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ABSTRACT 

 

Duffy, Alexandra G. M.S., Purdue University, December 2016. Billbug (Sphenophorus 
spp.) Chemical Ecology and Seasonal Biology in Indiana Turfgrass. Major Professor: 
Douglas S. Richmond.  
 
 
 Billbugs (Coleoptera: Curculionoidea: Sphenophorus) are serious pests of 

managed turfgrass across North America. Damage symptoms are most visible during 

stressful periods of the growing season and are commonly confused with disease, 

drought, or nutrient deficiency.  Billbugs are frequently a perennial problem and when 

misdiagnosed, damage often results in seriously degraded stands of turfgrass that are 

easily encroached by weeds. Presently, management of billbugs relies heavily on 

chemical insecticides. Even then, the nationwide assemblage of multiple sympatric 

billbug species and the cryptic nature of the damaging larval stage makes management of 

these insects challenging. A better understanding of billbug biology and behavior could 

improve the efficacy of insecticide inputs and provide a basis for the development of 

alternative, non-pesticide management techniques that are aligned with integrated pest 

management (IPM). This thesis focused on characterizing the billbug species 

composition in Indiana and clarifying the seasonal phenology of one particularly 

problematic species, S. venatus. To accomplish this, I examined the utility of molecular 

techniques to identify the otherwise cryptic larval stage of several sympatric, turf-

inhabiting billbug species. I also explored the potential for S. venatus to use two forms of 
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chemoreception: recognition of volatile organic compounds and cuticular wax 

components.  

 Weekly monitoring of pitfall traps revealed four sympatric billbug species in 

Indiana: S. venatus, S. parvulus, S. minimus, and S. inaequalis. Further investigation on 

the seasonal biology of S. venatus revealed two overlapping cohorts in Indiana and 

molecular confirmation of overwintering S. venatus larvae through examination of three 

genetic loci (CO1, 18S, and ITS2). In y-tube olfactometer bioassays, S. venatus males 

were attracted to the combination of conspecifics and host-plants as well as host-plants 

alone. S. venatus females were attracted to the combination of male conspecifics and host 

plant material and male conspecifics alone. These findings suggest S. venatus males are 

predominantly influenced by host-plant volatiles while females likely respond to a male-

produced volatile pheromone. Coupled gas chromatography-mass spectrometry (GC-MS) 

analysis of S. venatus and S. parvulus whole-body cuticular extracts revealed a series of 

aliphatic hydrocarbons with qualitative and quantitative interspecific differences, as well 

as intraspecific quantitative differences between males and females. These differences in 

cuticular hydrocarbon profiles could serve as critical mate-recognition cues among 

sympatric Sphenophorus species, a hypothesis that remains to be tested.  

 By clarifying the seasonal phenology of S. venatus, results provide a foundation 

for improved insecticide selection and application timing in the Midwestern U.S. for this 

pest. Furthermore, findings demonstrate that a DNA-based larval identification tool could 

be useful for clarifying the seasonal phenology of sympatric billbug species with 

morphologically indistinguishable larval stages. Findings also support the idea that 
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volatile and contact semiochemicals could potentially be used for the development of 

improved billbug monitoring techniques and sustainable mating disruption strategies. 
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LITERATURE REVIEW 

 

1.1 Genus Sphenophorus 

 Weevils (Coleoptera: Curculionoidea) are a superfamily of beetles that utilize 

most plant structures of virtually all described plant taxa, making them both ecologically 

significant and one of the most economically important groups of agricultural insect 

pests. The genus Sphenophorus Schönherr is historically associated with a diverse 

assortment of sedges and grasses. It consists of 71 described species, commonly referred 

to as billbugs, with 64 being indigenous to North America (Vaurie 1951).   

 Billbug adults are hard bodied, generally grey, black, or reddish-brown, with 

chewing mouthparts distally located on a characteristic long snout, or rostrum, that is at 

least half the length of the pronotum (Vittum et al. 1999, Young 2002). Sphenophorus 

spp. adults are distinguished from other weevil genera by several morphological 

characters, including the bulbous shape of the antennal club, the relative separation of the 

coxae, the shape of the mesoepimeron, metaepimeron, and intercoxal processes, tibial 

projection shape, and ventral setae of the third tarsal segment (Vaurie 1951). The 

antennae of Sphenophorus spp. are attached near the base of the snout, which 

distinguishes them from the only other genus of economically important weevils known 

to be injurious to managed turfgrass, Listronotus spp., where the antennae are attached 

near the distal end of the snout (Vittum et al. 1999). The markings and indentations on

http://en.wikipedia.org/wiki/Carl_Johan_Sch%C3%B6nherr
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the pronotum, elytra, abdominal sclerites, and profemur are useful for identifying adult 

billbug species (Vaurie 1951, Johnson-Cicalese 1990, Shetlar 2011). Although for most 

species, adults rarely cause economic damage to agriculturally important grasses, the 

preponderance of studies describing billbug seasonal ecology have focused on adults 

because they can be readily identified to species based on external morphological 

characters. 

There are also several key characteristics useful for distinguishing the pupae of 

billbug species; primarily setae, the length of the rostrum, and the width of the pronotum 

(Satterthwait 1931). Billbug eggs are oblong, creamy white, glossy, and typically 1-2 mm 

in length (Vittum et al. 1999) but are of little utility for identifying billbug species. 

Anderson (1948) provided a generic key to larvae of the subfamily Calendrinae (now 

Dryophthorinae), which included the genus Calendra (now Sphenophorus), but did not 

progress to the species level for most. In general, billbug larvae are white, legless, grub-

like larvae with a brown head capsule (Anderson 1948, Vittum et al. 1999). Because 

there are currently no published external morphological characteristics to distinguish 

billbug larvae, our understanding of billbug seasonal phenology is limited. 

 

1.2 Sphenophorus spp. in managed turfgrass 

 Billbugs were first recognized as a serious pest of turfgrass in the 1960s after an 

outbreak of the bluegrass billbug, Sphenophorus parvulus Gyllenhaal, across several 

states (Tashiro and Personius 1970). Now, at least ten species within Sphenophorus are 

known to infest managed turfgrass: the bluegrass billbug S. parvulus Gyllenhaal, the 

lesser billbug S. minimus Hart, the uneven billbug, S. inaequalis Say, the hunting billbug 
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S. venatus Say, the Phoenician billbug S. phoeniciensis Chittenden, the Rocky Mountain 

billbug S. cicatristriatus Fahraeus, the Southern corn billbug S. callosus Olivier, S. 

coesifrons Gyllenhaal, S. apicalis LeConte, S. rectus Say, and S. cariosus Olivier (Vaurie 

1951, Morrill and Suber 1976, Johnson-Cicalese et al. 1990, Dupuy and Ramirez 2016). 

An overview of the distributions of Sphenophorus species associated with turfgrass 

across 11 regions of the U.S. revealed the possibility for many sympatric Sphenophorus 

species (Johnson-Cicalese 1990). A more recent review by Dupuy and Ramirez (2016) 

outlined the distribution of eleven Sphenophorus species and their common turfgrass 

hosts. They cited four species that dominated different regions of the United States: S. 

venatus in the Southeast, S. parvulus in the Northeast and Midwest, S. phoeniciensis in 

the Southwest, and S. cicatristriatus in the Rocky Mountain region. Studies in South 

Carolina (Chong 2015), Virginia (Kuhn et al. 2013), North Carolina (Doskocil and 

Brandenburg 2012), and Florida (Huang and Buss 2009) have also indicated billbug 

species assemblages in both warm- and cool-season turfgrasses. Four sympatric species 

occur in the east central U.S.: S. parvulus, S. venatus, S. inaequalis, and S. minimus 

(Johnson-Cicalese et al. 1990). Of these species, S. parvulus and S. venatus are the most 

important pests. However, the occurrence of several sympatric billbug species in many 

regions of the U.S and the lack of morphological characters useful for identifying billbug 

larvae complicates efforts to clarify the seasonal phenology of billbugs associated with 

turfgrass systems. 
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1.3 The bluegrass billbug (S. parvulus) 

 Bluegrass billbugs are typically 5 to 8 mm long with dense, uniform punctures on 

the pronotum, and sometimes a narrow, slightly raised, non-punctuated median line. The 

elytra are covered in alternating rows of small and large punctures (Vaurie 1951, Vittum 

et al. 1999, Richmond 2016). Bluegrass billbugs are significant pests of cool-season 

grasses and are widely distributed across the continental United States. They can 

generally be found wherever Kentucky bluegrass (Poa pratensis) is grown, but they are 

known to infest other cool-season turfgrass species such as perennial ryegrass (Lolium 

perenne), tall fescue (Festuca arundinacea), and fine fescue (Festuca sp.). They are also 

frequently found in low abundance within species assemblages occurring on warm-

season turfgrasses, such as Bermudagrass (Cynodon spp.) and zoysiagrass (Zoysia spp.) 

(Vittum et al. 1999, Dupuy and Ramirez 2016). The bluegrass billbug overwinters in the 

adult stage in the thatch, soil, and plant debris. Adults become active as soil surface 

temperatures warm in April or May and typically have one generation a year, although a 

partial second generation is possible (Vittum et al. 1999). Bluegrass billbug adults feed 

by chewing on turfgrass stems, but damage from adult feeding has not been documented 

in turfgrass. Females oviposit into turfgrass stems and early instar larvae feed within the 

plant. As larvae develop, they move into the crown at the base of the stem where they can 

be found just below the soil surface and in root zone from mid-June through July. This 

feeding pattern causes the plants to break off easily from the soil surface, leaving behind 

a diagnostic sawdust-like frass (Vittum et al. 1999, Richmond 2016). 

 

 



5 
 

1.4 The hunting billbug (S. venatus) 

 Hunting billbug adults are slightly larger than bluegrass billbugs, ranging from 8-

11 mm in length. Additionally, the hunting billbug is differentiated by its coarsely, non-

uniform punctuated pronotum with a definitive smooth, non-punctuated Y-shaped median 

area surrounded by parenthesis-like curved side markings, or vittae (Vaurie 1951, 

Johnson-Cicalese 1990). Vaurie (1951) recognized five subspecies of S. venatus: S.v. 

venatus, S.v. vestita, S.v.glyceriae, S.v. confluens, and S.v. reticulaticollis. The common 

name "hunting billbug" is typically associated with the subspecies S. venatus vestitus, but 

because this subspecies complex was described predominantly based on geographic 

distribution and not basic diagnostic external or reproductive morphological differences, I 

refer to the hunting billbug simply by the species name, S. venatus. 

 The hunting billbug is primarily a pest of warm-season grasses in the southeastern 

United States such as Florida (Huang and Buss 2009), Arkansas (Young 2002), South 

Carolina (Chong 2015), and North Carolina (Doskocil and Brandenburg 2012, Reynolds 

et al. 2015). However, it has also been documented further north into Virginia (Kuhn et 

al. 2013) and New Jersey (Johnson-Cicalese et al. 1990), west into Indiana (Richmond 

2016), Kansas (Brussel and Clark 1968), Idaho, Utah (Dupuy and Ramirez 2016), 

southern California (Vittum et al. 1999), Mexico (León-García et al. 2012, Ordaz-

González 2014), Hawaii (Vittum et al. 1999) and Japan (Yoshia and Nabeshima 1981). 

The hunting billbug is most commonly found on Bermudagrass (Cynodon spp.) and 

zoysiagrass (Zoysia spp.). However, it is a pest of multiple warm- and cool-season 

turfgrass species, such as St. Augustine grass (Stenotaphrum secundatum), centipedegrass 

(Eremochloa ophiuroides), tall fescue, perennial ryegrass, and Kentucky bluegrass, 
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making it an important pest within the turfgrass climatic transition zone, where both 

warm- (C4) and cool-season (C3) grasses are grown (Johnson-Cicalese and Funk 1990, 

Vittum et al. 1999, Huang and Buss 2009, Doskocil and Brandenburg 2012, Dupuy and 

Ramirez 2016).  

It has been suggested that the hunting billbug overwinters as both adults and 

larvae in warm- and cool-season turfgrass in its southern-most range in Florida (Young 

2002), northern parts of its range in New Jersey (Johnson-Cicalese et al. 1990), and 

within the transition zone in North Carolina (Doskocil and Brandenburg 2012, Reynolds 

et al. 2015). However, Sphenophorus larvae are not morphologically distinguishable from 

other species, so these claims are substantiated based solely on the observation of a large 

abundance of hunting billbug adults within a given sampling area. Two overlapping 

generations per year have been reported in North Carolina (Doskocil and Brandenburg 

2012) and as many as six overlapping generations per year have been observed in Florida 

(Huang and Buss 2009). It is currently assumed that the oviposition behavior and larval 

development of hunting billbug is similar to that of the bluegrass billbug, although 

hunting billbug adults are predominantly nocturnal (Huang 2008). Unlike the bluegrass 

billbug, where visible turfgrass damage is associated with the larvae (Vittum et al. 1999), 

damage as a result of large hunting billbug infestations has also been associated with 

adult activity (Huang and Buss 2013). In North Carolina, hunting billbug adults 

significantly reduced the greenness and height of both warm-season and cool-season 

turfgrass (Doskocil & Brandenburg 2012, Reynolds et al. 2013).   
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1.5 The lesser (S. minimus) and uneven (S. inaequalis) billbugs 

 The lesser (S. minimus) and uneven (S. inaequalis) billbugs are not as extensively 

studied as the bluegrass and hunting billbugs. Adult S. inaequalis billbugs are 

proportionally broader than other billbug species, but about the same length as the 

bluegrass billbug (7-8 mm). The pronotum contains an elongated diamond-shaped, non-

punctate medial area and is covered with unevenly spaced punctures that are not 

uniformly sized. The lesser billbug is generally lighter in color and smaller (6-7 mm in 

length) with the pronotum covered in larger, non-uniform, sparse punctures (Vaurie 1951, 

Johnson-Cicalese et al. 1990, Richmond 2016). Neither species is typically very abundant 

and they are most often found in mixed populations on both warm- and cool-season 

turfgrasses with the bluegrass billbug, hunting billbug, and sometimes several other 

species (Johnson-Cicalese et al. 1990, Dupuy and Ramirez 2016). Two notable 

exceptions to this general pattern have been reported, where S. inaequalis was the most 

abundant billbug species or found in equal abundance with S. parvulus, S. venatus, and S. 

minimus, on cool-season grasses in New Jersey (Johnson-Cicalese et al. 1990) and 

Bermudagrass in Florida (Huang and Buss 2013a). These two species, similar to the 

bluegrass billbug, are thought to be univoltine throughout their range (Richmond 2016, 

Huang and Buss 2013a, Johnson-Cicalese et al. 1990). 

 

1.6 Billbug damage, diagnosis, and monitoring 

 Billbug damage is arguably the most widely misdiagnosed insect-related turfgrass 

disorder in North America, frequently resulting in unnecessary and ineffective herbicide 

and fungicide inputs. Billbug damage symptoms are similar for all billbug species, first 
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appearing as small spots (5-8 cm in diameter) of brown, dying turfgrass, which 

sometimes coalesce to form large, irregular patches. These damage symptoms are often 

confused with dollar spot disease, spring dead spot disease, drought, nutrient deficiency, 

delayed spring green-up, or summer dormancy (Vittum et al. 1999). As a result, billbugs 

can become a perennial problem and accumulation of this damage may result in seriously 

degraded turfgrass stands that are easily encroached by weeds (Richmond et al. 2000). 

Adult billbugs are stem-boring and females will oviposit into holes chewed in the plant 

stems. For the hunting billbug, S. venatus Say, adult feeding and oviposition behavior 

contributes to damage in warm-season grasses (Doskocil and Brandenburg 2012, 

Reynolds et al. 2015) as damage symptoms will often be reported during peak adult 

activity periods (Huang and Buss 2009). Larval damage has also been well-documented. 

In cool-season turfgrasses, larvae are the only known damaging life stage, with smaller 

larvae feeding inside plant stems and larger larvae feeding on the crowns, roots, 

rhizomes, and stolons (Vittum et al. 1999).   

 Larval feeding leaves behind a diagnostic sawdust-like frass and causes stems to 

easily break away from the plant crowns at the soil surface (Vittum et al. 1999, 

Richmond 2016). Larvae can be detected directly using a golf course cup cutter, knife, or 

shovel to sample the soil to a depth of ~9 cm, breaking apart the soil, and examining the 

crowns and roots for larvae. Billbug adults are not strong fliers (Young 2002), but rather 

walk as their main means of dispersal. Bluegrass billbugs are often observed on 

driveways, sidewalks, cart paths and curbs as they disperse in the spring and late summer. 

Scouting these areas, or pitfall trapping, can be used to monitor adult activity (Richmond 

2016). 



9 
 

1.7 Billbug management  

 Billbug management relies on a combination of cultural, biological and chemical 

tools. Billbug damage is most evident in stressed turf, therefore, increased mowing 

heights, providing adequate fertilization, optimal irrigation, thatch management and 

cultivation can promote healthy, vigorous turf that is capable of withstanding or quickly 

recovering from moderate billbug infestations (Vittum et al. 1999, Dupuy and Ramirez 

2016, Richmond 2016). Resistant turfgrass varieties are less likely to suffer damage and 

are quicker to recover. Endophyte-enhanced (E+) turfgrasses harbor symbiotic fungi 

(Epichloe spp.) that provide resistance to billbug adults and larvae through feeding 

deterrence and delayed development, as well as improved tolerance to other 

environmental stresses (Johnson-Cicalese and White 1990, Vittum et al. 1999, Richmond 

2016). A stand of turfgrass composed of 40% E+, plants, which can often be 

accomplished by overseeding E+ varieties into pre-existing turfgrass stands, is 

recommended (Richmond et al. 2000). In addition, several varieties of Kentucky 

bluegrass exhibit resistance to bluegrass billbugs due to aggressive growth or finer 

texture and narrower stems that are not preferred for oviposition (Vittum et al. 1999, Fry 

and Cloyd 2011, Dupuy and Ramirez 2016). Some varieties of Bermudagrass and 

zoysiagrass provide resistance to hunting billbugs (Reinert et al. 2011, Huang and Buss 

2013b). 

  Commercially available biological control agents are largely limited to two 

entomopathogenic nematodes, Heterohabditis bacteriophora and Steinernema 

carpocapsae (Dupuy and Ramirez 2016, Richmond 2016). Entomopathogenic nematodes 

are known to suppress both white grubs and billbugs (Niemczyk and Shetlar 2000). H. 
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bacteriophora, a soil-active “cruiser-type” nematode is effective against billbug larvae 

once they have entered the root zone, whereas S. carpocapsae, a surface-active 

“ambusher-type” nematode, is more effective against adult billbugs (Table 1.1) 

(Richmond 2016).  

 Management of billbugs still relies heavily on chemical intervention. Three 

insecticide-based management strategies, targeting different developmental life stages 

have been widely adopted: 1) preventative application of contact insecticides, such as 

pyrethroids, carbamates, and organophosphates, targeting overwintered adults prior to 

oviposition in the early spring, 2) preventative application of plant systemically active 

insecticides, such as neonicotinoids and anthranilic diamides, to control adults on the 

surface and early instar larvae inside the stems and 3) curative application of soil 

insecticides, such as neonicotinoids, carbamates and organophosphates, targeting late 

instar larvae in the soil after damage has been diagnosed (Richmond 2016, Shetlar and 

Andon 2012). The implementation of these strategies is largely dependent upon 

accurately timed insecticide applications, which may vary regionally with billbug species 

composition and seasonal phenology (Reynolds and Brandenburg 2015).  

 

1.8 Molecular life stage associations in Coleoptera 

 The integration of DNA to associate different developmental stages can be 

especially useful in systems where larvae cannot be readily identified based on 

morphological characters or rearing larvae to the adult stage is difficult. Molecular 

methods have been utilized to associate the adult and larval stages of morphologically 

cryptic beetles (Miller et al. 2005) and assemblages of multiple sympatric beetle species 



11 
 

(Ahrens et al. 2007, Doskocil et al. 2008). Doskocil et al. (2008) examined the 

assemblage and molecular life-stage association of white grubs (Coleoptera: 

Scarabaeidae), another insect species complex that is economically harmful to turfgrass 

(Doskocil et al. 2008). DNA from mitochondrial genes, most often cytochrome oxidase c 

subunit 1 (COI), is the most common method for life-stage associations. COI is 

particularly useful due to the rapidly evolving nature of the gene, which theoretically 

minimizes genetic variation within species, and allows closely-related species to be well 

resolved (Ahrens et al. 2007). However, the use of a single gene region is often criticized 

and the use of several genetic regions for associating life stages is preferred. Li et al. 

(2007) used 18S ribosomal DNA to diagnose two species of Smicronyx (Coleoptera: 

Curculionidae). The second internal transcribed spacer region (ITS2) successfully 

distinguishes among closely-related mosquito species (Marrelli et al. 2006), but it's 

effectiveness for associating beetle life stages has not been investigated. If DNA-based 

techniques could be employed to clarify the larval population dynamics of sympatric, 

turf-inhabiting billbug species, they could promote the development of more efficient 

monitoring and management programs for the billbug species complexes occurring in 

different regions of North America. 

 

1.9 Volatile chemical communication in Curculionoidea/Sphenophorus 

The use of long-range, volatile chemical signals, such as host-plant volatile 

organic compounds (VOCs) or pheromones, is crucial for intra- and inter-specific 

communication across many orders of insects (Thornhill & Alcock 1983). Beetles 

(Insecta: Coleoptera) are highly diverse in the chemical structure and biological 
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significance of these volatile signals. The majority of weevils (Coleoptera: 

Curculionoidea) that use volatile, chemically-mediated attraction, use male-produced 

aggregation (Landolt 1997). The four-part male-produced aggregation pheromone blend 

of the boll weevil, Anthonomus grandis Boheman, was the first weevil pheromone 

identified (Francke and Dettner 2005).     

Within Dryophthoridae (Coleoptera: Curculionoidea), volatile male-produced 

aggregation pheromones, which often mediate interspecific attraction (Francke and 

Dettner 2005), have been identified for Sitophilus Schӧnherr (Schmuff et al. 1984), 

Rhynchophorus Herbst (Giblin-Davis et al. 1996), Scyphophorus Schӧnherr (Ruiz-

Montiel et al. 2003), and Sphenophorus Schӧnherr (Zarbin et al. 2003, Illescas-Riquelme 

et al. 2016). Sphenophorus levis Vaurie and S. incurrens Gyllenhaal, the only two species 

within the genus Sphenophorus whose chemoreception has been previously studied, 

produce a male-specific chiral compound, 2-methyl-4-octanol, that is attractive to both 

sexes. However, unlike many closely-related species, (S)-2-methyl-4-octanol was the sole 

chemical component for these two species (Zarbin et al. 2003, Illescas-Riquelme et al. 

2016), and it was not part of a multi-component blend.  2- methyl-4-octanol is also an 

important pheromone component for Metamasius hemipterus Linnaeus, where it is 

accompanied by 2-methyl-4-heptanol, 4-methyl-5-nonanol, and the corresponding 

ketones, 5-nonanol, and 3-hydroxy-4-methyl-5- nonanone. 2-methyl-4-octanol is also 

present in ratio-specific pheromone blends for the Australian population of Rhabdoscelus 

obscurus Boisduval (Giblin-Davis et al. 2000), and Scyphophorus acupunctatus 

Gyllenhaal (Ruiz-Montiel et al. 2008). 
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Many weevils, such as the boll weevil A. grandis (Dickens 1984), the cranberry 

weevil Anthonomus musculus Say (Szendrei et al. 2009), and the annual bluegrass 

weevil, Listronotus maculicollis Kirby, respond to host-plant VOCs. L. maculicollis 

females exhibit both behavioral and electroantennographic (EAG) responses to Poa 

annua host-plant volatiles, while males only displayed EAG responses. Although both 

sexes possess receptor neurons for volatiles released by P. annua, their behavioral 

responses differed. Behavioral differences between sexes in response to host-plant 

volatiles are commonly observed among insects (Szendrei and Rodriguez-Saona 2010). 

Host-plant volatiles frequently have synergistic effects with male-produced aggregation 

pheromones in weevils (Rochat et al. 2000, Reddy and Guerrero 2004), with 

attractiveness increasing after males feed on host-plant material (Landolt 1997). Illescas-

Riquelme et al. (2016) observed this phenomenon in Sphenophorus incurrens, with the 

pheromone lure + sugarcane host-plant material trapping the most weevils in the field. 

Although the role of semiochemicals in mediating host- and mate-finding behavior has 

been examined in several insect pests of turfgrass (Alm et al. 1999, Alm et al. 2006, 

Potter and Haynes 1993, Robins et al. 2009), chemoreception in billbugs associated with 

turfgrass has not been previously examined.  

  

1.10 Contact pheromones in Curculionoidea 

 Close-range semiochemicals are typically non-volatile, contact-perceived stimuli 

composed of long-chain hydrocarbons within the epicuticular wax layer (Thornhill & 

Alcock 1983). Insect cuticular hydrocarbons are long-chain hydrocarbons; typically being 

alkanes, alkenes, and branched alkanes. Aside from protecting the insect from 
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desiccation, one of the major evolved functions of cuticular hydrocarbons is serving as 

species- and sex-recognition signals between two or more individuals (Howard and 

Blomquist 2005).  

 Hydrocarbon sex pheromones are known from several insect orders, including 

Coleoptera (Ginzel and Hanks 2003, Ginzel 2010, Hughes et al. 2015). For 

Curculionoidea, cuticular hydrocarbons serve as contact pheromones for multiple species, 

including Diaprepes abbreviates Linnaeus (Lapointe et al. 2004), Cylindrocopturus 

adspersus LeConte (Pomonis and Hakk 1984), Aegorhinus supercilious Guerin (Mutis et 

al. 2009), and one aquatic weevil Oryzophagus oryzae Costa Lima (Martins et al. 2013).  

The use of these compounds in mating behavior has been confirmed in bioassays with A. 

supercilious (Mutis et al. 2009) and O. oryzae (Martins et al. 2013). Antennal contact 

prior to mounting, and continued tapping or stroking of females with antennae and tarsi 

once mounted, are mating behaviors that are common in curculionids and other insects 

that rely on contact chemical signals (Ginzel et al. 2006). Cuticular extractions have also 

revealed that although males and females frequently share a majority of the same 

compounds, the relative concentrations may differ (Mutis et al. 2009). The mating 

sequence prior to copulation, cuticular hydrocarbons, and their potential role as contact 

semiochemicals has never been reported for Sphenophorus. 

 

1.11 Thesis Objectives  

 Management of billbugs heavily relies on chemical insecticide inputs. However, 

understanding of regional variation in billbug species composition and seasonal 

phenology, in particular that of the morphologically undescribed billbug larvae, remains 
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largely incomplete. In addition, the potential for behavior-manipulating semiochemicals 

to act as insecticide alternatives or for improving current monitoring techniques, has not 

been explored. An understanding of basic billbug biology and behavior is necessary to 

facilitate the development of more sustainable billbug pest management strategies. In 

working toward this goal, the objectives of this project were to 1) describe the species 

composition of billbugs infesting turfgrass and clarify S. venatus seasonal phenology in 

Indiana (Chapter 2), 2) utilize DNA-based techniques to identify the larvae of sympatric, 

turf-inhabiting billbug species (Chapter 2), and 3) test the hypothesis that two forms of 

chemoreception, recognition of volatile organic compounds and cuticular wax 

components, mediate billbug behavior (Chapter 3). 

 

  



16 
 

Table 1.1 Active ingredients of insecticide products recommended for targeting different 
life stages of billbugs in turfgrass. 
 

Insecticide 
(trade names) 

Target life stage 

Adult Larvae 
in stems 

Larvae 
in soil 

SYNTHETIC INSECTICIDES    

Diamide Chlorantraniliprole 
(Acelepryn/Syngenta; others) X X  

Diamide Cyantraniliprole 
(Ference/Syngenta) X X  

Neonicotinoid Clothianidin 
 (Arena/Nufarm; others) X X X 

Neonicotinoid Imidacloprid 
 (Merit/Bayer; others) X X X 

Neonicotinoid Thiamethoxam 
(Meridian/Syngenta) X X X 

Neonicotinoid Dinotefuran  
(Zylam/PBI-Gordon) X X  

Pyrethroid Beta-cyfluthrin  
(Tempo/Bayer) X   

Pyrethroid Bifenthrin  
(Talstar/FMC) X   

Pyrethroid Deltamethrin  
(DeltaGard/Bayer; others) X   

Pyrethroid Lambda-cyhalothrin 
(Scimitar/Syngenta; others) X   

Pyrethroid Zeta-cypermethrin  
(Talstar Xtra/FMC) X   

Carbamate Carbaryl  
(Sevin/Bayer) X  X 

Organophosphate Chlopyrifos  

(Dursban/Dow) X   

Organophosphate Trichlorfon  
(Dylox/Bayer) X  X 

BIOLOGICAL INSECTICIDES    
Parasitic 

Nematode 
Heterorhabditis bacteriphora 

(Nemasys G, NemaSeek)   X 

Parasitic 
Nematode 

Steinernema carpocapsae 
(Millenium/BASF; others) X   
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SPHENOPHORUS SPECIES COMPOSITION, SEASONAL BIOLOGY, AND DNA-
BASED LIFE STAGE ASSOCIATION IN INDIANA TURFGRASS 

 

2.1 Abstract 

 At least eleven species of billbugs (Sphenophorus spp.) are pests of managed 

turfgrass in North America and the regional variation in species composition and seasonal 

phenology could have important implications for management. Pitfall trapping at four 

different locations in Indiana revealed four sympatric species of billbugs: S. venatus, S. 

parvulus, S. minimus, and S. inaequalis, with S. venatus (hunting billbug) being the most 

abundant species on warm-season turfgrasses and S. parvulus most abundant on cool-

season turfgrasses. Investigation of S. venatus seasonal biology in Indiana revealed two 

overlapping cohorts and molecular confirmation of overwintering S. venatus larvae based 

on three different genetic loci (CO1, 18S and ITS2). Each locus provided varying degrees 

of utility for differentiating the four billbug species examined, with maximum-likelihood 

analyses of concatenated sequences, as well as CO1 by itself, providing support for the 

identity of overwintered larvae as S. venatus and monophyletic clades of S. venatus and 

S. minimus. Maximum-likelihood trees constructed using only 18S or ITS2 sequences 

were less informative. Results provided the first direct evidence that S. venatus larvae are 

capable of overwintering in Indiana above 40°N latitude, which may be useful for the 

development of monitoring and management strategies based on the seasonal phenology 

of this insect. Findings also clarify the utility of CO1, 18S and ITS2 for studies aimed at 
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describing billbug larval population dynamics and seasonal phenology in regions where 

several sympatric billbug species are present. 

 

2.2 Introduction 

 Billbugs (Coleoptera: Dryophthoridae) were first recognized as a serious pest of 

turfgrass in the 1960s after an outbreak of the bluegrass billbug, Sphenophorus parvulus 

Gyllenhaal, across several states (Tashiro and Personius 1970). Billbug damage first 

appear as small spots (5-8 cm in diameter) of brown, dying turfgrass, which coalesce to 

form large, irregular patches (Vittum et al. 1999). Billbug damage is arguably the most 

widely misdiagnosed insect-related turfgrass disorder in North America, often being 

confused for drought, soil compaction, or disease (Vittum et al. 1999). As a result, 

billbugs can become a perennial problem and accumulation of this damage may result in 

seriously degraded turfgrass stands that are easily encroached by weeds (Richmond et al. 

2000). 

 Adult billbugs are stem-feeding beetles that chew notches in the grass tiller and 

then oviposit within the tiller. For the hunting billbug, S. venatus Say, this adult feeding 

and oviposition behavior contributes to damage in warm-season grasses (Doskocil and 

Brandenburg 2012), but larval damage has also been well-documented. S. parvulus 

Gyllenhaal is the most common pest of cool-season turfgrasses and larvae are the only 

known damaging life stage. Smaller S. parvulus larvae hollow out the stems, leaving a 

diagnostic sawdust-like frass and stems that are easily broken from the plant crowns at 

the soil surface. Larger larvae reside in the soil and root zone, feeding on the crowns, 

roots, rhizomes, and stolons (Vittum et al. 1999). 
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 Successful management of billbugs relies heavily on chemical intervention and 

three insecticide-based management strategies, targeting different developmental stages, 

have been widely adopted: 1) preventative application of contact insecticides targeting 

overwintering adults prior to spring oviposition 2) preventive application of plant 

systemic insecticides to control adults and early instar larvae inside the stems and 3) 

curative application of soil insecticides targeting late instar larvae in the soil after damage 

is visible (Richmond 2016, Shetlar and Andon 2012). Successful management utilizing 

these strategies is largely dependent upon accurately timed insecticide applications, 

which may vary regionally with species composition and seasonal phenology.  

 Sixty-four species of Sphenophorus Schönherr are native to North America 

(Niemczyk and Shetlar 2000), with at least ten species recognized as pests of managed 

turfgrass (Held and Potter 2012). Historically, management regimes have been based on 

the biology and ecology of the two most widely distributed pest species, the bluegrass 

billbug S. parvulus in cool-season (C3) grasses, and the hunting billbug S. venatus in 

warm-season (C4) grasses. However, billbug species composition varies regionally, 

resulting in a nation-wide collage of billbug species assemblages (Dupuy and Ramirez 

2015, Johnson-Cicalese 1990). In recent decades, regional variation in adult species 

composition and seasonal phenology has been documented in Arkansas (Young 2002), 

Florida (Huang and Buss 2009), New Jersey (Johnson-Cicalese et al. 1990), North 

Carolina (Doskocil and Brandenburg 2012), South Carolina (Chong 2015), and Virginia 

(Kuhn et al. 2013). Despite their potential to damage turf, larval populations have been 

more difficult to characterize, largely due to the co-occurrence of multiple species and the 

inability to morphologically identify the larvae (Doskocil 2010).  



20 
 

 Vaurie's (1951) revision of Sphenophorus in United States and Mexico remains 

the most comprehensive taxonomic reference for the genus to date. Later, Johnson-

Cicalese et al. (1990) constructed an illustrated key to eight Sphenophorus turf pests in 

the United States, in which the adults are readily identifiable by the markings and 

indentations on the pronotum, elytra, abdominal sclerites, and profemur (Johnson-

Cicalese 1990, Shetlar 2011). There are also several characteristics to distinguish the 

pupal stage of billbug species, primarily setae, the length of the rostrum, and the width of 

the pronotum (Satterthwait 1931). However, there are currently no published external 

characteristics to distinguish between the species of white, legless, grub-like billbug 

larvae (Vittum et al. 1999). When several species co-occur, as is common with billbugs 

infesting turfgrass across North America, identification of larvae based solely on 

association with the presence of the adults may be unreliable. A relatively poor 

understanding of the seasonal phenology and overwintering behavior of many 

Sphenophorus spp. has constrained the development and implementation of integrated 

pest management (IPM) programs for the billbug species complex. Other systems have 

successfully employed molecular methods to associate the adult and larval stages of 

morphologically cryptic insects (Miller et al. 2005) and multi-species assemblages 

(Ahrens et al. 2007). Although molecular life-stage association has been investigated for 

the white grub (Coleoptera: Scarabaeidae) complex in turfgrass (Doskocil et al. 2008), 

the utility of this approach has not been previously examined for billbugs.  

 Four species typically infest managed turfgrass the Midwestern United States, S. 

parvulus, S. venatus, S. minimus Hart, and S. inaequalis Say (Johnson-Cicalese et al. 

1990), but management strategies in the Midwest are still largely been based on the 
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seasonal ecology of the most common species, S. parvulus. S. venatus has recently 

become more abundant and particularly problematic in this region (Richmond 2014). S. 

venatus phenology varies regionally across the U. S., with up to six overlapping 

generations per year in Florida (Huang and Buss 2009), two overlapping generations per 

year in North Carolina (Doskocil and Brandenburg 2012), and one generation per year in 

New Jersey (Johnson-Cicalese et al. 1990) and northwest Arkansas (Young 2002). 

Although S. venatus may be capable of overwintering as larvae, even in the more 

northerly parts of its range (Doskocil and Brandenburg 2012, Shetlar et al. 2012), billbug 

larvae cannot presently be identified morphologically to species level. The objectives of 

this research were to examine billbug species composition and clarify the seasonal 

phenology of S. venatus in Indiana turfgrass systems. We also aimed to determine if S. 

venatus larvae are capable of overwintering in this region of the U.S. In pursuing this 

goal, we evaluated the utility of three different genetic loci (COI, 18S, and ITS2) for 

identifying billbug larvae to species level. 

 

2.3 Methods 

2.3.1 Adult species composition and seasonal activity 

 Four locations in Indiana with a history of billbug infestations were selected for 

monitoring billbug adult species composition: 1) zoysiagrass fairways at Rolling Hills 

Country Club; 2) Kentucky bluegrass research plots at the William H. Daniel Turfgrass 

Research and Diagnostic Center, 3) a stand consisting primarily of Kentucky bluegrass at 

the Purdue University nursery, and 4) a Bermudagrass athletic field at the Purdue 

University Bimmel Practice Complex. Pitfall traps were constructed of a plastic deli cup 
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(16 oz.) with holes in the bottom for drainage or linear traps consisting of a polyvinyl 

chloride (PVC) pipe with a 2.5 cm slit cut lengthwise across the top, a cap fastened at one 

end, and the other end inserted into a plastic cup with a lid. Traps were surveyed at least 

once weekly. Grass species, trapping methods, and monitoring dates for each monitoring 

site are presented in Table 2.1. Adult billbugs were identified to species based on 

morphological characters described by Vaurie (1951) and Johnson-Cicalese et al. (1990). 

Males and females were distinguished by the presence of a groove or depression on the 

metasternum and the first two abdominal sterna (Johnson-Cicalese et al. 1990). 

Abundances were plotted against Julian date (JD) to describe differences in the seasonal 

activity of billbug adults in Indiana. To test for sex-biased seasonal activity in S. venatus, 

the number of male vs. female S. venatus adults were compared over time using a 

repeated measures analysis of variance in Statistica 13 (Dell Inc. 2016).  

 To search for larvae and pupae, ten soil cores (9 cm depth, 10.16 cm diameter), 

were extracted with a standard golf course cup-cutter and destructively sampled in the 

field. Soil sampling occurred on a weekly basis April through October in 2009 at Rolling 

Hills Country Club in Warrick County, IN. Sampling occurred monthly December 

through February and weekly March through November during 2015 and 2016 at the 

Bimmel Practice Complex in Tippecanoe County, IN. All larvae and pupae were 

preserved in 95% ethanol. To characterize larval phenology across the growing season, 

all larvae collected from the Bimmel Practice Complex in 2015 and 2016 were dorsally 

imaged using a Leica DFC450 camera mounted onto a MC165C stereomicroscope and 

head capsule widths were measured using the Leica Application Suite version 4.2.0 
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(Leica Microsystems, USA) (Figure 2.1). Head capsule width was used as an indicator of 

larval development.  

 

2.3.2 DNA-based life stage association 

 Genomic DNA was extracted by following the procedure described in the DNeasy 

blood and tissue kit (Qiagen, Valencia, CA) from three S. venatus, S. parvulus, S. 

minimus, and S. inaequalis adult specimens collected in 2015 or 2016. Genomic DNA 

from seven larvae collected from Bermudagrss (11 March-7 April 2015, 11-29 March 

2016), and three additional larvae collected from Kentucky bluegrass (14-19 July 2016) 

was also extracted. One Listronotus maculicollis was included as an outgroup. Three loci, 

cytochrome oxidase c subunit 1 (COI), 18S, and the second internal transcribed spacer 

region (ITS2), covering mitochondrial (mtDNA), ribosomal (rDNA), and nuclear 

ribosomal (nrDNA) DNA, respectively, were amplified using polymerase chain reaction 

(PCR) (Table 2.2, Table 2.3). Amplified DNA fragments were confirmed using gel 

electrophoresis in a 1% agarose gel in TBE buffer. Amplicons were then purified using a 

PCR purification kit following manufacturer protocols (Qiagen, Valencia, CA).  

 Purified products were multiplexed by specimen and submitted to the Purdue 

Genomics Core for sequencing on the Illumina MiSeq platform. The pipeline “Wideseq”, 

involving Nextera transposon tagging and fragmentation, was used. These products were 

then processed with dual index/flowcell oligocomplementry adapter extensions. The 

resulting short read sequences were mapped back to known loci reference sequences with 

a standard alignment program (Langmead and Salzberg 2012) (Table 2.2). The resultant 

genomic consensus sequences were visualized and trimmed using Geneious R9 (Kearse 
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et al. 2012). Phylogenetic analyses were conducted using the default maximum-

likelihood settings in RAxML v.8 (1000 bootstrap replicates) (Stamatakis 2006). Pairwise 

analysis of nucleotide differences, the number of nucleotide differences between species 

divided by the total number of nucleotides in the concatenated sequence, were calculated 

in Geneious R9 (Kearse et al. 2012). All outputs were edited and annotated with FigTree 

v1.2.2 (Rambaut and Drummond 2008).  

 

2.4 Results 

2.4.1 Adult species composition and seasonal activity 

 In this study, 2,079 adult billbugs were collected from four locations. Four species 

were identified: S. venatus, S. parvulus, S. minimus, and S. inaequalis (Table 2.4). S. 

venatus and S. parvulus were collected on warm- and cool-season turfgrass, with S. 

venatus being the most abundant species on warm-season turfgrass and S. parvulus the 

most abundant on cool-season turfgrass.  S. parvulus, S. minimus, and S. inaequalis were 

all univoltine with adult abundance peaking at Julian date (JD) 157, 162, and 148, 

respectively (Figure 2.2). S. venatus initiated activity earlier in the spring (JD 85) and 

remained active throughout the growing season with multiple peaks of adult activity 

(Figure 2.2). S. venatus adults were most abundant at JD 113 (April), with lesser peaks 

occurring at JD 143 and 150 (May). Three peaks of adult activity were observed 

consistently across all three trapping seasons: 1) overwintered adults becoming active in 

the spring, 2) a second peak of late spring activity, possibly resulting from maturation of 

overwintered larvae, and 3) a broader, less defined peak likely representing a second 

generation of adults resulting from the two overwintering cohorts (Figures 2.3). 
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 Significantly more male than female S. venatus beetles were trapped at the 

Bimmel Practice Complex (F1, 2=25.72, p=0.037). In 2015, 67% of the 489 total S. 

venatus adults trapped at the Bimmel Practice Complex were male. Similarly, in 2016 

69% of the 588 S. venatus adults trapped were male. This sex ratio was not affected by 

the time of year  (F30,60= 0.64, p=0.909), thus sexes were combined and the weekly 

proportions of total S. venatus adults and Sphenophorus larvae were plotted against Julian 

date to further clarify phenology (Figure 2.3).   

 Fifty seven larvae were collected from April through October 2009 at Rolling 

Hills Country Club. Sixty eight and twenty two larvae were collected at the Bimmel 

Practice Complex from March to December in 2015 and March through November in 

2016, respectively (Figure 2.3). Larval head capsule width ranged from 0.73 mm to 2.42 

mm (Figure 2.4) and varied across the growing season (Figure 2.5). Larvae with the 

widest head capsules were observed coming out of winter at JD 85 (March) and again at 

JD 180 (late June/early July). The smallest mean head capsule widths were observed at 

JD 160 (early June), likely marking the occurrence of first generation larvae from 

overwintered adults in the soil. No clear trends emerged for the remainder of the growing 

season with a mixture of various sized larvae present in the soil after JD 230 (early 

August) (Figure 2.5). Four Sphenophorus pupae were found at the Bimmel Practice 

Complex in 2015 between Julian dates 192 and 213 (mid-July) and two Sphenophorus 

pupae were found in 2016 between Julian dates 187 and 217. These dates likely 

correspond with the end of the immature phase of development for the first full 

generation resulting from overwintered adults and larvae. All larvae and pupae were 

collected from within 6 cm of the soil surface.  
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2.4.2 DNA-based life stage association 

 We obtained sequences from three specimens of S. venatus, S. parvulus, S. 

minimus, and S. inaequalis adults, 10 Sphenophorus spp. larvae, and one Listronotus 

maculicollis adult. Maximum-likelihood trees constructed based on only COI consensus 

sequences resulted in monophyletic clades for S. venatus and S. minimus 

(bootstraps>50%) and overwintered larvae were only recovered with S. venatus adults 

(bootstraps>50%) (Figure 2.6). Maximum-likelihood gene trees constructed using only 

18S or ITS2 sequences were largely uninformative, with less than six bootstrap values 

>50% and little recovery of adults of a given species together. The only exception was S. 

inaequalis adults that were all recovered together with only ITS2 (bootstrap=92%) 

(Figures 2.7 and 2.8).  

 Based on maximum-likelihood analysis of concatenated COI, 18S, and ITS2, five 

of the ten unknown larvae were recovered with S. venatus, S. minimus, and S. parvulus 

adults (bootstrap value>70%). Four additional larvae were recovered with S. venatus and 

S. parvulus adults, but had lower support (bootstrap <50%). Only one larva was not 

recovered with any adults. Of the ten sequenced larvae, five were overwintered. Four 

overwintered larvae were identified as S. venatus (bootstrap>40%) and one was identified 

as S. parvulus (bootstraps>70%) (Figure 2.9). The average pairwise distance similarity of 

S. venatus conspecific adults was high, averaging 99.1% (range, 99-99.3%). The average 

similarity between larval specimens that were recovered with S. venatus adult specimens 

was 98.7% (range, 94.6-99.5%) (Table 2.5). 
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2.5 Discussion 

 Eleven Sphenophorus species are pests of managed turfgrass. However, the 

species composition and abundances of turf-infesting billbugs varies regionally across 

North America (Dupuy and Ramirez 2015). In Indiana, we trapped four billbug species: 

S. venatus, S. parvulus, S. minimus, and S. inaequalis. These four species have been 

previously documented in this region of the country based on historical collection data 

(Johnson-Cicalese et al. 1990). Johnson-Cicalese (et al. 1990) observed nearly equal 

abundances of these four species in cool-season turfgrasses in New Jersey, while in the 

present study, S. venatus dominated warm-season turfgrasses and S. parvulus was most 

abundant in cool-season Kentucky bluegrass. Dissimilarities in billbug species 

compositions and abundances between trapping sites has also been documented in South 

Carolina (Chong 2015), North Carolina (Doskocil & Brandenburg 2012), and Florida 

(Huang & Buss 2009) and may be related to the host species present, variation in 

management regimes, or a combination of these factors.  

 Three of the four species, S. parvulus, S. minimus, and S. inaequalis, all produced 

one generation a year, and had significant overlap in peak adult activity from May-June. 

In contrast, S. venatus adults initiated activity earlier in the spring (March) and displayed 

multiple peaks of adult activity throughout the growing season. Important differences in 

the seasonal activity of S. venatus relative to the three additional sympatric billbug 

species documented during this study could complicate management in regions where 

these phenologically divergent species are present. These findings emphasize the 

importance of proper monitoring, identification, and knowledge of billbug seasonal 

biology as prerequisites for sound insecticide programming.  
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 This is the first study investigating hunting billbug S. venatus seasonal biology in 

the Midwest. As in the present study, male-biased trap captures for S. venatus across the 

growing season has been reported in New Jersey (Johnson-Cicalese et al. 1990), Florida 

(Huang and Buss 2009), and South Carolina (Chong 2015). The apparently male-biased 

sex ratio observed in the present study, (67% to 69% male), was most similar to findings 

of Johnson-Cicalese et al. (1990) in New Jersey, where 65% of S. venatus adults were 

male. However, Young (2002) reported a male-biased sex ratio for only a short period 

early in the spring, not across the entire year. Because pitfall trapping is a passive 

collection technique, conclusions about the sex ratio of S. venatus populations could 

indicate that males are more mobile or more active than females, not necessarily that 

there are more males in the population. The development of dependable, less passive 

sampling techniques, such as those involving semiochemicals, may be required to 

confidently characterize the sex ratio of S. venatus populations and determine how sex 

ratio might influence seasonal population dynamics and management options. 

 The discovery of overwintered adults and larvae in March and April followed by 

three to four overlapping peaks of adult and larval activity is indicative of two separate, 

but overlapping, cohorts. Overwintered larvae immediately resume feeding on plant 

crowns, roots, stolons, and rhizomes in the spring, eventually emerging as adults during 

late spring and early summer. This pattern has been previously observed in cool-season 

turfgrass in New Jersey (Johnson-Cicalese et al. 1990), as well as warm-season turfgrass 

in Arkansas (Young 2002), Virginia (Chong 2015), and North Carolina (Reynolds et al. 

2015). Preventive application of plant systemic insecticides targeting both adults and 

overwintered larvae may provide the most suitable strategy for managing billbug 
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populations when S. venatus present, but this strategy should be explicitly examined. A 

second application of insecticide 6-8 weeks after the first application may be required due 

to the occurrence of two S. venatus cohorts and the presence of other sympatric species in 

this region (Richmond 2016). Monitoring of adult activity with pitfall traps or actively 

scouting the turfgrass surface and nearby pavement areas to determine when adults first 

become active in the spring should be employed to accurately time insecticide 

applications. 

 Head capsule widths from field-collected Sphenophorus larvae ranged from 0.733 

mm to 2.420 mm. Similar to other weevil species, billbugs have five larval instars 

(Dupuy and Ramirez 2016), but the relationship between larval size and developmental 

instar has not been established. In North Carolina, field-collected Sphenophorus spp. 

larvae were grouped into three size classes: small (head capsule width <1.0 mm), medium 

(head capsule width between 1.0 and 1.7 mm), and large (head capsule width >1.7 mm) 

(Doskocil and Brandenburg 2012). Medium sized larvae were present across almost the 

entire year, while small and large larvae were primarily present during two different 

periods; May-August and September-October for small larvae, and February-April and 

July-September for large larvae. Since a histogram of observed head capsule widths 

generated in the present study did not provide the level of resolution necessary to clearly 

delineate the different larval instars sizes, larvae were divided into three size classes: 

small (head capsule width <1.2 mm), medium (head capsule width between 1.2 mm and 

1.8 mm), and large (head capsule width >2.0 mm), similar to the method employed by 

Doskocil and Brandenburg (2012). These groupings provided a relatively coarse, but 

useful, basis for interpreting larval phenology during the growing season. Small larvae 
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were present in the soil during two distinct periods, May-June and August-November. 

The first appearance of small larvae in the soil in May likely marks the first generation of 

larvae resulting from overwintered adults and a potential target for insecticide 

applications. Although all three size classes were present in the soil in December, only 

medium and large larvae were found in March of the following year. It is unclear if this 

finding indicates that smaller larvae are unable to successfully overwinter at the more 

northerly latitude of Tippecanoe County, Indiana, or if some development continued after 

sampling was stopped for the season.  

  The lack of known morphological characters to distinguish billbug larvae to 

species leaves the seasonal dynamics and differences in overwintering behavior of 

billbug larvae largely unresolved. This study was the first attempt, to our knowledge, to 

use molecular methods to associate billbug adults and larvae. Based on maximum-

likelihood analyses, the three genetic loci utilized (CO1, 18S and ITS2) varied in their 

utility for distinguishing the four billbug species examined. Analysis of concatenated 

sequences from all three loci and COI by itself resulted in four overwintered larvae that 

were consistently recovered with S. venatus adults as a monophyletic clade, providing the 

first direct evidence of S. venatus larvae overwintering above 40°N latitude. 

 Maximum-likelihood analyses of concatenated sequences and COI recovered a 

highly-supported clade with all three S. minimus adult specimens and two larvae. The two 

larval specimens that were recovered as S. minimus were collected June 2016 from 

Kentucky bluegrass research plots at the Purdue Nursery where S. parvulus was the most 

abundant adult species (Table 2.4). These results emphasizes that identification of billbug 

larvae based solely on association with the most abundant adult species is unreliable 
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where several species co-exist and stresses the necessity for continued development of a 

billbug larval identification tool. 

 S. parvulus and S. inaequalis adults, although morphologically distinct, were not 

able to be separated based on the sequences examined in the present study. However, 

analysis of concatenated sequences (COI, 18S, and ITS2) and COI by itself provided high 

support for one larva collected from Kentucky bluegrass to be recovered with a S. 

parvulus adult. In analysis of concatenated sequences from all three loci, one 

overwintered larva collected from Bermudagrass was recovered with a S. parvulus adult, 

but this relationship was inconsistent. S. parvulus is not known to overwinter in the larval 

stage (Dupuy and Ramirez 2015) and S. parvulus adults were not recovered as a distinct 

monophyletic group in any of the analyses. In addition, pairwise distance analyses 

indicated only 93.28% similarity between the associated overwintered larva and S. 

parvulus adult, which was less than its similarity with the monophyletic clade of S. 

venatus adults and recovered S. venatus larvae (>95% similarity). The low similarity of 

this particular larval specimen with all of the specimens included in our analysis does not 

conclusively support its identification as any of the target taxa. 

 This work provides a foundation for the development of a molecular tool useful 

for identifying billbug larvae but further work will be necessary to refine this technique 

as a dependable diagnostic tool. A broader taxon sampling covering a larger geographical 

region is necessary. Specimens from this study were sampled from a small geographical 

region in Indiana and larvae could not be reared to adults in the lab to confirm molecular 

analysis. In addition, maximum likelihood analyses were conducted under the default 

settings in RAxML. Incorporation of gene-specific evolutionary rate models may 



32 
 

increase support and provide more resolution, especially for analysis of concatenated 

sequences. Taxon-specific PCR primers should also be developed and inclusion of 

additional loci may increase resolution and establish more consistent relationships for the 

molecular identification of billbug larvae. 

 This is the first study to investigate S. venatus adult seasonal biology in the 

Midwestern U.S. and the first to provide molecular confirmation that S. venatus is 

capable of overwintering in the larval stage. Results show that S. venatus overwinters in 

Indiana as both adults and larvae, resulting in two separate cohorts during the spring, 

each producing at least one subsequent generation of larvae and adults during the 

remainder of the growing season. The presence of two separate, over-lapping S. venatus 

cohorts presents obvious management challenges. Although an assortment of synthetic 

insecticide products with extended residual activity are currently available, proper timing 

will likely be paramount in order to reduce the number of applications required. A 

combination of cultural, biological, and chemical management strategies that include 

contact or plant-systemic insecticides targeting adult and larval stages during the spring 

should be evaluated. Results of the present study also provide a foundation for future 

work concentrating on the development of a molecular tool to associate billbug life 

stages. Such a tool will be useful for investigating larval phenology across North America 

where different assemblages of sympatric billbug species occur.
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Table 2.1 Field site, grass species surveyed, pitfall trap design, and monitoring dates for 
billbug species composition survey in Indiana (2009; 2014-2016). 
 

Field site IN County Grass Species Trapping method Dates 
Rolling Hills 
Country Club Warrick zoysiagrass Linear pitfall April-October 2009 

Daniel Turfgrass 
Research & 

Diagnostic Center 
Tippecanoe Kentucky 

bluegrass Cup pitfalls 
May-August 2014; 

March-October 2015, 
March-August 2016 

Purdue University 
Nursery Tippecanoe Kentucky 

bluegrass Linear pitfalls March-August 2016 

Purdue University 
Bimmel Practice 

Center 
Tippecanoe Bermudagrass Cup pitfalls 

May-August 2014; 
March-October 2015 

and 2016 
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Table 2.2 Primers for PCR amplification of COI, 18S, and ITS2 from Sphenophorus spp. 
larvae (n=10) and S. venatus, S. minimus, S. inaequalis, and S. parvulus adults (n=3 for 
each species) for DNA-based life-stage association. Taxa and GenBank accession 
numbers for reference sequences used in the "Wide-Seq" pipeline at the Purdue 
Genomics Core Facility.  
 

Gene Primer Sequencea Reference taxa Accession # 

CO1 

(F)TAATACGACTCACTATAGGGCAA
CATTTATTTTGATTTTTTGG 

S. venatus AF131117 
(R)ATTAACCCTCACTAAAGTCCAAT
GCACTAATCTGCCATATTA 

18S 

(F)TACCTGGTTGATCCTGCCAGTAG 
Sitophilus 
granarius AF389038 

(R)GACGGTCCAACAATTTCACC 

ITS2 

(F)AATACGACTCACTATAGGGTGA
ACATCGACATTTYGAACGCACA 

Miarus 
graminis AY837713 

(R)TTAACCCTCACTAAAGTTCTTTT
CCSCTTAYTRATATGCTTAA 

a Forward (F) and reverse (R) primer sequence fragments from Cline et al. (2014).   
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Table 2.3 Amplification conditions for PCR reactions. 
 

Gene Hot Start 
°C (min) 

Denature 
°C (min) 

Anneal 
°C (min) 

Extend 
°C (min) 

Final 
Extend °C 

(min) 
Cycles 

CO1 94 (2:00) 94 (1:00) 48 (1:00) 72 (1:00) 72 (12:00) 40 

18S 95 (10:00) 94 (0:30) 50-55 
(0:30) 72 (1:30) 72 (10:00) 41 

ITS2 95 (5:00) 95 (1:00) 57-60 
(0:30) 72 (1:00) 72 (7:00) 33 
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Table 2.4 Billbug species abundances by location. Grass types and years surveyed 
are indicated in parentheses.  
 

Species 

Location 

Total Rolling Hills CC 
(zoysiagrass; 
2009) 

Bimmel Center 

(Bermudagrass
; 2014-2016) 

Daniel Center 
(KYBa;  
2014-2015) 

Nursery 
(KYB;  
2016) 

S. venatus 116 1482 15 0 1613 
S. parvulus 3 49 214 136 402 
S. minimus 0 1 24 31 56 
S. inaequalis 0 2 2 4 8 
Total 119 1534 255 171 2079 

a KYB, Kentucky bluegrass  



37 
 

 



38 
 

 
 
Figure 2.1 Dorsal image of a field-collected Sphenophorus larva using a Leica DFC450 
camera mounted onto a MC165C stereomicroscope. Head capsule width was measured 
using the Leica Application Suite version 4.2.0 (Leica Microsystems, USA).  
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Figure 2.2 Number of adult Sphenophorus parvulus (A), S. minimus (B), S. inaequalis 
(C), and S. venatus (D) adults trapped (2009; 2014-2016). Data were fitted with a robust 
locally weighted regression (Lowess fit).  
  



40 
 

 
 

60 90 120 150 180 210 240 270 300 330 360
Julian Date

0.00

0.02

0.04

0.06

0.08

0.10
Pr

op
or

tio
n 

of
 to

ta
l c

ol
le

ct
ed

 Sphenophorus larvae
 S. venatus adults

 
 
Figure 2.3 Weekly proportions of total Sphenophorus venatus adults and 
Sphenophorus larvae collected on warm-season grasses at Rolling Hills Country 
Club in Newburgh, Indiana (2009) and Bimmel Practice Complex in West 
Lafayette, Indiana (2015-2016). Data were fitted with a robust locally weighted 
regression (Lowess fit). 
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Figure 2.4 Frequency distribution of observed head capsule widths (mm) of field-
collected (March-December 2015 and March-November 2016) Sphenophorus 
larvae.  
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Figure 2.5 Head capsule widths (mm) of all field-collected Sphenophorus larvae 
(n=85) from March 2015-November 2016 at Bimmel Practice Center in West 
Lafayette, Indiana.   
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Figure 2.6 Maximum-likelihood tree for COI consensus sequence from 
Sphenophorus spp. larvae (n=10) and S. venatus, S. minimus, S. inaequalis, and S. 
parvulus adults (n=3 for each species). Numbers at nodes are bootstrap values 
(percentages). Overwintered larvae (larvae collected in March 2015 and 2016) are 
bolded.  
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Figure 2.7 Maximum-likelihood tree for ITS2 consensus sequence from 
Sphenophorus spp. larvae (n=10) and S. venatus, S. minimus, S. inaequalis, and S. 
parvulus adults (n=3 for each species). Numbers at nodes are bootstrap values 
(percentages). Overwintered larvae (larvae collected in March 2015 and 2016) are 
bolded.  
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Figure 2.8 Maximum-likelihood tree for 18S consensus sequence from 
Sphenophorus spp. larvae (n=10) and S. venatus, S. minimus, S. inaequalis, and S. 
parvulus adults (n=3 for each species). Numbers at nodes are bootstrap values 
(percentages). Overwintered larvae (larvae collected in March 2015 and 2016) are 
bolded. 
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Figure 2.9 Maximum-likelihood tree of COI, 18S, and ITS2 concatenated 
sequences from Sphenophorus spp. larvae (n=10) and S. venatus, S. minimus, S. 
inaequalis, and S. parvulus adults (n=3 for each species). Numbers at nodes are 
bootstrap values (percentages). Overwintered larvae (larvae collected in March 
2015 and 2016) are bolded.  
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VOLATILE AND CONTACT CHEMICAL CUES ASSOCIATED WITH Sphenophorus 
venatus and S. parvulus (COLEOPTERA: CURCULIONOIDEA) HOST- AND MATE-

FINDING BEHAVIOR 
 

3.1 Abstract 

 Beetles in the genus Sphenophorus Schönherr, collectively known as billbugs, are 

native to North America and Europe, where they are historically associated with a diverse 

assortment of sedges and grasses. Several sympatric species are commonly associated 

with managed turfgrass, with two species, S. venatus Say and S. parvulus Gyllenhaal, 

largely considered the most important pests. This study tested the hypothesis that adult 

billbugs use volatile organic compounds associated with host-plants and conspecific 

beetles to direct dispersal behavior. Because mating behavior for these sympatric beetles 

could potentially be mediated by close-range contact chemical cues, we tested the 

hypothesis that S. venatus Say and S. parvulus Gyllenhaal would have qualitatively 

different cuticular hydrocarbon profiles to facilitate mate-recognition. Field evaluations 

of the male-produced aggregation pheromone (2-methyl-4-octanol) identified from 

closely-related congeners (S. levis Vaurie and S. incurrens Gyllenhaal) did not support 

the hypothesis that billbug species associated with turfgrass were attracted to this 

compound. However, in y-tube olfactometer bioassays, S. venatus males were attracted to 

a combination of conspecifics and Bermudagrass Cynodon dactylon host-plant material, 

as well as Bermudagrass host-plant alone. S. venatus females were attracted to a 

combination of male conspecifics and host plant material and male conspecifics alone. 
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Gas chromatography-mass spectrometry (GC-MS) analysis of S. venatus and S. parvulus 

whole-body cuticular extracts indicated series of aliphatic hydrocarbons with qualitative 

and quantitative interspecific differences as well as intraspecific quantitative differences 

between males and females. This study provides the first direct evidence that long-range 

volatile chemical cues direct dispersal behavior of billbugs associated with turfgrass. 

Findings also substantiate the presence of cuticular hydrocarbons that could serve an 

important role as contact pheromones for sympatric Sphenophorus species.  

 

3.2 Introduction 

 Behavior-modifying chemicals, or semiochemicals, influence insect behavior at 

various spatial scales. Long-range semiochemicals such as host-plant volatile organic 

compounds (VOCs), volatile sex pheromones, or aggregation pheromones, are typically 

olfactory-perceived, highly-volatile attractive stimuli that elicit upwind orientation and 

approach to the host, potential mate, or conspecifics. In contrast, close-range 

semiochemicals associated with mating behavior are typically non-volatile, contact or 

gustatory-perceived stimuli composed of long-chain hydrocarbons within the epicuticular 

wax layer (Thornhill & Alcock 1983). These contact pheromones often serve as species- 

and sex-specific recognition cues. The use of both volatile and contact semiochemicals 

sequentially for successful mating has been documented other insect species (Guarina et 

al. 2008, Hughes et al. 2015, Eliyahu 2008). 

 Within Dryophthoridae (Coleoptera: Curculionoidea), simple branched secondary 

alcohols act as volatile, male-produced aggregation pheromones for Sitophilus Schӧnherr 

(Schmuff et al. 1984), Rhynchophorus Herbst (Giblin-Davis et al. 1996), Scyphophorus 
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Schӧnherr (Ruiz-Montiel et al. 2003), and Sphenophorus Schӧnherr (Zarbin et al. 2003) 

species. Cross-attraction of sympatric weevils has been reported for many of these 

synthetic pheromone lures and racemic mixtures, suggesting that the majority of 

aggregation pheromones in the Rhynchophorinae are not species-specific (Francke and 

Dettner 2005, Giblin-Davis 1996). Long-range volatile aggregation pheromones that 

display significant interspecific activity may require additional close-range, tactile 

chemical cues, such as cuticular hydrocarbons, to facilitate intraspecific interactions. 

  Not surprisingly, cuticular hydrocarbons (CHCs) act as contact pheromones in 

multiple Curculionoid species (Lapointe et al. 2004, Pomonis and Hakk 1984, Martins et 

al. 2013, Mutis et al. 2009). These weevils displayed behaviors commonly associated 

with insects that rely on contact pheromones, such as antennal and/or tarsi contact prior 

to mounting and copulation. Despite sympatric species co-occurring across multiple 

genera in Dryophthoridae, most studies have focused on sex-specific compounds or 

differences in the relative abundances between males and females of a single species; 

only one study has previously documented the presence of close-range, species-specific 

recognition cues for multiple closely-related weevil species (Baker et al. 1984).  

 Billbugs, a group of stem-boring beetles in the genus Sphenophorus Schӧnherr 

(Coleoptera: Dryophthoridae), are associated with a diverse assortment of grasses and 

sedges (Vaurie 1951). Over 60 species of Sphenophorus are native to North America, 

with at least ten species being pests of managed turfgrass (Dupuy and Ramirez 2016). Of 

these, the hunting billbug S. venatus Say and bluegrass billbug S. parvulus Gyllenhaal are 

the most widely distributed and economically important species (Johnson-Cicalese 1990, 

Vittum et al. 1999). Adults disperse from overwintering sites in the spring to nearby 
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turfgrass stands where they mate and lay eggs in the grass stems. Larvae damage plants 

by feeding on or inside the stems, crowns, roots, stolons, and rhizomes. Damage first 

appears as areas of brown, dying grass about 5-8” in diameter, sometimes forming larger, 

irregular patches. Billbug damage is widely misdiagnosed, with symptoms often being 

confused with disease, drought, or nutrient deficiency. Such misdiagnosis can lead to 

weed encroachment or unnecessary and ineffective herbicide and fungicide inputs 

(Vittum et al. 1999).  

 Chemical intervention is often the only viable option to manage billbug pests in 

turfgrass and three basic strategies, targeting different life stages, have been most widely 

adopted (Richmond 2016, Shetlar and Andon 2012): 1) preventative control of adults 

using contact insecticides when adult activity is initiated in the spring 2) preventive 

control of early instar larvae inside the stems using systemically active insecticides and 3) 

curative application of soil insecticides targeting larger larvae in the soil after damage is 

visible. To reduce reliance on chemical insecticides and improve management, billbug 

research in recent decades has focused on understanding regional variation in species 

composition (Chong 2015, Huang and Buss 2009, Johnson-Cicalese et al. 1990) and 

seasonal activity (Doskocil and Brandenburg 2012, Young 2002), improving insecticide 

application timing (Reynolds and Brandenburg 2015), and developing effective cultural 

management strategies (Huang and Buss 2013, Fry and Cloyd 2011, Reinert et al. 2011, 

Richmond et al. 2000). Billbug chemically-mediated behavior and the potential for 

incorporating semiochemicals into billbug monitoring and management programs has not 

been previously studied.  
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 Synthetic sex pheromones are available for monitoring flights of several 

Lepidoptera (Alm et al. 1999) and Scarabaeid (Alm et al. 2006, Potter and Haynes 1993, 

Robins et al. 2009) pests of turfgrass. Unfortunately, the relatively strong flight and 

dispersal capacity of these insects makes the relationship between the number of adults 

captured and subsequent local pest densities weak and of limited utility for making pest 

management decisions (Potter and Haynes 1993). Conversely, monitoring and control 

approaches involving semiochemicals have the greatest potential when the adult and 

larval stages both share the same habitat or when the adults tend to mate and lay eggs on 

the same site; billbugs fit both of these criteria (Young 2002, Potter and Haynes 1993). 

Previous work with another stem-boring turfgrass pest in the same superfamily 

(Curculionoidea), the annual bluegrass weevil Listronotus maculicollis Kirby, 

demonstrated that adults display both behavioral and electroantennographic responses to 

Poa annua host-plant volatiles (McGraw et al. 2011). Like the annual bluegrass weevil, 

billbugs are not capable of sustained flight but rather walk as their main means of 

dispersal, suggesting VOCs could also orient adult billbug dispersal behavior. 

Additionally, multiple, closely-related billbug pest species overlap geographically and 

temporally. Therefore, once aggregated, the ability of these insects to self-assort and 

identify suitable mates could hinge on the use of contact chemical cues, such as cuticular 

contact pheromones. S. venatus mating activity mostly occurs between midnight and four 

A.M. (Huang and Buss 2009) but the mating behavior sequence prior to copulation has 

not been previously recorded. Preliminary observations of antennating behavior and the 

common occurrence of multiple sympatric species in turfgrass environments led us to 
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hypothesize that these turf-inhabiting billbugs may rely on contact pheromones for 

successful mate-recognition. 

 This study explored the potential for two forms of chemoreception to mediate 

billbug behavior: recognition of VOCs and non-volatile cuticular wax components. First, 

we examined the attractiveness of a known Sphenophorus aggregation pheromone, 2-

methyl-4-octanol, to S. venatus and S. parvulus under field conditions during two 

consecutive growing seasons. Second, we hypothesized that if VOCs influence adult 

dispersal and orientation, adult S. venatus would positively respond to both host-plant 

material and conspecifics in y-tube olfactometry bioassays. Lastly, we hypothesized that 

if contact stimuli are used by billbugs to facilitate species and sex recognition, there 

would be both qualitative and quantitative differences between the cuticular hydrocarbon 

profiles of S. venatus and S. parvulus.  

 

3.3 Methods 

3.3.1 Insects & plant material 

 S. venatus adults were collected from Bermudagrass Cynodon dactylon L. athletic 

fields by pitfall trapping or hand-collecting at night from March to October. Adult S. 

parvulus were collected using linear pitfall traps placed in a stand of Kentucky bluegrass 

Poa pratensis L. and hand-collecting on sidewalks from April to October. Billbugs were 

separated by species and sex and held in glass mason jars covered with tulle fabric 

containing a moist dental wick, moist paper towels, and host plant material. Glass jars 

containing billbugs were held in a growth chamber (25-27°C; 78-85% RH; 10:14 (L: D)) 

until used for bioassays or cuticular extractions. 
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 Plant material for bioassays was obtained by extracting cores of Bermudagrass 

and Kentucky bluegrass from the field using a standard golf course cup cutter. Plant and 

soil cores were placed into pots containing potting soil and maintained in a greenhouse 

until used in bioassays. Grass plants were maintained at a height of 5.0 cm and watered 

daily. 

 

3.3.2 Pheromone-baited trapping 

 To determine the extent to which S. venatus and S. parvulus are attracted to a 

known synthetic aggregation pheromone (2-methyl-4-octanol) previously identified from 

two closely-related species, Sphenophorus levis Vaurie (Zarbin et. al 2003) and S. 

incurrens (Illescas-Riquelme et al. 2016), three pairs of pitfall traps were monitored at 

two billbug infested sites in West Lafayette, Indiana during 2014 and one site during 

2015. One pitfall trap in each pair contained a pheromone lure comprised of a 

polyethylene bag holding 20 µl of 2-methyl-4-octanol synthesized by P. Zarbin. 

Pheromone lures were re-baited bi-weekly. The second trap was positioned 3 meters 

away and contained an empty bag as a control. The identity of baited or non-baited traps 

was randomly assigned, but switched weekly to account for predominant wind direction. 

Traps were monitored weekly from May to June in 2014 and April to July in 2015. The 

number of individuals from each species and sex of all captured billbugs was recorded. 

 

3.3.3 Y-tube olfactometer bioassays 

 The response of S. venatus adults to five different odor treatments was tested 

using a y-tube olfactometer (8cm and 12cm arms; 2 cm diameter, round glass joints; 
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Analytical Research Systems, Gainesville, FL) (Figure 3.1) during peak adult activity 

periods (April-June and September-October) in 2015 and 2016. Treatments were 

comprised of five combinations of conspecific beetles and above-ground Bermudagrass 

Cynodon dactylon host-plant material that were all compared to a purified air control: 30 

conspecific males + 5g grass, 5g grass, 30 conspecific males, 30 conspecific females + 5g 

grass, and 30 conspecific females. Purified air was pushed through an activated charcoal 

filter via copper tubing and split into two air streams held at ~1 liter/min. Each air stream 

was delivered via Tygon tubing through one of the 8 cm y-tube arms via glass tubes 

(14cm long, 2 cm diameter) that held odor source treatments. Glassware was washed 

using 1% diluted Alconox soap, rinsed with acetone, and baked in an oven for ~10 

minutes at 200°C between odor treatments, switching sex, or after 30 minutes.  

 All observations were made in the dark using a red headlamp under laboratory 

conditions. Billbugs were placed individually at the bottom of the y-tube and observed 

for a maximum of 10 minutes. Billbugs not making a choice by 10 minutes were recorded 

as “not responding”. A response was recorded if the billbug walked upwind in the 12 cm 

arm, 2 cm into the 8 cm arm corresponding with an odor source, and remained there for 

one minute. Treatments were replicated until 30 male and 30 female responders were 

observed. Each individual insect was used only once. After each replicate, treatment arms 

were switched to exclude directional bias.  

 

3.3.4 Preparation of whole-body cuticular extracts 

 To remove cuticular wax compounds, 10 male and 10 female replicates comprised 

of five individuals were subjected to two separate, successive washes in analytical-grade 
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hexane (Avantor Performance Materials, Center Valley, PA, USA). For each wash, five 

individuals were placed in a 4-ml vial and immersed in 0.5 ml of hexane, vortexed for 

two minutes, and then placed in a sonication bath for two minutes. For the first wash, 

insects were removed from the solvent with forceps and placed in a new 4-ml vial 

containing hexane while the vial was in the sonication bath. This step was preformed to 

reduce the amount of hydrocarbons adhering to the cuticle. The two washes were then 

combined and condensed to 0.5 ml under nitrogen. Samples were stored in a freezer (-

20°C) until analyzed.  

 

3.3.5 Analysis of cuticular extracts and identification of cuticular hydrocarbons 

 Samples were analyzed by coupled gas chromatography-mass spectrometry (GC–

MS) with electron impact ionization (EI, 70 eV) using a Hewlett-Packard (HP) 6890N 

gas chromatograph (Hewlett-Packard, Sunnyvale, CA, USA) equipped with a DB-5MS 

capillary column (30 m X 0.25 mm X 0.25 µm film, J&WScientific, Folsom, CA, USA) 

in splitless mode, and interfaced to a HP 5975N mass selective detector (MSD), with 

helium as the carrier gas. Prior to analysis, hexane extract samples were returned to room 

temperature, vortexed 2 minutes, and sonicated 2 minutes to reduce the amount of 

hydrocarbons adhering to the glass vial. One microliter was injected into the heated GC 

injection port (250°C). After a 1 min hold at 50°C the oven temperature was ramped to 

280°C at 10°C/min with a hold for 20 min at 280°C. Compounds were identified by 

comparing the retention times and diagnostic ions of compounds with commercial 

standards. The abundance of each compound was calculated as a percentage of the total 
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corrected peak area of all hydrocarbons that were consistently present in the total ion 

chromatograms (ChemStation, Version B.03.01; Hewlett-Packard Corp.).  

 

3.3.6 Statistical Analyses 

 The numbers of adults for each species and sex captured in pitfall traps associated 

with the pheromone field trial were square-root transformed prior to statistical analysis to 

satisfy the homogeneity of variance assumption. To test the main effect of the pheromone 

treatment, the transformed number of S. venatus and S. parvulus male and female adults 

captured in pheromone baited vs. un-baited traps was examined over time using repeated 

measured analysis of variance. The proportion of responsive billbugs in y-tube 

olfactometer bioassays was calculated by dividing the total number of billbugs 

responding to an odor source (N=30) by the total number of billbugs tested for that odor 

source treatment. Variation in the mean percentage of responsive billbugs was examined 

using analysis of variance (ANOVA) with odor source and sex serving as independent 

variables. Subsequently, a Chi-square goodness of fit test was used to test the null 

hypothesis that the thirty responsive S. venatus adults showed no preference for the 

manipulated odor source treatment vs. purified air control (a response ratio equal to 

50:50). To investigate inter- and intraspecific quantitative differences in the cuticular 

solvent extracts, the effects of species and sex on the mean relative abundances of 

individual cuticular components were compared using multivariate analysis of variance 

(MANOVA) and means were separated using a Tukey (HSD) test. All statistical tests 

were performed using Statistica (Dell Inc. 2016).  
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3.4 Results 

3.4.1 Pheromone-baited trapping 

 The aggregation pheromone (2-methyl-4-octanol) of congeners, S. levis and S. 

incurrens did not have a significant effect on number of males or females of S. venatus or 

S. parvulus (2014: F≤0.17, df=6, p≥0.692) (2015: F≤7.51, df=2 p≥0.111) captured in 

pitfall traps during the experiment. Time did not influence the response to pheromone 

treatment (2014: F≤1.39, df=6, p≥0.251) (2015: F≤1.29, df=2, p≥0.315). 

 

3.4.2 Y-tube olfactometer bioassays 

 Adult S. venatus males and females both oriented towards VOCs in y-tube 

olfactometry bioassays with seventy-three percent of billbugs responding. There was no 

significant difference in the mean percentage of males (77.18±2.16) vs. females 

(71.23±5.66) responding in the y-tube olfactometer bioassays within the allotted ten 

minutes (F1, 4=2.42, p=0.195) and the odor source opposite of the purified air control had 

no significant influence on the percentage of billbugs responding (F4, 4= 4.01, p=0.104). 

However, the response to different manipulated treatments did vary between males and 

females (Figure 1). Males positively responded to all three treatments containing 

Bermudagrass host-plant material (males + grass: X2
(1)=8.53, p=0.003), (grass: 

X2
(1)=6.53, p=0.011 ), (females + grass: X2

(1)=4.80, p=0.028), but not to male (X2
(1)=1.20, 

p=0.273) or female (X2
(1)=1.20, p=0.2731) conspecifics alone. In contrast, females 

positively responded to the two treatments containing male conspecifics (males + grass: 

X2
(1)=8.53, p=0.003), (males: X2

(1)=10.80, p=0.001), but did not orient toward treatments 
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containing only host-plant material (grass: X2
(1)=0.53, p=0.465) or other females (females 

+ grass: X2
(1)=1.20, p=0.273), (females: X2

(1)=0.13, p=0.715). 

 

3.4.3 Cuticular hydrocarbons 

 Analyses of S. venatus and S. parvulus cuticular extracts revealed a series of 

several long-chain aliphatic hydrocarbons. Retention times and molecular ionization 

patterns indicated species-specific chemical differences between the hydrocarbon profiles 

as well as ten compounds that were shared between the two species. Species-specific 

chemical differences included one compound that was unique to S. venatus and five 

compounds that were unique to S. parvulus (Table 3.1, Figure 3.3, 3.4). 

 Although there were no sex-specific compounds identified in the extracts from S. 

venatus or S. parvulus, statistical analyses of the mean relative abundances supported 

quantitative differences between species and sexes for several compounds (F=12.52, 

df=17, p<0.001) (Table 3.2, Table 3.3, Figure 3.5, Figure 3.6). Quantitative differences 

between sexes were observed for three of the five species-specific S. parvulus 

compounds (Table 3.2, Table 3.3, and Figure 3.6). Of the ten cuticular components 

shared between species, five compounds were present in similar relative abundances, 

including the hydrocarbon component that was most abundant in both S. venatus and S. 

parvulus females, heptacosane (peak 5) (Table 3.2, Table 3.3, Figure 3.3, Figure 3.4). 

Two shared compounds differed in mean relative abundance between S. parvulus males 

and females, but not S. venatus. One compound differed in mean relative abundances 

between males and females of both species, and one compound was consistently present 

in higher relative abundance for S. venatus than S. parvulus (Table 3.2, Table 3.3).  
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3.5 Discussion 

 To our knowledge, this is the first study investigating chemically-mediated 

behavior in billbugs associated with turfgrass. Findings of this study suggest 1) S. venatus 

males are attracted to host-plant volatiles, 2) the presence of a male-produced volatile sex 

pheromone that is attractive to females for at least one of the most common billbug 

species associated with managed turfgrass, S. venatus, and 3) qualitative and quantitative 

differences in the cuticular hydrocarbon profiles that could facilitate mating in both of the 

species examined.  

 Because billbugs are not strong flyers, directed movement towards VOCs could 

serve as a more energy efficient strategy than randomly walking to forage and search for 

mates (Young 2002). The present study addressed this hypothesis from two different 

angles. First, we examined the extent to which 2-methyl-4-octanol, a known aggregation 

pheromone for Sphenophorus incurrens (Illescas-Riquelme et al. 2016) and S. levis 

(Zarbin et al. 2003) influenced trap catches of S. venatus and S. parvulus in the field. We 

expected that 2-methyl-4-octanol would be attractive to S. venatus and S. parvulus 

because these species are closely related to S. incurrens and S. levis and interspecific 

activity has been previously documented for many synthetic Rhynchophorin pheromone 

lures (Francke and Dettner 2003). Contrary to our predictions, results from the present 

study showed 2-methyl-4-octanol alone did not increase trap capture for S. venatus or S. 

parvulus adults.  However, the pheromone blends for several previously studied 

Rynchophorine species contain at least two major chemical components (Franke and 

Dettner 2005). While 2-methyl-4-octanol has been identified as the only aggregation 

pheromone component for S. incurrens and S. levis, it has also been identified as only one 
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of multiple compounds in the pheromone blends for other closely-related species, 

including Metamasius hemipterus L. (Ramirez-Lucas et al. 1996), the Australian 

population of Rhabdoscelus obscurus Boisduval (Giblin-Davis et al. 2000), and 

Scyphophorus. Acupunctatus Gyllenhaal (Ruiz-Montiel et al. 2008). The present study 

did not examine the attractiveness of 2-methyl-4octanol as part of a ratio-specific 

pheromone blend and indicates only that under the specific field conditions of the current 

study, this compound does not seem to be attractive for S. venatus or S. parvulus by itself. 

 Synergism between plant volatiles and aggregation pheromones has been widely 

documented for weevils (Reddy and Guerrero 2004), suggesting the biological activity of 

the synthetic pheromone lure could require the presence of host-plant volatiles in order to 

be attractive to S. venatus or S. parvulus. This phenomenon was observed in S. incurrens, 

with the 2-methyl-4-octanol pheromone lure + sugarcane host-plant material trapping 

more weevils than sugarcane alone, sugarcane + male conspecifics, and the 2-methyl-4-

octanol pheromone lure alone (Illescas-Riquelme et al. 2016). Findings of the present 

study suggest S. venatus and S. parvulus are not attracted to 2-methyl-4-octanol, so our 

next step was to investigate if billbugs recognize VOCs and what VOCs they orient 

towards.  

 Our second approach for addressing the role of VOCs in directing the movement 

of billbug species associated with turfgrass focused on a series of y-tube bioassays with 

S. venatus. Male and female S. venatus beetles displayed significant behavioral responses 

in the y-tube olfactometer, supporting our hypothesis that adults recognize and orient 

towards VOCs. Further, orientation towards different odor sources varied between sexes. 

Males positively responded to all three treatments containing Bermudagrass host-plant 
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material, suggesting that dispersal behavior of males is primarily oriented toward host-

plant volatiles. In contrast, females positively responded to both treatments containing 

male conspecifics, suggesting that dispersal behavior of females may be driven by a 

male-produced volatile pheromone.  

 Sex-specific variation in behavioral responses to host-plant volatiles is common 

across insects (Szendrei and Rodriguez-Saona 2010). Apparently, S. venatus is no 

exception, as findings from the present study suggest male but not female S. venatus 

adults orient towards host-plant VOCs. This finding does somewhat contrast with results 

from the only other study investigating chemoreception in curculionid pests of turfgrass. 

Dissimilar to the hunting billbug, annual bluegrass weevil, Listronotus maculicollis 

females responded positively to host plant (Poa annua L.) volatiles but males did not. 

These behavioral differences are likely related to the fact that, unlike billbugs, which 

display a brief, male-biased increase in activity during the spring (Young 2002), sex ratio 

bias during spring colonization has not been observed in L. maculicollis  (McGraw et al. 

2011). Further, the positive response of S. venatus females to male conspecific treatments 

suggests the presence of a male-produced sex pheromone in S. venatus and provides 

support for the idea that males of this species are the primary colonizers of food 

resources. Within Curculionoidae, 18 of the 21 species that are known to utilize 

pheromone-mediated sex attraction are more attractive when allowed to feed on host-

plant material (Landolt 1997). Male attraction to host-plant volatiles is not surprising if it 

enhances male pheromone production and reproductive success.  Our findings suggests 

that, although L. maculicollis and S. venatus are similar in respect to their feeding 
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behavior and subsequent damage symptoms, they differ in their chemosensory and 

dispersal behavior. 

 Female attraction to males is more likely to occur if it reduces energy 

requirements of mate-searching activities (Thornhill and Alcock 1982). Because billbugs 

are weak fliers and oviposition occurs at adult feeding sites, female attraction to a male 

pheromone could provide more energetically efficient access to potential mates, 

oviposition sites, and food resources.  In this study, manipulated odor treatments were 

always compared to a purified air control. This was done in order to avoid volatiles 

mixing in the notch of the y-tube and to avoid saturation of antennal receptors that can 

lead to false repellent effects (Szendrei et al. 2009, McGraw et al. 2011). Future work, 

comparing male responses to "male + grass" and "grass only" treatments by 

electroantennography or field trapping studies could clarify how the attractiveness of a 

male-produced aggregation pheromone is influenced by the presence of host-plant 

material.  In addition, head-space volatile collection of the manipulated odor treatments 

and subsequent electroantennography will aid in identifying which specific host-plant 

VOCs influence billbug behavior and clarify the absolute configuration of the putative S. 

venatus male pheromone.  

 Because as many as 11 billbug species may cohabitate turfgrass environments and 

many curculionid volatile aggregation pheromones display interspecific activity, VOCs 

are likely not the only form of chemoreception orchestrating billbug behavior. Analyses 

of cuticular extracts from two sympatric billbugs species (S. venatus and S. parvulus) 

indicated qualitative and quantitative interspecific chemical differences in cuticular 

hydrocarbon profiles and intraspecific quantitative differences between males and 
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females of both species. These findings, support the idea that cuticular hydrocarbons 

could play a role in the mate recognition between these closely related species. Of the 

components identified from both species, n-alkanes or alkenes were observed. This 

pattern is similar to that reported for the hydrocarbon profiles of other curculionid adults 

such as Cylindrocopturus adspersus LeConte (Pomonis and Hakk 1984), Diaprepes 

abbreviatus Linnaeus (Lapointe et al. 2004), and Aegorhinus superciliosus Guérin (Mutis 

et al. 2009).  

 Previous studies have documented the ability of males to recognize female 

cuticular hydrocarbons through mating bioassays with freeze-killed, solvent-washed 

freeze-killed, and reconstituted freeze-killed females (Ginzel 2003, Mutis et al. 2009). 

Antennal contact prior to mounting and copulation is a consistent behavior across insects 

that rely on tactile chemical signals. Preliminary laboratory observations suggest that 

male billbugs also antennate females before mounting and continue to tap and/or stroke 

females with antennae and tarsi once mounted, a behavior that has been consistently 

observed in other curculionids (Martins et al. 2013).  In the laboratory, we observed one 

S. venatus male that attempted to mate with a freeze-killed S. venatus female. The mated 

pair was collected in the field on April 29, 2015. The male was held in a separate 

container with Bermudagrass while the female was freeze-killed and then allowed to 

thaw for 30 minutes prior to observation of mating behavior in a glass petri dish lined 

with filter paper on May 4, 2015. The male made antennal contact prior to mounting the 

female, oriented himself, continually stroked the female with his front and hind tarsi, and 

then bent the abdomen to extrude the aedeagus. When presented to the same, but hexane-

washed, female the next day, the male made antennal contact and mounted, but 
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dismounted and did not attempt to mate after thirty minutes, implying that recognition 

signals in the cuticle may have been removed by the solvent. After the female was 

reconstituted with 400 µl of the cuticular extract, the male made antennal contact, 

mounted, curved the abdomen, and extruded the aedeagus within two minutes of being 

presented to the female. Unfortunately, were unable to replicate this observation. 

Although a greater number of observations will be required to confirm the biological 

significance of cuticular hydrocarbons in Sphenophorus, the differences in cuticular 

chemical profiles observed in the present study could provide the basis for mate 

recognition between these sympatric insects.  

 This is the first study to demonstrate the capacity for chemoreception at different 

spatial scales in billbugs associated with turfgrass. Orientation to long-range VOCs 

emitted from host-plants and adult male conspecifics likely mediate dispersal prior to 

close-range reliance on cuticular hydrocarbons to facilitate mate recognition. Future work 

should concentrate on identifying the absolute configuration of the putative male 

pheromone suggested by our results and the potential for synergism with host-plant 

VOCs. Although this study provides the first preliminary observations of mating behavior 

prior to copulation, a better understanding of the mating behavior sequence for these 

insects will be required to clarify the role of unique cuticular hydrocarbon profiles in 

close-range interactions between and within species. Knowledge coming from these 

studies could provide the basis for development of sustainable monitoring and 

management tactics, such as synthetic pheromone lures and cuticular wax components 

that could be coated on fertilizer granules or other decoys for mating disruption.   
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Table 3.1 Qualitative differences and identification of cuticular hydrocarbon components 
in whole-body hexane extracts of female (♀) and male (♂) Sphenophorus venatus and S. 
parvulusa. 
 

Peak # 
Retention 

Time 
(min) 

Hydrocarbon 
S. venatus 

 
S. parvulus 

Diagnostic ionsb 

♀ ♂ ♀ ♂ 

1 22.35  + +  + +  

2 22.91  + +  + +  

3 23.11  + +  + +  

4 23.63 C27 monoene − −  + + 378 (M+) 83, 97, 111 

5 23.85 C27 + +  + + 380 (M+) 

6 24.48  + +  + +  

7 24.60  + +  + +  

8 25.18 C29 monoene + +  + + 406 (M+) 83, 97, 111 

9 25.26  − −  + +  

10 25.33 C29 monoene − −  + + 406 (M+), 83, 97, 111 

11 25.45 C29 + +  + + 408 (M+) 

12 27.3  + +  + + 434 (M+) 83, 97, 111 

13 27.36  + +  − −  

14 27.40  − −  + +  

15 27.53  − −  + +  

16 27.66 C31 + +  + + 436 (M+) 

         
a Peaks are numbered in order of elution from a DB-5 capillary column and correspond 
with those in Figure 3.2; "+" indicates a compound is present and "−" indicates it is 
absent.  b Molecular ions in bold were observed while molecular ions in normal font were 
not observed but could be inferred from the diagnostic ions.   
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Table 3.2 Univariate F statistics and P-values for the effects of Sphenophorus species, 
sex, and the interaction of these two factors on mean relative abundance of individual 
cuticular chemical components (df=28).  
 

Peak #a Species  Sex  Species*Sex 
F p  F p  F p 

1 2.73 0.111  1.54 0.226  0.05 0.820 
2 0.01 0.924  9.79 0.004  1.82 0.190 
3 0.11 0.740  10.54 0.003  <0.01 0.990 
4 103.23 <0.001  13.94 <0.001  13.94 <0.001 
5 3.41 0.077  8.43 0.008  0.05 0.833 
6 17.87 <0.001  18.58 <0.001  0.183 0.672 
7 0.43 0.519  5.46 0.028  0.02 0.899 
8 2.92 0.100  <0.01 1.000  <0.01 1.000 
9 341.59 <0.001  35.41 <0.001  35.41 <0.001 
10 62.91 <0.001  22.00 <0.001  22.00 <0.001 
11 0.62 0.438  0.57 0.459  6.25 0.019 
12 30.16 <0.001  0.09 0.770  <0.01 0.950 
13 47.89 <0.001  2.22 0.148  2.22 0.148 
14 180.94 <0.001  3.52 0.072  3.52 0.072 
15 117.88 <0.001  0.27 0.609  0.27 0.609 
16 <0.01 0.985  2.65 0.116  3.86 0.061 

a Peaks correspond with those in Figure 3.2 and Table 3.1. 
Significant statistical values are indicated in bold.   
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Table 3.3 Mean (± SE) relative abundances of cuticular hydrocarbon components for 
Sphenophorus venatus and S. parvulus. 
 

Peak #a 

Percent of total hydrocarbonsb 

S. venatus 
 

S. parvulus 

Female Male Female Male 

1 1.48±0.71 a 1.93±0.64 a  2.84±0.29 a 3.99±1.0 a 

2 3.33±0.52 ab 5.20±0.63 ab  2.09±0.49 b 6.11±1.18 a 

3 1.42±0.42 a 2.52±0.83 a  1.14±0.05 a 3.38±0.52 a 

4 ND ND  3.24±0.56 b 5.83±0.71a 

5 24.10±3.56 ab 13.96±1.47 b  30.33±4.31a 19.53±5.25 ab 

6 10.14±1.11 b 16.76±1.73 a  2.78±0.40 c 10.27±1.70 b 

7 2.76±0.31 a 3.82±0.81 a  2.31±0.23 a 4.01±0.80 a 

8 6.56±2.21 a 6.27±1.61 a  4.05±1.04 a 3.03±0.69 a 

9 ND ND  10.75±2.09 a 4.47±0.54 b 

10 ND ND  5.39±0.54 a 1.25±0.65 b 

11 17.38±1.45 a 13.14±1.03 a  13.77±0.81 a 17.44±2.05 a 

12 16.09±3.09 a 14.66±1.12 a  3.00±0.75 b 1.97±0.52 b 

13 10.87±2.56 a 17.45±0.94 a  ND ND 

14 ND ND  8.04±0.85 a 6.22±0.77 a 

15 ND ND  6.75±1.16 a 6.46±0.83 a 

16 4.99±0.39 a 4.31±0.42 a  3.53±0.33 a 6.04±0.89 a 
a Peaks correspond with those in Figure 3.2 and Table 3.1. 
b Differences between mean relative abundances of S. venatus males (n=10) vs. females 
(n=10) and S. parvulus males (n=8) vs. females (n=5) were tested with MANOVA 
followed by HSD Tukey test. Means in the same row followed by the same letter are not 
significantly different (α<0.05). ND=not detected. 
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Figure 3.1 Y-tube olfactometer used to characterize the response of Sphenophorus 
venatus beetles to Bermudagrass C. dactylon volatile organic compounds (VOC’s) and/or 
conspecifics.  
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Figure 3.2 Percentage of S. venatus adults responding to five combinations of 
conspecifics and/or host-plant material vs. purified air in a y-tube olfactometer bioassay. 
*P<0.05, **P<0.01 (Observed vs. Expected Chi-Square). a The total number of billbugs 
responding to an odor source (N) divided by the total number of billbugs tested (percent 
of responsive billbugs). 
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Figure 3.3 Representative total ion chromatogram of Sphenophorus venatus (top) and S. 
parvulus (bottom, inverted) female (♀) cuticular hexane extracts. Numbers above peaks 
correspond with those in Table 3.1. 
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Figure 3.4 Representative total ion chromatogram of Sphenophorus venatus (top) and S. 
parvulus (bottom, inverted) male (♂) cuticular hexane extracts. Numbers above peaks 
correspond with those in Table 3.1. 
 
  



72 
 

22 23 24 25 26 27 28

R
el

at
iv

e a
bu

nd
an

ce

Retention time (minutes)

1

1

2

2

3

3

5

5

6

6

7

7

8
11

11

12

1213

13
16

S. venatus

S. venatus

168

 
Figure 3.5 Representative total ion chromatogram of Sphenophorus venatus female (♀) 
(top) and S. venatus male (♂) (bottom, inverted) cuticular hexane extracts. Numbers 
above peaks correspond with those in Table 3.1. 
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Figure 3.6 Representative total ion chromatogram of Sphenophorus parvulus female (♀) 
(top) and S. parvulus male (♂) (bottom, inverted) cuticular solvent extracts. Numbers 
above peaks correspond with those in Table 3.1. 
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CONCLUSIONS 

 

 The overarching goal of this research was to contribute to the understanding of 

billbug biology and behavior in an effort to support the formulation and improvement of 

integrated pest management (IPM) strategies. This thesis described the species 

composition of billbugs associated with managed turfgrass in Indiana and clarified 

Sphenophorus venatus seasonal biology in the Midwest. In addition, molecular 

techniques were used to identify sympatric, turf-inhabiting billbug species, and the 

potential for billbugs to employ two modes of chemoreception, 1) recognition of long-

range volatile organic compounds and 2) close-range cuticular wax components, was 

investigated  

 Findings from this thesis could have immediate impacts on billbug management 

and provide the foundation for future research and development of sustainable IPM 

strategies. The occurrence of multiple sympatric species, such as the four sympatric 

species collected in this study in Indiana, complicates insecticide programming for 

turfgrass managers. In lieu of the three insecticide-based management strategies 

commonly adopted for billbugs in the Midwest, results of the present study underscore 

the necessity for turfgrass managers to monitor adult populations and be fully informed 

about the composition of billbug species common in their region, especially if S. venatus 

is present.  
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 S. venatus differed in its overwintering behavior and seasonal phenology 

compared to the other three species that were collected. S. venatus adult activity is 

initiated earlier in the spring than the other species and, based on molecular life-stage 

association, is capable of overwintering in the larval stage in the Midwestern U.S. 

Overwintering in both the adult and larval stages resulted in two separate, overlapping 

cohorts that were present during the majority of the growing season. Based on its more 

complex seasonal phenology, insecticide-based management strategies that target both 

adults and larvae may prove successful for managing populations where S. venatus is 

present. Monitoring with pitfall traps is helpful to determine when adults first become 

active in the spring, allowing for early and accurately timed preventative insecticide 

applications and potentially reducing the need for subsequent insecticide inputs later in 

the year. Semiochemicals may prove useful for enhancing these monitoring efforts. 

Results from this thesis indicated that billbugs will orient to VOCs, but more research is 

necessary to identify the specific compounds mediating this behavior before synthetic 

lures can be developed and employed in IPM programs.  

  The occurrence of multiple sympatric species also instigated questions on 

billbug behavior, such how these insects find each other and how they distinguish mates. 

Investigation of chemically-mediated behavior in billbugs suggested that 1) S. venatus 

males are predominantly attracted to host-plant volatiles, 2) the presence of a male-

produced volatile sex pheromone in S. venatus that is attractive to female conspecifics, 

and 3) qualitative and quantitative differences in the cuticular hydrocarbon profiles of S. 

venatus and S. parvulus could be crucial for mate recognition for sympatric 

Sphenophorus species. In addition, pitfall monitoring efforts from Chapter 2 indicated a 
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male-biased sex ratio throughout the growing season. These findings support the 

hypothesis that males are more active or mobile than females and potentially initiate 

colonization of host plants. Turfgrass managers should closely monitor S. venatus adult 

populations during spring-green up of warm-season grasses, as the first mowing event in 

the spring may initiate production of VOCs that initiate male dispersal from 

overwintering sites. These males likely colonize host plants and then produce a 

pheromone to attract females. Females likely direct their movement towards this putative 

male-produced pheromone, where they feed, find potential mates, and oviposit. This 

directed movement could explain why less females were captured in pitfall traps, which 

work by passively intercepting beetles as they walk across the soil surface. 

 Because as many as 11 sympatric billbug species infest turfgrass and preliminary 

S. venatus mating behavior observations align with those associated with weevils that use 

contact pheromones, the cuticular hydrocarbon patterns of S. venatus and S. parvulus 

were investigated.  Analyses of cuticular extracts indicated qualitative and quantitative 

interspecific chemical differences between cuticular hydrocarbon profiles of S. venatus 

and S. parvulus, as well as intraspecific quantitative differences between males and 

females of the same species. These findings support the idea that cuticular hydrocarbons 

could play a role in mate recognition between closely-related, sympatric species. 

Although more research will be necessary to confirm the behavioral activity of these 

cuticular hydrocarbons, they could potentially be exploited for the development of mating 

disruption strategies, such as a waxy coating of cuticular components applied to fertilizer 

granules to confuse males and disrupt mating. In addition, these findings generate basic 

questions on sympatric speciation that could potentially integrate molecular methods 
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from Chapter 2 and analysis of cuticular hydrocarbons in Chapter 3 to investigate the 

evolution of chemical cues in closely-related species.   
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