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ABSTRACT 
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Increasing the efficiency of aircraft operations offers a shorter term solution to decreasing 

aircraft fuel burn than fleet replacement. By estimating the current airspace inefficiency, 

we can get an idea of the upper limit of savings. Oceanic airspace presents a unique 

opportunity for savings due to increased separation differences vs. overland flight. 

 

We assess fuel burn inefficiency by comparing estimated fuel burn for real world flights 

with the estimated optimal fuel burn. For computing fuel burn, we use the Base of Aircraft 

Data (BADA) with corrections based on research by Yoder (2005). Our fuel burn results 

show general agreement with Yoder’s results. 

 

Optimal operation depends on flying 4-D trajectories that use the least amount of fuel. We 

decompose optimal 4-D trajectories into vertical and horizontal components and analyze 

the inefficiencies of each separately. 

 

We use the concept of Specific Ground Range [Jensen, 2011], to find optimal altitudes and 

speeds. We combine the optimal altitudes and speeds with an aircraft proximity algorithm 

to find pairs of aircraft in a vertical blocking situations. 

 

To find the fuel optimal horizontal track in a wind field, we use methods from the field of 

Optimal Control. The original problem formulation can be transformed into a Two Point 

Boundary Value problem which we solve using MATLAB’s bvp4c function. 

 

From our set of flights, we hypothesized a scenario where aircraft stack in such a way that 

they cannot climb to their optimal altitudes because of separations standards. Using aircraft 
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positions we find when aircraft were within separation standards and were blocked from 

climbing or descending to their optimal altitude. We split our inefficiency results into a 

blocked and non-blocked set to see if blocking had an effect on mean inefficiency. 

 

Our set of flights consisted of real world flights that flew through WATRS and CEP 

airspace regions during the month of April 2016. Using the optimal altitude for actual flight 

Mach profiles, we compute a mean inefficiency of 4.75% in WATRS and 4.50% in CEP, 

both of which are roughly 2 to 2.5 percentage points higher than studies using proprietary 

performance models and data. BADA overestimates optimal altitudes, leading to an 

overestimate in inefficiency. Inefficiency due to off-optimal speed for WATRS is 2.18% 

vs. 1.86% in CEP. 

 

Blocking events result in a 2.59 percentage point increase in mean inefficiency due to off-

optimal altitude in WATRS flights, and a 1.21 percentage point increase in mean 

inefficiency due to off-optimal altitude in CEP flights. 

 

Using wind-optimal horizontal tracks gave a 1.24% mean inefficiency in WATRS, and a 

0.41% mean inefficiency in CEP. 

 

The results indicate that, in total, flights through WATRS and CEP have approximately the 

same inefficiency due to off-optimal altitudes, but that blocking effects are more prevalent 

in WATRS. In addition, flights through WATRS are farther from their wind-optimal 

horizontal tracks than flights in CEP. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Burning fuel in aircraft engines is expensive and results in pollutants, such as soot, nitrous 

oxide, and greenhouse gases. There are three main ways to reduce fuel burn: (1) use more 

fuel-efficient aircraft, (2) fly less, and (3) fly more fuel efficiently. The first option has the 

potential for the most long-term impact, but, because aircraft tend to be long-lived assets, 

it will take several decades before all the older, less fuel-efficient aircraft are replaced. The 

second strategy is unlikely to be possible, given that the world’s population is both growing 

and becoming more affluent and therefore more likely to fly. The third option has the 

potential for near-term improvements in the single digit percentage range. 

 

Many researchers have considered ways of flying more efficiently, see Marais et al. (2012) 

for a review of operational improvements. Here, our focus is on the fuel-efficiency of one 

particular type of operations: oceanic flight. Oceanic flight may offer the potential for 

significant fuel efficiency improvements because aircraft tend to be spaced much more 

widely than over the land, where there is near 100% surveillance. As a result, researchers 

have proposed ways of identifying fuel-optimal trajectories (e.g., Ng et al. (2014), Sridhar 

et al. (2015), Grabbe et al. (2006), Dalmau et al. (2015)) and efforts are underway to 

provide oceanic surveillance (e.g., space-based ADS-B). 

 

But just how inefficient are these operations? And how much potential do they actually 

offer for improvement in practice? Currently, estimating inefficiency is either done on an 

individual flight level, or, for whole sets of routes using highly sophisticated simulation 

tools, or, in-house by airlines using closely guarded data. We develop a method for 

estimating inefficiency of flights through oceanic airspace using public data to research the 

effectiveness of an alternate source to closed data and to investigate the fuel burn 

inefficiency in select airspaces. This method allows us to compute the inefficiencies due to 
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flying off optimal altitudes, speeds, and horizontal tracks in the presence of winds. Figure 

1 graphically represents the process for computing inefficiency. 

 

Figure 1: Process flowchart 

 

1.2 Thesis Outline 

We use Chapter 2 to discuss research done on the various types of inefficiencies. Chapters 

3, 4, and 5 contain the methods we use to investigate horizontal, vertical and speed, and 

blocking inefficiencies respectively. Chapter 6 describes how we estimate fuel burn. We 

apply the methods on selected segments of oceanic airspace in Chapter 7 and then discuss 

conclusions and future work in Chapter 8. 
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CHAPTER 2. BACKGROUND 

At its core, inefficiency is a comparison of an actual state against an optimal state. The 

choice of optimal state will set the sense of the inefficiency metric. For example, airlines 

generally aim to maximize profit, which translates to goals of minimizing cost and 

maximizing revenue. Fuel burn makes up a significant part of airline operating costs so 

reduction of fuel burn is a priority. Figure 2 shows the trend in total fuel cost and percent 

of operating expense to worldwide airlines. 

 

Figure 2: Fuel cost to airlines worldwide (IATA, 2016) 

Demand shows a sensitivity to travel time, where slower flights show decreased demand, 

especially among business travelers [Belobaba, 2009]. Airlines take the tradeoffs between 

time and cost into consideration by planning flights around a metric called the “cost index”. 

Cook et. al. (2007) describe cost index as a sliding scale between maximum fuel savings 

and maximum time savings. For our research, we considered inefficiency against 

maximum fuel savings. 
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2.1 Inefficiency Sources 

Marais et al. (2012) considered different sources of inefficiencies, each arising from 

different phases and aspects of a flight. Here, we discuss inefficiencies that we suspect are 

significant in cruise flight through oceanic airspace. 

 

2.1.1 Minimum Separation Standards Inefficiencies 

To maintain safety, aircraft are separated by minimum distances at all times, depending on 

the phases of operation and the capabilities of air traffic control. During takeoff and landing, 

aircraft are separated to avoid wake turbulence and to allow each aircraft to clear the 

runway. During cruise, lateral, longitudinal, and vertical separations are defined to allow 

air traffic control enough time to intervene in the event of loss of separation. Over the land, 

horizontal separation can be as little as 3 nm, but in spaces without surveillance, like most 

of the oceanic airspaces, separation is at least 30 nm. Vertical separation is usually 1000 ft 

or 2000 ft, depending on the location, as discussed next. 

 

2.1.2 Vertical Separation 

Vertical spacing is important because aircraft cruise most efficiently at their optimal 

altitudes and spend the most time at cruise. One way to improve fuel efficiency during 

cruise is to open more cruise altitudes for aircraft in a scheme called Reduced Vertical 

Separation Minimums (RVSM). RVSM reduced the vertical spacing at cruise altitudes to 

1000ft between aircraft. 

A Eurocontrol study found that RVSM provided fuel savings of 1.6 to 2.3% to RVSM 

[Jelinek, 2002]. Malwitz et al. (2007) examined the impact of RVSM on fleet wide fuel 

burn by computing fuel burn for a sample of flights before and after the implementation of 

RVSM. They found that while BADA’s specific fuel consumption (SFC) value is good for 

fleet-wide performance estimates (e.g., total fleet fuel burn), it is not accurate for sensing 

small changes in operations, such as RVSM. They used Cockpit Flight Data Recorder 

(CFDR) data to improve the BADA suggested method for computing specific fuel 
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consumption. They found that RVSM led to savings of 1.8% ± 0.5%, in line with the 

Eurocontrol study. 

 

2.1.3 Lateral and Longitudinal Separation 

Reducing minimum separation can reduce inefficiency by allowing more aircraft onto great 

circle or wind optimal routes. In the North Atlantic, Williams & Greenfeld (2006) showed 

fuel savings benefits on the order of 0.1%. However, because this benefit is so small, it 

only yields significant total fuel savings when applied across many flights. The net saving 

per flight can be less than $100. 

 

2.1.4 Cruise Altitude and Speed Inefficiencies 

At each point in time, aircraft have fuel-optimal cruise speeds and altitude based on their 

mass. Ideally, aircraft should gradually increase their altitude and airspeed as they burn 

fuel. Unfortunately, air traffic restrictions will often prevent aircraft from flying in this way. 

In particular, while aircraft may be able to fly at an “average” good altitude and speed, 

cruise climb is difficult to implement. Step climbs, whereby aircraft increase their altitude 

in discrete steps, are a reasonable approximation to true cruise climb. Steps climbs are 

theoretically possible under current airspace rules, provided the steps are selected to 

correspond to permitted flight levels (even or odd flight levels depending on flight 

direction). 

 

Ng et al. (2014) found that step climbs could reduce fuel burn by 13% on a subset of 

Pacific transcontinental flights compared to using a fixed cruise altitude. They used the 

BADA standard specific fuel consumption model (see Section 6.2). In turn, Dalmau and 

Prats (2015) found that cruise climbs could save 0.52.0% fuel compared to step climbs. 

They had engine performance data from Airbus and could therefore get more accurate 

results than is possible using BADA. Finally, Jensen (2014), estimated that the maximum 

average benefit due to altitude optimization alone (i.e., no speed optimization) was 1.94%. 
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The preceding studies suggest that not allowing aircraft to perform step or cruise climbs 

imposes a maximum fuel burn penalty of about 2%. 

 

2.2 Trajectory-related Inefficiencies 

Smart usage of winds can increase fuel efficiency. While many aircraft currently use jet 

streams and great circle routes, these routes are not always feasible due to factors like 

airspace restrictions, traffic, and weather. The exact savings from taking wind-optimal 

routes for a flight depends on the characteristics of that flight. For example, a delayed flight 

could regain some time by taking the wind-optimal routes. On the other hand, a normal 

flight may not want a faster than planned trip because of scheduling concerns (e.g. gate or 

runway not available). Larger and heavier aircraft may gain more benefit from wind-

optimal routes than smaller and lighter aircraft. 

 

One of the first considerations of optimization of an aircraft’s trajectory through a wind 

field was given by Ernst Zermelo in 1930. In 1975, Bryson and Ho elaborated on the 

Zermelo problem in their text on optimal control where they presented an example of a 

minimum flight time trajectory in a wind field, assuming a flat Earth. 

 

Sridhar et al. (2011) removed the flat-earth assumption from the optimal control approach 

and added a term to the cost function penalizing contrail generation, in addition to flight 

time and fuel burn. They found 6-8% extra fuel consumption was needed to reduce contrail 

formation time from 55 minutes to 20 minutes. They further modified their method using 

different cost functions in Ng et al. (2011, and 2014). 

 

Jardin and Bryson (2012) revisited the problem from Bryson and Ho, extending the 

problem to a spherical earth and solving by using two different numerical approaches. 

Comparing trajectories between SFO and JFK, they found a 1 to 19 minutes travel time 

difference between trajectories generated by the two algorithms. 
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Bijlsma (2009) took a theoretical approach to computing optimal trajectories in general 

wind fields. He combined graph theory and calculus of variations to solve the problem, 

rather than an iterative method, which could result in a local minimum. 

 

Campbell et al. (2013) used mixed-integer linear programming (MILP) to find flight 

trajectories that minimized contrail formation and fuel burn. They found that complete 

elimination of contrails would incur a 6.2% increase in fuel consumption. 

 

2.2.1 Schedule-related Inefficiencies 

The North Atlantic air traffic system is strongly tidal due to the combined effects of the 

total flight time and the difference in time zones (Attwooll, 1986). The peak traffic crosses 

the 30o W longitude between 1130 UTC and 1900 UTC for westbound flow departing from 

Europe, and between 0100 UTC and 0800 UTC for eastbound flow departing from North 

America (Rodionova et al., 2014). Such concentration of unidirectional traffic results in 

“rush hour congestion” and exacerbates many aspects of oceanic flight inefficiency. 

 

Moving some traffic to “non-rush” periods can reduce congestion, but it is not always 

feasible for some routes. Rodionova et al. (2014) explained the “rush hour” effect as a 

result of passenger demand, time zone differences and airport noise restrictions. For 

example, the time zone difference between Eastern US and England creates two windows 

for flights from New York to London: Departing in the morning and arriving at night, or 

departing at night and arriving in the morning. In practice, the majority of flights from New 

York to London depart between 18:00 and 23:00 Eastern Time because: 1) Passengers save 

their time by spending the night on the plane and arrive at their destination at a “useful” 

time. 2) It provides sufficient time for transfer to subsequent domestic or international 

flights. Flights from London to New York have fewer restrictions because they land “about 

two hours” after takeoff. Some routes from non-hub to non-hub airports (for example BOS 

– ROM) have more flexibility on schedule because fewer passengers transfer. 

Rescheduling flights can reduce congestion, but it could defeat airlines’ attempts to 

schedule their flights to maximize profit.  
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Gwiggner and Nagaoka (2014) used radar data to characterize the traffic flow into terminal 

airspace and found that the major sources of metering delays are spontaneous traffic peaks 

from an unknown source. 

 

Hansen et. al. (2009) used a stochastic and deterministic queuing model to estimate the 

impact of 4D trajectory navigation on time delays of flights in the National Airspace 

System. They found that 4D navigation decreased delays by about 35% compared to the 

current traffic flow. 

 

Using wind-optimal user preferred routes creates a problem where routes overlap in space 

and time. Grabbe et al. (2007) proposed a solution to the problem by using a job shop 

method to schedule flights through the Central Eastern Pacific (CEP) airspace. Using wind 

optimal routes generated in one of their previous papers (Grabbe, 2006), they cast flights 

as jobs and split the airspace up into grid segments to act as machines. Using the job-shop 

model allowed for tradeoffs between delays, time-savings, and residual trajectory conflicts. 

Their model yielded time savings from 1.8 to 4.6 minutes for flights in CEP. 

 

2.2.2 Oceanic/Domestic Sector Transition Inefficiencies 

When aircraft exit oceanic airspace they are routed into domestic airspace. Usually, aircraft 

enter domestic sectors at one of a few points, to simplify controllers’ tasks. These points 

can become bottlenecks, and may also require aircraft to deviate from their optimal 

trajectories. In the case of WATRS airspace, restricted airspace on the East Coast limits 

access to domestic airspace. 

 

Korn et al. (2009) created a simple simulation of sector-less airspace in German airspace. 

Their focus was to show the feasibility of such an airspace in terms of controller workload.  

Wan and Roy (2008) developed abstractions for flow-restriction procedures to enable 

better air traffic network evaluation and design. They use an abstracted model to pose a 

flow management problem for an airspace network. Flows toward other boundaries are 
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made by splitting/merging flows in the region. They designed their abstracted model to be 

able to examine generic traffic flows. 

 

2.3 Congestion Metrics 

Congestion may also aggravate inefficiency. Similar to how traffic causes delay on roads, 

airspace congestion forces air traffic management systems to reroute or prevent aircraft 

from flying their most efficient path. Congestion can show up as bottlenecking at sector 

transitions, en route delay, terminal delay, or altitude and route restrictions. One view of 

congestion is that a space is congested if traffic becomes backed up, such as at a bottleneck. 

The traffic may still be manageable, aircraft are merely delayed. Alternatively, one could 

view an airspace as becoming congested only when traffic becomes unmanageable, and 

aircraft must be diverted or departures delayed. 

 

Laudeman et al. (1998) introduced Dynamic Density as a way to combine multiple factors 

relevant to the workload of a controller, compared to a simple measurement of traffic 

density. They performed a regression analysis with observed controller workload and the 

computed Dynamic Density to create weights for the relevant factors. Masalonis et al. 

(2003) assessed the applicability of Dynamic Density to the Traffic Flow Management 

decision making process. They suggest a multidimensional depiction of predicted 

workload may be more useful than reducing factors into a single metric. 

 

Lee et al. (2007) used an “input-output” approach to create complexity maps of traffic 

situations. The input-output approach attempts to model the amount of “control activity” 

necessary to resolve a certain traffic situation when a new aircraft is introduced to the 

situation. The complexity maps show the control activity as a function of the entering 

aircraft bearing and position angle to the sector center. 

 

Green et al. (2001) created a congestion metric designed to be independent of fixed airspace 

sector boundaries. The metric, Gaggle Density, requires automatic identification of aircraft 
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clusters, for which Bilimoria and Lee (2005) created an algorithm. They described Gaggle 

Density as being an “airspace independent” analog to Dynamic Density.”  

 

Prandini et al. (2011) reviewed complexity metrics, including input-output and Dynamic 

Density. They concluded that researchers have not considered time-dependency. 

Puechmorel and Delahaye (2009) uses Lyapunov exponents to model the air traffic system 

as a set of aircraft velocity vectors. This method is applicable to future ATM systems 

because it explicitly handles 4-D trajectories. 

 

2.4 Inefficiency Metrics 

Reynolds (2009) employed the idea of a general inefficiency metric formulated as follows: 

 

 𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑂𝑝𝑡𝑖𝑚𝑎𝑙

𝑂𝑝𝑡𝑖𝑚𝑎𝑙
∗ 100% (1) 

 

Where 𝐴𝑐𝑡𝑢𝑎𝑙 and 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 represent measures of some quantity related to a flight. 

 

Reynolds gives some sample actual and optimal quantities based on lateral distance, 

vertical distance, speed, and fuel burn, as shown in Table 1. In practice, he found that 

geometry-based metrics were the easiest to implement, but that they could significantly 

underestimate fuel burn inefficiency. Fuel-based metrics, while more effective, are 

significantly more difficult to compute due to the lack of available data, but should provide 

the most relevant result. 

 

Given the current research using estimated fuel burn for analyzing system characteristics 

(Yoder, Chatterji, Ng) and the availability of public performance models, we chose to 

measure inefficiency in terms of fuel. 

 𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛 𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑓𝐴𝑐𝑡𝑢𝑎𝑙 − 𝑓𝑂𝑝𝑡𝑖𝑚𝑎𝑙

𝑓𝑂𝑝𝑡𝑖𝑚𝑎𝑙
∗ 100% (2) 
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Table 1: Inefficiency Metrics. From Reynolds (2009, Table 1) 

Dimension Sample 

“Actual” 

Sample 

“Optimal” 

Advantages Disadvantages 

Dimension Sample 

“actual” 

Sample 

“optimal” 

Advantages Disadvantages 

Lateral Flown 

ground 

distance 

Minimum 

ground 

distance 

(great 

circle) 

Easy to measure and interpret 

Flown ground distance readily 

available (radar surveillance) 

Minimum ground distance simple 

to calculate (great circle 

equation) 

Does not capture vertical 

and speed elements 

Great circle distance is not 

shortest in presence of wind 

Flown 

air 

distance 

Minimum 

air 

distance 

 Minimum air distance is better 

“optimal” measure in the 

presence of wind 

Need accurate wind field 

information to determine 

air   distance for all flights 

Vertical Flown 

vertical 

profile 

Optimal 

vertical 

profile 

Captures vertical elements 

Flown vertical profile readily 

available (transponder altitude) 

Does not capture lateral and 

speed elements 

Optimal vertical profile 

requires info not currently 

available from surveillance 

(e.g., aircraft weight, winds) 

Speed(also 

surrogate 

for Time) 

Flown 

speed 

profile 

Optimal 

speed 

profile 

Captures speed elements 

Ground speed readily inferred 

(radar surveillance) 

Does not capture lateral and 

vertical elements 

Optimal speed profile 

requires info not currently 

available from surveillance 

(e.g., aircraft weight, winds) 

Fuel Flown 

block 

fuel 

Optimal 

block fuel 

Captures lateral, vertical and 

speed elements 

Gives excess fuel burn, hence 

compatible with key 

environmental performance 

assessments (e.g., proportional 

to carbon dioxide emissions) 

Actual and Optimal fuel burn 

requires info not 

currently   available from 

surveillance (e.g., aircraft 

weight, winds) 
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CHAPTER 3. HORIZONTAL TRACK INEFFICIENCY 

Organized route structures emerged from the use of ground based navigation technology. 

Pilots would file flight plans made up of chains of fixes. Now, the rise of global satellite 

navigation has opened up the capability of aircraft to fly arbitrary routes over land and sea, 

but air traffic control still requires aircraft to fly fixed routes due to the increased 

complexity of providing separation between aircraft flying arbitrary trajectories. 

 

To save the most fuel and time, aircraft should fly near the highest tailwinds and away from 

headwinds. Only in rare circumstances will an existing fixed route structure allow aircraft 

to fly along the best winds. In this section, we develop a method to compute wind optimal 

horizontal tracks. 

 

Section 3.1 is where we briefly discuss the theory of Optimal Control, before applying the 

theory to our problem in section 3.2. We used a MATLAB-based numerical algorithm to 

solve the resulting equations in section 3.3 and we discuss limitations of the solver in 

section 3.4. 

 

3.1 Optimal Control 

Finding optimal trajectories is a tricky problem because of the infinite number of sub-

problems resulting from the continuous nature of time. The field of Optimal Control 

provides methods to tackle the problem by leveraging theorems from the Calculus of 

Variations. The basic idea of Optimal Control is to minimize or maximize a cost function 

that changes with time by solving for the time histories of control variables.  

 

Deriving necessary conditions for optimality using the Euler-Lagrange equations and 

Pontryagin’s Maximum principle leads to the use of indirect methods to solve the problem. 

Garcia-Heras (2016) provides a summary of indirect methods as well as direct and dynamic 

programming methods. 
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3.2 Problem Formulation 

In the case of our problem, we want to minimize the total fuel burn. Following similar 

formulations by Ng (2014), Burrows (1983), and Dalmau (2015) we set up our cost 

function as follows: 

 𝐽 =  ∫
𝑓

𝑚0
 𝑑𝑡

𝑡𝑓

𝑡0

 (3) 

 

Where 𝑓 is the fuel burn rate, 𝑚0 is the initial mass, and 𝑡0 and 𝑡𝑓 are the initial and final 

times respectively. We use fuel flow divided by initial mass as the objective, rather than 

fuel flow, to scale the problem so that it is easier to solve numerically. We use the same 

scaling on mass: 

 

 𝑚∗ = −
𝑚

𝑚0
 (4) 

 

Where 𝑚∗ is scaled mass and 𝑚 is actual mass. Anywhere 𝑚 shows up in our equations, 

we replace it with 𝑚∗ ∗ 𝑚0. 

 

The other states that define the problem are the latitude and longitude of the aircraft. 

Following Ng (2014) we set our aircraft dynamics for fixed-speed, fixed-altitude flight 

over a spherical Earth. The only aircraft control we allow to be adjusted is heading angle. 

The rate equations for the coordinates are: 

 

 ϕ̇ =
𝑉𝑇𝐴𝑆,𝑖 ∗ cos(𝜓) + 𝑢

𝑅
 (5) 

 θ̇ =
𝑉𝑇𝐴𝑆,𝑖 ∗ sin(𝜓) + 𝑣

𝑅𝑐𝑜𝑠(𝜙)
 (6) 

 

Where 𝜓 is aircraft heading clockwise positive from due north, 𝜙 is latitude, θ is longitude, 

𝑢 is the easterly wind component, 𝑣 is the northerly wind component, 𝑅  is the Earth’s 

radius, and 𝑉𝑇𝐴𝑆,𝑖 is the airspeed selected for the problem. 

 

 



14 

 

Formally, we state the optimization problem as follows: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

𝐽 =  ∫
𝑓(𝜙, 𝜃,𝑚, 𝑉𝑇𝐴𝑆,𝑖, ℎ𝑖)

𝑚0
 𝑑𝑡

𝑡𝑓

𝑡0

 (7) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
�̇� =

𝑉𝑇𝐴𝑆,𝑖 cos(𝜓) + 𝑢(𝜙, 𝜃, ℎ)

𝑅
 (8) 

 

θ̇ =
𝑉𝑇𝐴𝑆,𝑖 sin(𝜓) + 𝑣(𝜙, 𝜃, ℎ)

𝑅𝑐𝑜𝑠(𝜙)
 (9) 

 
𝑚∗̇ = −

𝑓(𝜙, 𝜃,𝑚, 𝑉𝑇𝐴𝑆,𝑖, ℎ𝑖)

𝑚0
 (10) 

𝑤𝑖𝑡ℎ 𝐵. 𝐶. 𝑠: 

𝜙(t0) = 𝜙0 (11) 

 
θ(𝑡0) = 𝜃0 (12) 

 𝜙(tf) = 𝜙𝑓 (13) 

 
θ(𝑡𝑓) = 𝜃𝑓 (14) 

 𝑚∗(𝑡0) = 1 (15) 

 

Where ℎ𝑖 is the altitude of the aircraft in segment 𝑖. For our analysis, we restricted the 

solver to a single segment. 

 

The calculus of variations provides the techniques to minimize our cost function, ultimately 

reducing the root problem to a Two Point Boundary Value Problem (TPBVP), which is 

solvable using MATLAB routines [Longuski, 2014]. The Euler Lagrange Theorem 

provides the necessary conditions for minimization in the form of Ordinary Differential 

Equations (ODEs). The necessary conditions include the Hamiltonian, a function 

comprised of the cost function integrand and the equations of the state dynamics multiplied 

by time-variable coefficients called co-states: 

 

 𝐻 =
𝑓

𝑚0
+ 𝜆𝜙

𝑉𝑇𝐴𝑆 cos(𝜓) + 𝑢

𝑅
+ 𝜆𝜃

𝑉𝑇𝐴𝑆 ∗ sin(𝜓) + 𝑣

𝑅𝑐𝑜𝑠(𝜙)
+ 𝜆𝑚∗ (−

𝑓

𝑚0
) (16) 



15 

 

Where 𝜆𝜙, 𝜆𝜃, and 𝜆𝑚∗ are the costates for latitude, longitude, and scaled mass respectively. 

The Euler-Lagrange equations provide further necessary conditions: 

 

 �̇�𝜙 = −
𝜕𝐻

𝜕𝜙
 (17) 

 �̇�𝜃 = −
𝜕𝐻

𝜕𝜃
 (18) 

 �̇�𝑚∗ = −
𝜕𝐻

𝜕𝑚∗
 (19) 

 

 

𝜕𝐻

𝜕𝜓
= 0 = −𝜆𝜙

𝑉𝑇𝐴𝑆 sin(𝜓)

𝑅
+ 𝜆𝜃

𝑉𝑇𝐴𝑆 cos(𝜓)

𝑅𝑐𝑜𝑠(𝜙)
 

(20) 

 

Solving eqn. 3.20 for 𝜓 gives us an expression for our control, 

 

 𝜓 = tan−1
𝜆𝜃 

𝜆𝜙 cos(𝜙)
 (21) 

 

Another necessary condition, Legendre-Clebsch, is based on Pontryagin’s Minimum 

Principle. The purpose of the condition is to uniquely set 𝜓 after computing the inverse 

tangent. 

 

 𝐻𝑢𝑢
∗ ≥ 0 (22) 

 

Or, the second derivative of the optimal Hamiltonian with respect to the control, in our case 

𝜓, has to be greater than or equal to zero. We apply the condition to get a unique solution 

for 𝜓: 

 

 𝐼𝑓 𝐻𝜓𝜓
∗ ≥ 0 𝑡ℎ𝑒𝑛 𝜓 = tan−1

𝜆𝜃 

𝜆𝜙 cos(𝜙)
 ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑎𝑑𝑑 𝜋 𝑡𝑜 𝜓 (23) 

 

In order to have a well-posed TPBVP, we need enough boundary conditions to satisfy the 

ODEs. Currently, we have six boundary conditions, short of the eight necessary because 
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we do not know final time or scaled mass. We obtain the remaining two boundary 

conditions using the transversality condition: 

 

 𝐻𝑓𝑑𝑡𝑓 − 𝜆𝜙𝑓𝑑𝜙𝑓 − 𝜆𝜃𝑓𝑑𝜃𝑓 − 𝜆𝑚𝑓
∗𝑑𝑚𝑓

∗ = 0 (24) 

 

Where 𝐻𝑓 , 𝜆𝜙𝑓 , 𝜆𝜃𝑓 , 𝜆𝑚𝑓
∗  are the final values of the Hamiltonian and the states, and 

𝑑𝑡𝑓 , 𝑑𝜙𝑓 , 𝑑𝜃𝑓 , 𝑑𝑚𝑓
∗ are the final values of the differentials of time and the states. 

 

Since we know and specify a fixed final coordinate, the differentials of 𝜙𝑓 and 𝜃𝑓 equal 

zero: 

 

 𝐻𝑓𝑑𝑡𝑓 − 𝜆𝑚𝑓
∗𝑑𝑚𝑓

∗ = 0 (25) 

 

The differentials of final time and the final states are independent, requiring both terms of 

eqn. xx to equal zero independently of each other. Since 𝑑𝑡𝑓 and 𝑑𝑚𝑓
∗ are unspecified, in 

general they are not zero, leaving us with our final boundary conditions: 

 

 𝐻𝑓 = 0 (26) 

 𝜆𝑚𝑓
∗ = 0 (27) 

 

The combination of ODEs (eqns. 8-10, 17-19) and boundary conditions (eqns. 11-15, 26-

27) form a well-posed Two Point Boundary Value problem. Matlab’s built-in routine, 

bvp4c, is a Multi-point Boundary Value solver implementing the 3-stage Lobatto IIIa 

formula [Mathworks, 2016]. 

3.3 Numerical algorithm using BVP4C 

In order to solve, bvp4c requires an initial guess of the trajectory. We use ode45 to solve 

the 6 ODEs out to a small arbitrary amount of time, generating a small initial guess. Then, 

we use the final states of the ODE guess as boundary conditions for bvp4c. The solution to 
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the sub problem from bvp4c gives us an initial guess for the next sub problem. We continue 

to solve sub problems, each time setting the final point closer to the true final point, in 

order to set up a well-conditioned guess for solving for the complete trajectory. To illustrate 

the procedure, we plotted sub trajectories for a flight from Paris to Miami in Figure 3. 

 

 

Figure 3: Example of trajectory solver 

Figure 4 contains the wind field used for computing the trajectory. 

 

 

Figure 4: Wind field at altitude used in solver 
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3.4 Limitations of Solver 

Ideally, we would be able to take the scaled mass history from the solver, multiply by initial 

mass and then have the fuel burnt on the wind-optimal trajectory. However, tests on a zero-

wind, great circle flight showed a standing 3% difference between the fuel spent by the 

solver and the fuel calculated by passing the trajectory through the fuel burn estimator. 

 

We resolved the issue by treating the raw trajectory as if we were computing optimal Mach. 

Using the coordinates and airspeed, we computed groundspeed and then generated a time 

history, all which are needed for fuel burn estimation. 

 

Using the new time history removes the 3% positive bias from the inefficiency calculations. 

There remains a -0.25% to -0.05% bias after running a series of arbitrary range and 

direction zero wind test flights. 
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CHAPTER 4. ALTITUDE AND SPEED INEFFICIENCY 

The optimal cruise altitude of an aircraft changes as it loses weight. In an ideal situation, 

an aircraft would continuously climb during cruise. The problem with continuous climb is 

that it makes it hard for controllers to manage aircraft separation. Step climbs are a 

reasonable compromise. Comparing the fuel burn between actual and optimal flight tracks 

will show flight inefficiency for off-optimal altitudes. 

 

We describe the optimization method we use to generate optimal trajectories in Section 4.1, 

then note some key limitations of the method when using the Base of Aircraft Data (BADA) 

performance model in Section 4.2. 

 

4.1 Specific Ground Range 

Our objective function for minimizing fuel burn is Specific Ground Range (SGR). SGR is 

the ratio between groundspeed and fuel flow at any point in time during cruise flight 

[Jensen 2007]: 

 

 𝑆𝐺𝑅 =
𝑔𝑟𝑜𝑢𝑛𝑑𝑠𝑝𝑒𝑒𝑑

𝑓𝑢𝑒𝑙 𝑓𝑙𝑜𝑤
 (28) 

 

Basically, the idea is to maximize the amount of distance covered per unit of fuel. 

Maximizing SGR minimizes cruise fuel burn. If we only care about minimizing fuel burn 

along the distance traveled in the air rather than with respect to the ground, then we should 

use Specific Air Range (SAR) which is the ratio of airspeed to fuel flow. 

 

To optimize the SGR, we follow Jensen (2007) in using a brute force search for maximum 

SGR over a range of feasible altitudes and Mach numbers at each point in time over the 

cruise flight track. To calculate fuel flow at each sample point, we assume that the aircraft 

is in equilibrium cruise. We use the base trajectory mass to compute fuel flow at the SGR 

sample points, as shown in Figure 5. 
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Figure 5: SGR Sampling Method 

We select altitudes and Mach in a range based on limits for reasonable operations. BADA 

provides upper limits for altitude and Mach, but there are no defined lower operational 

limits, so we set the lower limits to encompass the majority of feasible operations. 

Table 2: Flight parameter ranges 

 Minimum Maximum Step 

Mach 𝐵𝐴𝐷𝐴 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑐𝑟𝑢𝑖𝑠𝑒 𝑀𝑎𝑐ℎ –  0.1 𝐵𝐴𝐷𝐴 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑀𝑎𝑐ℎ 0.005 

Altitude 28000 ft 𝐵𝐴𝐷𝐴 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 250 ft 

 

Some combinations of altitude, Mach, and mass result in infeasible flight conditions. If a 

flight condition fails the following three criteria, we say the condition is infeasible. First, 

the aircraft must be able to perform a 300 ft/minute climb with the thrust difference 

between maximum cruise thrust and thrust used to oppose drag. Second, the Mach number 

must be greater than the low speed buffet Mach number. The relationship for calculating 

low speed buffet Mach is given by BADA as a function of mass, pressure, and aircraft 

specific constants. Third, calibrated airspeed (CAS) must be below the BADA maximum 

calibrated airspeed. Maximum operating Mach at high altitudes converts to airspeeds well 

below maximum CAS, so maximum CAS is rarely violated so we omit it from the 

collection of limiting parameters. Figure 6 shows an example SGR grid overlaid with 

feasible boundaries. There may be additional restrictions to performance issued by the FAA, 

the airlines, or the manufacturer, but we did not include any as the minimum climb and low 

speed Mach effect were the most relevant to limiting cruise altitude. 
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Figure 6: Feasible Flight Limits 

 

There are some flights in our database that occasionally violate our feasibility constraints. 

Since the feasibility constraints are derived from estimated parameters we expect the 

occasional violation. To get a sense of how well our estimations are performing, we record 

the percent of cruise flight time spent outside the boundaries for each flight, as shown in 

Figure 7 for CEP flights. We use the feasibility cutoff percent as a filter for our results. 

 

Figure 7: Distribution of CEP flight feasibility violations 
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Among the feasible SGR points, we are interested in three different maximum points: the 

point with optimal Mach and altitude, the point with optimal altitude given the actual flight 

Mach number, and the point of optimal Mach given the actual flight altitude. For each of 

the points with a different altitude than the base altitude, we compute a separate version 

that adjusts the optimal altitudes to respect the “Odd-east, Even-west” rule. In addition to 

the SGR optimal trajectories, we are interested in seeing how much fuel can be saved by 

flying a trajectory one available cruise altitude higher than the actual altitude. 

 

Figure 8 shows an example of an SGR grid for a transatlantic flight. The red X on the grid 

is the actual flight condition, the red circle is the Best Overall point, the magenta square is 

the Best Altitude for the actual Mach, and the black triangle is the Best Mach for the actual 

altitude. 

 

Figure 8: SGR grid and associated maximum points for a 747 at mid mission weight 
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To compute the fuel burned by the optimal trajectories, we swap out the actual altitude 

with the optimal altitude, re-interpolate the weather, and send the flight through the fuel 

burn estimator. To prevent changes in the flight path from affecting the initial mass, we 

carry the initial mass from the base case forward to use at the start of the other trajectories. 

 

For trajectories with different Mach profiles, we have to adjust the flight time to match the 

new groundspeed. We calculate new groundspeed by converting Mach to true airspeed 

using the temperature data at altitude, and then using wind data to compute the groundspeed: 

 

 𝑉𝑇𝐴𝑆,𝑜𝑝𝑡 = 𝑀𝑎𝑐ℎ𝑜𝑝𝑡√𝛾𝑅𝑇  (29) 

 

 
𝐺𝑜𝑝𝑡 = 𝐶𝑜𝑢𝑟𝑠𝑒 − sin

−1 (
𝑊𝑖𝑛𝑑𝑚𝑎𝑔 ∗ sin(𝑊𝑖𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑢𝑟𝑠𝑒)

𝑉𝑇𝐴𝑆,𝑜𝑝𝑡
) 

(30) 

 

 

Once we have groundspeed, we compute the time to cross each track segment by dividing 

the great circle distance between segments with groundspeed: 

 

 
Δ𝑡𝑜𝑝𝑡,𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =

𝐷𝐺𝐶,𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝐺𝑚𝑒𝑎𝑛,𝑠𝑒𝑔𝑚𝑒𝑛𝑡
 

(31) 

 

The time differences are incremented from the timestamp at the start of the analysis region, 

𝑡0, to generate the new time profile: 

 

 

𝑡𝑘 = 𝑡0 +∑Δ𝑡𝑜𝑝𝑡,𝑖

𝑘

𝑖=0

 

(32) 

 

 

4.2 BADA Limitations 

BADA has a key limitation when used for computing optimal altitudes. During the course 

of our investigation, we found that optimal altitudes derived solely from maximizing SGR 
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(without any limitations on climb rate) would return optimal altitudes significantly higher 

than Jensen’s results. Jensen used Piano-X instead of BADA when developing the model, 

so we looked at the difference between the two models. 

 

To get a rough comparison of the two performance models, we attempted to reproduce a 

graph from Jensen’s thesis. His graph of SAR vs Flight Level was particularly reproducible 

because it is independent of weather. The narrow body airliner we chose to generate the 

comparison SAR is the Boeing 737-800, which best fits the mass range and cruise Mach 

limits in Jensen’s graph. The BADA results are in Figure 9, and the Piano-X results are in 

Figure 10. 

 

 

Figure 9: SAR against flight level using BADA. 737-800 at Mach 0.78 
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Figure 10: SAR against flight level using Piano-X, Figure 16 from [Jensen, 2014] 

 

Our implementation of BADA lines up fairly well with the Piano-X results until the flight 

level becomes sufficiently large, after which our results do not show the sharp curvature 

present in the Piano-X implementation. Also notice that we do not have any points of 

maximum SGR within the range of operational altitudes, in contrast to Jensen’s graph, 

where the optimal altitudes are feasible. 

 

To determine whether the discrepancy might be due to our using BADA, we compared 

performance results with Piano-X for the 787. Lissys provides a demo version of Piano-X 

which comes with a few full scale models, including the 787-800, A340-600, and A380-

800. 

 

To generate performance results, we generated a series of aircraft parameters, such as 

weight, Mach, and altitude. We ran the parameters through Piano-X using the point 

performance tool and computed performance parameters like drag and fuel flow. The 

Piano-X standard operating weights for the aircraft model were set equal to the BADA 

numbers to get equal conditions. 
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Because drag directly factors into fuel flow by setting thrust equal to drag at steady state 

cruise, we compared the drag numbers. In Figure 11, the Piano-X drag curve shows a 

minimum at 37500 ft, versus the BADA drag curve which does not have a minimum in the 

region of operable cruise altitudes. Using BADA for the SGR methods generates too high 

optimal altitudes, so the drag curve indicates drag modeling is the source of the problem. 

 

 

Figure 11: Drag vs altitude for B788 at Mach 0.84 and 200,000 kg. 

 

For reference, the drag model in BADA is as follows: 

 

 
𝐷𝑟𝑎𝑔 =

1

2
𝜌𝑉2𝑆 ∗ 𝐶𝐷 

(33) 

 

Where 𝜌 is density, 𝑉 is true airspeed, 𝑆 is surface area, and 𝐶𝐷  is the drag coefficient, 

given by: 
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 𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷2𝐶𝐿
2 (34) 

 

Where 𝐶𝐷0 is the parasitic drag coefficient, 𝐶𝐷2 is the induced lift drag coefficient, and 𝐶𝐿 

is the lift coefficient. Piano-X (2008) uses a drag model that includes extra drag coefficients, 

such as for compressibility and trim, and models the drag coefficients as functions of 

Reynolds number, Mach number, and angle of attack. 

 

After simulation, the BADA and Piano-X 𝐶𝐿 results were within 1% of each other, so we 

checked the drag coefficients. In Figure 12, we plotted 𝐶𝐷0 and 𝐶𝐷2𝐶𝐿
2 from BADA and 

the zero lift and induced lift coefficients from Piano-X. Both induced lift drag coefficients 

are very close to each other, (within 7%), but the parasitic and zero lift coefficients are 

about 50% different. Lissys (2008) refers to the zero lift drag coefficient as 𝐶𝐷0, which is 

used in BADA for the parasitic drag coefficient, thus we believe the Piano-X zero lift drag 

coefficient to be the same as the BADA parasitic drag coefficient. 

 

 

Figure 12: Drag coefficients from Piano-X and BADA. 
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Thus we can conclude that the large value of the BADA parasitic drag coefficient ends up 

over-weighting the effect of parasitic drag, which results in higher optimal altitudes 

because of the decrease in density with altitude.  
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CHAPTER 5. BLOCKING INEFFICIENCY 

To avoid mid-air collisions, air traffic control requires aircraft to be separated from each 

other by time or distance. In areas of low surveillance, such as oceanic airspace, larger 

separation standards are required. For example, longitudinal separation in airspace with 

radar coverage is 510 nautical miles, while longitudinal separation over oceanic airspace 

is at least 50 nautical miles when aircraft give position reports using Automatic Dependent 

Surveillance – Contract (ADS-C). 

 

The larger separation standards can create a scenario in which nearby aircraft at different 

altitudes “sandwich”, removing opportunities to climb or descend without violating lateral 

and longitudinal separation standards. In the case where a lower aircraft should climb to 

stay on the optimal altitude, the “sandwich” effect will block the aircraft from climbing 

and cause a net fuel burn inefficiency. 

 

We discuss oceanic separation standards in Section 5.1, and set up our blocking analysis 

in Section 5.2. 

 

5.1 Oceanic Separation Standards 

The FARs require operators of US registered aircraft to comply with ICAO Annex 2 when 

operating over the high seas (14 C.F.R § 91.703). Annex 2 contains passages requiring 

aircraft to report position to the appropriate air traffic services unit (ICAO, 2005). Since 

the FAA provides air traffic services in the form of a Flight Information Region (FIR) in 

the regions we are interested in, they set the rules for providing separation. 

 

FAA separation standards in oceanic regions depend on the equipage of the aircraft and the 

communication protocols used by the crew (FAA Order JO 7110.65 2015). For example, 

in CEP, aircraft using Automatic Dependent Surveillance – Contract (ADS-C) to provide 

position reports with flight crews using Controller Pilot Data Link Communications 
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(CPDLC) are provided 30 nm lateral and longitudinal separation given the maximum time 

between position reports is less than 14 minutes. 

 

Table 3: CEP Longitudinal Separation standards for ADS-C equipped aircraft [FAA 

Order JO 7110.65, 2015] 

Minima RNP 
Maximum ADS-C Reporting 

Interval 

50 NM 10 27 minutes 

50 NM 4 32 minutes 

30 NM 4 14 minutes 

 

The only difference with WATRS is that 30 nm minima require a 10 minute interval, rather 

than 14 minutes for CEP. 

 

The FAA has been in the process of developing an air traffic control method that will allow 

aircraft to conduct climbs when within the separation minima listed in Table 3. The method 

is called the ADS-B In Trail Climb Procedure (ADS-B ITP) and was first used in 

operational trial in June 2011 (IPACG/40 IP/09). ADS-B ITP allows properly equipped 

aircraft to climb or descend when within no less than 15nm of another suitably equipped 

aircraft (FAA JO 7110.65W). Trials are still on-going although wording for the procedure 

was added to the main Air Traffic Organization Policy document (FAA JO 7110.65W) in 

June 2016 (Hemdal, 2016). 

 

5.2 Blocking Algorithm 

To determine whether aircraft are blocked, we check the distance between each time-

coincident track point on a flight with every other time-coincident track points on all flights 

that possibly approach within separation standards. Computationally, a naïve search is 

infeasible. We make the problem tractable by using several steps to trim down the search 

space. 
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The first step is a rough sort by search time. We take all flights with the same search time 

plus/minus one search period. If a pair of aircraft is separated by more than two search 

periods, the aircraft should never meet unless one of the aircraft reverses course. 

 

The second step is to select flights from the pool from the previous step and loop through 

the track points and identify time-coincident points, between which we compute distance. 

Assuming lateral and longitudinal separation standards are the same and follow a circular 

path around the main flight, we mark a potential blocking situation by comparing the 

computed distance to the separation standard distance. 

 

At this point, we have a list of coincident track points between a flight and a proximate 

flight that pass within separation standards. We go through the set of points within 

separation distance and record the mean differences between the flight altitude, proximate 

flight altitude, and optimal flight altitude. 

 

We call flights blocked when they have at least one pair of track points within separation 

for which the proximate flight comes between the optimal and the actual altitude. Figure 

13 shows a case where a pair of track points would be designated as blocked. We let optimal 

altitude get within 500 ft. of the proximate track when flagging as blocked due to the noisy 

nature of the optimal altitude computation. 

 

Figure 13: Blocking Scenario with tolerance on proximate altitude 
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The differences between the optimal, proximate, and actual altitudes allow us to take a look 

at how far the aircraft is held from its optimal altitude. In addition, we collect the total time 

that the aircraft is blocked, which includes blocking from all other potential proximate 

aircraft. 

 

We take a weighted mean of the mean altitude differences from each proximate flight by 

weighting with the total time spent blocked by each proximate flight. 
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CHAPTER 6. ESTIMATING AIRCRAFT FUEL BURN 

Currently, the only publicly available research-grade data set with aircraft fuel 

consumption data and a model for computing fuel consumption is the Base of Aircraft Data 

(BADA). In Section 6.1, we discuss the core model used by BADA to simulate 

performance. In Section 6.2 we discretize the model for computation and then discuss 

corrections to the model in Section 6.3. 

 

6.1 Total-Energy Model 

The main feature of the model is an equation relating the change in potential and kinetic 

energy of an aircraft to the balance between thrust and drag: 

 

 (𝑇 − 𝐷)𝑉𝑇𝐴𝑆 = 𝑚𝑔0
𝑑ℎ𝐺𝑒𝑜𝑑
𝑑𝑡

+ 𝑚𝑉𝑇𝐴𝑆
𝑑𝑉𝑇𝐴𝑆
𝑑𝑡

 (35) 

 

where 𝑇 is the thrust acting parallel to the aircraft velocity vector, 𝐷 is aerodynamic drag, 

𝑚 is aircraft mass, ℎ𝐺𝑒𝑜𝑑 is geodetic altitude, 𝑔0 is gravitational acceleration, 𝑉𝑇𝐴𝑆 is true 

airspeed, and 
𝑑

𝑑𝑡
 is the first order derivative with respect to time. 

 

Thrust specific fuel consumption (TSFC), 𝜂, can be computed using the following relation: 

 𝜂 = 𝐶𝑓1 [1 +
𝑉𝑇𝐴𝑆

𝐶𝑓2
]  (36) 

 

where 𝐶𝑓1, 𝐶𝑓2 are aircraft specific fuel coefficients and 𝑉𝑇𝐴𝑆 is true airspeed. 

Finally, fuel burn rate combines specific fuel consumption and thrust: 

 

 𝑓̇ = 𝜂𝑇 (37) 
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6.2 Discretized Model 

Our flight track data is given in discrete points in time, so the fuel burn is calculated over 

the segments connecting the track points. In Figure 14, 𝑡𝑛 represents time and 𝑓𝑛 represents 

the fuel burned traveling a track segment starting at time 𝑡𝑛. 

 

Figure 14: Discretized Flight Track 

 

Since our flight data is discrete in time, equation (35) must be modified. Similar to Yoder 

(2007), we discretize the total-energy equation and solve for the necessary thrust at point 

n based on the change in airspeed, change in geopotential height, drag, true airspeed, and 

mass: 

 𝑇𝑛 = 𝐷𝑛 +
𝑚𝑛𝑔0
𝑉𝑇𝐴𝑆,𝑛

Δℎ𝑔𝑒𝑜𝑝,𝑛

Δ𝑡𝑛
+𝑚𝑛

Δ𝑉𝑇𝐴𝑆,𝑛
Δ𝑡𝑛

 (38) 

 

Where all subscripts 𝑛  represent the value of the subscripted variable at time 𝑡 =  𝑡𝑛 . 

Assuming small variation in the gravitational field allows for geopotential height to be 

substituted for geodetic height. 

 

Then the fuel burned in segment n is given by the product of the specific fuel consumption, 

thrust, and time interval over which the fuel was burned: 

 

 𝑓𝑛 = 𝜂𝑛𝑇𝑛Δ𝑡𝑛 (39) 

 

Aerodynamic drag is computed in terms of aircraft-specific drag and lift coefficients 

provided by BADA: 

 𝐷𝑛 =
𝐶𝐷,𝑛𝜌𝑛𝑉𝑇𝐴𝑆,𝑛

2 𝑆

2
 (40) 
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Where 𝐶𝐷,𝑛  is the drag coefficient, S is the reference wing surface area, and 𝜌𝑛  is air 

density given by: 

 𝜌𝑛 =
𝑃𝑛

𝑅 ∗ 𝑇𝑒𝑚𝑝𝑛
 (41) 

 

Where 𝑇𝑒𝑚𝑝𝑛 is the air temperature and 𝑅 is the real gas coefficient of air given by BADA. 

𝐶𝐷,𝑛 is the drag coefficient, given by: 

 𝐶𝐷,𝑛 = 𝐶𝐷0,𝑛 + 𝐶𝐷2,𝑛(𝐶𝐿,𝑛)
2
 (42) 

 

Where 𝐶𝐷0, 𝐶𝐷2 are phase-of-flight specific drag coefficients and 𝐶𝐿,𝑛 is the lift coefficient, 

given by: 

 𝐶𝐿,𝑛 =
2𝑚𝑛𝑔0

𝜌𝑛𝑉𝑇𝐴𝑆,𝑛
2 𝑆

 (43) 

 

Since aircraft mass changes over the course of a flight, we use the fuel burn over segments 

to decrement the mass as follows. 

 𝑚𝑛 = 𝑚0 −∑𝑓𝑖

𝑛−1

𝑖=1

 (44) 

where 𝑚0 is initial aircraft mass. 

 

Since we do not have initial mass, we must estimate it. We experimented with using the 

basic BADA reference mass, but that mass is best used as a mid-mission reference mass. 

A method by Chatterji (2012) estimates initial mass by iterating and storing successive 

flight fuel burns. 

 

We start with a guess for zero-fuel weight (ZFW), essentially a guess for the loading of the 

aircraft, and then compute the fuel burn using ZFW as initial mass. Taking the difference 

between final and initial mass gives the amount of fuel burned, which we add to ZFW as 

our new starting mass. Chatterji found three iterations to be sufficient in stabilizing the 

initial mass. In lieu of actual payload data, we used 100% of the BADA payload mass as 

initial loading for each flight. 
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6.3 BADA Corrections 

The BADA model does not take temperature or pressure variations into account when 

computing fuel burn. Yoder (2007) used data from a computer flight data recorder (CFDR) 

to make corrections to BADA’s fuel burn computation method. He used regression to fit 

the CFDR data to a model that relates thrust specific fuel consumption to thrust, 

temperature, and Mach number: 

 
𝜂

√𝜃
= 𝛼 + 𝛽1𝑀+ 𝛽2𝑒

−𝛽3(
𝜏
𝛿0.9

)
0.3

 (45) 

 

Where 𝜃 and 𝛿 are the ratio of temperature and pressure to their respective sea-level ISA 

standard values, 𝜏 is the ratio of thrust to sea-level maximum thrust, 𝛽1,2,3 are regression 

coefficients, 𝐶𝑓𝑙1,𝑓𝑙2,𝑓𝑐𝑟  are BADA fuel flow coefficients, is the thrust specific fuel 

consumption, and 𝛼 is an intermediate coefficient that is related to the BADA fuel flow 

coefficients, given by: 

 

 𝛼 =
𝐶𝑓𝑙1

60000
(1 +

1.9348(240)

𝐶𝑓𝑙2
)𝐶𝑓𝑐𝑟 − 5.3(10)

−6 (46) 

 

The regression relationship is dependent on the BADA coefficients used. Yoder derived 

the regression using BADA 3.6, and we used BADA 3.11. To test the validity of the 

regression, we computed fuel burn for a set of flights using the BADA method and the 

corrected Yoder method. 

Table 4: Percent difference of BADA fuel to Yoder fuel 

 
Our BADA 

11765 flights 

Our corrected 

11765 flights 

Yoder BADA 

218335 flights 

Yoder corrected 

218335 flights 

Total Fuel 

(kg) 
3.142e8 3.076e8 8.785e8 8.430e8 

Percent 

Difference 
2.12% 4.12% 

 

The change in percent difference can be attributed to a change to the BADA coefficients 

in 3.7 (BADA 2009). Because the new coefficients still do not take Mach and temperature 
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effects into account, and since our percent change between the corrected and BADA 

models is similar to Yoder’s, we elected to use the regression model for our inefficiency 

analysis. 

 

Separate from the TSFC model, another limitation of BADA is that the included drag 

model does not account for compressibility effects, affecting results in the transonic regime. 

Klima (2005) adapted the Kroo Method to BADA coefficients to solve for the increase in 

total drag coefficient due to compressibility at high speeds. Following Klima, we disable 

Δ𝐶𝐷𝑐  effects for flight segments with computed Mach numbers above 104.6% of the 

BADA nominal cruise Mach. 

 

𝐶𝐷 is the corrected drag coefficient given by: 

 

 𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷2(𝐶𝐿)
2 + Δ𝐶𝐷𝑐 (47) 

 

Where Δ𝐶𝐷𝑐 is the transonic drag rise coefficient given as a piecewise function by: 

 

 Δ𝐶𝐷𝑐 = 

{
 
 

 
 

0.00100 + 0.02727𝑌 − 0.1952𝑌2 + 19.09𝑌3

0.00100 + 0.02727𝑌 + 0.4920𝑌2 + 3.573𝑌3

0.0007093 + 0.006733𝑌 + 0.01956𝑌2 + 0.01185𝑌3

0.00013889 + 0.00055556𝑌 − 0.00055556𝑌2

0

    

               𝑋 ≥ 1.0
      1.0 > 𝑋 ≥ 0.95
0.95 >  𝑋 ≥ 0.8

  
0.8 > 𝑋 ≥ 0.5
0.5 > 𝑋            

 (48) 

 

Where 𝑋 and 𝑌 are intermediate coefficients based on Mach number, given by: 

 

 𝑋 =
𝑀

𝑀𝐵𝐴𝐷𝐴
 , 𝑌 = 𝑋 − 1 

 
(49) 

 

Where 𝑀 is Mach number and 𝑀𝐵𝐴𝐷𝐴 is the nominal cruise Mach given by BADA. 

 

Further uncertainty not covered by the BADA model is real world variation in engine types 

and winglet equipage. 
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CHAPTER 7. OCEANIC AIRSPACE ANALYSIS 

We tested our inefficiency system on flights in selected oceanic airspace. All of our data 

comes from publicly available sources, resulting in some unique challenges which we 

discuss throughout this chapter. 

 

7.1 Data Sources and Preparation 

Since the data necessary for computing inefficiency come from several different sources, 

there were many steps to formatting and pre-processing our data before input to our system. 

Here, we explain the different sources and methods we used to gather and prepare the data. 

 

7.1.1 Flight tracks 

We used FlightAware for flight data. FlightAware is one of the few public sources of flight 

track data that is cheap, easy to access, and which fuses ADS-B, radar, and oceanic position 

report data. Because only one type of data may be available at a time in a given region, the 

fusion of multiple sources allows us to obtain a more complete flight track. 

 

Appendix A lists our collection methods for both WATRS and CEP flights. From our set 

of flights, we prepared subsets from the month of April to use for analysis. The data covers 

the full month of April for CEP and April 1-21 for WATRS. 

 

7.1.2 Filtering tracks 

Most raw tracks generally have well-sequenced data, where the track point times increase 

monotonically and the data update types are smoothly distributed. For the flights that did 

not have well-tempered data, there were three predominant sources of error. 

 

First, some flights have segments of track points farther away from the optimal track than 

is likely feasible. These segments will lead to inaccurate results because speed and 
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horizontal track inefficiency computation relies on computing the time from point to point 

using the mean groundspeed and great circle distance. The out-of-place segments will skew 

the inefficiency higher because the base fuel burn will be higher than it should be. Figure 

15 shows an example flight track with spurious points. 

 

 

Figure 15: Flight with interlaced bad data 

 

To resolve the errors in the data, we developed a filter algorithm, inspired by the work done 

on filtering Enhanced Traffic Management System (ETMS) data by Palacios (2013). 

 

The filter is based on extra expected distance between two points. Expected distance (𝐸_𝑑) 

is the distance implied by the groundspeed and time histories, i.e., expected distance is the 

estimate of the actual distance an aircraft has flown over the segment given that the 

information we have. We compute the expected distance from the mean of the 

groundspeeds (𝐺𝑚𝑒𝑎𝑛) and the difference in time (Δ𝑡) between any two track points: 

 𝐸𝑑 = 𝐺𝑚𝑒𝑎𝑛 ∗ Δ𝑡 (50) 
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We decompose expected distance into two components: the geometric great circle distance 

(D_GC) and an extra expected distance (Δe_d). The extra expected distance represents 

distance that results from the aircraft performing actions between data points that do not fit 

our assumptions of a great circle path and a linear groundspeed profile. If a flight flies the 

great circle route with a linear groundspeed profile between points, then Δed will equal 

zero. This is not a unique case; aircraft can fly longer/shorter routes than the great circle 

with a faster/slower than the mean groundspeed profile, also resulting in Δed equaling zero. 

 

 (DGC + Δed) = 𝐺𝑚𝑒𝑎𝑛 ∗ Δ𝑡 (51) 

 

Our filter uses the ratio of |Δed| to DGC  (converted to a percentage) as the metric for 

deciding whether the gap between two points represents a feasible aircraft action. We 

derived the first set of limits from a population of Δed and DGC computed from flights. 

After viewing results we set the ratio to 28% to fully remove the egregious data points in 

the example flight given in Figure 15. Since examining the effect of the ratio on all flights 

was unfeasible, we kept the ratio at 28% after visually verifying the performance of the 

filter on several flights. 

 

The algorithm works as follows: 

 

1. Iterate forward through the list of track points and compute Δed  and DGC  for 

sequential pairs of data points. 

2. If 
|Δed|

DGC
∗ 100% > 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (in our case 28%) then mark the i+1 track 

point as failed on a forward pass. 

3. Keep the ith point fixed and iterate over successive points, computing Δed and DGC 

between each point and the base ith point. As long as the trigger condition fails, 

continue to iterate until the failure condition is cleared. 

4. Once the condition breaks, move the base point forward to the next non-failed point. 



41 

 

5. At the end of the list, repeat the process traveling backwards and mark a separate 

set of backwards pass failing points. 

6. Remove only the points that failed both the forwards and backwards pass. 

 

The red and blue circles in Figure 16 surround points that failed the forwards and 

backwards passes respectively.  

 

 

Figure 16: Points selected for deletion based on forward and backward filter passes 

 

Figure 17 shows the flight with filtered points removed. 
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Figure 17: Filtered Result 

 

Using a dual pass system allowed us to keep pairs of points that disagree solely because of 

a lack of knowledge of what happened between the points, e.g., a pair of points separated 

by a large gap in time and where the groundspeed over the gap varied significantly from 

the mean, from triggering the filter. This case happens often with ADS-B reported points, 

where the short update times result in short distances, making the ratio prone to large 

departures due to small DGC. Figure 18 shows a case where both track points are retained. 
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Figure 18: Non-removed pair of ADS-B points in disagreement with each other 

 

The end result is that the filter is quite robust and capable of removing both series and 

singular erroneous data points. 

 

Second, some errors can occur when ADS-B and radar data from the same region, most 

often over Europe, are mixed, as shown in Figure 19. Here, the mixed stream of points, 

sorted by time, make it appear as though the aircraft went backwards. 

 

Figure 19: Data Point Reversal Error 
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To correct the ADS-B/Radar problem, we implement a data filter that identifies all ADS-

B and radar points separated by less than 60 seconds and then discards the radar point in 

each pair. We take ADS-B points to be more authoritative because the position source for 

ADS-B is the aircraft’s own navigation system, rather than a derived position from radar. 

 

The last type of problem is when certain pairs of track points repeat, that is, the same 

position and time fix are recorded two or more times. We remove these duplicate points 

using a simple filter that checks for duplicate positions between sequential points and 

removes the duplicate points. 

 

7.1.3 Interpolating tracks 

To make statements about aircraft separation in Section 5.2, we need aircraft position at 

tighter intervals than provided by FlightAware. Oceanic position reporting intervals run 

from 2 to forty-five minutes. At an average cruising groundspeed of 470 knots, an aircraft 

can travel from 16 to 353 nm. On the upper end of the distance range, a short cross-track 

encounter that passes within separation distance with another aircraft would not be detected. 

 

From our data, the time between raw track points mainly depends on the source of the track 

point. ADS-B sources provide the fastest updates, followed by Radar, and then Oceanic, 

as shown in Table 3. 

Table 5: Update periods for track point data types 

Update Type Time between updates 

ADS-B 15-30 seconds 
Radar 60 seconds 
Oceanic 2-45 minutes 

 

Variation in the update rate for oceanic data points comes from the different reporting 

systems used in oceanic airspace. Traditionally, position reports are provided by direct 

voice updates from the pilot over High Frequency (HF) radios. More advanced technology 

allows for automatic datalink transfer of position to air traffic control on a defined schedule, 

such as Automatic Dependent Surveillance-Contract (ADS-C) (ICAO 2013). 
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The closer the data points are to each other, the more confident we can be in an aircraft’s 

interpolated position between the data points. Assured positions allow us more confidence 

in our estimate of how close two aircraft come to each other. To get an idea of the oceanic 

data time density, we tallied the time between oceanic updates for each flight track and 

took the mean over each flight. Figure 20 shows the resulting distribution of update times. 

 

About half the flights through New York Oceanic have a mean time of 10 minutes or less 

between oceanic reports. In ten minutes an aircraft with a groundspeed of 450 knots will 

travel about 75 nm. While 75 nm is enough space to conduct significant turning maneuvers, 

we assume that most deviations from the great circle track would show up on larger length 

scales. 

 

 

Figure 20: Distribution of oceanic reporting times in ZWY CTA 

In CEP, the update requirement for 30nm separation is relaxed to 14 minutes. Figure 21 

shows the distribution of CEP oceanic reporting times. 

 



46 

 

 

Figure 21: Distribution of oceanic reporting times in ZAK CTA 

 

We interpolate new data points by assuming that aircraft follow a great circle route and 

that parameters such as altitude and groundspeed linearly interpolate from the first to the 

second data point. The error in making a great circle assumption is greater as time increases 

between the two end points, especially over the mid-Atlantic south of the North Atlantic 

Tracks where flights have more leeway to track to the best winds.  

 

7.1.4 Compensating for missing data 

True airspeed and heading data is not included in our flight track data so we had to estimate 

course to compute the true airspeed. Using MATLAB’s “azimuth.m” function, which 

computes the course angle between two track points, we computed the course from any 

given point to the points just ahead and behind the main point in time. By assuming great 

circle paths, the computed courses represent arrival and departure course angles. 

 

The course angle between two points close together in time is more likely to be the correct 

representation of course angle for a single point than the angle between two distant points. 

Since we compute course from the angles to the previous and subsequent points we use 

time-based weighting to average between the two computed course angles, as shown in 
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Figure 22. In the figure, the aircraft course at track point b is estimated using the course 

from b to a minus 180˚, and the course from b to c. The magnitude of the course vector is 

set by the groundspeed of the aircraft at the track point. 

 

 

Figure 22: Estimated course 

The resulting estimated course approximates the aircraft course, even during sharp turns, 

as would be found on approach. Figure 23 shows the estimated course vectors of a Boeing 

757 on approach to Miami International. 

 

 

Figure 23: Estimated course vectors on approach to KMIA 
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7.1.5 Weather Data 

Our weather data source is the Global Forecast System (GFS). GFS provides wind, 

temperature, and geopotential height data on latitude-longitude grids with global coverage. 

We discuss our procedure for collecting and formatting the weather data in Appendix B. 

To avoid unacceptable loading times, analysis is performed using weather grids fixed in 

time, i.e., weather  

7.2 Central East Pacific 

Central East Pacific (CEP) is a set of seven fixed routes connecting Hawaii and the US 

West Coast. Figure 24 shows the seven CEP routes. 

 

Figure 24: Structure of CEP, bounding airspace, and additional routes 
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Traffic on the CEP routes is almost completely comprised of flights between Hawaii and 

the Continental United States with the occasional flight to/from Sydney or Auckland. 

Figure 25 shows the paths of aircraft through the region. 

 

 

Figure 25: CEP Flight tracks from February 1st to August 1st aggregated 

 

7.2.1 Data Set Selection 

We selected flights from our database that flew through CEP during the month of April. In 

total, there were 5498 flights in the database for April, of which 5351 had complete tracks 

and performance files for their type in the BADA database. 

 

As discussed in Section 4.1, certain regions of the flight envelope are unfeasible. If the 

estimate of initial mass is higher than reality, then the 300 ft/min climb rate ceiling could 

be lower than the actual altitude. Also, noisy groundspeed profiles can result in Mach 

profiles going below buffet Mach for the given conditions. Flight in unfeasible regions can 

skew or misstate inefficiency so we developed a filter to remove flights that are not feasible. 

 

First, we measure the feasibility of a flight by comparing two flight parameters, altitude 

and Mach, against the limits we established in Section 4.1 for capping optimal altitude. We 

tally the total number of moments in flight that stay inside the feasible limit and compute 
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a “feasibility” percentage. We can then select all flights with a feasibility greater than or 

equal to some arbitrary cutoff value. Figure 26 shows the percent of flights dropped from 

the dataset as a function of the cutoff value. 

 

Figure 26: CEP Percent of flights dropped based on feasibility cutoff setting 

 

To see the effects of removing infeasible flights, we computed the fuel burn inefficiencies 

for a range of cutoff values going from 0% to 100% and plotted the percent error with 

respect to the inefficiencies from the 0% cutoff group in Figure 27. 
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Figure 27: CEP Inefficiency variation with change in feasibility cutoff 

 

The change in inefficiency allowed us to see the effect of keeping the infeasible flights on 

the mean inefficiency for each trajectory type. For example, if we selected 60% as our 

cutoff value, then using the unfiltered dataset would have underestimated Best Altitude 

mean inefficiency by roughly 4%. We selected a 100% feasibility cutoff since a 37% loss 

in flights indicated by Figure 26 was acceptable in light of the large change in Best Mach 

inefficiency right near the 95% cutoff. 

 

Applying the feasibility criteria reduced the final dataset to 3084 flights. 

 

7.2.2 Results 

Table 6 shows the results after filtering against the feasibility criteria. 
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Table 6: Initial CEP Inefficiency Results 

3084 flights 
Global 

Best 

Global 

Best - 

Legal  

Best 

Altitude 

Best 

Altitude 

- Legal 

Best 

Mach 

Next 

Highest 
Horizontal 

Mean % 4.97 4.68 4.50 3.91 1.23 2.23 -0.22 
S.D. % 4.21 4.27 3.72 3.70 2.32 1.55 1.39 

 

To our surprise, a significant portion of Best Mach and Horizontal inefficiencies resulted 

in a negative results. Taken at face value, the result appeared to indicate that our solvers 

were outputting sub-optimal trajectories. After further investigation, we found that most of 

the CEP flights had a similar problem that was causing an underestimate of the base fuel 

burn, resulting in exaggerated low inefficiencies. 

 

The problem in the data is the same problem our Δed metric was designed to eliminate, 

which was an inconsistency between the base trajectories and our between track segment 

assumptions of great circle path and linear groundspeed profile. The reason the problem 

still exists is that our fuel burn computation depends on time, rather than distance, so the 

Δed metric is less applicable. 

 

To solve the issue, we computed new time histories for the base track in the same way we 

did for optimal Mach trajectories in Section 4.1. The differences between the actual 

(timestamp) and computed time in the airspace were mostly on the order of a few minutes, 

which seemed insignificant on the surface. However, a few extra minutes are significant 

for common fuel burn rates, which can be on the order of one kg/sec, resulting in several 

hundred kilograms of extra fuel when comparing the computed time fuel burn to the 

timestamp fuel burn. Common total fuel burns for CEP are on the order of 10,000 kg so on 

average the error can add up to several inefficiency percent points. We plotted the percent 

change between base fuel burns in Figure 28. 
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Figure 28: Change in basis fuels when computing time histories 

 

The positive change indicates that using the timestamp base fuel for the inefficiency 

calculation will result in a decreased inefficiency. Flights with a larger difference in base 

fuels will see a decrease in inefficiency, possibly leading to negative inefficiencies if the 

gain from flying the fuel optimal trajectories is small. 

 

Using the new base fuel burn, we recomputed inefficiencies for the affected trajectories. 

The only trajectories we computed time histories for are the Global Best, Best Mach, and 

Horizontal inefficiencies. 

Table 7: Recomputed Time Basis: CEP Inefficiency Results 

3084 

flights 

Global 

Best 

Global 

Best - 

Legal 

Best 

Altitude 

Best 

Altitude - 

Legal 

Best 

Mach 

Next 

Highest 
Horizontal 

Mean % 5.62 5.33 4.50 3.91 1.86 2.23 0.41 
S.D. % 3.92 3.99 3.72 3.70 1.62 1.55 1.05 
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With the computed time basis, all affected trajectories return sensible inefficiency results, 

for example, Global Best showed the highest inefficiency. There still remains the issue of 

large inefficiencies for trajectories that modify altitude, but that is explained by BADA 

over-weighting parasitic drag, resulting in excessively reduced fuel burn at higher altitudes. 

 

One thing of interest to us was if longer flights suffered from greater horizontal inefficiency 

as distance flown inside the airspace increased, which is plotted in Figure 29. 

 

 

Figure 29: CEP Horizontal inefficiency vs distance traveled in airspace 

 

Inside each of the main clusters, there did not appear to be much correlation with distance. 

A few flights at about 1800 nm showed some manner of a positive trend but the rest of the 

long range flights have average inefficiencies. 
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To obtain the effect of blocking on the inefficiencies, we used the blocking event as a filter 

to separate the dataset into two states, blocked and not blocked. 

Table 8: Examining the effect of blocking on CEP inefficiency 

 Blocked, 1516 flights Not Blocked, 1581 flights Difference between 

means  Mean % S.D. % Mean % S.D. % 

Global Best 6.24 4.13 5.03 3.62 1.21 
Global Best L. 5.94 4.23 4.75 3.67 1.19 
Best Altitude 5.12 4.00 3.91 3.33 1.21 
Best Altitude L. 4.47 3.98 3.38 3.32 1.09 
Best Mach 2.10 1.69 1.63 1.52 0.47 
Next Highest 2.33 1.61 2.14 1.49 0.19 

 

For Global Best and Best Altitude trajectories, the differences in means between the 

blocked and not blocked states was statistically significant when using the two-tailed t-test 

at an alpha level of 0.01. There is about a 1.2 increase in altitude-based inefficiency 

percentage for flights that pass within 50 nm of another aircraft and have optimal altitudes 

on the other side of the conflicting aircraft’s altitude.  

 

7.3 West Atlantic Route System 

The West Atlantic Route System (WATRS) refers to a set of Air Traffic Service (ATS) 

routes contained with the western half of New York Oceanic FIR (KZWY.) Figure 30 

shows the distribution of ATS routes through WATRS and ZWY. 

 

Traffic through WATRS is a mix between predominantly north-south traffic between New 

York and the Caribbean (primarily Puerto Rico and the Dominican Republic), and east-

west traffic between Florida and Western Europe. Figure 31 shows the paths of aircraft 

through the region. 
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Figure 30: Structure of WATRS, bounding airspace, and additional routes 

 

 

Figure 31: WATRS Flight tracks from February 1st to August 1st aggregatedData Set 

Selection 
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There is more traffic through WATRS than CEP so the initial dataset for April contains 

9305 flights, of which 8908 flights have complete tracks and BADA performance files. 

Using the same criteria from CEP for the feasibility filter, the final dataset is reduced to 

4535 flights. 

 

Dropping the infeasible flights had about the same effect as in CEP by reducing 

underestimation for all trajectory types. 

 

Figure 32: WATRS Inefficiency variation with change in feasibility cutoff 
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7.3.1 Results 

Table 9: WATRS Inefficiency Results 

4535 

flights 

Global 

Best 

Global 

Best - 

Legal 

Best 

Altitude 

Best 

Altitude - 

Legal 

Best 

Mach 

Next 

Highest 
Horizontal 

Mean % 5.97 5.51 4.75 3.43 1.90 2.46 0.94 
S.D. % 4.72 4.70 4.00 3.98 2.75 1.66 2.20 

 

Here we have a different result than CEP, where no inefficiencies were negative, and 

Global Best showed the greatest inefficiency even when using the timestamp base fuel as 

reference. WATRS flights did not suffer as much on average from unequal time bases as 

CEP. We still used recomputed fuel burns as a basis in order to minimize variation due to 

those flights that have unequal time problems. 

Table 10: Recomputed Time Basis: WATRS Inefficiency Results 

4535 

flights 

Global 

Best 

Global 

Best - 

Legal 

Best 

Altitude 

Best 

Altitude - 

Legal 

Best 

Mach 

Next 

Highest 
Horizontal 

Mean % 6.27 5.80 4.75 3.43 2.18 2.46 1.24 
S.D. % 4.27 4.24 4.00 3.99 1.83 1.66 1.79 

 

The differences between inefficiency percentages between fuel bases averaged out to about 

0.2. The major effect of changing bases was to tighten up the distributions, due to removing 

the relatively randomly distributed time errors. Beyond correcting for model biases, we 

have uncertainties in our results which we cannot quantify because we do not have real fuel 

burn data with which to perform a proper model validation. Knowledge of actual initial 

mass, wind, and temperature data would allow a comparison with model estimates to 

generate uncertainty in the final result. 

 

Figure 33 shows range based inefficiency in WATRS. 
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Figure 33: WATRS Horizontal inefficiency vs distance traveled in airspace 

 

Surprisingly, there did not seem to be a correlation of inefficiency with range. We expected 

a positive trend of inefficiency with range because the longer the flight, the greater the 

potential savings. A 20 kts boost to groundspeed will make a larger difference in the total 

fuel burn of a 1500 nm flight than a 500 nm flight because time savings scale over distance. 

In addition to scaling, the wind-optimal track in a constant gradient wind should be the 

same as in a zero wind situation, which is the great circle track. Put simply, gains from 

following a crosswind away from the great circle track will be lost when steering back to 

the destination. The longer the distance of a flight, the less chance the gradient of the winds 

will remain constant, implying the wind optimal track diverges from the great circle track. 

 

A potential physical explanation for a lack in correlation is that, on average, wind patterns 

may align better with WATRS tracks used for longer distance flights. In this case, these 
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long range tracks are naturally “optimized” compared to the tracks used for shorter range 

flights. CEP inefficiency against range in Figure 29 shows a series of long range flights 

following a positive trend, implying that certain combinations of winds and CEP tracks 

results in worse inefficiencies. 

 

A confounding factor is airspeed and altitude variation. The wind optimal trajectory we 

generate has constant altitude and airspeed, so the longer the flight, the less the optimal and 

actual flights will match in fuel burn if we only examined altitude and speed savings. In 

addition to fuel results, we checked the time savings against distance in Figure 34 and 

found similar behavior to the fuel inefficiencies but with a more pronounced upper limit 

that increased with distance.  

 

Figure 34: WATRS time savings on optimal route vs distance traveled in airspace 

 

Checking blocking effects, we used the recomputed time fuel as the basis for the 

inefficiency calculation. 
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Table 11: Examining the effect of blocking on WATRS inefficiency 

 Blocked, 3833 flights Not Blocked, 702 flights Difference between 

means  Mean % S.D. % Mean % S.D. % 

Global Best 6.70 4.26 3.90 3.41 2.80 
Global Best L. 6.22 4.24 3.51 3.43 2.71 
Best Altitude 5.15 4.00 2.56 3.17 2.59 
Best Altitude L. 3.78 4.01 1.56 3.23 2.22 
Best Mach 2.31 1.84 1.48 1.61 0.83 
Next Highest 2.57 1.64 1.84 1.64 0.73 

 

Similar to CEP, blocking has a statistically significant impact on all trajectories. 

 

7.4 Comparison 

Directly comparing WATRS inefficiencies against CEP by subtracting means and standard 

deviations, we can see that most trajectories indicate a higher inefficiency in WATRS along 

with greater spread. 

Table 12: Recomputed Time Basis: WATRS minus CEP mean inefficiency percent 

 
Global 

Best 

Global 

Best - 

Legal  

Best 

Altitude 

Best 

Altitude - 

Legal 

Best 

Mach 

Next 

Highest 
Horizontal 

Mean (%-%) 0.65 0.47 0.25 -0.48 0.32 0.23 0.83 

S.D. (%-%) 0.35 0.25 0.28 0.29 0.21 0.11 0.74 

 

One of the significant differences between the airspaces is the effect of blocking. 85% of 

WATRS flights recorded a blocking event, in contrast to 49% of CEP flights. The increase 

in the number of blocked flights is accompanied by increase in inefficiency. The difference 

in inefficiency percent in WATRS due to blocking is about two and a half times that of 

CEP. 

 

The first reason for the large increase in both blocking counts and inefficiency is that traffic 

in WATRS is denser than in CEP. Structurally, crossing tracks increase opportunity for 

conflicts. Figure 35 shows the change in airspace load with time. 
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Figure 35: Flights in airspace on April 2 

 

We would expect that an increase in the amount of time spent blocked would result in an 

increase in inefficiency. Figure 36 and Figure 37 show the time spent in a blocked state 

against Best Altitude inefficiency for CEP and WATRS respectively. 

 

 

Figure 36: CEP Blocked Time (decimal percent) 
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 Figure 37: WATRS Blocked Time (decimal percent) 

In CEP, about half of the flights are either blocked for their entire flight or not at all, with 

a relatively uniform distribution over the intermediate blocking percentages. WATRS is a 

different story, where a large segment of flights is blocked anywhere from 80% to 100% 

of the time. Increasing from 0%, the amount of flights decreases more slowly than in CEP, 

implying more flights are blocked for a shorter time. This follows from our suspicion that 

crossing tracks cause more momentary blocking events than in CEP, which is made up of 

mostly parallel routes. 

 

We plot the relationship between blocked time and Best Altitude inefficiency in Figures 

38 and 39, for CEP and WATRS. The mean difference between the Best Altitude and actual 

altitude is added as colors to show the effect of altitude separation on inefficiency. 
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Figure 38: CEP Best Altitude inefficiency vs blocked time (decimal percent) 

 

 

Figure 39: WATRS Best Altitude inefficiency vs blocked time (decimal percent) 
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We do not see any correlation between Best Altitude inefficiency and blocked time in either 

airspace. As expected, we still see a positive relationship between distance from optimal 

altitude and inefficiency. 
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CHAPTER 8. CONCLUSION 

Here, we will conclude with a real world comparison with our results and then a discussion 

on future improvements to the model and directions for future study. 

8.1 Experimental Comparison 

SESAR conducted a real world fuel efficiency experiment in 2011 called ENGAGE 

(SESAR, 2011). The real world test allowed 37 flights traversing the North Atlantic Tracks 

to freely vary their altitudes and speeds to better match their optimal trajectories. Fuel burn 

reduction was measured as the difference between the actual observed fuel and the planned 

fuel burn at fixed altitude and Mach. 

 

The ENGAGE flights were allowed a free 2000 ft block of altitude and a 0.02 Mach range 

that they could traverse with no restrictions. These permissions were only allocated during 

the lowest traffic periods to avoid overloading controllers. Out of the 37 trials, only 23 

qualified as complete tests. 

 

Our Next Highest trajectory fits closest to the 2000 ft block limit for the ENGAGE flights 

so we directly compared our results with the ENGAGE results. It is important to note that 

the 2000 ft block altitude limits of the ENGAGE flights are not the same as adding 2000 ft 

to the base trajectory, so we expected to see a higher fuel burn reduction from our results 

compared to ENGAGE due to higher altitudes of the Next Highest trajectories. Figure 40 

overlays the distribution of our Next Highest fuel reduction over the distribution from 

ENGAGE. 
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Figure 40: Distribution of CEP Next Highest and ENGAGE fuel burn reduction 

 

Our data set falls slightly higher than the ENGAGE results, per our expectations. 

 

As discussed in Section 4.2, BADA overestimates optimal altitude. Because of the altitude 

overestimate, optimal fuel burn is underestimated, leading to an overestimate of fuel burn 

inefficiency. Jensen’s work indicated a fuel burn reduction of about 1.98% when 

optimizing altitude, while our altitude optimization resulted in mean reductions of 4.83% 

and 4.50% for WATRS and CEP respectively. When optimizing for Best Mach, Jensen got 

a reduction of 1.94% and we got 2.11%, indicating that the BADA overestimation affects 

Mach optimization less than altitude optimization.  
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8.2 Future Work 

There are several tasks that would enhance the accuracy of this study. The first would be 

to use a more accurate, and hence more costly, performance model. The (free) BADA 

model overestimates optimal altitude, leading to excessively large altitude inefficiency 

estimates. By contrast, use of the Piano-X model returns optimal altitudes that are closer 

to other studies (Dalmau 2015, Jensen 2011). 

 

Next, the blocking analysis could be improved in several ways. The first would be to 

enhance the separation model from a simple radius check to a rectangular model. This 

would allow different lateral and longitudinal separations to be used in the blocking criteria. 

The usefulness of checking different separations would be to see how often aircraft reach 

different minimums, and if the smaller minimums would increase or decrease inefficiency. 

 

Flights are planned around weather, especially areas with turbulence. Currently, we cannot 

see whether or not deviations from the wind optimal track are made because of track or 

congestion related sources or if they are deviations from bad weather. Flights avoiding bad 

weather will show large inefficiencies which are not directly attributable to the design of 

the airspace. 

 

The BVP4C solver has the capability to handle multistage TPBVPs, implying that we could 

expand the solver to handle changes in altitude or airspeed in the future. This would allow 

us to combine optimal altitudes and speeds with wind optimal tracks to estimate an upper 

limit to total inefficiency. 

 

We have generated hundreds of new optimal flight tracks, but we do not know if the tracks 

would cause an unacceptable increase in the number of traffic conflicts. Grabbe (2007) 

used scheduling algorithms to try and schedule the optimal tracks so that they can be 

deconflicted. Beyond enhancing the results of the current study, we suggest an examination 

of the interactions between wind-optimal tracks in order to assess their feasibility from an 

air traffic control perspective. 
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Once the In Trail Climb procedure is fully implemented, the method defined in this thesis 

may be used to check the effectiveness of the procedure in reducing inefficiency due to 

blocking. 
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APPENDIX A. FLIGHT TRACK SOURCE 

The FlightAware API is named FlightXML2.0 and offers a host of access options for a 

small fee per server query. One of the options provides a snapshot-like search of a user-

defined area, meaning that all flights in the FlightAware database within the search 

parameters are captured and returned at the specific moment the FlightAware database is 

queried. Data is removed from the servers after 24-48 hours so we created a Python script 

to automatically collect data on a schedule. 

 

We defined search parameters by latitude, longitude, and altitude limits and used one 

search region per airspace region. The definitions of the search regions are defined in Table 

13. We set the timing periods for querying the server based on the amount of time it would 

take an average aircraft to traverse an edge of the search region. To capture the correct 

traffic, we set the edges of each search box to contain the routes of the airspace such that 

airways of interest traversed an edge or longer distance. Figure 41 shows the placement of 

the search boxes relative to the airways. 

 

Figure 41: Search Box Locations 
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Table 13: Search Box Definitions 

Region Name Latitude Longitude Altitude Polling 

Period 

WATRS3 20˚N - 38˚N 81˚W - 60˚W Above FL 290 2 hours 

CEP1 25˚N - 34˚N 143˚W - 134˚W Above FL 290 1 hour 

 

After each search call, we transfer the search data into a software queue in addition to 

saving a file copy. We wait 16 hours to ensure all the searched flights have landed, after 

which we pull the data from the queue and poll the server’s GetHistoricalTrack function 

with the flight IDs contained in the queue to obtain a track for each flight. Each flight track 

point contains the data shown in Table 14. 

Table 14: Flight track point data format 

Data Type Description 

Timestamp POSIX timestamp (seconds since 0000 UTC Jan. 1 

1970) 

Latitude Degrees 

Longitude Degrees 

Altitude 
Thousands of ft. 

(Pressure Altitude if above FL180 over USA) 

Groundspeed Knots 

Altitude Status Indicates if climbing or descending 

Update Type Indicates FlightAware’s data source. 

 

.  
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APPENDIX B. WEATHER DATA SOURCE 

Our source for wind data is the Global Forecast System (GFS), a public and free data source 

that generates a gridded forecast and analysis for the entire globe. The National Centers for 

Environmental Prediction host the output from GFS on servers, which include the data 

from the latest run of the model to roughly two weeks before the day of access. Each model 

run outputs a zero-time analysis as well as forecasts for every 3 hours out to 180 hours after 

model runtime. The data is organized in 3-D grids of varying resolution with latitude, 

longitude, and pressure level as the grid axes. 

 

Initially, we chose the 0.5˚x 0.5˚ grid output due to its increased vertical resolution of 47 

pressure layers versus the 0.25˚x 0.25˚ grid with a lower vertical resolution of 26 pressure 

layers. After working with the datasets for some time, we realized we could use the 0.25˚x 

0.25˚ grids by up-sampling and shuffling in the extra vertical layers from the 0.5˚x 0.5˚ 

grids. 

 

The GFS output is provided in a native binary format, GRIB2, so we access the data 

through an external MATLAB module called NCTOOLBOX. To mitigate slow access 

times due to the large file size, we load and shape the data into grids which we use with 

MATLAB’s native griddedInterpolant format, which allows for simple interpolation across 

latitude, longitude, and pressure level. 

 

Aircraft use altimeters that convert pressure into an altitude reading. Indicated altitude 

therefore changes with local atmospheric pressure even when an aircraft maintains a fixed 

geometric height above the surface. For this reason, aircraft are required to set their 

altimeters to a common datum of 29.92 inHg when climbing above 18,000 ft. to maintain 

consistent altitude readings between locally situated aircraft. When altimeters are set to 

29.92 inHg, the indicated altitude is referred to as Pressure Altitude and can be converted 

to atmospheric pressure using (National Weather Service 2016): 
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 𝑃 = 101325𝑒
1

0.190284
ln[1−

ℎ𝑝𝑟𝑒𝑠𝑠
145366.45

]
 (51) 

 

Where ℎ𝑝𝑟𝑒𝑠𝑠 is the pressure altitude in ft. and 𝑃 is the pressure in Pa. 

 

Conversion of altitude to pressure allows us to place flight track points vertically in the 

weather grids, enabling simple interpolation. 
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APPENDIX C. CEP INEFFICIENCY HISTOGRAMS 

 

Figure 42: CEP Global Best inefficiency distribution 

 

Figure 43: CEP Global Best Legal inefficiency distribution 
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Figure 44: CEP Best Altitude inefficiency distribution 

 

Figure 45: CEP Best Legal Altitude inefficiency distribution 
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Figure 46: CEP Best Mach inefficiency distribution 

 

Figure 47: CEP Best Next Highest inefficiency distribution 
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Figure 48: CEP Horizontal inefficiency distribution 
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APPENDIX D. WATRS INEFFICIENCY HISTOGRAMS 

 

Figure 49: WATRS Global Best inefficiency distribution 

 

Figure 50: WATRS Global Best Legal inefficiency distribution 
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Figure 51: WATRS Best Altitude inefficiency distribution 

 

Figure 52: WATRS Best Legal Altitude inefficiency distribution 
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Figure 53: WATRS Best Mach inefficiency distribution 

 

Figure 54: WATRS Best Next Highest inefficiency distribution 



81 

 

Figure 55: WATRS Horizontal inefficiency distribution 
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