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ABSTRACT 

 

Author: Corsten, Anthony N., M.S. BMS 

Institution: Purdue University.  

Degree Received: Master of Science in Basic Medical Sciences, Fall 2016. 

Title: Evaluation of Several Pre-Clinical Tools for Identifying Characteristics Associated 

 with Limb Bone Fracture in Thoroughbred Racehorses 

Major Professor: Dr. Russell Main, Ph.D. 

 

 

Catastrophic skeletal fractures in racehorses are devastating not only to the animals, 

owners and trainers, but also to the perception of the sport in the public eye. The majority 

of these fatal accidents are unlikely to be due to chance, but are rather an end result 

failure from stress fractures. Stress fractures are overuse injuries resulting from an 

accumulation of bone tissue damage over time. Because stress fractures are pathological, 

it is possible that overt fractures can be predicted and prevented. In this study, third 

metacarpals (MC3) from 33 thoroughbred racehorse comprised of 8 non-fractured 

controls and 25 horses that experienced fracture of some limb bone were evaluated for 

correlative factors for fracture using reference point indentation (RPI; Biodent, 

Osteoprobe), peripheral quantitative computed tomography (pQCT) and Raman 

spectroscopy. As measured by RPI, fractured racehorses had reduced indentation distance 

of the RPI probe on the dorsal surface of the MC3, compared to controls. pQCT analysis 

revealed that horses that fractured long bones had lower cortical bone mineral density in 

the distal metaphysis than sesamoid fractured or control horses. Also in the distal 

metaphysis, horses that fractured their MC3s had greater trabecular and total bone 

mineral content, as well as greater geometric properties compared to other fracture and 

control groups. Raman spectroscopy showed that the lateral aspect of horses with MC3 
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fractures had greater mineral:matrix, carbonate:phosphate and decreased bone 

remodeling ratios compared to the other fractured and control groups. Several parameters 

between the two RPI devices were also significantly negatively correlated. This study 

shows that there are likely correlative factors for fracture using these three types of tools, 

and that future studies could lead to the development of a predictive model for fracture.  
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1. INTRODUCTION 

 

1.1 The Problem of Racehorse Fractures 

Catastrophic racehorse injuries on the track or in training result in euthanasia for 

the animal and large losses for the owners and trainers.  Despite the fact that many 

injuries resulting in lameness can be recuperated from with rehabilitation, the high costs 

of treatment make it an unlikely option for most athletes not destined for use as breeding 

stock. According to the Equine Injury Database, in 2015 0.162% of approximately 

300,000 racing starts resulted in a catastrophic injury, amounting to 484 fatalities [1], 

with many more injuries occur in training. By far, fractures are the most common racing 

or training related injury among Thoroughbred racehorses [2]  and by one estimate 

fractures comprise as much as 86% of injuries [3]. Because of the low rate of treatment in 

favor of euthanasia, it is of great importance for the safety of equine athletes and jockeys 

to determine factors related to fracture risk to reduce fracture incidence overall.   

The most common catastrophic skeletal fracture in Thoroughbreds in the USA is 

of the forelimb proximal sesamoid bones [3][4], though in the UK it is the third 

metacarpal [5]. The sesamoids are two small spheroid bones located on the distal end of 

the third metacarpal that are vital for the operation of the suspensory apparatus, which 

allows a horse to remain standing. Fractures in these bones are commonly uniaxial or 

biaxial, where the latter case is more difficult to operate on surgically and often requires 

the animal to be euthanized [6]. The second most common catastrophic fracture in the 

USA is the third metacarpal (MC3), particularly in the lateral distal condyle, which is 
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approximately three-fourths of all MC3 fractures [3][7]. In terms of relative incidence, by 

one estimate, 50% / 30% of race-related fractures, and 30% / 26% of training-related 

fractures were of the proximal sesamoid and MC3, respectively [3].  

1.2 Factors Related to Overt Fractures and Stress Fractures in Racehorses 

There are many factors that have been identified to be related to the incidence of 

catastrophic fracture. Two common racing surfaces are turf and dirt, and injuries were 

found to be more common in turf races [4]. The same paper also noted that the number of 

days since the last race was important: both too many (greater than 33) or too few (less 

than 13) days before the next race were implicated in greater fracture risk. A separate 

group found a similar result in that horses that did not train for 10 or 21 days were at 

higher risk for humeral and pelvic fractures, respectively [8]. Age has had conflicting 

contributions to fracture risk. One study showed that age was not a factor [4], several 

have shown that fracture risk increases with age [1][2] and another identified younger 

horses as sustaining fractures with greater frequency [3]. Sex has been analyzed in only a 

few studies, with Hernandez et al. showing that geldings experienced fractures with 1.7x 

the frequency of females [4]. 

Most racehorse related injuries are not considered to be a one-time, random event. 

It is true that these types of incidents do occur, but they are likely in higher impact races, 

such as hurdles [9]. It is much more likely that most racehorse fractures are instead 

pathological and are a result of accumulated bone tissue damage, known as stress 

fractures [5][10][11]. Stress fractures have a number of characteristics that differentiate 

them from “bad step” fractures. They occur in high-strain, cyclically loaded 

environments, where racing and training for equine athletes falls into this category [12]. 
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Further evidence is that catastrophic fractures between horses tend to occur at the same 

location and plane of the bone consistently [10]. Empirical evidence for stress fractures in 

horses was shown in early studies with strain-gauges [12], and more recently the 

pathology has been directly identified using a number of modalities, such as MRI [13], 

nuclear scintigraphy [14] and scanning electron microscopy [15]. It is important from a 

prevention standpoint that overt fractures are predicated by stress fractures. A random 

event cannot be predicted except by probability, but stress fractures are a pathology that 

should have characteristic factors that can be identified prior to injury.  

1.3 Introduction to Pre-Clinical Modalities 

This study examines four pre-clinical modalities to assess their ability to detect 

factors related to fracture. I hypothesize that minimally or non-invasive measures of 

bone architecture, morphology, mechanical properties and biomolecular composition on 

cadaveric equine MC3’s from racing populations will correlate with fracture risk in the 

MC3 and other long bones.  

Reference point indentation (RPI) was developed to assess mechanical properties 

of biological tissues in vivo, including bone, as a complement to traditional mechanical 

tests, and includes the Biodent [16][17] and Osteoprobe [18][19]. Both the Biodent and 

Osteoprobe make microindentations into a tissue’s surface using a small needle, making 

them minimally invasive and viable in a clinical setting. The Biodent is a benchtop 

device that is intended for ex vivo testing of tissues (though prior to the release of the 

Osteoprobe it was used for in vivo studies as well) while the Osteoprobe is intended for in 

vivo clinical use. The Biodent’s measures have not been conclusively correlated to 

traditional mechanical test results [20], and the Osteoprobe has not yet been validated to 
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our knowledge. We intend to use the Biodent and Osteoprobe to determine microscale 

mechanical factors that relate to fracture risk.  

Traditionally, fracture risk in humans is most commonly assessed by dual-energy 

x-ray absorptiometry (DEXA) scanning for bone mineral density (BMD) for the 

diagnosis of diseases like osteoporosis or Paget’s disease [21][22][23][24]. However, it is 

limited in that it is unable to distinguish between cortical and trabecular contributions to 

total BMD, and is not able to obtain any volumetric measurements. Peripheral 

quantitative computed tomography (pQCT) is a modern, low-dosage alternative to 

DEXA. pQCT takes 3D scans of bones and as such can measure parameters related to 

BMD as well as bone geometry, and can also separate between cortical and trabecular 

tissues for BMD calculations. In humans, pQCT has been used to successfully correlate 

measures to risk of fracture in patients undergoing hemodialysis  [25][26][27]. In horses, 

pQCT has been able to differentiate between trained and untrained animals [28] as well 

as identifying differences between a fractured and non-fractured MC3 by analyzing the 

distal subcondylar bone [29]. We also utilize radiographs in conjunction with pQCT to 

visualize bone defects or injuries that may have been missed during an autopsy.  

Raman spectroscopy is a measurement technique that uses a laser light to detect 

inelastic scattering effects of an object to identify molecular properties. It has a broad 

range of usages, though more recently it has been used to assess biological materials, 

such as bone [30][31]. Among other things, Raman spectroscopy has the capability to 

assess immature bone deposits [32], determine relative mineralization of bone [33], 

identify regions of high bone turnover [34] and can be correlated with RPI devices and 

traditional mechanical tests [35]. In equine studies, Raman spectroscopy has been shown 
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to have the potential to differentiate between damaged and undamaged regions of bone in 

the MC3 [36].  Traditional Raman spectroscopy does not have the capability to penetrate 

surface tissues such as skin; however, newer designs using fiber optic probes, called 

spatially offset Raman spectroscopy (SORS) has been shown to penetrate skin to obtain 

bone measurements. Work has been done in vivo with humans, where the tibia was 

assessed, and the results have compared favorably to those in cadaveric tissues [30].  

Thus, our study aims to validate the usage of these pre-clinical modalities for 

assessing fracture risk. The RPI tools provide us with high-level mechanical surface 

measures, pQCT and radiographs contribute architectural and morphological data while 

Raman spectroscopy can show changes in the molecular structure of the bone surface. 

Our long term goal is that parameters identified as related to fracture risk can be used in 

a statistical model to predict and prevent fractures from occurring in the first place.  
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2. METHODS 

 

2.1 Collection and Preparation of Samples 

All bone samples were collected from racehorses euthanized at the Indiana Grand 

racetrack in Shelbyville, IN, and obtained through an agreement with the Indiana Horse 

Racing Commission (IHRC) and the Indiana Animal Disease Diagnostic Laboratory 

(ADDL) over the course of three years (2013-16). Horses were initially assessed for 

cause of death on the racetrack by an IHRC veterinarian. Additionally, characteristic 

information for each horse (e.g., breed, age) would also be provided by the veterinarian. 

The euthanized horse would be transported on the day of euthanasia for morning 

accidents or would be kept at the racetrack prior to transport for afternoon or weekend 

accidents. Horses were transported via an unrefrigerated vehicle from Shelbyville, IN to 

West Lafayette, IN (approximately a 1h30m drive), at which point they were assessed by 

ADDL pathologists. 

A legally-required necropsy was performed on each horse, during which time our 

research team collected the left and right MC3 (see Figure 1). Samples were kept with the 

skin as intact as possible for Osteoprobe testing. Each bone was wrapped in BES 

(Balanced Electrolytic Solution) soaked gauze to prevent dehydration of the samples, and 

placed in a plastic bag. Horses were often not transported directly following euthanasia 

and remained at the racetrack overnight. To mimic this, bones that were collected the day 

of death would be placed in the refrigerator for 24 hours.  After the 24-hour refrigeration 
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period or if the bones were collected from the 

horse 24 hours following euthanasia, the samples 

were stored in a -23oC freezer until tested. 

Typically, the time between death and freezer-

storage at Purdue would be around 24-30 hours, 

though if a horse was euthanized before a 

weekend this could extend to 72 hours.  

 

 

 

2.2 Horse Sample Demographics and Fracture Groups 

Over the three years of collection, three breeds of horses were collected: 

thoroughbreds (TB, N = 51), Standardbreds (SB, N = 8) and Quarter Horses (QH, N = 7). 

Due to the significantly larger sample size of TBs, we limited the focus of our study to 

those horses. Within the collected TBs, there were 24 females, 8 males and 18 geldings, 

and one sample’s gender was unknown. Horse age spanned from 2 – 7 years old at time 

of death. From this TB pool, a sub-sample was tested and horses were separated into 

statistical testing groups based on injury type (Table 1).   

  

Figure 1. Equine forelimb anatomy. Notice 

the locations of the cannon bone (MC3) and 

proximal sesamoids. 
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Table 1. Fracture Group Classifications. 

Fracture Type Male Gelding Female Total Description 

MC3 1 1 2 4 Third metacarpal fracture 

LB 2 3 2 7 
Non-MC3 fractured long 

bone 

SSMD 2 4 5 11 
Fractured proximal forelimb 

sesamoid(s) 

Control 2 3 5 10 No fracture 

Total 7 11 14 32  

Demographics for the horses tested in each fracture group. 

  

Alongside the fracture groups, for the purpose of statistical testing two other 

groups using combined demographic data were defined, shown in Table 2. The LB-

combined group allowed us to examine the long-bone fracture group (LB) and the third 

metacarpal fracture group (MC3) compared to the sesamoid (SSMD) group or the non-

fracture (Control) group. Similarly, the Fracture-combined (or Fracture) group allowed 

for examination of broad skeletal differences between fractured and non-fractured horses. 

To differentiate these from the non-combined groups, the term ‘separated’ was used 

when no combined groups are included in statistical comparisons.  

Table 2. Combined fracture group classifications. 

Classification Description 

Separated MC3, LB, SSMD and Control all in separate statistical groups  

LB-combined 
MC3 and LB fractured bones in one group with SSMD and Control 

separated 

Fracture-combined MC3, LB and SSMD in one group with Control separated 
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2.3 Sample Testing Pipeline   

For the purpose of assessing fracture risk, we used the reference point indentation 

(RPI) devices, the Biodent and Osteoprobe, as proxies of bone mechanical strength, 

peripheral quantitative CT (pQCT) to assess bone geometry and density and Raman 

spectroscopy to analyze molecular compositional characteristics of the bone at various 

sites throughout the MC3.  

The testing pipeline was consistent to standardize the treatment of bone samples. 

The evening before testing (Day 0), samples were left at room temperature to thaw 

(approx. 16 hours). On Day 1, samples were first tested with Osteoprobe and then with 

the Raman microspectrometer, after which they were left in a 4oC refrigerator overnight. 

On the morning of day 2, the sample would be tested with the Biodent and placed back 

into the freezer, which would limit the thawed time of a sample to less 48 hours. It has 

been shown that excessive freeze-thaw cycling could negatively impact Raman 

spectroscopy data with as few as 3 cycles [37]. Freeze-thaw cycles have also been shown 

to negatively impact the biomechanical properties of bone [38][39][40]. Though these 

papers analyzed traditional mechanical tests and not RPI, it was important to preserve 

data integrity by minimizing freeze-thaw cycles. Testing with pQCT could be done on 

frozen bones and as such did not have the strict timing windows as the rest of the 

pipeline. Prior to pQCT, radiographs of bones were taken to get a consistent 

measurement of bone length.   
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2.4 Testing Site Selection  

The decision to test multiple locations for each modality on each bone was a 

direct consequence of clinical feasibility. Although we were interested in general between 

group and site comparisons, ultimately we were also interested in specific sites that 

showed differences between groups as these would be the areas to test clinically. Ideally, 

we would find a single site for a modality that showed significance between fracture and 

non-fracture horses to limit the invasiveness of any clinical testing.   

Raman spectroscopy and the Biodent were each tested at 3 

sites along the proximal-distal axis of the limb (proximal, 

midshaft, distal) on the lateral, dorsal and medial aspects of 

the bone. The Osteoprobe was also tested at 3 sites 

longitudinally on the medial and lateral surfaces, but a large 

tendon runs along the dorsal surface of the bone and so the 

bone was tested dorsolaterally and dorsomedially, to mimic 

possible in vivo testing locations. pQCT measures were 

made along the bone’s longitudinal axis, 10%, 25%, 50%, 

75% and 90% of the total length. The 25%, 50% and 75% 

lengths correspond to the same regions that the other modalities were tested at (proximal, 

midshaft, distal). The 10% and 90% sites provide information on the cortical and the 

trabecular bone in each MC3 and slices were three times as thick at these sites. These 

testing locations are shown in Figure 2. By testing the same longitudinal site for our 

modalities, it allowed us to make statistical comparisons for parameters without worrying 

about varying bone composition at different sites on the bone surface.   

Figure 2. Tested locations for 

different modalities. 
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2.5 Osteoprobe 

 The Osteoprobe RUO (ActiveLife Sciences, Santa Barbara, CA) was used to 

make indentation measurements into our samples as they would be in vivo. Usage of the 

Osteoprobe is based off of several previous publications [19][41] and adapted for use on 

the MC3. The Osteoprobe is a handheld RPI device for in vivo work while the later-

mentioned Biodent is for the benchtop and is intended to be used ex vivo. Tests were 

performed twice with the device, once through the skin and once with the skin removed. 

After the through skin testing, the skin was removed and a small region (2-3cm across) of 

periosteum was scraped back from the cortical surface. Preloading was done by pressing 

the Osteoprobe into the cortical surface of the bone to approximately 10N to pierce the 

periosteum. Ten indentations at 40N were made normal to the bone surface 

approximately 2mm apart at each tested location. After each set of ten measurements, 

five control indentations were made into a block of polymethyl methylacrylate (PMMA). 

Tests that came out as a ‘stable’ (as determined by standard deviation by the Osteoprobe 

system) were retained while ‘unstable’ measurements were flagged, discarded and 

measurements repeated (Figure 3). 

Only one parameter, bone material 

strength index (BMSi), is measured by 

this instrument. Output from the 

Osteoprobe includes an uncorrected 

and corrected indentation file. The 

uncorrected file has all raw indentation 

values for bone and PMMA. The 

Figure 3. Typical report from the Osteoprobe. 

Measurements are either described as ‘Very Stable’, 

‘Stable’ or ‘Unstable’, where the last case implies that 

the tests should be repeated. 
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corrected file normalizes the indentation distance into PMMA as approximately 100µm, 

and adjusts the indentation distances into the bone accordingly. In the corrected file, the 

equation for BMSi is 100 x (mean of PMMA indentation distance) / (mean of bone 

indentation distance). Thus, greater indentation distances into bone result in a lower 

BMSi, and vice-versa. A custom MATLAB program was used to automatically compute 

the BMS value from the corrected indentation distance files using the previously 

described equation. These were verified against the graphical report provided for each 

test (Figure 3). 

 

2.6 Biodent 

 The Biodent (ActiveLife Sciences, Santa Barbara, CA) platform was used to test 

each sample using the BP2 probe. Our protocol was based on several prior publications 

that achieved consistent results using the device [42][35][43] and adapted for use in 

equine bone. Prior to testing a sample, an internal reference was made by indenting a 

block of PMMA with a touchdown distance (TDD) of approximately 150µm. The 

touchdown distance measures how far the indentation probe has to travel in order to reach 

the bone surface. A value that is too small or too large will often produce highly variable 

measurements. At each of the nine pre-determined anatomical locations on the bone, 

three replicate measurements were taken approximately 2mm apart. Extra measurements 

were taken if the output graph appeared to be erroneous, where an example of a good test 

is shown in Figure 4. Although relatively rare, this would occur most frequently with 

bones that had recently undergone significant surface remodeling and thus had a softer 

bone surface. Visually, this was often associated with increased surface roughness. A 
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preload of 5 cycles with 2N was used to ensure that the periosteum was pierced. Each 

individual test consisted of ten indentations normal to the cortical surface at 10N with a 

frequency of 2Hz. Triplicate data was acquired by moving the probe approximately 1-

2mm from the initial testing site. When testing the medial and lateral sites, bar clamps 

(Home Depot, Model # 3706HD-4PK) were used to secure the bone on its side. 

Approximately every twenty minutes, the bone was sprayed with BES to prevent it from 

drying out.   

The Biodent system automatically produced an output text file with relevant 

parameters calculated. These parameters were later extracted from the file for use in 

statistical testing, and a list of them can be found in Table 3.  

 

Figure 4. Example output from the Biodent machine showing the Force-Indentation curve of the 

indentation probe moving relative to the reference probe. Each ‘loop’ of on the curve is an indentation 

cycle, and the loops move from left to right as the bone is indented further.  
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Table 3. Biodent parameters of interest. 

Parameter Description 

First Indentation Distance 

(µm) (1st ID) 
First indentation distance of the probe into the bone surface  

Total Indentation Distance 

(µm) (TID) 
Total indentation distance of the probe  

Indentation Distance Increase 

(µm) (IDI) 
Difference between the first and last indentation distance including creep 

Average Creep Indentation 

Distance (µm) (Avg. CID) 
Average creep indentation distance per cycle 

Average Energy Dissipated 

(µJ) (Avg. ED) 
Average energy dissipated per cycle 

Average Unloading Slope 

(N/µm) (Avg. US) 
Average unloading slope of the Force-Indentation curve per cycle 

Average Loading Slope 

(N/µm) (Avg. LS) 
Average loading slope of the Force-Indentation curve per cycle 

 

2.7 Raman Spectroscopy 

 The Horiba HR800 Raman Spectrometer (HORIBA Scientific, Atlanta, GA) was 

used in conjunction with a 660nm laser (Laser Quantum, Santa Clara, CA) at 75% power 

to obtain spectral results. A BX41 microscope (Olympus, Tokyo, Japan) and 50x 

objective was used to focus the laser onto the samples. The original microscope base was 

removed and replaced with a 6” x 5” laboratory scissor jack (Eisco Labs, India) to focus 

the image, as the bones were too large to fit between the original stand and the lens. The 

bone surface was sprayed with BES approximately every 20 minutes to prevent it from 

drying out.  

 LabSpec 5 (HORIBA Scientific, Atlanta, GA) software was used to control the 

laser and the spectrometer to obtain spectral readings. A darkroom was also utilized to 

minimize light contamination. Before testing samples, the machine was calibrated using a 
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disc of silicon dioxide (SO2), which 

has a well-resolved Raman shift peak 

at 520.7cm-1.  For data acquisition, a 

20s exposure time with 5 acquisitions 

per spectral region between the range 

of 700 – 1800cm-1 was used. This 

spectral range allows for capture of a 

majority of the spectrum of cortical 

bone. The sample was moved 

approximately 2mm  

between subsequent scans to obtain 

triplicate measurements at each 

anatomical site. If spectral 

measurements were not visually well-

resolved, then the bone surface was 

scraped lightly with a scalpel to remove any extant periosteum. Measurements were also 

repeated if significant data spiking occurred due to a variety of factors (vibrations, solar 

flares, random noise), as shown in Figure 5, alongside a normal spectrum.  Baseline 

corrected (using the ‘Auto’ correction for consistency, which performs a linear baseline 

correction with 2 – 8 points, optimally determined by LabSpec) data was collected and 

stored in text files. These files contained the wavenumber in one column and the 

associated intensity values in another. Crystallinity of the 𝑣1PO4
3− phosphate peak was 

Figure 5. (A) A typical Raman shift output plot for the 

cortical equine MC3. The shaded areas are the Raman 

shift ranges belonging to each of the respective peaks. 

The peak value is shown in parentheses. The inset 

shows a representation of the full-width half max 

bandwidth for the phosphate peak in the figure. (B) 

Example of a random spike in an otherwise typical 

Raman spectroscopy reading, shown in red. 
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computed by fitting a Gaussian curve to the data in the range of 930cm-1 – 980cm-1. The 

standard form of the Gaussian function is:  

𝑓(𝑥) = 𝑎𝑒
−

(𝑥−𝑏)2

𝑐2  

Where MATLAB was be used to find coefficients a, b, and c after fitting the 

discrete data to a Gaussian model. In the Gaussian distribution, 𝑎 =
1

𝜎√2𝜋
 (function 

magnitude), b = µ (the mean of the function) and c = σ (the standard deviation). The full-

width at half-maximum (FWHM, represented in Figure 5) value for the Gaussian 

function is the distance between the x-coordinates where the y-coordinate is at half of the 

maximum. For symmetrical Gaussian distributions, this is well-defined as 2𝑐√2𝑙𝑛2. A 

measure of relative crystallinity or mineral maturity is then computed as 1/FWHM.  

Table 4. Raman spectroscopy parameters of interest. 

Parameter Description 

1/FWHM of 𝑣1PO4
3− Crystallinity or mineral maturity of hydroxyapatite crystals 

𝑣1PO4
3− / Amide I  Mineral-to-matrix ratio  

𝑣1PO4
3− / Amide III  Mineral-to-matrix ratio 

𝑣1PO4
3− / CH2 wag  Mineral-to-matrix ratio 

CO3
2−/ 𝑣1PO4

3− Carbonate substitution for phosphate  

CO3
2− / Amide I [34]  Remodeling / turnover rate  

 

2.8 Radiographs 

Radiographs were taken at the Purdue Veterinary Hospital by trained veterinarian 

technicians. Images were taken from the dorsal-palmar (DP) and lateral-medial (LM) 

perspectives. A 1in. diameter ball was used as a reference for scale. Images were 

provided via email where bone length and various cortical thicknesses were of interest. 
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Radiographs were also used to diagnose bone trauma that would be undetected by a 

surface examination. Radiographs for our four MC3 fractures from our study are shown 

in Figure 6. 

To measure bone length, a calibration measurement was first taken on the 

reference ball on the radiograph to create a conversion between pixel length of the image 

and inches (Asteris Keystone, Asteris, Stephentown, NY). The ruler tool was then used to 

measure a straight line from the proximal end of the bone to the distal end. This distance 

was automatically converted by the program into bone length in centimeters and inches. 

When not using Keystone, a custom MATLAB code (MathWorks, Natick, MA) was used 

that could automatically determine the conversion factor using the circular Hough 

transform in the image processing toolbox. After that, a line could be drawn on the image 

by clicking two points to measure bone length in a similar manner to Keystone.  This was 

used only in the case that Keystone files were not available (i.e., jpeg images only).  

 

Figure 6. Radiographs of the four fractured MC3’s in our pool. (A) lateral distal condyle fracture of the left 

MC3. (B) lateral distal condyle fracture of the right MC3. (C) comminuted midshaft fracture of the left 

MC3. (D) complete distal head fracture of the left MC3. 
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2.9 Peripheral Quantitative Computed Tomography (pQCT) 

The XCT 3000 (Stratec, Birkenfield, Germany) was used for all pQCT 

measurements. Once per testing day, the machine was calibrated using the provided 

calibration samples, and tests were only conducted if the standards yielded approved 

results. The XCT 3000 uses a voxel size of 0.1mm x 0.1mm x 2.2mm, where 2.2mm is 

measured along the length of the bone. A 2.2mm thick slice was obtained at the 

predetermined lengths of bone (see Figure 2) by inputting length obtained from 

radiographs. Following data collection, a macro was used (courtesy Dan Schiferl, Bone 

Diagnostics Inc.) to compute desired parameters based upon a manual outline of the MC3 

sections at each slice.  

Analysis for pQCT is based on user-

defined thresholds that determine 

whether tissues of different density are 

counted when calculating parameters. 

Typically, a CT scanner uses Hounsfield 

units, which is a linear transformation of 

the attenuation coefficient to compute density (mg/cm3) and has water standardized to 0 

mg/cm3. The attenuation coefficient for the XCT 3000 scanner is related to how readily a 

material allows x-rays to pass through, where a material that is denser has a higher 

attenuation coefficient. The attenuation coefficient is specific to the device (as it is related 

to energy output), and converted densities for the XCT3000 are provided Table 5 

(courtesy Dan Schiferl, Bone Diagnostics Inc., Spring Branch, TX), which uses fat 

instead of water as the 0 mg/cm3 standard.  

Table 5. Hounsfield unit density values for various 

materials in bone. 

Material Density (mg/cm3) 

Fat 0  

Water / soft tissue 60 

Cancellous bone ~700 

Cortical bone 1200 
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A macro (courtesy Dan Schiferl) that uses several sub-routines with different 

thresholds was used to compute the values for the parameters in Table 6. All of the sub-

routines use thresholding, where anything less than the threshold value is not considered 

in calculations. Thresholding in bone is difficult because of the partial voxel effect, where 

if two materials of different composition are in the same voxel, the output density will be 

the mean of the two. For example, the periosteal edge voxels of bone can contain cortical 

bone and soft tissue, so the average is estimated to be ~711mg/cm3. All thresholds in this 

section were determined empirically to most accurately separate cortical and trabecular 

components. The Cancellous Bone Density (Calcbd) sub-routine performs two separate 

calculations to determine the ‘Total’ and ‘Trabecular’ measurements in Table 6. The first 

calculation is the ‘contour-mode’, which uses the previously mentioned 711mg/cm3 

density to find the outer edge of the bone surface at 10%, 25%, 50% and 75%, and 169 

mg/cm3 at 90%. Then, all voxels within this contour surface are considered for the ‘Total’ 

calculations. The second calculation is the ‘peel mode’, where in addition to the 

periosteal surface value, a second value is defined to separate the endosteal bone surface 

from the trabeculae. The region within this endosteal circumference is measured as 

‘Trabecular’. To prevent any cortical bone from contaminating the results, the 

circumference is reduced by 5%. At 10% and 75%, a peel density of 900mg/cm3 is used, 

at 25% and 50% the threshold is 600mg/cm3 and at 90% the threshold is 1200mg/cm3. 

The region between the total and trabecular regions is designated the ‘cortical + 

subcortical’ region, because it also contains any trabecular bone and other medium not 

included in the trabecular calculations. A different sub-routine for Cortical Bone Density 

(Cortbd) was used to directly compute the cortical parameters, and a density of 
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710mg/cm3 was used. Cortbd explicitly searches for voxels matching the cortical density 

and imputes any other voxels. Typically, Calcbd is most useful in regions that contain 

significant amounts of cancellous (the epiphysis and metaphysis: 10%, 75%, 90%). 

Cortbd is most accurate where cancellous bone is minimized (the diaphysis: 25%, 50%) 

(Figure 7). Cortical + subcortical measures should be used instead of the cortical 

measures at the metaphyses. A description of each parameter of interest can be found in 

Table 6. 

Our sample had four fractured MC3’s, so precautions were taken when making 

measurements at regions of fracture. For example, in our distal condylar fractures (see 

Figure 6) the fragmented section was secured to the rest of the bone using medical tape. 

When creating an outline of the bone slice for the automated macros, we confirmed that 

there were no missing regions of bone. In the slab fractures, an air gap was present, but 

this should not impact calculations except for perhaps at the edges where the partial voxel 

effect may exist (which would decrease BMD, though not severely due to the small 

surface area of the fracture compared to the slice). When testing the comminuted fracture, 

the midshaft regions that were destroyed were imputed.   

 

Figure 7. Typical output for Calcbd at 10%, 25%, 50%, 75% and 90% lengths. For all images, the left side 

represents the non-analyzed slice with an outline drawn and the right is after analysis of the outlined region 

using Calcbd. The grey region is the cortical + subcortical and the colored region is trabecular. (A) 10% of 

bone length, (B) 50% of bone length, (C) 75% of bone length (D) 90% of bone length.   
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Table 6. pQCT parameters of interest. 

Parameter Description 

Total BMC (mg/mm) (BMCTOT) Total bone mineral content  

Total BMD (mg/mm3) (BMDTOT) Average volumetric bone mineral density  

Total Area (mm2) (AreaTOT) Total cross-sectional area 

Cortical-Subcortical BMC (mg/mm) 

(BMCSUBCORT) 

Cortical + subcortical BMC, similar measure to 

BMCCORT for metaphyses 

Cortical-Subcortical BMD (mg/mm3) 

(BMDSUBCORT) 

Average cortical + subcortical volumetric bone 

mineral density  

Cortical-Subcortical Area (mm2) 

(AreaSUBCORT) 
Cortical + subcortical cross-sectional area  

Cortical BMC (mg/mm) (BMCCORT) Cortical bone mineral content  

Cortical BMD (mg/mm3) (BMDCORT) Average cortical volumetric bone mineral density 

Cortical Area (mm2) (AreaCORT) Total cortical cross-sectional area  

Trabecular BMC (mg/mm) (BMCTRAB) Trabecular bone mineral content  

Trabecular Density (mg/mm3) (BMDTRAB)  Average trabecular bone mineral density  

Trabecular Area (mm2) (AreaTRAB) Total trabecular cross-sectional area 

Persiosteal Circumference (mm) (Perio. 

Circ.) 
Circumference of the cortical surface 

Cortical Thickness (mm) (Cort. Thk.)  Average cortical thickness  

Cortical Moment of Resistance (Lateral / 

Medial) (mm4) (MORLM) 

Resistance to lateral / medial bending in diaphysis, 

also called the section modulus 

Cortical Moment of Resistance (Dorsal / 

Palmar) (Y-axis) (mm4) (MORDP) 

Resistance to dorsal / palmar bending in diaphysis, 

also called the section modulus 

Cortical Polar Moment of Resistance (mm4) 

(MORP) 

Resistance to torsion in diaphysis, also called the 

section modulus 

Weighted Moment of Resistance (Lateral / 

Medial) (mm3) (MORLM,W) 

Resistance to lateral / medial bending in metaphyses 

also called the section modulus 

Weighted Moment of Resistance (Dorsal / 

Palmar) (mm3) (MORDP,W) 

Resistance to dorsal / palmar bending in metaphyses 

also called the section modulus 

Weighted Polar Moment of Resistance 

(mm3) (MORP,W) 

Resistance to torsion in metaphyses, also called the 

section modulus 

Abbreviation for parameters is included in parentheses.  
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2.10 MATLAB Data Organization 

A custom MATLAB program (Mathworks, Natick, MA) was written to analyze 

data from each modality, outlined briefly here. Raw data from each device was initially 

reformatted to a standardized format (comma separated files) where columns were sorted 

by tested site and parameter. These files were placed into a folder for the respective 

testing modality. Filenames would include the accession number and the limb side (left or 

right). For each device, these reformatted files were then read into MATLAB, where each 

horse would be automatically matched with its entry in our demographical database. This 

included information like fracture group, age, weight and breed. Limb side was also 

extracted using the filename. If the horse was not found in the database due to 

typographical error, a notice was put into the MATLAB console and the analysis stopped.  

Outliers were then removed from fracture group for each class of data using an 

iterative version of Grubb’s test. Grubb’s test checks the value with the largest deviation 

from the sample mean compared to the standard deviation of the sample to determine 

outliers [44][45]. The t-distribution is employed to compute a critical value, and the test 

criterion is 𝐺 =
max(𝑌𝑖−𝑌𝐴𝑉𝐺)

𝑠
, where the numerator computes the largest deviation and s is 

the standard deviation for the sample. The null hypothesis for this test is that an outlier 

does not exist, and the alternative hypothesis is that one does. If G is greater than the 

critical t-distribution value at the given α (for this paper, α = 0.001 was used) then the 

null hypothesis is rejected and the value is considered an outlier. This procedure was run 

until the current value failed to reject the null hypothesis.   

Power analysis using paired t-tests and β = 0.8 confirmed that there were no left / 

right differences in parameters within the sample size scope of our experimental design. 
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The outlier-removed data was then averaged between left and right limbs by parameter 

and site. Thus, each horse was only represented once even if left and right measurements 

were taken. If there was any missing data, then the average would only include data from 

a single limb. If no limb data existed at the specific site, then the site was imputed to 

prevent numerical errors during statistical testing. For statistical testing, data was further 

averaged by site, because all sites were tested in at least triplicate. Data with its 

associated site and demographic information was then output to an excel file that could 

be input into SPSS for statistical testing. 

2.11 Statistical Testing  

 After basic descriptive statistics were computed, the MATLAB program 

organized data so that it could be run by SPSS 23 (IBM, Armonk, NY) syntax. A mixed-

model approach was used, which is able to limit correlated error from within-subjects 

through the use of a random intercept, a typical issue in classic repeated measures two-

way ANOVA (RMANOVA). It is also capable of handling missing data, which 

RMANOVA cannot as it expects each site to have an equal number of data points. Thus, 

the robustness of the mixed-model approach makes it ideal for our data. In this study, the 

horse accession number was treated as the random effect and was assigned a random 

intercept. Testing sites were common with all horses and were treated as a repeated fixed 

effect, while fracture group was treated as a normal fixed effect. P-values less than 0.05 

were considered significant. A fixed-effects table was output that provided p-values for 

each fixed effect (Site and Group) and for the interaction effect (Site * Group). If the 

fixed or interaction effect was significant, then a Tukey post-hoc pairwise comparison 



24 
 

was performed, with Bonferroni corrections in the case of multiple pairwise comparisons. 

This procedure was repeated for each parameter of interest for each modality.  

 It should be noted that the sample size for Biodent and Raman spectroscopy vary 

slightly within group. It was determined earlier in the study (N = 6) for these two 

modalities that lateral and medial measures did not differentiate statistically, so past this 

sample size only lateral measurements were taken for these two tools.  

 A linear regression model was used for some comparisons to assess collinearity of 

parameters between Biodent and Osteoprobe. These devices are similar in nature and 

function, and it could serve as an internal validation of results if the linear regression 

yields a significant, strong correlation.   
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3. RESULTS 

 

3.1 Osteoprobe 

The summary of results for the Osteoprobe is available in Table 7. A total of 26 

bones were tested via Osteoprobe, with sample sizes for Control, LB, MC3 and SSMD 

being 8, 6, 4 and 8, respectively. No significant main group effect was found for BMSi. 

Significant differences for the main site effect and a cross-over interaction effect of 

Group x Site were identified for all combinations of fracture groups. At the midshaft 

dorsomedial site Control (Mean ± Standard Error of the Mean, 71.62 ± 2.84) had a 

significantly smaller (p = 0.009) BMSi than the SSMD (84.00 ± 2.47) group. LB-

combined comparisons between C and SSMD remained significant (p = 0.007) at the 

midshaft dorsomedial site. In the Fracture-combined comparison at the midshaft 

dorsomedial site, Control (71.62 ± 2.84) had a significantly lower (p = 0.01) BMS than 

Fracture-combined (79.30 ± 1.89) (Figure 8). Site factor pairwise analysis revealed that 

dorsomedial and dorsolateral sites largely had significantly lower BMSi than lateral or 

medial sites (Table 8). When the sites were averaged along the length of the bone into 

lateral, dorsal (including dorsolateral and dorsomedial) and medial, BMS remained 

significantly lower in dorsal sites (78.70 ± 1.19) than lateral (82.66 ± 1.31, p < 0.001) or 

medial (83.11 ± 1.31, p < 0.001) in the Fracture-combined comparison (Table 9, Figure 

9). 
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Table 7. Summary table of mixed-model results for Biodent and Osteoprobe.  

 Separated LB-Combined Fracture-combined 

Parameter S G S*G S G S*G S G S*G 

BMSi <0.001 0.627 0.009 <0.001 0.418 0.015 <0.001 0.851 0.010 

1st ID (µm) <0.001 0.510 0.483 <0.001 0.448 0.219 <0.001 0.270 0.020 

TID (µm) <0.001 0.479 0.519 <0.001 0.170 0.469 <0.001 0.258 0.022 

IDI (µm) <0.001 0.217 0.743 <0.001 0.406 0.214 <0.001 0.246 0.364 

Avg. CID (µm) <0.001 0.549 0.642 <0.001 0.465 0.756 <0.001 0.364 0.337 

Avg. ED (µJ) <0.001 0.904 0.548 <0.001 0.735 0.872 <0.001 0.438 0.590 

Avg. US (N/µm) <0.001 0.937 0.488 <0.001 0.841 0.676 <0.001 0.553 0.620 

Avg. LS (N/µm) <0.001 0.353 0.273 <0.001 0.623 0.568 <0.001 0.944 0.499 

S, G and S*G are Site, Group and Site * Group comparison results. Bolded values are significant, p < 0.05. 

 

Table 8. BMSi interaction effects for fracture versus control with estimated means and standard error. 

 Means ± SE 

Parameter Proximal Lateral 
Proximal 

Dorsolateral 

Proximal 

Dorsomedial 
Proximal Medial 

BMSi (Fracture) 86.80 ± 1.28 86.15 ± 1.55 81.27 ± 1.96 85.16 ± 1.66 

BMSi (Control) 87.32 ± 2.80 83.15 ± 4.06 79.56 ± 4.04 87.77 ± 1.91 

 
Midshaft Lateral 

Midshaft 

Dorsolateral 

Midshaft 

Dorsomedial 
Midshaft Medial 

BMSi (Fracture) 80.77 ± 1.71 79.47 ± 1.91 79.30 ± 2.22 82.60 ± 1.80 

BMSi (Control) 82.82 ± 1.41 74.34 ± 4.97 71.62 ± 5.42 86.55 ± 1.04 

 
Distal Lateral 

Distal 

Dorsolateral 

Distal 

Dorsomedial 
Distal Medial 

BMSi (Fracture) 79.78 ± 1.31 74.93 ± 1.64 77.74 ± 1.90 79.8 ± 1.77 

BMSi (Control) 83.81 ± 1.51 73.01 ± 3.83 74.38 ± 3.07 84.17 ± 1.79 

Sites that are bolded are significant (p < 0.05) between Control and Fracture.  
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3.2 Biodent  

The summary of the statistical results for the Biodent is available in Table 7. A 

total of 28 bones were tested via Biodent, with sample sizes for Control, LB, MC3 and 

SSMD being 8, 6, 4 and 10 respectively. No significant differences were found for the 

group main effect for any comparisons. Significant differences were detected at the site 

factor (Table 7) for all parameters with separated, LB-combined and Fracture-combined 

comparisons, where the dorsal sites were found to be typically different from lateral or 

medial sites. There were no differences moving from the proximal to distal end within 

any aspect. Sites were averaged along the length of the bone, and it was found that the 

dorsal site was significantly different than lateral or medial for all parameters, shown in 

Table 9 for all parameters and 1st ID / TID in Figure 9. All p-values for dorsal vs. lateral 

and dorsal vs. medial comparisons were found to be p < 0.001. 1st ID, TID, IDI, Avg. 

CID and Avg. ED were all larger at the dorsal site than lateral or medial. Avg. US and 

Avg. LS were significantly smaller at the dorsal site compared to lateral or medial. There 

were no significant differences for the Site main effect detected between lateral and 

medial sites with sites averaged.  

With the fracture-combined comparison, a significant interaction effect for Site x 

Group was present for 1st ID and TID (Table 7). Pairwise analysis of the interaction 

showed that at the midshaft dorsal site, the Fracture-combined group had significantly 

lower values compared to Control horses for 1st ID (68.44 ± 2.34 and 84.57 ± 3.70) and 

TID (73.63 ± 2.54 and 91.21 ± 4.023) (Figure 8).  
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Table 9. Site main effect means for averaged aspects for reference point indentation parameters. 

 Mean ± SE 

Parameter Laterala Dorsalb Medialc 

BMSi 82.66 ± 1.31b 78.70 ± 1.19a,c 83.11 ± 1.31b 

1st ID (µm) 50.17 ± 1.55b 69.10 ± 1.55a,c 51.87 ± 1.63b 

TID (µm) 53.81 ± 1.69b 74.49 ± 1.69a,c 55.36 ± 1.78b 

IDI (µm) 6.37 ± 0.27b 9.42 ± 0.27a,c 6.45 ± 0.28b 

Avg. CID (µm) 1.41 ± 0.05b 2.00 ± 0.05a,c 1.42 ± 0.05b 

Avg. ED (µJ) 30.20 ± 0.86b 42.10 ± 0.86a,c 31.18 ± 0.90b 

Avg. US (N/µm) 0.75 ± 0.01b 0.70 ± 0.01a,c 0.74 ± 0.01b 

Avg. LS (N/µm) 0.55 ± 0.01b 0.49 ± 0.01a,c 0.54 ± 0.01b 

Superscripts indicate what sites that value was found to be significantly different from. The superscripts for 

that site are indicated in the table header. Averaged sites include proximal, midshaft and distal for each 

aspect of the bone.  

 

Figure 8. Three measures of reference point indentation distance with standard error bars, comparing 

Fracture and Control at the Group level. BMS values at the midshaft dorsomedial site were significantly 

greater in the Fracture group horses compared to the Control group (p = .01). The Fracture group had lower 

1st ID (p = .02) and TID (p = .022) than Control at the midshaft dorsal site.  This is consistent as BMS is 

greater in horses that achieve a lower indentation distance. BMS: N = 18 for fracture, N = 8 for control. 1st 

ID and IDI: N = 20 for fracture, N = 10 for control. 
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Figure 9. Three measures of reference point indentation distance with standard error bars, comparing 

longitudinally averaged lateral, dorsal and medial measures (including Control, LB, MC3 and SSMD). 

Dorsal site BMS was significantly lower than both lateral (p < 0.001) and medial (p < 0.001)sites. For the 

Biodent, 1st ID and TID dorsal measures were significantly greater than lateral (both p < 0.001) and medial 

(both p < 0.001) sites.   

 

3.3 Linear Correlations Between Reference Point Indentation Devices 

Each of the twelve sites on the Osteoprobe was paired with its equivalent site for 

the Biodent for linear regression. Dorsolateral and dorsomedial sites for the Osteoprobe 

were each paired with the dorsal site for the Biodent. Linearly regressing BMS with the 

Biodent parameters resulted in several significant correlations. The results are provided in 

Table 10.  The strongest correlations were found comparing the Biodent’s dorsal surface 

and the Osteoprobe’s dorsomedial surface for 1st ID (R2 = 0.736), TID (R2 = 0.763), IDI 

(R2 = 0.746), Avg. CID (R2 =0.705), Avg. ED (R2 = 0.464) and Avg. US (R2 = 0.346).  

The dorsal surfaces tended to have stronger correlations than the lateral of medial 

surfaces. Plots for two of the strongest correlations, 1st ID and TID vs. BMS at the 

midshaft dorsomedial site, are shown in Figure 10.  
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Figure 10. Correlation plots for Osteoprobe’s mean BMS at the midshaft dorsomedial site versus Biodent’s 

mean 1st ID and TID at the midshaft dorsal site for Fracture-combined and Control. The 1st ID plot had a 

significant (p < 0.001) negative correlation with an R2 = 0.736. The TID comparison also yielded a 

significant (p < 0.001) negative correlation with R2 = 0.763.  

Table 10. Coefficients of determination comparing Osteoprobe BMSi to each Biodent parameter at all sites. 

 Coefficient of Determination (R2) 

 1st ID TID IDI Avg. CID Avg. ED Avg. US Avg. LS 

Prox. Lat. 0.05 0.061 0.101 0.091 0.176 0.099 0.214 

Prox. 

Dorsolat. 
0.539 0.538 0.442 0.549 0.485 0.058 0.175 

Prox. 

Dorsomed. 
0.713 0.724 0.661 0.615 0.581 0.073 0.272 

Prox. Med. 0.014 0.014 0.018 0.013 0.042 < 0.001 0.009 

Mid. Lat. 0.034 0.036 0.013 0.083 0.064 0.078 0.01 

Mid. 

Dorsolat. 
0.568 0.592 0.467 0.459 0.266 0.012 0.255 

Mid. 

Dorsomed. 
0.736 0.763 0.746 0.705 0.464 0.041 0.346 

Mid. Med. 0.335 0.397 0.572 0.443 0.28 0.171 0.139 

Dist. Lat. 0.051 0.069 0.122 0.027 0.006 0.111 0.077 

Dist 

Dorsolat. 
0.522 0.515 0.404 0.312 0.087 0.048 0.004 

Dist 

Dorsomed. 
0.643 0.637 0.516 0.419 0.157 0.002 0.062 

Dist Med. 0.151 0.178 0.176 0.017 0 0.042 0.002 

Bolded correlations are significant, p < 0.05. All sites listed are for the Osteoprobe and are compared to the 

equivalent site for the Biodent. Dorsomedial and Dorsolateral measurements for the Osteoprobe are 

compared to Dorsal measurements for the Biodent.  
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3.4 Raman Spectroscopy 

The full table summary of results for Raman spectroscopy analysis is available in 

Table 11. A total of 32 bones were tested via Raman spectroscopy, with the sample sizes 

for Control, LB, MC3 and SSMD being 10, 7, 4 and 11 respectively.  There were no 

significant differences detected in the main or interaction effects with 𝑣1PO4
3− 

(1/FWHM) crystallinity. With groups separated, the mineral-to-matrix ratios, carbonate 

substitution ratio and remodeling ratio were all significant for the group and site main 

effects. At the group level, 𝑣1PO4
3− / AmideI, 𝑣1PO4

3−/ Amide III, 𝑣1PO4
3− / CH2 wag and 

CO3
2− / Amide I were significantly greater in the MC3 group than the other three groups, 

and for  CO3
2−/ 𝑣1PO4

3− the MC3 group was significantly lower than the SSMD group 

(Figure 11). Because the MC3 and LB groups were statistically different from one 

another in the mineral-to-matrix, carbonate substitution and bone remodeling ratios, LB-

combined and Fracture-combined analyses were not done for these.  

Site factor pairwise comparisons for the five significant parameters with separated 

groups revealed that the lateral sites (in particular at the midshaft and the proximal end) 

were typically different from dorsal sites and sometimes significantly different from the 

medial sites. Medial and dorsal sites were not found to be significantly different from one 

another. Within aspects comparing longitudinally, the distal lateral site was different 

from the midshaft lateral site for 𝑣1PO4
3− / AmideI and 𝑣1PO4

3− / CH2 wag, so averaging 

sites longitudinally was not analyzed.  

 The interaction effect for separated groups was significant for all three of the 

mineral-to-matrix ratios (Table 11). In general, the MC3 group had larger mineral:matrix 
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ratios, lower carbonate substitution ratios and greater remodeling rate ratios at specific 

sites, but many of these comparisons were only trends and did not achieve significance. 

The MC3 group had significantly greater 𝑣1PO4
3− / Amide I and  𝑣1PO4

3−/ Amide 

III ratios than the other groups at all lateral sites (see Figure 12, Figure 13, Figure 14). 

𝑣1PO4
3− / CH2 wag ratios, for the MC3 group were significantly greater than all other 

groups for the lateral sites and at the midshaft medial site, larger than LB and SSMD at 

the proximal medial site and larger than Control and SSMD at the proximal dorsal site.  

Table 11. Summary table of mixed-model results for Raman spectroscopy. 

 Separated LB-Combined Fracture-combined 

Parameter S G S*G S G S*G S G S*G 

Crystallinity 0.094 0.353 0.171 0.164 0.239 0.255 0.217 0.258 0.559 

𝑣1PO4
3− / AmideI <0.001 0.002 <0.001 - - - - - - 

CO3
2−/ 𝑣1PO4

3− 0.001 0.029 0.086 - - - - - - 

𝑣1PO4
3−/ AmideIII <0.001 0.003 <0.001 - - - - - - 

𝑣1PO4
3− / CH2wag <0.001 0.001 <0.001 - - - - - - 

CO3
2− / AmideI 0.001 0.013 0.064 - - - - - - 

S, G and S*G are Site, Group and Site * Group comparison results. Bolded values are significant, p < 0.05. 

A dashed line indicates that a significant difference was found between two groups intended to be averaged 

and further combined groups were not analyzed.  
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Figure 11. Significant Raman spectroscopy ratios by separated fracture group with standard error bars 

examining differences for the Group main effect. The MC3 fracture group (N = 4) was significantly greater 

in mineral:matrix measures than the Control (N = 10), LB (N = 7) or SSMD (N = 11) groups. The MC3 

group was also significantly lower in carbonate substitution measures compared to the SSMD group but 

significantly greater in bone turnover measures than all other groups.   

 

 

Figure 12. Statistically significant sites for the 𝑣1PO4
3− / AmideI interaction effects separated by fracture 

group with standard error bars. In all three lateral sites, the MC3 fracture group (N=4) was significantly 

greater in mineral:matrix measures than the Control (N = 10), LB (N = 7) or SSMD (N = 11) groups.  
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Figure 13. Statistically significant sites for the 𝑣1PO4
3− / AmideIII interaction effects separated by fracture 

group with standard error bars. In all three lateral sites, the MC3 fracture group (N=4) was significantly 

greater in mineral:matrix measures than the Control (N = 10), LB (N = 7) or SSMD (N = 11) groups. 

 

 

Figure 14. Statistically significant sites for the 𝑣1PO4
3− / CH2 wag interaction effects separated by fracture 

group with standard error bars. In all three lateral sites, the MC3 fracture group (N=4) was significantly 

greater in mineral:matrix measures than the Control (N = 10), LB (N = 7) or SSMD (N = 11) groups. 

Unlike the other two mineral:matrix measures, the MC3 group was also greater at the midshaft medial, 

proximal dorsal (compared to Control and SSMD) and proximal medial (compared to LB and SSMD) sites. 

It should be noted however that the MC3 group’s mineral:matrix ratio was generally greater than all other 

groups at all sites, though many of these differences were not significant.  
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3.5 pQCT 

The summary of statistical results for the pQCT is available inTable 12. A total of 

33 bones were tested via pQCT, with the sample sizes for Control, LB, MC3 and SSMD 

being 10, 8, 4 and 11 respectively. All parameters for all comparisons were statistically 

significant by site, which is expected because the bone composition and geometry of the 

diaphysis differs from the metaphyses. For separated groups, two parameters had group 

level significance, BMDCORT and BMDSUBCORT. For BMDCORT, LB was significantly less 

than SSMD (p = 0.037, 949.510 ± 34.43 and 978.19 ± 27.19), and for BMDSUBCORT the 

Tukey post hoc did not yield significant results, although the MC3 was trending 

significance to be less than SSMD (p = 0.07). Because BMDCORT did not find differences 

between LB and MC3, they were averaged and the LB-combined comparisons were 

done, where a significant group difference was found again (p = 0.015).  Pairwise 

analysis revealed that BMDCORT for the LB-combined group was significantly less than 

the SSMD group (p = 0.016, 952.36 ± 28.63 and 978.19 ± 27.19).  

 All significant interactions for comparisons occurred at the 90% length, which 

corresponds to the distal end of the bone (Figure 2). However, several significant 

parameters (those obtained via Cortbd) are not valid for analysis in the metaphyses and 

were not analyzed here. These include: BMCCORT, BMDCORT, AreaCORT, MORLM, 

MORDP and MORP. By visual analysis, it also appears that the cortical thickness 

measures at the 90% site are not accurate, so they will also be excluded. For BMCTOT, the 

MC3 fracture group (1318.2 ± 122.32) had significantly greater values than the LB (p = 

0.009, 1117.9 ± 44.60), SSMD (p = 0.012, 1136.5 ± 37.30) or Control (p = 0.001, 1075.7 

± 45.94).  BMDTOT had a significant interaction effect (p = 0.029) for the LB-combined 
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comparison, but the Tukey post hoc test did not yield significant results. For AreaTOT, the 

MC3 fracture group (1814.6 ± 122.90) was significantly greater than LB (p = 0.011, 

1578.7 ± 79.39), SSMD (p < 0.001, 1485.8 ± 43.90) or Control (p < 0.001, 1427.2 ± 

51.35). BMDSUBCORT was significantly lower in the MC3 group (820.50 ± 33.21) than LB 

(p = 0.002, 916.26 ± 33.64), SSMD (p < 0.001, 976.68 ± 29.56) or Control (p < 0.001, 

990.42 ± 25.93).  In the same parameter, LB was also significantly less than SSMD (p = 

0.022) and Control (p = 0.002). BMCTRAB was significantly greater in the MC3 group 

(869.62 ± 64.91) compared to LB (p < 0.001, 654.51 ± 54.84), SSMD (p < 0.001, 635.98 

± 58.49) or Control (p < 0.001, 589.16 ± 50.60). The MC3 group (1274.8 ± 89.99) was 

significantly greater in AreaTRAB compared to LB (p = 0.008, 1073.7 ± 69.20), SSMD (p 

< 0.001, 976.71 ± 55.32) or Control (p < 0.001, 937.31 ± 47.10). The LB group was also 

significantly greater than the Control group (p = 0.03) for AreaTRAB. Periosteal 

circumference was greater in the MC3 group (150.52 ± 5.42) than in LB (p = 0.043, 

140.50 ± 3.58), SSMD (p = 0.001, 136.48 ± 2.04) or Control (p < 0.001, 133.7 ± 2.37). 

MORLM,W was greater in the MC3 group (5421.9 ± 690.97) than LB (p = 0.001, 4028.3 ± 

248.94) , SSMD (p < 0.001, 3969.8 ± 155.30) or Control (p < 0.001, 3846.7 ± 212.51). 

MORP,W was greater in the MC3 group (11299 ± 1268.9) than Control (p = 0.005, 9120.6 

± 449.12).  
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Table 12. Summary table of mixed-model results for pQCT. 

 Separated LB-Combined Fracture-combined 

Parameter S G S*G S G S*G S G S*G 

BMCTOT  <0.001 0.947 0.001 - - - - - - 

BMDTOT  <0.001 0.535 0.156 <0.001 0.367 0.029 - - - 

AreaTOT <0.001 0.714 <0.001 - - - - - - 

BMCSUBCORT  <0.001 0.492 0.385 <0.001 0.508 0.143 <0.001 0.857 0.599 

BMDSUBCORT <0.001 0.045 <0.001 - - - -  - 

AreaSUBCORT <0.001 0.833 0.074 <0.001 0.772 0.078 <0.001 0.806 0.471 

BMCTRAB 0 0.172 0.045 - - - - - - 

BMDTRAB 0 0.304 0.509 0 0.787 0.91 0 0.795 0.888 

AreaTRAB 0 0.198 0.013 - - - - - - 

BMCCORT  <0.001 0.814 <0.001 - - - - - - 

BMDCORT  <0.001 0.034 0.262 <0.001 0.015 0.074 - - - 

AreaCORT <0.001 0.497 <0.001 - - - - - - 

Crt. Thk.  <0.001 0.679 <0.001 - - - - - - 

Perio. Circ.  <0.001 0.675 0.001 - - - - - - 

MORLM <0.001 0.051 <0.001 - - - - - - 

MORDP <0.001 0.263 <0.001 - - - - - - 

MORP <0.001 0.298 <0.001 - - - - - - 

MORLM,W <0.001 0.689 <0.001 - - - - - - 

MORDP,W <0.001 0.662 0.392 <0.001 0.651 0.476 <0.001 0.351 0.181 

MORP,W <0.001 0.772 0.001 <0.001 0.656 0.161 <0.001 0.352 0.131 

S, G and S*G are Site, Group and Site * Group comparison results. Bolded values are significant, p < 0.05. 

A dashed line indicates that significance between two groups intended to be averaged was found and 

further combined groups were not analyzed.  
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4. DISCUSSION 

 

The purpose of this study was to determine if there are any correlations from 

several pre-clinical modalities (Raman spectroscopy, pQCT, Biodent and Osteoprobe) to 

increased risk of fracture. Thoroughbred racehorses have a relatively high incidence of 

overt fracture [2][3][4] likely due to an accumulation of fatigue damage [5][10][11]. 

Here, we conducted ex vivo tests on the MC3’s of 33 thoroughbred racehorses sorted into 

statistical groups based on their fracture types (MC3, long bone (LB), distal sesamoid 

(SSMD) and non-fracture (Control)) to determine if any statistical differences existed 

between fracture and non-fracture groups, but also between the different fracture groups. 

pQCT revealed differences at the distal metaphysis (90%) for bone mineral measures and 

bone geometry between the MC3 group and LB, SSMD and Control groups. Analysis of 

RPI results showed that indentation distance measurements were different on the dorsal 

surface between Fracture and Control groups. Raman spectroscopy results were 

significantly different on the lateral surface for mineral:matrix, carbonate:phosphate and 

carbonate:amideI ratios between the MC3 group and LB, SSMD and Control groups.  

Table 13 briefly summarizes the findings from this study as compared to the Control 

group. Detailed information for each comparison can be found in the Results. 
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Table 13. Summary of significant differences compared to non-fractured horses. 

Group pQCT Raman Osteoprobe Biodent 

MC3 

Distal metaphysis: 

decreased cortical 

BMD, increased 

trabecular and total 

BMC; increased 

geometric properties 

Distal diaphysis: 

increased cortical 

thickness 

Lateral diaphysis: 

increased 

mineral:matrix (CH2 

wag also increased 

on dorsal and medial 

diaphysis). Group 

factor: increased 

carbonate 

substitution, 

decreased 

remodeling rate 

Midshaft 

dorsomedial: 

Increased BMS 

 

Midshaft dorsal: 

Decreased 1st ID, 

TID 

 

LB 

Distal metaphysis: 

decreased cortical 

BMD 

None 

SSMD None None 

 

4.1 pQCT  

Significant results for the pQCT were all found at the distal metaphysis (90%) of 

the MC3. Although a great number of parameters were significant, we are primarily 

interested in the significant differences observed in BMCTRAB, BMCTOT (BMCTRAB + 

BMCSUBCORT) and BMDSUBCORT as measures of mineralization, and AreaTRAB, AreaTOT, 

Crt. Thk., Perio. Circ., MORLM,W and MORP,W for the bone geometry at the distal 

metaphysis. The majority of the significant differences for these parameters were 

observed between the MC3 fracture group and the LB, SSMD and Control groups.  
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4.1.1 Bone Mineral Content and Bone Mineral Density 

The finding that BMDSUBCORT was lower in the MC3 group than all other groups 

but BMCTRAB and BMCTOT were greater at the distal metaphysis is relevant to our testing 

population, considering that three of the four MC3 fractures in our sample occurred at the 

distal end of the bone. One of these involved a complete fracture proximal to the distal 

condyle, and two were slab fractures of the lateral distal condyle. This has also been 

shown in epidemiological studies, where approximately 75% of MC3 fractures were in 

the distal lateral condyle[3][7].   

The role of BMD and BMC in fracture risk is complicated. Excessively low BMD 

is associated with fracture-prone bones [22], so this low BMDSUBCORT measure could be 

influencing the high prevalence of fractures at the distal condyle of the MC3. There have 

been a number of studies that used pQCT to assess BMD-related fracture risk in humans. 

One study found that in hemodialysis patients, a lower BMDCORT, cortical thickness and 

AreaCORT was associated with fracture but trabecular measures were not able to predict 

fracture risk [25]. Our results are slightly different, in that geometry is increased in our 

sample instead of decreased, so a different mechanism is likely involved (see section 

4.1.2).  Regarding cortical BMD, other studies have shown that the cortical measures of 

pQCT are relevant to fracture risk while trabecular components are not [26][27]. Low 

BMD in humans in high loading environments has also been associated with fatigue 

fractures in both male and female marines in training [46][47], which is relevant to the 

high-impact training that racehorses endure. It was not assessed, however, if this low 

BMD was caused by increased porosity or low bone tissue mineralization. Regardless, 

these studies show that our finding of low BMDSUBCORT are likely to be relevant to 
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increased fracture risk, although unlike the hemodialysis studies we also found that a 

trabecular component (BMCTRAB) was involved, possibly because their findings were not 

in the distal condyles, and not in the same animal.  

Several other studies have shown that in equine bones, subcondylar cancellous 

bone has greater bone density [48][49] in trained horses compared to non-trained 

animals, assessed by CT. Another equine study using High Resolution (HR)-pQCT 

observed that there was increased bone volume / total volume (BV/TV) in fractured distal 

condyles compared to non-fractured samples. This is similar to our results, in that we saw 

an increase in BMCTOT and BMCTRAB in the distal condyles, though it does not explain 

why we saw a decrease in BMDSUBCORT.  

One possibility is that both low-density cortical bone and normal-density 

trabecular bone are being added to the distal subcondylar bone in MC3 fractured horses. 

This would cause the BMCTRAB and BMCTOT to increase (as any increased bone mass 

will increase BMC), but will reduce BMDSUBCORT. The lack of significant differences 

between the MC3 group and other groups for BMDTOT are possible if the changes in the 

amount of low-density cortical bone and normal density trabecular bone are similar. 

Thus, the large change in BMDSUBCORT in the MC3 fracture horses was perhaps enough 

to make these bones more fracture-prone compared to the other groups. 

 It was also found that BMDSUBCORT was significantly less in the LB group than 

the SSMD or Control groups (but greater than the MC3 group). This may indicate that 

horses with lower BMDSUBCORT are more fracture prone in the long bones in general, but 

a larger sample size may be useful in showing this effect. How exactly differences in 

BMCTRAB, BMCTOT and BMDSUBCORT affect overall bone strength, ductility and 
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resistance to stress fractures is not possible to assess in this study, but all are known to be 

critical for bone strength [50][51][52]. 

4.1.2 The Effect of Geometric Properties on Fracture Susceptibility 

Bone geometry has been shown to be important in assessing stress fracture risk 

[46][47] and mechanical strength [53], where higher section moduli and cortical bone 

area are associated with decreased fracture risk. It has even been shown in one study in 

humans that section modulus is more important in determining the activity level of an 

individual than BMD [54].  

In our study, it is shown that distal MORP,W is greater in the MC3 group than the 

Control group and that MORLM,W is greater in the MC3 group than all other groups. This 

is possibly contradictory to [54], as in our MC3 group, we see decreased BMDSUBCORT 

and increased section moduli and yet our animals are still more susceptible to MC3 

fracture, which is likely indicative of sub-cortical remodeling. This might be explained by 

the fact that the human study was in fully-grown adults, and the horses in our study are 

not yet skeletally mature so they are still experiencing bone modeling. Thus, it may prove 

more fruitful to understanding the underlying reasons for fracture risk by looking at other 

geometric changes.  

Our data shows that at the distal metaphysis (90%), AreaTOT, AreaTRAB, cortical 

thickness and periosteal circumference are also all increased in the MC3 group over the 

other groups. This could possibly indicate that the bones are larger, maybe due to 

adaptations to stresses or genetic predisposition, but are mechanically weaker (due to 

lower BMDSUBCORT) than the other groups. The cortical thickness was also found to be 

significantly less in the MC3 group at the 75% length of the bone compared to the other 
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groups. This could lend support to the argument that MC3 fracture horses have possibly a 

detrimental adaptation to loading – at the 90% site, low BMDSUBCORT results in slab 

fracture prevalence because of the low density bone deposits. At the 75% location, 

thinner cortical shells result in complete breakage of the distal head.  

4.2 Raman Spectroscopy Analysis 

4.2.1 Mineral-to-Matrix Ratio & The Hypermineralization Theory 

Raman spectroscopy revealed mineral:matrix in the MC3 fracture group were 

greater than in the LB, SSMD and Control groups. Additionally, the MC3 group was 

significantly lower in carbonate substitution (CO3
2−/ 𝑣1PO4

3−) than the SSMD group 

(Table 11). Although 𝑣1PO4
3− / Amide I is generally understood to be a valid mineral-to-

matrix measure, there is still significant discussion on the validity of the other ratios used 

here (𝑣1PO4
3−/ Amide III and 𝑣1PO4

3− / CH2wag) for mineral-to-matrix measurements 

[31]. Because the findings for these two ratios mirror the phosphate to amide I ratio in 

our study, perhaps the results can add to their validity, at least in equine bones.  

Observing that MC3 fractured horses have greater mineral-to-matrix ratios on the 

lateral surface (and the proximal dorsal, proximal medial and midshaft medial for the 

CH2 wag mineral:matrix) than not only other fracture groups but also the control group is 

somewhat counter-intuitive, as we may expect that greater mineralization implies lower 

fracture risk. One possible theory is that perhaps these MC3 bones are hypermineralized 

on the lateral surface of the diaphysis in response to some prior stress. An excessively 

high mineralization is associated with increased strength at the cost of reduced ductility 

[22][55]. This is somewhat supported by the fact that only one of our four MC3 fractures 
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occurred in the midshaft, which was a comminuted fracture, while the other three 

occurred at the distal end of the bone in the metaphysis. Typically, a comminuted fracture 

occurs in excessively brittle bones, like in osteoporosis [56].  Looking at the larger 

population of fractures, the majority of MC3 fractures that occur are of the distal lateral 

condyle [3], and it is possible that this hypermineralization allows for greater propagation 

of slab fractures. Perhaps these MC3 fracture horses are more resistant to midshaft MC3 

fracture but are more susceptible to distal condylar fractures. In support of this notion are 

the results of one study [36] that found that in thoroughbred racehorse MC3s, bone 

samples from the midshaft with higher mineral-to-matrix ratios were more resistant to 

breaking via four-point bending, indicating greater mechanical strength. However, it 

should be noted that their assessment differs in that their sample size was small (N = 3) 

and only one horse was known to have fractured while the cause of death of the others 

was unknown. Regarding the findings for CH2 wag on the dorsal and medial surfaces, it 

is possible that these contribute to midshaft bone strength and would be another 

supporting factor in the reason that midshaft fractures are rarely observed.  

4.2.2 Bone Remodeling Rate  

The mineralization of bone can also be heavily affected by modeling and 

remodeling due to microdamage, and this remodeling is reflected in the carbonate to 

amide I ratio [34]. In the case of thoroughbred racehorses, stress fractures in the MC3 are 

very common [11][57] and the healing process results in the depositing of immature, 

woven bone [58]. Woven bone has a disorganized collagen matrix and is largely 

anisotropic [59], which decreases biomechanical strength. In our samples, visual 

inspection shows that most of the speculated woven bone is on the dorsal surface, and the 
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proposed mechanism of that is explained in detail in 4.3.1. It is possible that we are 

seeing the effects of secondary mineralization of previously deposited woven bone from 

previous micro-trauma on the lateral surface, which is why there is no visual surface 

roughening. Secondary mineralization occurs after the initial immature bone undergoes 

primary mineralization (over several weeks, typically) which involves rapid 

mineralization, and matures the bone mineral over a longer timespan (months to years) 

[60][61]. It is uncertain why this occurs in the lateral surface and not the medial surface, 

though this may have to do with the curvature of the medial and lateral aspects of the 

bone, which could lead to greater stresses and strains on the lateral aspect. It is possible 

that in horses that are susceptible to MC3 fractures, racing reveals a structural weakness 

in the lateral aspect of the bone in young racehorses and that this is remedied through 

bone remodeling and modeling. This is somewhat unlikely, though, as a study by Davies 

[62] showed that the highest compressive strains occurred on the medial surface, 

followed by the dorsal and then the lateral surfaces, which is similar to what was found 

by Gross et al. [63]. As the MC3 group was generally greater in mineral:matrix measures, 

and CH2 wag was found to be greater on the dorsal and medial surfaces, more studies will 

need to be done in order to determine the level of mineralization for these MC3 group 

horses.  

Alternatively, horses that experience higher stresses on the lateral surface may be 

genetically predisposed to hypermineralization of the bone in that region, or perhaps in 

the diaphysis in general. As mentioned earlier, this remodeling may make the lateral 

surface more susceptible to stress fractures (particularly through stresses at the distal 

condyle), eventually resulting in overt fracture. Further studies comparing the curvature 
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and physiochemical properties of trained and non-trained equine MC3’s as the animal 

ages will be important to understanding this possible phenomenon. Differences in these 

properties between trained and non-trained horses would also be useful.  

4.2.3 Carbonate Substitution 

Analyzing the results for carbonate substitution shows us that the MC3 group 

bones may be undergoing active remodeling at the lateral site compared to the other 

groups.  Phosphate ions within the crystal lattice of hydroxyapatite are readily substituted 

by carbonate, and this phenomenon has been shown to increase with the age of bone 

tissue [30][64] much like mineralization. Thus, the carbonate to phosphate ratio gives us 

a strong indication of the relative age of the bone tissue. In this case, we see that the MC3 

group is significantly lower in this parameter on the lateral aspect than the SSMD group 

and trending for LB and Control groups. This supports the idea that the lateral surface of 

MC3 fractured bones experienced hypermineralization when the animal was young either 

through a response to training or by perhaps being born with greater mineralization at this 

site. 

4.3 Reference Point Indentation 

4.3.1 Fracture Risk Analysis and Dorsal Metacarpal Disease 

For the Biodent, 1st ID and TID were found to be significantly lower at the 

midshaft dorsal site in the Fracture group than the Control. BMS was found to be 

significantly higher at the midshaft dorsomedial site in Fracture group horses compared 

to Control. This is counterintuitive, as 1st ID and TID are single-cycle measures of 

indentation distance and lower measures are potentially a proxy for resistance to 
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microfracture [35]. We would also anticipate that a higher BMS value would correspond 

to microfracture resistance [65] as other groups have found. Despite these findings, we 

would expect that as indentation distance increases for the Biodent, the BMS should 

decrease at the same sites, which is what was observed in our results. This implies that 

these observations are likely real. Before exploring these results further, it is important to 

discuss the significant results between aspects of the bone.   

Both RPI devices showed that the dorsal surface for many parameters was 

statistically different than the lateral and medial surfaces (Table 9). To our knowledge, 

reference point indentation has not shown this phenomenon previously, especially not in 

equine bone. This is possibly because many studies of RPI done on long bones ex vivo, 1) 

are not done in equine and 2) are done with machined sections of bone rather than 

directly on the bone surface [35][66], even when testing different aspects [43]. One study 

that tested whole bones with the Biodent found that posterior and anterior measurements 

differed; however, this study was done in mice and the medial and lateral surfaces were 

not tested [67].  

Visually, bones that tended to have higher indentation values in the dorsal surface 

had surface roughening and reddening. The effect did not noticeably extend to the lateral 

and medial surfaces in our samples. This surface observation is possibly the result of 

dorsal metacarpal disease (DMD), or bucked shins, which is a well-documented 

pathology in the third metacarpal of thoroughbred horses around 2 years old (though 

horses entering training older than two are also susceptible), thought to affect up to 70% 

of training horses [68]. The dorsal surface of affected bones undergoes significant bone 

remodeling, with large amounts of woven bone being deposited [12]. The periosteum is 
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also typically reddened and inflamed [68]. DMD can differ in its severity between horses, 

and this is reflected in the symptoms presented. In addition to discomfort, by one study 

horses exhibiting DMD had a 12% chance of developing stress fractures in their racing 

career [12].  

Because of the increased fracture susceptibility of DMD affected animals as well 

as the confounding factor it can introduce, we are interested in assessing our samples for 

the disease. Although there are no published studies on assessing DMD with RPI, we can 

use proxies for its presence, such as the difference between medial, dorsal and lateral 

sites mentioned previously. Additionally, it should be noted that DMD typically occurs at 

the dorsal and dorsomedial surfaces [68], and our significant interaction effects for 

Biodent and Osteoprobe were at the midshaft dorsal and midshaft dorsomedial sites, 

respectively. Although we do present a theory as to why non-fractured horses have lower 

BMS and higher indentation distances next, objectively separating DMD and non-DMD 

horses is a high priority to reduce confounding factors.  

In light of the impact of DMD and the populations that it afflicts, there are several 

possible explanations for our interaction effect results. DMD typically affects younger 

horses, and the average age of our Fracture group is higher than the Control (4.05 and 3.5 

years old, though this difference is not significant, p = 0.222). It is possible that the 

Control group horses are experiencing a stronger primary mineralization response to 

DMD given the age difference. This could explain why fracture groups show greater 

BMS and reduced indentation distances than in the Control group. It could also imply 

that these horses were still at high-risk for fracture, but did not fracture because they died 

from other causes prior. Another possibility is that Control horses and Fracture horses 
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differ in some sort of skeletal genetic trait. This trait would cause the DMD response to 

be greater, but perhaps whole bone strength is higher in non-fracture horses. If this is the 

case, then specifically for thoroughbred racehorses a lower dorsal measurement with RPI 

for BMS and higher measurements for 1st ID and TID may be indicative of higher 

fracture risk. Certainly, it would behoove us to test other long bones that may not exhibit 

this confounding pathology, as well as non-racehorse, non-fracture animals to see if the 

groups differ.  

4.3.2 Comparison of Reference Point Indentation Devices 

 Although the Osteoprobe has been available since 2013, the only study that our 

team is aware of that compares these devices head-to-head showed no significant 

correlations between the parameters of either machine [69]. In that study, 20 whole 

human tibias were indented at the midshaft dorsal site with both the Biodent and 

Osteoprobe. The loading cycles for the Biodent were similar to the ones used by our 

group, where both used a 10N maximum force at 2Hz. However, Karim et al. [27] 

included 20 cycles while we performed only 10. Additionally, their group only tested a 

single site with five repetitions, while in this study 9 sites for the Biodent (or 12 with the 

Osteoprobe) with three repetitions were used, and the entire bone averaged for linear 

correlation analysis. Because of the minimal differences, the two studies should be 

comparable. Our team found that five parameters (1st ID, TID, IDI, Avg. CID and Avg. 

ED) had significant linear correlations to BMS (Table 10, Figure 10). The strongest  
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correlation found here (TID at R2 = 0.571) was much more pronounced that the strongest 

correlation (1st Cycle US at R2 = 0.194, p = 0.053) found in the other study. Further 

studies on these conflicting results should be undertaken to discern the connection (or 

lack thereof) between the RPI tools.  
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

 

BMD and BMC measurements from the distal subcondylar MC3 obtained with 

the pQCT likely have predictive power for fracture in MC3 fracture horses and 

potentially in LB fracture horses as well. Although the exact contribution of the various 

tissue components of BMD and BMC (cortical, trabecular and total) to fracture-risk are 

unclear, there is a statistical connection between decreased BMDCORT, increased BMCTOT 

and increased BMCTRAB in the distal condyle MC3 fracture group compared to other 

fracture and non-fracture groups. We theorize that this is due to the deposition of normal-

density trabecular bone and high-porosity cortical bone, which would increase BMCTRAB 

and because AreaSUBCORT did not change, decrease BMDSUBCORT. There was also an 

increase in geometric properties (area, sectional modulus, periosteal circumference, 

cortical thickness) at the distal condyle between the MC3 group and the other groups, 

which would increase bone strength. Thus, it is possible that although the bones in the 

MC3 group are larger at the distal end, they are perhaps made of weaker bone material, 

which causes them to be fracture prone. This may be due to a poor adaptation to 

mechanical stresses, where a rapid increase in geometric properties is outweighed by 

weak, low cortical density bone.   

It was also found that the LB group had less BMDSUBCORT than SSMD or Control 

but more than the MC3 group. Thus, it will be important to assess other bones that are 

susceptible to fracture to see if the metaphyses in those samples also exhibit similar 
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phenomena as seen here, as long bones in the LB-combined group may be more 

susceptible to fracture in general.  

 Raman spectroscopy found that the lateral site of MC3 horses differed in mineral-

to-matrix ratios, a bone remodeling proxy ratio and the carbonate substitution ratio 

compared to LB, SSMD and Control groups. The theory provided here is that the lateral 

site of MC3 horses experiences excessive or differentially timed adaptation as a response 

to early years modeling. As the horse matures, denser mineral is deposited in these early-

adapted regions, possibly resulting in hypermineralization of the lateral surface of MC3-

fractured bones. This would make them possibly more resistant to midshaft fractures, but 

the brittleness associated with higher mineralization may cause distal lateral condyle slab 

fractures to propagate more readily.  

 The severity or diagnosis of dorsal metacarpal disease was not directly assessed in 

our study, however indentation measurements for the Biodent were increased on the 

dorsal surface compared to the medial or lateral, and BMS values for the Osteoprobe 

were decreased in the same sites. As the pathology of DMD includes increased woven 

bone deposition, it is likely that we are indenting immature bone which either 

microfractures more easily or is simply pushed out of the way during indentation.  This 

opens the possibility for RPI to be used in the detection of DMD in the standing horse in 

vivo. There still remains the need to directly confirm the presence of DMD, which can be 

done with future histology studies on our samples.  

 The impact of suspected DMD made it difficult to assess the connection between 

RPI and fracture risk, as Control horses had lower BMS and higher 1st ID and TID 

compared to horses that sustained a fracture, when one might expect the opposite. One 
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theory is that Control horses are on average, younger, and are therefore still experiencing 

the bone modeling effects of DMD more severely, which would lead to less mineralized 

cortical bone. The fractured group bones may have a more mature DMD response that 

includes increased mineralization. This would lead to higher indentation distances in the 

control group over the fracture group, but perhaps the risk of overt fracture due to stress 

fractures associated with DMD do not peak until the disease progresses further. It is also 

possible that the Control group’s chance of fracture was very high at the time of death, 

but that they may have died from other causes before they sustained a skeletal injury. 

Another theory is that a genetic trait in Control horses associates with more severe DMD 

but also a greater overall skeletal bone strength compared to horses that sustained a 

fracture. Regardless of which of these theories could potentially be correct, RPI has 

shown its capability in indirectly measuring for fracture risk, by assessing the remodeling 

impact of DMD. This will need to be explored further once DMD horses have been 

properly identified and testing groups separated. This may yield results related not only to 

DMD diagnosis but also for elucidating potential differences in fracture risk between 

horses that fracture with and without DMD.   

We have shown here that the Osteoprobe and the Biodent are likely measuring 

similar phenomena, as several of the Biodent’s parameters correlate significantly with the 

Osteoprobe’s BMS. This is despite the fact that the force generation rate and total force 

of each device is very different [20]. This information could serve as cross-validation for 

parameters in each device, particularly when doing a combination of in vivo and ex vivo 

work. 
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These four pre-clinical devices undoubtedly have potential in assessing fracture 

risk in vivo. Their non-invasive nature makes them ideally suited for work in the standing 

horse, and with further validation the tools could likely be used in human athletes and 

soldiers for assessing stress fracture risk.  This validation must include comparison of in 

vivo measures in the Osteoprobe, pQCT and Raman spectrometer to ex vivo data 

presented here. In the longer term, a logistic regression model could be used to not only 

incorporate factors identified as correlating with factor here, but also covariates like age, 

sex and weight could be included to assess their impact.  
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APPENDIX 

Demographics for Horses in Current Study 

Table 14. Information pertaining to horses used in this study.  

Horse ID Sex 
Age 

(yrs) 

Fx 

Group 
Biodent 

Osteo-

probe 
Raman pQCT 

A13-13503 M 3 Control Both Both Both Both 

A14-0419 F 3 Control Both Both Both Both 

A14-14702 F 5 Control Both Both Both Both 

A14-15808 F 4 Control Both Both Both Both 

A15-1432 Geld 5 Control - - R R 

A15-2920 F 3 Control L L L L 

A15-4789 F 2 Control Both Both Both Both 

A16-1177 Geld 4 Control Both L Both Both 

A16-2118 Geld 4 Control - - Both Both 

A16-2293 M 2 Control Both L Both Both 

A14-1356 F 2 LB Both Both Both Both 

A14-15954 Geld 5 LB Both Both Both Both 

A14-1818 F 3 LB Both Both Both Both 

A14-4992 Geld 5 LB R R Both R 

A14-5202 F 3 LB - - - Both 

A15-14441 Geld 3 LB R R Both Both 

A15-4869 M 4 LB Both R Both Both 

A15-5258 M 3 LB - - L L 

A14-14505 Geld 5 MC3 Both R Both Both 

A14-5118 F 2 MC3 Both Both Both Both 

A15-4375 F 2 MC3 Both Both Both Both 

A15-4790 M 4 MC3 Both R Both Both 

A13-13148 F 3 SSMD Both - Both Both 

A14-0498 F 5 SSMD Both Both Both Both 
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A14-0735 M 5 SSMD Both Both Both Both 

A14-14416 M 4 SSMD Both Both Both Both 

A14-1972 Geld 4 SSMD Both Both Both R 

A14-3323 M 5 SSMD Both Both Both Both 

A14-4991 F 4 SSMD Both Both Both Both 

A15-14775 Geld 7 SSMD - - Both Both 

A16-1925 F 5 SSMD Both - Both Both 

A16-2635 Geld 4 SSMD Both Both Both Both 

A16-9 F 6 SSMD Both Both Both Both 

Tests completed only unilaterally are indicated by L or R, and bilaterally with ‘Both’.  

 

Biodent Protocol 

Materials: 

- Periosteal elevator 

- Scalpel  

- Bone sample (thawed) 

- BES (in squirt bottle) 

- The correct type of probes (BP1, BP2 etc.) 

- Biodent computer and associated scale / probe holder 

- C-clamps (1 or 2) 

- Instrument tray for holding sample 
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- Paper towels (3 or 4) 

- PMMA block 

- Gauze 

Procedure: 

Preparation Stage 

1) Thaw bone overnight or until completely thawed (if bone is thawed skip this step) 

2) Wet paper towels and fold in-half twice (just dampened) – these will be used to 

prop the distal end of the bone, which serves two purposes. One, it provides 

friction to prevent the bone from sliding in the tray, and two, the distal end is 

slightly sloped, so it makes the entire dorsal surface relatively level 

3) Unwrap bone from gauze and place in tray, with the dorsal side up and the distal 

end on the towels 

Setting up the Machine 

1) Ensure that the scale portion of the Biodent machine is plugged in, as well as the 

‘head’ portion (the part that the probes will attach to) 

2) Open the Biodent program on the computer, and click that you wish to enter a 

new specimen. I recommend following a naming convention like: A14-3949L, for 

consistency. Make sure to click the single forward arrow to proceed and not the 

double arrows (which will use ‘fast’ settings, that are not correct) 

3) Enter the user’s name and proceed 

4) Select the Horse protocol from the dropdown menu (this step is very important!)  
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5) On the parameters for quick viewing, it does not really matter what you select (as 

all parameters are saved), but I recommend initial indentation distance, total 

indentation distance, indentation distance increase, average creep and touch down 

distance. Proceed to start 

Installing and ‘Calibrating’ the Probe  

1) Take the probe out of its plastic holding tube. There are two parts to the probe: the 

actual indentation probe (longer, needle-like) and a reference probe (hollowed, 

syringe-like). Take the indentation probe and place it into the Biodent testing 

apparatus (there is a magnet that will hold it when the probe is in the correct 

position). Then, carefully slide the reference probe over the indentation probe and 

screw it in by rotating counter-clockwise 

2) For future reference, counter-clockwise rotation should expose more of the probe 

and clockwise rotation, less of the probe. If this is incorrect notation for your 

reference plane, then adjust accordingly 

3) Rotate the reference probe so that the indentation probe is exposed, but not 

extending past reference probe. If the indentation probe extends past the reference 

probe, it can be very easily damaged on touchdown. Be careful! 

4) On the testing page, look on the left side under testing location and type in 

‘PMMA’, and add the site 

5) Place the block of PMMA on the scale portion of the device and hit the ‘tare’ 

button 
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6) Note that the reference load for the device is intended to be around 1300-1350. 

Lower than this will result in the device failing to achieve a desired indentation 

force, and the test will fail 

7) Rotate the knob on the head portion of the testing device until the probe contacts 

the PMMA and creates a force of 1300-1350g. I would recommend closer to the 

higher end, as the material and the head will have some elasticity and the force 

will decrease over time slowly 

8) Type in the code on the paper insert included with the probe in the bottom left of 

the testing screen 

9) Click on the ‘Tuning Mode’ checkbox for this first test, then click “Run” (or the 

go arrow) 

10) Pay attention to two things: the output graph and the TDD (Touchdown Distance) 

provided under the output graph. The hysteresis curve should end approximately 

at the same displacement (y-axis) as it started. The TDD should be between 150-

200um. If it is less than this, it implies that the indentation probe is too close to 

the specimen, so rotate the reference probe clockwise 

11) Keep tuning the probes until the TDD is in the desired range  

12) After the final tuning, turn off tuning mode and take an actual test on the PMMA 

block  

Testing the Bone Sample: Dorsal Sites 

1) Place the instrument tray with bone now on the scale (remove the PMMA) and 

tare 
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2) Just like before, name the location on the left side (ex: proximal dorsal would be 

proxdors) and line up the probe 

3) Ensure that the area to be tested is completely clear of periosteum, because the 

viscoelastic properties will cause erroneous readings  

4) Take a reading as before, without being in tuning mode (the device has been 

tuned using the PMMA, so you should not tune the device again until using 

another bone)  

5) Move either the tray or the probe (if using a 3D probe stand) approximately 1-

2mm from the previous site 

6) Take at a minimum two more readings, paying attention to the spread of the initial 

indentation distance and indentation distance increases. If the variance is large, 

then take as many is necessary to reduce this variance (typically 5 tests if unstable 

readings are obtained) 

7) Continue testing all dorsal sites until complete 

8) Spray sites every 15 – 20 minutes with BES or when the surface appears to dry if 

earlier than this 

Testing the Bone Sample: Lateral or Medial Sites 

1) Testing these sites are the same as the dorsal sites, however some initial prep is 

required 

2) Rotate the bone so that the dorsal side is facing the side of the container (palmar 

facing inward) 
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3) Using the C-clamp, clamp the bone to the instrument tray so that it does not move 

during testing. A good spot is usually right above the distal condyles 

4) Take readings as before 

5) When done, click the check mark to complete the tests  

Cleaning Up 

1) Unscrew the reference probe first, then remove the indentation probe and place 

both back into their plastic container  

2) Wipe all surfaces clean with ethanol to reduce contamination 

 

Osteoprobe Protocol 

Materials 

- Periosteal elevator 

- Scalpel  

- Bone sample (thawed) 

- BES (in squirt bottle) 

- Osteoprobe indentation device  

- Associated Osteoprobe computer  

- Standing clamps  

- Gauze 

- PMMA block 
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- Animal hair electric razor 

- A marking pen 

- Tape measure 

Procedure 

Testing the Bone Sample: Skin-on 

1) Prepare the bone sample by clamping the distal and proximal ends between the 

two standing clamps, dorsal-side up. These will secure the bone while indentation 

tests are performed  

2) Shave the skin on the sample using an electric razor, particularly in sites that will 

be tested  

3) Measure the bone length using the tape measure and mark using the marking pen 

the 25%, 50% and 75% lengths (that correspond to proximal, midshaft and distal). 

This step is very important, as the Osteoprobe is the first test conducted and 

thus all other tests will be performed at these same sites  

4) Prepare the Osteoprobe computer program with the necessary information (name, 

date, etc.). For sample name, use the following convention: YYYY-MM-DD-

Accession Number+Limb Side (L or R) + distance longitudinally (25, 50 or 75) + 

site (Lateral = L, Dorsolateral = DL, etc.) + skin status (ns or sk). An example 

would be 2016-01-07-A14-4991R25DLns. Make sure to update the variables 

within this naming if they are ever changed, as this data is automatically extracted 

using a custom MATLAB program!  
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5) When you have done all the necessary pre-tasks, the Osteoprobe will prompt you 

for readings. Carefully pierce the skin at one of the 12 sites with the Osteoprobe 

until the entire probe has entered 

6) Preload the device normal to the site surface by pressing slowly into the bone. 

When the Osteoprobe detects a load of 10N, it will automatically perform the first 

indentation of 40N 

7) Move the Osteoprobe under the skin approximately 1 – 2mm and take another 

reading, and repeat this until 10 good readings are taken. The Osteoprobe 

computer keeps track of the moving average of the indentations, so if a measure 

strays too far or seems erroneous, eliminate it by clicking on the point and take a 

replacement measurement. In all cases, make sure to take ten ‘good’ 

measurements before proceeding!  

8) Once the ten measures are taken, click next and you will be asked to perform a 

calibration. Indent the provided block of PMMA normal to the surface just as with 

the bone tests for a total of five indentations and proceed 

9) The Osteoprobe report will inform you as to whether (based on the standard 

deviation) the tests were ‘Stable’ or ‘Unstable’ – if the results are Unstable, it is 

recommended to re-do them  

10) Repeat this process for all 12 sites, for the dorsal sites make sure to push the 

dorsal tendon out of the way to try and get as close to the dorsal surface as 

possible for dorsomedial and dorsolateral measures  
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Testing the Bone Sample: Skin Removed 

1) This procedure is identical to the skin-on testing, with a few exceptions that will 

be listed here 

2) Remove the skin using a scalpel blade or knife, being careful not to scrape the 

testing surfaces 

3) Be sure to use the marking pen to label the tested 25%, 50% and 75% locations as 

before, as these will be used to directly identify tested locations for the Biodent 

and Raman spectroscopy modalities  

4) Using a periosteal elevator or scalpel, remove a small portion of periosteum 

around each tested site prior to the normal operation of the Osteoprobe  

5) Perform tests as before, ensuring that all 12 sites are tested prior to completion 

Cleaning Up 

1) Wrap the newly-tested bone in BES-soaked gauze and place in a labeled plastic 

bag. If no more tests are to be run, put the sample in the freezer until further 

testing is required  

2) Wipe down surfaces with ethanol to prevent contamination 
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Raman Protocol 

Materials: 

- Periosteal elevator 

- Scalpel  

- Bone sample (thawed) 

- BES (in squirt bottle) 

- Silicon Dioxide calibration sample 

- HR800 Raman Microspectrometer with Labspec 8 

- Fiber optic light (or some other light source for the microscope) 

- C-clamps (1 or 2) 

- Instrument tray for holding sample 

- Paper towels (3 or 4) 

- Gauze 

Procedure: 

Calibration: Testing a Silicon Sample  

1) The distinct fingerprint of silicon shows up at 520.7cm-1, and is used as a 

calibrating value for the software. These next steps will ensure that the 

spectrometer is correctly picking up signal. 

2) Open the laser shutter and using the camera, focus on the silicon sample with the 

laser and fiber optic light 
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3) Ensure that units are set to wavenumber, and that ‘Set units to pixels’ is 

deselected in the Instrument  Calibration menu 

4) Put the plunger up and click ‘RTD Spectrum Acquisition’ 

5) Note that there are two peaks: one near 0, and one near 520cm-1. The first signal is 

the Rayleigh scattered signal from the laser, which is unshifted. The second is the 

silicon peak, which has been shifted by Stokes scattering. This signal will be used 

to calibrate the software, and must be done every day! 

6) Zoom into the zero peak by dragging a box around the base. Right-click and 

choose “format and scale”, and freeze the axes. After calibrating the zero peak, 

unselect this option 

7) In the calibration dialogue, adjust the ‘Zero’ value until the peak is over 0 

8) Perform the same steps for the Silicon spectrum, trying to center the peak over 

520.7cm-1. In the case of the silicon peak, adjust the ‘Koeff’ value. I recommend 

only changing the last digit unless absolutely necessary, as it is very sensitive to 

changes 

 

Obtaining a Bone Spectra: Preparation Stage 

1) Wet paper towels and fold in-half twice (just dampened) – these will be used to 

prop the distal end of the bone, which serves two purposes. One, it provides 

friction to prevent the bone from sliding in the tray, and two, the distal end is 

slightly sloped, so it makes the entire dorsal surface relatively level 
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2) Unwrap bone from gauze and place in tray, with the dorsal side up and the distal 

end on the towels 

3) Ensure the room is as dark as possible by closing the door to the microscope room 

Obtaining a Bone Spectra: Dorsal Sites 

1) Place the instrument tray with bone onto the scissor jack 

2) Ensure that the area to be tested is completely clear of periosteum, and remove 

any excess using the periosteal elevator   

3) With the plunger down and laser on, focus on the sample surface at one of the 

dorsal testing sites using the 50x objective lens. Ensure that the laser is as focused 

as possible 

4) If the laser loses focus rapidly, the bone is still moving – allow the bone to 

rest undisturbed for ten minutes! 

5) If good focus is acquired, take an extended range scan. The limits of the scan are 

700 and 1800cm-1, with 5 scans per region. The hole size should be 300µm and 

the slit should be 100µm. If absolutely necessary (for example, the Raman 

spectrometer is no longer reading properly) these can be adjusted, but they should 

be as consistent as possible! 

6) Wait for the scan to complete, then take at a minimum two more readings. If the 

spectrum looks erroneous, then repeat the scan 

7) If the scan is successful, perform ‘automatic’ baseline correction (this will use 

linear baseline correction with anywhere from 2 – 7 sites, and is used for 

consistency). Apply the ‘Standard’ denoise option to smooth the data and save it 
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as a .txt. In a folder with the accession number of the horse, use the location as the 

name and append a number for the repeat value (for example, the first distal 

dorsal measurement would be distdors1) 

8) If the scan is unsuccessful due to spiking, re-run the scan 

9) If the scan produces a fuzzy spectrum, scrape the bone surface lightly with a 

scalpel, taking care to spray the bone down afterwards 

10) Test the remainder of the dorsal sites 

11) Spray sites every 15 – 20 minutes with BES or when the surface appears to dry if 

earlier than this 

Obtaining a Bone Spectra: Lateral or Medial Sites 

1) Testing these sites are exactly the same as the dorsal sites, however some initial 

prep is required 

2) Rotate the bone so that the dorsal side is facing the side of the container (palmar 

facing inward) 

3) Using the C-clamp, clamp the bone to the instrument tray so that it does not move 

during testing. A good spot is usually right above the distal condyles 

4) I highly recommend waiting 10 minutes prior to attempting to focus as the 

bone will continue to move under the clamps! 

5) Take readings as in the previous section 

Cleaning Up 

1) Turn off the laser and fiber optic light 
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2) Wipe all surfaces clean with ethanol to reduce contamination 

3) If bone is complete, return to freezer after wrapping with BES-soaked gauze 

 

pQCT Protocol 

Materials 

- XCT3000 pQCT device with associated testing program 

- Bone sample (frozen) 

- ‘Cortical phantom’ and ‘Cone phantom’ for calibration 

Procedure 

Starting the program and calibration 

1) Open the Animal CT program on the desktop 

2) If you haven’t done a calibration scan since midnight of that day, the program will 

automatically prompt you to do these scans 

3) Ensure that the proper holder for the two calibration samples is in place; if not, be 

sure to click “Yes, and Change Holder” when prompted. Secure the sample to the 

holder and begin each scan.  

4) User input will be requested on one of the scans following a Scout View (SV) 

scan, simply press enter (the program will automatically find the correct location 

on the SV scan).  
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5) Ensure that the calibration results say something along the lines of “Sample is 

good” at the completion of the scan 

6) When asked about saving and appending results, indicate yes, but do not print the 

results 

7) Calibration should now be complete once both samples have been tested  

Entering a patient and starting a scan  

1) Find the enter new patient dialogue and press enter. On this screen, you need only 

fill out the name and birth sections. For this, you should use the accession number 

and limb side (ex: A14-394R) for the name, and the date of the scan for the 

birthdate 

2) Press F4 and continue to the scan details page  

3) For horse studies, press F6 and select the option pertaining to masks. Select either 

RMC3 0 25 etc. or LM3 0 25 etc. depending on which limbside it is and press 

enter 

4) On this screen, fill in only the object length and do not change anything else 

(length is in mm, and can be either measured by hand or obtained from 

radiographs)  

5) Press F4 and click change holder now – replace the calibration holder with the 

tester holder (a half circle) and put the testing tube through the machine  

6) Place the specimen, in bag, dorsal side up with the proximal end facing the holder 
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7) Once you’ve changed the holder, proceed to the screen that asks the user to align 

the patient. Place the very end of the proximal side of the bone aligned with the 

red laser from the pQCT machine. This will align the bone with the distal carpals 

(assuming the proximal carpals have been removed prior). Start the SV scan 

8) On the SV scan results, click on the start point of the MC3, not the start or end 

points of the distal carpals! There should be a gap on the SV with either side 

having bone – because the SV is taken from bottom to top, the top portion of bone 

is the proximal end of the MC3. Select this and proceed with the scan  

9) The scan will take approximately 45 minutes, during which time you should leave 

the room 

10) Once the scan is complete, it will automatically take the user back to the home 

page  

Analyzing the scans  

1) Go from the home page to the Analyze tab and select a patient. Proceed until you 

see slice scans. Navigate on the bottom options to Macro, and select MC3. When 

asked to proceed with the macro MC3, say yes 

2) You will now draw areas of interest for each scan slice. Keeping the default name 

for each slide, the macro will ask you to make an ROC. Click okay, and use the 

free form lasso tool to draw around the MC3. Be sure not to include the splint 

bones, or the sesamoids if they haven’t been removed prior. If you make a 

mistake, click cancel and click okay to drawing an ROC again. When you’re 

done, click ok, and then click Done on the slices page. It will search through each 
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of the nine expected slices for the bone you just completed. Do this for all nine 

slices for each bone until you are not prompted to draw ROC’s  

3) The results are saved in a database file called MC3. The easiest way to find it is to 

search the computer for a file called MC3, and finding the most recently updated 

version 
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