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ABSTRACT

Yan, Jin Ph.D., Purdue University, December 2016. Matrix-Free Time-Domain Meth-
ods for General Electromagnetic Analysis. Major Professor: Dan Jiao.

Many engineering challenges demand an efficient computational solution of large-

scale problems. If a computational method can be made free of matrix solutions, then

it has a potential of solving very large scale problems. Among existing computational

electromagnetic methods, the explicit finite-difference time-domain (FDTD) method

is free of matrix solutions. However, it requires a structured orthogonal grid for space

discretization. In this work, we develop a new time-domain method that naturally

requires no matrix solution, regardless of whether the discretization is a structured

grid or an unstructured mesh. No dual mesh, interpolation, projection and mass

lumping are needed. Furthermore, a time-marching scheme is developed to ensure

the stability for simulating an unsymmetrical numerical system, while preserving the

matrix-free merit of the proposed method. This time-marching scheme is then made

unconditionally stable, and hence allowing for the use of an arbitrarily large time step

without sacrificing the matrix-free property. Extensive numerical experiments have

been carried out on a variety of two- and three-dimensional unstructured meshes and

even mixed-element meshes. Correlations with analytical solutions and the results

obtained from the time-domain finite-element method have validated the accuracy,

matrix-free property, stability, and generality of the proposed method.

In addition to an extensive development of the proposed method in arbitrary 2-

and 3-D unstructured meshes, we have also made a connection between the proposed

new method and the classical FDTD method. We have found that the proposed

matrix-free method naturally reduces to the FDTD method in an orthogonal grid.

It also results in a new patch-based single-grid formulation of the FDTD algorithm.
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This new formulation not only makes the implementation of the original FDTD much

easier, but also reveals a natural rank-1 decomposition of the curl-curl operator. Such

a representation leads to an efficient extraction of unstable eigenmodes from fine cells

only, from which a fast explicit and unconditionally stable FDTD method is devel-

oped. In addition, to efficiently handle multiscale structures, we develop an accurate

FDTD subgridding algorithm suitable for arbitrary subgridding settings with arbi-

trary contrast ratios between the normal gird and the subgrid. Although the resulting

system matrix is unsymmetric, we develop a time marching method to overcome the

stability problem without sacrificing the matrix-free merit of the original FDTD. This

method is general, which is also applicable to other subgridding algorithms whose

underlying numerical systems are unsymmetric. The proposed FDTD subgridding

algorithm is then further made unconditionally stable, thus permitting the use of a

time step independent of space step.

Last but not the least, the framework of the proposed method can be flexibly

extended to solve partial differential equations in other disciplines, which we have

demonstrated for thermal analysis.
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1. INTRODUCTION

1.1 Background and Motivation

To tackle the real-world challenges in science and engineering, a computational

solution is demanded to solve very large-scale problems. If a computational method

can be made matrix-free, i.e., free of matrix solutions, then it has a potential to solve

much larger problems.

Among existing computational electromagnetic methods, the explicit finite-difference

time-domain (FDTD) method [1,2] is free of matrix solutions. However, its time step

is restricted by space step. To overcome the aforementioned barrier, researchers have

developed implicit unconditionally stable FDTD methods, such as the alternating-

direction implicit (ADI) method [3,4], the Crank-Nicolson (CN) method [5], the CN-

based split step (SS) scheme [6], the pseudo-spectral time-domain (PSTD method) [7],

the locally one-dimensional (LOD) FDTD [8,9], the Laguerre FDTD method [10,11],

the associated Hermite (AH) type FDTD [12], a series of fundamental schemes [13]

and many others, but the advantage of the conventional FDTD is sacrificed in avoid-

ing a matrix solution. When the problem size is large, the implicit unconditionally

stable FDTD methods become inefficient. Research has also been pursued to ad-

dress the time step problem in the original explicit time-domain methods [14–16].

In [17, 18], the source of instability is identified, and subsequently eradicated from

the underlying numerical system to make an explicit FDTD unconditionally stable.

It is shown that the source of instability is the eigenmodes of the discretized curl-curl

operator whose eigenvalues are the largest. These eigenvalues are higher than what

can be stably simulated by the given time step. To find these unstable modes, in [18],

a partial solution of a global eigenvalue solution is computed. In general, only a

small set of the largest eigenpairs of the system matrix need to be found, and the
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system matrix is also sparse. However, the computational overhead of the resultant

scheme may still be too high to tolerate when the matrix size is large. Another line

of thought to solve this problem is to create a subgridding algorithm that locally re-

fines the mesh in the regions where a higher resolution is necessary, thus the number

of unknowns to be solved will be reduced. In literature, many FDTD subgridding

methods have been proposed from different perspectives, such as variable step size

method [19], mesh refinement algorithm (MRA) [20], multigrid displacement method

(MGDM) [21], multigrid current method (MGCM) [22] and many others. Although

the accuracy of most of these methods is preserved, they all lack a theoretical proof

on their stability. As a result, the efficiency and stability of the FDTD method needs

to be further improved when fine features exist in the computational domain.

Except for the time step limitation, the FDTD method also requires a struc-

tured orthogonal grid for space discretization. To overcome this limitation, many

non-orthogonal FDTD methods have been developed such as the curvilinear FDTD

[23–25], contour and conformal FDTD [26–28], discrete surface integral (DSI) meth-

ods [29], generalized Yee-algorithms [30–35], finite integration technique with affine

theories [36], etc. Needless to say, they have significantly advanced the capability

of the original FDTD method in handling unstructured meshes. In existing non-

orthogonal FDTD methods, a dual mesh is generally required. The dual mesh needs

to satisfy a certain relationship with the primary mesh. Such a dual mesh may not

exist in an unstructured mesh. For cases where the dual mesh exists, the accuracy of

many non-orthogonal FDTD methods can still be limited. This is because in these

methods, the field unknowns are placed along the edges of either the primary mesh or

the dual mesh, and are assumed to be constant along the edges. Restricted by such a

representation of the fields, one can only obtain the dual field accurately (second-order

accurate) at the center point of the loop of the primary field, and along the direction

normal to the loop area. Elsewhere and/or along other directions, the accuracy of

the dual field cannot be ensured. However, the points and directions, where the dual

fields can be accurately obtained, are not coincident with the points and directions of
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the dual fields located on the dual mesh, in an unstructured mesh. Actually, the only

mesh that can align the two is an orthogonal grid, which is used by the traditional

FDTD method. As a result, the desired dual fields have to be obtained by interpo-

lations and projections, the accuracy of which is difficult to control in an arbitrary

unstructured mesh. It is observed that many interpolation and projection schemes

lack a theoretical error bound. The same is true to the primary fields obtained from

the dual fields. In addition to accuracy, stability is another concern since the curl op-

eration on E is, in general, not reciprocal to that on H in existing methods developed

for irregular meshes. It can be proved that such a non-reciprocal operation can result

in complex-valued or negative eigenvalues in the underlying numerical system. They

make a traditional explicit time-marching absolutely unstable. This fact was also

made clear in [35]. As a consequence, it remains a research problem how to ensure

both accuracy and stability of an FDTD-like method in an unstructured mesh.

The finite-element method in time domain (TDFEM) [37] has no difficulty in

handling arbitrarily shaped irregular meshes, but it requires the solution of a mass

matrix, thus not being matrix-free in nature. The mass lumping technique has been

used to diagonalize the mass matrix in TDFEM, and also finite integration technique

[36]. But it requires well-shaped elements to be accurate [38]. In addition to mass

lumping, orthogonal vector basis functions have been developed to render the mass

matrix diagonal [39, 40]. These bases are element-shape dependent. They also rely

on an approximate integration to make the mass matrix diagonal. In recent years,

Discontinuous Galerkin time-domain methods [41, 42] have been developed, which

only involve the solution of local matrices of a small size. However, this is achieved

by not enforcing the tangential continuity of the fields across the element interface

at each time instant. Certainly, an accurate result would still have to satisfy the

continuity conditions of the fields. Not directly satisfying them has implications

in either accuracy or efficiency. For example, it is observed that a Discontinuous

Galerkin time-domain method typically requires a time step much smaller than that

of a traditional explicit time-domain method for accurate transient analysis.
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1.2 Contribution of This Work

In this work, we provide solutions to the two problems raised above: how to create

a matrix-free time-domain method in unstructured meshes, and how to overcome the

remaining barriers of a matrix-free method in an orthogonal grid like the FDTD in

stability and efficiency when fine spatial features are present?

First, we develop an accurate and stable matrix-free time-domain method that is

independent of the element shape used for discretization. The tangential continuity of

the fields is satisfied across the element interface at each time instant. No dual mesh,

interpolation, projection, and mass-lumping are needed. The accuracy and stability

are both guaranteed for an arbitrary unstructured mesh. This method is also made

very easy to implement. In addition, in a structured grid and with zeroth-order vector

bases, the proposed method reduces exactly to the FDTD.

The essential idea of the proposed method is to use higher-order vector bases to

represent one field unknown in each element, as a result, the other field unknown

can be obtained accurately at any point along any direction, without any need for

interpolation and projection. Hence, the other field unknown can be sampled in such

a way that the first field unknown can be reversely generated with guaranteed ac-

curacy. The resultant mass matrix is naturally diagonal. In addition to ensuring

accuracy, we realize that the other key to enable a matrix-free method in an un-

structured mesh is to be able to stably simulate an unsymmetrical numerical system.

An unsymmetrical operator is often unavoidable in order to ensure the accuracy of a

matrix-free discretization of Maxwell’s equations in an unstructured mesh. However,

it may yield complex-valued and even negative eigenvalues in nature, which makes a

traditional explicit marching absolutely unstable. As long as we are able to stably

handle complex-valued and also negative eigenvalues, we can fully benefit from the

accuracy and flexibility offered by an unsymmetrical operator in unstructured meshes.

This algorithm is developed in this work, without sacrificing the merit of being free

of a matrix solution.
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The proposed matrix-free time-domain method is further made unconditionally

stable with very little cost such that it permits the usage of any large time step

irrespective of space step. Therefore, the maximum time step that can be used by

the proposed method is no longer restricted by the smallest space step in the mesh.

Meanwhile, if the given time step is chosen based on accuracy, then the accuracy of

the proposed method is also guaranteed.

Next, we propose a fast and explicit unconditionally stable FDTD method with-

out a global eigenvalue solution. First of all, a new patch-based single-grid FDTD

formulation is developed, by using which, we identify the theoretical relationship be-

tween fine cells and the largest eigenmodes of the underlying system matrix. We

prove that once there exists a difference between the time step required by stability

and the time step determined by accuracy, i.e., a difference between the fine-cell size

and the regular-cell size, the largest eigenmodes of the original system matrix can be

extracted from fine cells. The larger the contrast ratio between the two time steps,

the more accurate the eigenmodes extracted in this way. Based on this theoretical

finding, we propose an efficient algorithm to find the unstable modes directly from

fine cells, and subsequently deduct these unstable modes from the numerical system

to achieve an explicit time marching with unconditional stability.

To efficiently handle fine features as well as multiscale structures, subgridding

has been used to locally refine the grid in an FDTD simulation. To preserve ac-

curacy in a grid with arbitrary subgrids, an FDTD subgridding scheme, in general,

would result in an unsymmetric numerical system. Such a numerical system can have

complex-valued eigenvalues, which will render a traditional explicit time marching of

FDTD absolutely unstable. In this work, we develop an accurate FDTD subgridding

algorithm suitable for arbitrary subgridding settings with arbitrary contrast ratios

between the normal gird and the subgrid. Although the resulting system matrix

is also unsymmetric, we develop a time marching method to overcome the stability

problem without sacrificing the matrix-free merit of the original FDTD. This method

is general, which is also applicable to other subgridding algorithms whose underly-
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ing numerical systems are unsymmetric. The proposed FDTD subgridding algorithm

is then further made unconditionally stable, thus permitting the use of a time step

independent of space step.

Last but not the least, we have also shown that the proposed matrix-free method

has a potential to solve general parietal differential equations. Hence, its usage is not

limited to just the solution of Maxwell’s equations, as evidenced by our successful

simulations of thermal problems.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows.

In Chap. 2, we develop a new time-domain method that requires no matrix

solution, regardless of whether the discretization is a structured grid or an unstruc-

tured mesh. We first introduce a general framework for creating a matrix-free time-

domain method, then present the detailed formulations for 2-D problems, includ-

ing the modification of traditional vector bases and the choices of sampled H-points

and H-directions. A new time marching scheme is introduced to ensure stability

meanwhile preserve matrix-free property. In addition, a comprehensive analysis is

conducted on the accuracy and stability of the proposed method. Numerical ex-

periments have been conducted on a variety of unstructured meshes. Correlations

with analytical solutions and the time-domain finite-element method that is capable

of handling unstructured meshes have validated the accuracy and generality of the

proposed matrix-free method.

In Chap. 3, we develop a matrix-free time-domain method for simulating 3-D

structures under the same framework as is described in Chap. 2. How to modify the

traditional vector basis functions for both tetrahedral element and triangular prism

element is presented in details. The validity of the modification on traditional vector

basis functions is also explained. In numerical results section, we simulate a variety
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of 3-D unstructured meshes involving inhomogeneous materials and conductors to

validate the proposed method.

In Chap. 4, we develop a new matrix-free time-domain method without the need

for modifying the traditional vector basis functions. Its matrix-free property, man-

ifested by a naturally diagonal mass matrix, is independent of the element shape

used for discretization and its implementation is straightforward. Moreover, a time-

marching scheme is developed to ensure the stability for simulating an unsymmetrical

numerical system whose eigenvalues can be complex-valued and even negative, while

preserving the matrix-free merit of the proposed method. Extensive numerical ex-

periments have been carried out on a variety of unstructured triangular, tetrahedral,

triangular prism element, and mixed-element meshes to validate the accuracy, matrix-

free property, stability, and generality of the proposed method.

In Chap. 5, we develop an unconditionally stable matrix-free time-domain method

for analyzing general electromagnetic problems discretized into arbitrarily shaped

unstructured meshes. This method does not require the solution of a system matrix,

no matter which element shape is used for space discretization. Furthermore, this

property is achieved irrespective of the time step used to perform the time domain

simulation. As a result, the time step can be solely determined by accuracy regardless

of space step. How the proposed method works is studied theoretically. Moreover, the

complexity of the proposed method is also presented. Numerical experiments have

validated the accuracy and efficiency of the proposed new method.

In Chap. 6, we first propose a new patch-based single-grid FDTD formulation

under the framework of the matrix-free time-domain method introduced in previous

chapters. Based on this new formulation, we develop a fast explicit and uncondi-

tionally stable FDTD method without global eigenvalue solution. In this method,

we find the relationship between the unstable modes and the fine meshes, and use

this relationship to directly identify the source of instability. We then upfront eradi-

cate the source of instability from the numerical system before performing an explicit

time marching. The resultant simulation is absolutely stable for the given time step
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irrespective of how large it is. Numerical experiments have demonstrated a signifi-

cant speedup of the proposed method over the conventional FDTD method as well

as state-of-the-art explicit and unconditionally stable methods.

In Chap. 7, we develop an accurate FDTD subgridding algorithm suitable for

arbitrary subgridding settings with arbitrary contrast ratios between the normal gird

and the subgrid. Although the resulting system matrix is unsymmetric, which makes

the traditional explicit time marching definitely unstable, we develop a time march-

ing method to overcome the stability problem without sacrificing the matrix-free

merit of the original FDTD. This method is general, which is also applicable to other

subgridding algorithms whose underlying numerical systems are unsymmetric. The

proposed FDTD subgridding algorithm is then further made unconditionally stable,

thus permitting the use of a time step independent of space step. Extensive nu-

merical experiments involving both 2- and 3-D subgrids with various contrast ratios

have demonstrated the accuracy, stability, and efficiency of the proposed subgridding

algorithm.

In Chap. 8, to demonstrate the generality of the proposed matrix-free method for

solving other PDEs, we apply the method to solve thermal diffusion equations. By

appending the temperature with a direction and introducing an auxiliary variable, the

scalar thermal diffusion equation has been transformed into two vector equations to

solve using the matrix-free time-domain method. The effectiveness of the proposed

method has been validated by numerical experiments in both time and frequency

domain.

In Chap. 9, we summarize the work that has been done and also present our

future work.
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2. MATRIX-FREE TIME-DOMAIN METHOD IN 2-D

UNSTRUCTURED MESHES

2.1 Introduction

In this chapter, we present a new time-domain method that has a naturally diag-

onal mass matrix and thereby a strict linear computational complexity per time step,

regardless of whether the discretization is a structured grid or an unstructured mesh.

This property is obtained independent of the element shape used for discretization.

No interpolations, projections, and mass lumping are required. The accuracy and

stability of the proposed method are theoretically analyzed and shown to be guar-

anteed. In addition, no dual mesh is needed and the tangential continuity of the

fields is satisfied across the element interface. The flexible framework of the proposed

method also allows for a straightforward extension to higher-order accuracy in both

electric and magnetic fields. Numerical experiments have been conducted on a variety

of unstructured meshes. Correlations with analytical solutions and the time-domain

finite-element method that is capable of handling unstructured meshes have validated

the accuracy and generality of the proposed matrix-free method. This method is also

extended to simulate 3-D structures in next chapter.

2.2 Proposed Framework

Consider a general electromagnetic problem discretized into arbitrarily shaped

elements, which can also be a mix of different kinds of elements such as a mix of

brick, triangular prism, and tetrahedral elements. Starting from the differential form

of Faraday’s law and Ampere’s law,

∇× E = −µ∂H

∂t
(2.1)
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∇×H = ε
∂E

∂t
+ σE + J, (2.2)

we pursue a discretization of the above two equations, which results in a numerical

system having a diagonal mass matrix in nature. Notice that the other two Maxwell’s

equations are implicitly satisfied by (2.1) and (2.2).

To discretize Faraday’s law (2.1), we expand the electric field E in each element

by certain vector basis functions Ni (i = 1, 2, ...,m) as the following

E =
m∑
j=1

ejNj, (2.3)

where ej is the unknown coefficient of the j-th vector basis. Using (2.3) and (2.1), we

can obtain magnetic field H at any point. Assume that we compute H at Nh discrete

points, each of which is denoted by rhi(i = 1, 2, ..., Nh). At each H-point, assume the

unit vector along which we compute H is ĥi. Substituting (2.3) into (2.1), evaluating

H at the Nh points, and taking the dot product of the resultant with corresponding

ĥi at each point, we obtain the following Nh equations:

ĥi ·
∑

ej{∇ ×Nj}(rhi) = −ĥi · µ(rhi)
∂H(rhi)

∂t
, (i = 1, 2, ..., Nh) (2.4)

which can further be compactly written as the following matrix equation:

Se{e} = −diag({µ})∂{h}
∂t

, (2.5)

where {e} is a global vector containing the unknown coefficients ei of E’s vector bases,

and {h} is a global vector containing discretized H. Their i-th entries are

ei = E(rei) · êi (2.6)

hi = H(rhi) · ĥi, (2.7)

in which rei and êi (i = 1, 2, ..., Ne) are, respectively, the points and the unit-vectors

associated with the vector E’s degrees of freedom. In (2.5), diag({µ}) is a diagonal

matrix of size Nh, whose i-th diagonal entry is the permeability at point rhi. The

sparse matrix Se is rectangular of dimension Nh by Ne, the length of {e} is Ne; while

that of {h} is Nh.
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To discretize Ampere’s law (2.2), we evaluate E at the rei (i = 1, 2, ..., Ne) points,

and take the dot product of the resultant with êi at each point, obtaining

êi · {∇ ×H}(rei) = ε(rei)
∂ei
∂t

+ σ(rei)ei + êi · J(rei), (i = 1, 2, ..., Ne) (2.8)

where êi ·∇×H is generated by using {h} obtained from (2.5). As a result, we obtain

the following discretization of Ampere’s law

Sh{h} = diag({ε})∂{e}
∂t

+ diag({σ}){e}+ {j}, (2.9)

where the sparse matrix Sh is of dimension Ne × Nh, and the i-th entry of current

source vector {j} in (2.9) is

ji = êi · J(rei), (i = 1, 2, ..., Ne). (2.10)

In addition, diag({ε}) and diag({σ}) are diagonal, whose i-th entry is, respectively,

the permittivity and conductivity at point rei.

A leap-frog based time discretization of (2.5) and (2.9) clearly provides us with a

time-marching scheme free of matrix solutions as follows:

{h}n+
1
2 = {h}n−

1
2 − diag({ 1

µ
})∆tSe{e}n (2.11)(

diag({ε}) +
∆t

2
diag({σ})

)
{e}n+1 =

(
diag({ε})− ∆t

2
diag({σ})

)
{e}n+

∆tSh{h}n+
1
2 −∆t{j}n, (2.12)

where ∆t is the time step, and the time instants for {e} and {h}, denoted by super-

scripts, are staggered by half. Note that neither (2.11) nor (2.12) involves a matrix

solution.

The (2.5) and (2.9) can also be solved in a second-order fashion. Taking another

time derivative of (2.9) and substituting (2.5), we obtain

∂2 {e}
∂t2

+ diag({σ
ε
})∂ {e}

∂t
+ S {e} = −diag({1

ε
})∂{j}

∂t
, (2.13)

where

S = diag({1

ε
})Shdiag({ 1

µ
})Se. (2.14)
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It is obvious that the above numerical system is also free of matrix solutions with a

central-difference based disretization in time. In fact, it can be readily proved that

(2.11) and (2.12) are the same as the central-difference based discretization of second-

order system (2.13) after eliminating the {h}-unknown. In addition, the mass matrix

shown in (2.13), which is the matrix in front of the second-order time derivative, is

obviously diagonal. Hence, no mass lumping is needed. For anisotropic materials

whose permittivity and permeability are tensors, the diagonal mass matrix simply

becomes a block diagonal matrix whose block size is 3. Hence, its inverse is also

explicit, which can be found analytically.

2.3 Proposed Formulations

2.3.1 General Idea

At this point, it can be seen that the accuracy of the proposed matrix-free method

relies on an accurate construction of (2.9) for an arbitrary unstructured mesh, since

the accuracy of (2.5) is not a concern at all—with a set of well-established curl-

conforming vector basis functions for discretizing E, the accuracy of (2.5) is guaran-

teed for producing H at any point and along any direction. Therefore, the key issue

is how to build an accurate (2.9). To be more precise, how to construct Sh{h}, i.e.,

a disretization of the curl of H, such that it can accurately produce the desired {e}.

We propose to determine H points and directions based on discretized E unknowns

so that the resultant H fields can generate the desired {e} accurately. From the

integral form of Ampere’s law, we know that the circulation of the tangential H in a

loop can produce an accurate E along the direction normal to the loop at the center

point of the loop area. Hence, the simplest approach is for each êi located at point rei,

define a rectangular loop perpendicular to êi and centered at point rei, as illustrated

in Fig. 2.1. Along this loop, we define H-points and H-directions associated with êi.

The set of H-points and H-directions found for each êi at rei makes the whole set of

H-points denoted by {rhi}, and the whole set of H-directions denoted by {ĥi}, with
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(i = 1, 2, ..., Nh). The {h} is simply the vector of H(rhi) · ĥi (i = 1, 2, ..., Nh) as shown

in (2.7). With such an {h}, the Sh can be readily built with guaranteed accuracy.

In addition, no dual mesh needs to be constructed for discretizing H since the H is

known from (2.5) at any point and along any direction. We only need to sample H at

the points along the directions shown in Fig. 2.1 based on E’s points and directions.

In fact, our discrete H does not form a mesh at all.

Fig. 2.1. H points and directions determined based on E’s degrees of freedom.

2.3.2 Vector Basis Functions for the Expansion of E

Consider an arbitrary i-th edge in a triangular-element based mesh residing on an

x-y plane. With the normalized zeroth-order edge elements to expand E, the ei shown

in (2.6) has êi the unit vector tangential to the i-th edge, and rei the center point of

the i-th edge. To obtain such an ei accurately from the discrete H (now Hz only for

a 2-D TE case), the two H-points should be located on the line that is perpendicular

to the i-th edge and centered at the point rei, as illustrated in Fig. 2.2(a). In this

way, the edge is perpendicular to the H-loop (in the plane defined by z-direction and

the line normal to the edge), and resides at the center of the loop. As a result, an

accurate E · êi can be obtained. However, using the zeroth-order edge elements, the

curl of E is constant in every element, thus we cannot generate H at the desired

points accurately. From another perspective, we can view the H obtained at the
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center point of every element to be accurate. However, in an arbitrary unstructured

mesh, the line segment connecting the center points of the two elements sharing an

edge may not be perpendicular to the edge, and the two center points may not have

the same distance to the edge either, as illustrated in Fig. 2.2(b).

Fig. 2.2. (a) The locations of H points required for the accurate
evaluation of e at point re. (b) The locations of H points with zeroth-
order edge bases.

To overcome the aforementioned problem, we propose to use a higher-order curl-

conforming vector basis to expand E in each element. With an order higher than

zero, the curl of E and hence H is at least a linear function in each element. In this

way, we can generate H at any desired point accurately from (2.5).

However, we cannot blindly use the original set of the first-order curl-conforming

vector bases in [43]. They need certain modifications to fit the need of this work.

This is because the unknown coefficient ei shown in (2.3) should be equal to (2.6) to

connect (2.5) with (2.9) directly without any need for transformation. This results in

the following property of the desired vector basis functions:

êi ·Nj(rei) = 1, j = i

êi ·Nj(rei) = 0, j 6= i (2.15)

which can be readily obtained by taking a dot product with êi on both sides of (2.3)

at point rei, and recognizing that the left hand side of the resultant is required to be
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equal to ei. Notice that (2.15) is not mass lumping that enforces the volume integral

of < Ni,Nj > to be δij.

The zeroth-order edge bases in a triangular or other shaped elements naturally

satisfy (2.15). As for the first-order edge basis functions, there are not only six edge

degrees of freedom, but also two internal degrees of freedom at the center point of

the triangular element. The former six bases satisfy (2.15), but the latter two do not.

They hence need a modification. The definitions of these two bases are not unique

either, thus they can be modified to satisfy (2.15) without sacrificing the completeness

of the bases.

Fig. 2.3. Illustration of the degrees of freedom of the zeroth- and the
first-order vector bases in a triangular element.

To elaborate, first, we list the original six edge vector basis functions Ni (i =

1, 2, ..., 6) together with their unit tangential vectors êi as follows:

ê1 = ~v23/‖~v23‖, N1 = (3ξ2 − 1)W1

ê2 = ~v23/‖~v23‖, N2 = (3ξ3 − 1)W1

ê3 = ~v31/‖~v31‖, N3 = (3ξ3 − 1)W2

ê4 = ~v31/‖~v31‖, N4 = (3ξ1 − 1)W2

ê5 = ~v12/‖~v12‖, N5 = (3ξ1 − 1)W3

ê6 = ~v12/‖~v12‖, N6 = (3ξ2 − 1)W3,

(2.16)
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where ~vij denotes the vector pointing from node i to node j, as shown in Fig. 2.3,

ξi (i = 1, 2, 3) are area coordinates, and W denotes the normalized zeroth-order edge

basis as follows

W1 = L1(ξ2∇ξ3 − ξ3∇ξ2)

W2 = L2(ξ3∇ξ1 − ξ1∇ξ3)

W3 = L3(ξ1∇ξ2 − ξ2∇ξ1),

(2.17)

in which Li is the length of the i-th edge. The degrees of freedom of the above six

edge vector bases are located respectively at the following points in each element

re1 = (ξ2 = 2/3, ξ3 = 1/3)

re2 = (ξ2 = 1/3, ξ3 = 2/3)

re3 = (ξ1 = 1/3, ξ3 = 2/3)

re4 = (ξ1 = 2/3, ξ3 = 1/3)

re5 = (ξ1 = 2/3, ξ2 = 1/3)

re6 = (ξ1 = 1/3, ξ2 = 2/3).

(2.18)

The projection of êi (i = 1, 2, ..., 6) onto any j-th vector basis in (2.16) at the point

of the i-th degree of freedom, i.e. êi ·Nj(rei), is obviously zero for j 6= i and one for

j = i . This can be analytically verified, and also conceptually understood because if

it is not zero, the first-order bases (2.16) cannot ensure the tangential continuity of

E across the element interfaces, which is not true. Therefore, the property of (2.15)

is satisfied for (i = 1, 2, ..., 6) and (j = 1, 2, ..., 6).

For the two vector basis functions whose degrees of freedom are internal at the

element center, we have

re7 = (ξ1 = 1/3, ξ2 = 1/3)

re8 = (ξ1 = 1/3, ξ2 = 1/3).
(2.19)

If we choose the two vector bases as N7 = 4.5ξ1W1 and N8 = 4.5ξ2W2 as those

suggested in [43], with ê7 = ~v23/‖~v23‖ along edge 1, and ê8 = ~v31/‖~v31‖ along edge 2,

although they make êi ·Nj(rei) zero for (i = 1, 2, ..., 6) and (j = 7, 8), the ê7 ·N8(re7)
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is, in general, not zero since edge 1 may not be perpendicular to W2 at the element

center. Thus, (2.15) is not satisfied. If we keep N7 as it is, but choosing N8 as

ξ2ξ3∇ξ1, although ê7 ·N8(re7) becomes zero now, ê8 ·N7(re8) is not zero in general

at the element center. Even though we change ê8 to be along the direction of ∇ξ1,

ê8 ·N7(re8) is not zero either since W1 is not parallel to edge 1 at element center. In

view of the aforementioned problem, we propose to keep one basis (N7) the same as

before, but modify the second basis (N8) as the following:

ê7 = ~v23/‖~v23‖, N7 = 4.5ξ1W1

ê8 = (ẑ ×W1)/‖ẑ ×W1‖, N8 = c8ξ2ξ3∇ξ1,
(2.20)

where c8 is the normalization coefficient that makes ê8 ·N8(re8) = 1. In (2.20), instead

of using the ∇ξ1 direction as ê8, we employ the direction of (ẑ ×W1). By doing so,

ê8 ·N7(re8) is ensured to be zero. Furthermore, ê7 ·N8(re7) = 0 still holds true. In

addition, with the choice of (2.20), the property of êi ·Nj(rei) = 0 with (i = 1, 2, ..., 6)

and (j = 7, 8) is still satisfied. Meanwhile, the property of êi · Nj(rei) = 0 with

(i = 7, 8) and (j = 1, 2, ..., 6) is also satisfied since all the six edge vector bases vanish

at the element center.

In summary, the six vector basis functions shown in (2.16) and the two vector

bases given by (2.20) make a complete set of the first-order vector basis functions

for a triangular element. Together with the unit vectors êi defined in (2.16) and

(2.20), they meet the requirements of (2.15), and hence making each entry in {e}

nothing but E · êi(rei). It is also worth mentioning that the approach shown in (2.20)

for modifying bases is equally applicable to other higher-order bases to make the

unknown coefficient vector of the basis functions equal to the unknown electric field

vector shown in (2.6).

2.3.3 Choice of H-points and H-directions

With the points and directions of the E’s degrees of freedom known from the above

section, it also becomes clear at which points and along which directions we evaluate
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H. As shown in Fig. 2.2(a), for each êi located at rei, we draw a line perpendicular

to êi at rei. On this line, we find two points such that the center point of the two

points is rei. The two points are where we need to prepare for H such that E · êi can

be accurately evaluated at rei. For êi located at the edge, the two points straddle the

edge, and reside respectively in the two elements sharing the edge; for the internal

degree of freedom whose êi is located at the element center, both H-points are chosen

inside the element. The union of the two points we find for each êi makes the whole

set of rhi (i = 1, 2, ..., Nh). As for the direction used at each H-point, for analyzing

2-D problems, it is ĥi = ẑ (i = 1, 2, ..., Nh).

Fig. 2.4 illustrates the locations of the H-points drawn for the E unknowns located

in a single element. Basically, each E unknown is associated with a pair of H-points.

Each pair is marked by a different color in Fig. 2.4. Coincident H-field points are

permitted in the proposed algorithm. No extra checking to avoid overlapping points

is needed.

The total number of E unknowns, i.e. the length of {e} vector in (2.5), is Ne =

2Nedge + 2Npatch; whereas the total number of H unknowns, i.e. the length of {h}

vector, is Nh = 10Npatch since there are 10 H-points in each patch.

2.3.4 Formulations of Se and Sh

Se is a sparse matrix of size Nh ×Ne, whose ij-th entry can be written as

Se,ij = ĥi · {∇ ×Nj}(rhi), (2.21)

where i denotes the global index of the H-point, while j is the global index of the E’s

vector basis function. The number of nonzero elements in each row of Se is 8 since the

Hz at each specified point is evaluated from the curl of E expanded into eight vector

basis functions in the element where the H-point resides. When Se is constructed,

the elements share the same tangential E, i.e. {e}, in common along the edges, thus

the tangential continuity of E is enforced during the construction of Se.
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Fig. 2.4. Illustration of H-points (stars) for all E’s degrees of freedom
(arrows) in one element.

The curl of each vector basis Nj in (2.21) can be evaluated analytically based on

their expressions given in (2.16) and (2.20), and then the point rhi is substituted into

the resulting analytical expression to obtain the curl at the point.

The size of Sh is still the same as that of the transpose of Se, namely Ne × Nh.

However, it is not the transpose of Se. Consider an arbitrary E-unknown ei, and

denote the two H-unknowns associated with it to be hm, and hn respectively. Assume

the distance between hm and hn is li. Since the two H-points of each ei are positioned

in a way as that shown in Fig. 2.4, the discretization of ∇ × H for ei becomes

±(hm − hn)/li. Therefore, every row of Sh has only two nonzero elements, whose

entries are

Sh,ij = ±1

li
, (2.22)

where j denotes the global index of the H-point associated with the ei.
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2.3.5 Time Marching Scheme and Stability Analysis

For a general unstructured mesh, if we choose Sh = STe , the accuracy cannot be

ensured. For an accurate Sh constructed in the proposed work, it is not the transpose

of Se. The resultant S is not symmetric. As a result, the explicit marching like (2.11)

and (2.12) or a central-difference based explicit time marching of (2.13) is absolutely

unstable.

To understand the stability problem more clearly, we can perform a stability

analysis of the central-difference based time discretization of (2.13) based on the

approach given in [35, 44]. We start with a general inhomogeneous lossless problem

since the analysis of a lossy problem can be done in a similar way. The z-transform of

the central-difference based time marching of (2.13) results in the following equation:

(z − 1)2 + ∆t2λz = 0, (2.23)

where λ is the eigenvalue of S. The two roots of (2.23) can be readily found as

z1,2 =
2−∆t2λ±

√
∆t2λ(∆t2λ− 4)

2
. (2.24)

If S is Hermitian positive semidefinite, its λ is real and no less than zero. Thus, we

can always find a time step to make z in (2.24) bounded by 1, and hence the explicit

simulation of (2.13) stable. Such a time step satisfies ∆t ≤ 2/
√
λmax, where λmax

is the maximum eigenvalue, which is also S’s spectral radius. However, if S is not

Hermitian positive semidefinite, its eigenvalues either are real or come in complex-

conjugate pairs [45]. For complex-valued or negative eigenvalues λ, the two roots z1

and z2 shown in (2.24) satisfy z1z2 = 1 and neither of them has modulus equal to 1. As

a result, the modulus of one of them must be greater than 1, and hence the explicit

time-domain simulation of (2.13) must be unstable. Similarly, we can perform a

stability analysis of a general lossy problem, and find the same conclusion—if the S is

not symmetric and supports complex-valued and/or negative eigenvalues, the central-

difference-based explicit timed-domain simulation of (2.13) is absolutely unstable.
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The stability problem is solved in this work by developing a matrix-free time

marching scheme that is stable. We will start with the following backward-difference-

based discretization of (2.13) to explain the basic idea. But the final time marching

equation only involves the field solutions at previous time steps for obtaining the

field solution at current time step. The backward-difference-based discretization of

of (2.13) results in

{e}n+1 − 2{e}n + {e}n−1 + ∆tdiag({σ
ε
})({e}n+1 − {e}n) + ∆t2S{e}n+1

= −∆t2diag({1

ε
})
(
∂{j}
∂t

)n+1

, (2.25)

which is obtained by approximating both first- and second-order time derivatives by

a backward-difference scheme [37]. Performing a stability analysis of (2.25), we find

the two roots of z as

z1,2 =
1

1± j∆t
√
λ
. (2.26)

As a result, the z can still be bounded by 1 even for an infinitely large time step.

However, this does not mean the backward difference is unconditionally stable since

now the λ can be complex-valued or even negative. To make the magnitude of (2.26)

bounded by 1, we find that the time step needs to satisfy the following condition

∆t > 2
|Im(
√
λ)|

|
√
λ|2

, (2.27)

where Im(·) denotes the imaginary part of (·). Interestingly, the scheme is stable

for large time step, but not stable for small time step. For real eigenvalues, it is

absolutely stable. However, for complex or negative eigenvalues, to be stable, one

should not choose a small time step that violates (2.27).

Rearranging the terms in (2.25), we obtain

D̃{e}n+1 = 2{e}n − {e}n−1 + ∆tdiag({σ
ε
}){e}n−

∆t2diag({1

ε
})
(
∂{j}
∂t

)n+1

, (2.28)

where

D̃ = I + ∆tdiag({σ
ε
}) + ∆t2S. (2.29)
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Let the diagonal part of D̃ be D, thus

D = I + ∆tdiag({σ
ε
}). (2.30)

Front multiplying both sides of (2.28) by D−1, we obtain

(I + M̃){e}n+1 = D−1{f}, (2.31)

where {f} is the right-hand side of (2.28), and

M̃ = ∆t2D−1S. (2.32)

Although (2.28) permits the use of any large time step, we choose the time step in

the following way

∆t2 <
1

‖S‖
, (2.33)

and hence

∆t2‖S‖ < 1. (2.34)

Notice that the time step determined from (2.33) is the same as that of a traditional

explicit scheme for stability. This is also the time step required by accuracy when

space step is determined based on the input spectrum. This is because the square

root of spectral radius and thereby the norm of S corresponds to the largest frequency

present in the system response. To capture this frequency accurately, a time step of

(2.33) is necessary. It is also worth mentioning that the time step that violates (2.27)

turns out to be very small in the proposed method since the imaginary part of the

complex eigenvalues is negligible as compared to the real part, owing to the accuracy

of the proposed space discretization scheme. Thus, (2.33) satisfies (2.27) in general.

The D is a diagonal matrix shown in (2.30). The norm of its inverse can be

analytically evaluated as

‖D−1‖ = 1/min1≤i≤Ne(1 + ∆tσi/εi) = 1. (2.35)

we hence obtain, from (2.34) and (2.35),

‖M̃‖ = ∆t2‖D−1S‖ ≤ ∆t2‖D−1‖‖S‖ < 1. (2.36)
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As a result, we can evaluate the inverse of I + M̃ by

(I + M̃)−1 = I− M̃ + M̃
2 − M̃

3
+ . . . , (2.37)

which can be truncated since (2.36) is satisfied. Together with the fact that the mass

matrix D is diagonal, and thus M̃ does not involve any matrix inversion, the system

matrix has an explicit inverse, and hence no matrix solutions are required in the

proposed method. This is very different from an iterative matrix solution that does

not have an explicit inverse of the system matrix. The (2.31) can then be computed

as

{e}n+1 = (I− M̃ + M̃
2 − · · ·+ (−M̃)k)Di{f}, (2.38)

where Di is diagonal matrix D’s inverse. The number of terms k is ensured to be

small (less than 10) since (2.36) holds true. When mesh changes, the spectral radius of

S changes. However, the time step required by accuracy or by a traditional explicit

scheme for stability also changes. Since such a time step is chosen based on the

criterion of (33), the convergence of (2.37) is guaranteed and the convergence rate

does not depend on the mesh quality.

The computational cost of (2.38) is k sparse matrix-vector multiplications since

each term can be computed from the previous term. For example, after Di{f} is

computed, let the resultant be vector y, the second term in (2.38) can be obtained

from −M̃y. Let the resultant be y. The third term relating to M̃
2

is nothing but

−M̃y. Therefore, the cost for computing each term in (2.38) is the cost of multiplying

−M̃ by the vector obtained at the previous step, thus the overall computational

complexity is strictly linear (optimal).

When the proposed method is applied to a regular orthogonal grid, we do not

need to add a few more sparse matrix-vector multiplications shown in (2.38). One

sparse matrix-vector multiplication based on M̃ is sufficient for stability. Only for

unstructured meshes where complex-valued or negative eigenvalues exist, (2.38) is

necessary for stability. The key for (2.38) to be free of matrix solution is the diagonal

mass matrix created by the proposed new method for discretizing Maxwell’s equations
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in unstructured meshes. The same series expansion can be applied to the backward-

difference-based TDFEM, but the resultant scheme still involves a matrix solution.

2.3.6 Imposing Boundary Conditions

The implementation of boundary conditions in the proposed method is similar to

that in the TDFEM and FDTD, since the proposed method has a numerical system

conformal to the two methods.

For closed-region problems, the perfect electric conductor (PEC), the perfect mag-

netic conductor (PMC), or other nonzero prescribed tangential E or tangential H are

commonly used at the boundary. To impose prescribed tangential E at Nb boundary

points, in (2.5), we simply set the {e} entries at the Nb points to be the prescribed

value, and keep the size of Se the same as before to produce all Nh discrete H from

the Ne discrete E. In (2.9), since the {e} entries at the Nb points are known, the

updating of (2.9) only needs to be performed for the rest (Ne − Nb) {e} entries. As

a result, we can remove the Nb rows from Sh corresponding to the Nb boundary E

fields, while keeping the column dimension of Sh the same as before. The above

treatment, from the perspective of the second-order system shown in (2.13), is the

same as keeping just (Ne − Nb) rows of S, providing the full-length {e} (with the

boundary entries specified) for the {e} multiplied by S, but taking only the Ne −Nb

rows of all the other terms involved in (2.13). To impose a PMC to truncate the com-

putational domain, the total E unknown number is Ne without any reduction. The

(2.5) is formulated as it is since the H-points having the PMC boundary condition

can be placed outside the computational domain, instead of right on the boundary

where E is located. As for (2.9), there is no need to make any change either since

the tangential H is set to be zero outside the computational domain. For open-region

problems, the framework of (2.5) and (2.9) in the proposed method is conformal to

that of the FDTD. As a result, the various absorbing boundary conditions that have
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been implemented in FDTD such as the commonly used PML (perfectly matched

layer) can be implemented in the same way in the proposed matrix-free method.

2.4 Numerical Results

In this section, we simulate a variety of 2-D unstructured meshes to demonstrate

the validity and generality of the proposed matrix-free method in analyzing arbitrar-

ily shaped structures discretized into irregular mesh elements. The accuracy of the

proposed method is validated by comparison with both analytical solutions and the

TDFEM method that is capable of handling unstructured meshes but having a mass

matrix that is not diagonal.

2.4.1 Wave Propagation in a 2-D Ring Mesh

A 2-D ring centered at (1.0 m, 1.0 m) with inner radius 0.5 m and outer radius

1.0 m is simulated in free space. The triangular mesh is generated by DistMesh [46],

the details of which are shown in Fig. 2.5. The discretization results in 826 edges

and 519 triangular patches. To investigate the accuracy of the proposed method in

such a mesh, we consider that the most convincing comparison is a comparison with

analytical solution. Although the structure is irregular, we can use it to study a free-

space wave propagation problem whose analytical solution is known. To do so, we

impose an analytical boundary condition, i.e. the known value of tangential E, on the

boundary of the problem, which comprises the innermost and outermost circles; we

then numerically simulate the fields inside the computational domain and correlate

the results with the analytical solution.

The incident E, which is also the total field in the given problem, is specified as

E = ŷf(t− x/c), where f(t) = 2(t− t0) exp(−(t− t0)2/τ 2), τ = 2.5× 10−8 s, t0 = 4τ ,

and c denotes the speed of light. The time step used in the proposed method is

∆t = 2.0 × 10−11 s, which is the same as what a traditional central-difference based

TDFEM has to use for stability. With this time step, the spectral radius of ∆t2S
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Fig. 2.5. Illustration of the mesh of a ring structure.

is 0.7359, and the number of expansion terms is 9 in (2.37). In Fig. 2.6(a), we plot

the 2689- and 2690-th entry randomly selected from the unknown {e} vector, which

represent E(rei) · êi, with i = 2689, and 2690 respectively. The point rei for both i

is (1.0789 m, 0.3497 m), thus the two E fields are sampled at the center point of one

patch. From Fig. 2.6(a), it can be seen clearly that the electric fields solved from the

proposed method have an excellent agreement with analytical results.

To further verify the accuracy of the proposed method, we consider the relative

error of the whole solution vector defined by

Errorentire(t) =
||{e}this(t)− {e}ref (t)||

||{e}ref (t)||
(2.39)

as a function of time, where {e}this(t) denotes the entire unknown vector {e} of length

Ne solved from this method, while {e}ref (t) denotes the reference solution, which is

analytical result {e}anal(t) in this example. The (2.39) allows us to evaluate the

accuracy of the proposed method at all points for all time instants. In Fig. 2.6(b),

we plot Errorentire(t) across the whole time window in which the fields are not zero.
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Notice that the vertical axis displays the error in log10 scale, i.e. log10Errorentire(t). It

is evident that less than 1% error is observed in the entire time window, demonstrating

the accuracy of the proposed method. The center peak in Fig. 2.6(b) is due to the

comparison with close to zero fields.
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Fig. 2.6. Simulation of ring mesh: (a) Electric fields simulated from
the proposed method in comparison with analytical results. (b) log10
of the entire solution error for all E unknowns v.s. time as compared
to analytical result.

In addition to the accuracy of the entire method, we have also examined the

accuracy of the individual Se, and Sh separately, since each is important to ensure

the accuracy of the whole scheme. First, to solely assess the accuracy of Se, we

perform the time marching of (2.5) only without (2.9) by providing an analytical {e}

to (2.5) at each time step. The resultant {h} is then compared to analytical {h}anal
at each time step. As can be seen from Fig. 2.7(a) where the following H-error

log10
||h(t)− hanal(t)||
||hanal(t)||

(2.40)

is plotted with respect to time, the error of all H unknowns is less than 1% across

the whole time window, verifying the accuracy of Se.

Similarly, in order to examine the accuracy of Sh, we perform the time marching of

(2.9) only without (2.5) by providing an analytical {h} to (2.9) at each time step. The
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relative error of all E unknowns shown in (2.39) as compared to analytical solutions in

log10 scale is plotted with time in Fig. 2.7(b). Again, less than 1% error is observed

across the whole time window, verifying the accuracy of Sh.

(a) (b)

Fig. 2.7. Simulation of ring mesh: (a) log10 of the entire solution error
v.s. time of all H unknowns obtained from Se-rows of equations. (b)
log10 of the entire solution error v.s. time of all E unknowns obtained
from Sh-rows of equations.

In this example, we have also varied the spacing between H points to examine its

impact on time step and solution accuracy. Assume the i-th vector basis at point rei

is shared by two elements e1 and e2. We draw a line passing rei and perpendicular

to the edge where the vector basis resides. Assume the line intersects element e1 at

point r1, and e2 at point r2. If |r1−rei| < |r2−rei|, then the distance between the two

H points is set to be (2|r1− rei|)/Hlratio. With this definition, the smaller Hlratio,

the larger the distance between the two H points, and the smallest Hlratio one can

choose is 1 for both points to fall inside the e1 and e2. As can be seen from Fig. 2.8,

the solution accuracy is good irrespective of the choice of spacing, but larger spacing

results in even better accuracy. This can be attributed to a less skewed discretization.

The time step allowed by an explicit marching is 2.0× 10−11, 1.5× 10−11, and 10−11 s

respectively for Hlratio = 2, 5, and 10. Hence, in general, a larger spacing is better

for choice.
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Fig. 2.8. log10 of the entire solution error for all E unknowns v.s. time.

2.4.2 Wave Propagation in an Octagonal Spiral Inductor Mesh

The second example is a 1.5-turn octagonal spiral inductor in free space, whose

2-D mesh is shown in Fig. 2.9. The discretization results in 2081 edges and 1325

triangular patches. Again, we set up a free-space wave propagation problem in the

given mesh to validate the accuracy of the proposed method against analytical results.

The incident E has the same form as that of the first example, but with τ = 2.0×10−12

s in accordance with the new structure’s dimension. The outermost boundary of the

mesh is truncated by analytical E fields. The time step used is ∆t = 2.0 × 10−16 s

for simulating this µm-level structure, which is the same as that used in a traditional

TDFEM method. This time step results in the spectral radius of ∆t2S = 0.8930. The

number of expansion terms is 9 in (2.37). The two degrees of freedom of the electric

field located at one patch’s center point, (206.83 µm, 12.65 µm), are plotted in Fig.

2.10(a) in comparison with analytical data. Excellent agreement can be observed.

In Fig. 2.10(b), we plot the entire solution error shown in (2.39) versus time, where

the vertical axis displays the error in log10 scale. Less than 3% error is observed in
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Fig. 2.9. Illustration of the mesh of an octagonal spiral inductor.
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Fig. 2.10. Simulation of an octagonal spiral inductor mesh: (a) Sim-
ulated electric field waveforms in comparison with analytical results.
(b) log10 of the entire solution error v.s. time as compared to analyt-
ical result.
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the entire time window. It is evident that the proposed method is not just accurate

at certain points, but accurate at all points in the computational domain for all time

instants simulated. Note that the center peak error is due to zero passing, thus the

comparison with close to zero fields at the specific time instant. The actual behavior

at the zero-passing time instant is more objectively reflected in Fig. 2.10(a). In

addition, we have examined the impact of k on solution accuracy. We have enlarged

k from 9, to 18, and 36, the solution accuracy has no visible difference.

2.4.3 Wave Propagation and Reflection in an Inhomogeneous Medium
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Fig. 2.11. Illustration of the mesh of a square inductor.

The third example is a wave propagation and reflection problem in an inductor

mesh with dielectric materials. Fig. 2.11 displays the mesh details, where εr = 4 in

the red shaded region and 1 elsewhere. The top, bottom and right boundaries are

terminated by perfect conductors, while the left boundary is truncated by the sum of

the incident and reflected E fields. The incident E has the same form as that in the
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first example, but with τ = 8.0×10−13 s. The ∆t used is 5.0×10−16 s, and the spectral

radius of ∆t2S is 0.8119. The number of expansion terms is 9. In Fig. 2.12(a), the

electric fields at two points (−59.12,−71.31, 0) µm and (−63.25,−64.3, 0) µm are

plotted in comparison with TDFEM results. Excellent agreement can be observed.

Again, such an agreement is also observed at all points for all time. As shown in Fig.

2.12(b), the entire solution error as compared with the TDFEM solution is less than

3% at all time instants even though the mesh is highly skewed. A few peak errors are

due to the comparison with close-to-zero fields.
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Fig. 2.12. Simulation of a square inductor mesh: (a) Electric fields
simulated from the proposed method in comparison with TDFEM
results. (b) Entire solution error v.s. time as compared to reference
TDFEM result.

2.4.4 Simulation of a PEC Cavity

The fourth example is a 2-D cavity. The cavity is filled with air and terminated by

PEC on four sides. The mesh is shown in Fig. 2.13. We solve the transverse magnetic

fields of TM11 mode for this cavity. The ∆t used is 2.0 × 10−11 s. Nine terms are

kept in (2.38). The same problem is also simulated using TDFEM for comparison.

In Fig. 2.14(a), the magnetic field waveform at a randomly selected point (0.2415,

0.0145) m is plotted in comparison with analytical results. Excellent agreement can
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be observed. Meanwhile, we calculate the entire solution error, which measures the

error of the entire set of field unknowns, as compared with the analytical solution at

each time step for both the proposed method and the TDFEM. The errors of the two

methods are shown in Fig. 2.14(b) as a function of time. Obviously, both methods

are accurate, and the proposed method is shown to have a better accuracy. This can

be attributed to the better space discretization accuracy of the proposed method for

the same mesh.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x(m)

y
(m

)

Fig. 2.13. Illustration of the mesh of a cavity.

2.4.5 Dependence of Error on Time Step Size

To analyze how the error depends on the time step size, we simulate a wave

propagation problem in a 2-D circle, whose mesh is shown in Fig. 2.15(a). The

incident E field has the same form as is shown in Section 2.4.1, but with τ = 2.0×10−8

s. An explicit marching is stable for a time step no greater than 1.25 × 10−11 s.

Therefore, we choose the time step to be 1.25 × 10−11 s, 6.25 × 10−12 s, 3.125 ×

10−12 s respectively to run the simulation. In Fig. 2.15(b), the entire solution error
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Fig. 2.14. (a) Magnetic field of TM11 mode for a cavity simulated
from the proposed method in comparison with analytical results. (b)
Entire solution errors of the proposed method and the TDFEM v.s.
time as compared to analytical results.

compared with analytical solution is plotted for different time step sizes. Obviously,

the proposed method can produce accurate results for all three choices of time step.

As the time step decreases, there is no significant improvement in accuracy since the

time step allowed by a stable explicit marching is also the one required accuracy in

the given mesh. However, the accuracy is improved more at time instants where the

field solution has a more rapid temporal variation. This can be seen more clearly from

the results generated from a coarser mesh, which are also plotted in Fig. 2.15(b).

2.4.6 Eigensolution of a Cavity Discretized into a Highly Unstructured

Mesh

The previous examples are simulated for a certain excitation. One may be in-

terested to know the accuracy for other excitations. The previous examples are all

simulated in time domain. How about the accuracy in frequency domain? All these

questions can be addressed by finding the eigenvalue solution of S. This is because

the field solution at any time and any frequency is a superposition of the eigenvectors
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Fig. 2.15. (a) Illustration of the fine mesh of a circle. (b) Entire
solution errors v.s. time as compared to reference analytical results
with the choice of different time steps for two meshes.

Fig. 2.16. Illustration of a highly irregular mesh.

of S, and the weight of each eigenvector can be determined from the corresponding

eigenvalue. As a result, the correctness of the time-domain or frequency-domain re-

sults of the proposed method for any excitation can be found out by checking the
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eigensolution of S. We thus simulate a cavity whose analytical eigenvalues are known.

The cavity is discretized into a highly irregular mesh as shown in Fig. 2.16 to examine

the robustness of the proposed method in handling unstructured meshes. The mesh

is provided by a semiconductor industry company from discretizing a real product.

It appears to be of very poor quality because of accommodating all spatial features

of the product, but is still a correct mesh.

We first construct matrices Sh and Se separately, and then compute S based

on (2.14), which is still a sparse matrix. We then find the eigensolution of S and

compare the computed eigenvalues with analytical ones. The analytical eigenvalues

can be found from the resonance frequencies of the cavity ωr based on λ = ω2
r .

In Table 2.1, the smallest 10 eigenvalues obtained from the proposed method are

compared with analytical results in a descending order. It is clear that the proposed

matrix-free method successfully generates accurate resonance frequencies despite the

poor quality of the mesh. This example also serves as a good example to show that

choosing Sh = STe would fail to produce accurate results in such an unstructured mesh,

although the accuracy at some points for some excitations can be acceptable [47]. In

the fourth and fifth column of Table 2.1, we list the eigenvalues computed by choosing

Sh = STe and their relative errors as compared to analytical data. Comparing the last

column with the third column, the effectiveness of the proposed method is obvious in

obtaining good accuracy.

2.5 Conclusion

In this chapter, a new time-domain method having a naturally diagonal mass ma-

trix is developed for solving Maxwell’s equations. It is independent of element shape,

thus suitable for analyzing arbitrarily shaped structures and materials discretized into

unstructured meshes. The naturally diagonal mass matrix results in a strict linear

computational complexity at each time step just like the complexity of an explicit

FDTD method. Numerical experiments on various unstructured discretizations have
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Table 2.1
Comparison of the smallest 10 eigenvalues of a cavity having a highly
irregular mesh

Analytical This Method Error (This) Sh = STe Error

1.510e+27 1.451e+27 3.901e-02 1.064e+27 2.951e-01

1.421e+27 1.435e+27 9.909e-03 9.547e+26 3.282e-01

1.155e+27 1.178e+27 1.995e-02 7.516e+26 3.491e-01

8.883e+26 8.218e+26 7.482e-02 6.853e+26 2.285e-01

7.994e+26 8.180e+26 2.320e-02 6.134e+26 2.327e-01

7.106e+26 7.280e+26 2.454e-02 5.189e+26 2.697e-01

4.441e+26 4.372e+26 1.557e-02 3.296e+26 2.578e-01

3.553e+26 3.530e+26 6.457e-03 2.099e+26 4.090e-01

1.777e+26 1.806e+26 1.635e-02 9.152e+25 4.848e-01

8.883e+25 8.971e+25 9.913e-03 3.830e+25 5.688e-01
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validated the accuracy and generality of the proposed method. This work has been

successfully extended to 3-D analysis [48,49], which will be presented in Chap. 3 and

Chap. 4. It is also worth mentioning that the proposed method flexibly supports

higher-order accuracy in both electric and magnetic fields. This can be achieved by

using vector bases of any high order in each element to expand one field unknown,

which consequently permits a higher-order discretization of the curl of the other field

unknown in the loop area normal to the first field unknown.
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3. MATRIX-FREE TIME-DOMAIN METHOD IN 3-D

UNSTRUCTURED MESHES

3.1 Introduction

In Chap. 2, we develop a new matrix-free time-domain method, which requires no

matrix solution, in unstructured meshes for general 2-D electromagnetic analysis. In

this chapter, we extend it to perform electromagnetic analysis on 3-D structures. The

method handles arbitrary unstructured meshes with the same ease as a finite-element

method. Meanwhile, it is free of matrix solutions manifested by a naturally diago-

nal mass matrix, just like a finite-difference time-domain method. Modified vector

bases for both tetrahedron and triangular prism are developed to directly connect

the unknown coefficients of the vector basis functions employed to represent E (or

H) with the unknowns obtained from the curl of H (or E), without any need for

transformation. The proposed method employs only a single mesh. It does not re-

quire any interpolation and projection to obtain one field unknown from the other.

Its accuracy and stability are guaranteed theoretically. Numerous experiments on

unstructured triangular prism and tetrahedral meshes, involving both homogeneous

and inhomogeneous and lossy materials, demonstrate the generality, accuracy, stabil-

ity, and computational efficiency of the proposed method. The modified higher order

vector bases developed in this chapter can also be used in any other method that

employs higher order bases to obtain an explicit relationship between unknown fields

and unknown coefficients of vector bases.
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3.2 Proposed Method

Considering a general 3-D problem meshed into arbitrarily shaped elements, which

can even be a mix of different shapes of element, we start from the differential form

of Faraday’s law and Ampere’s law

∇× E = −µ∂H

∂t
(3.1)

∇×H = ε
∂E

∂t
+ σE + J, (3.2)

we pursue a discretization of the two equations in time domain, such that the resultant

numerical system is free of matrix solutions.

3.2.1 Discretization of Faraday’s Law

In each element, we expand the electric field E in each element by vector bases

Nj (j = 1, 2, . . . ,m), as

E =
m∑
j=1

ujNj, (3.3)

where uj is the j-th basis’s unknown coefficient. Substituting (3.3) into (3.1) to

evaluate H at rhi point and along ĥi direction, with i = 1, 2, . . . , Nh, we obtain

Se{u} = −diag ({µ}) ∂{h}
∂t

, (3.4)

where i-th entry of vector {h} is

hi = H(rhi) · ĥi. (3.5)

{u} is of length Ne consisting of all uj coefficients, diag ({µ}) is a diagonal matrix of

permeability, and Se is a sparse matrix having the following entry:

Se,ij = ĥi · {∇ ×Nj}(rhi). (3.6)

Apparently, we have an infinite number of choices of H points and directions to

build (3.4). However, to ensure the accuracy of the overall scheme which involves the
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discretization of not only Faraday’s law but also Ampere’s law, we should select the H

points and directions in such a way that the resultant H fields can, in turn, generate

desired E accurately. Although there are many choices to do so, the simplest choice

is to define a rectangular loop centering the E unknown and perpendicular to it, as

shown in Fig. 3.1. Then, along this loop, we select the midpoint of each side as H

point, and the unit vector tangential to each side as the H’s direction. The H fields

obtained at these points and along these directions can certainly ensure the accuracy

of E when we discretize Ampere’s law. In addition, regardless of the element shape,

there is no difficulty to define such a rectangular loop for each E unknown.

Fig. 3.1. Illustration of magnetic field points and directions for obtaining ei.

3.2.2 Discretization of Ampere’s Law

From Ampere’s law, by evaluating E at rei point and along the êi direction (i =

1, 2, . . . , Ne), respectively, we obtain

êi · {∇ ×H}(rei) = ε(rei)
∂ei
∂t

+ σ(rei)ei + êi · J(rei), (3.7)

in which

ei = E(rei) · êi, (3.8)
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Based on the choice of H-points and directions shown in Fig. 3.1, the êi · ∇ ×H

in (3.7) can be discretized accurately as

êi · {∇ ×H}(rei) = (hm1 + hm2)/lim + (hn1 + hn2)/lin, (3.9)

where lim is the distance between hm1 and hm2, while lin is the distance between hn1

and hn2 as shown in Fig. 3.1. With (3.9), (3.7) can be rewritten as

Sh{h} = diag ({ε}) ∂{e}
∂t

+ diag ({σ}) {e}+ {j}, (3.10)

where {j}’s entries are êi · J(rei), and diag ({ε}) and diag ({σ}) are the diagonal

matrices whose entries are permittivity and conductivity, respectively. Sh is a sparse

matrix of size Ne ×Nh, each row of which has four nonzero entries only being

Sh,ij = 1/lij, (3.11)

where j is the global index of the H unknown used to generate ei, and lij is simply

the distance between the E point (rei) and the H point (rhj) multiplied by two.

3.2.3 Formulation of Modified Vector Basis Functions

Can we use zeroth-order vector basis functions in (3.3)? The answer is negative.

This is because they produce a constant H field in each element. As a result, they fail

to accurately generate the H fields at an arbitrary point along an arbitrary direction,

and thereby at the points and along the directions desired for generating accurate E.

For example, the H fields at the desired points along the desired directions shown

in Fig. 3.1 cannot be accurately obtained from zeroth-order vector basis functions.

Hence, we propose to use higher-order vector bases. However, they need modifications

to satisfy

{u} = {e} (3.12)

to connect (3.10) with (3.4) directly. As shown in (3.3), {u} is the vector containing

all the unknown coefficients of the vector basis functions; while {e} is the vector
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of discretized electric fields as shown in (3.8). They may not be the same. If we

use normalized zeroth-order vector bases, {u} = E(rei) · êi, and therefore, (3.12) is

satisfied. However, higher-order curl-conforming bases [43] do not completely satisfy

this property. In [50], we do not modify the original higher order vector bases. Instead,

we find the relationship between {e} and {u}, which is {e} = P{u}, where P is a

block diagonal matrix. We then use this relationship to connect (3.10) with (3.4).

In [51], we show by developing a set of modified higher order vector basis, we can

make {u} equal to {e}, and hence bypassing the need for transformation. This saves

the computational cost of generating the transformation matrix P and its related

computation.

Fig. 3.2. Illustration of the degrees of freedom of the first-order curl-
conforming vector bases in a tetrahedral element.

To see the point why higher-order curl-conforming bases do not satisfy (3.12) more

clearly, we can substitute (3.3) into ei = E(rei) · êi, obtaining

ei =
m∑
j=1

ujNj(rei) · êi. (3.13)

Obviously, for (3.12) to be true, it is required that

Nj(rei) · êi = δji. (3.14)
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In other words, the j-th vector basis’s projection should be zero onto the direction

and at the point associated with the i-th vector basis’s degree of freedom. This

property is naturally satisfied by edge vector basis functions. To explain, along any

edge, the unit vector associated with the vector basis defined on this edge is tangential

to the edge. Hence, (3.14) is naturally satisfied, since it is how the curl-conforming

vector bases ensure the tangential continuity of the fields at the element interface.

However, in higher-order vector bases, there also exist face vector basis functions and

basis functions defined internal to the element. They, in general, do not satisfy the

property of (3.14). Take the face vector bases as an example, their degrees of freedom

are tangential to the face. However, each pair of the face vector bases is defined

at the same point, and their directions are not perpendicular to each other. Hence,

they do not satisfy the property of (3.14), and thus require modifications. Since first-

order bases are sufficient for use in terms of generating second-order accuracy in the

proposed method, next, we will use this set of bases as an example to show how to

modify them. However, the essential idea applies to other higher-order bases.

In a tetrahedral element, there are 20 first-order vector bases [43]. Among them,

12 bases are edge vector basis functions, as shown in Fig. 3.2. They are defined as

N1 = (3ξ2 − 1)W21 N2 = (3ξ1 − 1)W21

N3 = (3ξ1 − 1)W13 N4 = (3ξ3 − 1)W13

N5 = (3ξ4 − 1)W41 N6 = (3ξ1 − 1)W41

N7 = (3ξ3 − 1)W32 N8 = (3ξ2 − 1)W32

N9 = (3ξ2 − 1)W24 N10 = (3ξ4 − 1)W24

N11 = (3ξ4 − 1)W43 N12 = (3ξ3 − 1)W43

(3.15)

where ξi (i = 1, 2, 3, 4) are volume coordinates at four vertices, and Wij denotes the

zeroth-order basis associated with the edge connecting vertex i to vertex j.

Basically, along each edge, there are two degrees of freedom of the vector bases,

located at the points rei whose distance is respectively 1/3, and 2/3 edge length to

any one of the two nodes forming the edge. êi associated with each edge basis is
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simply the unit tangential vector of the edge where the basis is defined. The 12 edge

bases satisfy the property of (3.14).

However, the other eight vector bases defined on the four faces of the tetrahedron

do not satisfy the property of (3.14). These eight face bases can be written as

N13 = 4.5ξ2W43 N14 = 4.5ξ3W24

N15 = 4.5ξ3W41 N16 = 4.5ξ4W13

N17 = 4.5ξ4W21 N18 = 4.5ξ1W24

N19 = 4.5ξ1W32 N20 = 4.5ξ2W13.

(3.16)

The locations rei(i = 13, 14, ..., 20) and corresponding unit vectors êi associated with

the eight face vector bases are

ê13 = t̂43 r13 = (ξ2 = ξ3 = ξ4 = 1/3, ξ1 = 0)

ê14 = t̂24 r14 = (ξ2 = ξ3 = ξ4 = 1/3, ξ1 = 0)

ê15 = t̂41 r15 = (ξ1 = ξ3 = ξ4 = 1/3, ξ2 = 0)

ê16 = t̂13 r16 = (ξ1 = ξ3 = ξ4 = 1/3, ξ2 = 0)

ê17 = t̂21 r17 = (ξ1 = ξ2 = ξ4 = 1/3, ξ3 = 0)

ê18 = t̂24 r18 = (ξ1 = ξ2 = ξ4 = 1/3, ξ3 = 0)

ê19 = t̂32 r19 = (ξ1 = ξ2 = ξ3 = 1/3, ξ4 = 0)

ê20 = t̂13 r20 = (ξ1 = ξ2 = ξ3 = 1/3, ξ4 = 0)

(3.17)

in which t̂ij stands for a unit tangential vector along the edge connecting vertex i to

vertex j. As can be seen, at the center of each face, there are two vector bases defined.

Obviously, they do not satisfy the property of (3.14). For example, N19(r20) · ê20 is

not zero. This is because at the center point of the face formed by nodes 1–3, N19

is not perpendicular to ê20 whose direction is along the edge connecting vertex 1 to

vertex 3.

If we rewrite (3.13) as

{e} = P{u}. (3.18)
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P matrix obviously has the following entries:

Pij = Nj(rei) · êi. (3.19)

As shown in [50], with the first-order vector bases, P is a block diagonal matrix whose

block size is either one or two. The diagonal block of size two corresponds to the two

vector bases on each face, while each edge basis only corresponds to one diagonal

entry, which is 1, in P. Next, we show how to modify the face bases to make P an

identity matrix.

Since the two face vector bases are defined at the same point, a linear combination

of the two also makes a valid basis. The definitions of the face bases are hence not

unique, which is also shown in [43]. We can modify them. To do so, we keep one face

vector basis intact, but revise the other one. For a face having vertices i, j, and k,

the two face bases we develop are

Nf1 = 4.5ξiWjk êf1 = t̂jk (3.20)

Nf2 = cξjξk∇ξi êf2 =
n̂f ×Wjk

||n̂f ×Wjk||
(3.21)

and for both face bases, their degrees of freedom are located at the face center, and

hence

rf1 = rf2 = (ξi = ξj = ξk = 1/3). (3.22)

Clearly, Nf1 in (3.20) is kept the same as before. It is the second face basis Nf2

that is changed. In (3.20), ξi denotes the volume coordinate at node i, Wjk is the

normalized zeroth-order edge basis with the superscripts denoting the two nodes of

an edge, unit vector t̂jk points from node j to k. c is the normalization coefficient

making Nf2 · êf2 = 1 at the face center, and unit vector n̂f is normal to the face.

With this modification, the revised first-order bases are equally complete, and

meanwhile satisfying the desired property of (3.14). To see this point more clearly,

now, we have

Nf1(rf2) · êf2 = 0,

Nf2(rf1) · êf1 = 0.
(3.23)
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The second row in the above holds true because ∇ξi is perpendicular to t̂jk. As

a result, the original nonzero off-diagonal terms in P become zero. In addition to

satisfying (3.23), we also have to ensure that the modified second face basis does

not bring any new change to the original P, i.e., changing the original zeros in P to

nonzeros. If this happens, then the new bases defined in (3.20) cannot achieve the

goal of making (3.12) true. This can be examined by evaluating the entries residing

in the column and the row in P corresponding to the second new face basis, as other

rows and columns are not affected. Essentially, we have to assess the following entries

to see whether they are zero:

Pf2,i = Nf2(rei) · êi, (i 6= f2)

Pi,f2 = Ni(rf2) · êf2 . (i 6= f2)
(3.24)

The entries of Pf2,i = Nf2(rei) · êi reside on the row corresponding to the second

face basis in P. When the rei and êi correspond to an edge basis, Nf2 = 0 since

ξjξk = 0 on all edges except for the edge connecting j to k. On this edge, Nf2 is

perpendicular to the edge, and hence Nf2(rei) · êi also vanishes. When rei and êi

belong to a face basis, Nf2 = 0 since ξjξk = 0 on all faces except for the two faces

sharing edge connecting j to k. On the same face where Nf2 is defined, as shown in

(3.23), the corresponding P term is zero. On the other face, Nf2 is not zero, however,

Nf2 is perpendicular to this face since it is along the direction of ∇ξi. As a result,

Nf2(rei) · êi also vanishes. In summary, the modified new face basis preserves the

original zeros in the row of this basis in P, while vanishing the original nonzero entry

in this row.

As for the entries of Pi,f2 = Ni(rf2) · êf2 , they are located in the column corre-

sponding to the second face basis in P. If basis i is an edge basis, it is zero at the

center points of three of the four faces and perpendicular to the fourth face. Hence,

Pi,f2 = 0. If basis i is a face basis, it can be either the first face basis or the second

face basis. If it is the first face basis, based on its expression shown in (3.20), among

the other three faces where it is not located, it is zero on one of the three faces, and

perpendicular to the rest two. Hence, Pi,f2 = 0 if i-basis does not belong to the face
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where f2-basis is defined. If i-basis and f2-basis belong to the same face, from (3.23),

Pi,f2 is also zero. If basis i is the second face basis, among the other three faces where

it is not located, it is zero on two of the three faces, and perpendicular to the rest

one. Hence, Pi,f2 is also zero. As a result, the new change of the second face basis

also preserves the original zeros in the column corresponding to the second face basis

in P, while vanishing the original nonzero entry in this column.

Based on (3.20), the complete set of modified face bases and their projection

directions, in accordance with the notations of (3.16), can be written as follows:

N14 = c14ξ3ξ4∇ξ2 ê14 =
(n̂234 ×W43)

||n̂234 ×W43||

N16 = c16ξ1ξ4∇ξ3 ê16 =
(n̂134 ×W41)

||n̂134 ×W41||

N18 = c18ξ1ξ2∇ξ4 ê18 =
(n̂124 ×W21)

||n̂124 ×W21||

N20 = c20ξ2ξ3∇ξ1 ê20 =
(n̂123 ×W32)

||n̂123 ×W32||

(3.25)

where n̂ijk denotes a unit vector normal to the face formed by vertices i, j, and k.

The basic idea of the aforementioned approach to make êi ·Nj(rei) = δij satisfied

is to choose appropriate basis direction and projection direction of the second basis,

when encountering a pair of bases defined at the same point. The projection direction

of the second basis is chosen perpendicular to the first basis at the point where the

second basis’s degree of the freedom is located. Meanwhile, the basis direction of

the second basis is chosen to be perpendicular to the projection direction of the first

basis. The essential idea of this approach is equally applicable to higher-order bases

in other types of elements such as the triangular prism elements.

In a triangular prism element, there are 36 first-order vector bases. Among them,

the three pairs of degrees of freedom located at the center of the top triangular face,

the prism center, and the center of the bottom triangular face do not satisfy (3.14),

while other bases satisfy. Similar to the treatment in a tetrahedron element, for the

three sets, we keep the first basis, but modify the second basis. Take the top face
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formed by nodes 1–3 as an example, we construct the following two bases and their

projection directions:

Nf1 = 4.5ξ1ζ1(2ζ1 − 1)W23; êf1 = t̂23 (3.26)

Nf2 = cξ2ξ3ζ1(2ζ1 − 1)∇ξ1; êf2 =
(n̂f ×W23)

||n̂f ×W23||
. (3.27)

Here, ζ1 = 1 on the top triangle and 0 on the lower one, W23 is the normalized

zeroth-order basis defined on the edge connecting node 2 to node 3.

With the vector bases developed in the above, the entries in sparse matrix Se

shown in (3.6) can be determined. Since each vector basis Nj has an analytical

expression, the ∇ ×Nj and thereby Se can be analytically evaluated. In addition,

when building Se, the tangential continuity of the electric fields is rigorously enforced

at the element interface, since {u}, which is also {e} now with the newly developed

modified bases, is shared in common by adjacent elements. This is the same as how

an FEM ensures the tangential continuity of the electric field.

3.2.4 Matrix-Free Time Marching

With {u} = {e}, the (3.4) and (3.10) can be solved in a leapfrog way, which

requires no matrix solutions. The two can also be combined to solve as the following:

∂2 {e}
∂t2

+ diag
({σ

ε

}) ∂ {e}
∂t

+ S {e} = −diag
({

1

ε

})
∂{j}
∂t

, (3.28)

where

S = diag

({
1

ε

})
Shdiag

({
1

µ

})
Se. (3.29)

Obviously, the matrices in front of the second- and first-order time derivatives are

both diagonal. Hence, the proposed method possesses a naturally diagonal mass

matrix. Therefore, an explicit marching of (3.28), such as a central-difference-based

time marching, is free of matrix solutions. However, a brute-force explicit marching

of (3.28) is absolutely unstable, because S is not symmetric in an unstructured mesh

and it can support complex-valued and even negative eigenvalues. This has been

proved in [50].
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The stability problem can be solved as follows. Basically, we can begin with the

following backward-difference-based time marching of (3.28)

{e}n+1 − 2{e}n + {e}n−1 + ∆tdiag
({σ

ε

}) (
{e}n+1 − {e}n

)
+ ∆t2S{e}n+1

= −∆t2diag

({
1

ε

})(
∂{j}
∂t

)n+1

. (3.30)

Rearranging the terms in (3.30), we obtain(
D + ∆t2S

)
{e}n+1 = 2{e}n − {e}n−1 + ∆tdiag

({σ
ε

})
{e}n

−∆t2diag

({
1

ε

})(
∂{j}
∂t

)n+1

(3.31)

where

D = I + ∆tdiag
({σ

ε

})
, (3.32)

which is diagonal. Front multiplying both sides of (3.31) by D−1, we obtain

(I + M̃){e}n+1 = D−1{f}, (3.33)

where

M̃ = ∆t2D−1S, (3.34)

and {f} is the right hand side of (3.31).

Although the backward-difference-based (3.31) is stable for an infinitely large time

step as analyzed in [50], we choose a time step based on the stability criterion of

traditional explicit time marching. This time step satisfies

∆t <
1√
ρ(S)

. (3.35)

It is also the time step required by accuracy when there is no fine feature relative

to working wavelength, since the maximum eigenvalue’s square root,
√
|λmax|, cor-

responds to the maximum angular frequency present in the system response. With

such a choice of time step, the spectral radius of M̃ is guaranteed to be less than 1.

This is because in this case, time step satisfies (3.35), and hence

∆t2ρ (S) < 1, (3.36)
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in which ρ(·) denotes the spectral radius, which is the modulus of the largest eigen-

value. D is a diagonal matrix shown in (3.32). Hence,

ρ
(
D−1

)
=

1

min1≤i≤Ne(1 + ∆tσi/εi)
= 1. (3.37)

We therefore obtain from (3.36) and (3.37)

ρ
(
M̃
)

= ∆t2ρ
(
D−1S

)
≤ ∆t2ρ

(
D−1

)
ρ (S) < 1. (3.38)

As a result, without loss of accuracy, the inverse of I + M̃ can be evaluated by

(I + M̃)−1 = I− M̃ + M̃2 − M̃3 + . . .+ (−M̃)k, (3.39)

where k is guaranteed to be small since (3.38) is satisfied. Thus, the system matrix

has an explicit inverse, and hence no matrix solutions are required. Equation (3.33)

can then be computed as

{e}n+1 = (I− M̃ + M̃2 − · · ·+ (−M̃)k)Di{f}, (3.40)

where Di is diagonal matrix D’s inverse. The computational cost of (3.40) is k sparse

matrix-vector multiplications, since each term can be computed from the previous

term recursively, thus efficient.

3.3 Numerical Results

To validate the proposed new formulation-based matrix-free method, in this sec-

tion, we simulate a variety of 3-D unstructured meshes. The aspect ratio of the mesh

is defined as the longest edge length divided by the shortest edge length. The number

of expansion terms k used in (3.39) is nine for all of the examples simulated. The

time step chosen is the same as that of the central-difference-based TDFEM.

3.3.1 Wave Propagation in a Tetrahedral Mesh of a 3-D Box

The first example is a 3-D free-space box of dimension 1×0.5×0.75 m3 discretized

into tetrahedral elements. Its mesh is shown in Fig. 3.3 with 350 tetrahedral elements
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Fig. 3.3. Illustration of the tetrahedron mesh of a 1× 0.5× 0.75 m3

rectangular box.

and 544 edges. The aspect ratio of the tetrahedral mesh is 3.67. To assess the accuracy

of the proposed method, we simulate a free-space wave propagation problem, since its

analytical solution is known. The incident E, which is also the total field in the given
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Fig. 3.4. Simulation of a 3-D rectangular box discretized into tetrahe-
dral elements: (a) Electric fields simulated from the proposed method
as compared with analytical results. (b) Entire solution error as a
function of time.
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problem, is specified as E = ŷf(t− x/c0), where f(t) = 2(t− t0) exp(−(t− t0)2/τ 2),

τ = 6.0 × 10−9 s, t0 = 4τ , and c0 is the speed of light. The time step is chosen

as ∆t = 1.6 × 10−11 s. The proposed method takes only 2.12 MB to store sparse

matrices Se and Sh, and 5.2×10−4 s to finish the simulation at one time step. In Fig.

3.4(a), we plot the 1-st and 1,832-th entries randomly selected from the unknown {e}

vector, which represent E(rei) · êi with i = 1, and 1,832 respectively. It can be seen

clearly that the electric fields solved from the proposed method agree very well with

the analytical results.
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Fig. 3.5. (a) Entire solution error versus time of all H unknowns
obtained from Se-rows of equations. (b) Entire solution error versus
time of all E unknowns obtained from Sh-rows of equations.

To examine the accuracy of all unknowns solved from the proposed method, and

also across all time instants, we consider the relative error of the whole solution vector

defined by

Errorentire(t) =
||{e}this(t)− {e}ref (t)||

||{e}ref (t)||
(3.41)

as a function of time, where {e}this(t) denotes the entire unknown vector {e} of length

Ne obtained from this method, whereas {e}ref (t) denotes the reference solution, which

is analytical result {e}anal(t) in this example. In Fig. 3.4(b), we plot Errorentire(t)

across the whole time window in which the fields are not zero. It is evident that less

than 4% error is observed at each time instant, demonstrating the accuracy of the
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proposed method. The center peak in Fig. 3.4(b) is due to the comparison with close

to zero fields.

This example has also been simulated in [50]. In Fig. 3.4(b), we compare the

accuracy of the proposed new formulation with the formulation given in [50] . Ob-

viously, the proposed new formulation with modified vector bases exhibits the same

accuracy as the formulation given in [50].

In addition to the accuracy of the entire method, we have also examined the

accuracy of the Se, and Sh individually, since each is important to ensure the accuracy

of the whole scheme. First, to solely assess the accuracy of Se, we perform the time

marching of (3.4) only without (3.10) by providing an analytical {e} to (3.4) at each

time step. The resultant {h} is then compared to analytical {h}anal at each time

step. As can be seen from Fig. 3.5(a), where the following entire H solution error

||h(t)− hanal(t)||
||hanal(t)||

(3.42)

is plotted with respect to time, the error of all H unknowns is < 3% across the

whole time window, verifying the accuracy of Se. Similarly, in order to examine

the accuracy of Sh, we perform the time marching of (3.10) only without (3.4) by

providing an analytical {h} to (3.10) at each time step. In Fig. 3.5(b), we plot (3.41)

versus time. Again, very good accuracy is observed across the whole time window,

verifying the accuracy of Sh.

3.3.2 Wave Propagation in a Tetrahedral Mesh of a Sphere

The second example is a sphere of radius 0.24 m centering at the origin. It is

discretized into tetrahedral elements in free space, whose 3-D mesh is shown in Fig.

3.6. The mesh consists of 1,987 tetrahedrons and 3,183 edges. The aspect ratio of

the tetrahedral mesh is 6.19. The outermost boundary is truncated by analytically

known electric fields. The time step is ∆t = 2.0× 10−12 s. The same incident E is as

that in the first example is used, but τ = 2.0 × 10−9 s is chosen in accordance with

the new structure’s dimension.
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Fig. 3.6. Illustration of the tetrahedron mesh of a solid sphere.
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Fig. 3.7. Simulation of a sphere discretized into tetrahedral elements:
(a) Electric fields obtaeind from the proposed method as compared
with analytical results. (b) Entire solution error as a function of time
for E.

The proposed method takes only 10.07 MB to store sparse matrices Se and Sh,

and 0.003 s to finish the simulation at one time step. Two randomly selected electric
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field unknowns, whose indices are 1 and 9,762 in {e}, are shown in Fig. 3.7(a) against

analytical data. Excellent agreement can be seen.

In Fig. 3.7(b), the entire solution error shown in (3.41) is plotted as a function of

time, which is shown to be less than 3%. To compare the accuracy of the proposed

new formulation having modified vector bases with that of the traditional vector bases

in [50], the entire solution error obtained by the formulation in [50] is also shown in

Fig. 3.7(b). Obviously, the two exhibit the same accuracy, validating the proposed

new vector bases, and its resulting matrix-free formulation.

3.3.3 Wave Propagation in a Tetrahedral Mesh of a Rectangular Box

with a Hole
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Fig. 3.8. Illustration of a rectangular box with a hole: (a) Geometry.
(b) Mesh Details.

The third example is a rectangular box whose size is 0.6 × 0.8 × 1.4 m3 with a

hole in the center, whose structure is shown in Fig. 3.8(a). Its mesh is shown in Fig.

3.8(b). The shape of the hole is also a rectangular box but of size 0.2×0.4×1.0 m. It is

discretized into tetrahedral elements having 1,637 tetrahedrons and 2,456 edges. The
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aspect ratio of the tetrahedral mesh is 5.36. The time step is chosen as ∆t = 2×10−11

s. A free-space wave propagation problem is simulated in the given mesh, with the

same incident E as that of the first example, except for τ = 1.0 × 10−8 s. Both the

innermost and outermost boundaries of the mesh are truncated by analytically known

electric fields.
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Fig. 3.9. Simulation of a rectangular box with a hole discretized into
tetrahedral elements: (a) Electric fields obtained from the proposed
method and those from analytical results. (b) Entire solution error
versus time for E.

The proposed method takes 9.89 MB to store sparse matrices Se and Sh, and

2.7 × 10−3 s to finish the simulation at one time step. We randomly select the 1-st

and 8,612-th entries of vector {e}, and plot them in Fig. 3.9(a) in comparison with

analytical solution. Excellent agreement can be observed. To assess the error of

the entire {e}, we plot the entire solution error in Fig. 3.9(b), which again reveals

good accuracy. In this example, we have also simulated to very late time to examine

late-time stability. As can be seen from Fig. 3.10, the proposed method is stable.

3.3.4 Wave Propagation in a Tetrahedral Mesh of a Spherical Ring

This example is a spherical shells whose inner radius is 0.8 m, and outer radius

is 1.2 m. It is discretized into tetrahedral elements in free space. The discretization
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Fig. 3.10. Late-time simulation of a rectangular box with a hole.

results in 2,704 edges and 1,956 tetrahedrons. The aspect ratio of the tetrahedral

mesh is 5.67. The incident E is the same as that of the first example, except for

τ = 4.0× 10−8 s.

Analytically known electric fields are imposed to truncate the computational do-

main. The time step is chosen as ∆t = 2.0 × 10−11 s. The proposed method takes

13.63 MB to store Se and Sh, and 3.6 × 10−3 s to finish the simulation at one time

step. In Fig. 3.11(a), we plot two electric field unknowns randomly selected from

the entire {e} vector, whose indices are 1 and 11,064. In Fig. 3.11(b), we plot the

entire solution error shown in (3.41) with respect to time. Excellent agreement with

analytical data can be observed from Fig. 3.11(a) and Fig. 3.11(b).

3.3.5 Lossy and Inhomogeneous Example Discretized into Triangular Prism

Elements

Previous examples are all in free space. In this example, we simulate a structure

with lossy conductors and inhomogeneous materials shown in Fig. 3.12. The structure
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Fig. 3.11. Simulation of a spherical ring discretized into tetrahedral
elements: (a) Electric fields obtained from the proposed method as
compared with analytical results. (b) Entire solution error versus time
for E.

Fig. 3.12. Simulation of a lossy and inhomogeneous example dis-
cretized into triangular prism elements: Illustration of the structure.

is discretized into three layers of triangular prism elements. The thickness of each

layer is 5 mm. The top view of the mesh is shown in Fig. 3.13(a). The discretization

results in 12,574 triangular prism elements and 5,022 edges. A square conductor is

located at the center of the second layer, which is shown in blue in Fig. 3.13(a). The

metal conductivity is 5×107 S/m. The second layer is filled by a material of dielectric

constant 4. The rest of the two layers have dielectric constant 1. The top and bottom
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Fig. 3.13. Simulation of a lossy and inhomogeneous example dis-
cretized into triangular prism elements: (a) Top view of the mesh.
(b) Electric fields simulated from the proposed method as compared
with the TDFEM results.

boundaries are truncated by perfect electric conducting (PEC) boundary condition,

while perfect magnetic conductor (PMC) boundary condition is imposed on the other

four sides. A current source with a Gaussian’s derivative pulse is launched having

τ = 2.0×10−12 s. ∆t = 5.0×10−16 s is chosen, since the smallest size has a micrometer

dimension. The proposed method takes 0.12 GB to store sparse Se and Sh, and 0.10

s to finish the simulation at one time step. To examine the accuracy of the proposed

method, we simulate the same example by using the TDFEM as the reference. Fig.

3.13(b) compares the simulated electric fields at two observation points located at

the front and back end of the square conductor with those simulated by TDFEM.

Excellent agreement is observed.

3.3.6 Lossy and Inhomogeneous Microstrip Line Discretized into Tetra-

hedral Elements

In this example, we simulate a 20-mm-long inhomogeneous and lossy microstrip

line discretized into tetrahedral elements. The structure details can be found in Fig.

3.14(a). The aspect ratio of the tetrahedral mesh is 8.78. The substrate has a material
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Fig. 3.14. (a) Illustration of the microstrip line. (b) Voltages simu-
lated from the proposed method in comparison with TDFEM results.
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Fig. 3.15. Simulation of a lossy and inhomogeneous microstrip line
discretized into tetrahedral elements: (a) S-parameter Magnitude. (b)
S-parameter Phase (Degrees).

of εr = 4. The conductivity of the metal strip is 5.8 × 107 S/m. The discretization

results in 35,283 edges and 28,365 tetrahedrons. A current source is imposed at the

near end with j = 2(t − t0) exp(−( t−t0
τ

)2) and τ = 2.5 × 10−10 s. The bottom plane

is terminated with PEC, while PMC is applied to other boundaries. The time step

used is 6.0 × 10−14 s. The proposed method takes only 0.22 GB to store sparse Se
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and Sh, and 0.10 s to finish the simulation at one time step. The voltage between the

microstrip and the ground plane at the near end (z = 0) and far end (z = 20 mm)

is extracted, and compared with the reference TDFEM solution in Fig. 3.14(b). It

is evident that the results obtained from the proposed method agree very well with

the reference results. In Fig. 3.15, we plot the S-parameters extracted from the time-

domain waveforms of the proposed method in comparison with those generated from

TDFEM. Excellent agreement is observed in the entire frequency band simulated.

3.3.7 CPU Time and Memory Comparison

In this section, we simulate a large example to compare the performance of the

proposed matrix-free method against the TDFEM which is equally capable of han-

dling unstructured meshes, but not free of matrix solutions. This example is a circular

cylinder of radius 1 m discretized into 25 layers of triangular prism elements. The

incident field is a plane wave having a Gaussian’s derivative pulse with τ = 10−8 s.

An analytical absorbing boundary condition is imposed at the outermost boundary.

The discretization results in 3,718,900 E unknowns using the zeroth-order TDFEM.

A similar number of unknowns, 3,741,700 E unknowns, is generated in the proposed

method for a fair comparison. Since TDFEM requires solving a mass matrix, we

perform the LU factorization of the sparse mass matrix once before time marching,

and use backward/forward substitution to obtain the solution at each time step. The

TDFEM takes 2267.71 s and more than 72 GB memory to finish the factorization.

This large memory cost is due to the fact that although the matrix being factorized is

sparse, its L and U factors are generally dense. During time marching, the TDFEM

costs 9.22 s at each time step. In contrast, since the proposed method is matrix-free,

it does not need any memory as well as CPU time to factorize and solve the matrix.

It takes only 5.2 GB memory to store the sparse Se and Sh, and 2.7 s for performing

the time marching for one time step. Obviously, the proposed method significantly

outperforms TDFEM in terms of computational efficiency. As for accuracy, the entire
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solution error across the whole time window is < 0.01% for TDFEM and 0.05% for the

proposed method, as compared with the analytical result. Therefore, the proposed

method can achieve a similar level of good accuracy as TDFEM. The difference in

accuracy can be attributed to the difference in space as well as time discretizations

of the two methods.

3.4 Conclusion

In this chapter, a new matrix-free time-domain method with a modified-basis for-

mulation is developed for solving Maxwell’s equations in general 3-D unstructured

meshes. The method is naturally free of matrix solutions. No mass lumping is

required, as the mass matrix is diagonal in nature by the proposed algorithm of dis-

cretizing Maxwell’s equations. The method handles arbitrary unstructured meshes

with the same ease as an FEM. It overcomes the absolute instability of an explicit

method when an unsymmetrical operator having complex-valued and even negative

eigenvalues is involved. Both stability and accuracy are theoretically guaranteed,

and the tangential continuity of the fields is enforced at the material interfaces. It

does not require dual mesh, projection, and interpolation. A set of modified vec-

tor basis functions are developed to directly connect the discretized Ampere’s law

with the discretized Faraday’s law without any need for unknown transformation.

Extensive numerical experiments on unstructured tetrahedral and triangular prism

meshes, involving inhomogeneous, lossless, as well as lossy materials, have validated

the accuracy, generality, and matrix-free property of the proposed method.

It is also worth mentioning that the proposed method can be flexibly extended

to achieve any desired higher order accuracy by expanding one field unknown using

arbitrary-order vector bases, and sampling the other field unknown in the loop or-

thogonal to the first field unknown in a higher order way. The modified higher order

vector bases developed in this chapter can also be used in any other method that em-

ploys higher order bases. With these new bases, the relationship is explicitly known
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between unknown fields and unknown coefficients of vector bases. The approach de-

veloped here and in [50] for stably simulating an unsymmetrical curl-curl operator

can also be leveraged by the existing nonorthogonal FDTD methods for controlling

stability.
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4. MATRIX-FREE TIME-DOMAIN METHOD WITH

TRADITIONAL VECTOR BASES IN UNSTRUCTURED

MESHES

4.1 Introduction

In Chap. 2 and Chap. 3, we develop a new time-domain method that is naturally

matrix free, i.e., requiring no matrix solution, regardless of whether the discretization

is a structured grid or an unstructured mesh. The traditional vector basis functions

are modified appropriately to connect Faraday’s law and Ampere’s law together. In

this chapter, we show that such a capability can be achieved with traditional vector

basis functions without any need for modifying them. Moreover, a time-marching

scheme is developed to ensure the stability for simulating an unsymmetrical numerical

system whose eigenvalues can be complex-valued and even negative, while preserving

the matrix-free merit of the proposed method. Extensive numerical experiments

have been carried out on a variety of unstructured triangular, tetrahedral, triangular

prism element, and mixed-element meshes. Correlations with analytical solutions

and the results obtained from the time-domain finite-element method, at all points in

the computational domain and across all time instants, have validated the accuracy,

matrix-free property, stability, and generality of the proposed method.

4.2 Proposed Framework

In this section, we present a general framework for creating a matrix-free time-

domain method independent of the shape of the elements used for discretization. We

separate the presentation of the framework from that of the detailed formulations

(to be given in next section) because the formulation corresponding to the proposed
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framework is not unique. Under the proposed framework, we can develop different

formulations to achieve a matrix-free time-domain method.

Consider a general electromagnetic problem involving arbitrarily shaped geome-

tries and materials. For such a problem, an unstructured mesh with arbitrarily shaped

elements is more accurate and efficient for use, as compared to an orthogonal grid.

The elements do not have to be of the same type. They can be a mix of different

types of elements such as tetrahedral, triangular prism, and brick elements. Starting

from the differential form of Faraday’s law and Ampere’s law

∇× E = −µ∂H

∂t
(4.1)

∇×H = ε
∂E

∂t
+ σE + J, (4.2)

we pursue a discretization of the two equations in time domain, which can yield a

numerical system free of matrix solutions independent of the element shape used for

discretization.

4.2.1 Discretization of Faraday’s Law

To discretize Faraday’s law, we propose to expand the electric field E in each

element by a set of vector bases Nj (j = 1, 2, ...,m) as the following

E =
m∑
j=1

ujNj, (4.3)

where uj is the unknown coefficient of the j-th vector basis Nj, and m is the number

of vector bases in each element. The degrees of freedom of the vector bases N are

defined not only on the faces of the element but also inside the element. Such a choice

of vector bases permits accurate generation of the other field unknown at any point

along an arbitrary direction, without a need for interpolation and projection. This

is different from many existing non-orthogonal FDTD methods, where the fields and

fluxes are assigned only on the faces of the element.
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Substituting the expansion of E into (4.1), computing H at Nh points rhi (i =

1, 2, ..., Nh), and then taking the dot product of the resultant with unit vector ĥi at

each point respectively, we obtain

ĥi ·
∑

uj{∇ ×Nj}(rhi) = −ĥi · µ(rhi)
∂H(rhi)

∂t
, (i = 1, 2, ..., Nh) (4.4)

which can be compactly written into the following linear system of equations:

Se{u} = −diag({µ})∂{h}
∂t

, (4.5)

where diag({µ}) is a diagonal matrix of the permeability, {h} is a global vector of

length Nh whose i-th entry is

hi = H(rhi) · ĥi, (4.6)

and Se is a sparse matrix, the nonzero entries of which are

Se,ij = ĥi · {∇ ×Nj}(rhi), (4.7)

where i denotes the global index of the H-point, and j is the global index of the E’s

vector basis function. Let Ne be the total number of vector bases used to expand E.

The Se is of size Nh×Ne. We loop over all elements to assemble Se. In each element,

we build an elemental Se matrix of size nh by m, where nh is the number of H points

inside each element. The entries of elemental Se are analytically known since bases

Nj (j = 1, 2, ...,m) have analytical expressions. The elemental Se,ij entries are then

added upon the global Se based on the global indexes of the local row index i, and

column index j. Notice that during the procedure of constructing Se, the tangential

continuity of E is enforced since the tangential electric fields at the element interface

are uniquely defined in global vector {u}, and shared in common by all elements.

In addition, it is worth mentioning that different from the conventional assembling

procedure of an FEM method where both rows and columns add, here the rows of

Se contributed by different elements do not add because each row corresponds to a

different H-unknown. However, the columns add, as the same tangential E-unknown,

i.e., an entry of {u}, can be shared by multiple elements. By using the same {u} entry

across elements, the tangential continuity of E is enforced.
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4.2.2 Discretization of Ampere’s Law

To discretize Ampere’s law, we apply it at rei (i = 1, 2, ..., Ne) points, and then

take the dot product of the resultant with unit vector êi at each point, where rei and

êi are associated with the degrees of freedom of the vector bases used in (4.3). We

obtain

êi · {∇ ×H}(rei) = ε(rei)
∂ei
∂t

+ σ(rei)ei + êi · J(rei), (4.8)

where

ei = E(rei) · êi, (4.9)

which is E at point rei along the êi direction. The êi · ∇ ×H at point rei in (4.8) is

generated by using the H fields (obtained from (4.5)) encircling ei. For example, if ei

is located at an element interface, the H fields used to generate it are sampled across

the elements sharing ei. A detailed formulation with guaranteed accuracy will be

given in next section. As a result, we obtain the following discretization of Ampere’s

law

Sh{h} = diag({ε})∂{e}
∂t

+ diag({σ}){e}+ {j}, (4.10)

where Sh is a sparse matrix of size Ne × Nh, and Sh{h} denotes the discretized

êi · {∇×H}(rei) (i = 1, 2, ..., Ne) operation, the i-th entry of {j} is êi ·J(rei), and the

diag({ε}) and diag({σ}) are the diagonal matrices of permittivity, and conductivity

respectively.

4.2.3 Connecting Ampere’s Law to Faraday’s Law

In order to connect (4.10) to (4.5), we need to find the relationship between {e}

and {u}. In Chap. 2 and Chap. 3, by making a minor modification of the traditional

vector bases [48], we make {u} = {e}. In this work, we show the traditional vector

bases can also be kept as they are without any need for modification. In this case, we

can find an analytical relationship between {e} and {u} as {u} = Q{e}, with Q an
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extremely simple block diagonal matrix whose diagonal blocks are either of size 1× 1

or 2× 2. The detailed formulation of Q will be given in next section.

In addition, when generating (4.5), apparently, we have an infinite number of

choices of the points rhi and the directions ĥi for computing the discrete H. However,

to connect (4.5) to (4.10), we need to keep in mind that the H-points and directions

we choose should facilitate accurate generation of the {e} desired in (4.5) so that we

can march on in time step by step—from {e} to {h} via (4.5), and then from {h}

back to {e} through (4.10).

4.2.4 Time Marching

A leap-frog-based time discretization of (4.5) and (4.10) clearly yields a time-

marching scheme free of matrix solutions as follows:

{h}n+
1
2 = {h}n−

1
2 − diag({ 1

µ
})∆tSeQ{e}n (4.11)(

diag({ε}) +
∆t

2
diag({σ})

)
{e}n+1 =

(
diag({ε})− ∆t

2
diag({σ})

)
{e}n+

∆tSh{h}n+
1
2 −∆t{j}n+

1
2 , (4.12)

where ∆t is the time step, and the time instants for {e} and {h}, denoted by super-

scripts, are staggered by half. Neither (4.11) nor (4.12) involves a matrix solution.

Equations (4.5) and (4.10) can also be solved in a second-order based way. Taking

another time derivative of (4.10) and substituting (4.5), we obtain

∂2 {e}
∂t2

+ diag({σ
ε
})∂ {e}

∂t
+ S {e} = −diag({1

ε
})∂{j}

∂t
, (4.13)

where

S = diag({1

ε
})Shdiag({ 1

µ
})SeQ. (4.14)

It is evident that the above numerical system is also free of matrix solutions with a

central-difference based discretization in time. This is because the matrix in front

of the second-order time derivative, which is known as mass matrix, and the matrix

before the first-order time derivative are both naturally diagonal. Since the matrices
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are made naturally diagonal in the proposed method, no approximation-based mass-

lumping is needed.

It is also worth mentioning that the leap-frog-based time discretization shown in

(4.11) and (4.12) is the same as the central-difference-based explicit discretization of

the second-order system (4.13). This can be readily seen by writing the counterpart

of (4.12) for evaluating {e}n, i.e., replacing n by n − 1 in (4.12), subtracting the

resultant from (4.12), and then substituting (4.11) to replace the {h}n+ 1
2 − {h}n− 1

2

term. Since (4.11) and (4.12) are the same as the explicit discretization of (4.13),

we can directly solve (4.13), which also has only half a number of unknowns. If {h}

unknowns are needed, they can readily be recovered from {e} through (4.11).

4.2.5 Remark

In the framework described above, we expand E into certain vector basis functions

in each element, while sampling the H unknowns at discrete points to generate desired

E unknowns. One can also switch the roles of the electric and magnetic fields: expand

the H into vector basis functions in each element, while sampling the E unknowns.

Which way to use depends on the convenience for solving a given problem.

4.3 Proposed Formulations

In this section, we present detailed formulations to realize the aforementioned

matrix-free framework with guaranteed accuracy and stability. Since 2-D formulations

are much simpler, 3-D formulations will be the focus of this section.

4.3.1 Accurate Construction of Se and E’s Degrees of Freedom

A common choice of the vector basis functions for expanding the fields is the

zeroth-order curl-conforming bases (edge elements) [52]. These bases have constant

tangential components along the edges where they are defined. The field represen-
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tation in the traditional FDTD is, in fact, a zeroth-order vector basis representation

in an orthogonal cell. However, the zeroth-order vector bases have a constant curl

in every element. Using such bases to represent E, the resultant H is a constant in

each element, and the H is only second-order accurate at the center point of each

element. From such discrete H-fields, we cannot reversely obtain the E unknowns

associated with the zeroth-order vector bases accurately in an arbitrarily shaped ele-

ment. To help understand the aforementioned point more clearly, take a 2-D problem

Fig. 4.1. (a) Locations of H points required for the accurate evaluation
of e at point re. (b) Locations of H points with zeroth-order vector
bases.

discretized into arbitrarily shaped triangular elements as an example. Consider an

arbitrary i-th edge. With the zeroth-order vector bases to expand E, the ei shown in

(4.9) has êi the unit vector tangential to the i-th edge, and rei the center point of the

i-th edge, as illustrated in Fig. 4.1. To obtain such an ei accurately from the discrete

H (now Hz only since the problem is 2-D), the two H-points should be located on

the line that is perpendicular to the i-th edge and centered at the point rei, as shown

in Fig. 4.1(a). In this way, the edge is perpendicular to the H-loop (in the plane

defined by z-direction and the line normal to the edge), and resides at the center of

the loop. As a result, an accurate E · êi can be obtained from a space derivative of

the two H unknowns. However, using the zeroth-order edge elements, the curl of E

is constant in every element, thus we cannot generate H at the desired points accu-
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rately. From another perspective, we can view the H obtained at the center point of

every element to be accurate. However, in an arbitrary unstructured mesh, the line

segment connecting the center points of the two elements sharing an edge may not be

perpendicular to the edge, and the two center points may not have the same distance

to the edge either, as illustrated in Fig. 4.1(b).

To overcome the aforementioned problem, we propose to use higher-order curl-

conforming vector bases to expand E in each element. With an order higher than

zero, the curl of E and hence H is at least a linear function of x, y, and z in each

element. With this, the H can be obtained at an arbitrary point along an arbitrary

direction accurately from (4.5). We hence can use this freedom to choose H points

and directions in such a way that they can reversely generate E unknowns accurately

from (4.10).

First-order bases are sufficient for use. Certainly, one can employ bases whose

order is even higher. This is one of the reasons why the detailed formulations corre-

sponding to the proposed framework are not unique. In this work, first-order bases

are used, since they satisfy the need of the proposed matrix-free method and they

minimize computational overhead as compared to other bases. All the twenty first-

order bases in a tetrahedral element together with their degrees of freedom defined

in terms of locations rei and projection directions êi, (i = 1, 2, ..., 20) are listed in

Appendix A as well as Chap. 3 from Equ. (3.15) to Equ. (3.17). The vector bases for

triangular prism element are listed in Appendix B. For other shaped elements, one

can find the analytical expressions of higher-order vector bases from open literature.

4.3.2 Relationship between {u} and {e}

The vector {u} contains the unknown coefficients of vector basis functions as

shown in (4.3), while vector {e} contains the discrete electric fields at rei points along

êi directions as defined in (4.9). If ui = E(rei) · êi, then {u} = {e}. Hence, (4.10)

and (4.5) are directly connected to each other. Among higher-order vector basis
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functions [43], the vector bases associated with edges satisfy ui = E(rei) · êi naturally.

However, the bases defined on the faces and those inside the element, in general, do

not. This problem can be solved by modifying the original higher-order vector bases

to make {u} = {e}, as done in [48]. We can also keep the original higher-order vector

bases as they are, but find the relationship between {u} and {e} as follows.

Substituting (4.3) into (4.9), we have

ei = E(rei) · êi =
∑

uj(Nj(rei) · êi), (4.15)

from which we obtain

{e} = P{u}, (4.16)

where P matrix obviously has the following entries:

Pij = Nj(rei) · êi. (4.17)

The P is of size Ne but an extremely simple matrix — It is a block diagonal matrix

with each diagonal block of size either 1 or 2. To be specific, for the vector basis

function i whose degree of freedom is associated with edges, the Pii = 1 and elsewhere

in the i-th row Pij = 0; for the vector basis function i whose degree of freedom is not

associated with edges, it is either defined on faces or inside the element. Such a basis

function comes in as a pair, for which there are two nonzero elements on the i-th row

of P, and two nonzero elements on the (i+ 1)-th row of P, forming a 2× 2 diagonal

block in P as the following

Pi =

 1 Ni+1(rei) · êi
Ni(re,i+1) · êi+1 1

 . (4.18)

The off-diagonal terms in the above do not vanish because for face or internal degrees

of freedom, the basis function pair associated with each point are not perpendicular
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to each other in terms of the vector basis’s direction. Overall, the P can be written

as

P =



P1 0 0 ... 0

0 P2 0 ... 0

0 0 P3 ... 0

0 0 0 ... 0

0 0 0 ... P...


, (4.19)

where each diagonal block Pi is equal to either 1 or a 2× 2 matrix shown in (4.18),

which can be readily inverted to obtain P−1, denoted by Q. Obviously, Q is also a

block diagonal matrix whose diagonal blocks are of size either 1 or 2. As a result, we

find a closed-form relationship between {u} from {e} as

{u} = Q{e}. (4.20)

The (4.5) hence can be rewritten as

SeQ{e} = −diag({µ})∂{h}
∂t

. (4.21)

Thus, (4.10) and (4.5) are connected to each other.

Fig. 4.2. H points and directions for generating ei.



75

4.3.3 Accurate Construction of Sh and Choice of H’s Points and Direc-

tions

To construct (4.10) accurately, intuitively, we can expand H by the same set of

vector basis functions as that of E in each element. However, in this way, the degrees

of freedom of H and those of E are located at the same points and along the same

directions. From such a set of discrete H, it is not feasible to accurately obtain the

desired E in (4.5). Our numerical experiments have also verified this fact. This is

because the curl operation on H in each element will result in an E field whose space

variation is one-order lower than H. Alternatively, we can test (4.2) by E’s vector

bases and integrate over the computational domain. However, the resultant numerical

system requires solving a matrix.

To construct a matrix-free solution and also with guaranteed accuracy, we propose

to use an H-loop uniquely defined for each E’s degree of freedom to obtain the E

desired in (4.5). This loop centers each E’s degree of freedom, and is also positioned

perpendicular to the E’s degree of freedom. This H-loop can be chosen in its simplest

manner: a 1-D line segment in 2-D settings, and a 2-D rectangular loop centering

and normal to the E’s degree of freedom in 3-D problems, as shown in Fig. 4.2.

Regardless of the shape of the element, such a rectangular loop can always be defined

for each E unknown. Along this loop, we select the middle points of the four sides as

H-points and the four unit vectors tangential to each side as H-directions to generate

{h}. As a result, each E unknown ei is associated with four H-points and directions.

These H-points are all located inside the elements that share the E unknown, instead

of being selected on the faces of the elements. In this way, each H point is located

only in one element, and hence the H-field at the point can be readily found from

(4.5). The set of H-points and H-directions defined for each ei makes the whole set

of H-points denoted by {rhi}, and the whole set of H-directions denoted by {ĥi}

(i = 1, 2, ..., Nh).
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With the aforementioned choice of H-points and directions, the êi ·∇×H in (4.8)

can be accurately discretized with second-order accuracy as the following

êi · {∇ ×H}(rei) = (hm1 + hm2)/lim + (hn1 + hn2)/lin, (4.22)

where lim is the distance between hm1 and hm2, while lin is the distance between hn1

and hn2 as illustrated in Fig. 4.2. With (4.22), we obtain

Sh,ij = 1/lij, (4.23)

where j denotes the global index of the H-point associated with the ei, and lij is

simply two times the distance between the H-point (rhj) and the E-point (rei). Each

row of Sh has only four nonzero elements.

Obviously, there is no need to construct a dual mesh for H as the H-points and

H-directions we select are individually defined for each E unknown, which do not

make a mesh. In addition, regardless of the choice of H-points and directions, there

is no difficulty in generating corresponding {h} from (4.5) accurately, due to the use

of higher-order basis functions.

4.3.4 Imposing Boundary Conditions

The proposed method, in its first-order form (4.12) conforms to that of the FDTD

numerical system; in its second-order form (4.13) conforms to the second-order wave

equation based TDFEM. Hence, the boundary conditions in the proposed method

can be implemented in the same way as those in the TDFEM and FDTD. Below we

provide more details.

For closed-region problems, the perfect electric conductor (PEC), the perfect mag-

netic conductor (PMC), or other nonzero prescribed tangential E or tangential H are

commonly used at the boundary. To impose prescribed tangential E at Nb boundary

points, in (4.5), we simply set the {e} entries at the Nb points to be the prescribed

value, and keep the size of Se the same as before to produce all Nh discrete H from

the Ne discrete E. In (4.10), since the {e} entries at the Nb points are known, the
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updating of (4.10) only needs to be performed for the rest (Ne − Nb) {e} entries.

As a result, we can remove the Nb rows from Sh corresponding to the Nb boundary

E fields, while keeping the column dimension of Sh the same as before. The above

treatment, from the perspective of the second-order system shown in (4.13), is the

same as keeping just (Ne − Nb) rows of S, providing the full-length {e} (with the

boundary entries specified) for the {e} multiplied by S, but taking only the Ne −Nb

rows of all the other terms involved in (4.13). To impose a PMC boundary condition,

the total E unknown number is Ne without any reduction. The (4.5) is formulated as

it is since the H-points having the PMC boundary condition can be placed outside

the computational domain. As for (4.10), there is no need to make any change ei-

ther since the tangential H is set to be zero outside the computational domain. The

end result is the same as a TDFEM numerical system subject to the second-kind

boundary condition.

For open-region problems, the framework of (4.5) and (4.10) in the proposed

method is conformal to that of the FDTD. As a result, the various absorbing boundary

conditions that have been implemented in FDTD such as the commonly used PML

(perfectly matched layer) can be implemented in the same way in the proposed matrix-

free method.

In the framework and formulations described above, we expand the electric field

into certain vector basis functions in each element, while sampling the magnetic field

unknowns at discretized points along the loop individually defined for each E’s degree

of freedom. One can also switch the roles of the electric and magnetic fields: expand

the magnetic field into vector basis functions in each element, while sampling the

electric field unknowns along the loop defined for each magnetic field unknown. Which

way to use depends on the convenience for solving a given problem.
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4.4 Time Marching Free of Matrix-Solution with Guaranteed Stability

A leap-frog based time marching shown in (4.12) as well as a central-difference

based time discretization of (4.13) is absolutely matrix-free, i.e., free of a matrix

solution. However, both are absolutely unstable since the curl-curl operator here is

an unsymmetrical matrix. This is not only true for the proposed method but also

true for any method whose curl operation on one field unknown is not the reciprocal

of the curl operation on the other field unknown. To prove, we can perform a stability

analysis of (4.12) and (4.13) [44]. The z-transform of the central-difference based time

marching of (4.13), or (4.12) after eliminating {h}, results in the following equation:

(z − 1)2 + ∆t2λz = 0, (4.24)

where λ is the eigenvalue of S. The two roots of (4.24) can be readily found as

z1,2 =
2−∆t2λ±

√
∆t2λ(∆t2λ− 4)

2
. (4.25)

If S is Hermitian positive semi-definite like that resulting from TDFEM or FDTD

in an orthogonal grid, all its eigenvalues are non-negative real. Thus, we can always

find a time step to make z in (4.25) bounded by 1, and hence the explicit simulation

of (4.13) as well as (4.12) is stable. Such a time step satisfies ∆t ≤ 2/
√
λmax, where

λmax is the maximum eigenvalue of S, which is also S’s spectral radius. However, if S

is not symmetrical, which is the case in the proposed method and many existing non-

orthogonal FDTD methods, its eigenvalues either are real (can be negative) or come in

complex-conjugate pairs. For complex-valued eigenvalues λ as well as negative ones,

the two roots z1 and z2 shown in (4.25) satisfy z1z2 = 1, and neither of them has

modulus equal to 1. As a result, the modulus of one of them must be greater than 1,

and hence the explicit time-domain simulation of (4.13) and (4.12) must be unstable.

This fact was also made clear in [35]. For a general lossy problem, we can perform a

similar stability analysis and find the same conclusion—if the S is not symmetric, a

traditional explicit timed-domain simulation of (4.13) is absolutely unstable.
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However, if we choose Sh = STe to make S symmetric, the accuracy cannot be

guaranteed in a general unstructured mesh. This dilemma is solved as follows without

sacrificing the matrix-free merit of the proposed method. Basically, we can start with

the following backward-difference based discretization of (4.13) [37]

{e}n+1 − 2{e}n + {e}n−1 + ∆tdiag({σ
ε
})({e}n+1 − {e}n) + ∆t2S{e}n+1

= −∆t2diag({1

ε
})
(
∂{j}
∂t

)n+1

, (4.26)

where the {e} associated with S is chosen at the (n + 1)-th time step instead of the

n-th step. Performing a stability analysis of (4.26) for lossless cases, we find the two

roots of z as

z1,2 =
1

1± j∆t
√
λ
. (4.27)

As a result, the z can still be bounded by 1 even for an infinitely large time step.

However, this does not mean the backward difference is unconditionally stable since

now the λ can be complex-valued or even negative. To make the magnitude of (4.27)

bounded by 1, we find that the time step needs to satisfy the following condition

∆t > 2
|Im(
√
λ)|

|
√
λ|2

, (4.28)

where Im(·) denotes the imaginary part of (·). It is obvious to see that the scheme

is stable for large time step, but not stable for small time step. Such a requirement

happens to align with preferred choices of time step, since a large time step is desired

for an efficient simulation.

Rearranging the terms in (4.26), we obtain

D̃{e}n+1 = 2{e}n − {e}n−1 + ∆tdiag({σ
ε
}){e}n−

∆t2diag({1

ε
})
(
∂{j}
∂t

)n+1

, (4.29)

where

D̃ = I + ∆tdiag({σ
ε
}) + ∆t2S. (4.30)

Since D̃ is not diagonal, (4.29) requires a matrix solution. To avoid that, we can solve

this problem as follows.
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Let the diagonal part of D̃ be D, which means

D = I + ∆tdiag({σ
ε
}). (4.31)

Front multiplying both sides of (4.29) by D−1, we obtain

(I + M̃){e}n+1 = D−1{f}, (4.32)

where {f} is the right hand side of (4.29), and

M̃ = ∆t2D−1S. (4.33)

Although (4.29) permits the use of any large time step, when we choose the time step

based on that of a conventional explicit method, the time step satisfies

∆t2 <
1

‖S‖
, (4.34)

and hence

∆t2‖S‖ < 1. (4.35)

This is because the time step for stability of a conventional central-difference based

explicit simulation satisfies ∆t < 2/
√
ρ(S), where ρ(S) is the spectral radius of S.

Although the S in the proposed method is different from that of the conventional

TDFEM or FDTD, the matrix norm is similar since it represents the largest resonance

frequency that can be numerically supported by a finite space discretization. This

time step is also the time step required by accuracy when space step is determined

by accuracy. Since D in (4.31) is diagonal, the norm of its inverse can be analytically

evaluated as

‖D−1‖ = 1/min1≤i≤Ne(1 + ∆tσi/εi) = 1. (4.36)

we hence obtain, from (4.35) and (4.36),

‖M̃‖ = ∆t2‖D−1S‖ ≤ ∆t2‖D−1‖‖S‖ < 1. (4.37)

As a result, the inverse of I + M̃ can be explicitly represented as a series expansion

(I + M̃)−1 = I− M̃ + M̃
2 − M̃

3
+ . . . , (4.38)
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which can be truncated after the first few terms without sacrificing accuracy due to

(4.37). Thus, the system matrix has an explicit inverse, and hence no matrix solution

is required in the proposed method. The final update equation becomes

{e}n+1 = (I− M̃ + M̃
2 − · · ·+ (−M̃)k)Di{f}, (4.39)

where Di is a diagonal matrix which is D’s inverse. The number of terms k is

guaranteed to be small (less than 10) since (4.37) holds true, and the central-difference

based time step (4.34) is usually not chosen right at the boundary, 1/||S||, but smaller

for better sampling accuracy. Notice that the spectral radius of M̃, as revealed in

(4.37), is essentially the square of the ratio of the actual time step used (∆t) to

the largest time step permitted by the stability of a conventional explicit scheme (∼

1/||S||). It is a constant irrespective of the mesh quality. Therefore, the convergence

of (4.38) is guaranteed and the convergence rate does not depend on the mesh quality.

Notice that using (4.38) does not change the stability analysis since it is used to obtain

the inverse of system matrix, which does not change the backward difference based

time marching scheme. It is also worth mentioning that the time step that violates

(4.28) turns out to be small in the proposed method since the imaginary part of the

complex eigenvalues is small as compared to the real part, owing to the accuracy of

the proposed space discretization scheme.

The computational cost of (4.39) is k sparse matrix-vector multiplications since

each term can be computed from the previous term. For example, if we first compute

y = Di{f}, then the second term in (4.39) can be obtained from −M̃y. Let the

resultant be y. The third term relating to M̃
2

is nothing but −M̃y. Therefore, the

cost for computing each term in (4.39) is the cost of multiplying −M̃ by the vector

obtained at the previous step, thus efficient.



82

4.5 Relationship with FDTD

In a regular orthogonal grid and with the zeroth-order vector bases, the proposed

method reduces exactly to the FDTD. This is very different from the mixed E-B

formulation like [53] where mass lumping has to be used to prove equivalency.

To explain, for a 2-D rectangular grid and a 3-D brick-element based discretiza-

tion, with a zeroth-order edge vector basis used in each rectangular or brick element,

the operation of Se{e} in the proposed method is the same as how the curl of E is

discretized in the FDTD; and the operation of Sh{h} with Sh = STe is the same as

how the curl of H is discretized in the FDTD. Furthermore, since Sh = STe natu-

rally satisfies in an orthogonal grid, the resulting numerical system is symmetric and

positive semi-definite. Hence the original leap-frog explicit time marching is stable

without any need for special treatment. That is also why in a traditional FDTD

with an orthogonal grid, an explicit time marching is never observed to be absolutely

unstable because the system matrix is symmetric.

To see the above point more clearly, take the 2-D rectangular grid as an example.

The {e} is simply a union of E · êi at the center point of each edge, with êi being

either x or y along each edge; and the {h} is nothing but the vector containing Hz at

the center point of each rectangular patch. Each row of Se has four nonzero elements

as each element has four bases. Multiplying the i-th row of Se by {e} is nothing but

em − en
W

− ep − eq
L

, (4.40)

where m, n, p, q are the global indexes of the four edge basis functions in the rect-

angular element where the H point is located, and W and L are the two side lengths

of the rectangular element. It is evident that (4.40) is the same as that performed

in the FDTD to produce the Hz at the center of each E-loop. With Sh = STe , the

operation of Sh{h} is to do

1

lj
hp1 −

1

lj
hp2 =

hp1 − hp2
lj

, (4.41)

where lj is simply the length of the side that is perpendicular to edge j in a rectangular

element. Obviously, the above is the same as that used in the FDTD to calculate E
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fields, which is an accurate discretization of ∇ ×H of second-order accuracy at the

center point of an edge for E along the edge.

In addition, even in an orthogonal grid, the implementation of the proposed

method is more convenient, since no dual grid is needed. After Se is formed for

the grid, Sh is known as STe without any construction cost. For unstructured meshes,

the FDTD method would fail, whereas the proposed method is accurate and stable

regardless of how irregular and unstructured the mesh is.
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Fig. 4.3. Simulation of wave propagation and reflection in a 2-D trian-
gular mesh: (a) Mesh. (b) Illustration of incident wave and truncation
boundary conditions.

4.6 Numerical Results

In this section, we simulate a variety of 2-D and 3-D unstructured meshes to

demonstrate the validity and generality of the proposed matrix-free method in analyz-

ing arbitrarily shaped structures and materials discretized into unstructured meshes.

The accuracy of the proposed method is validated by comparison with both analytical

solutions and the TDFEM method that is capable of handling unstructured meshes

but not matrix-free.
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Fig. 4.4. Simulation of a 2-D triangular mesh: (a) Electric fields at
two points. (b) Entire solution error v.s. time.

4.6.1 Wave Propagation and Reflection in a 2-D Triangular Mesh

The first example is a wave propagation and reflection problem in an 2-D trian-

gular mesh shown in Fig. 4.3(a). Some mesh elements are very skewed due to fine

features in a narrow gap whose size is less than a few µm. The dielectric constant

is εr = 4 in the red shaded region and 1 elsewhere. The incident E is specified as

ŷf(t − x/c), where f(t) = 2(t − t0) exp(−(t − t0)
2/τ 2), τ = 8.0 × 10−13 s, t0 = 4τ

s, and c denotes the speed of light. The top, bottom and right boundaries are ter-

minated by PEC, while the left boundary is truncated by the sum of the incident

and reflected E fields as illustrated in Fig. 4.3(b). Since the left boundary is not

close to the dielectric discontinuity, the reflected field at the left boundary can be

analytically approximated as −ŷf(t− x0/c− 2L/c), where x0 is the x-coordinate at

the left boundary, and L is the width of the computational domain.

In the proposed method, the number of expansion terms used is 9 in (4.38). For

comparison, we simulate the same example by TDFEM since it is capable of handling

unstructured meshes. The time step used in both methods is 5 × 10−16 s. In Fig.

4.4(a), the electric fields at two points rp1 = (−5.912 × 10−5,−7.131 × 10−5, 0) m

and rp2 = (−6.325 × 10−5,−6.434 × 10−5, 0) m randomly selected are plotted in
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comparison with TDFEM results. The directions of the two fields are respectively

êp1 = 0.979x̂ − 0.206ŷ, and êp2 = 0.463x̂ − 0.886ŷ. Excellent agreement can be

observed with TDFEM results. Such an agreement is also observed at all points for

all time. As shown in Fig. 4.4(b), the entire solution error as compared with the

TDFEM solution is less than 2% at all time instants. A few peak errors are due to

the comparison with close-to-zero fields. The entire solution error is defined by

Errorentire(t) =
||{e}this(t)− {e}ref (t)||

||{e}ref (t)||
, (4.42)

where {e}this(t) denotes the entire unknown vector {e} of length Ne solved from the

proposed method, and {e}ref (t) denotes the reference solution, which is TDFEM

result in this example.

4.6.2 Wave Propagation in a 3-D Box Discretized into Tetrahedral Mesh

A 3-D box discretized into tetrahedral elements is simulated in free space. The

mesh details are shown in Fig. 4.5. The discretization results in 544 edges and

350 elements. To investigate the accuracy of the proposed method in such a mesh,

we consider that the most convincing comparison is a comparison with analytical

solution. We hence study a free-space wave propagation problem whose analytical

solution is known. To simulate such an open-region problem, we impose an analytical

boundary condition, i.e., the known value of tangential E, on the outermost boundary

of the problem; we then numerically simulate the fields inside the computational

domain and correlate results with the analytical solution.

The structure is illuminated by a plane wave having E = ŷf(t − x/c), where

f(t) = 2(t− t0) exp(−(t− t0)2/τ 2), τ = 6.0× 10−9 s, and t0 = 4τ . The time step used

in the proposed method is ∆t = 1.6×10−11 s, which is the same as what a traditional

central-difference based TDFEM has to use for stability. The number of expansion

terms is 9 in (4.38). In Fig. 4.6(a), we plot the first and 1,832-th entry randomly

selected from the unknown {e} vector, which represent E(rei)·êi, with i = 1, and 1,832
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Fig. 4.5. Illustration of the tetrahedron mesh of a 3-D structure.

respectively. From Fig. 4.6(a), it can be seen clearly that the electric fields solved

from the proposed method have an excellent agreement with analytical results.
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Fig. 4.6. Simulation of a 3-D box discretized into tetrahedral elements:
(a) Simulated two electric fields in comparison with analytical results.
(b) Entire solution error for all E unknowns v.s. time.
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To further verify the accuracy of the proposed method in the entire computational

domain, we assess the entire solution error (4.42) as a function of time, where the

reference solution is analytical result {e}anal(t). In Fig. 4.6(b), we plot Errorentire(t)

across the whole time window in which the fields are not zero. It is evident that less

than 4% error is observed at each time instant, demonstrating the accuracy of the

proposed method. The center peak in Fig. 4.6(b) is due to a comparison with close

to zero fields.
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Fig. 4.7. (a) Entire solution error v.s. time of all H unknowns ob-
tained from Se-rows of equations. (b) Entire solution error v.s. time
of all E obtained from Sh-rows of equations.

In addition to the accuracy of the entire method, we have also examined the

accuracy of the individual Se, and Sh separately, since each is important to ensure

the accuracy of the whole scheme. First, to solely assess the accuracy of Se, we

perform the time marching of (4.5) only without (4.10) by providing an analytical

{e} to (4.5) at each time step. The resultant {h} is then compared to analytical

{h}anal at each time step. As can be seen from Fig. 4.7(a) where the following

H-error
||h(t)− hanal(t)||
||hanal(t)||

(4.43)

is plotted with respect to time, the error of all H unknowns is less than 3% across

the whole time window, verifying the accuracy of Se.
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Similarly, in order to examine the accuracy of Sh, we perform the time marching

of (4.10) only without (4.5) by providing an analytical {h} to (4.10) at each time

step. The relative error of all E unknowns shown in (4.42) as compared to analytical

solutions is plotted with time in Fig. 4.7(b). Again, very good accuracy is observed

across the whole time window, verifying the accuracy of Sh.
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Fig. 4.8. Illustration of the tetrahedron mesh of a sphere structure.

4.6.3 Wave Propagation in a Sphere Discretized into Tetrahedral Mesh

The third example is a sphere discretized into tetrahedral elements in free space,

whose 3-D mesh is shown in Fig. 4.8. The discretization results in 3,183 edges and

1,987 tetrahedrons. Again, we set up a free-space wave propagation problem in the

given mesh to validate the accuracy of the proposed method against analytical results.

The incident E has the same form as that of the first example, but with τ = 2.0×10−9

s in accordance with the new structure’s dimension. The outermost boundary of the
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Fig. 4.9. Simulation of a 3-D sphere discretized into tetrahedral ele-
ments: (a) Two electric fields in comparison with analytical results.
(b) Entire solution error for all E unknowns v.s. time.

mesh is truncated by analytical E fields. The time step used is ∆t = 2.0 × 10−12

s, which is the same as that used in a traditional TDFEM method. The number

of expansion terms is 9 in (4.38). The two degrees of freedom of the electric field,

whose indices in vector {e} are 1 and 9,762 respectively, are plotted in Fig. 4.9(a)

in comparison with analytical data. Excellent agreement can be observed. In Fig.

4.9(b), we plot the entire solution error shown in (4.42) versus time. Less than 3%

error is observed in the entire time window. It is evident that the proposed method

is not just accurate at certain points, but accurate at all points in the computational

domain for all time instants simulated.

4.6.4 Coaxial Cylinder Discretized into Triangular Prism Mesh

The fourth example has an irregular triangular prism mesh, the top view of which

is shown in Fig. 4.10. The structure has two layers of triangular prism elements (into

the paper) with each layer being 0.05 m thick. The discretization results in 3,092

edges and 1,038 triangular prisms. Both the innermost and outermost boundaries are

terminated by exact absorbing boundary condition, which is the analytical tangential
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Fig. 4.10. Top view of the triangular prism mesh of an coaxial cylinder structure.
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Fig. 4.11. Simulation of a 3-D coaxial cylinder discretized into tri-
angular prism elements: (a) Two electric fields in comparison with
analytical results. (b) Entire solution error for all E unknowns v.s.
time.

E on the boundary. The incident E has the same form as that in the first example,

but with τ = 5.0× 10−8 s. The ∆t used is 2.0× 10−11 s and the number of expansion

terms is 9. Two observation points, whose indices in vector {e} are 1 and 11,272
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respectively, are chosen to plot the electric fields in Fig. 4.11(a). Excellent agreement

with analytical solutions can be observed. In Fig. 4.11(b), we plot the entire solution

error shown in (4.42) versus time in comparison with the reference results which are

analytical solutions. Again, excellent accuracy (less than 0.7% error) is observed at

all points in the computational domain for all time instants simulated.

4.6.5 Mesh with Mixed Elements
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Fig. 4.12. Illustration of a mesh having different types of elements.

We have examined the capability of the proposed method in handling meshes made

of different types of elements. This mesh is illustrated in Fig. 4.12, which consists

of 1,312 triangular elements in the center and 84 rectangular elements surrounding

it. In each triangular element, there are eight first-order vector bases; and in each

rectangular element, there are twelve first-order vector bases. The interface between

a rectangular and a triangular element is an edge, where the degrees of freedom from

both elements are shared in common to ensure the tangential continuity of the fields.

A wave propagation problem is simulated in this mixed-element mesh. The incident



92

field is a plane wave having E = ŷ2(t − t0 − x/c) exp(−(t − t0 − x/c)2/τ 2), where

τ = 10−8 s, and t0 = 4τ . The time step used is ∆t = 10−11 s. In Fig. 4.13(a),

the electric fields at two randomly selected points are plotted in comparison with

analytical data. Excellent agreement can be observed. In Fig. 4.13(b), the entire

solution error is plotted as a function of time. Again, excellent accuracy is observed,

which verifies the capability of the proposed method in handling meshes having mixed

types of elements. Such a capability also facilities a convenient implementation of

various absorbing boundary conditions such as the perfectly matched layer.
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Fig. 4.13. Simulation of a mesh having different types of elements: (a)
Two electric fields in comparison with analytical results. (b) Entire
solution error for all E unknowns v.s. time.

4.6.6 S-parameter Extraction of a Lossy Package Inductor

In this example, we simulate a package inductor made of lossy conductors of con-

ductivity 5.8×107 S/m, and embedded in a dielectric material of relative permittivity

3.4. Its geometry and material parameters are illustrated in Fig. 4.14. The inductor

is discretized into five layers of triangular prism elements, the thickness of each of

which is 6.5, 30, 6.5, 8.5, and 30 µm from bottom to top, respectively. The top view

of the mesh is shown in Fig. 4.15(a). The boundary conditions are PEC on the top



93

Fig. 4.14. Illustration of materials and geometry of a package inductor.

and at the bottom, and PMC on the other four sides. A current source is launched

respectively at the two ports of the inductor. It has a Gaussian derivative pulse of

2(t− t0) exp(−(t− t0)2/τ 2), with τ = 0.5× 10−10 s, and t0 = 4τ . The number of ex-

pansion terms is 10 used in this simulation. The voltages obtained at both ports with

port 1 (upper port) excited and port 2 open are plotted in Fig. 4.15(b) in comparison

with the TDFEM results. Excellent agreement can be observed. The S-parameters

are also extracted and compared with those generated from the TDFEM. Very good

agreement can be seen from Fig. 4.16 across the entire frequency band.

4.6.7 CPU Time and Memory Comparison

Among existing time-domain methods for handling unstructured meshes, the TD-

FEM only requires a single mesh like the proposed method. The TDFEM also has

guaranteed stability and accuracy, and it ensures the tangential continuity of the

fields across material interfaces. We hence choose the TDFEM to benchmark the

performance of the proposed method.

The example considered is a large-scale example having millions of unknowns,

since small examples are not challenging to solve, which is true to almost every

time-domain method. The computational domain is a circular cylinder of radius 1
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Fig. 4.15. Simulation of a 3-D package inductor with dielectrics and
lossy conductors: (a) Top view of the triangular prism element mesh.
(b) Time-domain voltages at the two ports.
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Fig. 4.16. Simulation of a 3-D package inductor with dielectrics and
lossy conductors: (a) Magnitude of S-parameters. (b) Phase of S-
parameters.

m and height 5 m, which is discretized into 25 layers of triangular prism elements.

The thickness of each layer is 0.02 m. The incident field is a plane wave having

E = ŷ2(t − t0 − x/c) exp(−(t − t0 − x/c)2/τ 2), where τ = 10−8 s, and t0 = 4τ . The

time step used is ∆t = 8×10−12 s, which is the same in the TDFEM and the proposed

method. The number of expansion terms used in the proposed method is 9 in (4.38).
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The zeroth-order vector bases are employed in the TDFEM, whereas the first-order

bases are used in the proposed method. This comparison is, in fact, disadvantageous

to the proposed method since the sparse pattern resulting from a higher-order-bases

based discretization is much more complicated and the system matrix has many

more nonzeros, as compared to the zeroth-order-based discretization. However, if

the proposed method is able to show advantages even for such a disadvantageous

comparison, then its efficiency gain over the same-order TDFEM would become even

more obvious.

The triangular prism discretization results in 3,718,990 E unknowns in the zeroth-

order TDFEM. We find that the TDFEM simulation cannot be performed on our

desktop PC that has 16 GB memory due to the TDFEM’s large memory requirement.

This is because although the central-difference-based TDFEM only requires solving

a mass matrix, which is sparse and simple, its L and U factors are generally dense.

Although the mass matrix is time independent, and hence we only need to factorize it

once. The TDFEM still has to be equipped with sufficient memory to store L and U

factors to carry out the following backward and forward substitutions for the matrix

solution at each time step. Certainly, iterative solvers can be used to reduce memory

usage, however, they are not cost-effective in time-domain analysis since many right

hand sides need to be simulated, and the number of right hand sides is equal to the

number of time steps.

We hence find a computer that has 128 GB memory so that the TDFEM simula-

tion can be successfully performed on this example. On this computer, it takes the

TDFEM 2109.44 s and more than 72 GB memory to finish the LU factorization of

the mass matrix. The CPU time cost at each time marching step is 9.31 s, which is

one backward and forward substitution time. For a fair comparison, a similar number

of unknowns is generated in the proposed method. The resulting system matrix size

is 3,741,700. In contrast to the 2109.44 s cost by TDFEM for factorization, the pro-

posed method has no factorization cost since it is free of matrix solution. In contrast

to the 72 GB memory required by the TDFEM, the proposed method only takes 6.2
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GB memory to store the sparse matrices, as it does not need to store L and U since

the mass matrix is diagonal. The CPU run time of the proposed method at each

time step is 3.76 s, which is spent on a few matrix-vector multiplications. From the

aforementioned comparison, the computational efficiency of the proposed method can

be clearly seen. Recently, advanced research has also been developed to reduce the

computational complexity of a direct matrix solution [54]. However, not solving a

matrix always has its computational advantages as compared to solving a matrix.

We have also compared the accuracy between the two methods using the analyt-

ical data as the reference, since the example is set up to have an analytical solution.

The entire solution error of the proposed method measured by (4.42) is shown to be

less than 4 × 10−4 across the entire time window. The entire solution error of the

TDFEM is shown to be less than 10−4. The accuracy of the proposed method is

satisfactory. Meanwhile, the slightly better accuracy of the Galerkin-based TDFEM

could be attributed to the fact that it satisfies the Maxwell’s equations in an inte-

gration sense across each element, whereas the proposed method let the Maxwell’s

equations be satisfied only at discrete E and H points. Furthermore, in the TDFEM,

both Faraday’s law and Ampere’s law are satisfied in the same element, whereas in

the proposed method, the second law is satisfied across the elements over the loops

orthogonal to the first field unknowns. In addition, the time discretization scheme

may also contribute to the difference in accuracy.

4.7 Conclusion

In this chapter, a new matrix-free time-domain method with a naturally diagonal

mass matrix is developed for solving Maxwell’s equations in 3-D unstructured meshes,

whose accuracy and stability are theoretically guaranteed. Its property of being free

of matrix solution is independent of element shape, thus suitable for analyzing ar-

bitrarily shaped structures and materials discretized into unstructured meshes. The

method is neither FDTD nor TDFEM, but it possesses the advantage of the FDTD
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in being naturally matrix free, and the merit of the TDFEM in handling arbitrarily

unstructured meshes. No dual mesh, mass-lumping, interpolation, and projection are

required. In addition, the framework of the proposed method permits the use of any

higher-order vector basis function, thus allowing for any desired higher order of ac-

curacy in both electric and magnetic fields. Different from the method developed in

Chap. 2 and Chap. 3, the formulations presented in this chapter do not require any

modification on the traditional vector bases. Extensive numerical experiments on un-

structured triangular, tetrahedral, triangular prism meshes, and mixed elements have

validated the accuracy, matrix-free property, stability, and generality of the proposed

method. Comparisons have also been made with the TDFEM in unstructured meshes

in CPU time, memory consumption, and accuracy, which demonstrate the merits of

the proposed method.
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5. MATRIX-FREE TIME-DOMAIN METHOD WITH

UNCONDITIONAL STABILITY IN UNSTRUCTURED

MESHES

5.1 Introduction

A matrix-free method does not require the solution of a system matrix. Hence,

it has a great potential of solving large-scale problems. An explicit FDTD method

is free of matrix solutions [2]. Its stability limit has also been overcome by advanced

research. However, the method is only applicable to an orthogonal grid. Various work

has been done to extend the FDTD to unstructured meshes. In Chap. 2, 3 and 4, a

matrix-free time-domain method is developed for both 2-D and 3-D scenarios. This

method is independent of the element shape used for discretization [50]. Its accuracy

and stability are shown to be satisfactory. Nevertheless, the method’s time step is

still restricted by the smallest space step.

Unlike the curl-curl operator of an FDTD method, which is symmetric and positive

semi-definite, the curl-curl operator resulting from a matrix-free method is, in general,

unsymmetrical in an unstructured mesh. Such an operator can support complex-

valued and negative eigenvalues. They would even make a traditional explicit time

marching absolutely unstable. Hence, it is challenging to further enlarge the time

step of a matrix-free method in an unstructured mesh to any desired value. In this

chapter, we overcome this challenge and successfully develop an unconditionally stable

matrix-free method applicable to arbitrarily shaped unstructured meshes. As a result,

the advantages of a matrix-free method in time domain are accentuated, while its

shortcoming in time step is remedied, permitting an efficient analysis of large-scale

and multi-scale problems. Numerical experiments have demonstrated the accuracy

and efficiency of the proposed method.
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5.2 Proposed Method

Consider a general electromagnetic problem discretized into arbitrarily shaped

elements. Based on [50], the Faraday’s law and Ampere’s law can be discretized into

the following forms:

Se{e} = −diag({µ})∂{h}
∂t

, (5.1)

Sh{h} = diag({ε})∂{e}
∂t

+ {j}, (5.2)

where {e} is a global vector containing Ne electric field unknowns, and {h} is a global

vector containing Nh magnetic field unknowns. The Se{e} represents the discretized

∇ × E, while Sh{h} describes the discretized ∇ × H. Both Sh and STe are sparse

matrices of Ne × Nh size. The diag({µ}) and diag({ε}) are diagonal matrices con-

taining the permittivity and conductivity, and {j} denotes a current source vector.

In each element, E is expanded into higher-order bases, and hence the {h} obtained

from (5.1) is accurate at any point along any direction. The {h} is then chosen along

the orthogonal loops defined for each E unknown. The accuracy of (5.2) is thus

guaranteed as well.

If we eliminate {h} from (5.1) and (5.2), we can obtain the following second-order

equation for {e}
∂2{e}
∂t2

+ S {e} = −diag
({

1

ε

})
∂{j}
∂t

, (5.3)

where S = diag({1
ε
})Shdiag({ 1

µ
})Se. Since S is unsymmetrical supporting complex-

valued eigenvalues, a brute-force central-difference based time marching of (5.3),

though free of matrix solutions, is absolutely unstable. This problem was circum-

vented by resorting to a backward-difference discretization but using a central-difference-

based time step. Since this time step satisfies ∆t < 1/
√
ρ(S), where ρ(S) denotes the

spectral radius of S, the matrix resulting from the backward difference has an explicit

inverse. Thus, no matrix solution is needed. However, this also makes the time step

depend on space step. Next, we first present the proposed method for solving this

problem, and then explain how it works.
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Method: Let the eigenvalues of S be ξi (i = 1, 2, . . . , Ne). The theoretical value of

the smallest one is zero since S has a nullspace. Given any time step ∆t no matter how

large it is, the ξi can be partitioned into two groups. One satisfies ∆t < 1/
√
|ξi|, while

the other does not. It is the latter that prevents a matrix-free time marching of (5.3).

Let their corresponding eigenmodes be Uh. These modes clearly have the largest

eigenvalues of S. Unlike those in FDTD, the eigenvectors of S are not orthogonal

since S is not symmetric. We hence orthogonalize Uh to obtain Vh. We then upfront

change the system matrix S to Sl as follows

Sl = S−VhV
H
h S, (5.4)

and perform a time marching on the updated new system Sl

∂2{e}
∂t2

+ Sl{e} = −diag
({

1

ε

})
∂{j}
∂t

. (5.5)

The above can be proved to have all eigenvalues satisfying
√
|ξi| < 1/∆t (to be given

in next subsection), and hence its time marching is free of matrix solutions for the

given time step no matter how large it is. After obtaining {e}n+1 from (5.5) at every

step, we add the following treatment

{e}n+1 = {e}n+1 −VhV
H
h {e}n+1 (5.6)

to ensure the solution is free of Vh-modes.

The complete solution {e} can be expanded as {e} = {eh} + {el} = Vh{yh} +

Vl{yl}, where Vl is orthogonal to Vh. Using the aforementioned procedure, we find

{el}. To find {eh}, we front multiply (5.3) by VH
h , obtaining

∂2{yh}
∂t2

+ Q{yh} = {b}, (5.7)

where {b} = VH
h

(
−diag

({
1
ε

}) ∂{j}
∂t
− S{el}

)
, and Q = VH

h SVh. This is a small

system of equations, whose size is k (the number of Vh modes). It can further be

transformed to a diagonal system of

∂2{w}
∂t2

+ Λq{w} = {f}, (5.8)
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where Λq is diagonal containing eigenvalues of Q. After solving (5.8), we can obtain

{eh} = VhVr{w}, where Vr is the eigenvector matrix of small Q matrix. The total

solution at each time step can then be obtained as {e} = {el}+{eh}. Since k is much

smaller than Ne, the time cost of this step is trivial. In addition, the time step used

for simulating the diagonal system (5.10) can be arbitrarily large with a backward

difference.

How It Works: The field solution obtained from the proposed method is the same

as that of (5.3). To prove, we can substitute {e} = Vh{yh}+ Vl{yl} into (5.3) , and

multiply the resultant by VH
l . Since Vh is orthogonalized from eigenvector matrix

Uh, VH
l SVh = 0 holds true. We hence obtain

∂2{yl}
∂t2

+ VH
l S{ul} = VH

l {b}. (5.9)

Multiplying both sides by Vl, and recognizing VlV
H
l = I−VhV

H
h , we obtain

∂2{ul}
∂t2

+ (I−VhV
H
h )S{ul} = (I−VhV

H
h ){b}, (5.10)

the solution of which is the same as those obtained from (5.5) and (5.6). The second

step of the proposed method is to find {yh}, thereby {eh}. Hence, it is evident that

the proposed method solves (5.3) without any approximation. It is worth mentioning

that to make an FDTD stable, the second step can be saved since the eigenvectors are

orthogonal, and only Ul is required for accuracy. Here, Ul can have a small projection

onto Uh. Therefore, some of the eigenmodes of (5.8) may not be ignored.

Now, we shall prove why Sl permits the use of any desired time step. Let the

eigenvectors of S be U = [Uh,Ul]. Since S = UΛU−1, and VH
l Uh = 0, Sl can be

written as

Sl = VlV
H
l S = VlV

H
l

[
UhΛh(U

−1)h + UlΛl(U
−1)l

]
= VlV

H
l

[
UlΛl(U

−1)l
]

= VlV
H
l

[
Udiag{0,Λl}(U−1)

]
,

where (U−1)h/l denotes the rows of U−1 corresponding to the Λh/l part. The spectral

radius of Sl is hence bounded by that of Λl, which satisfies
√
|ξi| < 1/∆t.
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Computational Efficiency: The number of Vh, k, is in general not large, as it is

proportional to the number of fine elements. In addition, since Vh’s eigenvalues are

the largest of S, they can be efficiently found in O(k2Ne) operations. Moreover, Vh

is time independent. Once found, it can be reused for different simulations.

5.3 Numerical Results

5.3.1 Wave Propagation in 2-D Triangular Mesh
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Fig. 5.1. Illustration of a 2D domain with a triangular mesh.

We first simulate a free-space wave propagation problem in a 2-D triangular mesh.

This mesh is highly irregular as illustrated in Fig. 5.1. The incident electric field

E = ŷf(t− x/c) where f(t) = 2(t− t0)e−(t−t0)
2/τ2 with t0 = 4τ and τ = 8× 10−13 s.

An analytical absorbing boundary condition is applied on the outermost boundary.

The proposed method is able to use a time step of 2.0 × 10−14 s, which is solely

determined by accuracy. In contrast, the reference method [50] has to use a time

step of 1.17 × 10−17 s. In Fig. 5.2, we plot the entire solution error measured by
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||e− eref ||/||eref || as a function of time, where eref is the solution obtained from the

reference method, while e is the solution of the proposed method. It is evident that

the proposed method is accurate at all points and across the entire time window

simulated. In Fig. 5.3, we plot the field waveforms randomly selected at two points.

They show excellent agreement with the reference results. The proposed method

takes only 12.745 s to finish the entire simulation from finding Vh to the matrix-free

time marching, whereas the reference method takes 260.174 s.
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Fig. 5.2. Simulation of a 2D domain with a triangular mesh: Entire
solution error v.s. time.

5.3.2 Wave Propagation in 3-D Tetrahedral Mesh

The second example is a 3-D cube of 0.5 × 0.5 × 0.405 m3 discretized into tetra-

hedron elements. The smallest space step is 0.005 m while the largest one is 0.1 m.

The incident wave is the same as that in the first example but with τ = 2 × 10−9

s. With 690 Vh-modes removed, the time step is increased from 2.9× 10−13 s to the

one required by accuracy, which is 3.0× 10−11 s. As seen from Fig. 5.4 the simulated
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Fig. 5.3. Simulation of a 2D domain with a triangular mesh: electric
field at observation points.

fields agree very well with the reference results. The total simulation time of the

proposed method is 38.844 s including every step, in contrast to the 153.514 s cost

by the reference method.

5.3.3 Simulation of a Parallel Plate

Finally, we simulate a 3-D parallel plate excited by a current source. The mesh

details are shown in Fig. 5.5, and it involves 350 tetrahedral elements and 544 edges.

The current source is launched along the green line shown in Fig. 5.5. Its expression

is J = ẑ2(t − t0) exp−(t− t0)2/τ 2 with τ = 1 s and t0 = 4τ . The matrix-free time-

domain method requires the time step to be less than 2.4 × 10−11 s to guarantee

stability. This renders an estimated total CPU time 2.0104 × 108 s to finish the

simulation. It’s impossible to run such a long time to obtain the solution. For

convenience, we can find out the voltage drop between the two PEC plates analytically

since the input frequency is very low. In that case, the parallel plate can be viewed
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Fig. 5.4. Simulation of a 3D domain with a tetrahedral mesh: electric
field at observation points.

as a capacitor of capacitance C = 5.9027 pF, thus the voltage can be calculated

as − τ2

C
exp (−(t− t0)2/τ 2) V. On the other hand, only null space contributes to the

solution, and all the unstable eigenmodes should be removed. This results in a much

larger time step that is 0.01 s for the proposed unconditionally stable matrix-free

time-domain method. Therefore, it only takes 30.7393 s to finish the simulation.

In Fig. 5.6, the voltage simulated from the proposed method in comparison with

analytical solution is plotted as a function of time. Obviously, the simulated result

agrees very well with the reference result, validating the accuracy of the proposed

method.

5.4 Conclusion

In this chapter, we develop an unconditionally stable matrix-free time-domain

method for analyzing general electromagnetic problems discretized into arbitrarily

shaped unstructured meshes. This method does not require the solution of a system



106

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X (m)
Y (m)

Z

Fig. 5.5. Simulation of a parallel plate: Mesh details.

Fig. 5.6. Simulation of a parallel plate: Voltage drop between the two
plates compared with analytical solution.

matrix, no matter which element shape is used for space discretization. Furthermore,

this property is achieved irrespective of the time step used to perform the time domain
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simulation. As a result, the time step can be solely determined by accuracy regardless

of space step. Numerical experiments have validated the accuracy and efficiency of

the proposed new method.
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6. FAST EXPLICIT AND UNCONDITIONALLY STABLE

FDTD METHOD

6.1 Introduction

Among so many time-domain methods, the finite-difference time-domain (FDTD)

method is one of the most popular methods for electromagnetic analysis. This is

mainly because of its simplicity and optimal computational complexity at each time

step. However, as the matrix-free time-domain methods developed in previous chap-

ters naturally reduce to the FDTD method in orthogonal grid, the time step of a

conventional FDTD [1, 2] is also restricted by space step for stability, as dictated by

the Courant-Friedrich-Levy (CFL) condition. If the space step of a given problem is

determined solely from an accuracy point of view, the time step required by stability

has a good correlation with the time step determined by accuracy. However, if the

problem involves fine features relative to working wavelength, the time step required

by stability can be orders of magnitude smaller than that required by accuracy. As a

result, a large number of time steps must be simulated to finish one simulation, which

is time consuming.

To overcome the aforementioned barrier, researchers have developed implicit un-

conditionally stable FDTD methods, such as the alternating-direction implicit (ADI)

method [3, 4], the Crank-Nicolson (CN) method [5], the CN-based split step (SS)

scheme [6], the pseudo-spectral time-domain (PSTD method) [7], the locally one-

dimensional (LOD) FDTD [8,9], the Laguerre FDTD method [10,11], the associated

Hermite (AH) type FDTD [12], a series of fundamental schemes [13] and many oth-

ers, but the advantage of the conventional FDTD is sacrificed in avoiding a matrix

solution. When the problem size is large, the implicit unconditionally stable FDTD

methods become inefficient. Research has also been pursued to address the time
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step problem in the original explicit time-domain methods [14–16]. In [17, 18], the

source of instability is identified, and subsequently eradicated from the underlying

numerical system to make an explicit FDTD unconditionally stable. It is shown that

the source of instability is the eigenmodes of the discretized curl-curl operator whose

eigenvalues are the largest. These eigenvalues are higher than what can be stably

simulated by the given time step. To find these unstable modes, in [18], a partial

solution of a global eigenvalue solution is computed. In general, only a small set of

the largest eigenpairs of the system matrix need to be found, and the system matrix

is also sparse. The same idea is also applied to the matrix-free time-domain method

in Chap. 5 to solve time step problem. However, the computational overhead of the

resultant scheme may still be too high to tolerate when the matrix size is large.

The time step required for a stable explicit simulation is limited by the largest

eigenvalue of the system matrix. However, the finer the space step, the larger the

largest eigenvalues of the system matrix. Therefore, there should exist a relationship

between the fine cells present in a space discretization and the unstable modes that

cannot be stably simulated by the given time step. We do not have to perform

a brute-force eigenvalue solution to identify the unstable modes. Instead, we can

utilize the relationship between the fine cells and the unstable modes to develop a

more efficient explicit and unconditionally stable method. Along this line of thought,

in this work, we first develop a new patch-based single-grid FDTD formulation. Using

this formulation, we identify the theoretical relationship between fine cells and the

largest eigenmodes of the underlying system matrix. We prove that once there exists

a difference between the time step required by stability and the time step determined

by accuracy, i.e., a difference between the fine-cell size and the regular-cell size, the

largest eigenmodes of the original system matrix can be extracted from fine cells.

The larger the contrast ratio between the two time steps, the more accurate the

eigenmodes extracted in this way. Based on this theoretical finding, we propose an

efficient algorithm to find the unstable modes directly from fine cells, and subsequently

deduct these unstable modes from the numerical system to achieve an explicit time
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Fig. 6.1. Illustration of a patch-based discretization of Faraday’s law.

marching with unconditional stability. The essential idea of this work can also be

applied to other time-domain methods.

6.2 New Patch-Based Single-Grid FDTD Formulation

Before developing the proposed method, we first present a new formulation of

the FDTD method, which is a patch-based single-grid formulation. Different from

existing matrix-based FDTD formulations, this formulation reveals a natural decom-

position of the curl-curl operator into a series of rank-1 matrices, which facilitates the

development of the proposed method. The formulation does not require a dual grid,

and it also shows each rank-1 matrix is positive semi-definite.

Consider a general 3-D grid. In every patch, from Faraday’s law, the curl of E

produces H as
e2 − e1
li

+
e3 − e4
wi

= −µ∂hi
∂t
, (6.1)
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as illustrated in Fig. 6.1. The above can be rewritten as a row vector multiplied by

a column vector

[
−1

li
,

1

li
,

1

wi
,− 1

wi

]

e1

e2

e3

e4

 = −µ∂hi
∂t
, (6.2)

in which, e denotes the tangential electric field at the center point of every edge in

a patch, and h denotes the magnetic field normal to the patch at the patch center.

The li and wi are, respectively, the two side lengths of the i-th patch, and µ is the

permeability at the center of the i-th patch.

Define a global unknown vector {e} that consists of all of the e unknowns, and

{h} that contains all of the h unknowns in the 3-D grid. We have

{e} = {e1, e2, e3, ..., eNe}T , (6.3)

{h} = {h1, h2, h3, ..., hNh}T . (6.4)

Clearly, the total number of E unknowns, Ne, is also the total number of edges in

a 3-D grid. The total number of H unknowns, Nh, is the total number of patches.

Using global vectors (6.3), (6.2) can be rewritten as

S(ri)
e 1×Ne{e} = −µ∂{h}i

∂t
, (6.5)

where {h}i denotes the i-th entry of global vector {h}, and S
(ri)
e has the following

expression

S(ri)
e =

[
−1

li
,

1

li
,

1

wi
,− 1

wi

]
⊕ zeros(1, Ne), (6.6)

which is the row vector in (6.2) augmented with zeros to extend to length Ne, whose

unknowns are ordered based on the global indexes of e-unknowns.

Writing (6.5) for each patch, and combing the resultant Nh equations, we obtain

the following matrix equation

(Se)Nh×Ne {e} = −diag{µ}∂{h}
∂t

, (6.7)
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which is essentially how Faraday’s law is discretized in a FDTD grid. The diag{µ}

denotes a diagonal matrix of permeability. It is evident that Se is a sparse matrix of

size Nh×Ne, with each row being Faraday’s law written for a single patch, and hence

having 4 nonzero entries only.

The discretized Ampere’s law in the FDTD method is nothing but the following

matrix equation

(Sh)Ne×Nh {h} = diag{ε}∂{e}
∂t

+ {j}, (6.8)

where diag{ε} is a diagonal matrix of permittivity, and {j} denotes a current source

vector. The Sh has a simple relationship with Se as the following

Sh = STe , (6.9)

in a uniform grid. Hence, after (6.7) is obtained, (6.8) can be obtained immediately.

In a non-uniform grid, the Se stays the same; the Sh preserves the original sparse

pattern, but the li and wi are altered to use a length or width averaged between

adjacent patches to yield a better accuracy. Specifically, the li and wi are changed to

the average size between the two patches sharing the same E unknown. Obviously,

the aforementioned new approach for formulating the FDTD method is a single-grid,

and patch-based approach. Its implementation is even more convenient than the

original FDTD method.

The (6.7) and (6.8) can be combined to solve in a leap-frog way as the following

{h}n+
1
2 = {h}n−

1
2 −∆tD 1

µ
Se{e}n (6.10)

{e}n+1 = {e}n + ∆tD 1
ε
Sh{h}n+

1
2 −∆tD 1

ε
{j}n+

1
2 , (6.11)

where superscripts n, n+ 1, and n± 1
2

denote time instants, ∆t represents time step,

D 1
ε

and D 1
µ

are diagonal matrices of 1
ε
, and 1

µ
respectively.

The two first-order equations (6.7) and (6.8) can also be solved by eliminating

{h}, obtaining a second-order equation in time for {e} as the following

{e}n+1 − 2{e}n + {e}n−1

∆t2
+ D 1

ε
ShD 1

µ
Se{e}n = {f}n, (6.12)
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where {f} denotes the terms moved to the right hand side when deriving (6.12). The

above is actually a central-difference based discretization of

∂2{e}
∂t2

+ S{e} = {f}, (6.13)

where

S = D 1
ε
ShD 1

µ
Se, (6.14)

which is a sparse matrix representing the discretized 1
ε
(∇×) 1

µ
(∇×) operator.

In a conventional FDTD method, a matrix-less notation is used, which prevents

one from seeing the structure of S easily. With the proposed formulation, from (6.6)

and (6.9), it can be seen that S is the sum of Nh rank-1 matrices as the following

S = D 1
ε

Nh∑
i=1

1

µi
S
(ci)
h Ne×1S

(ri)
e 1×Ne . (6.15)

Basically, we loop over all the patches in a 2- or 3-D grid. For each patch i (i =

1, 2, ..., Nh), we generate a single column S
(ci)
h , and a single row S

(ri)
e . Multiplying

the two together is the contribution of this patch to the entire S, which is a rank-1

matrix, and also positive semi-definite as can be seen from (6.6) and (6.9). The S

can then be obtained as the summation of the rank-1 matrix of each patch.

Because of (6.15), mathematically, it becomes possible to find its largest k eigen-

vectors from its k columns and k rows having the largest norm. These columns and

rows correspond to exactly those contributed by fine patches. To see this point more

clearly, let the sequence of S
(c1)
h ,S

(c2)
h , ... be in a descending order of vector norm,

with S
(c1)
h ’s norm being the largest, and S

(c,k+1)
h ’s norm ε times smaller than S

(c1)
h ’s

norm. S can then be well approximated as S̃ = D 1
ε

∑k
i=1

1
µi

S
(ci)
h S

(ri)
e , with the error of

||S− S̃||/||S|| bounded by O(ε2). Hence, S̃ can be sufficient for finding m ≤ k largest

eigenvalues and their corresponding eigenvectors with good accuracy, although it can-

not be used to find all eigenpairs. The above analysis can still be conceptual. In the

following section, we will provide a detailed proof.
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6.3 Proposed Method for Lossless Problems

6.3.1 Theoretical Analysis

As shown in [17,18], in a conventional FDTD method, the time step for stability,

∆ts, is required to satisfy the following criterion

∆ts ≤
2√
ρ(S)

, (6.16)

where ρ(S) denotes the spectral radius of S, which is the largest eigenvalue of S.

Since this eigenvalue is inversely proportional to the smallest space step, (6.16) also

dictates that the maximum time step permitted by stability depends on the smallest

space step. In [17,18], the eigenvectors of S corresponding to the largest eigenvalues,

which are beyond the stability criterion, are identified as the root cause of instability.

The Arnoldi algorithm is then employed to find these unstable eigenvectors. For a

sparse matrix of size Ne, to find its largest k eigenpairs may take many more than

k Arnoldi steps, with the computational complexity being O(k′2N), where k′ > k.

When N is large, the computational overhead for obtaining a complete set of unstable

modes in [18] could still be too high to tolerate.

Given a time step, define the fine cells as those cells whose size is smaller than

that permitted by the CFL condition. From (6.15), it can be seen that the matrix S

is the sum of many rank-1 matrices, each of which corresponds to one patch. From

(6.6), we can also see that the smaller the patch, the larger the norm of its rank-1

matrix. Hence, the smallest patches contribute the largest norm in the assembled

S. It is then possible to find the largest eigenvalues and their eigenvectors of S from

the submatrices assembled from fine cells only. This also indicates that the field

distribution of unstable modes is actually localized in fine cells. Next, we give a

quantitative proof on this point.

S can be split into the following two components

S = Sf + Sc, (6.17)
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where Sf is assembled from fine cells, and Sc from the rest. Consider an eigenvector,

Fhi, of Sf . It satisfies

SfFhi = λiFhi. (6.18)

We need to prove it also satisfies the following:

SFhi = λiFhi. (6.19)

If so, then the eigenvectors obtained from the fine cells are also the eigenvectors of

the entire problem domain.

Proof: To prove (6.19), we evaluate the accuracy of

εacc =
‖SFhi − λiFhi‖
‖SFhi‖

. (6.20)

Since SFhi = (Sf + Sc)Fhi, and Fhi satisfies (6.18), (6.20) yields

εacc =
‖ScFhi‖

‖ScFhi + λiFhi‖
. (6.21)

Since Sc is semi-positive definite, the above satisfies

εacc ≤
‖Sc‖‖Fhi‖
λi‖Fhi‖

=
‖Sc‖
λi

. (6.22)

Since Sc is Hermitian, its norm is also its spectral radius, i.e., the largest eigenvalue of

Sc. This number determines the maximum time step that can be used in the regular

cells for a stable simulation, ∆tc. Similarly, the maximum λi of Sf determines the

time step ∆tf that can be used in the fine cells for a stable simulation, which is also

equal to the ∆ts in (6.16) for the entire computational domain. As a result, from

(6.22), we obtain

εacc ≤
(

∆tf
∆tc

)2

=

(
∆ts
∆t

)2

. (6.23)

The last equality in the above holds true because the ratio of ∆tf to ∆tc is also the

ratio of time step required by stability ∆ts to that determined by solution accuracy

(∆t), assuming the regular-cell region is discretized based on accuracy.
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From (6.23), it is evident that once ∆ts is smaller than ∆t, which is exactly the

scenario when the time step issue must be solved, the unstable eigenmodes can be

obtained from fine cells. Meanwhile, the larger the contrast ratio of regular-grid size

over fine-grid size, the better the accuracy of the unstable eigenmodes extracted from

fine cells. In addition, from (6.22), it can be seen among the eigenvalues λi obtained

from the fine cells, the larger the eigenvalue, the better the accuracy.

Based on the above finding, we develop an algorithm to find the unstable modes

from fine cells only, and subsequently deduct these unstable modes from the numerical

system for an explicit time marching with unconditional stability. The details of this

algorithm are given in next section.

6.3.2 Proposed Algorithm

The proposed method includes three steps. First, we find unstable modes accu-

rately from fine cells with controlled accuracy. Second, we upfront deduct the unstable

modes from the system matrix, and perform explicit marching on the updated system

matrix with absolute stability. Last, we add back the contribution of unstable modes

if necessary.

Step I: Finding unstable modes accurately from fine cells

Given any desired time step ∆t, the proposed method starts from categorizing the

cells in the grid into two groups. One group Cc has a regular cell size and permits

the use of the desired time step, while the other group Cf includes all the fine cells

and the cells immediately adjacent to the fine cells. These cells require a smaller

time step for a stable simulation. The cells in group Cf can be arbitrarily located in

the grid. They do not have to be connected. Accordingly, S can be split as shown

in (6.17), where Sf is S assembled from Cf , and Sc is from Cc. To identify Sf , the

new FDTD formulation presented in Section II provides a convenient and efficient

approach. Based on (6.15), we obtain Sf by looping over all the patches in the fine-
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cell region. For each patch, we obtain a rank-1 matrix S
(ci)
h S

(ri)
e . We then sum them

up to obtain

Sf = D 1
ε

k∑
i=1,i∈Cf

1

µi
S
(ci)
h Ne×1S

(ri)
e 1×Ne , (6.24)

in which k is the number of patches in Cf .

Let the E and H unknown number in Cf be n, and k respectively. Obviously,

n < Ne, and k < Nh. The S
(ci)
h in (6.24) is only nonzero in the rows corresponding to

the fine-cell unknowns. Similarly, the S
(ri)
e is only nonzero in the columns associated

with the fine-cell unknowns. The (6.24) hence can be rewritten as a small n by n

matrix

S
(f)
f n×n = An×kB

T
k×n, (6.25)

where A stores all the k columns of S
(ci)
h , and BT consists of all the rows of S

(ri)
e with

zeros corresponding to the regular-cell unknowns removed. The material property has

been taken into consideration in A and B. Since k is less than n, the S
(f)
f is further

a low-rank matrix. We then extract l unstable eigenmodes Fhi (l < k, i = 1, 2, . . . , l)

from it, the complexity of doing so is only O(l2n). This is much smaller than O(k′2Ne)

in [18], which is the complexity of a global eigenvalue solution with k′ Arnoldi steps

for finding k largest eigenpairs, since l < k′, and n << Ne. Basically, we find the

largest l eigenvalues λi and their corresponding eigenvectors F
(f)
hi of the small n × n

matrix Sf by using Arnorldi method. Given a threshold ε, if the following requirement

is satisfied, the F
(f)
hi is accurate enough to be included in the unstable modes,

εacc =
‖SFhi − λiFhi‖
‖SFhi‖

< ε, (6.26)

where Fhi is F
(f)
hi extended to length Ne based on the global unknown ordering.

Among l eigenvectors, assume kr of them are accurate. They are also corresponding

to the kr largest eigenvalues. We then orthogonalize them as Vh for the use of next

step.

When calculating εacc, 2-norm is used in this work. The choice of the accuracy

threshold ε is a user-defined parameter. Since the larger the eigenvalue, the better
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the accuracy of the eigenmode extracted from Sf , as shown in previous section, we

compute the eigenvalues of Sf starting from the largest to smaller ones. For each

eigenpair computed, we calculate εacc defined in (6.20) until it is greater than pre-

scribed ε. The εacc calculated for the largest eigenpair represents the best accuracy

one can achieve in the given grid, which also dictates the smallest ε one can choose.

Step II: Explicit and unconditionally stable time marching

After the unstable modes are found, to make the explicit FDTD stable for the

desired time step, we upfront deduct the contribution of Vh from S as follows

Sl = S−VhV
H
h S, (6.27)

which allows for a much larger time step than S. We then perform an explicit march-

ing on the updated system matrix as

{e}n+1 = 2{e}n − {e}n−1 −∆t2Sl{e}n + ∆t2{f}n (6.28)

followed by the following treatment to ensure the resultant {e} has no component in

Vh space

{e}n+1 = {e}n+1 −VhV
H
h {e}n+1. (6.29)

Since the contribution of Vh is removed from S, the time marching of (6.28) is

stable for the desired large time step. In the extreme case where all cells are fine cells

not allowing for the desired time step, the Sf becomes S. Hence, only null space of

S is left in (S−VhV
H
h S), permitting an infinitely large time step.

Step III: Adding back the contribution of unstable modes if necessary

This step is not needed when the time step is chosen based on accuracy, since the

unstable modes removed are not required by accuracy as analyzed in [18]. In the case

when time step chosen is larger than that required by accuracy, some eigenvectors

that are important to the field solution are also removed from the numerical system,
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therefore the solution computed from (6.28) and (6.29) is no longer an accurate solu-

tion of the original problem in (6.13) any more. In this case, the proposed algorithm

allows users to add the Vh-contribution back to guarantee accuracy. Basically, the

field solution {e} of (6.13) can be expressed as

{e} = V{y} = Vl{yl}+ Vh{yh} = {el}+ {eh}, (6.30)

where V = [Vl,Vh] is an orthogonal matrix of full rank Ne. Since {el} has been

obtained from (6.28) and (6.29), we only need to find {eh} = Vh{yh}. Since Vh has

been found, {yh} can be readily evaluated by front multiplying VH
h on both sides of

(6.13) to obtain
∂2{yh}
∂t2

+ Sr{yh} = VT
h ({f} − S{el}), (6.31)

where Sr = VH
h SVh, whose size is the number of unstable modes kr. The above can

be solved efficiently by the method in [18]. Since the size is small, it can also be

solved by implicit methods.

6.3.3 How It Works?

Apparently, since the proposed algorithm also allows one to add the Vh contribu-

tion back, it seems that any orthogonal space Vh would work. This is not true. For

(6.28) and (6.29) to produce a correct solution, Vh needs to satisfy the property of

VT
l SVh = 0. To see this point clearly, we can start from (6.13). Since S has both Vh

and Vl components, the solution {e} also has both components. Thus, (6.13) can be

rewritten as

∂2 (Vl{yl}+ Vh{yh})
∂t2

+ S (Vl{yl}+ Vh{yh}) = {f}. (6.32)

To obtain the Vl-component of {e}, we can multiply the above by VH
l from both

sides. This yields

∂2{yl}
∂t2

+ VH
l S(Vl{yl}+ Vh{yh}) = VH

l {f}. (6.33)
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If VH
l SVh does not vanish, (6.33) cannot be reduced to a numerical system of {yl}

only. Only when VH
l SVh = 0, front multiplying (6.33) by Vl, we can obtain (6.28),

where {e} = {el} due to (6.29), and I−VhV
H
h = VlV

H
l .

Since (6.26) is satisfied, Fh is an accurate eigenvector of S. With Vh orthogo-

nalized from Fh, the property of VH
l SVh = 0 is satisfied. This is because SVh =

SFhZ = FhΛhZ = VhZ
−1ΛhZ, and VH

l Vh = 0. Here, we use the relationship of

Vh = FhZ where Z is a full-rank transformation matrix, as Vh is orthogonalized

from Fh.

6.3.4 Computational Efficiency

In the proposed method, we avoid finding the eigensolutions of the original global

system matrix S. Instead, we work on a much smaller matrix Sf . Therefore, com-

pared with the approach developed in [18], the proposed method can achieve un-

conditional stability more efficiently without sacrificing accuracy. The complexity of

finding unstable modes is reduced significantly from the original O(k′2Ne) to O(l2n)

with n << Ne, and l < k′. This small cost is also a one-time cost, which is performed

before time marching. Since the unstable modes found in this work are frequency

and time independent, once found, they can be reused for different simulations of the

same physical structure. In the second step of explicit time-marching, the matrix-free

property of the FDTD is preserved. The time marching has a strict linear (optimal)

complexity at each time step.

6.4 Proposed Method for Lossy Problems

In previous section, we focus on lossless problems. When there exist lossy di-

electrics and conductors, we need to add one more term to (6.13) as follows

∂2{e}
∂t2

+ D
∂{e}
∂t

+ S{e} = {f}, (6.34)
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where D is diagonal with its i-th entry being σi/εi at the point of the i-th E unknown.

Different from a lossless problem, (6.34) is governed by the following quadratic eigen-

value problem

(λ2 + λD + S)v = 0. (6.35)

The treatment of such a problem is different from that of a generalized eigenvalue

problem. We hence use a separate section to describe our solution to general lossy

problems.

6.4.1 Theoretical Analysis

The second-order differential equation (6.34) can be transformed to the following

first-order equation in time without any approximation

∂{ẽ}
∂t
−M{ẽ} = {f̃}, (6.36)

where {f̃} = [0 f ]T , {ẽ} = [e ė]T , in which ė denotes the first-order time derivative

of e, and matrix M is

M =

 0 I

−S −D

 , (6.37)

where I is an identity matrix. Obviously, {ẽ}’s upper part is the original field solution

of (6.34).

The solution of (6.36) is governed by the following generalized eigenvalue problem

Mx = λx. (6.38)

This problem is also equivalent to (6.35) by using the relationship of x = [v λv]T .

Since I is positive definite, D is semi-positive definite, and S is semi-positive definite,

the eigenvalues of (6.38) either are non-positive real or come as complex conjugate

pairs whose real part is less than zero. Similar to lossless problems, to achieve uncon-

ditional stability, we also need to remove the unstable modes from the system matrix,
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now M. These modes are analyzed in [55]. They have eigenvalues whose magnitude

satisfies

|λ| > 2

∆t
. (6.39)

Again, given a desired time step, the unstable modes have the largest eigenvalues

in magnitude. Compared to lossless problems, now it is even more computationally

expensive to find these unstable modes since M is double sized and can be highly

ill-conditioned when conductor loss is involved. Therefore, similar to what we do for

lossless problems, we propose to find the unstable modes efficiently from the fine cells

only.

6.4.2 Proposed Method

When dealing with lossless problems, all the cells in the computational domain

are divided into two groups, Cf and Cc, based on the time step permitted by their

grid size. For lossy problems, we incorporate into Cf not only the fine cells and their

immediately adjacent cells, but also all the cells filled with conductive metals. This

is because the conductive materials contribute eigenvalues as large as conductivity

divided by permittivity. To explain, the lowest eigenmode of (6.35) satisfies Sv = 0,

which is a gradient field. For this field, in addition to zero eigenvalues, there is a set

of eigenvalues whose magnitude is approximately ||D||, which is σ over permittivity.

Hence, the conductive region is included since unstable modes correspond to the

largest eigenvalues.

After Cf is identified, we can form a matrix Mf as follows

Mf =

 0 I

−Sf −Df

 , (6.40)

where Sf can be found in the same way as (6.25), Df is obtained by selecting the

diagonal entries of D corresponding to the field unknowns in Cf . As a result, Mf is a

2n×2n matrix, which is much smaller than the original size of M. We then extract the

largest eigenpairs of Mf by using the Arnorldi method. Similarly, an accuracy check
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similar to (6.26) (with S replaced by M) is performed to select accurate unstable

modes obtained from Mf . Let kr be the unstable eigenmodes obtained from Mf , the

complexity of finding them is simply O(k2rn). We then orthogonalize the unstable

modes obtained, and augment them with zeros based on the global unknown indexes

to build Vh.

Using Vh, we upfront deduct their contributions from the system matrix before

time marching as follows:

Ml = M−VhV
H
h M. (6.41)

We then perform a time marching of (6.36) using the updated system matrix Ml as

the following:
∂{ẽ}
∂t
−Ml{ẽ} = {f̃}. (6.42)

If we perform a forward-difference-based time marching on (6.42), the resultant up-

date equation is definitely explicit. However, the stability requirement on the time

step is ∆t ≤ −2Re(λ)/|λ|2 where λ is the eigenvalue of Ml. This results in a time

step smaller than ∆t ≤ 2/|λ|, which is the time step required by a central-difference

discretization of the original second-order equation (6.34), for stably simulating the

same set of λ. To solve this problem, we propose to perform a backward difference

as shown below

(I−∆tMl){ẽ}n+1 = {ẽ}n + ∆t{f̃}n+1. (6.43)

A z-transform of the above results in z = 1/(1 − λ∆t). Since λ of Ml has a non-

positive real part, the stability of (6.43) is ensured for any large time step. Using

the accuracy determined time step ∆t, and with the corresponding unstable modes

removed, all the eigenvalues of Ml satisfy

|λ| ≤ 1

∆t
. (6.44)

Hence, the inversion of the left hand matrix of (6.43) can be replaced by a series

expansion with a small number of terms. Thus, (6.43) can be explicitly marched on

in time as the following

{ẽ}n+1 ≈
(
I + ∆tMl + (∆tMl)

2 + . . .+ (∆tMl)
p
)
{ỹ}, (6.45)
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where {ỹ} represents the right-hand-side term in (6.43). In the above, there is no

need to compute the matrix-matrix product. Instead, (6.45) is a summation of p

vectors, and every vector can be obtained by multiplying the previous vector by Ml.

Hence, the computational cost of (6.45) is simply p matrix-vector multiplications, and

p < 10.

To make sure the solution is free of unstable modes, we need to add the following

treatment after (6.45) at each time instant

{ẽ}n+1 = {ẽ}n+1 −VhV
H
h {ẽ}n+1. (6.46)

6.4.3 Matrix Scaling

When conductor loss and/or multiscale structures are involved, I, D, and S can be

orders of magnitude different in their matrix norm. The solution of the generalized

eigenvalue problem (6.38) may have a poor accuracy. To improve the accuracy of

finding unstable modes from Mf , we adopt an optimal scaling technique introduced

in [56]. Based on this technique, the I and S in (6.37) are scaled to

Ĩ = αI, S̃ = S/α, (6.47)

where

α =
√
‖S‖2. (6.48)

Consequently, the first-order double-sized system (6.36) is updated as follows

∂{ẽ′}
∂t
− M̃{ẽ′} = {f̃ ′}, (6.49)

where {ẽ′} = [e ė/α]T , {f̃ ′} = [0 f/α]T , and M̃ is

M̃ =

 0 Ĩ

−S̃ −D

 . (6.50)

The Mf formulated for fine cells is also scaled accordingly. As can be seen in (6.49),

the upper half of the solution vector {ẽ′} is the same as that of (6.36).
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6.5 Numerical Results

In this section, we simulate a number of 2- and 3-D examples involving inhomo-

geneous materials and lossy conductors to demonstrate the validity and efficiency of

the proposed fast unconditionally stable FDTD method.

6.5.1 2-D Wave Propagation and Cavity Problems

We first simulate a wave propagation problem in a 2-D rectangular region. The

grid is shown in Fig. 6.2, where fine cells are introduced to examine the unconditional

stability of the proposed method. Along y-axis, the cell size is uniform of 0.1 m.

Along x-axis, we define Contrast Ratio = ∆xc/∆xf where ∆xc = 0.1 m, and ∆xf

is controlled by Contrast Ratio. There are three fine cells along x axis whose cell

size is ∆xf . The total number of E unknowns is 258. The incident electric field is

Einc = ŷ2(t− t0 − x/c)e−(t−t0−x/c)
2/τ2 with c = 3× 108 m/s, τ = 2× 10−8 s and t0 =

4τ . The regular grid size, ∆xc = 0.1 m, satisfies accuracy for capturing frequencies

present in the input spectrum, which is about 1/20 of the smallest wavelength. The

computational domain is terminated by an exact absorbing boundary condition, which

is the known total field. This is because for any problem, the total fields on the

boundary serve as an exact absorbing boundary condition to truncate a computational

domain. For most of the problems, such fields are unknown. However, in a free-space

problem studied in this example, the total field is known since it is equal to the

incident field.

When choosing Contrast Ratio = 100, ∆xf = 0.001 m, which is two orders of

magnitude smaller than that required by accuracy. Hence, there is a two orders of

magnitude difference between the time step required by accuracy and that by stability.

The conventional FDTD method must use a time step no greater than 3.84 × 10−12

s to perform a stable simulation. In contrast, the proposed method is able to use a

time step of 2.42×10−10 s solely determined by accuracy to carry out the simulation.

The fine patches and their adjacent patches are identified, which are marked in red
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Table 6.1
The largest 16 eigenvalues obtained from Sf when Contrast Ratio = 100

λ1 2.70260697E+25

λ2 2.70251709E+25

λ3 2.70240599E+25

λ4 2.70228179E+25

λ5 2.70231612E+25

λ6 9.16900389E+24

λ7 9.16810512E+24

λ8 9.16699417E+24

λ9 9.16575210E+24

λ10 9.166095405E+24

λ11 1.23429421E+22

λ12 1.22530647E+22

λ13 1.21419701E+22

λ14 1.20177625E+22

λ15 1.20520926E+22

λ16 5.89575274E+19

in Fig. 6.2. They involve 50 internal E unknowns. Therefore, the size of Sf is

50 by 50, from which 15 unstable eigenmodes are found accurately for a prescribed

accuracy of ε = 10−6. The εacc for the 16-th eigenmode in (6.26) is 0.1036. Hence, the

16-th eigenmode and thereafter are not selected since their accuracy does not meet

requirements. The 15 unstable modes are then deducted from the system matrix,

permitting a two-orders-of-magnitude larger time step. In Fig. 6.3(a), the electric

fields at two observation points marked by blue cross in Fig. 6.2 are plotted as a

function of time. Obviously, they agree very well with reference analytical solutions.
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In this example, we have also numerically examined whether the eigenmodes ex-

tracted from the fine cells are accurate approximations of the eigenmodes of the entire

problem. In Table 6.1, we list the eigenvalues of the 15 unstable modes and also the

16-th one we extract from Sf with Contrast Ratio = 100. It is clear to see that the

largest 15 eigenvalues are at least two orders of magnitude larger than the 16-th one.

Once they are removed, a much larger time step can be used for a stable simulation.

In Table 6.2, we list the accuracy of each unstable eigenmode with respect to differ-

ent Contrast Ratio from 2, 5, 10, to 100, by calculating the relative error shown in

(6.20). Obviously, for all these contrast ratios, the eigenmodes extracted from fine

cells are shown to be accurate eigenmodes of the entire S. Furthermore, the larger

the contrast ratio between fine cells and coarse ones, the better the accuracy of the

eigenmodes found from fine cells. Moreover, the eigenmodes whose eigenvalues are

larger are more accurate. All of these have verified our theoretical analysis given in

Section 6.3. Notice that when Contrast Ratio = 2, the number of unstable eigen-

modes that can be accurately extracted is smaller. However, we still can obtain a set

of eigenmodes accurately for such a small contrast ratio.

To examine the solution accuracy in the entire computational domain, we define

the entire solution error at each time instant as ‖{e}− {e}anal‖/‖{e}anal‖, where {e}

consists of all E unknowns simulated from the proposed method and {e}anal is the

analytical solution to all the unknowns. For example, consider an E unknown located

at ri with direction t̂i, its analytical solution for this wave propagation problem is

simply Einc(ri)·t̂i. Two-norm is used to calculate the entire solution error. Meanwhile,

we examine the solution accuracy as a function of Contrast Ratio. The entire solution

error is plotted in Fig. 6.3(b) for four different Contrast Ratio 2, 5, 10 and 100

respectively. It is evident that the solution accuracy of the proposed method is

satisfactory for all these contrast ratios. Furthermore, the larger the contrast ratio,

the better the accuracy. It is known that a discretization with a high contrast ratio

may yield inaccurate solutions. However, it is not the case in this example, since the

reference solution used to plot the error in Fig. 6.3(b) is analytical solution, and the
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error is shown to be less than one percent for all contrast ratios examined. To further

examine this point, we also simulate the same problem using the conventional FDTD

method with ∆t = 3.84 × 10−12 s when Contrast Ratio = 100, and plot the entire

solution error versus time in Fig. 6.4. As can be seen, even though the contrast ratio

is large, the accuracy of the conventional FDTD method is still very good in this

example. In addition, comparing Fig. 6.3(b) with Fig. 6.4 for Contrast Ratio = 100,

it is obvious that the proposed method can achieve the same level of accuracy as the

conventional FDTD method. As for efficiency, the CPU time speedup is 1.58, 3.08

and 28.16 respectively for contrast ratio being 5, 10 and 100. However, no speedup is

observed when contrast ratio is 2, because of the small time step difference and the

additional overhead of the proposed method. The proposed method takes 0.0563 s

including the CPU time of every step from finding the unstable eigenmodes to explicit

time marching, while the conventional FDTD method only requires 0.0367 s to finish

the simulation.

When Contrast Ratio = 100, we also study a cavity problem in the same mesh

shown in Fig. 6.2. All the boundary unknowns are truncated by a perfectly electric

wall. A current source is placed at (0.4, 0.25) m, and its derivative is ∂j
∂t

= 2(t −

t0) exp−(t−t0)
2/τ2 with τ = 2.0×10−9 s and t0 = 4τ . The fine cells identified to assemble

Sf are the same as those in the previous wave propagation problem. After the 15

unstable eigenmodes obtained from Sf are removed from system matrix, the proposed

method can use a time step 2.4 × 10−10 s while the conventional FDTD method is

only allowed to use ∆t = 3.84 × 10−12 s. In Fig. 6.5, the electric field sampled at

point (0.4, 0.35) m is plotted. The reference solution is obtained by simulating the

same problem using the conventional FDTD method. Again, the solution solved by

the proposed method matches very well with the reference solution.

In Fig. 6.6, we also plot three eigenvectors of S whose eigenvalues are respectively

the largest, the 5th largest, and the 15-th largest eigenvalues of global S, for a contrast

ratio of 100. As can be seen from Fig. 6.6, the field distributions of these eigenvectors

are localized in the fine-cell region, with the fields in the regular cells many orders of
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Fig. 6.2. Wave propagation in a 2-D rectangular region: Space discretization.

0 0.5 1 1.5

x 10
−7

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−8

Time (s)

E
le

c
tr

ic
 f

ie
ld

 (
V

/m
)

 

 

Point 1 (Proposed)

Point 2 (Proposed)

Point 1 (Analytical)

Point 2 (Analytical)

(a)

0 0.5 1 1.5

x 10
−7

10
−6

10
−4

10
−2

10
0

Time (s)

||
{e

}−
{e

} a
n
a
l||

/|
|{

e
} a

n
a
l||

 

 Contrast Ratio = 2

Contrast Ratio = 5

Contrast Ratio = 10

Contrast Ratio = 100

(b)

Fig. 6.3. Wave propagation in a 2-D rectangular region: (a) Waveform
of electric fields at two observation points when Contrast Ratio =
100. (b) Entire solution error v.s. time with different Contrast Ratio
from 2, 5, 10 to 100.

magnitude smaller. For example, for the 15th largest eigenmode whose field distri-

bution is more spread over than the first two, its eigenmode (eigenvector) still has a

field value in the immediately adjacent coarse cells being three orders of magnitude
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Table 6.2
The accuracy of each unstable eigenmode obtained from Sf with dif-
ferent contrast ratios

CR 2 5 10 100

Fh1 2.9e-3 4.4e-5 1.6e-6 1.7e-11

Fh2 2.9e-3 4.1e-5 1.4e-6 1.6e-11

Fh3 2.8e-3 3.6e-5 1.2e-6 1.4e-11

Fh4 2.6e-3 3.0e-5 1.0e-6 1.1e-11

Fh5 2.5e-3 2.8e-5 9.6e-7 1.0e-11

Fh6 1.7e-2 6.0e-4 3.0e-5 4.5e-10

Fh7 1.8e-2 5.7e-4 2.7e-5 4.0e-10

Fh8 1.9e-2 5.1e-4 2.4e-5 3.5e-10

Fh9 1.9e-2 4.5e-4 2.0e-5 3.0e-10

Fh10 1.9e-2 4.2e-4 1.9e-5 2.7e-10

Fh11 2.2e-2 6.8e-3 8.3e-5

Fh12 2.4e-2 7.1e-3 8.2e-5

Fh13 2.7e-2 7.4e-3 8.0e-5

Fh14 2.8e-2 7.6e-3 7.7e-5

Fh15 2.9e-2 7.5e-3 7.6e-5

smaller than that in the fine cells. This figure further confirms that the highest eigen-

modes can be accurately extracted from fine cells. Although it is plotted for contrast

ratio 100, similar localizations have been observed for other smaller contrast ratio,

which can also be seen from the small error of eigenvectors extracted from Sf listed in

Table 6.2. Numerically, such a localization is because the rapid field variation of the

large-eigenvalue modes cannot be captured by a coarse discretization. This is similar

to the fact that if one uses a coarse grid to extract the cavity resonance frequencies,

the frequencies (eigenvalues) one can numerically identify are much smaller than the

ones he can find when using a fine grid. Analytically, all these eigenvalues should
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Fig. 6.6. Field distribution of the eigenvectors of S for a contrast
ratio of 100 plotted in log scale: (a) Eigenvector having the largest
eigenvalue. (b) Eigenvector having the 5th largest eigenvalue. (c)
Eigenvector having the 15th-largest eigenvalue.

exist in the solution domain. However, numerically, only finer cells can capture larger

eigenvalues.
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6.5.2 3-D Wave Propagation
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Fig. 6.7. Wave propagation in a 3-D free space: (a) Waveform of
electric fields at two observation points. (b) Entire solution error v.s.
time.

The second example is a wave propagation problem in a 3-D free space. The same

incident field is used as that of the first example. We also supply an exact absorbing

boundary condition to all the unknowns on the boundary. Unlike that in the first

example that has a abruptly changed grid size, a progressively changed grid size is

adopted for space discretization. Along y- and z- direction, the space step is 0.1 m,

and there are 5 cells. Along x- direction, there are 13 cells each having 0.1 m space

step except for the three cells in the middle whose space step is 0.01 m, 0.001 m and

0.01 m respectively.

The existence of fine cells renders the time step of a conventional FDTD less than

1.07 × 10−11 s. In contrast, the proposed method is able to use a time step solely

determined by accuracy, which is 2.0× 10−10 s. As shown in Fig. 6.7(a), the electric

fields obtained from the proposed method at two points located at (0.51, 0.45, 0.2)

m and (0.57, 0.4, 0.2) m agree very well with analytical solutions. In Fig. 6.7(b),

we assess the entire solution error measured by ‖{e} − {e}anal‖/‖{e}anal‖, where {e}

consists of all 1,308 E unknowns obtained from the proposed method, while {e}anal
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is analytical result. As can be seen clearly, the proposed method is accurate at all

points, and across the whole time window simulated. The larger errors at early and

late time are because the denominator of the solution error is zero at those times.

In this simulation, 125 cells are identified as fine cells, and the number of internal

patches involved is 350. The size of A (B) shown in (6.25) is 320 by 350. Given ε =

10−2, we obtain 120 unstable eigenmodes accurately from Sf . It takes the proposed

method 0.6470 s to finish the simulation. To simulate the same example, conventional

FDTD costs 2.1608 s. The state-of-the-art unconditionally stable explicit FDTD

method in [18] takes 0.3629 s to find the unstable modes, and 1.2545 s for explicit

time marching. Hence, the propose method is faster than not only conventional

FDTD, but also the method of [18]. This is because the method of [18] needs to deal

with a global S matrix of size 1308 by 1308 to find the largest 120 unstable modes. In

addition, the resultant Vh is dense, whereas the Vh in this method is zero in coarse

cells, thus speeding up the explicit time marching step as well.

6.5.3 Inhomogeneous 3-D Phantom Head Beside a Wire Antenna

Previous examples are in free space, the third example is a large-scale phantom

head [57] beside a wire antenna, which involves many inhomogeneous materials. The

permittivity distribution of the head at z = 2.8 cm is shown in Fig.6.8(a). The

wire antenna is located at (24.64, 12.32, 13.44) cm, the current on which has a pulse

waveform of J = 2(t−t0)e−(t−t0)
2/τ2 with τ = 1.0×10−9 s and t0 = 4τ . The size of the

phantom head is 28.16 cm × 28.16 cm × 17.92 cm. The coarse step size along x-, y-,

z-direction is 17.6 mm, 17.6 mm and 1.4 mm respectively, which results in 109, 667

unknowns. To capture the fine tissues located at the center of this head, three layers

of fine grid whose length is 1.4 µm are added in the middle along z−direction. As a

result, the conventional FDTD method can only use a time step less than 5.39×10−15 s

to ensure stability. In the proposed method, 768 fine cells are identified, which involve

4,709 electric field unknowns and 4,256 magnetic field unknowns. Given ε = 10−7,
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1,088 unstable eigenmodes are obtained accurately from Sf . With the contribution

of unstable eigenmodes removed, the time step is increased to 2.56 × 10−13 s. In

Fig. 6.8(b), the electric fields at two points (12.32, 3.52, 13.44) cm and (12.32, 24.64,

13.44) cm are plotted in comparison with reference FDTD results. Again, very good

agreement is observed. As for CPU time, the proposed method takes 84.8142 s to

extract unstable eigenmodes, and 2895.7305 s for explicit time marching. However,

the conventional FDTD needs 29968.7009 s to finish the same simulation. Meanwhile,

although the method developed in [18] can also boost the time step up to the same

value as the proposed method, it requires 8268.2 s instead in CPU time. Therefore,

the proposed method is not only much faster than the conventional FDTD method,

it is also more efficient than [18] since the proposed method requires the fine region

only instead of the entire computational domain to extract unstable eigenmodes.
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Fig. 6.8. Simulation of a phantom head beside a wire antenna: (a)
Relative permittivity distribution in a cross section of the phantom
head at z = 2.8 cm. (b) Simulated electric field at two observation
points in comparison with reference FDTD solutions.
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Fig. 6.9. Simulation of a microstrip line excited by a current source:
Microstrip line structure.
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Fig. 6.10. Simulation of a microstrip line excited by a current source:
(a) Simulated voltages at two ports. (b) Solution error in comparison
with reference FDTD solutions in both entire domain and fine region
only.

6.5.4 Inhomogeneous and Lossy 3-D Microstrip Line Structure

The last example is a microstrip line with lossy conductors and inhomogeneous

dielectrics illustrated in Fig. 6.9. The details of the front view in x-y plane can be

seen in Fig. 6.9 and the structure is 10 mm long in z-direction. A current source

J = x̂2(t − t0)e−(t−t0)
2/τ2A/m2 is launched between the bottom plate and the strip,
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with τ = 2.0× 10−10 s and t0 = 4τ . The space step is 1 mm in all directions, but in

order to capture skin effects, the second and the third space step in x direction are

chosen to be 0.1 µm, and 0.01 µm respectively. The total number of E unknowns

in this structure is 5,335. Due to the small step size to capture skin effects, a time

step of 1.35 × 10−16 s is required in the conventional FDTD method. In contrast,

the proposed method is able to use a time step of 8.7 × 10−13 s. The number of

terms kept in (6.45) is 9. In Fig. 6.10(a), the voltage drops extracted at both near

and far ends of the strip line are plotted in comparison with the results obtained

from a conventional FDTD method. It is clear to see that the simulated results

agree very well with the reference solutions. To evaluate the entire solution error

of the proposed method, we use a backward difference scheme in the conventional

FDTD method with the same time step used in the proposed method, and store

the solution at every time instant. The entire solution error at each time instant is

calculated as ‖{e}−{e}FDTD‖/‖{e}FDTD‖, and is plotted in Fig. 6.10(b). Obviously,

the proposed method is accurate not only at the two sampled points, but also in the

entire computational domain across the entire time window. Meanwhile, to evaluate

the solution accuracy in fine region only, we also calculate the solution error for the

unknowns residing in the fine region only. The error is also shown in Fig. 6.10(b),

and it is almost the same as that in the entire computational domain.

In this simulation, not only the fine cells but also the cells filled with conductive

materials are considered to form Mf . Those cells involve 1,449 E unknowns and 1,352

H unknowns. The proposed method takes 49.2713 s to extract 1380 unstable modes

for the prescribed accuracy ε = 10−6, and 437.7509 s for explicit marching, thus a

total time of 487.0222 s. In contrast, the conventional FDTD based on (6.13) needs

5397.8587 s to finish the same simulation.
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6.6 Conclusion

In this chapter, a fast explicit and unconditionally stable FDTD method requir-

ing no global eigenvalue solution is developed. In this method, first we derive a new

patch-based single-grid FDTD formulation, which naturally decomposes the curl-curl

operator into a series of rank-1 matrices. This formulation helps us identify the

relationship between fine cells and unstable eigenmodes. We find that the largest

eigenmodes of the system matrix obtained from the entire computational domain can

be accurately extracted from the system matrix assembled from the fine cells. The

larger the contrast ratio between the fine-cell size and the coarse one, the more ac-

curate the extracted eigenmodes. As a result, once there is a difference between the

time step required by accuracy and that dictated by stability, the unstable modes can

be extracted from fine cells. Based on this theoretical finding, we develop an accurate

and fast algorithm for finding unstable modes from fine cells. We then upfront erad-

icate these unstable modes from the numerical system before performing an explicit

time marching. The resultant simulation retains the merit of the original explicit

FDTD in avoiding solving a matrix equation, while eliminating its shortcoming in

time-step’s dependence on space step. The proposed method is also extended to han-

dle general lossy problems where dielectrics and conductors are inhomogeneous and

lossy. Numerical experiments including both lossless and lossy problems have demon-

strated the accuracy, efficiency, and unconditional stability of the proposed method,

by comparing with conventional FDTD as well as the state-of-the-art explicit and

unconditionally stable methods.

It is also worth mentioning that although the unstable modes are extracted from

fine cells and subsequently removed for a stable simulation, this does not mean that

the resultant field solution in the fine cells is zero or has a large error. This is because

the stable eigenmodes preserved in the numerical system have their field distributions

all over the grid, including both coarse and fine cells. The unstable eigenmodes are

discarded because their contributions to the field solution is negligible in coarse as
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well as fine regions. Notice that the weight of an eigenmode in the field solution is

inversely proportional to the distance between its eigenvalue and the square of the

working frequency, irrespective of fine or coarse regions.

When the contrast ratio between fine cells and regular cells is small such as less

than 2, the speedup of the proposed method may be little because of additional

computational overhead for finding the unstable modes. The accuracy is also lower

for smaller contrast ratio as compared to larger contrast ratio in space step. But

good accuracy can still be obtained for small contrast ratio. The error is also well

controlled by checking εacc in (6.20). If the fine-cell region results in a matrix of large

size, it may become expensive to extract all of the unstable modes from the fine-cell

region, although the method is still more efficient than that in [18] where the entire

grid thereby system matrix is handled for obtaining the unstable modes. In this case,

one can obtain a subset of the largest eigenmodes from the fine cells rather than all

of them to enlarge the time step to a certain extent, instead of all the way up to that

permitted by accuracy. In addition, the combination of the proposed method with

the efficient method for finding stable modes such as that in [16, 17] may also be a

better option in some applications.
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7. AN UNSYMMETRIC FDTD SUBGRIDDING

ALGORITHM WITH UNCONDITIONAL STABILITY

7.1 Introduction

The finite-difference time-domain method is one of the most popular time-domain

methods for electromagnetic analysis [1]. This is mainly because of its simplicity

and optimal computational complexity at each time step. The conventional FDTD

method requires a uniform orthogonal grid. If there exist fine features in a structure,

a fine space step must be used to discretize them. Because of the connected nature

of an orthogonal grid, the regions where there are no fine features are also discretized

in a smaller space step. This unnecessarily increases the number of unknowns to be

solved. Subgridding is an effective means to address this problem, where fine grids

are only placed in the necessary regions, which do not need to be conformal to the

background regular grid.

In an FDTD subgridding method, the fields at the interface between coarse and

fine meshes are typically estimated through certain interpolation scheme. Such an

interpolation may ruin the positive semi-definiteness of the original FDTD numeri-

cal system, thereby causing instability. Meanwhile, the numerical reflections at the

interface between coarse and fine meshes and the different numerical dispersion in

the two meshes may result in a worse solution accuracy. Therefore, a good FDTD

subgridding algorithm should guarantee both stability and accuracy.

In literature, extensive work has been done to tackle the FDTD subgridding prob-

lem. In [58], an initial run is made on a coarse grid, the result of which is then used

as the boundary condition for a second calculation where the grid in the region of

interest is refined. Later, a variable step size method (VSSM) was developed in [19].

It provides a direct interpolation scheme to update fields in both coarse and fine
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grids simultaneously when a grid contrast ratio is 2. It also develops an interpolation

scheme based on the wave equation for a contrast ratio of 3. The wave equation

based scheme was improved to be a mesh refinement algorithm (MRA) in [20] by

interpolating a second-order difference at each mesh node, and later extended to be a

multigrid displacement method (MGDM) by adding a buffer zone between coarse and

fine meshes in [21]. To handle material traverse, a new subgridding algorithm in [59]

was developed for odd contrast ratios. Later, a multigrid current method (MGCM)

was proposed in [22] to handle any contrast ratio by using a weighted current value

from the coarse region at the mesh interface to update the fine-region tangential fields

on the same interface. To minimize the numerical reflection, in [60], the authors pro-

posed a new arrangement of mesh where the coarse and fine mesh are offset in all

directions. Such a mesh allows the development of a pulsing overlapping scheme where

the outermost layer of the fine mesh is dropped during update, but the mesh is ex-

panded back to its original size at the end of each update cycle. Instability especially

late-time instability has been observed in many of the aforementioned subgridding al-

gorithms. Various approaches have been proposed to remedy this issue [21,22,59,60].

However, they still lack a theoretical study on the stability. In [61], a subgridding

scheme with reciprocal interpolation scheme was developed in a recessed subgridding

interface with stability guaranteed, but the solution accuracy is compromised.

In [62, 63], a class of subgridding algorithms was developed in the framework of

the finite integration technique (FIT) and the stability of this method is controlled by

maintaining the consistency of the field coupling scheme. It handled cases where the

contrast ratio is 2. Another subgridding method based on the finite element method

(FEM) was proposed in [64]. The concept of maintaining the consistency of the field

coupling scheme can also be found in [65], which is based on an equivalent passive

network method. All of these methods involve a hybridization with other methods.

Among existing FDTD subgridding algorithms, the consistency of the field cou-

pling scheme or reciprocity has been widely adopted as a viable means to ensure

stability. In other words, if a field unknown A is used to generate a field unknown
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B, then the field unknown B should also be involved in the generation of the field

unknown A. In some algorithms, the coupling coefficient from A to B, and vice versa

are also enforced to be equal. This certainly limits the accuracy of the interpolation

schemes as well as the meshing flexibility in a subgridding scheme.

In this work, to systematically control the stability of the FDTD subgridding al-

gorithm without sacrificing accuracy, we first reformulate the FDTD algorithm from

the original edge-based dual-grid one to a new patch-based single-grid formulation.

Using this formulation, we only need to generate one column vector and one row

vector for each patch in a single grid, regardless of whether the grid is 2-D or 3-D, it

has subgrids or not, and the grid/subgrid is uniform or non-uniform. The product of

the column vector and the row vector of each patch is a rank-1 matrix. The system

matrix is simply the sum of the rank-1 matrices. Based on this new representation of

the FDTD algorithm, the stability of the FDTD-based methods can be readily ana-

lyzed for both regular grids and grids having subgrids. In a regular grid, each rank-1

matrix comprising the FDTD system matrix is positive semi-definite, and hence the

sum of them remains to be positive semi-definite, thus ensuring the stability. In other

words, one can always find a time step to make the explicit FDTD time marching

stable. However, when subgrids are present, since field unknowns at the interface

would have to be interpolated from adjacent unknowns to ensure accuracy, the re-

sultant rank-1 matrix is usually unsymmetrical. When the unsymmetrical matrix

has complex-valued or negative eigenvalues, it will make a traditional explicit march-

ing absolutely unstable. However, in general, we cannot rule out these eigenvalues

from an unsymmetrical matrix. Even though the unsymmetrical matrix generated

from each patch has non-negative real eigenvalues, we cannot prove the sum of these

unsymmetrical matrices has non-negative real eigenvalues only. The property of a

symmetric matrix does not apply to an unsymmetrical matrix. To overcome this

problem, we propose a new time marching scheme, which preserves the FDTD’s ad-

vantage in matrix-free time marching, while remaining to be stable in the presence of

complex and negative eigenvalues. As a result, the proposed method does not require



143

reciprocal operations from one field unknown to the other to guarantee stability. The

proposed time marching scheme is also general, which can be used to make other

unsymmetrical FDTD subgridding algorithms stable.

With the stability guaranteed in time, the interpolation schemes can be developed

solely to ensure accuracy. We hence develop an accurate interpolation scheme to en-

sure the accuracy of the resulting subgridding algorithm. This scheme is applicable

to arbitrary contrast ratios between the normal gird and the subgrid, as well as sup-

porting non-uniform subgridding. We also show that since there are only a few kinds

of rank-1 matrices in the proposed algorithm, the maximum time step permitted for a

stable simulation can be analytically analyzed. The proposed subgridding algorithm

is then further made unconditionally stable, based on our prior work in [66]. Exten-

sive numerical experiments involving both 2- and 3-D subgrids with various contrast

ratios have demonstrated the accuracy, stability, and efficiency of the proposed new

subgridding method.

7.2 Comparison between FDTD without Subgrids and with Subgrids

In the original FDTD algorithm, one field unknown is placed in a primary grid at

the center point of each edge, and also tangential to the edge. The other field unknown

is placed in a dual grid in the same way. If there are Ne electric field unknowns,

and Nh magnetic field unknowns, then there are Ne + Nh equations in the FDTD-

based discretization of Maxwell’s equations. Essentially, we can view each equation is

written for obtaining one electric or magnetic field unknown. For example, obtaining

the time derivative of one electric field unknown from its surrounding magnetic field

unknowns, and vice versa.

When there is a subgrid present in the discretization, the original FDTD algorithm

has to be modified. There are also subgridding techniques that are not purely based

on FDTD anymore. However, if still using the original framework of FDTD, on

the interface between the normal grid and the subgrid, one would face the following



144

problem. The generation of the primary field unknown would require the dual field

unknown at the points that are not coincident with the points where the dual field is

generated from the primary field. A natural remedy to this problem is to interpolate

the unknown dual field at the desired point from the known dual fields at adjacent

points. Such an interpolation scheme is not unique. However, its effect on accuracy

and stability is different. A theoretical stability analysis is still lacking in many

subgridding algorithms. On the other hand, late-time instability has been observed

from many existing techniques. When instability occurs, there is no fundamental way

forward to correct the stability problem.

Next, we will first present the proposed theory for making an FDTD subgridding

algorithm stable in general subgrid settings. We then proceed to the details of the

proposed subgridding method.

7.3 Proposed Theory

7.3.1 Reformulating FDTD Based on Patches in a Single Grid

To facilitate the development of a subgridding algorithm, we propose to first refor-

mulate the FDTD into a different format. If we term the original FDTD formulation

an edge-based dual-grid formulation (as each edge in the primary and dual grid is

associated with one field unknown), this alternative formulation is a patch-based

single-grid formulation. In the original formulation, since an edge-based approach is

used together with dual grids, when there are subgrids, there are many scenarios to

consider. In contrast, the proposed new formulation is based on patches in a single

grid. As a result, the subgridding scenarios to be considered become only a few kinds.

We use only one grid. In this grid no matter it is a 2-D or 3-D grid, we loop over

all the patches present in the grid. For each patch, we formulate a column vector

and a row vector, whose product is a rank-1 matrix. The row vector describes how

the E(H) unknowns along the contour of the patch produce the normal H(E) field

at the patch center. The column vector describes how the normal H(E) field at the
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patch center is used to obtain the E(H) unknowns. The two are transpose of each

other in a uniform grid, but can be very different in a non-uniform grid or a grid with

subgrids. For example, with subgridding, the normal H(E) field at the patch center

may have to be used to obtain the E(H) unknowns elsewhere not belonging to the

same patch. With the two vectors generated for each patch, we can march on in time

to find the electric and magnetic field solutions. We can also add the rank-1 matrix

of each patch, and obtain a second-order differential equation in time to perform time

marching. In the following presentation of the proposed formulation, we place the

normal H at the patch center, and E along the edges of the grid. But the two can

also be reversed.

Consider a general 2-D or 3-D grid. For each patch, based on the FDTD algorithm,

we obtain the magnetic field normal to the patch at the patch center, hi, as the

following:

[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

]

e1

e2

e3

e4

 = −µi
∂hi
∂t
, (7.1)

where subscript i denotes the patch index, e denotes the tangential electric field at

the center point of every edge in the patch, as illustrated in Fig. 7.1. The Li and Wi

are, respectively, the two side lengths of patch i, and µi is the permeability at the

patch center. (7.1) can be rewritten as

[b]Ti [e]i = −µi
∂hi
∂t
, (7.2)

where [e]i denotes the column vector containing all of the electric field unknowns of

patch i, and [b]Ti is a row vector of

[b]Ti =

[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

]
. (7.3)

Let {e} be a vector consisting of all Ne electric field unknowns in a grid, (7.2) can be

rewritten as

{b}Ti {e} = −µi
∂hi
∂t
, (7.4)
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Fig. 7.1. Illustration of a patch-based discretization of Faraday’s law.

in which {b}i is [b]i in (7.3) extended to length Ne such that {b}Ti {e} = [b]Ti [e]i.

Obviously, {b}i has only four nonzero entries as follows

{b}i(g(i, k)) = [b]i(k), k = 1, 2, 3, 4. (7.5)

in which g(i, k) denotes the index of the k-th electric field unknown of patch i in

the global electric field vector {e}. Consider all patches present in the mesh, the

discretization of Faraday’s law can be represented as

Se{e} = −diag{µ}∂{h}
∂t

, (7.6)

where {h} contains all of the h unknowns whose number is Nh, diag{µ} is a diagonal

matrix of permeability. {b}Ti is the i-th row of Se.

In a general patch present in a grid with subgridding, the row vector shown in (7.3)

will be different. But its entries remain to be the weighting coefficients of the electric

field unknowns along the contour of a patch for generating the normal magnetic field

at the patch center. To be more specific, [b]i has m entries, where m is the number of

electric field unknowns along the contour of patch i. An arbitrary k-th entry of [b]i,

[b]i(k), is simply the weighting coefficient of electric field unknown ek used to generate

hi. Its sign is determined by the right hand rule. With the right-hand thumb pointing
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to the direction associated with hi, if ek’s direction is along the direction encircling

the hi’s direction, the sign is positive. Otherwise, the sign is negative.

In the original FDTD formulation, the discretization of Ampere’s law is performed

on a dual grid, resulting in the following matrix equation

(Sh)Ne×Nh {h} = diag{ε}∂{e}
∂t

+ {j}, (7.7)

where {h} contains all of the h unknowns whose number is Nh, diag{ε} is a diagonal

matrix of permittivity, and {j} denotes a current source vector. Each row of the above

equation simply denotes a discretized curl operation performed on the magnetic fields

producing the time derivative of an electric field.

In the proposed alternative formulation, we rewrite (7.7) as the following:

{a}1h1 + {a}2h2 + ...+ {a}NhhNh = diag{ε}∂{e}
∂t

+ {j}, (7.8)

where the matrix-vector multiplication of Sh{h} in (7.7) is realized as the sum of

weighted columns, instead of the traditional row-based computation which we are

more familiar with. Here, the {a}i is simply the i-th column of Sh, and hi is the

i-th entry of vector {h}, which is nothing but the normal magnetic field at the center

of patch i. Based on how Ampere’s law is discretized in the FDTD method, it is

evident that {a}i has only nonzero entries at the rows whose indexes correspond to

the electric field unknowns generated from hi. In a regular grid, hi is used to generate

four electric field unknowns, which are those along the four sides of patch i. Hence,

{a}i has only four nonzero elements, with all the others being zero. Removing the

zeros, {a}i simply becomes a vector of length four in each patch as the following:

[a]i =


− 1
Li

1
Li

1
Wi

− 1
Wi

 . (7.9)

Clearly, it is the same as [b]i in a uniform grid.
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In a general patch present in a grid with subgridding, the column vector [a]i

can become different from that shown in (7.9). However, its entries remain to be

the weighting coefficients of the magnetic field used to generate the electric field

unknowns. To be more specific, an arbitrary k-th entry of [a]i, [a]i(k), is simply the

weighting coefficient of hi used to generate ek.

Though mathematically identical to (7.7), (7.8) allows us to discretize Ampere’s

law in the original grid of E and use the same patch-based approach. Basically, to

discretize the Ampere’s law, we also loop over all the patches in the original grid. On

each patch, we generate a column vector {a}i (i = 1, 2, ..., Nh). Scaling {a}i by hi and

summing it up over all the patches in the original grid, we obtain the discretization

of the curl of H, as shown by the left-hand side of (7.8).

Now, if we take a time derivative of (7.8), and substitute (7.4) into it, we obtain

Nh∑
i=1

(
1

µi
{a}i{b}Ti

)
{e} = −diag{ε}∂

2{e}
∂t2

− ∂{j}
∂t

, (7.10)

which can be compactly written as

∂2{e}
∂t2

+ C{e} = −diag{1

ε
}∂{j}
∂t

(7.11)

where

C = diag{1

ε
}
Nh∑
i=1

1

µi
{a}i{b}Ti , (7.12)

which is clearly the sum of the rank-1 matrix obtained from each patch.

In the proposed patch-based formulation, after [a]i and [b]i are obtained for each

patch, we can use them to perform a leap-frog time marching based on (7.4) and (7.8).

We can also directly solve (7.11) as a second-order differential equation in time. Since

a single grid is used, and the two vectors can be generated for each patch individually,

the new formulation makes it much easier to develop FDTD subgridding algorithms.

It actually also makes the original FDTD simpler for implementation in a uniform

grid.
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7.3.2 Stability Analysis of FDTD without and with Subgrids

The stability of the first-order systems (7.4) and (7.8) as well as the second-order

based (7.11) is determined by the following eigenvalue problem

Cx = λx. (7.13)

To analyze the stability, we can expand the field solution {e} by using the eigenvectors

of (7.13), obtaining

{e} = V{y}, (7.14)

where V denotes a matrix whose columns are eigenvectors. Substituting (7.13) into

(7.11), and multiplying both sides of (7.11) by VT , we obtain

VTV
∂2{y}
∂t2

+ VTCV{y} = 0, (7.15)

where source is removed as it is irrelevant to the stability analysis. Since VTCV =

VTVΛ, where Λ is the diagonal matrix of eigenvalues λi, (7.15) becomes

∂2yi
∂t2

+ λiyi = 0, (i = 1, 2, ..., Ne) (7.16)

Performing a z-transform of the above, if all the eigenvalues λi are non-negative real,

a time marching based on central difference scheme would be stable as long as

∆t <
2√
λmax

, (7.17)

where λmax is the largest eigenvalue. In this case, (7.11) can be marched on in time

explicitly as

{e}n+1 =
(
2−∆t2C

)
{e}n − {e}n−1 −∆t2diag{1

ε
}
(
∂{j}
∂t

)n
(7.18)

However, when the eigenvalues of C are complex-valued or negative, no time step

can make (7.16) stable [50]. In an FDTD subgridding scheme, since interpolations

are used to obtain the unknown fields at the subgrid interfaces, the resulting rank-

1 matrix of each patch is not symmetric. The same is true for the global system
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matrix assmebled from each patch’s contribution. An unsymmetric matrix can have

complex-valued eigenvalues or even negative ones. In many cases, one can prove the

eigenvalues of a Maxwell’s system to be non-negative if they are real. However, the

complex eigenvalues cannot be ruled out, in general. This can also be numerically

verified. When this happens, an FDTD subgridding algorithm is absolutely unstable.

7.3.3 How to Guarantee Stability When the System Matrix is Unsym-

metric?

The aforementioned stability problem for an unsymmetric matrix can be resolved

by first employing a backward difference scheme to discretize (7.11) as follows(
I + ∆t2C

)
{e}n+1 = 2{e}n − {e}n−1 (7.19)

−∆t2diag{1

ε
}
(
∂{j}
∂t

)n+1

. (7.20)

Since a backward difference scheme is unconditonally stable, we are allowed to use an

arbitrarily large time step. However, by doing so, we have to solve a system matrix of

(I + ∆t2C). To retain the matrix-free merit of the FDTD, we can choose the following

time step to perform the backward time marching

∆t <
1√
λmax

. (7.21)

With the above, ‖∆t2C‖ = |∆t2λmax| < 1 is satisfied. Hence, the inverse of I + ∆t2C

becomes explicit, which can be evaluated as(
I + ∆t2C

)−1
= I−∆t2C +

(
∆t2C

)2 − . . . . (7.22)

The above series can be truncated at the k-th term without sacrificing accuracy,

where k is usually less than 10 as (7.21) is satisfied. Since (7.22) does not involve any

matrix inversion, we can still obtain the solution in (7.19) explicitly as the following:

{e}n+1 =
(
I−∆t2C + . . .+

(
∆t2C

)k) {f}, (7.23)

where {f} denotes the terms moved to the right hand side.
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Therefore, no matter whether the system matrix C is symmetric or not, we can

find the solution explicitly via either (7.18) or (7.23) without incurring any instability.

More importantly, the choice of the time step shown in (7.21) also agrees with the

choice of the time step of a traditional explicit time marching. Hence, we do not

sacrifice in the size of time step, while making the inverse of the backward-difference

based system matrix explicit.

7.4 Proposed Subgridding Algorithm with Guaranteed Stability and Ac-

curacy

In an FDTD grid with subgrids, the patches can be categorized into two big classes.

One has its regular [a] and [b] vectors. The other class of patches have modified [a]

and [b] vectors, because the fields along the subgrid edges have to be obtained through

interpolations across patches to ensure accuracy. Based on the stability analysis in

Section 7.3.2, it is not necessary to have the two curl operators to be reciprocal to

guarantee stability, thus the interpolation scheme can be made very flexible. Since the

field solution in the FDTD algorithm is known along three orthogonal directions in

an orthogonal grid, the interpolation can be carried out in three directions to achieve

good accuracy. In this section, we develop a novel FDTD subgridding algorithm

with guaranteed accuracy. This algorithm supports an arbitrary contrast ratio of the

regular grid size to the subgrid size. It also allows for non-uniform grids in both

regular and subgrid regions.

Consider a regular grid involving subgrids as shown in Fig. 7.2(a) and 7.2(b),

we place all of the electric field unknowns along the edge of the grid and at the

center of each edge. Thus, our {e} is composed of tangential electric field along each

edge in the regular grid (regular edge), in the subgrid (subgrid internal edge), and

on the interface between the regular grid and the subgrid (subgrid interface edge),

as illustrated in Fig. 7.2(a). The magnetic field unknown is placed at the center

of each patch, along the normal direction of the patch. Thus, {h} consists of the



152

(a) (b)

Fig. 7.2. Illustration of a grid with subgrids. (a) 2-D. (b) 3-D.

magnetic fields normal to each patch at the patch center. It is also worth mentioning

that although both positive and negative directions can be chosen as the reference

direction of the electric field unknown along each edge, we choose the conventional

positive x-, y-, and z-directions. The same is true for the reference direction of the

normal magnetic field at the patch center.

7.4.1 Building Column Vector [a] and Row Vector [b]T for Each Patch

with Guaranteed Accuracy

A grid can involve many patches. However, we find that regardless of a 2-D or

3-D grid, the patches can be categorized into three irregular types based on their

corresponding [a] and [b] vectors. This is attributed to the proposed patch-based

formulation, which makes the resultant subgridding algorithm suitable for both 2-D

and 3-D grids with almost no change. Next, we elaborate the construction of [a] and

[b] vectors for each type of the irregular patches.
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Irregular patch type 1

This patch is a coarse patch in the regular-grid region, but having at least one side

shared with the subgrid region, as shown by the patches marked as 1 in Fig. 7.2(a)

and 7.2(b). For convenience of explanation, we consider one side with subgridding.

Along this side, there are more than one edges due to subgridding. Let the number of

edges on this side be n, and the length of the j-th edge be lj. The lj can be the same

for all edges. It can also be different in different edges, as illustrated in Fig. 7.2(a).

To generate the magnetic field at the coarse patch center, we need to use the

tangential electric field at the center of each side. For the side having subgrids, the

electric field unknowns are placed at the center of each subgrid edge. Hence, the

electric field at the center of the side needs to be obtained from the subgrid electric

fields. This can be accurately done as the following

ec =
n∑
j=1

lj
Li
ej, (7.24)

in which Li is the entire length of the side, where subscript i denotes the patch index.

The resulting row vector [b]Ti for this patch can be written as

[b]Ti =

[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

vT
]
, (7.25)

where

vT =

[
l1
Li
,
l2
Li
, ...,

ln
Li

]
. (7.26)

Hence, the [b]Ti is no longer of length 4, but of length 3 + n. The accuracy of the

resulting (7.2) is of second order. This is because if we perform a line integral of the

electric field along the contour of the patch using the electric field unknowns located

on the contour, and equate it to −µ∂hi
∂t

at the patch center multiplied by the patch

area, we will obtain (7.25).

The above [b]Ti is written for the case when the fourth electric field in a patch

is associated with the subgrids. If it is another electric field, say the j-th electric

field, the vT is multiplied to the j-th entry of the original [b]Ti , and the denominator
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of (7.26) should be changed to the length of the side having subgrids. If there are

multiple sides shared with the subgrid region, then vT will be attached to each entry

associated with the subgridding side.

To construct column vector [a]i for this patch, we need to find out how the mag-

netic field at this patch is used to generate electric field unknowns. Within this patch,

the electric field unknown along the regular edge is obtained from the magnetic field

at the center of this patch, and the other one at the center of the adjacent patch

sharing the regular edge. Hence, the corresponding entry in [a]i is the same as that

in a regular discretization, which is ± 1
Li

, ± 1
Wi

, or another one if a non-uniform grid is

used. However, to ensure accuracy, the electric field along the subgrid interface edge

cannot be obtained in the same way. Take one subgrid interface edge highlighted

by a red arrow in Fig. 7.3 as an example, to obtain the electric field accurately

at the edge center, we need to know the magnetic field at the point marked by ×

above the red arrow. Since the magnetic fields are only known at the center of every

patch, the magnetic field at this point has to be interpolated. Here, we perform a

linear interpolation using the magnetic fields at adjacent patches since it can provide

a second-order accuracy.

Fig. 7.3. Illustration of the interpolation scheme.
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To explain this interpolation scheme, let the coarse patch being considered be

patch i. The subgrid interface edge must be shared by patch i and a fine patch in the

subgrid. Let this fine patch be patch j, as illustrated in Fig. 7.3. Let the magnetic

fields at the center points of the two patches be respectively hci , and hfj , where we

use the superscript to indicate whether the patch is coarse or fine. To interpolate

the magnetic field at the marked point accurately, we also find another coarse patch

k. This patch and patch i shares a regular edge in common, and this regular edge is

perpendicular to the subgrid edge, and closer to the subgrid edge in between the two

regular edges of patch i. We denote the magnetic field at the center of this patch by

hck. The magnetic field at the marked point can then be accurately interpolated as

h× =
t2
t

(
d2
d
hck +

d1
d
hci

)
+
t1
t
hfj , (7.27)

where t1, t2, d1, and d2 are distances labeled in Fig. 7.3, and t = t1 + t2, d = d1 + d2.

These distances can be readily found from the coordinates of the three patch centers.

Obviously, a linear interpolation along all directions is used to obtain the magnetic

field at the marked point. With h×, the electric field at the subgrid interface edge

can be accurately obtained from the magnetic field at the fine patch center, and that

at the marked point as the following

ε
∂ej
∂t

=
hfj − h×
W f
j

. (7.28)

Substituting (7.27) into the above, obviously, the coefficient in front of hi for generat-

ing ej is − 1

W f
j

cj, where cj = t2
t
d1
d

and the distance parameters are those corresponding

to the j-th subgrid edge.

The aforementioned interpolation results in the following [a]i vector

[a]i =


− 1
Li

1
Li

1
Wi

−u

 , (7.29)
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in which u is a vector of

u =



c1
W f

1

c2
W f

2
...

ck
W f
k


, (7.30)

where W f
j is the width of the fine patch whose electric field is generated from hi,

and cj(j = 1, 2, ...k) are positive coefficients between 0 and 1. Here, k can be greater

than n because the magnetic field at patch i may also be used to obtain electric fields

not belonging to patch i. To be specific, on the patch i being considered, we can

generate n such c-coefficients, where n is the number of subgrid edges on the side

having subgrids. Take Fig. 7.3 as an example, this is the number of subgrid edges

on side BC. The rest of k − n entries in u are due to other electric field unknowns

generated from hi. In the following, we will give a complete count of these electric

field unknowns.

In a 2-D setting, if along the adjacent sides of BC, namely right half of AB and left

half of CD, there are subgrids, then the electric fields on these subgrid edges will have

to be generated from hi. This is because hi will be used to interpolate the missing

magnetic field required to generate the electric fields on those edges, as highlighted by

a red mark adjacent to CD. The same linear interpolation as shown in (7.27) can be

used, from which the corresponding cj coefficient can be identified. In a 3-D setting,

the three sides of AB, BC, and CD become six patches perpendicular to patch i and

centering patch i, with three on one side of patch i; and the other three on the other

side of patch i. All the subgrid edges on the six patches along the direction of BC

will be related to hi. The electric field unknowns on these edges will be interpolated

in the same way as illustrated in Fig. (7.27). If coarse patch i and k for the subgrid

edge do not exist (this can happen for a subgrid edge falling onto the face of a subgrid

region), the adjacent coarse patches parallel to the imaginary patch i and k can be

used to interpolate magnetic fields at the center points of imaginary patch i and k,

and subsequently used in (7.27). The resultant cj coefficients in front of hi remain to
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be between 0 and 1. Regardless of 2-D and 3-D, since the electric field unknowns to

be generated from hi on patch i are all orientated in the same direction, the sign of

their corresponding entries in [a]i is the same. If there are multiple sides shared with

the subgrid region in patch i, similarly, vector u will appear at the corresponding

entry, and follow the original sign of the entry.

Irregular patch type 2

For this type, the patch is a fine patch in the subgrid but with at least one

side falling onto the subgrid interface with the regular grid. This type of patches is

illustrated by patches marked by 22 and 21 in Fig. 7.2(a) and 7.2(b), where subscript

denotes the number of edges on the interface.

In such a patch, the [b]Ti remains the same as that in a regular grid, but the length

and width used are the fine-patch counterparts. Thus, we have

[b]Ti =

[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

]
. (7.31)

However, the [a]i is different. Again, to determine [a]i, we need to find out how the

magnetic field at this patch is used to generate electric field unknowns. Within the

patch, among the four electric field unknowns, two are not located on the interface,

and thereby shared by two fine patches. They are generated from the hi in the same

way as the regular ones. For the two residing on the interface, each of them requires

one magnetic field that is outside the subgrid and unknown, as shown by the marks

in Fig. 7.3. Again, such a magnetic field is interpolated from the magnetic fields at

the three patch centers in the same way as shown in (7.27). Hence, the resultant [a]i

vector is

[a]i =


− 1
Li

1
Li

(1− c2)
1
Wi

(1− c3)

− 1
Wi

 , (7.32)
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where c2 and c3 are positive coefficients between 0 and 1. Based on (7.27), they have

the form of cj = t1
t

in which t1 and t are distance parameters associated with the

subgrid edge residing on the interface. If only one edge of the fine patch falls onto

the interface between a regular grid and a subgrid, only one c coefficient is present. If

edges 2 and 3 are not on the interface but other edges, (7.32) can be simply permuted.

In addition, the magentic field at this subgrid patch may also be used to obtain

electric fields elsewhere not belonging to this patch. This can happen when the coarse

patch has two sides or more having subgrids. In this case, (7.32) will have more than 4

entries, whose value can be readily determined from the interpolation of the pertinent

electric field unknown from this patch’s magnetic field. However, regardless of the

number of other electric field unknowns generated from this patch’s magnetic field,

the [b]Ti is zero corresponding to other electric field unknowns.

Irregular patch type 3

This type of patches is a coarse patch without any subgrid edges, i.e., it consists

of the regular edges only, as marked by patch 3 in Fig. 7.2(a) and 7.2(b). However,

the magnetic field at this patch is used to generate electric fields elsewhere, and hence

the resultant [a]i vector is different from the regular one. This type of patches are

those patches that are connected with the subgrids through vertices, in both 2- and

3-D grids.

In this type of patches, the [b]Ti remains the same as

[b]Ti =

[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

]
(7.33)

since four electric fields along the patch contour produces the magnetic field at the

patch center.
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The [a]i vector however, takes the following irregular form

[a]i =



− 1
Li

1
Li

1
Wi

− 1
Wi

c1
Lf1
...

ck
Lfk


, (7.34)

where cj(j = 1, 2, ...k) are interpolation coefficients whose absolute value is between

0 and 1, but can be either positive or negative, k is the number of electric fields that

are generated from the magnetic field at this patch center, and Lfj are the length

parameter of the fine patch that has electric field j.

We can also have a complete count of the electric field unknowns generated from

type-3 hi. Take patch k shown in Fig. 7.3 as an example, it belongs to type 3.

All the electric field unknowns along the left half of BC and upper half of BE that

have subgrids will have one entry in [a]i of patch k. In 3-D settings, the side of BC

becomes two patches (of a coarse patch size) perpendicular to patch k and centering

patch k. All electric field unknowns along the subgrid edges on the two patches and

parallel with BC will be generated from hk. Similarly, the side of BE also becomes

two patches perpendicular to patch k and also centering patch k. All electric field

unknowns along the subgrid edges on the two patches and parallel with BD will be

generated from hk. The above can be extended to the rest of three vertices of patch

k, if through those vertices, patch k is also attached to subgrids.

7.4.2 Estimation of Maximum Time Step

Due to the interpolation scheme, the time step estimated from CFL condition can

be inaccurate for a mesh involving subgrids. Although the maximum time step can be

calculated from the largest eigenvalue of the system matrix, calculating eigenvalues
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can be computationally expensive especially when the unknown size is large, thus we

should estimate the time step in a more accurate and efficient way. In the proposed

method, since each patch produces a rank-1 matrix, we can estimate the norm of the

global system matrix C by analyzing each rank-1 matrix, thus providing an upper

bound of the time step can be used in the time marching.

Since the system matrix C can be represented as diag{1
ε
}Shdiag{ 1µ}Se where each

column of Sh is [a] and each row of Se is [b]T , its norm should satisfy

‖C‖ ≤ 1

µε
‖Sh‖‖Se‖. (7.35)

Any norm should be sufficient to use here, we choose ‖Sh‖1 and ‖Se‖∞ for convenience.

Since all the rank-1 matrices for regular cells are the same, we only need to analyze the

rank-1 matrices corresponding to the patches adjacent to mesh interface to calculate

the norm of C analytically. Since the spectral radius of C is less than ‖C‖, once ‖C‖

is calculated, we can estimate ∆t as either 2/
√
‖C‖ when C only has non-negative

real eigenvalues or 1/
√
‖C‖ when C supports complex eigenvalues. Next, we will first

show what are the rank-1 matrices for regular patch as well as each irregular patch

type, and then analyze them one by one. The patch types described in this section

are aligned with those shown in Section 7.4. Based on the following analysis, it is

clear to see that the rank-1 matrix corresponding to Irregular Patch Type 2 has the

largest norm, thus the time step can be estimated by considering this type of patches

only.
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Regular patch (in a uniform or non-uniform grid)

In both 2- and 3-D settings, the patches that are not adjacent to the interface

between a regular grid and a subgrid are considered as regular patches. Their corre-

sponding rank-1 matrices are

C0 =


− 1
Li

1
Li

1
Wi

− 1
Wi


[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

]
. (7.36)

Clearly, the norm of C0 is

‖C0‖ =

(
2

Li
+

2

Wi

)2

. (7.37)

If Li = Wi, the norm is simply 16/Li
2.

In a non-uniform grid, the average width of the two patches sharing the electric

field edge is, in general, used for achieving a better accuracy. In this case, C0 becomes

C0 =


− 1
L1i

1
L2i

1
W1i

− 1
W2i


[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

]
, (7.38)

where the length parameters L1i, L2i,W1i,W2i are averaged between two patches

sharing the electric field edge. The norm of C0 should also be calculated accordingly.

Irregular patch type 1

For every patch of this type, the corresponding rank-1 matrix has the following

form

C1 =


− 1
Li

1
Li

1
Wi

−u


[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

ṽT
]

(7.39)
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in which ṽ is the v shown in (7.26) extended to length k by appending zeros at the

end if k > n. For this rank-1 matrix, we can calculate its norm as

‖C1‖ =

(
2

Li
+

1

Wi

+
n∑
i=1

|ui|

)(
2

Li
+

1

Wi

+
1

Wi

k∑
i=1

|vi|

)
. (7.40)

Irregular patch type 2

For this type of patches, the corresponding rank-1 matrix has the following form

C2 =


− 1
Li

1
Li

(1− c2)
1
Wi

(1− c3)

− 1
Wi


[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

]
(7.41)

where c2 and c3 both are nonzero, or one of them is zero. When they are nonzero,

they are positive coefficients between 0 and 1. Again, the norm of C2 is

‖C2‖ =

(
2− c2
Li

+
2− c3
Wi

)(
2

Li
+

2

Wi

)
. (7.42)

Irregular patch type 3

For every patch of this kind, the corresponding rank-1 matrix has the following

form

C3 =



− 1
Li

1
Li

1
Wi

− 1
Wi

c1
Lf1
...

ck
Lfk



[
− 1

Li
,

1

Li
,

1

Wi

,− 1

Wi

, zeros(1, k)

]
, (7.43)
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where cj (j = 1, . . . , k) are interpolation coefficients that can be either positive or

negative, and k zeros are appended at the end of the row vector. The norm of C3

can be calculated as

‖C3‖ =

(
2

Li
+

2

Wi

+
k∑
i=1

ck

Lfk

)(
2

Li
+

2

Wi

)
. (7.44)

7.5 Explicit FDTD Subgridding Algorithm with Unconditional Stability

In existing FDTD subgridding algorithms, temporal subgridding schemes have also

been developed to take advantage of the large time step size permitted by the coarse

grid, and localize the use of small time step in the subgrid region. In this work, we

will leverage our prior work in [66] to make the entire scheme unconditionally stable,

while still being explicit. In other words, one can use a large time step size for both

regular and subgrid regions.

In the section above, we show that if all the eigenvalues of C are non-negative

real, its explicit time marching is guaranteed to be stable if the time step ∆t is chosen

to be less than 2√
λmax

. If C has complex eigenvalues, then the time step should satisfy

1√
λmax

to guarantee stability. The λmax is determined by the smallest space step, and

thereby in the subgrid region. On the other hand, given any input pulse of maximum

frequency fmax, a time step less than 1
10fmax

is sufficient for accuracy. In a subgridding

mesh, if the coarse grid size is chosen based on accuracy requirements, the time step

required by stability can be estimated as the time step required by accuracy divided

by contrast ratio CR. When CR is large, the time step required by stability is much

smaller than that required by accuracy. To tackle this problem, one can separate the

unknowns in the coarse grid from those in subgrids, and solve them in an explicit-

implicit fashion. One can also resort to temporal subgridding schemes. Here, we

provide an approach based on [66], where the source of instability is found from the

fine region and deducted from the system matrix. As a result, an explicit FDTD

subgridding algorithm can also be made unconditionally stable. This permits the use



164

of a large time step size, solely determined by accuracy regardless of space step, in

both regular and subgrid regions.

Given any desired time step ∆t, we first categorize all the cells in the grid into

two groups. One group Gc has regular cell sizes and permits the use of the desired

time step, while the other group Gf includes all the fine cells in the subgrids and their

adjacent cells that require a smaller time step for a stable simulation. Accordingly,

C can be split into the following two components

C = Cf + Cc, (7.45)

where Cf is assembled from Gf , and Cc is from Gc. Based on (7.12), the Cf can

be obtained by summing up the rank-1 matrix over all the patches in Gf , and hence

being

Cf = diag{1

ε
}

p∑
i=1,i∈Gf

1

µi
{a}i{b}Ti , (7.46)

in which p is the number of patches in the group Gf .

Let the E and H unknown number in Gf be q, and p respectively. If we eliminate

the zero rows of {a}i and zero columns of {b}Ti , (7.46) becomes a small q by q matrix,

which can be written as

C
(f)
f q×q = Aq×pB

T
p×q, (7.47)

where A stores all the p column vectors, and BT consists of all the row vectors. We

then find the largest l eigenvalues λi and their corresponding eigenvectors F
(f)
hi of

Cf by using Arnorldi method. The complexity of doing so is only O(l2q). To check

whether F
(f)
hi are accurate approximations of the original eigenvectors of C, we extend

F
(f)
hi to Fhi of length Ne based on global unknown ordering. We then perform the

following accuracy check:
‖CFhi − λiFhi‖
‖CFhi‖

< ε. (7.48)

Those Fhi satisfying the above accuracy requirement are then identified as the un-

stable modes. They are first orthogonalized to be Vh, and then deducted from the

system matrix as the following

Cl = C−VhV
H
h C. (7.49)
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Table 7.1
Simulation parameters for 2-D wave propagation problem with differ-
ent contrast ratios

Contrast Ratio 2 5 10 100

Time Step (s) 1.4e-10 4.9e-11 2.3e-11 2.3e-12

Num. of E
FDTD 220 1300 5100 501,000

Subgridding 68 116 276 20256

Time (s)
FDTD 0.04 0.25 1.65 3418.71

Subgridding 0.02 0.07 0.20 96.96

Speedup 2 3.57 8.25 35.26

The above allows for a much larger time step than C. We then perform an explicit

marching on the updated system matrix as

{e}n+1 = 2{e}n − {e}n−1 −∆t2Cl{e}n + ∆t2{f}n (7.50)

followed by the following treatment to ensure the resultant {e} has no component in

Vh space

{e}n+1 = {e}n+1 −VhV
H
h {e}n+1. (7.51)

If C has complex eigenvalues, we would replace C in (7.23) by Cl. (7.51) should still

be added at each time step.

Since the contribution of Vh is removed from C, the time marching of (7.50)

is stable for the desired large time step. When the time step is chosen based on

accuracy, the removed Vh modes are not required for accuracy either, and hence

ensuring accuracy [17,18,66].

7.6 Numerical Results

In this section, we simulate a variety of 2- and 3-D examples involving different

subgrids to demonstrate the validity and efficiency of the proposed method.
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7.6.1 2-D Wave Propagation

We first simulate a wave propagation problem in a 2-D rectangular region. The

grid is shown in Fig. 7.4. Along both x- and y-axis, the coarse grid size is Lc = 0.1 m.

To examine the validity of the proposed FDTD subgridding method, the blue region

is subdivided into fine grids where the fine grid size is controlled by contrast ratio

CR = ∆Lc/∆Lf . Fig. 7.4 shows the mesh details when CR = 5. The incident electric

field is Einc = ŷ2(t− t0−x/c)e−(t−t0−x/c)
2/τ2 with c = 3×108 m/s, τ = 2×10−8 s and

t0 = 4τ . All the boundary unknowns are terminated by exact absorbing boundary

condition. To check the accuracy of the proposed FDTD subgridding method when

CR = 2, we first sample the electric field at two observation points located at (0.1,

0.05) m and (0.275, 0.3) m and plot it in Fig. 7.5(a). Point 1 is inside the coarse mesh

while point 2 is on the boundary of the subgridding region. The reference result we

use here is the analytical solution. For example, the analytical electric field at point

ri along the direction t̂i should be Einc(ri)· t̂i. It’s clear to see that the simulated fields

agree with analytical solution very well. To examine the solution error in the entire

computational domain, we calculate the relative error of the entire E unknown vector

as ‖{e}− {e}anal‖/‖{e}anal‖ at each time step with contrast ratio being 2, 5, 10, and

100 respectively. The entire solution error is shown in Fig. 7.5(b). Obviously, the

solution accuracy in the entire computational domain is always very good for the four

contrast ratios. The lower the contrast ratio, the better the accuracy. Meanwhile,

the accuracy is saturated once the contrast ratio reaches a certain value.

To demonstrate the efficiency of the proposed FDTD subgridding method, we also

simulate the same problem using the conventional FDTD method with uniform fine

grids. The simulation parameters are summarized in Table ??. As the contrast ratio

increases, the largest time step permitted by both the proposed FDTD subgridding

method and the conventional FDTD method decreases, while the number of E un-

knowns increases. Given a contrast ratio, although the proposed FDTD subgridding

method has to use the same time step as the conventional FDTD, it can still achieve a
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significant CPU time speedup since is has much less unknowns than the conventional

FDTD method.
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Fig. 7.4. Simulation of a 2-D wave propagation problem: Mesh details.
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Fig. 7.5. Simulation of a 2-D wave propagation problem: (a) Simu-
lated electric field at two observation points in comparison with ref-
erence analytical solutions. (b) Entire solution error v.s. time for
different contrast ratios.
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7.6.2 3-D Wave Propagation

The second example is a free-space wave propagation problem in a 3-D cube. The

size of the computational domain in each direction is 5.1 m. Along all directions, the

coarse space step Lc is 0.1 m, resulting in 132,651 coarse cells. The coarse cell at the

center is further subdivided into fine cells with contrast ratio being 5, therefore the

fine grid size Lf is 0.02 m. The total number of E unknowns in the mesh is 414,240.

The same incident field is supplied as that of the first example. Exact absorbing

boundary condition is also supplied to all the unknowns on the boundary.

The existence of fine cells renders the time step of the proposed FDTD subgrid-

ding method less than 4.0× 10−11 s. Since the analytical solution to this problem is

known, we first plot the simulated electric field at two observation points in compar-

ison with analytical solution in Fig. 7.6(a). Point 1 is at (0.1, 0.1, 0.05) m and it’s

inside the coarse mesh. The location of point 2 is (2.5, 2.5, 2.59) m and it is within

the subgridding mesh. Obviously, the electric field waveforms at both points agree

with the reference results very well. To examine the solution accuracy in the entire

computational domain, in Fig. 7.6(b) we assess the entire solution error measured by

‖{e}−{e}anal‖/‖{e}anal‖, where {e} consists of all 414,240 E unknowns obtained from

the proposed FDTD subgridding method, while {e}anal is from the analytical result.

As can be seen clearly, the proposed method is accurate at all points, and across the

whole time window simulated. The larger errors at early and late time are because

the denominator of the solution error is zero at those times. The proposed FDTD

subgridding method takes 201.09 s to finish the simulation. To demonstrate the ef-

ficiency of the proposed method, we also discretize the same computational domain

into uniform fine grids and simulate the same wave propagation problem in this do-

main using conventional FDTD method. This uniform fine mesh involves 50,135,040

E unknowns. The times step is the same as that used in the proposed FDTD sub-

gridding method and it takes the conventional FDTD method 29012.74 s. Therefore,

the proposed FDTD subgridding method is much faster than the conventional FDTD
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method when fine features exist. This is because the number of unknowns is reduced

significantly.

We also simulated this example by using the proposed unconditionally stable

FDTD subgridding method. First of all, the fine cells are identified, which involves 672

E unknowns and 552 H unknowns, then 320 unstable eigenmodes are extracted from

the Cf assembled from fine cells only. After the contribution of unstable eigenmodes

is removed from the system matrix, we are allowed to use ∆t = 1.9× 10−10 s that is

solely determined by accuracy for time marching. The entire solution error compared

to analytical solution at each time step is plotted in Fig. 7.7. It is evident that the

accuracy is preserved by comparing Fig. 7.6(b) with Fig. 7.7. Since the proposed

FDTD subgridding method can use a much larger time step after the unconditionally

stable method is applied, it only takes 28.37 s to finish the simulation.
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Fig. 7.6. Simulation of a 3-D wave propagation problem: (a) Simu-
lated electric field at two observation points in comparison with ref-
erence analytical solutions. (b) Entire solution error v.s. time.

7.6.3 3-D Cavity with Current Probe Excitation

In this example, we simulate a 3-D cavity excited by a current source as shown

in Fig. 7.8(a). The cavity is 1 cm long in all directions and its six faces are all
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Fig. 7.7. Entire solution error v.s. time when the unconditionally
stable methods is applied to the proposed FDTD subgridding method.

terminated by PEC boundary condition. The coarse grid size along each direction is

1 mm except for the blue cube inside the cavity. The blue cube is centered at (4.5, 4.5,

4.5) mm and 1 mm long in all directions. It is filled with conductive material whose

conductivity is 5.7 × 107 S/m. The blue cube is further subdivided into fine mesh

whose grid size is 0.2 mm, therefore the contrast ratio CR for this problem is 5. Such

a subgridding mesh results in 4,158 E unknowns. A current probe is excited at (2, 2,

1.5) mm. The current is a Gaussian pulse whose waveform is I = ẑ exp−(t− t0)2/τ 2

with τ = 2×10−11 s and t0 = 4τ . As the reference, we also simulate the same problem

using conventional FDTD method with a uniform fine mesh. The total number of E

unknowns in this uniform fine mesh is 390,150. Since both the subgridding mesh and

the uniform fine mesh have fine grids, the proposed FDTD subgridding method should

use the same time step as the conventional FDTD method which is ∆t = 3.8× 10−13

s. In Fig. 7.8(b), the electric field sampled at point 1 (8, 8, 7.5) mm and point 2 (4, 4,

9.5) mm is plotted in comparison with reference solution. Overall, the accuracy of the

sampled E field is very good. As for the CPU time, the proposed FDTD subgridding
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method only takes 0.13 s to finish the entire simulation, while the conventional FDTD

method requires 38.68 s, thus a significant speedup is achieved.
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Fig. 7.8. Simulation of a 3-D cavity excited by a current source:
(a) Structure details. (b) Simulated electric field at two observation
points in comparison with reference FDTD solutions.

7.6.4 Inhomogeneous 3-D Phantom Head Beside A Wire Antenna

The last example we study is a large-scale phantom head [57] beside a wire an-

tenna, which involves many inhomogeneous materials. The size of the phantom head

is 28.16 cm × 28.16 cm × 17.92 cm. The permittivity distribution of the head at

z = 2.8 cm is shown in Fig. 7.9. All the boundaries are truncated by PMC. The wire

antenna is located at (3.52, 3.52, 2.52) cm, the current on which has a pulse waveform

of I = 2(t − t0)e−(t−t0)
2/τ2 with τ = 5.0 × 10−10 s and t0 = 4τ . The coarse step size

along x-, y-, z-direction is 4.4 mm, 4.4 mm and 5.6 mm respectively. To capture fine

tissues, two coarse cells at the center are subdivided into fine cells in all directions

with contrast ratio CR = 4, meaning the fine grid size along x-, y-, z-direction is 1.1

mm, 1.1 mm and 1.4 mm respectively. As a result, the total number of E unknowns

in this subgridding mesh is 410,300. In conventional FDTD, if fine grids are used

everywhere, it would result in 25,428,608 E unknowns. Due to the existence of fine
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grids, both the proposed FDTD subgridding method and conventional FDTD method

have to use a time step less than 2.2 × 10−12 s to ensure stability. In Fig. 7.10(a),

the electric field at two observation points whose locations are (3.52, 3.52, 15.96) cm

and (24.64, 3.52, 15.96) cm is plotted in comparison with reference solution that is

obtained by simulating the same problem in a uniform fine grid using conventional

FDTD method. It is clear that the result from the proposed method agrees with the

reference result. Since the conventional FDTD method requires a uniform find grid

which has much more E unknowns than the proposed FDTD subgridding method,

the conventional FDTD method takes 19222.16 s to finish the simulation.

The proposed unconditionally stable FDTD subgridding method is also used to

simulate this example. To do so, the fine cells are first identified, which involve

724 electric field unknowns and 594 magnetic field unknowns. Given ε = 10−2, 325

unstable eigenmodes are obtained accurately from Sf . With the unstable eigenmodes

removed, the largest time step that can be used is increased from 2.2 × 10−12 s to

8.8× 10−12 s, which is also the time step solely determined by accuracy. As a result,

the unconditionally stable FDTD subgridding method only takes 159.23 s including

the time for extracting unstable eigenmodes and explicit time marching. However,

without the unconditionally stable method, the FDTD subgridding method needs

528.53 s to finish the same simulation. Therefore, the CPU speedup is 3.32. At each

time step, if we denote the solution of all E unknowns obtained from the FDTD

subgridding method as {e}ref , while letting {e} be the solution obtained from the

unconditionally stable FDTD subgridding method, then we can calculate the relative

error as ‖{e} − {e}ref‖/‖{e}ref‖. In Fig. 7.10(b), the relative error is plotted for

the time window when the field solution is nonzero. Obviously, in addition to higher

efficiency, the unconditionally stable FDTD subgridding method can also guarantee

accuracy across the entire time window.
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Fig. 7.10. Simulation of a phantom head beside a wire antenna: (a)
Simulated electric field at two observation points in comparison with
reference FDTD solutions. (b) Entire solution error v.s. time when
unconditionally stable method is applied to the proposed FDTD sub-
gridding method.

7.7 Conclusion

In this chapter, a novel unsymmetrical but stable FDTD subgridding algorithm

is developed for general electromagnetic analysis. We provide a theoretical analysis



174

to show that an explicit FDTD time marching can be made stable if and only if

all the eigenvalues of the governing system matrix are non-negative real. This is

satisfied by the original FDTD in a regular grid. However, in a subgridding algorithm,

the original FDTD discretization of the curl operators has to be changed to ensure

accuracy for field unknowns involved in the subgridding. This change usually results

in an unsymmetrical system matrix supporting complex eigenvalues, thus the resulting

explicit FDTD time marching becomes definitely unstable. Such an instability may

not be observed at early time, but will appear at late time. To resolve this problem,

we propose a new time marching scheme to stably simulate the unsymmetrical system,

in which the system matrix has an explicit matrix inversion. As a result, the solution

can also be obtained explicitly without running into the stability problem. This new

time marching scheme provides a flexibility to develop interpolation schemes solely

based on accuracy without concerning about the stability. It is also general for use,

applicable to other subgridding algorithms. Essentially, this new scheme provides

an effective means to explicitly simulate an unsymmetrical numerical system with

guaranteed stability.

In addition, in the proposed work, an accurate subgridding algorithm is devel-

oped to generate the field unknowns on the subgrid interfaces for both 2-D and 3-D

grids. The algorithm allows for an arbitrary grid contrast ratio. The time step al-

lowed for an explicit time marching can be analytically found by analyzing the rank-1

matrices corresponding to the patches adjacent to the subgrid interface. This sub-

gridding algorithm is then further made unconditionally stable. Extensive numerical

experiments involving both 2- and 3-D subgrids with various contrast ratios have

demonstrated the accuracy, stability, and efficiency of the proposed general method,

and new subgridding algorithm.
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8. MATRIX-FREE TIME-DOMAIN METHOD FOR

THERMAL ANALYSIS

8.1 Introduction

In previous chapters, we first develop a matrix-free time-domain method in un-

structured meshes to perform electromagnetic analysis. In this method, the matrix-

free property is independent of element shape. Both accuracy and stability are the-

oretically guaranteed. The implementation is also straightforward. Then, we reveal

that the proposed matrix-free time-domain method naturally reduces to the FDTD

method in an orthogonal grid. Therefore, we can solve Maxwell’s equations without

the need for a matrix solution no matter the discretization of a computational domain

is a structured grid or unstructured mesh.

Except for Maxwell’s equations, many partial differential equations in other dis-

ciplines also require a matrix-free solution. Although those equations may not have

the same form as Maxwell’s equations, the flexible framework of the proposed matrix-

free time-domain method allows for an easy extension to them. In this chapter, we

demonstrate that the proposed matrix-free time-domain method can be applied to

solve the thermal diffusion equation. Numerical experiments are conducted to show

the validity of the proposed method.

8.2 Proposed Method

In thermal analysis, we solve the following thermal diffusion equation

ρ̃cp
∂T

∂t
−∇ · (k∇T ) = Pjoule + P0, (8.1)
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where k is the thermal conductivity, cp is the specific heat capacity and ρ̃ is the mass

density of the material, T is the temperature, and Pjoule denotes the heat source with

Pjoule = J · E = σE2, (8.2)

and P0 represents other heat sources. The conductivity σ is a function of temperature

σ = f(T ), (8.3)

where function f is material dependent.

In time domain, (8.1) can be solved using finite difference method [67], finite

element method [68], finite volume method [69] and many others. Among them, only

the finite difference method can be matrix-free in an orthogonal grid. Therefore,

the computation can be made much more efficient if the proposed matrix-free time-

domain method can be applied to solve (8.1) in unstructured meshes. However, since

the matrix-free time-domain method works on two vector variables while (8.1) is

a scalar equation, it requires a transformation before the matrix-free time-domain

method can be applied.

Given an arbitrary discretization, we can assign the temperature T unknown to

the center of every patch, and then attach a direction n̂ to it. Thus we can define

T = T n̂ where n̂ is the unit vector normal to the patch. We also introduce an

auxiliary vector Tc which corresponds to the curl of the T vector. With these two

vector variables, we can cast the original thermal diffusion equation (8.1) into the

following two vector equations to solve

k∇×T = −∂Tc

∂t
, (8.4)

∇×Tc = ρ̃cpT + Pi. (8.5)

To show the equivalency between (8.1) and the above two equations, we consider

the source-free scenario. From (8.5), we have

∇ · (∇×Tc) = ρ̃cp∇ ·T = 0. (8.6)
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Taking another curl of the left-hand side of (8.4), we should obtain

∇×∇×T = ∇ (∇ ·T)−∇2T = −∇2T. (8.7)

By eliminating the Tc unknown from (8.4) and (8.5), we can obtain

ρ̃cp
∂T

∂t
+ k∇×∇×T = 0. (8.8)

The equation above can be simplified to be the same as (8.1) by utilizing the relation-

ship (8.7). As a result, solving the two vector equations (8.4) and (8.5) simultaneously

is equivalent to solving (8.1).

Obviously, (8.4) has the same form as Faraday’s law, while (8.5) has the same

form as Ampere’s law. Hence, the matrix-free time-domain method can be applied

to solve (8.4) and (8.5) without any need for solving a matrix equation. First, we

can expand Tc on a set of first-order vector bases, then evaluate (8.5) at rti along

direction ĥti (i = 1, 2, . . . , Nt). Therefore, (8.5) can be discretized as

Se{Tc} = diag{ρ̃cp}{T}. (8.9)

On the other hand, by choosing the appropriate T-points located at rti and pointing

at ĥti (i = 1, 2, . . . , Nt), we can disretize (8.4) as

diag{k}Sh{T} = −∂{Tc}
∂t

. (8.10)

In (8.9) and (8.10), both Se and STh are sparse. Their sizes are Nt × Nc where Nt

is the number of T unknowns while Nc is the number of Tc unknowns. diag{k}

and diag{ρ̃cp} are diagonal matrices with diagonal entries being ki and ρ̃icpi respec-

tively. Vector {T} contains all the T unknowns, while vector {Tc} contains all the

Tc unknowns.

(8.9) and (8.10) can be solved without any matrix solution using forward difference

scheme. Alternatively, we can also eliminate T unknowns and solve for Tc unknowns

first as follows
∂{Tc}
∂t

+ S{Tc} = 0, (8.11)
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where

S = diag{ k
ρ̃cp
}ShSe. (8.12)

(8.11) can be discretized in time using forward difference scheme as follows

{Tc}n+1 = {Tc}n −∆tS{Tc}n. (8.13)

The stability of (8.13) is guaranteed as long as ∆t < 2Re(λi)
|λi|2 where λi is an arbitrary

eigenvalue of S.

8.3 Numerical Results

In this section, we simulate a few examples including 2-D and 3-D cases to validate

the correctness of the proposed method both in time domain and frequency domain.

8.3.1 Copper Plane with Heat Conduction in Orthogonal Grid

In this example, we consider a piece of copper plane with each side being 0.3

m. The copper plane is discretized into uniform orthogonal grid with space step

being 0.01 m. The temperature on one side of the plane is 500 ◦C while 100 ◦C

on other sides. The heat conduction parameters for copper is k = 398W/(m · K),

cp = 386J/(kg · K) and ρ̃ = 8930kg/m3. To guarantee the stability of the time

marching scheme in (8.13), the maximum time step allowed is 0.21 s. In Fig. 8.1,

we first plot the temperature at point (0.1, 0.1) m as a function of time. Obviously,

the temperature is 0 ◦C in the beginning, then quickly grows until it reaches steady

state. This behavior also matches with the physical process of heat conduction. At

steady state, the temperature distribution of the copper plane is shown in Fig. 8.2.

From [67], it is known that the steady-state temperature at points (0.1, 0.1) m, (0.1,

0.2) m, (0.2, 0.1) m and (0.2, 0.2) m should be 150 ◦C, 150 ◦C, 250 ◦C, 250 ◦C

respectively due to symmetry. In Table 8.1, we list both the reference solution and

the simulated result from the proposed method. The absolute error is less than 3 ◦C

for all the observation points, which validates the accuracy of the proposed method.
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Table 8.1
The steady-state temperature at observation points

Point Location (0.1, 0.1) (0.1, 0.2) (0.2, 0.1) (0.2, 0.2)

Reference (◦C) 150 250 150 250

Orthogonal Grid (◦C) 147.7473 252.2526 147.7473 252.2526

Unstructured Mesh (◦C) 154.5642 245.4260 154.5642 245.4260
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Fig. 8.1. Temperature v.s. time at an observation point.

8.3.2 Copper Plane with Heat Conduction in Triangular Mesh

Different from Section 8.3.1, the same copper plane is discretized into an triangular

mesh shown in Fig. 8.3. In frequency domain, (8.4) and (8.5) have analytical solutions

as follows

T = ẑ

√
ω

kρ̃cp

(√
2

2
+

√
2

2
j

)
ejlx, (8.14)

Tc = −ŷejlx, (8.15)

l =

√
ωρ̃cp
k

(
−
√

2

2
+

√
2

2
j

)
. (8.16)
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Fig. 8.2. Temperature distribution at steady state.

Table 8.2
The accuracy of {Tc} and {T} at different frequencies

Frequency Relative error of {Tc} Relative error of {T}

10−5 8.6687× 10−4 3.1069× 10−5

10−4 0.0028 3.1223× 10−4

10−3 0.0107 0.0040

10−2 0.0815 0.0833

Hence, we can supply an analytical solution to the boundary unknowns, and examine

the accuracy of the proposed matrix-free method in the triangular mesh at different

frequencies. Table 8.2 shows the relative error of both {Tc} and {T} at different

frequencies. The relative error is calculated as ‖{T} − {T}anal‖/‖{T}anal‖. It can

be seen clearly that the accuracy of the unknowns as compared to the low-frequency

analytical solution becomes better when frequency gets lower. Overall, the accuracy

is very good at frequencies lower than 0.1 Hz.
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Fig. 8.3. Mesh details of a copper plane.

Similarly, we also supply the same boundary condition as Section 8.3.1 and study

how the transient temperature at each point changes. The time step we use here is

1.67 s. In Fig. 8.4, we plot the temperature at point (0.1, 0.1) m as a function of

time. It is clear to see that the temperature at this point starts to grow from initial

temperature 0 ◦C and then saturates to its steady-state value of 154.5643 ◦C. From

Section 8.3.1, we know the reference solution at this point at steady state should be

150 ◦C, thus the absolute error of the solution at this point is 4.5643 ◦C. We also

list the steady-state temperature at the same observation points in Table 8.1. The

absolute error is less than 5.5 ◦C for all the four points. Meanwhile, we also plot

the temperature distribution across the whole plane at steady state in Fig. 8.5. If

we consider the result solved using orthogonal grid as a reference, the relative error

‖{T} − {T}ref‖/‖{T}ref‖, where {T} is the solution vector containing the steady-

state temperature at all points and {T}ref is the reference solution vector, is 6.06%.

Therefore, the proposed matrix-free time-domain method can provide an accurate

solution to the thermal diffusion equation not only at one point but also in the entire

computational domain.
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Fig. 8.4. Temperature v.s. time at an observation point.

Since there is no analytical solution to the problem we study above, the solution

obtained from all numerical methods has error, thus even the solution solved in a very

fine orthogonal grid can not serve as a perfect reference solution to check the accuracy

of the proposed method. To examine the accuracy of the proposed method in a fair

way, we can supply a homogeneous boundary condition to the copper plane such that

the steady-state solution is known. For example, if we set the boundary on each side

of the plane to be 100 ◦C, the temperature at any point at steady state should also

be 100 ◦C. Given such a problem, we can obtain the simulated temperature at all

points at steady state using the proposed method, then compare it with the analytical

reference solution. The relative error is 1.9 × 10−5, which validates the accuracy of

the proposed method.

8.3.3 Copper Cube with Heat Conduction in Tetrahedral Mesh

A cube of size 1 × 0.5 × 0.75 m3 is discretized into tetrahedral mesh. The dis-

retization details are shown in Fig. 8.6. The temperature on every side plane is set
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Fig. 8.5. Temperature distribution at steady state.

to be 100 ◦C. To guarantee the stability of the proposed method, we choose the time

step ∆t = 0.9 s. In Fig. 8.7, the temperature at point (0.4747, 0.2197, 0.6826) m is

plotted versus time. Clearly, the temperature at this point gradually grows and fi-

nally reaches its steady-state value that is 100 ◦C. To examine the solution accuracy

of all points, we calculate ‖{T} − {T}ref‖/‖{T}ref‖ at steady state where {T}ref
is a vector containing the analytical solution at every point. The relative error is

2.2× 10−4, thus the proposed method has no difficulty in producing accurate results

in an unstructured tetrahedral mesh.

8.4 Conclusion

In this chapter, we demonstrate that the matrix-free time-domain method devel-

oped in previous chapters can be applied to solve thermal diffusion equations in both

orthogonal grids and unstructured meshes. To do so, the scalar thermal diffusion

equation is transformed to two vector equations to solve. The equivalence between
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Fig. 8.6. Mesh details of a copper cube.
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Fig. 8.7. Temperature v.s. time at an observation point.

them is also proved. All the advantages of the matrix-free time-domain method are

preserved when solving thermal diffusion equations. Numerical experiments in both
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time domain and frequency domain have validated the correctness of the proposed

method.
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9. CONCLUSIONS AND FUTURE WORK

In this work, we develop a new matrix-free time-domain method in arbitrary unstruc-

tured meshes to overcome the challenge of solving large-scale problems accurately

and efficiently, when arbitrarily shaped geometries and materials are involved. The

matrix-free property of the proposed method is independent of the element shape

used for discretization. The tangential continuity of the fields is satisfied across the

element interface at each time instant. No dual mesh, interpolation, projection, and

mass-lumping are needed. The accuracy and stability are both guaranteed for an

arbitrary unstructured mesh. This method is also made very easy to implement, and

it can be applied to solve the partial differential equations in other disciplines. In ad-

dition, in a structured grid and with zeroth-order vector bases, the proposed method

reduces exactly to the FDTD.

To create the proposed new method, we have considered the following three aspects

that are equally important.

• Matrix-Free Discretization of Maxwell’s equations : In order to create a matrix-

free time-domain method, it is desired to make the matrix in front of the re-

sultant second-order time derivative term diagonal. This matrix is, in general,

termed as mass matrix. Motivated by this requirement, we pursue a discretiza-

tion of Faraday’s law and Ampere’s law such that, at each time step, H un-

knowns can be obtained accurately from E unknowns via Faraday’s law, then

E unknowns can be obtained accurately from H unknowns through Ampere’s

law. The first goal is achieved by expanding the electric field in each element

by vector basis functions. To achieve the second goal, we propose to sample H

unknowns across the elements sharing E unknown in such a way that they can

reversely produce the first field unknown accurately, without any need for inter-
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polation and projection either. Obviously, there is no dual mesh involved. We

can certainly expand H field using vector basis functions while sample E field

to meet the need of different problems. The new discretization of Maxwell’s

equations is the key to realize the matrix-free property of the proposed method.

• Accuracy : While making the proposed method free of matrix solution, accuracy

must be ensured. In Faraday’s law, we expand the E field by a set of vector

basis functions. If zeroth-order vector basis functions are used, the curl of E

becomes a constant in each element, thus only the H field at the element center

and perpendicular to the element can be obtained accurately. However, the

H field has to be sampled in such a way that E unknowns can be accurately

calculated from those H sampled points, which can be located at any point

inside the element. Therefore, to resolve this problem, we only need to go one

order higher when choosing the vector basis functions for E. If so, the H field

at any point along any direction can be obtained accurately, thus the accuracy

is also guaranteed.

• Time marching stability : With the previous two essential points addressed, the

proposed discretization of Maxwell’s equation results in a numerical system free

of matrix solution without losing accuracy. However, as a time-domain method,

stability also has to be guaranteed. Unlike the explicit FDTD method, the

curl operator in Faraday’s law is discretized in a different way in the proposed

method than that in Ampere’s law, which results in an unsymmetrical system

matrix. It is proved that the traditional explicit time marching scheme is defi-

nitely unstable if the resultant unsymmetrical system matrix supports complex

eigenvalues. To guarantee stability, we propose to employ a backward-difference

scheme instead of a central-difference scheme to discretize the time derivatives

since backward difference scheme can always be stable even though complex

eigenvalues exist. One drawback of using the backward difference scheme is

that it ruins the matrix-free property. However, this problem is easy to solve



188

since the mass matrix is diagonal. With the traditional central-difference time

step, the inverse of the left-hand-side matrix in the final update equation can

be replaced by a series expansion. Therefore, no matrix inversion is involved.

Instead, we only need to perform a few matrix-vector multiplications. In such

a way, we can guarantee the stability in time while preserving the matrix-free

property.

Since the maximum time step allowed by the proposed matrix-free time-domain

method is restricted by the minimum space step in the mesh, we also develop a new

matrix-free time-domain method with unconditionally stability to break the barrier

of time step. Basically, we first find out the root cause of instability and then directly

eradicate it from the system matrix. The computation of finding the unstable modes

is very cheap since it only requires the calculation of the largest k eigenvalues and

their corresponding eigenvectors from a sparse matrix. As a result, the advantages

of a matrix-free method in time domain are accentuated, while its shortcoming in

time step is remedied, permitting an efficient analysis of large-scale and multi-scale

problems.

In addition, the proposed matrix-free methods naturally reduce to the FDTD

method in an orthogonal grid, but with a new formulation that is a patch-based

and single-grid representation. This formulation reveals that the curl-curl operator

has a natural rank-1 decomposition, which permits an efficient extraction of unstable

eigenmodes from fine cells only. Based on this finding, we develop a fast explicit and

unconditionally stable FDTD method. Using the new patch-based rank-1 formula-

tion, we also develop a new subgridding algorithm which locally refines the mesh at

regions requiring a higher resolution to further improve the efficiency of the FDTD

method. A theoretical stability analysis is also presented to show that the stability

of the proposed subgridding algorithm is guaranteed, although the system matrix is

unsymmetric.

The future research potentials of this work include but not limited to
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• Higher-order H sampling : Currently, we expand the E field by a set of first-

order vector basis functions while the H field sampling is actually still in its

zeroth-order. If we can sample more H fields whose locations and directions are

related to the first-order vector basis functions in a rectangular loop, we expect

the accuracy of the entire solution to be even better. Notice that the number

of E unknowns remains the same.

• Property of unsymmetrical system matrix : Since our current discretization re-

sults in an unsymmetrical system matrix S, it can support complex eigenvalues

or even negative ones. On the other hand, it can also be positive semi-definite,

thus having non-negative real eigenvalues only. The property of the unsymmet-

rical matrix resulting from the matrix-free method will be further studied. In

addition, a symmetrical matrix-free operator will also be pursued.

• Application to realistic problems : Although many numerical examples have been

simulated to demonstrate the generality, efficiency and stability of the proposed

matrix-free time-domain method, we still pursue to solve more realistic problems

using the proposed method, for example, product-level full package involving

different kinds of inhomogeneous and conductive materials. To demonstrate the

efficiency, more numerical methods in addition to the traditional finite element

method can be considered to compare the CPU time with the proposed method

for a given problem, especially in an unstructured mesh.

• Application to other research areas : The proposed matrix-free time-domain

method provides a flexible framework for solving problems in not only elec-

tromagnetics but also many other research areas. The thermal analysis has

been conducted using the proposed matrix-free time-domain method in Chap.

8. There also exist many problems in other disciplines that demand an efficient

matrix-free solution. For example, the simulation of nano-scale structures, anal-

ysis of materials involving dispersion and anisotropy, incorporation of compli-
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cated boundary conditions, multiphysics simulations across different disciplines,

etc.
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A. FIRST-ORDER CURL-CONFORMING VECTOR

BASIS FUNCTIONS IN TETRAHEDRAL ELEMENT

In a tetrahedral element, among the 20 first-order vector bases [43], there are 12 edge

vector basis functions, which are defined as

N1 = (3ξ2 − 1)W1, N2 = (3ξ1 − 1)W1

N3 = (3ξ1 − 1)W2, N4 = (3ξ3 − 1)W2

N5 = (3ξ4 − 1)W3, N6 = (3ξ1 − 1)W3

N7 = (3ξ3 − 1)W4, N8 = (3ξ2 − 1)W4

N9 = (3ξ2 − 1)W5, N10 = (3ξ4 − 1)W5

N11 = (3ξ4 − 1)W6, N12 = (3ξ3 − 1)W6,

(A.1)

where ξi(i = 1, 2, 3, 4) are volume coordinates, and Wi(i = 1, 2, ..., 6) denote the

normalized zeroth-order edge bases as follows

W1 = L1(ξ2∇ξ1 − ξ1∇ξ2)

W2 = L2(ξ1∇ξ3 − ξ3∇ξ1)

W3 = L3(ξ4∇ξ1 − ξ1∇ξ4)

W4 = L4(ξ3∇ξ2 − ξ2∇ξ3)

W5 = L5(ξ2∇ξ4 − ξ4∇ξ2)

W6 = L6(ξ4∇ξ3 − ξ3∇ξ4),

(A.2)
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in which Li is the length of the i-th edge. The degrees of freedom of the 12 edge

vector bases shown in (A.1) are located respectively at the following points in each

element, with their corresponding projection directions êi(i = 1, 2, ..., 12) defined as:

ê1 = ~v21/‖~v21‖, re1 = (ξ1 = 1/3, ξ2 = 2/3, ξ3 = 0, ξ4 = 0)

ê2 = ê1, re2 = (ξ1 = 2/3, ξ2 = 1/3, ξ3 = 0, ξ4 = 0)

ê3 = ~v13/‖~v13‖, re3 = (ξ1 = 2/3, ξ2 = 0, ξ3 = 1/3, ξ4 = 0)

ê4 = ê3, re4 = (ξ1 = 1/3, ξ2 = 0, ξ3 = 2/3, ξ4 = 0)

ê5 = ~v41/‖~v41‖, re5 = (ξ1 = 1/3, ξ2 = 0, ξ3 = 0, ξ4 = 2/3)

ê6 = ê5, re6 = (ξ1 = 2/3, ξ2 = 0, ξ3 = 0, ξ4 = 1/3)

ê7 = ~v32/‖~v32‖, re7 = (ξ1 = 0, ξ2 = 1/3, ξ3 = 2/3, ξ4 = 0)

ê8 = ê7, re8 = (ξ1 = 0, ξ2 = 2/3, ξ3 = 1/3, ξ4 = 0)

ê9 = ~v24/‖~v24‖, re9 = (ξ1 = 0, ξ2 = 2/3, ξ3 = 0, ξ4 = 1/3)

ê10 = ê9, re10 = (ξ1 = 0, ξ2 = 1/3, ξ3 = 0, ξ4 = 2/3)

ê11 = ~v43/‖~v43‖, re11 = (ξ1 = 0, ξ2 = 0, ξ3 = 1/3, ξ4 = 2/3)

ê12 = ê11, re12 = (ξ1 = 0, ξ2 = 0, ξ3 = 2/3, ξ4 = 1/3),

(A.3)

where ~vij denotes the vector pointing from node i to node j.

There are also two vector basis functions whose degrees of freedom are located at

the center point of each face. In total, there are 8 such bases, which are

N13 = 4.5ξ2W6, N14 = 4.5ξ3W5

N15 = 4.5ξ3W3, N16 = 4.5ξ4W2

N17 = 4.5ξ4W1, N18 = 4.5ξ1W5

N19 = 4.5ξ1W4, N20 = 4.5ξ2W2.

(A.4)
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The locations rei(i = 13, 14, ..., 20) and corresponding unit vectors êi associated with

the above 8 face vector bases are:

ê13 = ê11, r13 = (ξ2 = ξ3 = ξ4 = 1/3, ξ1 = 0)

ê14 = ê9, r14 = (ξ2 = ξ3 = ξ4 = 1/3, ξ1 = 0)

ê15 = ê5, r15 = (ξ1 = ξ3 = ξ4 = 1/3, ξ2 = 0)

ê16 = ê3, r16 = (ξ1 = ξ3 = ξ4 = 1/3, ξ2 = 0)

ê17 = ê1, r17 = (ξ1 = ξ2 = ξ4 = 1/3, ξ3 = 0)

ê18 = ê9, r18 = (ξ1 = ξ2 = ξ4 = 1/3, ξ3 = 0)

ê19 = ê7, r19 = (ξ1 = ξ2 = ξ3 = 1/3, ξ4 = 0)

ê20 = ê3, r20 = (ξ1 = ξ2 = ξ3 = 1/3, ξ4 = 0).

(A.5)
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B. FIRST-ORDER CURL-CONFORMING VECTOR

BASIS FUNCTIONS IN TRIANGULAR PRISM

ELEMENT

In a triangular prism element, there are 36 first-order vector bases [70]. Their defini-

tions are given below.

Fig. B.1. Illustration of the zeroth-order vector bases for triangular prism element

We first define the three zeroth-order vector basis functions for a 2-D triangular

elements as follows

W1 = l1 (ξ2∇ξ3 − ξ3∇ξ2)

W2 = l2 (ξ3∇ξ1 − ξ1∇ξ3)

W3 = l3 (ξ1∇ξ2 − ξ2∇ξ1) ,

(B.1)

where li (i = 1, 2, 3) is the length of i-th edge and ξi (i = 1, 2, 3) is the area coordinate.
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Table B.1
Definition of the zeroth-order vector bases for triangular prism element

Projection Direction ξ1 ξ2 ξ3 ζ1 ζ2 Vector Basis

ê1 = t̂23 0 1
2

1
2

1 0 N1 = ζ1W1

ê2 = t̂31
1
2

0 1
2

1 0 N2 = ζ1W2

ê3 = t̂12
1
2

1
2

0 1 0 N3 = ζ1W3

ê4 = t̂56 0 1
2

1
2

0 1 N4 = ζ2W1

ê5 = t̂64
1
2

0 1
2

0 1 N5 = ζ2W2

ê6 = t̂45
1
2

1
2

0 0 1 N6 = ζ2W3

ê7 = t̂41 1 0 0 1
2

1
2

N7 = hξ1∇ζ1
ê8 = t̂52 0 1 0 1

2
1
2

N8 = hξ2∇ζ1
ê9 = t̂63 0 0 1 1

2
1
2

N9 = hξ3∇ζ1

Assume the height of the triangular prism element is h. ζ1 varies from 0 to 1, and

is 1 on the face formed by node 1-3 while 0 on the other triangular face. Meanwhile,

ζ1 + ζ2 = 1. With (B.1), we can summarize the definition of the 9 zeroth-order vector

bases shown in Fig. B.1 with their corresponding location and projection directions

êi (i = 1, 2, ..., 9) in Table B.1

Among the 36 first-order vector bases for triangular prism element, 18 of them

are located on the edges. Their definitions Bi (i = 1, 2, . . . , 18) with corresponding

locations and projection directions ûi (i = 1, 2, . . . , 18) are summarized in Table B.2.

Except for those vector bases on the edges, there also exist 4 vector bases on each

side rectangular face, and their definitions are shown in Table B.3.

On each triangular face, there are also two vector bases located at the center of

the face. Their definitions are given in Table B.4.

Finally, there are two vector bases located at the center of the triangular prism

element. See Table B.5.



202

Table B.2
Definition of the 18 first-order vector bases located on the edges of
triangular prism element

Projection Direction ξ1 ξ2 ξ3 ζ1 ζ2 Vector Basis

û1 = t̂23 0 2
3

1
3

1 0 B1 = (3ξ2 − 1)(2ζ1 − 1)N1

û2 = t̂23 0 1
3

2
3

1 0 B2 = (3ξ3 − 1)(2ζ1 − 1)N1

û3 = t̂31
1
3

0 2
3

1 0 B3 = (3ξ3 − 1)(2ζ1 − 1)N2

û4 = t̂31
2
3

0 1
3

1 0 B4 = (3ξ1 − 1)(2ζ1 − 1)N2

û5 = t̂12
2
3

1
3

0 1 0 B5 = (3ξ1 − 1)(2ζ1 − 1)N3

û6 = t̂12
1
3

2
3

0 1 0 B6 = (3ξ2 − 1)(2ζ1 − 1)N3

û7 = t̂56 0 2
3

1
3

0 1 B7 = (3ξ2 − 1)(2ζ2 − 1)N4

û8 = t̂56 0 1
3

2
3

0 1 B8 = (3ξ3 − 1)(2ζ2 − 1)N4

û9 = t̂64
1
3

0 2
3

0 1 B9 = (3ξ3 − 1)(2ζ2 − 1)N5

û10 = t̂64
2
3

0 1
3

0 1 B10 = (3ξ1 − 1)(2ζ2 − 1)N5

û11 = t̂45
2
3

1
3

0 0 1 B11 = (3ξ1 − 1)(2ζ2 − 1)N6

û12 = t̂45
1
3

2
3

0 0 1 B12 = (3ξ2 − 1)(2ζ2 − 1)N6

û13 = t̂41 1 0 0 1
3

2
3

B13 = (2ξ1 − 1)(3ζ2 − 1)N7

û14 = t̂41 1 0 0 2
3

1
3

B14 = (2ξ1 − 1)(3ζ1 − 1)N7

û15 = t̂52 0 1 0 1
3

2
3

B15 = (2ξ2 − 1)(3ζ2 − 1)N8

û16 = t̂52 0 1 0 2
3

1
3

B16 = (2ξ2 − 1)(3ζ1 − 1)N8

û17 = t̂63 0 0 1 1
3

2
3

B17 = (2ξ3 − 1)(3ζ2 − 1)N9

û18 = t̂63 0 0 1 2
3

1
3

B18 = (2ξ3 − 1)(3ζ1 − 1)N9
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Table B.3
Definition of the 12 first-order vector bases located on the side rect-
angular faces of triangular prism element

Projection Direction ξ1 ξ2 ξ3 ζ1 ζ2 Vector Basis

û19 = t̂23 0 2
3

1
3

1
2

1
2

B19 = 4ζ2(3ξ2 − 1)N1

û20 = t̂23 0 1
3

2
3

1
2

1
2

B20 = 4ζ2(3ξ3 − 1)N1

û21 = t̂52 0 1
2

1
2

1
3

2
3

B21 = 4ξ3(3ζ2 − 1)N8

û22 = t̂52 0 1
2

1
2

2
3

1
3

B22 = 4ξ3(3ζ1 − 1)N8

û23 = t̂31
1
3

0 2
3

1
2

1
2

B23 = 4ζ2(3ξ3 − 1)N2

û24 = t̂31
2
3

0 1
3

1
2

1
2

B24 = 4ζ2(3ξ1 − 1)N2

û25 = t̂63
1
2

0 1
2

1
3

2
3

B25 = 4ξ1(3ζ2 − 1)N9

û26 = t̂63
1
2

0 1
2

2
3

1
3

B26 = 4ξ1(3ζ1 − 1)N9

û27 = t̂12
2
3

1
3

0 1
2

1
2

B27 = 4ζ2(3ξ1 − 1)N3

û28 = t̂12
1
3

2
3

0 1
2

1
2

B28 = 4ζ2(3ξ2 − 1)N3

û29 = t̂41
1
2

1
2

0 1
3

2
3

B29 = 4ξ2(3ζ2 − 1)N7

û30 = t̂41
1
2

1
2

0 2
3

1
3

B30 = 4ξ2(3ζ1 − 1)N7

Table B.4
Definition of the 4 first-order vector bases located on the triangular
faces of triangular prism element

Projection Direction ξ1 ξ2 ξ3 ζ1 ζ2 Vector Basis

û31 = t̂56
1
3

1
3

1
3

0 1 B31 = 4.5ξ1(2ζ2 − 1)N4

û32 = t̂64
1
3

1
3

1
3

0 1 B32 = 4.5ξ2(2ζ2 − 1)N5

û33 = t̂23
1
3

1
3

1
3

1 0 B33 = 4.5ξ1(2ζ1 − 1)N1

û34 = t̂31
1
3

1
3

1
3

1 0 B34 = 4.5ξ2(2ζ1 − 1)N2
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Table B.5
Definition of the 2 first-order vector bases located at the center of
triangular prism element

Projection Direction ξ1 ξ2 ξ3 ζ1 ζ2 Vector Basis

û35 = t̂23
1
3

1
3

1
3

1
2

1
2

B35 = 18ξ1ζ2N1

û36 = t̂31
1
3

1
3

1
3

1
2

1
2

B36 = 18ξ2ζ2N2
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