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ABSTRACT 

Boschelli, Joshua D., M.S., Purdue University, December 2016. Investigation of Ambient 
Seismic Interferometry in The Midwestern United States. Major Professor: Hersh Gilbert. 
 

 The portion of the North American craton occupied by the central United States is 

a cratonic platform, where a veneer of Phanerozoic sedimentary strata buries the 

Precambrian basement up to 7 km. Due to the sediment cover and low topographic relief, 

the at-depth structure of the region remains poorly understood. This study is focused on 

the crustal structure surrounding the Illinois Basin. This region is of interest because over 

the past half-billion years tectonic forces have resulted in the formation of epeirogenic 

provinces in a stable cratonic interior.  

 Using the OIINK flexible seismic array and the Earthscope Transportable Array, 

Ambient Seismic Noise Tomography was applied to investigate the crustal structure and 

produce high-resolution structural models of the region. For our analysis, we used the 

vertical component of seismograms recorded between January 2011 and December 2014, 

where spurious events were filtered out to establish the background seismic noise of the 

region.  

Seismic observations based on the cross-correlations of seismic noise from 33,679 

station pairs were used to obtain phase velocities at periods from 4 to 40 s. Phase velocity 

anomaly maps show that the Illinois Basin region is represented by a northwest striking 

low-velocity element. In contrast, the areas associated with the Ozark Dome and the 

westernmost portion of Tennessee exhibit high velocity trends. On the other hand, the 

Reelfoot Rift transitions from a low to high velocity element as period length increases. 

The contrast between these elements highlights the complex nature of the lithosphere. 
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The inversion of the phase velocity results produced a 1-D shear wave model, 

with a relatively fast lower crust overlain by a slow upper mantle. The observed high 

shear velocities highlight the possibility of mafic materials being emplaced into the lower 

crust from the nearby Reelfoot Rift. These materials are denser than those normally 

expected isostatic equilibrium, and could lead to the upper crust deforming. This 

deformation combined with the regional stress field would be able to deform the crust 

creating the observable geological features in this region. The most obvious differences 

between the results of this model and those observed in the Midwestern United States by 

previous continental scale experiments are due to the high degree of resolution of this 

study, which greatly improves the understanding of the cratonic geology of the 

Midwestern United States.  
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1.! INTRODUCTION 

 

Surface wave tomography in seismology has generally been restricted to regions 

where either earthquake occurs regularly or seismic activity can be easily recorded. A 

new technique to address these limitations has recently emerged, where the ever-present 

ambient seismic noise is used to investigate subsurface structures at shallow depths and at 

a high degree of resolution in both seismic and aseismic regions. Ambient Noise 

Tomography (“ANT”) correlates the background seismic signal between two receivers to 

extract the response of the Earth’s surface. In seismology, the ambient seismic signal was 

historically thought of as noise that obscured earthquakes and was thoroughly removed. 

However, it has since been shown that the background signal contains information about 

the geological structures through which it travels. By correlating the seismic record 

between two receivers the common characteristics of area are extracted, while the 

spurious signals are negated.  These correlations can be treated as surfaces waves, thus 

expanding a field by using what was traditionally thought of as unwanted signals (Figure 

1.1).
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Noisy waveform

Noisy waveform

Detector

Correlation

u1(t)u2(t + τ) dt = C (τ)

Detector

Figure 1.1 
From Weaver 2005, a cartoon demonstrating how the signal within the Earth’s 

crust can be correlated between two detectors to extract the response of the 

surface.  
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The portion of the North American craton occupied by the central United States is a 

cratonic platform, where a sequence of Phanerozoic sedimentary strata buries the 

Precambrian basement up to 7 km. Due to this sediment cover and low topographic relief, 

the at-depth structure of the region is poorly understood. Of the geological structures that 

are visible within the North American craton, the Illinois basin stands out as one of the 

few observable cratonic basins. The goal of this study is to understand the effect seismic 

waves have on the aseismic Midwestern United States, and to gain information about 

obscured geological structures.  This region is of interest because tectonic forces in the 

past 500 Ma have resulted in the formation of epeirogenic provinces in a stable cratonic 

interior. Using the Ozarks Illinois Indiana Kentucky (“OIINK”) flexible seismic array 

and the Earthscope Transportable Array, seismic ambient noise tomography was applied 

to investigate the crustal structure and produce high-resolution models of the region 

(Figure 1.2). This analysis used the vertical component of seismograms recorded between 

January 2011 and December 2014, where spurious events were filtered out to obtain the 

background seismic noise of the region. 

The basic assumption of ambient noise tomography is that ambient seismic noise 

is composed of randomly distributed wave fields that surround a receiver. A perfectly 

random distribution of the sources of ambient noise would result in symmetric cross-

correlations with equal energy arriving from both the positive and negative lags of the 

two-sided cross-correlation. However, these symmetric waveforms are rarely observed in 

practice, with a significant asymmetry more commonly observed. The asymmetry is 

created from stronger or closer ambient noise sources oriented toward or away from one 

station compared another. To systematically investigate the directions of the incoming 

ambient noise, the azimuthal distribution of the signal-to-noise ratio (“SNR”) for each 

cross-correlation is examined and mapped. The orientation and magnitude of the SNR 

identifies the major sources the ambient noise field, with major peaks lining up with the 

contributors of the ambient noise field. Since the method involves extracting the signal 

from this ambient noise field it is important to understand its source as the region it 

occupies is examined. 
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Figure 2.2 
Seismic station locations across the Midwestern United States. Blue stars represent the 

stations of the USArray Transportable Array. Red squares represent the stations of the 

OIINK Flexible Array. 
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Sedimentary basins surrounded by denser bedrock are strongly affected by the 

ground motion of earthquakes because the energy is trapped and amplified within the 

basin (Anderson et al., 1986). Seismologists have attempted to predict the ground shaking 

of future large earthquakes to gauge both their geological and ecological effects. 

Numerous uncertainties exist in such predictions; the major focus of this study concerns 

uncertainties due to basin amplification. Basin amplification refers to waveforms 

becoming trapped and amplified as they travel within a sedimentary basin. The 

amplification increases the vulnerability of the destructive energies of earthquakes.  The 

ability to identify such an effect is critical to reliable seismic hazard analysis. Since the 

study region is aseismic, using seismic ambient noise allows the control of the disposition 

of virtual seismic sources, and hence the ability to measure the response in areas of 

concern.  

 

Cratonic basins are generally poorly understood, since they represent the 

subsidence of some of the most stable parts of the lithosphere of the Earth. The formation 

mechanisms needed to alter crust that has remained unchanged since its formation in the 

Archean. The stability of the lithosphere also interferes with traditional seismic 

experiments, since only low magnitudes are recorded in their vicinities. Ambient noise 

tomography provides a means to work around this. With the Illinois Basin being in the 

Midwestern United States, an area that is heavily populated and provides significant 

agricultural contributions, the lack of knowledge of its formation is fundamental problem 

that must be addressed. Previous hypothesizes have varied from the subsidence being 

caused by the emplacement of dense mafic materials being emplaced in the lower crust to 

it occurring as a response to lithospheric extension that resulted in crustal thinning. 

Within this study we aim to provide observations that will aid in supporting an unified 

theory on what allowed the cratonic lithosphere to deform, creating the Illinois Basin and 

the adjacent geological features of the Midwestern United States.   
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2.! BACKGROUND 

2.1 The Illinois Basin 

The focus of this study is the application of ANT to the lithosphere of the 

Midwestern United States, centering on the intracratonic Illinois Basin. Cratonic basins 

are locations of prolonged subsidence of the thick continental lithosphere, periodically 

filled with shallow water and deposition of terrestrial sedimentary rocks. They remain 

poorly understood because they form as oval shaped crustal depressions on stable and 

relatively thick continental lithosphere.  During the Phanerozoic, subduction-initiated 

subsidence of the initial proto-Illinois Basin was likely caused by weakening of the 

lithosphere due to extension on its adjacent continental margins. The history of this 

subduction can be divided into two main stages: the subduction of Iapetus oceanic crust 

along the eastern margin during the Paleozoic, and the subduction of Pacific and Farallon 

oceanic crust along the western margin from the late Paleozoic to the Cenozoic (Van der 

Pluijm et al., 1990; McKerrow et al., 1991). With the lithosphere weakened, thermal 

cooling and isostatic adjustments in the crust ultimately caused failed rifts to form in 

adjacent regions, with the surrounding regions experiencing subsidence periodically 

through the Paleozoic. 

The oval-shaped Illinois Basin is approximately 280,000 km2 in area, encompassing 

parts of southern Illinois and Indiana, western Kentucky, Tennessee, and Missouri 

(Figure 2.1). The most significant seismic feature in the southern part of the basin is the 

New Madrid Seismic Zone, consisting of the Reelfoot Rift and Rough Creek Graben. 

Other structures include anticlines, synclines, and monoclines that resulted from regional 

tectonic forces that uplifted and compressed the region. 
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Figure 2.1 

Outline of the major geological features of the Midwestern United States modified 

from Buschbach and Kolata, 1991. The green dashed line represents the 

generalized outline of the Illinois Bain. Other geological features that are 

important to this study include the Reelfoot Rift, the Rough Creek Graben, and the 

Ozark Dome. 
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2.2 The Saint Francois Mountains - Ozark Dome 

 The Saint Francois Mountains in eastern Missouri are the eroded remnants of a 

Proterozoic orogenic belt centered on the structural Ozark Dome. The Saint Francois 

Mountains began to form as an island in the Paleozoic seas surrounded by ancient reef 

complexes. After subsidence, burial, and induration, this terrane became concentration 

points for ore-bearing fluids, which later formed into rich lead-zinc veins that have been 

and continue to be mined today. Uplift related to the Grenville Orogeny and the 

subsequent withdrawal of the seas exposed the newly formed range during the late 

Cambrian and early Ordovician periods.  The limestone and chert layers that underlay the 

area were eroded away, but are still observable in the valley walls and bluffs seen in the 

region today. During the Pennsylvanian, the region was further uplifted as a result of the 

Ouachita Orogeny as South America collided with North America, exposing the range to 

further erosion. The midcontinent has undergone extensive erosion, leaving the Ozark 

dome as an structural remnant. 

 

2.3 The Reelfoot Rift 

The Reelfoot Rift developed during the Late Proterozoic to early Paleozoic. As 

the supercontinent Rodinia began to break up, passive rifting and strike-slip faulting 

weakened the crust allowing the Midcontinent Rift System to form. The Reelfoot Rift 

represents one arm of this failed rift system and extends from east-central Arkansas into 

western Kentucky, abruptly terminating at the Arkansas Transform Fault. Although the 

Reelfoot Rift may once have extended further southwest, thrusting and sedimentation 

associated with the Ouachita Orogeny obliterated any surface expression. In the north, the 

Rift bends eastward merging with the Rough Creek Graben. This area of weakened crust 

is now known as the New Madrid Seismic Zone, which experiences low-level seismic 

events uncommon for the otherwise aseismic midcontinent. The bounding faults of the 

Reelfoot Rift have large normal displacements (Howe 1985; Nelson and Zhang, 1991; 

Parrish and Van Arsdale, 2004). Historically the Reelfoot reverse fault has the greatest 
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seismological hazard potential, due to how the surface deformation of the February 1812 

earthquake occurred (Csontos et al., 2008). The other faults in the area have displaced 

Paleozoic strata and thus have been active during the Phanerozoic (Stark, 1997).    

 

2.4 The Rough Creek Graben 

 Located in southeastern Kentucky, the Rough Creek Graben is a northeast striking, 

70 km wide feature with linear margins (Kane et al., 1981: Hildenbrand, 1985a).  The 

graben itself has an estimated sedimentation depth of roughly 3 km (subsequent igneous 

intrusions have complicated this estimate). The mechanism of formation of the graben 

has been a source of debate, with the geophysical basement that flanks it representing 

different tectonic histories. One hypothesis is that the southeast striking features 

northwest of the graben represent fracture systems in an old metamorphic terrane. 

Hildenbrand, 1985a used this structural system as a basis to propose that the graben 

developed along a shear zone separating contrasting basements.  Nelson and Zhang, 1991 

suggested an alternative mechanism, with the observed change in the rift being due to a 

westward offset in the south-trending Grenville front in central Kentucky. In either case, 

the presence of the graben indicates that tensional forces and crustal extension have 

resulted in prominent structural features in the region.  

2.5 The New Madrid Seismic Zone  

The New Madrid Seismic Zone (NMSZ) spans from southeastern Missouri to 

western Kentucky, covering a large portion of the Midwestern United States. The NMSZ 

has been the subject of increasing interest due to its standing as the largest seismic hazard 

zone east of the Rocky Mountains. This hazard stems from the recognition of a series of 

magnitude 7 to 8 earthquakes in 1811 to 1812, which caused significant damage to the 

area surrounding New Madrid, Missouri (Nuttli, 2009). While typically aseismic, the 

additional presence of nearly-constant low magnitude earthquakes has made the NMSZ a 

focal point for the study of intraplate seismicity. 
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The active faults in the NMSZ are poorly understood because they are not well 

expressed at the surface, with any traces being quickly eroded before they can be 

adequately studied. As previously discussed, the major faults of the area are associated 

with the Reelfoot Rift, which formed during the breakup of the supercontinent Rodinia 

during the Neoproterozoic. The resulting rift system failed to split the continent, but has 

remained as an aulacogen, and likely continues to mechanically weaken the crust. This 

relative weakness allowed the compressive forces affecting the North American Plate to 

reactivate once-extinct faults, making the area prone to earthquakes in spite of it being far 

from the nearest tectonic plate boundary. In addition, heating of the lithosphere may be 

causing basement rocks to behave more plastically, which concentrates the compressive 

stresses within the subsurface and further encourages earthquakes to occur (Figure 2.2).  
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Figure 2.2 
Conceptual geological and seismotectonic model of the New Madrid region, with 

dense mafic bodies being emplaced in the lower crust contributing to the deformation 

of the region. Modified from Braile et al., 1984. 
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2.6 USArray Transportable Array  

Since 2004 the USArray Transportable Array (TA), a set of 400 seismometers, 

has been moved gradually in two-year increments eastwards across the North American 

continent, from the Pacific coast across the Rocky Mountains to the eastern seaboard 

(Figure 2.3). The TA has yielded data that forms the best picture yet of the North 

American part of Earth’s mantle, reaching hundreds of kilometers beneath the ground 

surface. The array has revealed many important geological features of North America, 

such as significant faults in the Pacific Northwest and the hot spot underneath 

Yellowstone National Park in Wyoming. The transportable array is also well-suited to 

detect small earthquakes and map the structure of Earth’s interior beneath North America, 

revealing previously unknown geological features. While the OIINK array provides a 

focused coverage of the study area, the TA provides the spatial coverage needed for this 

study.  
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Figure 2.3 
The distribution of the USArray Transportable Array as it moved across North 

America. Each dot color corresponds to the year of each stage of the 

deployment of the stations.  
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2.7 The OIINK Flexible Array 

 The Ozark Illinois Indiana Kentucky (OIINK) Flexible Array was developed to 

improve our understanding of the regional-scale structures of the North American stable 

interior. The full array is centered on the depocenter of the Illinois Basin and can be 

viewed as a 3-fold oversampling of the USArray. Stage 1 of the deployment was from 

July 2011 to early June 2012 and centered on the Mississippi River Valley region 

between Missouri and Illinois. Phase 2 of the experiment began in early June 2012 and 

continued into the fall of 2013. Phase 3 was positioned in a swath from central Missouri 

to southwestern Indiana, with the removal of the all the stations in 2015. The final 

coverage of the array depended on the positioning of the stations eastward into southern 

Indiana and Kentucky over the Rough Creek Graben and across the Grenville Front. Over 

the four years that the OIINK array was operating, valuable data concerning the cratonic 

nature of the region were collected. The placement and operation of each station were 

made possible through the combination of the work of those involved and the hospitality 

of the landowners in region on whose property the OIINK stations were deployed 

  

2.8 Ambient Noise Tomography 

Recent developments in acoustics (e.g. Weaver and Lobkis, 2001; Derode et al., 

2003) and seismology (Campillo and Paul, 2003) have led to a method to measure the 

elastic response of the Earth by extracting the Green’s Function from the diffuse 

wavefields propagating throughout the surface of the Earth. This low amplitude seismic 

signal is generated from events like waves striking a shoreline and local human activities 

such as farming and commuter traffic. Originally this “ambient noise” was filtered out 

from seismographs because it obscures the records of earthquakes. However, by using the 

coherent signal within this noise, aseismic areas can now be examined and imaged with 

the same methods that rely on earthquake signals. To retrieve the signal, long time series 

are correlated, extracting the response of the surface of the crust between two receivers.  

The resulting cross-correlation has two effects: the common signal is retrieved and 

amplified, while the incoherent energy is deconstructed and removed. By making 

measurements on these signals and using an array of stations for a multitude of ray paths, 



15 

 

a three-dimensional image of the subsurface can be constructed.  This method is known 

as Ambient Noise Tomography (“ANT”), and creates new possibilities in imaging the 

subsurface at different scales and resolutions that traditional passive source tomography 

could not previously obtain.   

 

ANT is built upon how a modal representation of a diffuse wave field inside an 

elastic body can be as expressed as: 

 

θ(x,t) = au(x)e"#$                                (1) 

 

where x is position, t is time, u and µ are the eigenfunctions and eigenfrequencies of the 

Earth, and a is the modal excitation function (Weaver and Lobkis, 2004). A diffuse field 

is constructed from uncorrelated random variables: 

 

< a'a( >*= * γ'(F(/')                (2) 

 

where F(µ) is the spectral energy density.  A large set of these variables is needed to 

ensure that they are indeed random, thus requiring long time frames. The cross-

correlation between the noise fields at locations x and y becomes: 

 

C(x, y, τ) = F(/)u(x)u(y)F / u x u(y)e7"#$           (3) 

 

Expression (3) differs only by an amplitude factor F from an actual Green’s function 

between points x and y. Therefore, the Green’s function between two locations can be 

extracted from the diffuse field with a cross-correlation taken over a sufficiently long 

time, thus forming the fundamental theory of ANT.  

 

Since the beginning of its use in the early 2000’s, ANT has been widely applied to 

both local and regional areas, such as California and the Pacific Northwest (Moschetti et 

al., 2007) and Tibet (Yao et al., 2006). Earlier studies focused on the microseism 
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frequency band below 20 seconds to obtain group velocities (Shapiro et al., 2005). 

Bensen et al., 2005 and 2007 extended the methods to explore longer periods and phase 

velocity calculations. The detailed procedures of data use for ANT have been 

summarized by Bensen et al., 2007 and have become a standard for the field (see Figure 

3.1). This study focuses on the processing of the ambient seismic noise to extract 

Rayleigh waves, the surface waves that include longitudinal and transverse motions, and 

that decrease exponentially in amplitude with increasing depth. Rayleigh wave phase 

velocity generally increases with period because it is sensitive to shear wave velocities at 

approximately one-third of its wavelength, while shear wave velocities largely increase 

with depth.  
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3.! METHODS 

3.1 Data Collection 

The seismic data used in this study are from the OIINK flexible seismic array and 

the Transportable Array (TA) of the USArray, both components of the National Science 

Foundation (“NSF”) EarthScope project. Data collection was done via a combination of 

fieldwork and data requests from the Incorporated Research Institutions for Seismology 

(“IRIS”) consortium. The data consist of daylong records of the vertical component of 

each seismic station. Because the management and storage of the data was a concern, the 

daily record for each station was saved in one-hour segments that could be both easily 

managed and manipulated. A total of 306 stations covered the Midwestern region of the 

United States from January 2011 to December 2015 (Figure 1.2). Due to the timing and 

nature of each array, a number of stations were not operating during the same timeframe 

with the coverage of both arrays moving steadily eastward from 2011 to 2014. 

 

In traditional seismic studies, the quality control of raw seismograms ensures that 

only reliable earthquake traces are used. For ANT, the data quality control procedure is 

more involved due to the dependency of background seismic noise on the signal 

propagating through it, the reliability of the seismograph, and the presence of spurious 

signals. Each of these factors needs to be considered, as hour-long raw seismograms are 

processed into time segments that are ready for the cross-correlation that ANT requires. 

These steps consist of: 1) band-pass filtering the seismograms, 2) removing instrument 

responses, 3) demeaning, detrending, and time-domain normalization, and 4) spectral 

whitening the frequency spectrum of the waveforms (Figure 3.1). The impact of these 

steps has a profound effect on the waveforms and will be examined in the following 

sections. 
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Figure 3.1 

Schematic representation of the data processing scheme for Ambient Noise 

Tomography, from Bensen et. al,. 2007. The overall process is broken down into four 

phases, with the goal of taking seismic noise and producing velocity measurements from 

it.  
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3.2 Temporal Normalization 

Temporal normalization serves to reduce the effects of earthquakes, instrumental 

failure, and nonstationary noise sources near the station on the cross-correlations (Bensen 

et al., 2007). These effects occur irregularly and contribute to spurious signals appearing 

in the cross-correlations, and can lead to inaccurate and unacceptable results. Of these 

signals, earthquakes are the most significant impediments to ANT data processing. While 

large earthquakes can be identified in earthquake catalogs, small earthquakes like those 

observed in the aseismic Midwestern United States are not recorded in the catalogs and 

are difficult to track. Other noise sources, such as pressure drops resulting from changing 

weather conditions, vehicle traffic, machinery, and other anthropogenic signals are 

similarly difficult to identify. These sources create spurious signals that otherwise 

obscure surface waves; removal of these signals is a crucial step in ANT. 

 

While there are a number of methods to temporally normalize the data, this study 

employs the most aggressive method, known as “one-bit” normalization (Figure 3.2), 

which retains only the sign of the raw signal by replacing all positive and negative 

amplitudes with either a positive or negative one. This method has been shown to 

increase the SNR when employed in acoustic experiments in the laboratory (Larose et al., 

2004) and has been used in a number of early seismic studies of coda waves (Yao et al., 

2009) and ambient noise (Campillo and Paul, 2003; Shapiro and Campillo, 2004; 

Shapiro et al., 2005; Yao et al., 2006). With the presence of extensive anthropogenic 

noise, this aggressive approach neutralizes the spurious signals while maintaining the 

ambient signal. 

 

3.3 Spectral Whitening 

 Spectral whitening acts to improve the frequency content of a time domain 

waveform to allow for both easier and accurate dispersion measurements to be obtained. 

Seismic ambient noise is not equally distributed across the frequency domain; rather it 

has peaks near 15 and 7.5 seconds (corresponding to the primary and secondary 

microseisms), and at 240 seconds to form a signal now referred to as “Earth hum” (Rhie 
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and Romanowiez, 2004). These irregularities impede smooth spectral measurement, 

leading to unstable results. Spectral whitening broadens the band of the ambient noise 

signal while also limiting degradation of the signal resulting from persistent 

monochromatic sources (Figure 3.2).  This allows for the range of measurements to be 

expanded past the peaks, opening the spectrum. With an expanded spectrum, 

measurements have an enhanced stability as they resemble a Bessel function for distances 

larger than approximately one fourth a wavelength, which is traditionally observed in 

measured surface waves (Weemstra, 2013).  Spectral whitening acts to improve the 

frequency content of a time domain waveform to allow for both easier and accurate 

dispersion measurements to be obtained.     
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Figure 3.2 

Example of the processing steps needed to go from a raw trace to a measurable 

cross-correlation. A) Raw one-hour seismogram from TA station Q51A. B) Same 

waveform from (A) with the waveform bandpass filtered and spectrally whitened. 

C) The waveform from (B) One-bit time domain normalized, the final step before 

cross-correlation. D) Two-sided time function that results from the correlation of 

a station pair, with both positive and negative lags present. 

A) 

 

 

B) 

 

 

C) 

 

 

D) 
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3.4 Cross-Correlation 

 After the preprocessing of the daily time series, the next step in the data 

processing scheme is to cross-correlate the waveforms. Because the interstation distances 

vary, cross-correlations were performed between all possible station pairs followed by a 

strict quality control step at a later time.  This step produces a total number of station 

pairs following the relation: 

 

N =
'('79)

:
                             (4) 

 

where N is the total number of station pairs and n is the number of stations. From this 

relation, we can expect to obtain tens of thousands of cross-correlations with 306 stations 

producing 33,679 station pairs that were operating at the same time. The data were then 

cross-correlated in incremented steps and the results stacked to obtain a two-sided time 

function (Figure 3.2). The length of the correlation window corresponds directly to the 

interstation distance; to accommodate those in this study 20-minute increments were used.  

 

The two-sided time functions are characterized by having a positive and negative 

time lag, with the lags representing a waveform emanating and being recorded at each 

station in the pair. The positive lag portion of the cross-correlation is sometimes called 

the “causal” signal and the negative lag part of the “acausal” signal (Figure 3.3). If 

sources of the ambient wavefield were distributed homogeneously in azimuth, the causal 

and acausal signals would be symmetrical. However, in this study the waveforms exhibit 

a strong asymmetrical nature, the significance of which will be examined below. 
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Figure 3.3 
The effect of the distribution of the seismic noise has on the symmetrical 

nature of the two-sided time function that result from the cross-correlation of 

time series from two stations. From Stehly et al., 2006. 
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3.5 Waveform Energy Filtering and Stacking 

 Because the signal content of a waveform can change over time due to spurious 

factors, each daily waveform can be expected to vary. This variation must be accounted 

for in order to produce reliable waveforms for further measurement. Stacking the daily 

waveforms usually accomplishes this, where the common characteristics are enhanced 

and incoherent signals are diminished. The first step is to stack all the available data for 

each station pair to construct a baseline waveform. Following from this a secondary 

stacking procedure is conducted that involves computing the cross-correlation coefficient 

between each daily waveform and the results from the primary stacking procedure. This 

procedure is performed to separate the daily waveform that exhibits useful signal from 

that which is obscured by noise. 

 

A range of coefficients to define days of useful data was initially difficult to establish 

due to the presence of spurious signals; values from 0.5 to 1 were eventually determined 

to be reasonable. Regardless, this eliminated noisy days being included in the stack and 

polluting the signal, as well as removed days that are identical to each other (Figure 3.4).  

Expanding the value range would allow more days to be used, but it would also add days 

with spurious signals, thus defeating the purpose of this two-step procedure. The impact 

of this procedure varies between each station pair, with some being affected more than 

others. This processing results in a waveform that exhibits the clearest response of the 

Earth’s surface between two stations. Stacking the daily waveforms over increasingly 

long time-series improves the observed signal and thus the SNR ratio of the waveform 

itself.  

 

 

 

 

 

 

 



25 

 

 

 

 

Figure 3.4 
The daily cross-correlated waveforms of the station pair W46A and W48A over their 

shared operational period and the effect filtering the waveforms has on the them. The 

dark blue sections are times where their data is not available for the station pair. In the 

waveforms, the blue indicates relative lows, while Red indicates relative highs on each 

trace. The left figure represents the stack of all available data, and the right represents the 

stack where individual days without a correlation coefficient less than 0.5 have been 

removed. Below each stack are the waveforms that result from stacking each collection of 

data. 
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3.6 Signal-to-Noise Measurement 

 In the process of producing the clearest signal possible, the SNR was computed 

for each station pair. The first step was to separate the signal from the noise window for 

the cross-correlated waveforms. The signal window with bounds defined by the time it 

would take surface waves to travel at both 2.5 and 4.5 km/sec was identified, with the  

window depending on the distance between each station pair. The noise window follows 

the signal window and is equal in this study.  While this served to measure a subset of the 

station pairs accurately, the methodology of Bensen et al., 2007 was adopted instead, 

where the noise window follows the initial signal window. For the calculations of the 

SNR, the ratio between the root mean square of the signal and noise (Figure 3.5) is used. 

Because the correlated waveforms result in a two-sided time function, the SNR for both 

the causal and acausal lags was computed and the stronger of the two ratios was used to 

represent the SNR of the waveform. 

 

The difference between the two SNR’s further exhibits the asymmetric nature of 

the correlated waveforms in this region. To further constrain which waveforms should be 

used for measurement, a cutoff for the SNR was established.  After trial and error, it was 

found that a waveform with an SNR less than 4 did not have adequate signal strength to 

provide a reliable phase velocity measurement. It is paramount to have a waveform with 

an adequate signal strength, since the entire waveform is utilized during the measurement 

process. With an established benchmark for the appropriate signal strength, the computed 

cross-correlated waveforms can be measured for their associated phase velocities while 

ensuring the reliability of the measurements. For this study, two different methods were 

used to measure for phase velocity, each providing a useful set of measurements to 

examine the Midwestern United States.  
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Figure 3.5 
An example of a cross-correlated waveform from which the signal-to-noise ratio is 

measured from. To calculate the SNR, the root mean square of the signal window is 

divided by the root mean square of the corresponding noise window. The bounds of 

the signal windows are based on a wave traveling between 2.5 and 4.5 km/sec for 

each station pair’s distance from one another. Because phase velocities are measured 

over a wide frequency band, the SNR at each corresponding period is also measured.  
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Figure 3.6 

Four examples of waveforms to demonstrate the importance of having an SNR 

cutoff of 4. The top two waveforms have a low SNR, below 4, making it difficult to 

differentiate between the signal and noise windows, while the signal of the bottom 

two waveforms are clearly present with SNR’s greater than 4.  
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3.7 Spectral Method 

 The first of the two methods used in this study for measuring phase velocities 

follows the work of Aki 1957 as illustrated by Ekström et al., 2009: 

 

ρ(r, ω) = J(r
?

@(?)
)                  (5) 

 

which states that the frequency domain for a station pair separated by a distance r and 

frequency ! varies as J, the Bessel function of the first kind, where c(A) is the phase 

velocity at frequency A . The real parts of the frequency spectra resemble a Bessel 

function, which are the solutions to the Bessel differential equation but are nonsingular at 

the origin. This causes them to have peaks that do not decrease monotonically with 

frequency as expected. Because the amplitudes of the real part of the spectrum depend on 

both the background noise spectrum and nonlinear effects of the data processing, 

dispersion information cannot readily be deciphered from the spectrum. The locations of 

the zero crossings, where the spectrum crosses the frequency axis, are independent of the 

variations in the spectral power of the background noise, and therefore provide a 

reference point for making dispersion observations.  Using this information, equation (5) 

can be modified into: 

 

c(ω) *= *
?C

D
                   (6) 

 

where A denotes the frequency of the observed zero crossing and z denotes the zero 

crossings of the Bessel function. Figure 3.7 displays the locations of the zero crossings of 

the real spectra as points, as a function of frequency and how they can be used to 

construct a dispersion curve. Using these zero crossing points, a reliable dispersion curve 

can be generated from the full trace of the 33,697 station pair waveforms in the study 

over periods ranging between 4 and 40 seconds. Connecting the positive-to-negative zero 

crossings and the negative-to-positive zero crossings generates two separate dispersion 

curves over the frequency range of interest. The differences between each of these curves 

create bounds that can act as a quality criterion for selecting reliable measurements. 
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Figure 3.7 

An example of the Spectral method measuring a station pair KF28-KI43’s phase velocity. 

The top figure represents the waveform in the time domain. The middle figure represents 

the transformed waveform in the frequency domain. The bottom figure represents the 

measured phase velocity dispersion curve.  
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3.8 Frequency Time Analysis Method 

The second measurement method focuses on using the traditional frequency time 

analysis (FTAN).  The FTAN method used here is based on the work of Levshin et al., 

1999, which obtains a measurement on a single waveform and involves significant 

analytical observation. By taking the Fourier transform of a waveform and the 

corresponding inverse Fourier transformation, it is possible to construct a smooth 2-D 

envelope frequency-time function. By analyzing the envelope function, a group velocity 

curve can be measured.  

 

 It is important to note that phase velocities cannot be derived directly from group 

velocities, but group velocities can be computed from phase velocities. To get the desired 

measurements let U = * F?
FG

  and c = ?

G
 be group and phase velocity, respectively, sI =

*U79 and s@ = * c79are likewise the group and phase slowness, with representing k the 

wavenumber. Then using the relation: 

 

sI =
FG

F?
−

F(?KL)

F?
                            (7) 

 

We obtain a first order differential equation relating the group and phase slowness at 

frequency A: 

 
FKL

F?
+ ω79s@ = *ω

79sI                (8) 

 

Therefore if the phase velocity curve c(!) is known, the group velocity curve U(!) can 

be found directly from the above equation. Likewise if the group velocity curve is known, 

this differential equation (7) can be solved to find c(!), which results in: 

 

s@ = sI + ωr 79(φ tI + 2πN −
R

S
)      (9) 
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where N = 0 = 0,*±1,*±2… and φ(tI) is the observed phase velocity at the observed 

group arrival time, tI =
C

U
 , and a phase shift is applied to account for possible 

dependences on the frequency and geographical location. 
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Figure 3.8 

Phase velocity dispersion curve measure though the FTAN method for the 

station pair of KF28 and KI43. The color map corresponds to the confidence 

interval associated with the measurements. The measurements are made by 

filtering and measuring the cross-correlated waveforms. The dashed green 

line represents the raw measurements, and solid blue line the measured 

results smoothened over the period bands.   
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Figure 3.9  
Phase velocity dispersion curves measured though the FTAN and Spectral 

method plotted on top of each other for the station pair of KF28 and KI43. 

Only the measurements that overlap are used for interpretation.  
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3.9 Ray Spatial and Method Comparison 

 Following the measurement process thousands of dispersion curves are obtained 

to ensure that only reliable measurements are used and whether additional quality control 

procedures are needed. Even though certain station pairs passed every error check in the 

measurement process as established by Bensen et al., 2007, they still produce unrealistic 

dispersion curves that would introduce spurious features into the results. While the 

obvious step to address this would be to inspect every dispersion curve for error, the 

sheer number of dispersion curves (over 10,000) makes this step impracticable. Instead 

the phase velocities at each station were compared across all periods. The measurements 

that exceed the standard deviation at each station were removed, ensuring that similar 

velocities are being measured across the array. Figure 3.10 shows the effect of the grid 

comparison and how it eliminates the variability present at each station. Since each 

measurement effects the overall image of the region it covers, it is vitally important to 

only use those that will not introduce spurious results. 

 

Because the phase velocities were measured using both the spectral and FTAN 

methods, two sets of measurements were obtained. Instead of favoring one set over 

another, a third set of measurements based on velocities agreed upon by both the spectral 

and FTAN sets was constructed. The FTAN measurements provide a range for each 

measurement, while the spectral method provides detailed dispersion of measurements. 

Figure 3.11 shows the benefit of using both sets of measurements. The notion of having a 

set of measurements built off two methods ensures the most accurate results possible. A 

range of values was tested allowing the measurements to differ, settling on a difference of 

0.0125 km/sec as a cutoff. This value allows the measurements to be similar, while not 

forcing them to be identical. If the value was any lower, no benefit would be realized 

from this unnecessary working of the data. Following from these processing steps, the 

daily records of 306 stations were processed to obtain numerous and reliable phase 

velocities to examine geological structures of the Midwestern United States.    
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Figure 3.10 
Example of the effect that the ray comparison has on the phase velocity 

measurements. Figures on the right represent all available phase velocity 

measurements, with figures on the left representing the treated measurements. 

Each ray is color coded based on the associated color bar. 
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Figure 3.11  
Example of the effect that the method comparison has on the phase 

velocity measurements. Each figure represents a 2-D phase velocity 

map at 8 seconds from each method used in this study. The maps are 

color coded based on the associated color bar. 
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4.! RESULTS AND DISCUSSION 

Despite variations within the ambient seismic noise field, relative trends in both the 

signal and its contents remain relatively consistent.  These trends are dependent on the 

depths sampled, and so provide crucial information on the crustal structure of the region 

at specific depth intervals. General trends and specific features will be discussed in terms 

of both their relative depth and geographic distribution. Additional results, such as 

animations of surface wave propagating across the array can be found in the appendix 

section of this study. While there are few previous studies to which the results may be 

compared, the data themselves provide a large enough pool of measurements to conduct 

an extensive error analysis.    

 

4.1 Phase Dispersion Curves 

 After completing the processing steps as described above, phase velocity 

dispersion curves from 21,506 station pairs were extracted from the possible 33,679 

within the study area. While previous ANT studies focused on using frequencies less than 

0.1 Hz, the coverage of the combination of the OIINK and TA arrays extended the range 

for this study to 0.25 Hz. Frequencies at this range are sensitive to the variations of earth 

materials from the upper crust to the upper mantle. The average measured phase 

velocities range from ~2.9 km/s at 4 s to ~4 km/s at 40 s. These measurements are faster 

than those observed by regional studies but agree with those measured using earthquake 

surface waves recorded by the OIINK array (Chen et., 2016). The spread of the average 

phase velocities along with the distribution over the period bands are shown in Figure 4.1. 

With over 21,506 unique dispersion curves, this study provides adequate coverage to 

reveal the crustal structure in a large part of the Midwestern United States. 
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Figure 4.1 
The mean phase velocity dispersion curve that results from the processing four years of 

OIINK and TA data. The measurements span from 2.9 km/sec at 4 s to 3.98 km/sec at 40 s. 

The lower figure demonstrates the spread of the measurements, with the greatest number of 

measurements ranging from 10 to 20 seconds.  
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4.2 Comparison Between Spectral and FTAN Measurements  

 Boschi et al., 2013 found consistency between phase velocity measurements made 

from cross-correlated waveforms using both the Spectral and FTAN methods. The 

velocities measured using the FTAN are reliable only for station pairs that are separated 

by at least three wavelengths. The Spectral method, on the other hand, produces 

measurements on station pairs separated by as little as one wavelength and remains 

consistent with pairs that are separated by greater distances. To compare the results of the 

methods, histograms were constructed at each observed period. Measurements were 

further divided into subsets based on their separations r relative to surface wave 

wavelength λ; (1) r > 3λ, (2) 3λ < r < 2λ and (3) 2λ < r < λ. These bounds push the 

respective limitations of either method and provide a base that is suitable for statistical 

comparison. The observed Gaussian distributions in this study are similar to that of 

Boschi et al. 2013, where the mean of differences are close to 0 m/s. This distribution 

extends into higher frequencies where it has been previously unobserved.  

 

 The means of the differences are close to 0 m/s for the cross-correlated 

waveforms in all periods and at all three distance ranges, the largest differences at ~1.2 

m/s for paths with r > 3λ. The standard deviations are about 8 m/s for paths with r > 3 λ 

and decrease to ~4 m/s for the other distance ranges. A systematic trend in standard 

deviation is not observed across any of the periods. These findings are consistent with 

those of Luo et al., 2014; phase velocities measured by both methods indicate that both 

the FTAN and the Spectral methods provide dependable dispersion measurements from 

cross-correlated waveforms with a separation greater than one wavelength.  
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Figure 4.2 
Histograms showing the difference between the Spectral and FTAN phase velocity 

measurements at four period lengths. The mean of differences is consistently close to 0 

km/sec, with the standard deviation remaining consistent across all periods.  



42 

 

Having established the consistency of the two methods, only measurements that 

were generated by both methodologies were used. The largest differences span from 4 s 

to 10 s, which represents not only the sedimentary cover of the craton and upper crust, 

but also the outer edge of FTAN's effective range. From the mid to lower crust (10 s to 25 

s) the difference becomes minimal. In the lower crust and upper mantle, from 25 s to 40 s, 

the differences increase due to the limitations of the Spectral method. Using a 

combination of both measurement methods, a stable set of measurements can be 

established upon which further observations can be made. 

 

4.3 Temporal Variation 

 The study area experiences extreme seasonal variability in temperature, with 

additional variability being introduced from the impact of severe weather such as 

tornados and strong fronts. The daily cross-correlated waveforms of the station pairs were 

originally examined to identify days of noisy data (Figure 3.4). A subset of station pairs 

was identified that exhibited a unique behavior regarding the lack of surface waves 

within either lag of the correlated waveforms. Depending on the time of year, a cross-

correlated waveform would have one or two observable surface waves in their respective 

lags (Figure 4.3).  

 

 Pawlak et al., 2011 observed that the stacks can be divided into two, representing 

the northern hemisphere summer and winter months.  The northern summer is from May 

to September, while the winter is from November to March. The results of this study are 

consistent with the summer months being more azimuthally distributed with a higher 

SNR compared to the winter (Pawlak et al., 2011).  While two distinctive patterns to the 

behavior of the waveforms are observed, the extent exceeds what was observed by 

Pawlak et al., 2011. The cause is likely related to the less dramatic seasonal transition in 

the Midwestern United States compared to that of northern Canada. Therefore the 

observed temporal variation spans two distinctive periods, with the summer months 

spanning February to September and the winter months spanning October to January. 
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Since only a subset of station pairs exhibit this variability in the signal content its 

presence is nominal at best.  
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Figure 4.3 
Example of the signal within the cross-correlations demonstrating a seasonal dependence 

for the station pair of MF14 and T43A based on strength of the amplitudes in either time 

lag. At certain points of the year the amplitudes in either lag vary, identifying a seasonal 

variation to the signal. The Seasonal variation is shown during the winter months, 

October to February, where a single wavefront is observed, while in the summer months, 

March to September both wavefronts are observed. 
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4.4 SNR Frequency and Directionality Dependence 

 As previously discussed, the emergence of Green’s functions from the cross-

correlation of a diffuse wavefield assumes that the sources of the ambient noise field are 

distributed homogeneously. This would produce two equal peaks in either lag of the 

cross-correlated waveform. Inspection reveals a strong asymmetry in which one lag has a 

significantly higher SNR than the other (Figure 3.6). This type of asymmetry is 

characteristic of stationary coastal noise sources (Stehly et al., 2006). While this is to be 

expected with arrays that are located near large bodies of water it stands out in the 

Midwestern United States as an anomaly.  

 

A similar trend is apparent when measuring the SNR of the waveforms. In order 

to remove bias from the results, the SNR is normalized by the square root of the station 

separation. The results, shown in Figure 4.4, demonstrate a frequency dependence to the 

SNR, with the signal strength decreasing with greater period length. The short periods 

(<20 s) are referred to as microseisms composed of the primary (10-20 s) and secondary 

(5-10s) microseism bands (Stehly et al., 2006). The primary band is believed to be 

associated with oceanic swells interacting with oceanic shoals (Capon, 1973), while the 

secondary band represents the nonlinear interaction of P waves as they travel in opposing 

directions with similar frequencies (Stehly et al., 2006). The frequency dependence of the 

SNR can also viewed through an animation, shown in Figure A.1, where the wave peaks 

are visible at the short periods and difficult to distinguish at greater period lengths. The 

asymmetrical nature and frequency content of the waveforms demonstrates how the 

energy generated from either coast easily travels into and affects the aseismic continental 

interior. 

 

While the waveforms provided information about the content of their signal, 

directionality of the SNR can provide the source of the signal. Rose diagrams of the SNR 

were constructed for the overall array coverage using both the causal and acausal 

components of the cross-correlation (Figure 4.5). The majority of the signal can be traced 

to the coastal regions associated with Pacific and Atlantic oceans. The simplest 
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explanation for this is that the signal originating from either coast is enough to mask what 

little signal would travel from north or south of the array.  The source of the ambient 

noise field further demonstrates how the pelagic sources that flank the Midwestern 

United States modify both the signal of the ambient noise field of the region.   
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Figure 4.4 

The SNR for each station pair plotted with their respective station pair distances. Each 

color represents a different period length. A correlation between the strength of the signal 

and the separation of the station pairs is clear. The signal is stronger for station pairs that 

are closer, since the energy of the waveforms has not dispersed. The SNR has been 

normalized by 1/r, where r represents the station pair distance.  
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Figure 4.5 

Rose plots of the SNR of the causal and acausal parts of the cross-correlated waveforms 

at 5 to 30 seconds, with a map of continental North America. The strong indicators in 

the eastern and western sections point to a pelagic source to the noise field. 
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4.5 Basin Amplification  

 By measuring the SNR at each period, geographical trends of the signal strength 

can be observed as a function of period length. Figure 4.6 shows examples of the ray 

paths between station pairs, with shading based on their SNR value. Since plotting every 

possible ray path would obscure any observable trend, only a subset of the ray paths was 

plotted.  For the periods sensitive to the upper crust (< 15 s), the ray paths traveling 

through the Illinois Basin tend to be high compared to the mean SNR.  Conversely the 

ray paths traveling along the margins of the basin exhibit a low trend. As period length 

increases these trends break down, with no observable trends present.  This difference 

identifies a strong heterogeneity in the upper crust that transitions into more homogeneity 

at greater depth. Using the SNR as a proxy for signal strength and accounting for 

spurious ray paths, it is possible to observe how the Illinois Basin amplifies the seismic 

signal that travels through it. 
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Figure 4.6 

Ray paths for a subset of station pairs from 5 to 30 s. Each path is shaded based on their 

respective SNR. At shorter periods the area of the Illinois basin has a higher SNR 

compared to the regions surrounding it. At periods, longer than 20 s the signal of basin 

diminishes, suggesting a homogeneity to the strength of the signal.  

5 Seconds

SNR

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

42

 
40

38

36

34

42

 
40

38

36

34

       5             10            1 5 20    25       30          35            40  45     50

10 Seconds

SNR

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

42

 
40

38

36

34

42

 
40

38

36

34

        5                10               15          20               25       30             35     40  

15 Seconds

SNR

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

42

 
40

38

36

34

42

 
40

38

36

34

       5                       10                        15                   20                   25                   30       

20 Seconds

SNR

42

 
40

38

36

34

42

 
40

38

36

34

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

       0                           5                              10                 15                     20               25   

25 Seconds

SNR

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

42

 
40

38

36

34

42

 
40

38

36

34

       5                                                                                  10                                  

30 Seconds

SNR

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

    -98       -96         -94         -92          -90           -88          -86         -84          -82           -80     

42

 
40

38

36

34

42

 
40

38

36

34

       0                                                                            5            10                                  



51 

 

4.6 Phase Velocity Maps 

 After obtaining phase velocity dispersions curves from all possible station pairs, 

the next step was to develop two-dimensional phase velocity maps. The numbers of ray 

paths for the different periods range from a high of 5,314 at 10 s, to a low of 320 at 30 s.  

The number of ray paths increases from 4s to 10s and decreases from 10 s to 30 s, 

establishing the best resolution centered at 10 s. Across all periods high resolution can be 

expected in the Illinois Basin, however at longer periods the structures are not well 

defined due to the paucity of measurements. Figure 4.7 demonstrates the difference in the 

coverage across the periods, with the densest coverage occurring from 9 to 20 s. The lack 

of measurements at either end of the measurement range results from the limitations of 

the measurement methods and the content of the signal within the region, both of which 

have been previously discussed. In any case, the overall coverage provides an adequate 

foundation upon which to examine the mid-crustal structural geology of the study region.  

 

The Rayleigh wave phase velocity measurements at all station pairs are inverted 

for 2-D phase velocity maps on a grid of 0.5 by 0.5 using the method of Barmin et al., 

2001, Figure 4.10 and 4.11. The maps represent the observed behavior the material of the 

region at different period lengths. This method is based on minimizing a penalty function 

composed of a linear combination of data misfit, model smoothness and the perturbation 

of a reference model for isotropic wave speed (Yang et al., 2007). The features of the 

maps vary with each period due to the frequency dependence of the depth sensitivity of 

Rayleigh waves, which is ⅓ of its wavelength. To quantify the best damping value to use 

for the study area, the work of Ward et al., 2013 was followed to calculate the roughness 

of the model.  The roughness is defined as: 

 

   

 

Where V is the roughness, W is the damping value, X is the latitude in degrees, Y is the 

longitude in degrees, Z*is the phase velocity in km/s and [*is the period in seconds (Ward 

et al., 2013).  

(10) 
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Figure 4.7 

Ray coverage across periods 5, 10, 15, 20, 25, and 30 s. Black ray lines define the 

coverage and blue triangles represent the corresponding seismic stations at each period, 

with the densest coverage from 10 to 20 s.  
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Figure 4.8 
Plot of mean roughness versus damping values used in the 2-D phase velocity inversion. Top 

figures show the trend of the roughness as function of the damping value. The bottom figure 

demonstrates the roughness as a function of grid points.  
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Figure 4.9 

Examples of the effect of the damping factor alpha has on the 2-D inversion of the phase 

velocity measurements at 7 s. As the amount of damping increases the overall map 

becomes clearer, however too much will over simplify the results. 



55 

 

The purpose of the roughness is to gauge the average rate of change in velocity 

between periods for a phase velocity profile as a function of the damping value used in 

the inversion.  The mean roughness value has no true physical meaning, however a plot 

of the mean roughness value as a function of the corresponding damping value provides a 

quantitative measure of the effect the damping value has on the 2-D inversion maps 

(Figure 4.8). Each point of the resulting curve demonstrates the overall transition across 

each measured period at the corresponding damping value. As the damping values 

increase the overall roughness drops. While this does eliminate anomalies in the maps, 

making them easier to interpret, it can lead to results that are over simplified and 

misrepresent the data. The slope of the curve representing the transition from 

underdamped, with measurements changing rapidly, to overdamped, where 

measurements are forced to be similar. The goal is to find a roughness value that results 

in  stability between the periods while not overly damping the data. Through this method 

a damping value of 225 was found to be preferred due to its measured roughness equaling 

the overserved mean.   
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Missouri Gravity Low

Figure 4.10 

Phase velocity anomaly tomography maps from ambient seismic noise using data from the 

OIINK and USArray in the Midwestern United States from 7 to 15 s, which are sensitive to 

shear wave velocities in the upper to mid-crust. Figures on the left represent the phase 

velocity maps, with the figures on the right representing horizontal resolution. The 

geological structures of the region are outlined on the figures to the left.  
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Figure 4.11 

Phase velocity anomaly tomography maps from ambient seismic noise using data from the 

OIINK and USArray in the Midwestern United States from 20 to 30 seconds, which are 

sensitive to shear wave velocities in the mid to lower crust. Figures on the left represent the 

phase velocity maps, with the figures on the right representing horizontal resolution. The 

geologicl structures of the region are outlined on the figures to the left. 
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Figure 4.12  

From McGlannan et al., 2015, The top figure represents the measured crustal thickness of the 

Midwestern United States and the bottom figure shows the measured Bouguer gravity.  
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For periods that are most sensitive to the upper crust (< 15 seconds), the region 

within the Illinois Basin appears as a conspicuous, low-velocity element that strikes 

northwest.  In contrast, the areas associated with the Ozark Dome and the western edge of 

Tennessee exhibit high-velocity trends.  The Reelfoot Rift is represented by a low-

velocity that increases in velocity as period length increases. Other features observable 

with this methodology include a high-velocity element located in central Ohio, which 

lines up with the Kankankee Arch, and a consistent low-velocity trend the closely 

correlates with the Rough Creek Graben. For increasing periods above 15 s, both the low- 

and high-velocity anomalies increase with size and demonstrate a strong northwest strike. 

The lack of ray paths at the longer periods (> 30 seconds) reduces the reliability of these 

anomalies compared to those observed at the shorter periods.   

 

 Strong contrast between anomalies points to key crustal differences in this 

portion of the North American craton. The majority of the slow velocities are observed in 

the eastern edge of the study area, likely corresponding to areas of thicker crust. In areas 

to the west, higher velocities could be caused by a closer proximity to mantle materials. 

One mechanism for the proximity of these anomalies could be melt from the mantle 

causing altering the crust, causing it sink and thereby expanding its presence to the longer 

period observed. When compared to crustal thicknesses calculated from gravity 

measurements the observed velocity anomalies demonstrate a strong correlation. The 

thickest section of crust observed within Illinois Basin corresponds well with the 

observed low velocity anomaly observed at the shorter periods (< 15 s). The overlapping 

of these observations and the Illinois Basin’s velocity variation suggests that the basin 

cannot be characterized by a single crustal structure. The New Madrid Seismic Zone lies 

on relatively thin 40 km thick crust, while the Ozark Plateau represents some of the 

thickest crust in the Midwestern United States (McGlannan et al., 2016).  With the 

Reelfoot rift transitioning from a slow to fast anomaly as period length increases and the 

Ozark Plateau remains relatively fast. It is possible that magmatic underplating from the 

rift has emplaced mafic materials in the crust flanking the Illinois Basin. This would 

explain the thick crust and relatively fast velocities on the western edge of the basin, and 
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the rift’s transition from a slow to fast anomaly as the warm mantle interacted with the 

cooler crust. This alteration could be the cause of deformation ultimately leading to 

subsidence of the cratonic lithosphere that formed the Illinois Basin. To examine this 

further the measured depth-sensitive phase velocities must be inverted to solve for shear 

velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

 

0 5 10 15 20 25 30 35 40 45
Period (sec)

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Ph
as

e 
Ve

lo
ci

ty
 (k

m
/s

ec
)

Input
Model Results

Figure 4.13 

Regional average dispersion of the phase velocities spanning from 4 to 40 s. The input is the 

average dispersion curve resulting from inversion of the unique 21,506 dispersion curves 

with the error bars corresponding to the observed standard deviations of the phase velocities.  
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4.7 1-D Shear Velocity Profile 

  As an outgrowth of the 2-D inversion of the 21,506 dispersion curves, the 

average phase velocities at each period were used to construct a 1-D shear wave model of 

the Midwestern United States (Figure 4.13). The methods of Hermann, 2013 were used to 

invert for the 1-D shear velocity structure at each grid point by adjusting an initial 

velocity model to minimize the misfit between its predicted dispersion curve and the 

curve observed at each grid point (Saito, 1988). We used a reference velocity profile 

based on the ak135 model (Kennett et al., 1995) for the shear wave inversion to have an 

established reference point. Two experiments were conducted on the starting velocity 

model to test the sensitivity of the inversion and the appropriate level of damping on the 

resulting shear velocity structure. The first set focused on the appropriate amount of 

damping to apply during the inversion (Figure 4.14). For the second set, the starting 

velocity of the input model was varied in increments of 0.2 km/sec to test the stability of 

the resulting models (Figure 4.15).  

 

 By varying the amount of damping applied we are able to establish a 1-D shear 

profile that accurately represents the data, while not being overly biased towards the input 

model. The level of damping applied varied from .01 to 1, representing a range from very 

low to very high damping.  To establish the appropriate level, the dispersion of the input 

phase velocities was compared to those resulting from the inversion; a damping factor of 

0.06 was established as the appropriate level for the inversion process (Figure 4.14).  

Varying the starting velocity of the 1-D model the stability of resulting shear wave model 

was then tested (Figure 4.15).  It was observed that the starting velocity does not 

influence the resulting shear wave model, as all the results overlap. The results of these 

tests indicate the level of sensitivity of the inversion, and the appropriate level of 

damping needed to be applied as the measured phase velocities are inverted to shear 

velocities. 
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Figure 4.14 
The initial and resulting average 1-D shear model based on averaging together all the points 

across the 0.1° x 0.1° grid of the 2-D phase velocity inversions.  
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Figure 4.15 
Dispersion of phase velocities from 4 to 40 s measured after the 1-D shear wave inversion. 

Average phase velocities from the inversion of 21,506 dispersion curves are shown in black. 

Phase velocities with different amounts of damping applied during the inversion are color 

coded.  
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Figure 4.16 
1-D shear models testing the input velocity during the 2-D inversion of the phase velocities 

from the ANT study at point [39.0, -90.0]. The results of each crustal model overlap one 

another demonstrating the overall stability of the results. 
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The average shear wave velocity in the upper crust was found to be approximately 

~3.5 km/sec, which is similar to those observed in the ak135 model (Kennett et al., 1995) 

(Figure 4.13).  Within the lower crust, from 20 to 35 km, the observed velocities are ~0.2 

km/sec faster those seen in the ak135 model. In the upper mantle the velocities increase 

to ~4.3 km/sec, which is slower than those previously observed for upper mantle of this 

area, but is likely due drop off of measurements and sensitivity of our longer period phase 

velocity measurements (Chen et al., 2016). It is also worth noting that at ~4.25 km/sec, 

these velocities are slower than those predicted by the ak135 model. At greater depths, > 

78 km, the velocities increase to be above 4.6 km/sec. At depths greater than these, the 

sensitivity of the short period phase velocities used here are too low for further 

consideration.  

 

The increased velocity of the lower crust, shows that it has been altered. Possible 

causes for the velocity anomalies observed are heterogeneities in temperature, 

composition, water content, or a combination of the three (Al-Shukri et al., 1987, Bear et 

al., 1997, Braile et al., 1986, and Chen et al., 2016).  With the observed high shear 

velocities, it is possible that mafic materials have been emplaced into the lower crust. 

With these materials being denser than those normally expected isostatic equilibrium 

would lead to the upper crust deforming. This deformation along with the regional stress 

field would be able to deform the crust creating the observable geological features in this 

region. The relatively slow upper mantle is indicative of rifting, where the mantle is 

warmer than expected leading to a reduction in the observed shear velocity (West et al., 

2003). However, the Reelfoot Rift’s thermal anomaly has had ample time to disparate, 

and its effects cannot completely explain the velocity reduction. Instead a combination of 

heterogeneities in temperature, composition and water content have been proposed to 

cause the shear velocities to be reduced in the mantle, which can all be introduced by 

rifting (Chen et al., 2016). Connecting the slow upper mantle with a fast-lower crust 

argues rifting and subsequent migration of melt into lower crust played a significant role 

in geological development of the region. The differences between this model and that 

observed in the Midwestern United States by Bensen et al., 2009 likely results from our 
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focus on a particularly anomalous region.  Further investigation of the structure at depth 

will improve our understanding of the development of the regional geological structures.  
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5.! SUMMARY 

This high-resolution study of surface wave dispersion using ambient seismic noise 

tomography on a combination of the OIINK flexible seismic array and the Transportable 

Array (TA) of the USArray produced insight into the subsurface geologic structures in 

the Midwestern United States. A total of 306 broadband seismic stations were used, with 

data coverage spanning from January 2011 to December 2014. By correlating four years 

of the vertical component of the available seismograms in 20 minute increments, 

Rayleigh wave phase velocity dispersion curves spanning from 4 to 40 s were obtained. 

Further analysis of the correlated data revealed geologic and seismic characteristics of the 

region, including potential sources of the ambient noise field and factors influencing its 

signal content.  

 

During the measurement process, the components of the physical characteristics 

of signal within the ambient noise were identified. The majority of the noise signal can be 

traced to the coastal regions associated with Pacific and Atlantic oceans.  The data 

suggest that the signal originating from either coast is enough to mask what little signal 

would travel from the north or the south of the array.  Additionally, the variability of the 

weather in the Midwestern United States does not affect its ambient noise field. The 

source and behavior of the ambient noise field is strongly modified by the geological 

processes that flank the Midwestern United States.  

 

By inverting the dispersion curves 2-D phase velocity maps at 4 s to 40 s were 

developed. While these results are not sensitive to the structure at depth, they reveal the 

basic structural characteristics of the region. A concentration of low phase velocities 

corresponding to areas of thicker crust in Illinois 
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and Indiana is also observed, coincident with the Illinois Basin. With the Reelfoot Rift 

and Rough Creek Graben being located in zones of high phase velocities, a close 

proximity to mantle materials can be inferred. When compared to measured crustal 

thickness, the notion of magmatic underplating becomes a possibility. The thicker crust 

and relatively fast velocities on the Ozark Plateau, and the Reelfoot Rift’s transition from 

a slow to fast anomaly as the warm mantle material interacts with a thinned crust 

suggests the two are closely related. This alteration could be the cause of the deformation 

that would lead to the subsidence of the cratonic lithosphere as it equilibrates with the 

mantle material beneath it. While this would thicken some regions of the crust, it would 

also allow the Illinois Basin to form as the surrounding crust is pulled down around it. 

 

With the phase velocity data, 1-D shear-wave profiles were constructed that 

further illustrate the complex geological structures of the region. The 1-D shear velocity 

profile demonstrates how the lithosphere of the Midwestern United States differs from 

the average crustal ak135 model, where shear velocity increases with depth. The relative 

high and low velocities of the lower crust and upper mantle suggest that warm material, 

possibly from rifting, has been transmitted into and fundamentally altered the crust. With 

the crust altered, the strong cratonic lithosphere would be susceptible to deformation, 

possibly explaining the subsidence of the Illinois Basin within cratonic crust. These 

observations broadly agree with those proposed by Braile et al., 1986, where dense mafic 

bodies have been emplaced and subsequently lead to the deformation of cratonic crust. 

While the 1-D model suggests only a general trend, it corroborates previous work seeking 

to understand the structural framework of the Midwestern United States. It is likely that 

the failed Reelfoot Rift was instrumental in the development of the Illinois Basin.  
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APPENDIX 

 

 The following MATLAB scripts were used to process seismic data stored in 

SEED file formatting for the above ambient noise study. Of the included scripts, only 

those used during the Spectral method are unique to this study. Those used during the 

FTAN method and Shear wave inversion are available from the following sources. 

 

•! FTAN analysis of ambient noise cross-correlation: available from Colorado 

University at http://ciei.colorado.edu/Products/ 

•! Computer Programs in Seismology.  A description of the programs can be 

followed from: 

o! Herrmann, R. B. (2013) Computer programs in seismology: An evolving 
tool for instruction and research, Seism. Res. Lettr. 84, 1081-1088, 
doi:10.1785/0220110096 
 

o! Software package can be found at http://www.eas.slu.edu/eqc/eqccps.html 
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1.! run_step_n.bash 

#!/bin/bash 
#Just a wrapper for step_1.m and step_2.m to avoid memory problems with extended 
matlab runs.  Adjust parameters and maybe numdays (number of days to process before 
restarting matlab). 
######################## 
#PARAMETERS to be set  # 
######################## 
component=LHZ 
# Format is from number of days the will be processed, again day 0 is the first day of data 
startmonth=0 
endmonth=100 
year=2011 
##################### 
#END PARAMETERS # 
##################### 
if [ $# -ne 2 ] 
then 
        echo "Usage: $0 {full_input_db_path} {output-dir}" 
        echo "    on taupo, a good DB for CAFE can be found at:" 
        echo '    /Users/jcalkins/CAFE/DB/cafplusLH_07only' 
        echo "    on josh's laptop, a good DB for CAFE can be found at:" 
        echo '    /Users/jcalkins/Research/Cafe/DB/cafplusLH' 
        exit 1 
fi 
yrepochsec=`TZ=UTC date --date="$year-01-01 05:00:00" +%s` 
echo "yrepochsec is " $yrepochsec 
db_path=$1 
outdir=$2 
numdays=0 
iterdays=$(( $numdays + 1 )) 
mfile=step_1 
#mfile=step_2 
echo starting at `date` 
[ ! -d $outdir ] && mkdir $outdir 
cd $outdir 
for (( i=$startmonth; i<=$endmonth; i++ )) 
  do 
  startday=$(( $i * $iterdays )) 
  export MNBSJDAY=$startday 
  export MNBNUMDAYS=$numdays 
  export MNBCOMPONENT=$component 
  export YREPOCHSEC=$yrepochsec 
  export MNDB=$db_path 
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  #DEBUG 
  echo -e "\n\nRunning $mfile with following env vars:" 
  echo "     MNBSJDAY --- $startday" 
  echo "     MNBNUMDAYS --- $numdays" 
  echo "     MNBCOMPONENT --- $component" 
  echo "     YREPOCHSEC --- $yrepochsec" 
  echo -e "     MNDB --- $db_path\n\n" 
mkdir $i 
cd $i 
  matlab -r $mfile 
cd .. 
done 
cd ../ 
echo end 
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2.! step_1.m 

%Step 1 of the ambient noise processing code, as used by Josh Boschelli. This is run by 
the bash script run_step_n.bash. Saves antelope data into .mat format 
clear all; %removes any variables that might exist% 
setup 
%Connects antelope with MATLAB, depending on what the version of antelope that is 
being used a specific version of MATLAB might be needed. 
stations={'BLO' }; 
preproc_total=zeros(length(stations),24,3600); 
%creates a data base where all the data is saved. It is in the form of stations x n hour x 
mins in n hour 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%              Data Input from Wrapper               %% 
%%                                                                       %% 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
start_julday=getenv('MNBSJDAY');start_julday=str2num(start_julday);  
%The start of data sample range. 
numdays=getenv('MNBNUMDAYS');numdays=str2num(numdays); 
%The number of days that are being processed. 
component=getenv('MNBCOMPONENT'); 
%The component of the seismic data. 
yrepochsec=getenv('YREPOCHSEC');yrepochsec=str2num(yrepochsec); 
%The length of the data window. 
full_db_path=getenv('MNDB');%The path to the antelope dbe. 
  if exist('start_julday')~=1; 
        disp('FATAL ERROR: start_julday not defined.  Exiting'); 
        return 
  end 
  if exist('component')~=1; 
        disp('FATAL ERROR: component not defined.  Exiting'); 
        return 
  end 
  if exist('numdays')~=1; 
        disp('FATAL ERROR: numdays not defined.  Exiting'); 
        return 
  end 
  if exist('yrepochsec')~=1; 
        disp('FATAL ERROR: yrepochsec not defined.  Exiting'); 
        return 
  end 
  if exist('full_db_path')~=1; 
        disp('FATAL ERROR: full_db_path not defined.  Exiting'); 
        return 
  end 
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  ts= yrepochsec+(86400*(start_julday-1));%the time step, currently one day in terms of 
seconds 
  db=dbopen(full_db_path,'r'); %opens the database path 
  kdayall=1; 
dt=1; %data sample interval 
npoles=5; % strength of filters 
hi_corner=0.3; %filter corners in Hz 
lo_corner=0.003; 
fullwin_len=86400; %length of window to preprocess 
procwin_len=3600; %for outer time loop length 
xwin_len=1200; 
filt_flag=1;       % make sure to have this on! 
rminst_flag=0;     % remove instrument -- not necessary if whitening 
whiten_flag=0; 
savepref='raw_Day_data';   % prefix for outputs  
%%%%%%%%%%%%%%%%%%% 
%         End parameters to be set    %% 
%%%%%%%%%%%%%%%%%%% 
ts0=ts; 
samprate=1/dt; 
nyq=0.5/dt; 
wn=[lo_corner/nyq, hi_corner/nyq]; 
[B,A]=butter(npoles,wn); 
%Window & sample specifics 
nproc_wins=floor(fullwin_len/procwin_len); 
proc_win_samps=floor(procwin_len*samprate); 
fflen=2^(nextpow2(procwin_len)+1); 
%Strings for plot labels & filenames 
procs='Processes: '; 
if (rminst_flag==1), procs=[procs,'RMINST ']; end; 
if (filt_flag==1), procs=[procs,'FILT ']; end; 
procs=sprintf('%s PW %d XW %d',procs,procwin_len, xwin_len); 
%%%%%%%%%%%%%%%%%%%%%%%% Antelope 
Commands%%%%%%%%%%%%%%%%%%%%%%%%%% 
db=dbopen(full_db_path,'r'); 
dbwf=dblookup_table(db,'wfdisc'); 
subsetcomp=sprintf('chan=~/%s/',component); 
dbwf=dbsubset(dbwf,subsetcomp); 
dbsi=dblookup_table(db,'site'); 
 %%%db queries that only need to be done once per stn 
 slats=zeros(1,length(stations)); slons=zeros(1,length(stations)); %gather stn info 
 ind=1; 
 for stnind1=1:length(stations)-1 
   for stnind2=stnind1+1:length(stations) 
     stnpair_labels(ind)=strcat(stations(stnind1),'-',stations(stnind2)); 
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     [stnpair_dist(ind), 
stnpair_az(ind)]=distance(slats(stnind1),slons(stnind1),slats(stnind2),slons(stnind2)); 
     ind=ind+1; 
   end 
 end 
  %Calculate instrument response corrections once and assume the instruments don't 
change 
 if (rminst_flag==1) 
    dbsen=dblookup_table(db,'sensor'); 
    dbin=dblookup_table(db,'instrument'); 
    dbsnin=dbjoin(dbsen,dbin); 

resp=zeros(length(stations),fflen); 
    dtr=zeros(length(stations),1); 
    for ind=1:length(stations) 
      thisstn=char(stations(ind)); 
      [resp(ind,:) dtr(ind,:)]=calcinstresp(dbsnin,thisstn,'LHZ',-1, fflen, lo_corner); 
    end 
 end 
 %%%%%%%%%%%%% 
 %         Preprocess         % 
 %%%%%%%%%%%%% 
 daycntr=0; 
 i=1; 
 %Create an index with dimensions (number of stations x number of proc_wins x number 
of days ) 
 % into kdayall. i.e., good_data_ind(:,:,1) corresponds to the day in kdayall(1), 
 good_data_ind=zeros(length(stations),nproc_wins,length(kdayall)); 
 juldayindex=zeros(length(kdayall),1); 
 iii = 0; 
 for kday=kdayall% LOOP Over 1-day segments  
    savepref=sprintf('Raw_TA_Day_data_%i',kday);   % prefix for outputs  
    daycntr=daycntr+1; 
    %Create a data array for all procwins, all stations, this kday 
    preproc_data=zeros(length(stations),nproc_wins,procwin_len); 
    ts=ts0+86400*kday;    % start 
    julday=yearday(ts); 
    juldayindex(i,1)=julday; 
    i=i+1; 
    te=ts+fullwin_len; 
    for stncntr=1:length(stations)  %%Begin loop through stations 
       thisstn=char(stations(stncntr)); 
       disp(sprintf('Preprocessing station %s for day %d',thisstn,julday)); 
        substr1=sprintf('(wfdisc.time <= %d && wfdisc.endtime > %d && sta =~/%s/) 
||(wfdisc.time > %d && wfdisc.time <%d && sta =~/%s/)',ts,ts,thisstn,ts,te,thisstn); 
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       dbtr1=dbsubset(dbwf,substr1); 
       if (dbquery(dbtr1,'dbRECORD_COUNT'))==0 
        disp(sprintf('NO DATA for stn: %s day: %s',thisstn,strdate(ts))); 
         preproc_data(stncntr,:,:)=NaN; 
continue; 
       end 
       %%%%Read full window from DB 
       trptr1=trload_css(dbtr1,ts,te); 
       trsplice(trptr1,50); 
       if (dbnrecs(trptr1)~=1) 
           disp(sprintf('day: %d %s stn: %s MULTIPLE TRACES',julday,strdate(ts),thisstn)); 
          good_data_ind(stncntr,:,daycntr)=0; 
          preproc_data(stncntr,:,:)=NaN; 
           trdestroy(trptr1); 
           continue; 
       end 
       [tim1 nsmp1]=dbgetv(trptr1,'time','nsamp'); 
       if (nsmp1 < (fullwin_len) || abs(tim1-ts)>dt) 
           disp(sprintf('day: %d %s stn %s SHORT TRACE or START TIME MISMATCH: 
length= %d, ts=%d, tim1=%d',... 
               julday,strdate(tim1),thisstn,nsmp1,ts,tim1)); 
          good_data_ind(stncntr,:,daycntr)=0; 
          preproc_data(stncntr,:,:)=NaN; 
           trdestroy(trptr1); 
          continue; 
       end 
       rawtr1=trextract_data(trptr1); 
       trdestroy(trptr1); 
       fullwin1=rawtr1; 
       for nouter=0:nproc_wins-1 
         proc_win1=fullwin1(1+(nouter*procwin_len):(nouter*procwin_len)+procwin_len); 
         proc_win1=detrend(proc_win1); 
         if rminst_flag==1 
           f1=fft(proc_win1,fflen); 
           if rminst_flag==1 
               f1=f1.*resp(stncntr,:)'; 
               if (abs(dt-dtr(stncntr))/dt > 1.e-4) 
                   disp(sprintf('Instrument response dt mismatch %s',thisstn)); 
                   return; 
               end 
           end 
          proc_win1=ifft(f1); 
 proc_win1=real(proc_win1(1:proc_win_samps)); 
          proc_win1=taper10(real(proc_win1(1:proc_win_samps))); 
         end 
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         if filt_flag==1 
            proc_win1=filtfilt(B,A,proc_win1); 
         end 
       preproc_data(stncntr,nouter+1,:)=proc_win1; 
       preproc_total(stncntr,nouter+1,:)=proc_win1; 
       end 
    end 
     clear preproc_data rawtr1 ta1 proc_win1 henv fullwin1 f1 stncntr; 
 end 
eval(['save ', savepref, '.mat preproc_total stations juldayindex  stnpair_labels wn dt ts']); 
 clear preproc_data rawtr1 ta1 proc_win1 henv fullwin1 f1 stncntr; 
dbclose(db); 
  quit 
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3.! step_2.m 

%Step 2 of the ambient noise processing code, as used by Josh Boschelli. This can be run 
by the bash script run_step_2.bash. 
%Data is cross-correlated and saved in day by day step, doesn't require a connection to 
antelope  
%Modified from matnoise_v3_batch.m by Josh Calkins, and Geoff Abers 
clear all 
start_julday=getenv('MNBSJDAY');start_julday=str2num(start_julday);day=start_julday; 
numdays=getenv('MNBNUMDAYS');numdays=str2num(numdays); 
component=getenv('MNBCOMPONENT'); 
yrepochsec=getenv('YREPOCHSEC');yrepochsec=str2num(yrepochsec); 
full_db_path=getenv('MNDB'); 
  if exist('start_julday')~=1; 
        disp('FATAL ERROR: start_julday not defined.  Exiting'); 
        return 
  end 
  if exist('component')~=1; 
        disp('FATAL ERROR: component not defined.  Exiting'); 
        return 
  end 
  if exist('numdays')~=1; 
        disp('FATAL ERROR: numdays not defined.  Exiting'); 
        return 
  end 
  if exist('yrepochsec')~=1; 
        disp('FATAL ERROR: yrepochsec not defined.  Exiting'); 
        return 
  end 
  if exist('full_db_path')~=1; 
        disp('FATAL ERROR: full_db_path not defined.  Exiting'); 
        return 
  end 
ts= yrepochsec+(86400*(start_julday-1)); 
numdays=1; 
kdayall=1; %index of days to loop over, relative to ts 
dt=1; %data sample interval 
hi_corner=0.30; %filter corners in Hz 
lo_corner=0.003; 
fullwin_len=86400; %length of window to preprocess 
procwin_len=3600; %for outer time loop length 
xwin_len=1200; %length of window to xcorr in seconds - inner time loop -lengthen for 
long lags  
npoles=5;   % strength of filters 
filt_flag=1; 



 

 

88 

rminst_flag=1;     % remove instrument -- not necessary if whitening 
onebit_flag=1;     % change signal to sign(signal) - non-preferred 
envnorm_flag=1; 
whiten_flag=1; 
taper_flag=1; 
ampscl_flag=1; 
plot_flag=0;        %1 to plot results for every station pair – dangerous 
wlev=1; 
savepref='batchXC_TAstn';   % prefix for outputs  
%%%%%%%%%%%%%% 
%End parameters to be set% 
%%%%%%%%%%%%%% 
ts0=ts; 
samprate=1/dt; 
nyq=0.5/dt; 
wn=[lo_corner/nyq, hi_corner/nyq]; 
[B,A]=butter(npoles,wn); 
%Window & sample specifics 
nproc_wins=floor(fullwin_len/procwin_len); 
nxc_wins=floor(nproc_wins*procwin_len/xwin_len); 
xc_data_samps=floor(samprate*xwin_len); 
xc_length=2*xc_data_samps-1; 
proc_win_samps=floor(procwin_len*samprate); 
fflen=2^(nextpow2(procwin_len)+1); 
%Strings for plot labels & filenames 
procs='Processes: '; 
if (rminst_flag==1), procs=[procs,'RMINST ']; end; 
if (whiten_flag==1), procs=[procs,'WHITEN ']; end; 
if (filt_flag==1), procs=[procs,'FILT ']; end; 
if (onebit_flag==1), procs=[procs,'1BIT ']; end; 
if (envnorm_flag==1), procs=[procs,'ENVNORM ']; end; 
if (ampscl_flag==1), procs=[procs,'AMPSCL ']; end; 
procs=sprintf('%s PW %d XW %d',procs,procwin_len, xwin_len); 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%   Information Being Loaded In From step_1.m %%  
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load raw_Day_data 
%%%%%%%%%%%%%%%%%%%% 
%%                XCROSS                      %% 
%%%%%%%%%%%%%%%%%%%% 
ind=1; 
 for stnind1=1:length(stations)-1 
   for stnind2=stnind1+1:length(stations) 
     stnpair_labels(ind)=strcat(stations(stnind1),'-',stations(stnind2)); 
     [stnpair_dist(ind), 
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stnpair_az(ind)]=distance(slats(stnind1),slons(stnind1),slats(stnind2),slons(stnind2)); 
     ind=ind+1; 
   end 
 end 
 daycntr=0; 
 xc_all_stack=zeros(length(stations)*(length(stations)-1)/2,xc_length);%follow n(n-1)/2 
for total station pairs 
 xc_stack_cnt=zeros(1,length(stations)*(length(stations)-1)/2); %a count of the stacks for 
each stn pair 
 counter= juldayindex; 
 nouter = 24; 
for kday=kdayall 
   daycntr=1; 
   ts=ts0+86400.*kday; 
   julday=counter(daycntr); 
   te=ts+fullwin_len; 
%%%%%%%%%%%%%%%%%%%%% 
%Checks to see if each stations has data% 
%%%%%%%%%%%%%%%%%%%%% 
   if max(good_data_ind(:,:,daycntr))<1 
     disp(sprintf('No good data found for any station on julday %d... SKIPPING', julday)); 
     continue; 
   end 
   stnpair_index=0; 
   for stnind1=1:length(stations)-1 
     for stnind2=stnind1+1:length(stations) 
       stnpair_index=stnpair_index+1; 
       if length(find(good_data_ind(stnind2,:)==1))==0 || 
length(find(good_data_ind(stnind1,:)==1))==0 
                disp(sprintf('No good data found for julday %d stn1=%s and stn2=%s... 
SKIPPING',... 
               julday,char(stations(stnind1)),char(stations(stnind2)))); 
          continue; 
       end 
       disp(sprintf('working on DAY %d for stn1=%s and 
stn2=%s',julday,char(stations(stnind1)),char(stations(stnind2)))); 
       for nouter1=1:nproc_wins %goes throught the hours of the day, 1:24 
         if good_data_ind(stnind2,nouter1)==0 || good_data_ind(stnind1,nouter1)==0 
             disp(sprintf('bad procwin for julday %d stn1=%s and stn2=%s procwin#%d... 
SKIPPING',... 

               julday,char(stations(stnind1)),char(stations(stnind2)),nouter)); 
continue; 
         end 
         ninner=0; 
         for jj=1:nxc_wins/nproc_wins 
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xc_win1=preproc_total(stnind1,nouter1,1+(ninner*xwin_len):(ninner*xwin_len)+xwin_l
en); 
           
xc_win2=preproc_total(stnind2,nouter1,1+(ninner*xwin_len):(ninner*xwin_len)+xwin_l
en); 
           xc_win1=taper10(squeeze(xc_win1)); xc_win2=taper10(squeeze(xc_win2)); 
           this_xcorr=xcorr(xc_win1,xc_win2); 
             if ampscl_flag==1 
             this_xcorr=this_xcorr/max(abs(this_xcorr)); 
             end 
             if sum(isnan(this_xcorr))==0 
              xc_all_stack(stnpair_index,:)=xc_all_stack(stnpair_index,:)+this_xcorr'; 
              xc_stack_cnt(stnpair_index)=xc_stack_cnt(stnpair_index)+1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Once the full hour of data has been added together over the 24 hours%  
%               prints out the data for each station pair                                  % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             if jj==nxc_wins/nproc_wins&&nouter1==24 
                filename = 
sprintf('%s_%s_day_%d',char(stations(stnind1)),char(stations(stnind2)),julday); 
              end 
             else 
           this_xcorr(isnan(this_xcorr))=0; 
          end 
           ninner=ninner+1; 
         end %for jj=1:nxc_wins/nproc_wins 
       end %for nouter1=1:nproc_wins 
     end %for stnind2 
   end %for stnind1 
   clear preproc_data; %Avoid accidentally operating on the wrong data 
 end %for kday=kdayall 
 savepref='batchXC_TAstn' 
 eval(['save ' savepref,'jd',num2str(day),'_',component,'.mat xc_all_stack xc_stack_cnt 
stnpair_labels stnpair_dist stnpair_az wn dt ts']); 
quit 
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4.! step_3.m 

%step_3 of the noise processing. Takes daily results from runs of step_2.m and does 
some post processing (sorting, SNR check), then saves out stacked data for the whole 
range covered, as well as (optional) data subsets 
tic 
clear; 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%       Loads in batch files from step_2.m       %% 
%%%%%%%%%%%%%%%%%%%%%%%%% 
days=0:1460; 
for i=1:length(days) 
    filename=sprintf('batchXC_TAstnjd%d_LHZ.mat',days(1,i)); 
    files{i}=filename; 
end 
%%%%%%%%%%%%%%%%%% 
%%      Parameters to be set        %% 
%%%%%%%%%%%%%%%%%% 
min_vel=2.5; %Group velocities to determine windows for SNR processing, depending 
on the station distances min_vel needs to be modified 
max_vel=4.5; 
outfile_prefix='Station_stack'; 
subset_flag=0; 
single_station_flag=0; %if you wish to have day sets of each station pair be saved to used 
later turn on 
Acasual_flag=0; %if you wish to run the data with just the negative lag of the stacked 
data 
Casual_flag=0;  %if you wish to run the data with just the positive lag of the stacked data 
Compare_flag=0; 
flip_flag=0; 
%%%%%%%%%%%%%%% 
%end Params to be set          % 
%%%%%%%%%%%%%%% 
for ii=1:length(days) 
eval(['load ',char(files(ii))]); 
xc_all_stack(~isnan(xc_all_stack))=0; 
save xc_all_stack xc_all_stack 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Stacks the daily records and removes those %% 
%%that are noisy.                                                %% 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
for ii=1:length(days) 
days(ii) 
eval(['load ',char(files(ii))]); 



 

 

92 

samprate=1/dt; 
xc_all_stack(isnan(xc_all_stack))=0; 
midpt = (size(xc_all_stack,2)+1)/2; 
                if days(ii)==days(1) 

                full=load('xc_all_stack'); 

for k=1:size(full.xc_all_stack,1) 
                                if sum(full.xc_all_stack(k,:))~=0 
                                        
full.xc_all_stack(k,:)=full.xc_all_stack(k,:)./max(abs(full.xc_all_stack(k,:))); 
                                end 
                        end 
                xc_yr_stack=xc_all_stack; 
                xc_yr_stack_cnt=xc_stack_cnt; 
                xc_full_cnt = xc_stack_cnt; 
                pos_cor = zeros(size(xc_all_stack,1),length(days)); 
                pos_cor(:,1)=0; 
                neg_cor = pos_cor; 
                continue 
                end 
        for k=1:size(xc_all_stack,1) 
                if round(deg2km(stnpair_dist(k)))>1199 
                   stnpair_dist(k)=km2deg(1198); 
                end 
                if sum(xc_all_stack(k,:))~=0 
                xc_all_stack(k,round(midpt):size(xc_all_stack,2)) = 
xc_all_stack(k,round(midpt):size(xc_all_stack,2))./max(abs(xc_all_stack(k,round(midpt):
size(xc_all_stack,2)))); 
         xc_all_stack(k,1:round(midpt)) = 
xc_all_stack(k,1:round(midpt))./max(abs(xc_all_stack(k,1:round(midpt)))); 
                end 
        
nep=((corrcoef(xc_all_stack(k,midpt:round(midpt+deg2km(stnpair_dist(k)))),full.xc_all_
stack(k,midpt:round(midpt+deg2km(stnpair_dist(k))))))); 
        pos_cor(k,ii)=nep(1,length(nep)); 
        nep=((corrcoef(xc_all_stack(k,round(midpt-
deg2km(stnpair_dist(k))):midpt),full.xc_all_stack(k,round(midpt-
deg2km(stnpair_dist(k))):midpt)))); 
        neg_cor(k,ii)=nep(1,length(nep)); 
                if pos_cor(k,ii)<.5 
                        xc_all_stack(k,1:round(midpt))=0; 
                end 
                if neg_cor(k,ii)<.5 
                        xc_all_stack(k,round(midpt):size(xc_all_stack,2))=0; 
                end 
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                if pos_cor(k,ii)<.5&neg_cor(k,ii)<.5 
                        xc_stack_cnt(k)=0; 
                end 
                if k==round(size(xc_all_stack,2)./2) 
                        disp('Half Done'); 
                end 
        end 
     
xc_yr_stack(:,round(midpt):size(xc_all_stack,2))=xc_yr_stack(:,round(midpt):size(xc_all
_stack,2))+xc_all_stack(:,round(midpt):size(xc_all_stack,2)); 
xc_yr_stack(:,1:round(midpt))=xc_yr_stack(:,1:round(midpt))+xc_all_stack(:,1:round(mi
dpt)); 
        xc_yr_stack_cnt=xc_yr_stack_cnt+xc_stack_cnt; 
end 
xc_all_stack=xc_yr_stack; 
xc_stack_cnt=xc_yr_stack_cnt; 
eval(['save ',outfile_prefix,'.mat stnpair_dist stnpair_az stnpair_labels xc_all_stack 
xc_stack_cnt']); 
toc 
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5.! mn_fitxcspec.m 

%%%%%% Spectral Measurement Method  %%%%%%%%%% 
%%%%%% modified from mn_fitxcspec.m by Josh Calkins 
clear all; close all; 
setup 
inpref='Station_stack'; 
outpref=strcat('fit19_',inpref); 
adat=load([inpref '.mat']); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% FLAGS  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
plot_flag=0; 
cull_flag=1; 
comp_flag=0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% REFERENCE CURVES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fref=[.01;.0115;.013;.015;.017;.02;.022;.025;.029;.033;.037;.04;.045;.05;.07;.1;.12;.14;.1
6;.2;.25;.33]; 
phvref=[4.25;4.155;4.15;4.1;4.08;4.06;4.05;3.98;3.91;3.83;3.76;3.72;3.64;3.57;3.43;3.34;
3.28;3.22;3.15;3.1;3.025;2.95]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% PARAMETERS TO BE SET 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A = exist('Station pair info'); 
if A == 0 
mkdir('Station pair info') 
end 
fr_max=0.25; 
order_ampwin=5; 
SNRmin=20; 
deltkm=deg2km(adat.stnpair_dist); 
numprs=length(deltkm); 
samprate = 1; 
dt =1/samprate; 
fnyq=0.5/dt; 
df =1; 
nyq=fnyq; 
hi_corner=0.3; 
lo_corner=0.003; 
wn=[lo_corner/nyq, hi_corner/nyq]; 
hp_filt=wn(1)*fnyq; 
lp_filt=wn(2)*fnyq; 
farray=adat.farray; 
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nf=length(farray); 
df=0.02; 
fkmin=0.025; 
fkmax=fr_max; 

fknot=[1/40,1/34,1/30,1/27,1/25,1/22,1/20,1/19,1/18,1/17,1/16,1/15,1/14,1/13,1/2,
1/11,1/10,1/9,1/8,1/7,1/6,1/5,1/4,1/3]'; 

fknot' 
lp_corner=max(fknot); 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% MATRIX STORAGE 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
m_fdatr=zeros(numprs,nf); %Real part of the spectrum (input) 
m_ffit=zeros(numprs,nf); %Freqs at which data are fit 
m_fzc=zeros(numprs,length(fknot)); %Zero crossings of the real spectrum 
m_phv_zc=zeros(numprs,length(fknot)); %phase vels at observed fzc 
m_pknot=zeros(numprs,length(fknot)); %interpolated slownesses 1/(phvel at fknots) 
m_errpvel=zeros(numprs,length(fknot)); %error in pknot (only calc if do_linfit=1) 
m_ppred=zeros(numprs,nf); %spline fit to pknots @ ffit 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Begin Loop over all stn pairs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
good_fits=0; 
for thispair=1:numprs 
  fwrap=adat.fwrap(thispair,:); 
  plabl=char(adat.stnpair_labels(thispair)); 
  if (plot_flag==1) 
         disp(sprintf('-- Working On %d %s --',thispair,plabl)); 
  end 
  krange=find(farray>hp_filt & farray<lp_filt)'; 
  nrg=length(krange); 
  ffrg=reshape(farray(krange),nrg,1); 
  fdatr=real(fwrap(1:nf)); 
  datrg=reshape(fdatr(krange),nrg,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% FIND ZERO CROSSINGS & PRELIMINARY PHASE ESTIMATES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  vtol=.025; 
  vtol2=1; 
  a=datrg(1:nrg-1).*datrg(2:nrg); 
  kzc=find(a<0); 
  nzc=length(kzc); 
  if adat.xc_stack_cnt(thispair)<1 
        disp(sprintf('WARNING - ZERO or ONE zero crossing(s) found for stnpair % s -
SKIPPING',char(adat.stnpair_labels(thispair)))); 
        adat.xc_all_stack(thispair,:)=0; 
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        continue 
  end 
  if nzc<2 
        disp(sprintf('WARNING - ZERO or ONE zero crossing(s) found for stnpair %s -
SKIPPING',char(adat.stnpair_labels(thispair)))); 
adat.xc_all_stack(thispair,:)=0; 

        continue 

end 
  if nzc<2 
        disp(sprintf('WARNING - ZERO or ONE zero crossing(s) found for stnpair %s -
SKIPPING',char(adat.stnpair_labels(thispair)))); 
adat.xc_all_stack(thispair,:)=0; 
        continue 
  end 
  dsdf=(datrg(kzc+1)-datrg(kzc))./(ffrg(kzc+1)-ffrg(kzc));   % slope/sign of zero crossings 
  fzc0=ffrg(kzc)-datrg(kzc)./dsdf; 
  dsdf0=dsdf; 
  if (dsdf(1)>0) 
        disp(sprintf('WARNING-1 %d %s 1st zero has wrong sign',thispair,plabl)); 
        kzc=kzc(2:nzc); 
        dsdf=dsdf(2:nzc); 
        nzc=nzc-1; 
  end 
  fzc=ffrg(kzc)-datrg(kzc)./dsdf; 
  noff=0; 
  j0zeros=j0zeroseries((1:nzc)',noff); 
  phv_zc=2.*pi.*fzc.*deltkm(thispair)./j0zeros; 
  ph1pred=interp1(fref,phvref,fzc,'pchip'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% CHECK PREDICTED PHASE VEL TO THOSE MEASURED   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  if abs(ph1pred(1)-phv_zc(1))/ph1pred(1)>vtol 
        pvc=2.*pi.*fzc.*deltkm(thispair)./j0zeros(1); 
        kkk=find((ph1pred-pvc)./ph1pred<vtol & dsdf<0); 
        if (ph1pred(1)-phv_zc(1)/ph1pred(1))>0 
                disp(sprintf('WARNING %d %s SLOW phvel at 1st Zero Crossing; toss 1st 
crossings',thispair, plabl)); 
        end 
        if (ph1pred(1)-phv_zc(1)/ph1pred(1))<0 
                disp(sprintf('WARNING %d %s FAST phvel at 1st Zero Crossing; toss 1st 
crossings',thispair, plabl)); 
end 
        if isempty(kkk) 
                disp(sprintf('WARNING %d %s all observed zero crossings give 
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INACCURATE PhVel  -SKIPPING',thispair,plabl)); 
adat.xc_all_stack(thispair,:)=0; 
continue 
        end 
        nzc1=kkk(1);   % hope this one works: throw out earlier ones 
        dsdf=dsdf(nzc1:nzc); 
        fzc=fzc(nzc1:nzc); 
        nzc=nzc-nzc1+1; 
        j0zeros=j0zeros(1:nzc); 
        phv_zc=2.*pi.*fzc.*deltkm(thispair)./j0zeros; 
  end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% FIX K+1 MEASUREMENTS--FZC,PHV_ZC fzc % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  k=2; 
  while (k<=nzc) 
        php=interp1(fref,phvref,fzc(k),'pchip'); 
        fzcdiff=0;      % Change in spacing 
        if (k>2) 
                 fzcdiff=(fzc(k)-fzc(k-1))./(fzc(k-1)-fzc(k-2))-1; 
        end 
        if ((php-phv_zc(k))/php>vtol && fzc(k)<max(fref))||(phv_zc(k-1)-
phv_zc(k))/phv_zc(k)>vtol2   % velocity too slow, skip this one 
                if (plot_flag==1) 
                        disp(sprintf('Skipping %.2f at %.3f because << %.2f 
or %.2f',phv_zc(k),fzc(k),php,phv_zc(k-1))); 
                end 
                if (k<nzc) 
                        fzc=[fzc(1:(k-1));fzc((k+2):nzc)]; 
                else 
                        fzc=fzc(1:(k-1)); 
                end 
                nzc=nzc-2; 
                if (nzc<2) 
                        disp(sprintf('WARNING  %d %s SKIPPING, could not fix slow 
velocities',thispair,plabl)); 
        adat.xc_all_stack(thispair,:)=0; 
                        continue 
                end 
j0zeros=j0zeros(1:nzc); 
                phv_zc=[phv_zc(1:(k-1)); 2.*pi.*fzc(k:nzc).*deltkm(thispair)./j0zeros(k:nzc)]; 
         elseif ((phv_zc(k)-php)/php>vtol && fzc(k)<max(fref) ) || abs(fzcdiff)>vtol 
        pvc=2.*pi.*fzc(k).*deltkm(thispair)./j0zeroseries(k,(noff-4):2:(noff+4)); 
          dv=1./phv_zc(k-1)-1./pvc; 
          kkk=find(abs(dv)==min(abs(dv))); 
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          if (kkk==3)   % same noff as before 
              k=k+1; 
          else 
              noff=noff+(kkk-3)*2; 
              j0zeros(k:nzc)=j0zeroseries(k:nzc,noff); 
              phv_zc(k:nzc)=2.*pi.*fzc(k:nzc).*deltkm(thispair)./j0zeros(k:nzc); 
              k=k+1; 
          end 
      else 
          k=k+1; 
      end 
 
  end 
  if nzc<2 
      adat.xc_all_stack(thispair,:)=0; 
    continue 
  end 
  %  Solve for piecewise Hermite cubic / Cardinal Spline (like pchip)  
  %  interpolate on slowness not velocity 
%Tension parameter can be -1 to 1, but doesn't seem to do much 
% relatively high damping (in the range 0.1 - 1)  helps with the closer station pairs 
  tens=0; damp=0.1; ireg=1; 
 
  mn=find(fzc>=min(fknot)); 
   fzc=fzc(mn:length(fzc)); 
 if length(fzc) < 4 
  adat.xc_all_stack(thispair,:)=0; 
  continue 
  end 
nzc=length(fzc); 
  phv_zc=phv_zc(mn:length(phv_zc)); 
  [pknot0, scov, chifit]=csplinefit2(fzc,1./phv_zc, fknot,tens,damp,ireg); 
  ppknot=interp1(fzc,1./phv_zc,fknot,'pchip'); 
  phv0=1./pknot0; 
  pknot_err=sqrt(diag(scov)); 
  kk=find(fknot>=fzc(nzc));   % deal with high-end instability 
  if ~isempty(kk) 
  phv0(kk)=phv_zc(nzc); 
end   % keep const-vel past last ZC 
  pknot0=1./phv0; 
  nknot=length(fknot); 
  kfit=find(farray>=fknot(1) & farray<=fknot(nknot)); 
  ffit=farray(kfit); 
  pknot=pknot0; 
  ppred=interp1(fknot,pknot,ffit,'pchip'); 
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  errpvel=pknot_err.*phv0.*phv0; 
  x = interp1(1./fzc(2:2:length(fzc)),phv_zc(2:2:length(fzc)),1./fknot,'pchip'); 
  xx = interp1(1./fzc(1:2:length(fzc)),phv_zc(1:2:length(fzc)),1./fknot,'pchip'); 
  xxx = interp1(1./fref,phvref,1./fknot,'pchip'); 
  errpvel=abs(x-xx)./2; 
  lambdaref=(interp1(fref,phvref,fknot,'linear'))./fknot; %reference wavelength 
  for i=1:length(fknot) 
    if deltkm(thispair)<3*lambdaref(i) 
      pknot(i)=NaN; 
      errpvel(i)=NaN; 
    end 
  end %for i=1:lenght(fknot) 
  %%%%%%%%%%%%%%%%% 
  %% Plot results -DEBUG ONLY% 
  %%%%%%%%%%%%%%%%%% 
  if plot_flag==1 
        mth=0; 
        figure(2) 
        clf 
        zeroscan(fzc0,dsdf0,deltkm(thispair),mth);   % Probably move, eventually, more 
logic into this 
        figure(1) 
      hamp00=abs(hilbert(real(fwrap(1:nf)))); 
      p=polyfit(farray,hamp00,order_ampwin); 
      hamp0=polyval(p,farray); 
      dpred=besselj(0,2.*pi.*ffit.*deltkm(thispair).*ppred); 
      penv=abs(hilbert(dpred)); 
      p2=polyfit(ffit,penv,order_ampwin); 
      dpred=dpred.*spline(farray,hamp0,ffit)./polyval(p2,ffit); 
 
      figure(1); 
      clf 
      subplot(211) 
      plot(farray,fdatr,'g',ffit,dpred,'r'); 
      legend('Alldat','FitPred') 
 
      xlim([0 fr_max]); 
  xlabel('Hz') 
 
      hold on; 
      plot(fzc,zeros(size(fzc)),'k+') 
      title(sprintf('%s(pr %.0f) Delta=%.0f km SNR=%.2f damp=%.2f tens=%.1f 
ireg=%.0f',... 
          
char(adat.stnpair_labels(thispair)),thispair,deltkm(thispair),snr(thispair),damp,tens,ireg)) 
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      subplot(212) 
      plot(ffit,1./ppred,'-',fknot,1./pknot,'o',fknot,1./pknot0,'k+'); 
      hold on; 
      plot(fzc, phv_zc,'k^','MarkerFaceColor','g','MarkerSize',8); 
      legend('fit','fit-knot','starting','from Zcross'); 
      errorbar(fknot,1./pknot,errpvel,'.'); 
      xlim([0 fr_max]); 
      ylim([1. 6]); 
      xlabel('Frequency, Hz') 
      ylabel('phase velocity, km/s'); 
      title('Triangles: PhVel based on zero-crossings; error bars: from linear fit'); 
      plot(fref,phvref,'r:') 
 
      figure(2); 
      hold on; 
      plot(ffit,ppred,'k'); 
      figure(3) 
      clf 
      title(sprintf('Comparison of Post zero-crossings to Neg zero-crossings 
for %s',adat.stnpair_labels{thispair})) 
      hold on 
      plot(1./fzc(2:2:length(fzc)),phv_zc(2:2:length(fzc)),'c^') 
      plot(1./fzc(1:2:length(fzc)),phv_zc(1:2:length(fzc)),'mo') 
      errorbar(1./fknot,1./pknot,errpvel,'r') 
      legend('- Zero','+ Zero','interp1','Location','SouthEast') 
      plot(1./fknot,x,'c') 
      plot(1./fknot,xx,'m') 
      xlim([0,40]) 
      ylim([2.5,4.5]) 
      xlabel('Period, sec') 
      ylabel('Phase Velocity, km/s') 
      filename=sprintf('Zero_cross_comp_%s',adat.stnpair_labels{thispair}); 
      print(figure(3),filename,'-dpdf') 
      figure(4) 
 
      subplot(2,1,1) 
      plot([-1199:1199],adat.xc_all_stack(thispair,:)) 
      title(sprintf('%s Time 
Domain %f',adat.stnpair_labels{thispair},adat.xc_stack_cnt(thispair)./72)) 
      xlabel('Time (second)') 
      ylabel('Amplitude') 
  errpvel 
      keyboard; 
 
  end %if plot_flag==1 
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if plot_flag==1 
movefile('Zero_cross*','Station pair info') 
end 
  m_fdatr(thispair,1:length(fdatr))=fdatr; 
  m_ffit(thispair,1:length(ffit))=ffit; 
  m_fzc(thispair,1:length(fzc))=fzc; 
  m_ppred(thispair,1:length(ppred))=ppred; 
  m_pknot(thispair,1:length(pknot))=pknot; 
    m_pknot(find(m_pknot==0))=NaN; 
  m_phv_zc(thispair,1:length(phv_zc))=phv_zc; 
  m_errpvel(thispair,1:length(errpvel))=errpvel; 
    m_errpvel(find(m_errpvel==0))=NaN; 
  good_fits=good_fits+1; 
disp('Calculating SNR...') 
   snr_cal 
   snr_11(thispair,:)=snr_1; 
   snr_22(thispair,:)=snr_2; 
   snr_3(thispair,:)=snr; 
end %for thispair=1:length numprs 
for vv=1:size(adat.xc_all_stack,1) 
me(vv)=sum(abs(adat.xc_all_stack(vv,:))); 
end 
k = find(me>1); 
nips = size(adat.xc_all_stack,1); 
disp(sprintf('Successfully fit %i spectra of %i attempts',good_fits, nips)); 
m_pknot_cp=m_pknot; 
child=0; 
m_pknot_cp=1./m_pknot_cp; 
m_pknot_cp(isnan(m_pknot_cp))=0; 
for men=1:size(m_pknot,1) 
for women=1:size(m_pknot,2) 
if m_pknot_cp(men,women)>0 
child=child+1; 
end 
end 
end 
total_of=size(m_pknot,1)*size(m_pknot,2); 

disp(sprintf('Total number of measurments %i out of a 

possible %i',child,total_of)); 

%Clean up a few more filenames for output 
stnpair_labels=adat.stnpair_labels; 
stnpair_dist=adat.stnpair_dist; 
stnpair_az=adat.stnpair_az; 
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wn=adat.wn; 
samprate=adat.samprate; 
 
%Get rid of outliers 
if cull_flag==1 
  sigmatol=2.5; 
  for i=1:size(m_pknot,2) 
    [junk,idx]=find(~isnan(m_pknot(:,i)')); 
    mean_slow(i)=mean(m_pknot(idx,i)); 
    std_slow(i)=std(m_pknot(idx,i)); 
    m_pknot(find(m_pknot(:,i)>(mean_slow(i)+sigmatol*std_slow(i))),i)=NaN; 
    m_pknot(find(m_pknot(:,i)<(mean_slow(i)-sigmatol*std_slow(i))),i)=NaN; 
  end 
end %if cull_flag=1 
bn = size(m_errpvel,2); 
xc_stack_cnt = adat.xc_stack_cnt; 
load location 
me = load('stnpair_labels'); 
for mm=1:length(stnpair_labels) 
k = find(strcmp(me.stnpair_labels,stnpair_labels(mm))); 
lat1(mm,1)=locations(k,1); 
lat2(mm,1) = locations(k,3); 
lon1(mm,1) = locations(k,2); 
lon2(mm,1) = locations(k,4); 
end 
cd Station' pair info'/ 
dell=deg2km(stnpair_dist); 
snr_2=snr_22; 
snr_1=snr_11; 
for vv=1:46665 
dell(vv)=(dell(vv)./max(dell)); 
end 
%%%%%%%%%%%%%%%% 
%%%%%    Process one     %%% 
%%%%%    SNR CUT OFF   %% 
%%%%%%%%%%%%%%%%% 
count=0; 
for vv=1:size(xc_all_stack,1) 

for yy=1:length(fknot) 

if snr_3(vv,yy)<4 
count=count+1; 
m_pknot(vv,yy)=NaN; 
m_errpvel(vv,yy)=NaN; 
end 
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end 
end 
disp(sprintf(' %i measurements were removed in process one',count)); 
%%%%%%%%%%%%%%%%%%%%% 
%%%%%     Process two    %%%%%%% 
%%%%%     ERROR CUT OFF  %%%% 
%%%%%%%%%%%%%%%%%%%%% 
count=0; 
for mn=1:size(m_pknot,2) 
hen=find(m_errpvel(:,mn)>.1); 
m_pknot(hen,mn)=NaN; 
m_errpvel(hen,mn)=NaN; 
count=length(hen)+count; 
end 
disp(sprintf(' %i measurements were removed in process two',count)); 
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%     Process three      %%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% 
count = 0; 
mk_invert_files=1; 
for f_cntr=1:length(fknot) 
been=find(isnan(1./m_pknot(:,f_cntr))~=1); 
wen=find((1./m_pknot(been,f_cntr))>=(xxx(f_cntr)+xxx(f_cntr)*.025)); 
m_pknot(been(wen),f_cntr)=NaN; 
m_errpvel(been(wen),f_cntr)=NaN; 
ben=find((1./m_pknot(been,f_cntr))<=(xxx(f_cntr)-xxx(f_cntr)*.025)); 
m_pknot(been(ben),f_cntr)=NaN; 
m_errpvel(been(ben),f_cntr)=NaN; 
count=length(ben)+length(wen)+count; 
end 
disp(sprintf(' %i measurements were removed in process three',count)); 
disp('COMPARING RAY PATHS'); 
ray_compare 
child=find(isnan(m_pknot)~=1); 
total_of=size(m_pknot,1)*size(m_pknot,2); 
disp(sprintf('Final total number of measurments %i out of a 
possible %i',length(child),total_of)); 
if mk_invert_files==1 
  for pair_cntr=1:numprs 
    c_pair=char(adat.stnpair_labels(pair_cntr)); 
    st1(pair_cntr)={c_pair(1:(findstr(c_pair,'-'))-1)}; 
    st2(pair_cntr)={c_pair(findstr(c_pair,'-')+1:end)}; 
  end %for pair=1:length(numprs) 
for f_cntr=1:length(fknot) 
    outtextfile=sprintf('phvel_%4.3f',1./fknot(f_cntr)); 
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    fid = fopen(outtextfile,'w+'); 
    for pr_cntr=1:numprs 
      if ~isnan(m_pknot(pr_cntr,f_cntr)) && ~isnan(m_errpvel(pr_cntr,f_cntr)) && 
m_errpvel(pr_cntr,f_cntr)<.1 
        
fprintf(fid,' %s  %5.0f %5.2f %5.0f  %7.4f %7.4f   %7.4f %7.4f    %5.4f    %5.4f\n',stnpai
r_labels{pr_cntr},snr_3(pr_cntr,f_cntr),deltkm(pr_cntr),adat.xc_stack_cnt(pr_cntr)./72,lat
1(pr_cntr,1),lon1(pr_cntr,1),lat2(pr_cntr,1),lon2(pr_cntr,1),1/m_pknot(pr_cntr,f_cntr),m_
errpvel(pr_cntr,f_cntr)); 
      end %quality and distance checks 
    end %for pr_cntr=1:numprs 
    fclose(fid); 
  end %for f_cntr=1:size(fknot) 
end %if mk_invert_file=1 
if comp_flag==1 
disp('Time to compare the dispersion curves from the different methods') 
Disp_com(plot_flag) 
disp('Time to compare the domains for the different methods') 
freq_sing(plot_flag) 
end 
cd .. 
eval(['save ',outpref,'.mat samprate dt stnpair_az stnpair_dist stnpair_labels farray df 
m_fdatr m_ffit m_fzc m_ppred fknot m_pknot m_phv_zc m_errpvel tens damp ireg snr 
snr_1 snr_2 snr_3']); 
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6.! snr_cal.m 

%%%%%%%%%%%%%%%%%% 
%     SNR measurement              % 
%%%%%%%%%%%%%%%%%% 
%%      Parameters to be set        %% 
%%%%%%%%%%%%%%%%%% 
min_vel=2.5; %Group velocities to determine windows for SNR processing, depending 
on the station distances min_vel needs to be modified 
max_vel=4.5; 
plot_flag =0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       Calculate SNR                                                                                      % 
%Note that the tapering from matnoise means the first and last 60 seconds  % 
% of the xcorr aren't indicative of the real noise, so I've moved the noise     % 
% window in 100 seconds from the end of the trace                                      %  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xc_all_stack = adat.xc_all_stack; 
stnpair_az = adat.stnpair_az; 
stnpair_dist = adat.stnpair_dist; 
stnpair_azs = stnpair_az+180; 
xc_length = size(xc_all_stack,2); 
midpt =(size(xc_all_stack,2)+1)/2; 
np1=floor((xc_length+1)/2); 
dt = 1; 
inner_win = floor(deg2km(stnpair_dist)/max_vel/dt); 
out_win=floor(deg2km(stnpair_dist)/min_vel/dt); 
periods = 1./fknot'; 
for vv =1:size(periods,2) 
upper_corner=periods(vv)-2; 
lower_corner=periods(vv)+2; 
 
if upper_corner <= 2 
upper_corner = 2.1; 
end; 
nyq=0.5/dt; 
clear wn B A 
wn=[1/lower_corner/nyq, 1/upper_corner/nyq]; 
[B,A]=butter(5,wn); 
for bbb=1:size(xc_all_stack,1) 
  xc_all_stack_3(bbb,:)=(xc_all_stack(bbb,:)+fliplr(xc_all_stack(bbb,:)))./2; 
  xc_1=xc_all_stack(bbb,:); 
  xc_2=xc_all_stack_3(bbb,:); 
  if sum(xc_all_stack(bbb,:))>1 
  xc_1=filtfilt(B,A,xc_all_stack(bbb,:)); 
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  xc_2=filtfilt(B,A,xc_all_stack_3(bbb,:)); 
  end 
  swin1=xc_1(1,(midpt+inner_win(bbb)):(midpt+out_win(bbb))); %signal window at pos 
lag 
  swin3=xc_2(1,(midpt+inner_win(bbb)):(midpt+out_win(bbb))); %signal window at pos 
lag 
  swin2=xc_1(1,(midpt-out_win(bbb)):(midpt-inner_win(bbb))); %signal window at neg 

lag 

swin4=xc_2(1,(midpt-out_win(bbb)):(midpt-inner_win(bbb))); %signal window at neg 
lag 
  nwin1=xc_1(1,(midpt+out_win(bbb)):size(xc_all_stack,2)); 
  nwin3=xc_2(1,(midpt+out_win(bbb)):size(xc_all_stack,2)); 
  nwin2=xc_1(1,(1:midpt-out_win(bbb))); 
  nwin4=xc_2(1,(1:midpt-out_win(bbb))); 
  snr_1(bbb,vv)=sqrt((mean((abs(swin1))).^2))./sqrt((mean((abs(nwin1))).^2)); 
  snr_2(bbb,vv)=sqrt((mean((abs(swin2))).^2))./sqrt((mean((abs(nwin2))).^2)); 
  snr_3(bbb,vv)=sqrt((mean((abs(swin3))).^2))./sqrt((mean((abs(nwin3))).^2)); 
  snr_4(bbb,vv)=sqrt((mean((abs(swin4))).^2))./sqrt((mean((abs(nwin4))).^2)); 
if plot_flag ==1 
g = figure 
meet = ones(1,length(swin1)); 
meet1 = (snr_1(bbb,vv)*meet)*max(abs(xc_1(bbb,:))); 
meet2 = (snr_2(bbb,vv)*meet)*max(abs(xc_1(bbb,:))); 
leet1 = [abs((midpt+inner_win(bbb))-midpt):abs((midpt+out_win(bbb))-midpt)]; 
leet2 = [(midpt-out_win(bbb)-midpt):(midpt-inner_win(bbb)-midpt)]; 
clf 
subplot(2,1,1) 
plot([-1199:1199],xc_all_stack(bbb,:)) 
xlim([-stnpair_dist(bbb)*111.2,stnpair_dist(bbb)*111.2]) 
title('Unfilter') 
ylabel('Amplitude') 
xlabel('Time (sec)') 
subplot(2,1,2) 
hold on 
plot([-1199:1199],xc_1(1,:)) 
xlim([-stnpair_dist(bbb)*111.2,stnpair_dist(bbb)*111.2]) 
plot(leet1,meet1,'g','LineWidth',1) 
plot(leet2,meet2,'g','LineWidth',1) 
title(sprintf('%s neg SNR: %.2f pos 
SNR: %.2f',stnpair_labels{bbb},snr_2(bbb,vv),snr_1(bbb,vv))) 
ylabel('Amplitude') 
xlabel('Time (sec)') 
keyboard 
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end % plot flag 
end % bbb 
end % vv 
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7.! spider.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Compares the phase velocity at every station at all periods%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if exist('spec') ~= 0 
m_pknot = spec.m_pknot; 
m_errpvel = spec.m_errpvel; 
end 
if exist('FTAN') ~= 0 
m_pknot = FTAN.m_pknot; 
m_errpvel = FTAN.m_errpvel; 
end 
% Checks the phase velocity for each station at each period to find a station pair to that 
station that is inconsistent with all the rest and sets it to NAN 
a=[0.125:.125:2]; 
count=0; 
m_pknot(find(m_pknot==0))=NaN; 
m_pknot(find(1./m_pknot==0))=NaN; 
cp = m_pknot; 
m_errpvel_cp=m_errpvel; 
m_pknot_cp=1./m_pknot; % s/km to km/s 
m_pknot=1./m_pknot; 
m_pknot_cp(isnan(m_pknot_cp))=0; % gets rid of nans for summing purposes 
m_pknot(isnan(m_pknot))=0; % gets rid of nans for summing purposes 
load bee 
for stn = 1:306 
clear vel_stack 
for eb = 1:305 
for j=1:size(m_pknot,2) 
        vel_stack(eb,j)=m_pknot(bee(stn,eb),j); 
end 
end 
for j=1:size(m_pknot,2) 
        clear vel_stat 
        vel_stat=unique(vel_stack(:,j),'rows'); % isolates the velocities 
        if length(vel_stat)>2 
        vel_stat=vel_stat(2:length(vel_stat),1); % gets rid of the inf due to 1/0 
        end 
        vel(j)=mean(vel_stat); % mean for n at period j 
        vel_std(j)=std(vel_stat); % std for n at period 
end 
for j = 1:size(m_pknot,2) 
for eb = 1:305 
 if abs(vel_stack(eb,j)-vel(j))>=min(vel_std(j),0.05) 
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if isnan(cp(bee(stn,eb),j))~=1 
                       count=count+1; 
                  end 
                       m_pknot_cp(bee(stn,eb),j)=NaN; % sets outliers to 0 

                       m_errpvel_cp(bee(stn,eb),j)=NaN; 

end 
end 
end 
end 
m_errpvel=m_errpvel_cp; 
m_pknot=1./m_pknot_cp; 
m_pknot(find(m_pknot==0))=NaN; 
m_pknot(find(1./m_pknot==0))=NaN; 
tt=size(m_pknot,2)*size(m_pknot,1); 
unt=(count/tt)*100; 
disp(sprintf('%.2f percent were removed',unt)); 
if exist('spec') ~= 0 
spec.m_pknot = m_pknot; 
spec.m_errpvel= m_errpvel; 
end 
if exist('FTAN') ~= 0 
FTAN.m_pknot = m_pknot; 
FTAN.m_errpvel= m_errpvel; 
end 
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Figure A.1 

Snap shot of a waveform animation that can be produced with movie_ses.m, where 

the correlated waveforms are treated as surface waves emanating from an 

adjustable epicenter at different period bands. The red star indicates the epicenter, 

or central station, with the three sub traces represented by the yellow, teal, and 

magenta stations. The color of the dots vary over time depending on the peaks and 

troughs of the waveforms. The waveforms in the amination demonstrate the 

frequency dependence of the SNR, with the wave peaks being visible at the shorter 

period lengths (< 20 s) and harder to distinguish at greater period lengths.   
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8.! movie_ses.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Makes animations showing the move out of the cross-correlations % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
close all 
load movie_pkg  % Has station labels, locations and waveforms 
wn=[1/40,1/5]; 
[B,A]=butter(2,wn./.5); 
dots=zeros(1,length(stations_for_mov)); 
for i=1:141 
dots(i)=50; 
end 
for i=142:length(stations_for_mov) 
dots(i)=175; 
end 
check_station=0; 
while check_station==0 
prompt = 'Which Station Will Act As the Epicenter?\n'; 
EPICENTER=input(prompt,'s'); 
index=find(strcmp(stations_for_mov,EPICENTER)); 
if isempty(index)==0 
check_station=1; 
else 
disp('Station Is Out Of Study Area, Please Choose Another Station.'); 
end 
end 
ind = 1; 
for stnid=1:length(stations_for_mov)-1 
for stnid2=stnid:length(stations_for_mov) 
dot_size(ind,1)=dots(stnid); 
dot_size(ind,2)=dots(stnid2); 
ind=ind+1; 
end 
end 
clear dots 
ind = 1; 
for stnind1=1:index 
    stn_labels_1(ind)=strcat(stations_for_mov(stnind1),'-',EPICENTER); 
    back_1(ind)=stn_labels_1(ind); 
    ind=ind+1; 
    stn_labels_1(ind)=strcat(EPICENTER,'-',stations_for_mov(stnind1)); 
    ind=ind+1; 
end 
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ind=1; 
for stnind1=index+1:length(stations_for_mov) 
    stn_labels_2(ind)=strcat(EPICENTER,'-',stations_for_mov(stnind1)); 
    back_2(ind)=stn_labels_2(ind); 
    ind=ind+1; 
    stn_labels_2(ind)=strcat(stations_for_mov(stnind1),'-',EPICENTER); 
    ind=ind+1; 
end 
stn_labels_3=[stn_labels_1,stn_labels_2]; 
stn_label=unique(stn_labels_3); 
ind=1; 
for i=1:length(stn_label) 
    k=find(strcmp(stnpair_labels,stn_label{i})); 
    if isempty(k)~=1 
    stn_label_4{ind}=stn_label{i}; 
    ind=ind+1; 
    end 
end 
clear stn_label 
stn_label=stn_label_4; 
for t=1:length(stn_label) 
k=find(strcmp(stnpair_labels,stn_label{t})); 
    if abs(sum(xc_all_stack(k,:)))==0 
    stn_label{t}=''; 
    else 
    xc_all_stack(k,:)=filtfilt(B,A,xc_all_stack(k,:)); 
    end 
end 
stn_label_1=unique(stn_label); 
clear stn_label 
for t=2:length(stn_label_1) 
stn_label{t-1}=stn_label_1{t}; 
end 
rand_wave = randi([1,length(stn_label)],1,1); 
for i=1:length(stn_label) 
    pr_num(i)=find(strcmp(stnpair_labels,stn_label(i))); 
end 
kip = 
find((deg2km(stnpair_dist(pr_num))<deg2km(stnpair_dist(pr_num(rand_wave)))/2)&(de
g2km(stnpair_dist(pr_num))>deg2km(stnpair_dist(pr_num(rand_wave)))/4)); 
temp=stn_label(kip); 
rand_wave_1 = randi([1,length(temp)],1,1); 
kip=find(strcmp(stn_label,temp(rand_wave_1))); 
rand_wave_1=kip; 
kip = find(deg2km(stnpair_dist(pr_num))<deg2km(stnpair_dist(pr_num(rand_wave)))/4); 
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temp=stn_label(kip); 
rand_wave_2 = randi([1,length(temp)],1,1); 
kip=find(strcmp(stn_label,temp(rand_wave_2))); 
rand_wave_2=kip; 
for i=1:46665 
xc_all_stack(i,:)=xc_all_stack(i,:)+fliplr(xc_all_stack(i,:)); 
end 
shore     = shoreline_US; 
political = political_US; 
shore(:,2) = asinh(tan(shore(:,2)*pi/180.))* 180.0 / pi; 
political(:,2) = asinh(tan(political(:,2)*pi/180.)) * 180.0 / pi; 
political(:,2) = political(:,2); 
shore(:,2) = shore(:,2)-2.5 ; 
shore(:,1) = shore(:,1); 
political(:,2) = political(:,2)-2.5; 
for i=1:length(stn_label) 
    pr_num(i)=find(strcmp(stnpair_labels,stn_label(i))); 
end 
for i=1:length(stn_labels_1) 

    k=find(strcmp(stn_label,stn_labels_1{i})); 

if isempty(k)~=1 
    kk =find(strcmp(stnpair_labels,stn_label{k})); 
    xc_all_stack(kk,:)=fliplr(xc_all_stack(kk,:)); 
    end 
end 
order = zeros(length(pr_num),2); 
for i=1:length(pr_num) 
    order(i,2) = stnpair_dist(pr_num(i))*111.2; 
    order(i,1) = i; 
end 
sett = order; 
for i=1:length(stn_label) 
    kk =find(strcmp(stnpair_labels,stn_label{i})); 
    xc_all_stack(kk,:)=xc_all_stack(kk,:)./max(abs((xc_all_stack(kk,:)))); 
end 
for i=1:length(pr_num) 
latt(i) = locations(pr_num(i),3); 
lonn(i) = locations(pr_num(i),4); 
end 
lats = zeros(size(pr_num,2),1); 
dots = zeros(size(pr_num,2),1); 
lons = lats; 
 
ind = 1; 
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for i=1:length(stn_labels_1) 
    k=find(strcmp(stn_label,stn_labels_1{i})); 
    if isempty(k)~=1 
    lats(ind) = locations(pr_num(k),1); 
    lons(ind) = locations(pr_num(k),2); 
    lo = find(strcmp(OIINK_OIINK_labels,stnpair_labels(pr_num(k)))); 
    if isempty(lo)~=1 
    dots(ind) = 50; 
    end 
    lo = find(strcmp(TA_TA_stnpair_labels,stnpair_labels(pr_num(k)))); 
    if isempty(lo)~=1 
    dots(ind) = 175; 
    end 
    lo = find(strcmp(OIINK_TA_stnpair_labels,stnpair_labels(pr_num(k)))); 
    if isempty(lo)~=1 
dots(ind) = 175; 
    end 
    ind = ind + 1; 
    end 
end 
for i=1:length(stn_labels_2) 
    k=find(strcmp(stn_label,stn_labels_2{i})); 
    if isempty(k)~=1 
    lats(ind) = locations(pr_num(k),3); 
    lons(ind) = locations(pr_num(k),4); 
    lo = find(strcmp(OIINK_OIINK_labels,stnpair_labels(pr_num(k)))); 
    if isempty(lo)~=1 
    dots(ind) = 50; 
    end 
    lo = find(strcmp(TA_TA_stnpair_labels,stnpair_labels(pr_num(k)))); 
    if isempty(lo)~=1 
    dots(ind) = 175; 
    end 
    lo = find(strcmp(OIINK_TA_stnpair_labels,stnpair_labels(pr_num(k)))); 
    if isempty(lo)~=1 
    dots(ind) = 175; 
    end 
    ind = ind + 1; 
    end 
end 
k=find(strcmp(back_1,stn_label{rand_wave})); 
if isempty(k)~=1 
EPIC_lat = locations(pr_num(rand_wave),3); 
EPIC_lon = locations(pr_num(rand_wave),4); 
RAND_lat = locations(pr_num(rand_wave),1); 
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RAND_lon = locations(pr_num(rand_wave),2); 
RAND_dots = dots(rand_wave,1); 
end 
k=find(strcmp(back_1,stn_label{rand_wave_1})); 
if isempty(k)~=1 
RAND_lat_1 = locations(pr_num(rand_wave_1),1); 
RAND_lon_1 = locations(pr_num(rand_wave_1),2); 
RAND_dots_1 = dots(rand_wave,1); 
end 
k=find(strcmp(back_1,stn_label{rand_wave_2})); 
if isempty(k)~=1 
RAND_lat_2 = locations(pr_num(rand_wave_2),1); 
RAND_lon_2 = locations(pr_num(rand_wave_2),2); 
RAND_dots_2 = dots(rand_wave,1); 
end 
k=find(strcmp(back_2,stn_label{rand_wave})); 
if isempty(k)~=1 
EPIC_lat = locations(pr_num(rand_wave),1); 
EPIC_lon = locations(pr_num(rand_wave),2); 
RAND_lat = locations(pr_num(rand_wave),3); 
RAND_lon = locations(pr_num(rand_wave),4); 
RAND_lon = locations(pr_num(rand_wave),4); 
RAND_dots = dots(rand_wave,1); 
end 
k=find(strcmp(back_2,stn_label{rand_wave_1})); 
if isempty(k)~=1 
RAND_lat_1 = locations(pr_num(rand_wave_1),3); 
RAND_lon_1 = locations(pr_num(rand_wave_1),4); 
RAND_dots_1 = dots(rand_wave,1); 
end 
k=find(strcmp(back_2,stn_label{rand_wave_2})); 
if isempty(k)~=1 
RAND_lat_2 = locations(pr_num(rand_wave_2),3); 
RAND_lon_2 = locations(pr_num(rand_wave_2),4); 
RAND_dots_2 = dots(rand_wave,1); 
end 
pr_cnt=pr_num; 
tstart=(size(xc_all_stack,2)+1)/2; 
tend=300+1200; 
tstep=1; 
 vidHeight = 600; 
 vidWidth  = 800; 
 figure('Color',[0.2 0.2 0.2],'Position',[1 200 vidWidth vidHeight],'Color','white') 
 load dots 
 colormap(cmap) 
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 subplot(6,1,1:3) 
 set(gca,'Color',[0.8 0.8 0.8]) 
 hold on 
 plot(shore(:,1),shore(:,2),'k') 
 plot(political(:,1),political(:,2),'k') 
 title(sprintf('Surface Wave Emanating from %s',EPICENTER),'FontSize',16) 
 xlim([-98,-80]) 
 ylim([34,42]) 
 subplot(6,1,4:4) 
 hold on 
 plot([0:tend-1200],xc_all_stack(pr_num(rand_wave_2),tstart:tend),'k') 
 xlim([0 tend-1200]) 
 ylabel(sprintf('%s',stnpair_labels{pr_num(rand_wave_2)})) 
 subplot(6,1,5:5) 
 hold on 
 plot([0:tend-1200],xc_all_stack(pr_num(rand_wave_1),tstart:tend),'k') 
 xlim([0 tend-1200]) 
 ylabel(sprintf('%s',stnpair_labels{pr_num(rand_wave_1)})) 
 subplot(6,1,6:6) 
 hold on 
 plot([0:tend-1200],xc_all_stack(pr_num(rand_wave),tstart:tend),'k') 
 xlim([0 tend-1200]) 
 ylabel(sprintf('%s',stnpair_labels{pr_num(rand_wave)})) 
xlabel('  Visualization Elapsed Time (seconds)  ','FontSize',12,'FontWeight','bold') 
 set(gca,'CLim',[-1.0 1.0]); 
%set(gca,'Box','on','XTick',[],'YTick',[],'DataAspectRatio',[1 1 1]); 
  k = 1; 
   for i=1:length(pr_num) 
       amp(i,:) = xc_all_stack(pr_num(i),:); 
   end 
  while tstart < tend 
           subplot(6,1,1:3) 
          h1= scatter(lons,lats,135,amp(:,tstart),'filled','MarkerEdgeColor','k'); 
          h2= plot(EPIC_lon,EPIC_lat,'rp','MarkerSize',30,'MarkerFaceColor','r'); 
          h3= scatter(RAND_lon,RAND_lat,135,'m','LineWidth',3); 
          h4= scatter(RAND_lon_1,RAND_lat_1,135,'c','LineWidth',3); 
          h5= scatter(RAND_lon_2,RAND_lat_2,135,'y','LineWidth',3); 
          h6= plot([EPIC_lon,RAND_lon],[EPIC_lat,RAND_lat],'m'); 
          h7= plot([EPIC_lon,RAND_lon_1],[EPIC_lat,RAND_lat_1],'c'); 
          h8= plot([EPIC_lon,RAND_lon_2],[EPIC_lat,RAND_lat_2],'y'); 
           subplot(6,1,4:4) 
          h9= plot([tstart-1199,tstart-1199],[-1,1],'r'); 
           subplot(6,1,5:5) 
          h10= plot([tstart-1199,tstart-1199],[-1,1],'r'); 
           subplot(6,1,6:6) 



 

 

117 

          h11= plot([tstart-1199,tstart-1199],[-1,1],'r'); 
            pause(0.1); 
           tstart = tstart + 1; 
           F(k) = getframe(gcf); 
           delete(h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11) 
           k = k + 1; 
 
if tstart == 2400 
    break 
end 
  end 
movie2avi(F,sprintf('EPICENTER-%s-%.0f-%.0f.avi',EPICENTER,1./wn(2),1./wn(1)));    
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