above algorithm, we are able to implement a simulation on this tail

latency optimization. In this simulation we use realistic parameters from Tahoe [11],

which is an open-source, distributed file system. The system consists 12 nodes. Mean

service rate of each node is set to 5.77, 4.22, 3.95, 4.76, 3.03, 3.66, 2.88, 5.45, 3.26,

4.62, 2.48, 2.52. Second moment of service rate is 0.014, 0.014, 0.014, 0.015, 0.015,

0.015, 0.013, 0.013, 0.013, 0.016, 0.016, 0.016. Third moment of service rate is 0.015,

0.015, 0.015, 0.016, 0.016, 0.016, 0.014, 0.014, 0.014, 0.017. Deviance of service rate

is 0.83. 4 kinds of files are assumed to store in the system with distinct erasure codes

of (7, 6), (8, 7), (8, 6), and (6, 4). Arrival rate for each kind of files is 0.0354, 0.0236,

0.0354, 0.0236. Weight for each kind of files is 0.1, 0.2, 0.3, 0.4. In all below figures,

X represents the value which cuts the tail.

Number of Iterations
1 2 3 4 5 6 7 8

W
e
ig

h
te

d
 L

a
te

n
cy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X=0.5
X=1.0
X=1.5
X=2.0
X=2.5
X=3.0
X=3.5
X=4.0

Figure 3.1. Convergence of Algorithm TLO with Arbitrary Service Dis-
tribution for varying X values from 0.5 to 4 seconds.



19

As under all parameters, the mean latency is around 1.0. The algorithm e�ciently

computes a solution within a few iterations.

X values(Second)
0.5 1 1.5 2 2.5 3 3.5 4

W
e
ig

h
te

d
 L

a
te

n
cy

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Use Only Bound
1

Use Only Bound
2

Our Algorithm

Figure 3.2. Plot of Weighted Latency and X values for 3 methods.

Here Bound 1 is the result if we only apply U
i,1 as the upper bound for file i,

Bound 2 is the result if we only apply U
i,2 as the upper bound for file i. From figure

3.2, there are ranges when Bound 1 is lower while there are others when Bound 2 is

lower. Our method is always at the lowest level as it applies these two’s minimum.

Between x in 2.5 to 2.9, these 2 bounds are combined to form our method’s bound so

that it is even lower than both.



20

Arrival Rate
0.04 0.05 0.06 0.07 0.08 0.09 0.1

W
e
ig

h
te

d
 L

a
te

n
cy

0.6143

0.6144

0.6145

0.6146

0.6147

0.6148

0.6149

0.615

Our Algorithm
Average Distributed Schedule Probability

Figure 3.3. Trend of Weighted Latency and Arrival Rate of our algorithm
and equal probability distributed schedule policy.

Both results are computed from the combination upper bound of all bounds. This

shows our method provides lower latency over ranges of arrival rate.

3.6 SUMMARY

In this chapter, because of the limit that service time of each node is of arbitrary

distribution, the only information for finding upper bound is the moments. Due to

this deficiency, the final upper bound is optimized combination of all moments. With

the Alternating Minimization Method we developed a proved e�cient algorithm to

examine our bounds.

The simulation results of this chapter show convergence and e�ciency of our

algorithm. Compared with simply applying one moment bound, our method is always

tighter. However, when comparing our algorithm with equal probability distributed



21

schedule policy, our algorithm is tighter but the di↵erence is not significant. This

fact of results forwards us to go finding tighter upper bound for a more significant

reduction on tail latency.



22

4. UNDER SHIFTED EXPONENTIAL SERVICE

DISTRIBUTION: BOUNDS ON TAIL LATENCY,

OPTIMIZATION AND SIMULATION RESULTS

4.1 UPPER BOUNDS ON TAIL LATENCY

In Chapter 3, we provide an upper bound generated by Markov Lemma with

moments of service time. To simplify the optimization we only apply first two mo-

ments. However, the simulation results are not significant. Here in this chapter, to

get a tighter and precise upper bound, we use the moment generating function of

service time and find a more general form of upper bound with the Laplace Stieltjes

Transform of Q
j

.

Under probabilistic scheduling, the arrival of chunk requests at node j form a

Poisson Process with rate ⇤
j

=
P

i

�
i

⇡
ij

. Let M
j

(t) = E[etXj ] be the moment gen-

erating function of service time of processing a single chunk at server j. Then, the

Laplace Stieltjes Transform of Q
j

is given, using Pollaczek-Khinchine formula, as

E[e�sQ

j ] =
(1� ⇢

j

)sM
j

(�s)

s� ⇤
j

(1�M
j

(�s))
, (4.1)

where ⇢
j

= ⇤
j

E[X
j

] is the request intensity at node j, and M
j

(t) = E[etXj ] is the

moment generating function of X
j

. [12]. From Chapter 3 we already know that in

order to get an upper bound for Pr(L
i

� x), we need first use an upper bound on

this and use that instead of Pr(L
i

� x) in the objective. This upper bound has been

proved as following:

Pr(L
i

� x) 
X

j

⇡
ij

[Pr (Q
j

� x)]

In this chapter we use the exponential form of Markov Lemma:

Pr (Q
j

� x)  E[etjQj ]

etjx



23

In order to obtain E[etjQj ], we replace s in (4.1) with �t. Then we get

Pr(Q
j

� x)  (1� ⇢
j

)t
j

M
j

(t
j

)

etjx(t
j

� ⇤
j

(M
j

(t
j

)� 1))
, (4.2)

The expression is finite only when ⇤
j

(M
j

(t
j

) � 1) < t
j

. So our upper bound using

Pollaczek-Khinchine formula for Laplace Stieltjes Transform is

Pr(L
i

� x) 
X

j

⇡
ij

etjx
(1� ⇢

j

)t
j

M
j

(t
j

)

t
j

� ⇤
j

(M
j

(t
j

)� 1)
, (4.3)

for any t
j

> 0, ⇢
j

= ⇤
j

E[X
j

], satisfying M
j

(t
j

) < 1 and ⇤
j

(M
j

(t
j

)� 1) < t
j

.

In some cases, the moment generating function may not exist, which means that

the condition ⇤
j

(M
j

(t
j

)� 1) < t
j

may not be satisfied for any t
j

> 0. In such cases,

we use the results in chapter 3 to get the upper bound.

4.2 SHIFTED EXPONENTIAL SERVICE TIME DISTRIBUTION

Motivated by the Tahoe experiments [10] and Amazon S3 experiments, [5]. we

consider the case when the service time distribution is a shifted exponential distri-

bution. Let the service time distribution of server j has probability density function

f
X

j

(x) as:

f
X

j

(x) =

8
<

:
↵
j

e�↵

j

(x��

j

), for x � �
j

0, for x < �
j

. (4.4)

Exponential distribution is a special case of shifted exponential when �
j

= 0. Under

shifted exponential distribution, the Moment Generating Function is now given as

M
j

(t) =
↵
j

↵
j

� t
e�j

t for t < ↵
j

. (4.5)

When the service time distributions of servers are given by shifted exponential distri-

bution, the latency tail probability for file i, Pr(L
i

� x), is bounded by

Pr(L
i

� x) 
X

j

⇡
ij

etjx
(1� ⇢

j

)t
j

M
j

(t
j

)

t
j

� ⇤
j

(M
j

(t
j

)� 1)
, (4.6)

where M
j

(t
j

) = ↵

j

↵

j

�t

j

e�j

t

j , t
j

< ↵
j

, ⇢
j

= ⇤
j

↵

j

+ ⇤
j

�
j

, ⇢
j

< 1, and t
j

(t
j

� ↵
j

+ ⇤
j

) +

⇤
j

↵
j

(e�j

t

j � 1) < 0.



24

The condition ⇤
j

(M
j

(t
j

)�1) < t
j

reduces to t
j

(t
j

�↵
j

+⇤
j

)+⇤
j

↵
j

(e�j

t

j �1) < 0.

Since t
j

� ↵
j

will not satisfy t
j

(t
j

� ↵
j

+ ⇤
j

) + ⇤
j

↵
j

(e�j

t

j � 1) < 0, the conditions in

the statement of the Corollary implies t
j

< ↵
j

where the above moment generating

function expression is used.

4.3 FORMULATION OF OPTIMIZED STORAGE SYSTEM

Similar to previous chapter, we consider !
i

as the weight of file i. Then we come up

with the following Weighted Latency Tail Probability (WLTP) optimization problem

over scheduling probabilities ⇡
i,j

and parameter t
j

, i.e.,

min
X

i

!
i

 
X

j

⇡
ij

etjx
(1� ⇢

j

)t
j

M
j

(t
j

)

t
j

� ⇤
j

(M
j

(t
j

)� 1)

!
(4.7)

s.t. ⇤
j

=
X

i

�
i

⇡
ij

(4.8)

M
j

(t) =
↵
j

↵
j

� t
e�j

t (4.9)

⇢
j

=
⇤

j

↵
j

+ ⇤
j

�
j

(4.10)

X

j

⇡
i,j

= k
i

(4.11)

⇡
i,j

= 0, j /2 A
i

(4.12)

⇡
i,j

2 [0, 1] (4.13)

t
j

� 0 (4.14)

t
j

(t
j

� ↵
j

+ ⇤
j

) + ⇤
j

↵
j

(e�j

t

j � 1) < 0 (4.15)

var. ⇡
i,j

, t
j

(4.16)

Here, Constraint (4.8) gives the aggregate arrival rate ⇤
j

for each node under give

scheduling probabilities ⇡
i,j

and arrival rates �
i

, Constraint (4.9) defines moment

generating function with respect to parameter t
j

, Constraint (4.10) defines the tra�c

intensity of the servers, Constraints (4.11-4.13) guarantees that the scheduling prob-

abilities are feasible, and finally, the moment generating function exists due to the

technical constraint in (4.15). If (4.15) is satisfied, ⇢
j

< 1 holds too thus ensuring



25

the stability of the storage system (i.e., queue length does not blow up to infinity

under given arrival rates and scheduling probabilities). We note that t
j

> 0 can be

equivalently converted to t
j

� 0 (and thus done in (4.14)) since t
j

= 0 do not satisfy

t
j

(t
j

� ↵
j

+ ⇤
j

) + ⇤
j

↵
j

(e�j

t

j � 1) < 0 and has already been accounted for.

However, the proposed WLTP optimization is non-convex because constraint

(4.15) is non-convex in both ⇡
i,j

and t
j

.

To develop an algorithmic solution to this non-convex optimization problem, we

first prove that the problem is convex with respect to individual optimization vari-

ables, t = (t1, t2, · · · , tm)and ⇡ = (⇡
ij

8i = 1, · · · , r, j = 1, · · · ,m), while the other

one is fixed. With this convexity result we are able to propose an alternating opti-

mization algorithm for this problem, which will be proven to be indeed optimal in

later content.

4.3.1 CONVEXITY PROOF of OBJECTIVE FUNCTION IN t

The objective function,
P

i

!
i

⇣P
j

⇡

ij

e

t

j

x

(1�⇢

j

)t
j

M

j

(t
j

)
t

j

�⇤
j

(M
j

(t
j

)�1)

⌘
is convex in t = (t1, t2, · · · , tm)

in the region where the constraints in (4.8)-(4.15) are satisfied. Below comes the de-

tailed proof.

We note that inside the summation of (i, j), the term only depends on a single

value of t
j

. Thus, it is enough to show that t

j

e

�t

j

x

M

j

(t
j

)
t

j

�⇤
j

(M
j

(t
j

)�1) is convex with respect to

t
j

. Since there is only a single index j here, we ignore this subscript in the rest of

this proof.



26

Let f(x) and g(x) be two non-negative di↵erentiable convex functions of x. If

rf(rg)⇤ is positive semi-definite, F (x) = f(x)g(x) is convex function of x. We

denote

F (t) =
te�txM(t)

t� ⇤(M(t)� 1)
(4.17)

=
↵te(��x)t

�t2 + (↵� ⇤)t+ ⇤↵� ⇤↵e�t
(4.18)

=
↵te(��x)t

�t2 + (↵� ⇤)t� ⇤↵(e�t � 1)
(4.19)

=
↵te(��x)t

�t2 + (↵� ⇤)t� ⇤↵
P1

u=1
(�t)u

u!

(4.20)

=
↵e(��x)t

�t+ (↵� ⇤)� ⇤↵
P1

u=1
(�)utu�1

u!

(4.21)

Thus, F (t) can be written as product of f(t) = ↵e(��x)t and g(t) = 1
h(t) , where

h(t) = �t + (↵ � ⇤) � ⇤↵
P1

u=1
(�)utu�1

u! . Since the constraints in (4.8)-(4.15) are

satisfied, h(t) > 0. Further, all positive deriavatives of h(t) are non-positive. Let

w(t) = �h0(t). Then, w(t) � 0, and w0(t) � 0.

g(t) =
1

h(t)

g0(t) =
w(t)

h2(t)

g00(t) =
h(t)w0(t) + 2w2(t)

h3(t)

F 00(t) = f 00(t)g(t) + f(t)g00(t) + 2f 0(t)g0(t)

= ↵e(��x)t
�
((� � x)2g(t) + g00(t) + 2(� � x)g0(t))

�

=
↵e(��x)t

h3(t)

�
(� � x)2h2(t) + h(t)w0(t) + 2w2(t)

+2(� � x)w(t)h(t))

=
↵e(��x)t

h3(t)

 
2

✓
(� � x)h(t)

2
+ w(t)

◆2

+ h(t)w0(t)

+
(� � x)2h2(t)

4

◆

� 0, (4.22)



27

where the last step follows since h(t) � 0, and w0(t) � 0. Thus, the objective function

is convex in t = (t1, t2, · · · , tm).

4.3.2 CONVEXITY PROOF of OBJECTIVE FUNCTION IN ⇡

The objective function,
P

i

!
i

⇣P
j

⇡

ij

e

t

j

x

(1�⇢

j

)t
j

M

j

(t
j

)
t

j

�⇤
j

(M
j

(t
j

)�1)

⌘
is convex in ⇡ = (⇡

ij

8(i, j)).

Below comes the detailed proof.

Since the sum of convex functions is convex, it is enough to show that

F
i,j

= ⇡
ij

H
j

, (4.23)

where H
j

= 1�⇢

j

1�⇤
j

(M
j

(t
j

)�1)/t
j

is convex w.r.t. ⇡. We first show that H
j

is convex w.r.t.

⇡ with non-negative gradient. In order to see that, we first note that ⇤
j

is linear

function of ⇡ with non-negative gradients. Since H
j

depends on ⇡ only through ⇤
j

,

it is enough to show that H
j

is convex w.r.t. ⇤
j

. We note that H
j

can be written as

H
j

=
1� ⇤

j

C1

1� ⇤
j

C2
, (4.24)

where C1 = 1
↵

j

+ �
j

and C2 = M

j

(t
j

)�1
t

j

. Further C2 � C1 since M
j

(t
j

) � 1 =

E[etjXj ]� 1 � E[1 + t
j

X
j

]� 1 = t
j

E[X
j

] = t
j

⇣
1
↵

j

+ �
j

⌘
. Di↵erentiating H

j

w.r.t. ⇤
j

,

we have

�

�⇤
j

H
j

=
C2 � C1

(1� ⇤
j

C2)2
� 0 (4.25)

�2

�⇤2
j

H
j

= 2C2
C2 � C1

(1� ⇤
j

C2)3
� 0. (4.26)

Thus, r⇡
ij

is convex w.r.t. ⇡ with non-negative gradients. ⇡
ij

is also convex w.r.t.

⇡, with non-negative gradients. To show that the product of these is convex, it is

enough to show that r⇡
ij

(rH
j

)⇤ is positive semi-definite, which is true here, as only

one row is non-zero, and that row only has non-negative elements.

4.4 ALGORITHM

As proven in above section, the WLTP optimization problem is convex with re-

spect to individual t and ⇡. In this section we propose an alternating minimization



28

algorithm to solve the WLTP problem. First we define two sub-problems as follows:

t-Optimization: Input ⇡

min
X

i

!
i

 
X

j

⇡
ij

etjx
(1� ⇢

j

)t
j

M
j

(t
j

)

t
j

� ⇤
j

(M
j

(t
j

)� 1)

!

s.t. (4.8), (4.9), (4.10), (4.14), (4.15)

var. t
j

⇡-Optimization: Input t

min
X

i

!
i

 
X

j

⇡
ij

etjx
(1� ⇢

j

)t
j

M
j

(t
j

)

t
j

� ⇤
j

(M
j

(t
j

)� 1)

!

s.t. (4.8), (4.9), (4.10), (4.11), (4.12), (4.13), (4.15)

var. ⇡
ij

As both these problems are proven to be convex, they can be solved using Pro-

jected Gradient Descent Algorithm. Using these two optimization as the building

boxes, the proposed algorithm can be written as follows:

1. Initialization: Initialize ⇡
ij

and t
j

8 (i, j) such that the choice is feasible for

the problem.

2. While Objective Converges:

• Run t-Optimization using current values of ⇡ to get new values of t

• Run ⇡-Optimization using current values of t to get new values of ⇡

Since the constraint t
j

(t
j

� ↵
j

+ ⇤
j

) + ⇤
j

↵
j

(e�j

t

j � 1) < 0 is non-convex in both

⇡
i,j

and t
j

, we consider a modified problem where this constraint is moved into our

objective function. To do this, we add LU(t
j

(t
j

�↵
j

+⇤
j

)+⇤
j

↵
j

(e�j

t

j �1)+ 1
L

1/10 ) to

the objective function where L > 0 and U(x) = x2 where x � 0 and U(x) = 0 when

x < 0. When L ! 1, this is equivalent to t
j

(t
j

� ↵
j

+⇤
j

) +⇤
j

↵
j

(e�j

t

j � 1) < 0 as a

constraint to the problem.



29

4.5 SIMULATION AND EVALUATION

4.5.1 NUMERIC SETTINGS

We denote our proposed latency optimization as Policy WLTP. To validate the

proposed tail latency upper bound and optimization, we implement a simulation

based on our policy and compare it with two other naive strategies. Below describe

all three strategies we are going to compare in this section.

• PolicyWLTP (Weighted Latency Tail Probability optimization): The joint sched-

uler is determined by the optimal solution that minimizes the weighted latency

tail probabilities, with respect to our proposed tail latency bounds.

• Policy PEAP (Projected, Equal Access-Probability): For each file request, the

joint request scheduler selects available chunks and nodes with equal probability.

The equal access-probabilities are projected toward feasible region in (4.7) to

ensure stability of the storage system.

• Policy BNW (Balanced Node Workload): The joint request scheduler is opti-

mized to balance the workload of all storage nodes. This policy should minimize

the chance of congested bottleneck in the storage system.

In the simulations, we consider r = 1000 files, all of size 200 MB and using

(7, 4) erasure code in a distributed storage system consisting of m = 12 distributed

nodes. Based on [5], we consider chunk service time that follows a shifted-exponential

distribution with rate ↵
j

and shift �
j

.



30

Table 4.1.
Summary of parameters for nodes in our simulation (shift � in ms and
rate ↵ in 1/s)

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

↵
j

18.2295 24.0552 11.8750 17.0526 26.1912 23.9059

�
j

8.5368 13.6018 6.2756 9.5100 9.0524 12.1242

Node 7 Node 8 Node 9 Node 10 Node 11 Node 12

↵
j

27.0006 21.3812 9.9106 24.9589 26.5288 21.8067

�
j

12.3616 7.4950 9.9182 9.5646 11.1706 11.6750

As shown in Table 4.1, we have 12 heterogeneous storage nodes with di↵erent

service speed and round-trip-time. The base arrival rates for the first 500 files are

chosen as 0.02 s�1, for the next 5000 files is chosen as 0.03 s�1. The first 250 files are

placed on first seven nodes, the next 250 files are placed on nodes 2 to 8, the next 250

files are placed on nodes 4 to 10, and the last 250 files are placed on nodes 6 to 12. This

paper also considers di↵erent weights of the files - where the weights corresponding

to the first 250 files are each chosen as 2/(15⇥250), the weights corresponding to the

next 250 files are chosen as 4/(15⇥ 250), the weights corresponding to the next 250

files are chosen as 6/(15 ⇥ 250), and the weights corresponding to the last 250 files

are chosen as 3/(15 ⇥ 250) such that the sum of weights of all files is 1. In order to

initialize the algorithm, we choose ⇡
ij

= k/n on the placed servers, all t
j

= .01. But

since these choices of ⇡ and t may not be feasible, we modify the initialization ⇡ to

be the closest norm feasible solution to the above choice.



31

4.5.2 WEIGHTED LATENCY TAIL PROBABILITIES

50 100 150 200 250
x (in seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ei

gh
te

d 
La

te
nc

y 
Ta

il 
Pr

ob
ab

ilit
y

Policy WLTP
Optimized Access given t
Policy PEAP
Policy BNW

Figure 4.1. Weighted Latency Tail Probability vs x (in seconds) with
Other Algorithms.

In Figure 4.1, we plot the decay of weighted latency tail probability
P

i

!
i

Pr(L
i

�

x) with x (in seconds) for Policies WLTP, PEAP and BNW. Policy WLTP solves

the optimal weighted latency tail probability via proposed alternative optimization

algorithm over t
j

and ⇡
i,j

. With fixed t, Policy PEAP uses equal server access proba-

bilities, projected toward the feasible region, while Policy BNW load-balances chunk

requests across di↵erent servers. In particular, we have the first 250 files access the

first 4 servers with equal probabilities, the last 250 files access the last 4 servers with

equal probabilities, whereas files 251 to 500 access the 12 servers with probabilities [0

14 14 14 15 5 5 5 0 0 0 0]/18, and files 501 to 750 access the servers with probabilities

[0 0 0 0 17 27 27 27 5 5 0 0 ]/27. With this choice, the aggregate arrival rate at the

first server is 5, at the last two servers is 7.5 and the rest 9 servers is 8.8889. This

achieves optimal load-balancing, because servers arrival rate at the first, 11th and

12th server can no longer be increased as each hosts only a single file.



32

We note that our proposed algorithm provides significant improvement over simple

heuristics such as Policies PEAP and BNW, as weighted latency tail probability re-

duces by an orders of magnitude. For example, our proposed Policy WLTP decreases

90-percentile weighted latency (i.e., x such that
P

i

!
i

Pr(L
i

� x)  0.1) from 150

seconds to about 20 seconds. Uniformly accessing servers and simple load-balancing

are unable to optimize the request scheduler based on factors like chunk placement,

request arrival rates, di↵erent latency weights, thus leading to much higher tail la-

tency.

10 15 20 25 30 35 40
x (in seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
ei

gh
te

d 
La

te
nc

y 
Ta

il 
Pr

ob
ab

ilit
y

Figure 4.2. Weighted Latency Tail Probability vs x (in seconds) Near
Mean Value.

Figure 4.2 further gives a zoomed-in plot for the weighted tail latency as a function

of x when x varies from 10 to 40.



33

4.5.3 Tail Latency Reduction Speed of the Proposed Algorithm

10 20 30 40 50
Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
ei

gh
te

d 
La

te
nc

y 
Ta

il 
Pr

ob
ab

ilit
y x=45

x-50
x=55
x=60
x=65

Figure 4.3. Reduction Speed of Weighted Latency Tail Probability.

Figure 4.3 shows the reduction speed of weighted latency tail probability and

the number of iterations for di↵erent values of x ranging from 45 to 65 second in

increments of 5 seconds to illustrate its tail latency reduction speed.

For 1000 files and 12 storage nodes, the weighted latency tail probability reduces

very fast and within 40 iterations to a very low level, validating the e�ciency of the

proposed algorithm.



34

4.5.4 EFFECT OF ARRIVAL RATES

.7 6 .8 6 .96 6

Arrival Rates

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

W
ei

gh
te

d 
La

te
nc

y 
Ta

il 
Pr

ob
ab

ilit
y

File Set 1
File Set 2
File Set 3
File Set 4
Overall

Figure 4.4. Weighted Latency Tail Probability for di↵erent file arrival
rates .

We next want to see the impact of varying request arrival rates on the weighted

latency tail probability. We choose x = 25 seconds and divide all files into 4 groups,

each containing 250 consecutive files of equal weight. For � as the base arrival rates,

we increase arrival rate of all files from .6� to � and plot the weighted latency tail

probability for each group of files as well as the overall value in Figure 4.4.

While overall latency tail probability increases as arrival rate goes up, our algo-

rithm assigns di↵erentiated latency for di↵erent file groups. Here File Set 3 that has

highest weight !3, which is the most tail latency sensitive set, always receive the

minimum latency tail probability.



35

4.5.5 EFFECT OF NUMBER OF FILES

4 sets of 175 4 sets of 200 4 sets of 225 4 sets of 250
Number of Files

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

W
ei

gh
te

d 
La

te
nc

y 
Ta

il 
Pr

ob
ab

ilit
y

File Set 1
File Set 2
File Set 3
File Set 4
Overall

Figure 4.5. Weighted Latency Tail Probability for di↵erent number of
files.

We then modify the number of files in each set from 250 in the base case to values

such as 175, 200, and 225, as shown in Figure 4.5.

Weighted latency tail probabilities increases with the number of files, which brings

in more workload, meaning higher arrival rates. From Figure 4.5 we can tell that even

the number of files increase from 4 sets of 175 to 4 sets of 225, the overall weighted

latency tail probabilities increases very little. Our optimization algorithm optimizes

new files along with existing ones to keep overall latency tail probability at a very

low level.



36

4.5.6 EFFECT OF FILE SIZES

143 MB 154 MB 167 MB 182 MB
File Size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

W
ei

gh
te

d 
La

te
nc

y 
Ta

il 
Pr

ob
ab

ilit
y

File Set 1
File Set 2
File Set 3
File Set 4
All Files

Figure 4.6. Weighted Latency Tail Probability for di↵erent size of files.

File size is varied in our simulation as 143 MB, 154 MB, 167 MB, and 182 MB.

We then plot the optimal weighted latency tail probability with file size in Figure 4.6.

In order to capture the e↵ect of file size as compared to a file size of 200 MB, the

value of ↵ increases in proportion to the chunk size, and the value of � decreases in

proportion to the chunk size accordingly.

Increasing file size results in higher tail latency for all 4 groups of files. While File

Set 1 that are assigned the lowest weight !1, which is the least tail latency sensitive,

su↵ers most as file size increases. With the sacrifice of File Set 1, the tail latency of

the rest of file sets increases a little. And thus our optimization algorithm manages

to minimize the overall weighted tail latency even when file size increases.

4.6 SUMMARY

In this chapter we use a more detailed upper bound on tail latency and in order to

get deeper and specific sense of tail latency bounds we apply the shifted exponential



37

service time distribution according to the results of previous experiments. Due to

these improvements, the optimization problem becomes a non-convex problem and

more complicated. But by reformulating the optimization problem and modifying

our algorithm, we managed to provide a heuristic algorithm solution. Based on the

above, we also perform thorough simulations to validate our algorithm. Simulation

results show significant reduction of tail latency for erasure-coded storage systems

with realistic workload.



38

5. CONCLUSIONS AND FUTURE WORK

This chapter summarizes the entire master thesis and discusses about future possible

works of this current research.

5.1 CONCLUSIONS

In response to the data storage method change from full data replication to erasure

coding in distributed storage systems, this thesis works on building analytical models

under this transition and finds upper bound in closed form of tail latency to optimize

the performance of distributed storage systems. Furthermore, to validate the pro-

posed upper bounds and the e�ciency of algorithm, this thesis performs simulations

and numeric evaluations. To solve the research problem of building an analytical

framework to quantify tail latency in erasure-coded, distributed storage systems and

izing the tail latency, three research questions have been defined and answered.

For research question 1, we present a system model with erasure coding data

storage. This thesis explains how erasure coding works with k out of n encoded

replication chunks and how these chunks are placed among di↵erent storage nodes

in a distributed storage system. With the basic environment build-up, this thesis

introduces probabilistic scheduling policy for how to model the process of retrieve data

chunks. After pointing out the flaw of previous approaches working on tail latency,

we reason the probabilistic scheduling policy is suitable and workable for our analysis

goals. Then we consider the actual file request and process situation to formulate

a queuing model into the system. Arrival of client requests for individual files is

assumed to follow Poisson process while the service time of server nodes is initially

set to arbitrary distribution to find general results. Later in chapter 4, motivated by

the Tahoe experiments and Amazon S3 experiments, shifted exponential service time



39

distribution is introduced into our model and specify our upper bounds then thus

enable our research to give significant optimization results.

For research question 2, this thesis provides weighted tail latency upper bounds

in closed form in di↵erent forms. On the first stage, we deduce a brief form with

moments of service time using Markov Inequality. In order to get the tightest bound

possible, we introduce a new set of parameters as c
i,k

to adjust the upper bound to

the minimum.

On the second stage, we update our upper bound to a more general form by using

exponential form of Markov Inequality to put moment generating function of Q
j

given

by Pollaczek-Khinchine formula directly into our bound, which is a Laplace Stieltjes

transform. Thus in the result of our weighted latency we have the moment generating

function and Laplace variable. Due to this change, in order to make the upper bound

valid, we also have more constraints on all variables. With the improved form for any

service time distribution, we formulate further upper bound for shifted exponential

service time distribution.

For research question 3, the main method we apply on our optimization problem

is the Alternating Minimization Method [13]. The optimization problem of the first

stage is proven to be a convex problem while the problem of the second stage is non-

convex due to one of the constraints but we manage to modify the objective function

to fulfill the requirements of using the Alternating Minimization Method. Before use

the method we first examine the five assumptions and then prove its optimality. The

detailed proof is presented in the appendix. The numeric evaluations show that our

results of the first stage is convergence and valid, but lack the significance of reduction

on tail latency compared to other strategies.

For the second stage of this thesis, we performed more evaluations to see the

e↵ect of other factors on the weighted tail latency optimized from our results. We

note that in the simulation results of the second stage of our research, our algorithm

significantly reduce the weighted tail latency compared with other naive strategies

and reduces weighted latency to a very low level within reasonable iterations. And



40

we analyze the e↵ect of arrival rates, number of files and file size, all the results show

that our algorithm is e↵ectively minimize the weighted latency and maintain it at a

low level.

5.2 FUTURE WORK

With the current results of this thesis, we intend to have further work to do in the

future. Since the simulation results of chapter 4 have shown that our algorithm has

e�ciently reduced the weighted tail latency, we intend to implement our algorithm in

the realistic practice. In the future we want to perform an experiment on the Tahoe

Testbed with our algorithm.

The Tahoe Testbed is an open-source, distributed filesystem based on the zfec era-

sure coding library. It provides three special instances of a generic node: 1) Tahoe

Introducer: It keeps track of a collection of storage servers and clients and intro-

duces them to each other. 2) Tahoe Storage Server: It exposes attached storage to

external clients and stores erasure-coded shares. 3) Tahoe Client: It processes up-

load/download requests and connects to storage servers through a Web-based REST

API and the Tahoe-LAFS (Least-Authority File System) storage protocol over SSL.

Our algorithm requires customized erasure code, chunk placement, and server

selection algorithms. While Tahoe uses a default (10, 3) erasure code, it supports

arbitrary erasure code specification statically through a configuration file. In Tahoe,

each file is encrypted and then broken into a set of segments, where each segment

consists of k blocks. Each segment is then erasure-coded to produce n blocks using an

(n, k) encoding scheme and then distributed to n distinct storage servers. The set of

blocks on each storage server constitute a chunk. Thus the file equivalently consists

of k chunks that are encoded into n chunks and each chunk consist of multiple blocks.

The Tahoe client randomly selects a set of available storage servers with enough

storage space to store n chunks. For server selection during file retrievals the client

first asks all known servers for the storage chunks they might have. Once it knows



41

where to find the needed k chunks from the k servers that respond the fastest, it

downloads at least the first segment from those servers. This means that it tends to

download chunks from the ”fastest” servers purely based on round-trip times.

If the realistic experiment succeeds to validate our algorithm, our algorithm can

work on erasure-coded, distributed storage systems for companies who are bothered

with long tail latency problems.



REFERENCES



42

REFERENCES

[1] Adam Shwartz Franois Baccelli, Armand M. Makowski. The fork-join queue
and related systems with synchronization constraints: Stochastic ordering and
computable bounds. Advances in Applied Probability, 21(3):629–660, 1989.

[2] Guanfeng Liang and Ulaş C. Kozat. Fast cloud: Pushing the envelope on delay
performance of cloud storage with coding. IEEE/ACM Trans. Netw., 22(6):2012–
2025, December 2014.

[3] Guanfeng Liang and Ulas C. Kozat. TOFEC: achieving optimal throughput-
delay trade-o↵ of cloud storage using erasure codes. CoRR, abs/1307.8083, 2013.

[4] Gauri Joshi, Yanpei Liu, and Emina Soljanin. On the delay-storage trade-o↵ in
content download from coded distributed storage systems. CoRR, abs/1305.3945,
2013.

[5] Shengbo Chen, Yin Sun, Ulas C. Kozat, Longbo Huang, Prasun Sinha, Guanfeng
Liang, Xin Liu, and Ness B. Shro↵. When queueing meets coding: Optimal-
latency data retrieving scheme in storage clouds. CoRR, abs/1404.6687, 2014.

[6] Akshay Kumar, Ravi Tandon, and T. Charles Clancy. On the latency of erasure-
coded cloud storage systems. CoRR, abs/1405.2833, 2014.

[7] Virag Shah and Gustavo de Veciana. Performance evaluation and asymptotics
for content delivery networks.

[8] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran. Codes Can Reduce Queue-
ing Delay in Data Centers. ArXiv e-prints, February 2012.

[9] Nihar B Shah, Kangwook Lee, and Kannan Ramchandran. The mds queue:
Analysing latency performance of codes and redundant requests. 2013.

[10] Yu Xiang, Tian Lan, Vaneet Aggarwal, and Yih-Farn Robin Chen. Joint la-
tency and cost optimization for erasure-coded data center storage. CoRR,
abs/1404.4975, 2014.

[11] B Warner, Z Wilcox-O?Hearn, and R Kinninmont. Tahoe-lafs docs, 2015.

[12] L. Kleinrock. Queueing Systems: Theory. Number v. 1 in A Wiley-Interscience
publication. Wiley, 1976.

[13] Amir Beck. On the convergence of alternating minimization for convex program-
ming with applications to iteratively reweighted least squares and decomposition
schemes. SIAM Journal on Optimization, 25(1):185–209, 2015.


	Purdue University
	Purdue e-Pubs
	12-2016

	Taming tail latency for erasure-coded, distributed storage systems
	Jingxian Fan
	Recommended Citation


	Blank Page

