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ABSTRACT 
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Degree Received: December 2016 

Title: The Effects of Dietary Probiotic Inclusion on Skeletal Health of Poultry and 

Its Possible Mechanisms. 

Major Professor: Heng-wei Cheng and Patricia Hester 

 

 

Probiotics are live microorganisms which may confer health benefits on the host 

when administered in appropriate amounts. Numerous studies have shown that probiotics 

improve bone health in humans and rodents with less information available on the 

skeletal health of avians given probiotics. The objective of this study was to determine 

the effects of probiotic supplementation on bone health of egg-laying and meat-type 

chickens.  

Dietary supplementation of a multi-species based probiotic reduced the 

percentage of shell-less eggs beginning at 4 wk following treatment and increased tibial 

and femoral bone mineral density in egg-laying hens at 7 wk post-treatment. Similarly, 

bone mineralization accrual of the tibia and femur was improved in broilers subjected to 

daily cycling heating episodes fed the same probiotic for 6 wk. Broilers consuming the 

probiotic also had a lower incidence of lameness as characterized by an improved gait 

score and longer latency to lie.  

The effects of a single-species based probiotic fed to broilers beginning at 1 d of 

age on bone health were investigated. Bone mineral densities of the tibia and femur were 

increased at 43 d of age. Concomitantly, serum calcium concentrations were increased at 

14 d of age, serotonin levels were up-regulated in the raphe nuclei, and the catecholamine 

concentrations of NE and DA were down-regulated in the hypothalamus at 43 d of age. 

With the exception of bone mineral density, the bone health of probiotic-fed broilers was 

maintained under elevated temperature as indicated by larger bones and higher bone 

mineral content of the tibia and femur at 43 d of age accompanied by reduced plasma 

concentrations of TNF-α, a pro-inflammatory cytokine. 



xv 

 

Dietary inclusion of probiotics is a useful strategy for improving skeletal health in 

chickens under both normal and elevated ambient temperature. Probiotics enhance 

intestinal absorption of nutrients like calcium and may reduce sympathetic activity, thus 

improving mineralization of bone. Under the condition of daily cycling heating episodes, 

probiotics increased bone growth and bone size of broilers perhaps via inhibition of bone 

resorption resulting from the down-regulation of TNF-α, thereby reducing systemic 

inflammation. 
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CHAPTER 1. LITERATURE REVIEW  

1.1 Avian Bone Biology 

1.1.1 Osteoporosis in egg-laying hens 

1.1.1.1 Egg formation 

The formation of an egg is a remarkable process, from ovulation to oviposition that 

takes just over 1 d. The reproductive system of a hen consists of the left ovary and 

oviduct, with the right side organs shrunken without functions. The ovary contains a 

cluster of tiny ova, each ovum within its own follicle. When the hen reaches sexual 

maturity, one or a few of these ova are recruited at a time into the growing pool of 

follicles that begin to accumulate yellow yolk (Johnson et al., 2015). The selected ovum 

grows rapidly and is released from the ruptured follicle into the oviduct when it reaches 

the right size and stage, a process called ovulation. The ovum travels down the oviduct to 

acquire albumen (egg white), shell membranes, and shell. The hen’s oviduct can be 

divided into 5 sections, each of them has a specific function (Table 1.1). After a total of 

24 to 26 h, an egg is ultimately formed and laid through the vent, which is called 

oviposition. Approximately 30 min later, the hen starts the process all over again. 

Due to the daily egg laying cycle, there is an unusually high demand for Ca in laying 

hens. Each egg contains up to 3 g of Ca in the form of Ca carbonate (Perry and Yousef, 

2013), which is nearly 10% of the total Ca of a hen (Stanford, 2006). Diet is the main 

source of Ca for the eggshell (Wistedt et al., 2014). Dietary Ca enters the blood stream 

via duodenal absorption and is taken up by the uterus; uterine absorption is increased 

several fold during formation of the shell (Bar, 2009; Jonchere et al., 2012). However, 

hens stop eating after switching off of the artificial lights, and the duodenum absorption 

of Ca ceases approximately 4 h afterwards according to the average gastro-intestinal 

transit rate (Pan and Yu, 2014). A great proportion of the eggshell Ca is deposited while 

the intestine lacks dietary Ca, indicating that there is a secondary Ca source for eggshell 

formation in laying hen - the bone. During the later hours of darkness bone, as the 

primary Ca source, comprises as much as 20 to 40% of the shell Ca (Johnson, 2015). 
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Table 1.1. Functions of different sections of a hen's oviduct  

The sections of 

the oviduct 

Approximate time an 

egg spends in each 

section 

Functions of each section of the oviduct 

Funnel 

(Infundibulum) 
15 min 

Receives ovum (yolk) from the ovary. If living 

sperm are present, fertilization occurs here 

(commercially produced table eggs are generally not 

fertilized) 

Magnum 3 h Albumen is secreted and layered around the yolk 

Isthmus 1 h 15 min Inner and outer shell membranes are added along 

with some water and mineral salts 

Shell gland 

(Uterus) 
19 to 21 h 

Initially add some water to make the outer white 

thinner; then the shell material (mainly Ca 

carbonate) is added. Pigments may also be added 

followed by cuticle. 

Vagina/cloaca Few min The egg passes through this section before laying 
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1.1.1.2 Bone turnover 

Osteoblasts, osteoclasts and osteocytes are the most well-known bone cells. 

Osteoblasts, largely known for their bone forming function, are located along the bone 

surface and comprise 4 to 6% of the total bone cells (Capulli et al., 2014). Osteoclasts are 

multinucleated cells that are responsible for bone resorption. Osteocytes comprise 90 to 

95% of the total bone cells. Unlike osteoblasts and osteoclasts, it is not until recently that 

osteocytes have been recognized for playing important functions in bone health rather 

than serving as passive placeholders (Rochefort et al., 2010; Bonewald, 2011; Chen et al., 

2015; Goldring, 2015b). Distributed throughout the mineralized bone matrix, osteocytes 

form an interconnected network, where osteocytes sense and respond to local and 

systemic stimuli, then secrete several molecules, including sclerostin, RANKL and 

FGF23, to regulate osteoblastic bone formation, osteoclastic bone resorption, and mineral 

homeostasis. 

There are four types of bone in a laying hen: cortical bone, trabecular bone, 

medullary bone, and pneumatic bone. Cortical and trabecular bones, also called lamellar 

bone, provide the structural support. Medullary bone, also called woven bone, is unique 

to an adult avian female. Pneumatic bone is hollow and acts functionally as a part of the 

avian respiratory system.  

Bone growth of laying hens, similar to mammals, during the rearing period (pullet 

phase) relies on 2 processes: growing longitudinally by endochondral ossification and 

widely by intramembranous ossification (Whitehead, 2004). Upon reaching sexual 

maturity, a dramatic change takes place in the physiology and bone biology of laying 

hens. The concentrations of estrogen markedly increase and shift the function of 

osteoblasts from forming lamellar structural bone to medullary bone (Whitehead and 

Fleming, 2000), accompanying with the maturation of the ovarian follicles. Unique to 

birds (Schweitzer et al., 2007) and dinosaurs, the medullary bone is intended to become a 

labile source of Ca for eggshell formation (Whitehead, 2004). Medullary bone is laid 

down along the inner surfaces of structural bone and formed in spicules within the 

marrow cavities. The highest content of medullary bone is found in the femur and tibia 

bones. Characterized by the haphazard organization of collagen fibers in the matrix, 

medullary bone may provide some contributions to the overall bone strength (Fleming et 
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al., 1998), but is mechanically weaker than structural bone, resulting from its mainly 

existing form as isolated spicules (Whitehead, 2004).   

With a labile nature, medullary bone undergoes a dynamic remodeling after 

formation. Rapid and sequential changes, from resorption to formation, occur according 

to egg-formation cycles (Thorp, 1994). At night, when dietary Ca is not sufficient for 

eggshell formation, activated osteoclasts resorb medullary bone to release stored Ca. The 

resorbed medullary bone is soon replaced by osteoblasts formed organic matrix with low 

Ca. During daytime, when adequate Ca is ingested and absorbed from the intestine, 

medullary bone is further calcified, with a low bone resorption and formation rate (Dacke 

et al., 1993). When hens go out of lay, such as during the period of molting, medullary 

bone is gradually resorbed and structural bone formation is recommenced. Post molting, 

medullary bone is rapidly regenerated after hens regain capability to lay eggs, and the 

daily bone cycling is restarted. 

1.1.1.3 Osteoporosis and bone fracture 

Osteoporosis is a widespread welfare issue in laying hens. As in humans, 

osteoporosis in laying hen is characterized by a progressive loss of structural bone, 

leading to skeletal fragility and susceptibility to fracture (Whitehead, 2004).  

Osteoporosis is caused by an imbalance in bone remodeling between bone 

formation (osteoblasts) and resorption (osteoclasts) under the influence of estrogen. 

Structural bone formation ceases as estrogens favor medullary bone deposition, which 

means the peak structural bone mass is reached at the onset of follicular activity. The 

hypothesis is supported by the fact that the initial formation of medullary bone coincides 

with a marked reduction in structural bone volume. On the other hand, when medullary 

bone undergoes high rate of bone resorption as a source of eggshell Ca, at the same time, 

structural bone resorption also occurs as activated osteoclasts is not targeting medullary 

bone only (Whitehead, 2004). The turnover of structural bone is slow but continuous. 

Consequently, the negative balance between the processes of bone formation and 

resorption of structural bone over the course of the production cycle eventually 

culminates into osteoporosis and skeletal weakness (Whitehead and Fleming, 2000). The 
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bone damage becomes most severe at the end of lay at about 68 to 72 wk of age 

(Whitehead and Fleming, 2000; Beck and Hansen, 2004). 

Fractures are common in laying hens regardless of the housing system (Wilkins et 

al., 2011). High rates of fracture prevalence have been reported worldwide, with a pattern 

of increase by age (Gebhardt-Henrich and Frohlich, 2015; Petrik et al., 2015; Toscano et 

al., 2015). Referred to as either old (those occurred during the laying period) or new 

(those occurred during depopulation, transportation, or slaughter), fracture can occur at 

the any location of the whole skeleton but the highest incidences are at ischium, humerus, 

keel, and furcular (Bishop et al., 2000; Whitehead, 2002). Osteoporosis induced bone 

weakness is one of the main factors that determine fracture incidence. The other two are 

the housing design and handling at depopulation. As osteoporosis in hens is gradually 

developed and is worse at the end of their laying cycle, new fractures may be a better 

example of osteoporosis-associated bone damage. Improper handling also contributes to 

new bone fracture, as the number of fracture increased with sequential handling events 

(Gregory and Wilkins, 1989). However, high incidence of broken bones is still reported 

when better procedures for handling are applied (Gregory et al., 1992; Gregory et al., 

1993), indicating bone weakness is an important contributor.  

1.1.1.4 Animal welfare and economic effects 

Osteoporosis-associated animal welfare issues have drawn great awareness by the 

public. Osteoporosis induces a high incidence of bone fracture, which is painful in 

mammals (Koewler et al., 2007). It is generally accepted that birds perceive pain 

similarly to mammals, as various nociceptors have been identified and characterized in 

many body parts of a chicken such as the beak, mouth, nose, joint capsule and scaly skin 

(Gentle, 2011). For instance, A-delta mechanothermal nociceptors, responding to both 

thermal and mechanical stimulations, have been identified in the scaly skin of adult 

chickens’ legs (Gentle et al., 2001). Hens with keel bone fractures exhibit reduced 

mobility (Nasr et al., 2012b; Nasr et al., 2015), which resulted from either physical 

impairment or the feeling of pain. Administration of butorphanol, a kappa opioid agonist 

that works as an analgesic, improves mobility in hens with keel fracture as indicated by 

reduced landing time from perches with multiple heights (Nasr et al., 2012a). In a 
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preference test, hens previously treated with butorphanol or saline in environments 

marked with different colors, hens preferred the environment with the same color where 

they experienced butorphanol. The positive correlations were received from the fractured 

birds only (Nasr et al., 2013). These results support the concept that hens with fractures 

have the capacity to feel pain and the painful feeling in turn reduces their mobility. To be 

noted, pathological examinations conducted in these two studies indicated that the keel 

fractures had healed already, which indicates that old keel fracture is still a source of 

chronic pain in hens.  

Another welfare problem associated with osteoporosis in laying hens is that hens 

die from this non-infectious disease. It is estimated that osteoporosis contributes to 

approximately 20 to 35% of all mortality during the egg production cycle of caged hens 

(McCoy et al., 1996; Anderson, 2002). 

Osteoporosis and its related bone fracture cause considerable economic loss to the 

poultry industry. Spent hens, i.e. hens who are past their prime egg laying years, were 

usually slaughtered and used in processed foods (such as chicken soup) or rendered as pet 

foods. But, bone fragments from fractures can penetrate the meat and induce quality and 

safety problems. As a result, most soup-based companies have stopped using meat from 

spent hens and use broiler meat instead. The USDA also reduced the purchase of spent 

hen as a food resource, from 30% of all spent hens processed nationwide in 2006 to less 

than 10% in 2009. The value of spend hens could be raised if the market could be 

regained or partly regained due to decreased bone splinters. 

1.1.1.5 Current methods to improve skeletal health 

1.1.1.5.1 Housing systems 

Osteoporosis is most prevalent in caged layers (Whitehead and Fleming, 2000), 

indicating that osteoporosis is affected by housing environment. Compared to 

conventional cages, furnished cages with perches, nest boxes, and/or a raised dust bath 

increased tibial and femoral cortical bone mass and reduced trabecular space in 65-wk 

old hens (Jendral et al., 2008). Perch enrichment alone also provides benefits to bone 

health, increasing tibial trabecular bone volume (Hughes et al., 1993) and mineral density 

of wing bones, leg bones, and keel bone (Hester et al., 2013). In addition, a number of 
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studies suggest cage free systems, such as floor pen and aviary, contribute to higher 

cortical bone density and bone strength of hens when compared to cage systems 

(Silversides et al., 2012; Regmi et al., 2015; Regmi et al., 2016). It has become 

increasingly clear that the enhanced activity or movement of laying hen is the key 

component that improves bone quality in the alternative housing systems (Lanyon, 1992). 

The improvement of humerus strength, for example, is particularly apparent in the 

systems that allow hens to fly. Thus, alternative housing systems are widely considered 

as a potential means of alleviating osteoporosis.  

However, improper design of the extensive housing facility may induce novel 

welfare problems, such as keel fracture, resulting from collisions with internal housing 

structures (Toscano et al., 2013). For instance, 73% of hens in a perch system were 

reported to have incurred old breaks (Freire et al., 2003), and the incidence was positively 

correlated with perch height (Wilkins et al., 2011). Therefore, further studies are needed 

to investigate the appropriate design of alternative systems to improve hens’ bone quality 

as well as their welfare. A recent study indicated soft perches might be a promising tool 

for reducing keel bone damage in these loose systems while maintaining activity levels 

(Stratmann et al., 2015). 

1.1.1.5.2 Nutrition 

Nutritional intervention has been considered to play a limited role in minimizing 

the deleterious effects of osteoporosis in laying hens. 

Results from a previous study that investigated the effects of various dietary 

factors (including oystershell, fluoride, 1,25-dihydroxycholecalciferol, ascorbic acid, a 

lower concentration of P, and a combination of a lower concentration of crude protein 

and higher concentration of vitamin K) on bone composition during the laying period 

showed that nutritional supply did not prevent the development of osteoporosis, except 

oystershell with Ca in large particle form had some beneficial effects on eggshell quality 

and medullary bone formation (Rennie et al., 1997). The results from another study 

indicated that addition of vitamin K3 alone or together with sodium fluoride and 

limestone promoted proximal tarsometatarsus cancellous bone volumes at 15, 25, and 70 

wk of age (Fleming et al., 2003). These different results suggest that timing of dietary 
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administration is one of the key factors of nutritional intervention, as the initiated dietary 

supplementation of the former study was started when hens were 16-wk-old, whereas in 

the latter study it was started with 1-d-old chicks. Adequate dietary inclusion to meet 

nutrient requirement for bone growth during rearing and pre-lay period is critical to 

maximize the peak structural bone mass. Increased Ca content in pre-lay and laying diet 

has been showed to reduce the osteoporosis incidence in caged hens (Mayeda and Ernst, 

2008). 

Some pharmacological intervention used in humans to combat osteoporosis were 

also tested in laying hens. Bisphosphonate and strontium, for example, acting by 

inhibiting bone resorption and/or enhancing bone formation, have been shown to increase 

structural bone volume in hens (Thorp et al., 1993; Shahnazari et al., 2006). However, the 

use of treating human osteoporosis drugs is unlikely to be a practical solution for 

reducing or preventing osteoporosis in laying hens.  

1.1.1.5.3 Genetic selection 

Bone development has strong genetic components; and bone traits are inheritable 

(Sparke et al., 2002). Genetic selection based on bone strength index exhibited divergent 

bone characteristics over the first 3 generations and resulted in lines of hens with high or 

low bone strength; between the lines the difference was 2 fold (Bishop et al., 2000). 

Meanwhile, no difference in BW was reported between the 2 lines. The difference of 

bone strength was mostly attributed to higher structural bone mass, resulting from greater 

bone formation during the pullet rearing and less bone resorption during egg laying. 

Greater crosslinking in the collagen matrix, an indicator of a better bone quality, may also 

contribute to the improved bone strength in the high line (Sparke et al., 2002). Compared 

to low line hens, the high line hens had fewer of osteoclasts (Whitehead, 2004), higher 

bone mineral density (Fleming et al., 2006; Stratmann et al., 2016), and lower prevalence 

of keel bone deviations and fractures (Fleming et al., 2004, 2006). The effect of selection 

on egg production and eggshell quality varied among studies, either impaired 

(Whitehead, 2004; Stratmann et al., 2016) or unaffected (Fleming et al., 2006).  

In summary, environment (housing facility), nutrition, and genetics all have 

independent effects on bone health in laying hen with genetic manipulation being most 
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effective, environment secondary, and nutrition last (Fleming et al., 2006). An approach 

that considers all 3 components may be the best potential solution for reducing 

osteoporosis in laying hens. 

1.1.2 Lameness in meat-type broilers 

1.1.2.1 Rapid growth 

Poultry is one of the most popular animals as a food source over the world. In the 

U.S. alone, more than 9 billion broilers were hatched and reared in 2015 (NASS, 2016). 

In the past century and especially the last several decades, broilers have been successfully 

selected for a short growth cycle plus high meat yield in particular breast muscle. Studies 

indicated that within approximately 50 years (from 1957 to 2001), broiler growth rate 

increased by about 400% during an 84 d rearing period (Figure 1.1). With the continued 

selection for increase market BW, the rearing period was also significantly reduced. For 

example, the time required to reach a 2.5 lb. live weight was 112 d in 1925, whereas the 

time required for a 6.2 lb. live weight was 48 d in 2015 (Figure 1.2). However, the 

selection program also makes the broilers more susceptible to metabolic disorders and leg 

abnormalities that lead to poor locomotion. 

  



10 

 

 

Figure 1.1 A comparison of male broiler BW at 84 d of age in 1957, 1991, and 

2001 (Havenstein et al., 1994, 2003)  
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Figure 1.2 United States broiler market BW and market age from 1925 to 2015 

Data source: http://www.nationalchickencouncil.org/about-the-industry/statistics/u-s-

broiler-performance/  

  

2.5 2.9 3.1 3.6 4.2 5.0 6.2

112

85

70

56
49 47 48

0

20

40

60

80

100

120

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1925 1940 1955 1970 1985 2000 2015

M
ar

k
et

 a
g
e 

(d
)

M
ar

k
et

 w
ei

g
h
t 

(l
b
)

Market Weight Market Age

http://www.nationalchickencouncil.org/about-the-industry/statistics/u-s-broiler-performance/
http://www.nationalchickencouncil.org/about-the-industry/statistics/u-s-broiler-performance/


12 

 

1.1.2.2 Lameness 

Predominantly affecting the locomotor system and resulting in impaired mobility 

or lameness, leg disorders have become a considerable problem in commercial poultry 

meat production. Leg disorders in broilers could be cause by multiple factors such as 

abnormal bone development, infections, and degenerative diseases (European 

Commission, 2000). Developmental disorders of the skeletal system include 1) bone 

deformity, such as angular deformity, as either outward (more common but rarely severe) 

or inward (less common but more severe) angulation of the limbs, and rotational 

deformity (rotation of the shaft of the tibia); and 2) TD, a common lesion consisting of a 

cartilaginous plug in the growth plate of broiler leg bones that can lead to angular 

deformity when severe. Infectious disorders include 1) BCO, a severe degenerative 

disorder in which the cartilaginous epiphysis separates from the metaphysis; 2) synovitis, 

characterized by inflammation of joints; and 3) tenosynovitis that involves inflammation 

of the tendons. Degenerative disorders, such as osteoarthrosis in the hip joints, are more 

prevalent in old broiler breeders.  

A common method for evaluating leg problems is assessing lameness. Two gait 

scoring systems have been developed to rate the lameness of broilers, either the 0 to 5 

scale (Kestin et al., 1992; Garner et al., 2002) or the 0 to 2 scale gait score (Webster et 

al., 2008), with the lower score indicating better leg health. For example, over 27.6% of 

broilers are estimated to exhibit poor locomotion (gait score > 2 in the 5 point score 

system) in the United Kingdom (Knowles et al., 2008), with a range between 14.1% to 

30.1% in other European countries (Sanotra et al., 2001; Sanotra et al., 2003). Latency to 

lie test is another method commonly used to assess lameness. This test was developed by 

Weeks et al. (2002) based on the fact that broilers are aversive to contact with water and 

was modified to be simpler and more effective by Berg and Sanotra (2003). Latencies to 

lie test is highly and negatively correlated to gait score (Weeks et al., 2002; Berg and 

Sanotra, 2003). 

A relationship exists between the degree of lameness and the type of leg disorder. 

Pathohistological studies reported that broilers with gait scores of 4 or 5 had a high 

possibility of being diagnosed with BCO, whereas broilers with lower scores had TD or 

tibial angulation (McNamee et al., 1998; Vestergaard and Sanotra, 1999). In a survey 
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conducted in the United Kingdom, 67.8% and 3.3% of broilers had a gait score 2 to 3 and 

4 to 5, respectively (Knowles et al., 2008), suggesting that developmental, non-infectious 

disorders of TD and bone angulation may be the leading cause of lameness in commercial 

broiler flocks (Dinev et al., 2012). Similarly, high incidences of TD have been reported in 

Denmark (57%) and Sweden (Sanotra et al., 2003), with a small variation among 

commercial broiler lines (Dinev et al., 2012).  

Evidence suggests that rapid growth is a key factor contributing to lameness (Rath 

et al., 2000; Talaty et al., 2009). Supporting data came from a study examining 13 broiler 

strains (Kestin et al., 2001). They reported that slower-growing broilers had a lower 

incidence of lameness compared to fast-growing strains, as the mean difference of gait 

score was over 1 using the 5-point gait score system. In addition, when adjusted to BW, 

fast-growing broilers had lower tibia density and percentage of bone ash than slow-

growing broilers (Shim et al., 2012) as a consequence of less bone mineralization and 

higher porosity (Williams et al., 2004). Importantly, leg abnormalities could be reduced 

in the fast-growing broilers via restricting growth to the level similar to slow-growing 

broilers (Williams et al., 2004). A fast growth rate generally comes with reduced 

locomotor activity and prolonged sitting or lying (Bessei, 2006). Behavioral studies 

proved that slow-growing broilers were more active than fast-growing broilers. The slow-

growing broilers exhibited more pecking, perching, scratching, and walking and were 

able to walk much longer distances (Bokkers and Koene, 2003; Reiter and Bessei, 2009). 

The lack of activity may further worsen the condition of legs as mechanical loading is 

essential for normal bone formation. 

Selection for increased breast meat yield in broilers and turkeys has resulted in 

uneven distribution of skeletal muscle. Redistribution of BW towards more breast muscle 

deposition relative to leg muscle may impair the walking ability of heavy strains of 

turkeys (Nestor et al., 1985, 1987; Nestor and Emmerson, 1990) and broilers. Less 

muscle on leg bones may decrease mechanical load making bones weaker and less dense. 

1.1.2.3 Animal welfare and economic effects 

The welfare impacts of lameness in broilers include pain, discomfort and poor 

locomotion. Do lame broilers experience pain? In a preference test, lame broilers 
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selectively consumed more feed mixed with carprofen, a non-steroidal anti-inflammatory 

drug, than control broilers, and the amount of carprofen-spiked feed they consumed was 

parallel with the severity of lameness (Danbury et al., 2000). In addition, the 

administration of carprofen caused lame broilers to complete a mobility test faster but not 

control broilers (McGeown et al., 1999). The administration of carprofen or meloxicam, 

also a non-steroidal anti-inflammatory drug, improved gait function in moderately lame 

broilers as measured through kinematic analysis using a commercial motion-capturing 

system (Caplen et al., 2013b). However, Siegel et al. (2011) failed to observe that lamed 

broilers would self-select a carprofen-mixed diet, questioning the suitability of a broiler 

self-selection paradigm. To corroborate the analgesic effect of non-steroidal anti-

inflammatory drugs, Hothersall et al. (2011) developed a method to measure thermal 

nociceptive threshold, a useful indicator of the perception and processing of noxious 

stimuli underlying pain status. Thermal nociceptive thresholds were decreased in broilers 

with experimentally induced articular pain and naturally obtained lameness; the threshold 

was reversed following the administration of carprofen or meloxicam (Caplen et al., 

2013a; Hothersall et al., 2014).  

Immobility has obvious welfare implications. Lame broilers, failing to reach bell 

drinkers that were raised 400 mm above the litter, became dehydrated as indicated by 

increased plasma osmolality (Butterworth et al., 2002). Reduced BW was also commonly 

related to the presence of severe lameness in broilers due to their inability to reach the 

feeders. Moreover, broilers with lameness are more susceptible to developing breast 

blisters, footpad dermatitis, hock burns, or combinations thereof, most likely because 

they spent more time lying in the litter and they can be stepped on by other broilers. 

Lameness is not only a welfare issue but also an economic issue. It is costly to the 

poultry industry. Parallel with the high morbidity, lameness-associated starvation and 

dehydration is one of the leading causes of mortality in broilers. Broilers with severe 

lameness are culled. 
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1.1.2.4 Current methods to reduce lameness 

1.1.2.4.1 Management  

Numerous studies have demonstrated that leg health in broilers can be improved 

by management. For example, the early application of UV lights improves tibia bone 

strength, radiographic density, and ash percentage in broilers fed a diet with a Ca and P 

imbalance and low in vitamin D (Fleming, 2008). Whether or not broilers consuming 

normal diets would benefit from UV exposure to stimulate vitamin D synthesis was not 

evaluated (Fleming, 2008). 

 Prenatal management may also play a role as broiler leg health is affected by the 

temperature of the incubator during embryonic development. For example, either cooling 

or overheating hatching eggs during early embryonic development (0 to 8 d) induced a 

high prevalence of TD in broilers at 49 d post-hatch (Yalcin et al., 2007). A meta-analysis 

of 8 incubation experiments developed a model showing benefits to delaying hatch so as 

to improve broiler leg strength. Rather than using the standard egg shell temperature of 

37.8 C, the model recommended lowering and raising incubation temperature during 

early to mid (1 t o15 d) and late (16-18 d) embryogenesis, respectively, because later 

hatching chicks were able to stand longer at 6 wk of age as measured through the latency 

to lie test (Groves and Muir, 2014).  

1.1.2.4.2 Nutrition 

Recent studies have shown the importance of nutrition on broiler leg health. 

Proper supplementation of Ca, P, and vitamin D are effective in the prevention or 

alleviation of TD (Parkinson and Cransberg, 2004; Khan et al., 2010; Bachmann et al., 

2013) and BCO (Wideman et al., 2015b). The essential fatty acids, α-linolenic acid (ω -3) 

and linoleic acid (ω -6), have beneficial effects on various bone characteristics 

(McCormack et al., 2006). Probiotics reduce BCO induced lameness in broilers reared in 

pens with wire floors (Wideman et al., 2012; Wideman et al., 2015a). 

1.1.2.4.3 Genetic influence 

Breeding companies top selection criteria for broilers are rapid growth and 

efficient feed conversion. Of the 12 traits used by breeding companies in their selection 
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criteria, leg disorders are ranked 9th (Hardiman, 1996). Leg health is a heritable trait 

(Sheridan et al., 1978; Mercer and Hill, 1984; Bihan-Duval et al., 1997). The prevalence 

of long bone deformities and TD in broilers was reduced by 0.6 to 0.9% and 0.4 to 1.2% 

per yr, respectively, after 25 yr of selection (Kapell et al., 2012). Although a negative 

correlation exists between growth and leg health, it is of low magnitude (Rekaya et al., 

2013; Gonzalez-Ceron et al., 2015). Therefore, breeding companies could place a higher 

priority on selecting broilers with stronger legs with minimal effects on market BW and 

carcass traits. 

In summary, simultaneous genetic improvement in leg soundness, innovative 

incubation and husbandry practices, and proper nutrition including dietary 

supplementation will improve broiler leg health and welfare with little impact on 

production efficiency. 

1.2 Probiotics Regulate Bone Health 

1.2.1 Gut microbiota 

Gut microbiota, the ecological community of commensal microorganisms, lives in 

host’s body (Rosenbaum et al., 2015). The term “microbiome” means the combined 

genetic material of the microbiotas in a particular environment like the gut (Giorgetti et 

al., 2015), which is about 150 times larger than the entire human genome (Rosenbaum et 

al., 2015). Gut microbiota is primarily composed of 5 microbial phyla of Firmicutes, 

Bacteroidetes, Actinobacteria, Proteobacteria, and Fusobacteria with the first 2 

representing over 90% of the total adult human gut microbiota (Rajilic-Stojanovic et al., 

2007). The top 5 bacterial phyla in chicken cecum are Firmicutes, Bacteroidetes, 

Actinobacteria, Proteobacteria and Verrucomicrobi with the first 3 representing 

approximately 97% of the total environmental gene tags (Qu et al., 2008). Gut microbiota 

varies by age in animals, not only in the total number of bacteria, but also in the diversity 

of microbial taxa (Eckburg et al., 2005; Wise and Siragusa, 2007). 

Expanding evidence supports the view that the gut microbiota contributes to host 

health (Marchesi et al., 2016). Microbiota, dietary nutrients, and host cells interact 

extensively, comprising an extremely complex ecosystem. Symbiosis of the gut 
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microbiota can maintain a normal physiological homeostasis in the host, whereas any 

bacterial unbalance, called dysbiosis, may cause disease. As a result, enthusiasm to 

modify the gut microbiota in a beneficial direction has grown substantially.  

Gut microbiota is regulated by multiple factors such as diet, environment, and the 

health status of the host with diet in the predominate role (David et al., 2014). For 

example, humans consuming either a plant- or meat-based diet exhibited distinct profiles 

of the gut microbiota composition (David et al., 2014). Dietary fiber, as a specific diet 

component, can modify gut composition via promoting the growth of a small number of 

taxa (Simpson and Campbell, 2015). A number of dietary interventions can modulate 

either the composition or activity of bacteria. Probiotics, prebiotics, synbiotics, and 

antibiotics are among the most well established dietary supplements influencing gut 

microbiota. Moreover, gut microbiota is regulated by hosts, such that human genetics 

shape the gut microbiome (Goodrich et al., 2014). The environment can also influence 

gut microbiota. An example in poultry showed that broilers had different dominant ileal 

mucosal microbiome when reared on fresh litter as compared to reused litter (Cressman 

et al., 2010). 

1.2.2 Probiotics 

The word “probiotic,” derived from the Greek word for life “bios”, was firstly 

used in the middle of the last century as a result of observing beneficial influence of 

certain microorganisms on the intestinal flora (Lilly and Stillwell, 1965). Thereafter, the 

term was better specified due to scientific discoveries (Schrezenmeir and de Vrese, 2001) 

and is now defined as “live microorganisms which when administered in adequate 

amounts confer a health benefit on the host” (FAO/WHO, 2001). Unfortunately, many 

products in the market place use the term "probiotic" without meeting the specified 

criteria (Hill et al., 2014).  

Prebiotics are a non-digestible food ingredient that are often combined with 

probiotics as they facilitate the growth of beneficial microorganisms in the gut. When 

prebiotics and probiotics are used in combination, they are often referred to as synbiotics 

because of their synergism. In contrast, antibiotics when given to animals destroy or 

inhibit the growth of bacteria. Because antibiotic resistance has become a public health 
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issue, the broiler and turkey industries are gradually eliminating the use of low 

subtherapeutic dosages of antibiotics as a growth promotor and safety net for infection. 

Probiotics may serve as a possible alternative. 

Probiotics modulate microbiota (Uchiyama-Tanaka, 2014) by promoting 

symbiotic and inhibiting pathogenic microorganisms. Benefits of using probiotics in 

humans include alleviation of allergies due to food or inhalants (Cuello-Garcia et al., 

2015), prevention of diarrhea (Guarino et al., 2015) and infection (Araujo et al., 2015; 

Schwenger et al., 2015), reduction of blood pressure (Khalesi et al., 2014), modification 

of metabolic diseases (Le Barz et al., 2015) and cancer (Redman et al., 2014), and 

promoting weight loss in obese patients (Park and Bae, 2015).  

The wide array of mechanisms underlying probiotic effects are summarized in 

Figure 1.3 (Hill et al., 2014). One widespread function of probiotics is pathogen 

inhibition due to the synthesis and release of 1) broad-spectrum inhibitors known as 

bacteriocins (Messaoudi et al., 2012); 2) metabolites, such as SCFA, that decreases pH 

inhibiting bacterial growth (Van Immerseel et al., 2006); and 3) biosurfactants that 

possess antimicrobial activity (Madhu and Prapulla, 2014) and inhibit pathogen adhesion 

(Chapman et al., 2014). Through competitive exclusion, probiotics compete with 

gastrointestinal pathogens for binding sites and nutrients (Gielda and DiRita, 2012; 

Lawley and Walker, 2013). Less common strain-specific effects of probiotics on host 

include modulation of the immune and central nervous system and antioxidant effects 

(Giorgetti et al., 2015; Mishra et al., 2015; Wang et al., 2016). 

The most commonly used probiotics in humans are dairy lactic acid bacteria, 

including Lactobacillus and Bifidobacterium (Soccol et al., 2010). Other common species 

are dairy Propionibacteria, yeasts (Saccharomyces boulardii), Bacillus, and the gram-

negative Escherichia coli strain Nissle 1917 (Gareau et al., 2010). In livestock and 

poultry, species of Bacillus, Enterococcus, and Saccharomyces yeast are the most 

common microorganisms used, with an increasing use of Lactobacillus strains in the last 

2 decades (Patterson and Burkholder, 2003; Sornplang and Piyadeatsoontorn, 2016). 
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Figure 1.3. Mechanisms of action of probiotics (Hill et al., 2014) 

Starting from the base of the diagram, many effects of probiotics are common and 

widespread among strains. Other mechanisms of action are less common, but occur 

frequently within species of probiotic. Other modes of action of probiotics are very strain 

specific and are therefore categorized as rare effects. 
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1.2.3 Probiotics effects on bone health 

1.2.3.1 In various animals 

1.2.3.1.1 Rodents 

The beneficial effects of probiotics on bone health have been extensively 

investigated in rats and mice. Various strains of probiotics increase bone mass density in 

both healthy and experimentally induced diseased rodents.  

Providing infant formula containing Bifidobacterirum bifidum and 

Bifidobacterium longum to 3-wk-old weaning rats for 30 d increased the Ca content in 

both the tibia and femur, but there were no effects on bone ash weight and P content 

(Pérez-Conesa et al., 2007). Daily intake of Bifidobacterium longum for 28 d increased 

Ca, P, and Mg content in the tibia of rats of unknown age (Rodrigues et al., 2012). 

Growing mice consuming Lactobacillus helveticus-fermented milk had increased BMD 

(Narva et al., 2004a). The effect of probiotic on bone can be gender dependent. After 

receiving Lactobacillus reuteri orally by gavage for 4 wk, male mice, but not females, 

had enhanced trabecular bone traits in both distal femur and lumbar vertebrae. In 

addition, higher serum OC concentrations and greater bone formation occurred in male 

but not female mice. The authors proposed that Lactobacillus reuteri may have activated 

sex hormones related pathways to regulate bone status in male mice but not in females as 

the pathways in the later ones may have been activated already (McCabe et al., 2013). 

Ovariectomy (OVX) is surgical removal 1 or both ovaries culminating in loss of 

estrogen and progesterone production, ultimately inducing bone loss. Thus OVX, as an 

animal model, resembles post-menopausal osteoporosis in humans. Consumption of 

single Lactobacillus strain or a mixture of 3 strains of Lactobacillus starting 2 wk before 

OVX for a total of 6 wk protected mice from cortical bone loss and bone resorption 

(Ohlsson et al., 2014). Dietary supplementation with Lactobacillus rhamnosus GG or 

VSL#3 (a commercial probiotic for humans with 8 species of live bacteria) in OVX mice 

for 4 wk post-surgery improved trabecular femur and spine traits as compared to vehicle-

treated OVX mice, and the outcomes were even comparable to those of vehicle-treated 

sham mice (Li et al., 2016). Serum concentrations of CTX and OC were further measured 

to assess bone turnover. Consumption of Lactobacillus rhamnosus GG or VSL#3 not 
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only inhibited OVX induced bone resorption, but also promoted bone formation, 

indicating both anti-catabolic effects and anabolic effects of probiotics on bone, 

respectively. Moreover, the bone formation promoting role by either Lactobacillus 

rhamnosus GG or VSL#3 was maintained in sham-operate mice, which was opposite the 

results from McCabe et al. (2013). Similar results were reported by others when 

probiotics were administered to rodents following OVX (Kim et al., 2009a; Chiang and 

Pan, 2011; Britton et al., 2014; Parvaneh et al., 2015). 

Bone is adversely affected by inflammation related diseases due to the close 

relationship between the skeletal and the immune systems (Crotti et al., 2015; Goldring, 

2015a). Loss of bone mass is commonly reported with inflammatory diseases regardless 

of cause (Hardy and Cooper, 2009), such as inflammatory bowel disease (Hisamatsu et 

al., 2015; Straub et al., 2015), rheumatoid arthritis (Engdahl et al., 2013; Li et al., 2015; 

Ornbjerg et al., 2015; Krishnamurthy et al., 2016), and periodontal disease (Izawa et al., 

2014; Lin et al., 2015). Probiotic treatment might be a promising intervention for 

preventing or reducing inflammation-induced bone loss. For example, a Bacillus species 

based probiotic was used in a study dealing with experimentally induced periodontitis, 

either as a mono-treatment or as an adjunct to the standard therapy of scaling and root 

planing (Messora et al., 2016). Scaling and root planing remove dental plaque that can 

cause inflammation. When used alone, the probiotic treatment effectively inhibited 

periodontitis-induced bone loss, as indicated by increased bone volume and decreased 

bone porosity as compared to controls. In addition, probiotic treatment reduced the 

production of RANK and promoted OPG synthesis in rats with experimental 

periodontitis, resulting in a moderate RANKL/OPG ratio that was comparable to the 

control. These results were in line with previous studies that demonstrated the bone 

protective effects of probiotics in the periodontitis model by using the same or different 

probiotic strains (Messora et al., 2013; Foureaux Rde et al., 2014; Maekawa and 

Hajishengallis, 2014). When combined with scaling and root planing, providing 

probiotics reduced the number of active osteoclasts compared to rats with standard 

therapy alone, concomitant with decreased immunolabeling of IL-1β, a pro-inflammatory 

cytokine, and increased immunolabeling of IL-10, an anti-inflammatory cytokine, in the 

hemimandibles. The adjunct role of probiotics was confirmed in another periodontal 

https://en.wikipedia.org/wiki/Dental_plaque
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study (Garcia et al., 2016). Compared to negative controls, probiotic plus the standard 

therapy showed reduction in alveolar bone loss as well as levels of pro-inflammatory 

cytokines of TNF-α and IL-1β. However, these results were not evident when the 

comparison was made between the negative control group and the standard therapy of 

scaling and root planing.  

In the previously mentioned studies, McCabe et al. (2013) failed to find a 

probiotic effect on bone of healthy female mice but did find a positive effect of probiotics 

in the bones of OVX mice (Britton et al., 2014). These same investigators further 

conducted an additional study in intact female mice with a mild inflammatory state 

induced by dorsal surgical incision (Collins et al., 2016). Again, oral supplementation of 

Lactobacillus reuteri did not show an improvement of bone in non-inflammatory mice. 

However, an increase in trabecular bone volume fraction and trabecular number, together 

with cortical bone width and area, were identified in the femur of inflammatory mice 

treated with Lactobacillus reuteri compared to both inflammatory mice without probiotic 

treatment and control mice. These results indicated that Lactobacillus reuteri may only 

show beneficial effects on bone health in female mice with an elevated inflammatory 

status, probably due to the outstanding anti-inflammatory characteristics of Lactobacillus 

reuteri. As expected, Lactobacillus reuteri supplementation altered intestinal cytokine 

gene expression in a region-dependent manner. However, this study did not measure 

cytokine levels in the systemic circulation and bone marrow nor were changes of bone 

remodeling markers reported, which may have facilitated interpretation of probiotic-

based mechanisms. 

1.2.3.1.2 Poultry  

There are several studies conducted in poultry indicating the bone promoting 

effects of probiotics (Table 1.2). Most studies were in broilers, with one study in laying 

hens. Interestingly, all of these studies focused on the tibia, which is probably due to the 

fact that the tibia is one of the bones that are prone to skeletal diseases in both broilers 

and laying hens. 

In broilers, the improved tibia indexes post probiotics supplementation included 

tibial weight, size, wall thickness, tibiotarsal index, ash content, ash Ca and P percentage, 
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and breaking strength. The probiotics used in these studies ranged from Lactobacillus to 

Bacillus, from single strain to mixed strains. Furthermore, probiotics also showed their 

bone protecting benefits under various challenging conditions. A Salmonella enteritidis 

challenge was known to not only reduce broiler performance and survivability, but also 

decrease bone health (Sadeghi, 2014). The supplementation of Bacillus subtilis in the 

basal diet protected tibia bone ash content and ash Ca content in broilers at 21 but not at 

42 d of age (Sadeghi, 2014). Dietary inclusion of Bacillus subtilis and Clostridium 

butyricum for 21 d completely overcame the negative effects of a low Ca diet on bone as 

indicated by tibial density and breaking strength (Houshmand et al., 2011). Interestingly, 

broiler tibia ash content and ash minerals were also improved by a multifunctional 

transgenic Lactobacillus, which is functionally able to degrade β-glucan and phytic acid 

(Wang et al., 2014). 

The only study in laying hens that evaluated bone health used Lohman Selected 

Leghorns from 64 to 73 wk of age that consumed either 0.5g or 1.0g of Bacillus 

subtilis/kg of feed for 10 wk. These hens experienced enhanced tibial traits including 

weight, length, volume, density, and ash percentage. The 2 probiotic doses showed 

similar beneficial effects, with the higher dose demonstrating superiority in tibia weight 

and density. Concomitant improvements were exhibited in egg related measures such as 

egg production, eggshell weight, and eggshell thickness. Moreover, the authors pointed 

out that the average time required for Bacillus subtilis to show a significant improvement 

on egg production was 3 and 6 wk for the higher and lower dose of probiotic, 

respectively. A reduction in unmarketable eggs also occurred as result of consuming the 

Bacillus subtilis probiotic (Abdelqader et al., 2013b). Similar decreases in unmarketable 

and shell-less eggs using a wide array of probiotics fed at different ages with multiple 

strains of laying hens have been reported (Kurtoglu et al., 2004; Mikulski et al., 2012; 

Zhang et al., 2012; Abdelqader et al., 2013a).  

Several studies have reported improvements in shell traits such as thickness, 

strength, density, weight, etc., as a result of feeding probiotics for 47 wk (Panda et al., 

2003), 16 wk (Panda et al., 2008), 39 wk (Gallazzi et al., 2008), and 8 wk (Lei et al., 

2013). However, there are many studies reporting that probiotics have no effect on shell 

quality traits in laying hens (Nahashon et al., 1994; Haddadin et al., 1996; Yoruk et al., 
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2004; Hayirli et al., 2005; Mahdavi et al., 2005; Li et al., 2006; Applegate et al., 2009; 

Aghaii et al., 2010; Yalcin et al., 2010; Ribeiro et al., 2014).   

Some studies did not provide direct supports for probiotic’s role in bone health 

but reported changes in blood Ca concentrations. Upregulated serum Ca concentrations 

were reported, along with some other alterations such as eggshell quality and blood 

cholesterol concentrations, after dietary probiotic inclusion in laying hens (Panda et al., 

2003; Capcarova et al., 2010a). Similarly, broilers exhibited higher serum Ca 

concentrations following various probiotic treatments (Capcarova et al., 2010b, 2011). 
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Table 1.2 The effects of probiotic supplementation on bone health in poultry 

  

Subject Duration Probiotic strains Effects on bone References 

Hens     

Lohmann 

Leghorn layer 
10 wk Bacillus subtilis  

↑tibia weight, density, and 

ash% 

Abdelqader et 

al., 2013 

Broilers     

Ross 308 

broiler 
42 d 

Bacillus subtilis  

(challenged with 

Salmonella 

enteritidis) 

↑ tibia ash% and ash Ca% at d 

21 but not d 42 

Sadeghi, 

2014 

Ross 308 
broiler 

42 d 
Lactic acid bacteria-
based and 

Enterococcus faecium 

↑tibia weight, length, tibiotarsi 

index, wall thickness, 

tibiotarsal index, ash%, ash 
Ca% and P%, modulus 

elasticity, and yield stress;  

↓Canal diameter 

Ziaie et al., 
2011 

Cobb 500 

broiler 

Study1: 30 d 

Study2: 49 d 

Lactic acid bacteria-

based probiotic  

↑tibia weight, strength, 

diameter, ash%, ash Ca% and 

P% 

Fuentes et al., 

2013 

Avian x Avian 

broiler 
42 d 

Bacillus licheniformis 

and Bacillus subtilis  

↑tibia wall thickness, tibiotarsal 

index, ash%, and ash P%;  

↓Canal diameter 

Mutus et al., 

2006 

Krishibro 

broiler 
42 d 

Lactobacillus 

sporogenes  

↑tibia breaking strength and 

ash% 

Panda et al., 

2006 

Cobb 500 

broiler 
21 d 

Bacillus subtilis and 

Clostridium 

butyricum 

↑tibia length, weight, 

weight/length index, ash%, and 

breaking strength  

Houshmand 

et al., 2010 
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1.2.3.1.3 Zebrafish 

Interestingly, Lactobacillus rhamnosus administration promoted zebrafish 

development, with earlier onset of backbone calcification compared to controls (Avella et 

al., 2012). In addition, the authors detected higher gene expression levels of IGF-I and -

II, which are important local regulators of bone formation (Lindsey and Mohan, 2016). A 

further study was conducted by the same group to identify the pathways affected by 

Lactobacillus rhamnosus (Maradonna et al., 2013). Consistently, they noticed faster and 

greater skeletal calcification which resulted from stimulation of the expression of key 

genes involved in ossification. Following Lactobacillus rhamnosus treatment, 

upregulation of the expression of runx2 and sp7 mRNA were revealed, both of which are 

involved in early osteoblast differentiation and bone formation. A similar change was 

also detected in the expression of bglap as to runx2 in the Lactobacillus rhamnosus 

treated zebrafish, a gene codes for OC which is a biomarker of bone formation. In 

addition, the expression of sost, a gene that encodes sclerostin that down-regulates 

osteoblast formation, was inhibited by Lactobacillus rhamnosus supplementation.  

1.2.3.2 Humans 

In human, limited studies have been conducted to examine the effects of 

probiotics on skeletal health. Several studies have revealed probiotic roles in increasing 

blood Ca concentrations. A double blind randomized controlled experiment in geriatrics 

reported that probiotic fermented milk with at least 108 cfu/mL of viable Lactobacillus 

helveticus MTCC 5463 increased serum Ca concentrations in participants when 

compared to those that received a similar product but without the tested strain (Gohel et 

al., 2016). Similar results occurred in healthy adults (Cox et al., 2014) and 

postmenopausal women (Narva et al., 2004b) after probiotic supplementation. Moreover, 

consumption of a probiotic yogurt containing Lactobacillus acidophilus and 

Bifidobacterium lactis maintained serum Ca concentrations in pregnant women during 

their third trimester, whereas a reduction in Ca concentrations occurred in pregnant 

women consuming conventional yogurt (Asemi and Esmaillzadeh, 2013). 
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1.3 The Possible Mode of Actions of Probiotics 

1.3.1 Nutrient acquisition 

It is apparent that Ca availability plays an important role in influencing bone mass 

throughout an animal's lifespan. Improved Ca absorption by probiotics has been regarded 

as one of the basic mechanisms underlying probiotic's ability to enhance bone mass. As 

an example, the probiotic of Lactobacillus salivarius stimulated transepithelial Ca 

transport in fully differentiated human intestinal-like Caco-2 cells (Gilman and Cashman, 

2006). In vivo studies provide additional support. For example, the absorption of Ca was 

higher in rats fed probiotic yogurt than controls (Ghanem et al., 2004), and serum Ca and 

P concentrations were about 2-fold higher than that of controls (El-Gawad et al., 2014).  

Probiotics enhance Ca bioavailability using several mechanisms. Firstly, 

probiotics increase Ca bioavailability in the digesta. Phytase, for example, is an enzyme 

that can catalyze the hydrolysis of phytic acid in many plants releasing bound minerals 

like Ca and P. Some probiotics species, such as Lactobacillus, Bifidobacteria, and 

Bacilus, have the ability to produce phyatse and degrade phytate (Cho et al., 2011; 

Tamayo-Ramos et al., 2012; Ghosh et al., 2015). Secondly, probiotics favor Ca 

absorption by increasing the intestinal epithelial absorption area. The small intestine is 

the major site for nutrient absorption. Increased intestinal surface area resulting from 

higher villi promotes absorption of Ca and other minerals. Probiotics have positive 

effects on intestinal morphology. Broilers fed probiotics beginning at 1 d of age had 

longer villus height and higher villus:crypt ratios in the duodenum, jejunum, and ileum in 

21 and 42 d-old chickens (Min et al., 2016). Similar results were found in turkey poults at 

9 and 11 d of age fed probiotics (Hutsko et al., 2016). In rats, probiotics restored the 

damaged intestinal mucosa induced by 5-fluorouracil, resulting in longer jejunal villi and 

a higher villus:crypt ratio (Yeung et al., 2015). The improved intestinal epithelial 

structure promotes the production of SCFA. It is reported that SCFA can enhance growth 

and proliferation of enterocytes via releasing growth factors or gastrointestinal peptides 

such as gastrin, regulating intestinal blood flow and acting directly on genes related to 

cell proliferation (Blottiere et al., 2003). Third, probiotics may enhance Ca absorption by 

lowering intestinal microenvironment pH, resulting in an acidic condition, which is in 

favor of Ca absorption (Suvarna and Boby, 2005).  
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1.3.2 Immune regulation 

Probiotics stimulate humoral immunity. Probiotics induce production of 

activating factors, such as TGF-β, from the intestinal epithelial cells and dendritic cells 

located in the intestines. These activating factors promote the differentiation of B cells 

into IgA producing plasma cells. In mammals, the IgA producing plasma cells can traffic 

from the intestinal lymphoid tissue to the bloodstream through the lymphatics (Praharaj et 

al., 2015). For example, increased antibody concentrations in both intestinal and blood 

circulation were reported in chickens receiving different probiotics (Koenen et al., 2004; 

Haghighi et al., 2005; Haghighi et al., 2006; Haghighi et al., 2008; Brisbin et al., 2011). 

Besides antibody-mediated responses, cell-mediated immunity is regulated by probiotics 

as well. Various Lactobacillus species induce cytokine expression in T cells in chicken’s 

cecal tonsils, including IL-10, TNF-α, and IFN-γ, facilitating intestinal homeostasis 

(Brisbin et al., 2012). A probiotic containing Lactobacillus acidophilus, Bifidobacterium 

bifidum, and Streptococcus faecalis reduced IL-12 and IFN-γ mRNA expression in 

Salmonella challenged broilers (Haghighi et al., 2008). In addition, Lactobacillus reuteri 

activates Treg (Livingston et al., 2010), a subpopulation of suppressor T cells responsible 

for regulating  tolerance to self-antigens and averting autoimmune disease.  

Probiotics also play an important role in the innate immune response. The NF-κB 

is a key transcription factor for pro-inflammatory cytokines. Several probiotic strains can 

prevent degradation of IκB, the inhibitor of NF-κB, therefore preventing the expression 

of pro-inflammatory cytokines. Intestinal epithelial cells synthesizing IL-8, for example, 

are regulated by probiotics via the NF-κB pathway under both normal (Zhang et al., 

2005; Thomas and Versalovic, 2010) and challenged conditions (Tien et al., 2006). 

Probiotics decrease TLR2 and TLR4 mRNA expression in immature enterocytes in 

humans (Ganguli et al., 2013). Cellular components of the innate system, such as 

macrophages and neutrophils (or heterophils, the avian equivalent) were influenced by 

probiotics. Improved mucus lysozyme activity and phagocytic activity of innate immune 

cells were revealed in olive flounder (Beck et al., 2015), whereas upregulated oxidative 

burst and degranulation of heterophils were reported in chickens (Farnell et al., 2006). 

As previously discussed, McCabe et al. (2013) reported that Lactobacillus reuteri 

increased trabecular bone mass of the femur and vertebrae of male mice. These 

https://en.wikipedia.org/wiki/Immune_tolerance
https://en.wikipedia.org/wiki/Autoimmune_disease
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improvements were accompanied by a suppression of mRNA levels of TNF-α (pro-

inflammatory cytokine) in the jejunum and ileum. The same lab reported that 

Lactobacillus reuteri protected OVX mice from bone loss, but also noted a suppression 

of CD4+ T- helper cells in bone marrow (Britton et al., 2014). The CD4+ T-lymphocytes 

are known to regulate osteoclastogenesis (Li et al., 2011). Consistently, OVX-induced 

bone loss and bone resorption were also suppressed by Lactobacillus paracasei or a 

mixture of 3 Lactobacillus strains (Ohlsson et al., 2014). The probiotics increased cortical 

bone mass, bone area, and bone thickness of the femur and maintained serum CTX (a 

biomarker in blood that indicates bone turnover rate) levels similar to that in sham 

operated controls. The mRNA expressions of pro-inflammatory cytokines of TNF-α and 

IL-1β in bone marrow were reduced by probiotics, whereas Treg in bone marrow were 

comparable to sham operated controls. In contrast, OVX mice without probiotic 

treatments had lower Treg. Similar protective effects of probiotics were reported in mice 

with periodontal inflammation-induced bone loss. Lactobacillus brevis not only inhibited 

bone loss but also reduced mRNA expression of pro-inflammatory cytokines in gingival 

tissue, including TNF, IL-1β, IL-6, and IL-17A (Maekawa and Hajishengallis, 2014). 

In light of these findings, probiotic-derived factors can activate a multitude of 

different pathways that control innate and adaptive immunity in the gut (mucosal 

immunity) which facilitates maintenance of intestinal mucosal integrity to ensure 

nutrients absorption. Moreover, mucosal immunity subsequently influences systemic 

immunity, which in turn affects local organ immunity, including bone. Extensive research 

has been conducted and reviews written on the regulatory role of the immune system on 

bone (Lorenzo et al., 2008; D'Amelio et al., 2011; Guerrini and Takayanagi, 2014; 

Humphrey and Nakamura, 2015). 

1.3.3 Hormonal regulation 

Sex steroid hormones exert potent influences on bone development during growth 

and contribute to bone homeostasis during adulthood. They act on their target bone cells 

by binding to their receptors, inducing inhibition of pro-osteoclastogenic cytokine 

production (IL-1, IL-6, and TNF-α), promoting osteoclast apoptosis, and inhibiting 

osteoblast and osteocyte apoptosis, thus favoring bone formation and suppressing bone 

https://en.wikipedia.org/wiki/Biomarker_(medicine)
https://en.wikipedia.org/wiki/Bone_remodeling
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resorption (Jilka et al., 1992; Hughes et al., 1996; Kameda et al., 1997; Di Gregorio et al., 

2001; Kousteni et al., 2001; Almeida et al., 2010; Manolagas et al., 2013; Sinnesael et al., 

2013). Colonization by commensal microbes elevated serum testosterone concentrations 

in both GF male and female mice. In addition, wild-type female mice exhibited increased 

circulating concentrations of testosterone after colonization with feces from male mice 

(Markle et al., 2013). These studies suggested that probiotics could regulate bone through 

sex steroid hormones. 

In contrast, glucocorticoids decrease bone mass and strength at least in part by 

acting directly on osteoblasts and osteocytes. Excessive glucocorticoids inhibit 

osteoblastogenesis, increase osteoblast and osteocyte apoptosis, and transiently promote 

osteoclast survival (O'Brien et al., 2004; Jia et al., 2006; Rauch et al., 2010). Excessive 

glucocorticoids reduce Ca absorption in the duodenum and reabsorption in the kidney 

(Reid, 1997; Lee et al., 2006; Kim et al., 2009b). Probiotics are able to modify the HPA 

axis at multiple points. For example, probiotics attenuated HPA response to 

psychological stress in rats and humans as indicated by decreased plasma concentrations 

of CORT/cortisol, ACTH, and CRF concentrations or hypothalamic CRF mRNA 

expression (Ait-Belgnaoui et al., 2012; Ait-Belgnaoui et al., 2014; Yang et al., 2016). 

Similar results were also found in animal studies with heat stress (Sohail et al., 2010; 

Deng et al., 2012; Sohail et al., 2012) or under regular management, without artificial 

stress (Zhang et al., 2016). Thus, probiotics may regulate bone through perturbation of 

the HPA axis. 

1.3.4 Neurotransmitter regulation  

1.3.4.1 The 5-HT system 

Serotonin, a well-known neurotransmitter, plays a key role in modulating central 

and peripheral functions of both neurons and non-neuronal cells (Adayev et al., 2005). 

Several 5-HT receptors have been found in bone cells implicating serotonin's 

involvement in bone metabolism. For example, osteoblast contains 5-HT1A, 5-HT1B, 5-

HT1D, 5-HT2A, 5-HT2B, and 5-HT2C receptors (Bliziotes et al., 2001; Westbroek et al., 

2001; Bliziotes et al., 2006; Yadav et al., 2008); osteoclast has 5-HT1B, 5-HT2B, and 5-
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HT4 receptors (Battaglino et al., 2004); and osteocyte possesses 5-HT1A and 5-HT2A 

receptors (Bliziotes et al., 2006). 

Tryptophan is an essential amino acid that animals cannot synthesize on their 

own; therefore, they must retrieve this nutrient from the diet (Le Floc'h et al., 2011). 

Once absorbed from the gut and made available in the systemic circulation, tryptophan 

exists in both a free and albumin-bound fraction (Fernstrom and Fernstrom, 2006). Only 

the free form of tryptophan can cross the blood-brain-barrier via the large amino acid 

transporters to participate in 5-HT synthesis in the serotonergic neurons of the CNS 

(Ruddick et al., 2006). Most serotonergic neurons are located in the raphe nuclei of the 

brainstem (Janusonis, 2014). However, the vast majority of 5-HT (95%) is synthesized 

from tryptophan in the enterochromaffin cells of the gastrointestinal tract (Gershon and 

Tack, 2007; Mawe and Hoffman, 2013). 

The synthetic cascade of serotonin is similar irrespective of the location of where 

it is made, i.e., the brain or gut. Tryptophan is first converted to 5-HTP by the rate-

limiting enzyme of TPH: TPH1 is found in non-neuronal cells and TPH2 is located in 

neurons. The intermediate metabolite of 5-HTP is short-lived, catalyzed by aromatic 

amino acid decarboxylase to 5-HT. Extracellular 5-HT is pumped by the serotonin 

transporter, referred to as SERT, back into serotonergic neurons in the brain or epithelial 

cells in the gut, where the 5-HT is metabolized mainly to 5-HIAA. Metabolism involves 

first oxidation by monoamine oxidase to the corresponding aldehyde, followed by 

oxidation by aldehyde dehydrogenase to 5-HIAA. However, the dominant physiological 

pathway for tryptophan is actually along the kynurenine pathway. Kynurenine is 

produced from the degradation of tryptophan by the action of the largely hepatic based 

enzyme, TDO or IDO (Stone et al., 2012). The TDO enzyme can be induced by 

glucocorticoids or tryptophan itself, whereas IDO is influenced by certain inflammatory 

stimuli, IFN-γ being the most potent inducer (Ruddick et al., 2006). 

1.3.4.1.1 Gut-derived 5-HT 

Gut-derived 5-HT directly regulates bone osteoblast via its receptors. Gut derived 

serotonin can inhibit and stimulate bone formation depending on which serotonin 

receptors are activated. The inhibitory effect of 5-HT on osteoblast proliferation is 
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through 5-HT1B receptor, as 5-HT1B receptor deleted mice developed high bone mass with 

increased bone osteoblast number (Yadav et al., 2008). In contrast, serotonin has a 

positive effect on osteoblast recruitment, differentiation, and proliferation through other 

receptors of 5-HT2A and 5-HT2B. Expression of 5-HT2B receptor increased during 

osteoblast differentiation, and 5-HT2B receptor knockout induced a remarkable decrease 

in osteoblast recruitment and proliferation, but not differentiation (Collet et al., 2008). In 

addition, 5-HT2B receptor knockout female mice exhibited an osteopenic phenotype with 

reduced BMD and volumes of trabecular and cortical bone. The involvement of the 5-

HT2A receptor, but not 5-HT2B receptor, in stimulating osteoblasts was documented in 

another study using anaplastic osteoblasts (Hirai et al., 2009). The same research group 

provided evidence of the role that the 5-HT2A receptor plays in stimulating osteoblast 

proliferation in vitro (Hirai et al., 2010) and differentiation in vivo (Tanaka et al., 2015).  

Peripheral serotonin is essential for the formation of osteoclasts. In the presence 

of RANKL, osteoclast precursors positively express TPH1 and synthesize 5-HT. 

Pharmacological inhibition of 5-HT1B and 5-HT2A receptors reduced the number of 

osteoclasts, indicating 5-HT’s role in osteoclastogenesis may be mediated through 5-

HT1B and 5-HT2A receptors (Chabbi-Achengli et al., 2012). Furthermore, it is the 

intracellular 5-HT that promotes osteoclast differentiation, as an inhibitor of intracellular 

SERT increased osteoclast differentiation whereas an inhibitor of extracellular SERT 

showed the opposite effect (Battaglino et al., 2004). 

Despite the diverse effects of peripheral 5-HT on osteoblast, the overall effect of 

gut-derived 5-HT on bone remodeling is to inhibit bone formation. Evidence came from 

TPH1 knockout mice as they developed a severe high bone mass with an increase in 

osteoblast numbers and bone formation rate (Yadav et al., 2008). Bone resorption was 

also reported to be markedly decreased in both growing and mature TPH1 knockout 

mice, as assessed by biochemical markers and bone histomorphometry (Chabbi-Achengli 

et al., 2012). These results may explain, at least partially, the low bone mass of the hip 

and a high risk of osteoporotic fractures in patients treated with some antipsychotic drugs, 

e.g. serotonin reuptake inhibitors (Gebara et al., 2014). 

Certain bacterial strains are able to utilize (Lee and Lee, 2010; Li and Young, 

2013) and synthesize (Yanofsky, 2007; Raboni et al., 2009) tryptophan and even produce 
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5-HT (Lyte, 2011; Clarke et al., 2014). Some bacteria are able to regulate gut-derived 5-

HT formation and metabolism. Bacillus licheniformis strains isolated from traditional 

Korean food sources were found to upregulate serotoninergic signaling genes in 

nematodes of Caenorhabditis elegans, including TPH1, HTR1, and HTR7 (Park et al., 

2015). Spore-forming bacteria isolated from the mouse and human microbiota promotes 

5-HT biosynthesis in colonic enterochromaffin cells of GF mice by increasing TPH1 

expression (Yano et al., 2015). An ex-vivo study additionally showed that Escherichia 

coli Nissle 1917 could increase concentrations of extracellular 5-HT, increase 

intracellular concentrations of 5-HTP, and reduce intracellular concentrations of 5-HIAA 

of mouse ileal tissue, pointing to the modulation of TPH1 and SERT (Nzakizwanayo et 

al., 2015). 

1.3.4.1.2 Brain-derived 5-HT 

Brain-derived 5-HT acts as a neurotransmitter to exert a positive and dominant 

effect on bone mass accrual by enhancing bone formation and limiting bone resorption 

(Ducy and Karsenty, 2010). Binding to 5-HT2C receptor on ventromedial hypothalamic 

neurons, 5-HT regulates both arms of remodeling via sympathetic tone as well as through 

molecular regulation of food intake (Yadav et al., 2009). A possible molecular pathway is 

that 5-HT regulates a calmodulin kinase-dependent signaling cascade via CREB to 

decrease the negative effects of sympathetic tone on bone remodeling, thus increasing 

bone mass accrual (Oury et al., 2010). 

Several probiotics are able to regulate central 5-HT metabolism through multiple 

pathways. One path is via regulation of tryptophan metabolism. The free tryptophan that 

enters the brain for central serotonin synthesis is mainly dependent on the tryptophan-

kynurenine pathway. Bifidobacterium infantis 35624 was able to induce an elevation of 

plasma concentrations of kynurenic acid and tryptophan in Sprague-Dawley rats 

(Desbonnet et al., 2008), which might be due to the reduced enzyme activities that are 

responsible for tryptophan degradation along the kynurenine pathway (Clarke et al., 

2009), resulting from alteration of inflammatory cytokine or CORT concentrations 

(Bravo et al., 2011; Gareau et al., 2011). On the other hand, tryptophan concentrations 

may also be directly affected by probiotics as discussed in 1.3.4.1.1. The second path 
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may be via regulation of BDNF. One of the functions of BDNF is to promote the growth 

and differentiation of new neurons and synapses that are involved in the central serotonin 

system (Mamounas et al., 1995; Mamounas et al., 2000). Another function of BDNF is to 

activate SERT (Mossner et al., 2000; Benmansour et al., 2008). Both probiotics and 

prebiotics as well as microbiota increase central concentrations of BDNF via regulation 

of systemic inflammatory cytokines ((Logan and Katzman, 2005; Savignac et al., 2013). 

These results provide some possibility that probiotics regulate brain serotonin. 

1.4 Summary 

Studies conducted to date provide evidence that probiotics improve skeletal health in 

poultry. Probiotics improve gut health allowing for increased intestinal absorption and 

bioavailability of minerals such as Ca and P for bone mineralization. Besides enhanced 

bioavailability of nutrients, other modes of action of probiotics that may include 

neuroendocrine mechanisms have not been fully investigated. The objectives of the 

current study were to examine the effects of probiotics on skeletal health and underlying 

cellular mechanisms under different circumstances, including using single or multiple 

species based probiotics at different dosages, laying hens or broilers, as well as 

thermoneutral or elevated temperatures. Probiotic mediated mechanisms that will be 

investigated include immune cytokines, glucocorticoids, and the serotonin system. 

  

https://en.wikipedia.org/wiki/Cellular_differentiation
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CHAPTER 2. EFFECTS OF A MULTI-SPECIES BASED 

PROBIOTIC SUPPLEMENT ON PERFORMANCE TRAITS AND 

BONE MINERALIZATION IN LAYING HENS 

2.1 Abstract 

The objective of this study was to determine the effects of a multi-species based 

probiotic supplement on performance traits and bone health of laying hens. Ninety-six 

60-wk-old White Leghorn hens were assigned to 4-hen cages based on their BW. The 

cages were randomly assigned to 1 of 4 treatments: a layer diet mixed with a commercial 

probiotic product at 0, 0.5, 1.0 or 2.0 g/kg (Control, 0.5X, 1.0X, and 2.0X) for 7 wk. 

Cecal Bifidobacterium spp. counts were higher in all treatment groups (P < 0.001). The 

percent of unmarketable eggs (cracked and shell-less eggs) was decreased in both 0.5X 

and 2.0X groups compared to the control (P = 0.02), mainly due to the reduction of shell-

less eggs (P = 0.05). Increases in tibial and femoral mineral density and femoral mineral 

content (P = 0.04, 0.03, and 0.02, respectively), with a concomitant trend for increases in 

humerus mineral density and tibial mineral content (P = 0.07 and 0.08, respectively), 

occurred in the 2.0X group. However, the bone remodeling indicators of circulating OC, 

CTX, and Pi were similar among groups (P > 0.05). Further measures comparing 2.0X 

and control groups indicated that probiotic administration did not affect the 

concentrations of 5-HT in plasma and the ceca, and the TRP concentrations in plasma (P 

> 0.05). In addition, no differences in 5-HT, DA, and their metabolites occurred in the 

raphe nuclei and hypothalamus (P > 0.05). Cytokine concentrations, both pro-

inflammatory (IL-1β, IL-6, IFN-γ, and TNF-α) and anti-inflammatory (IL-10) as well as 

CORT were similar in plasma between the 2.0X group and the control group (P > 0.05). 

In line with these findings, no differences of mRNA expression of IL-1β, IL-6, and 

LITAF were detected in the ceca tonsil between the two groups (P > 0.05). In conclusion, 

dietary probiotic supplementation altered cecal microbiota composition resulting in 

reduced shell-less egg production and improved bone mineralization in laying hens. 

These results suggest that the immune cytokines, 5-HT, CORT, as well as the bone 

remodeling indicators of OC, CTX, and Pi are not involved in probiotic's effect of 

improving shell and bone mineralization.  



68 

 

2.2 Introduction 

Osteoporosis is a widespread health and welfare issue in laying hens. It 

contributes to approximately 20 to 35% of all mortality during the egg production cycle 

of caged hens (Anderson, 2002). As in humans, osteoporosis in laying hen is 

characterized by progressive loss of structural bone, leading to skeletal fragility and 

increasing susceptibility to fracture (Whitehead, 2004). Osteoporosis is caused by an 

imbalance in bone remodeling between bone formation (osteoblasts) and resorption 

(osteoclasts) under the influence of estrogen. At the onset of sexual maturity, the level of 

estrogen markedly increases and is in favor of medullary bone deposition, providing a 

labile source of calcium for eggshell formation (Whitehead and Fleming, 2000). 

However, continuous deposition of medullary bone with age results in deterioration of 

structural bone, namely cancellous and cortical bone (Dacke et al., 1993). Consequently, 

age-related loss of structural bone over the course of the egg production cycle eventually 

leads to osteoporosis (Whitehead and Fleming, 2000), being most severe at the end of lay 

at about 68 to 72 wk of age (Whitehead and Fleming, 2000; Beck and Hansen, 2004). 

Osteoporosis is most prevalent in caged layers (Whitehead and Fleming, 2000). 

Although a modified laying hen cage system (named the enriched or furnished cage) has 

been developed for promotion of activity and behavioral repertoires with the aim to 

benefit bone health (Jendral et al., 2008; Hester et al., 2013), currently about 94% of all 

eggs produced in the United States (and 90% around the world) are laid by hens kept in 

the conventional cage system (UEP, 2016). Osteoporosis causes considerable economic 

losses to the poultry industry. In addition, osteoporosis-associated animal welfare issues, 

such as increased fractures that subject hens to chronic pain (Nasr et al., 2012), have 

drawn great awareness by the public.  

Supplementations of probiotics are common management practices in the poultry 

industry as an alternative to antibiotics. Probiotics are live microorganisms that after 

ingestion confer beneficial effects on the health of the host. Recent studies demonstrate 

that probiotics also contribute to bone health (Scholz-Ahrens et al., 2007; McCabe et al., 

2015). Skeletal benefits of certain probiotics, for example, have been observed under 

various pathological conditions. Administration of Bacillus subtilis for 44 d (Messora et 

al., 2013) or Lactobacillus brevis for 5 d (Maekawa and Hajishengallis, 2014) prevented 

http://www.joponline.org/keyword/Bacillus+Subtilis
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experimental periodontitis induced bone loss in rats and mice. Ovariectomy induced bone 

loss in mice was prevented by feeding a diet mixed with Lactobacillus reuteri for 4 wk 

(Britton et al., 2014) or a mixture of multiple Lactobacillus strains for 6 wk (Ohlsson et 

al., 2014). Bone loss in type 1 diabetic mice was also blocked by administering 

Lactobacillus reuteri for 4 wk (Zhang et al., 2015).  

Limited studies have been conducted in poultry to evaluate the effect of probiotics 

on skeletal health. An increase in tibial weight, length, wall thickness, ash content, 

strength as well as tibiotarsal index occurred in broiler chickens fed various probiotics 

such as lactic acid bacteria and Bacillus spp. (Mutus et al., 2006; Panda et al., 2006; 

Houshmand et al., 2011; Ziaie et al., 2011; Fuentes et al., 2013; Sadeghi, 2014). In laying 

hens, tibia weight, density, and ash content increased after feeding a diet containing 

Bacillus subtilis (Abdelqader et al., 2013b). The objective of the present experiment was 

to investigate the effects of dietary probiotic inclusion on 1) the performance and bone 

mineralization of laying hens and 2) the expression of the 5-HT system, stress indicators, 

and immune cytokines. We hypothesized that the probiotic supplementation will improve 

egg production performance traits and bone mineralization in aging laying hens through 

regulating 5-HT, immune cytokines, and/or CORT. 

2.3 Materials and Methods 

2.3.1 Birds, Management, and Sample Collection 

Ninety-six 60-wk-old White Leghorn laying hens of the Hy-Line W-36 strain 

were provided by Creighton Brothers Farm, Atwood, IN. Hens were assigned to 24 cages 

with 4 hens per cage based on their BW so that each cage had similar mean BW. The 

cage dimensions were 38 x 51 x 48 cm (length x width x height) providing 484.5 cm2 of 

floor space per hen. Each cage was equipped with a lined under tray for collecting 

manure. Liners were replaced daily with clean new ones. Each cage contained 2 nipple 

drinkers and 1 feeder providing 10.3 cm feeder space per hen. A piece of cardboard was 

installed between every 2 feeders to ensure that hens were not able to consume feed from 

the adjacent feeders. Hens were housed in one room; and average room temperature was 

20° C throughout the experimental period. The photoperiod was 16 light (0400h to 
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2000h):8 dark. The Purdue Animal Use and Care Committee approved the experimental 

protocol (PACUC Number: 1111000262). 

Prior to the start of experiment, all hens were given 4 wk (56 to 59 wk of age) to 

adapt to their housing environment and fed a layer diet (Table 2.1). Egg production and 

BW were monitored during the pre-trail period. Hens were transferred among the cages 

as necessary to ensure egg production and BW were evenly distributed among the cages 

by 59 wk of age. At 60 wk of age, the 24 cages were randomly assigned to 1 of 4 dietary 

treatments consisting of a layer diet mixed with a commercial probiotic product 

(PoultryStar®, BIOMIN America, Inc., San Antonio, TX) at 0, 0.5, 1.0, or 2.0 g/kg 

(Control; 0.5X, 106 cfu/g; 1.0X, 2 x 106 cfu/g; and 2.0X, 4 x 106 cfu/g of feed, 

respectively) for 7 wk. The probiotic consisted of 4 microbial strains (Enterococcus 

faecium, Pediococcus acidilactici, Bifidobacterium animalis, and Lactobacillus reuteri). 

Feed and water were provided ad libitum. Diets were mixed at the Purdue University feed 

mill. Feed samples were collected at the beginning and end of the study for analysis of 

probiotic recovery by the manufacturer’s proprietary assay (Biomin America Inc., San 

Antonio, TX).  

At the end of this study, starting from 0900h, all hens were injected intravenously 

with sodium pentobarbital (30 mg/kg BW). A 5-mL blood sample was collected from 

each hen via cardiac puncture within 2 min after removal from her cage. Each sample 

was placed into an ice cooled EDTA-coated tube. Duplicate blood smears on glass slides 

were made per hen. Plasma was collected by centrifuging the whole blood at 700 x g for 

15 min and frozen at -80° C until assayed.  

Following blood collection, hens were euthanized by cervical dislocation. A 1 cm 

cecal tissue section that included the cecal tonsil, the hypothalamus, and raphe nuclei 

were collected from 1 hen per cage. Tissue samples were immediately frozen with dry ice 

and kept at -80° C until assayed. Cecal content was collected from the lumen of both ceca 

of all hen, and stored at -80° C. The left wing, thigh, drum, and breast were collected 

from all hens in the study and frozen at -20° C. 
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2.3.2 Production Performance  

Eggs were collected daily and classified as normal (intact egg with clean shell and 

without visual cracks), dirty (intact egg with blood spots or feces), and unmarketable 

(visually cracked or shell-less egg). The egg collection area, inside the cages, and the 

trays under the cages were checked carefully for shell-less eggs. Hen-d egg production 

and % dirty eggs were calculated on a weekly basis. The productions of cracked, shell-

less, and unmarketable eggs were calculated on a weekly (Table 2.4) as well as on a 

cumulative basis (Figure 2.1). Within a treatment, calculations used for weekly 

cumulative production involved adding the number of eggs produced in a given wk to the 

number of eggs laid in prior wk divided by the number of total d in these wk and 

multiplying the quotient by 100 to express the data as a percentage. 

Twenty-four intact hard-shelled eggs per treatment were collected randomly over 

a 2-d period biweekly. Individual egg and shell weights were determined as described by 

Klingensmith and Hester (1985). The proportion of shell was calculated by dividing shell 

weight by egg weight and multiplying the quotient by 100. Eggshell strength was 

measured using an egg force reader (Orka Food Technology, Bountiful, UT). Eggshell 

thickness was determined at 3 different places along the egg’s equator using a digital 

micrometer (Coolant Proof Micrometer Series 293, Mitutoyo America Corp., Aurora, IL) 

as previously introduced (Poggenpoel, 1986).   

Hens were weighed individually at 60, 63, and 66 wk of age. Mortality was 

recorded daily. Feed intake and total egg weight during a 3-d period were determined by 

cage at 60, 62, 64, and 66 wk of age. Feed conversion was calculated as kg of feed per kg 

of eggs laid. 

2.3.3 Bone Mineralization and Breaking Force 

The left wing, thigh, drum, and breast were thawed and then scanned using 

DEXA (Norland Medical Systems Inc., Fort Atkinson, WI) with muscle, skin, and 

feathers intact (except the keel) to quantify BMD, BMC, and bone area of the humerus, 

femur, tibia/fibula, and keel. The muscles were removed from the keel to allow the bone 

to be oriented laterally in a similar manner among all samples (Hester et al., 2013). After 
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scanning, soft tissue was removed from the tibia. The tibia bones were placed in plastic 

bags and refrozen until bone-breaking strength analysis.  

Bone-breaking force was determined using a shear testing method that entailed a 

load frame (MTS Criterion Model 43, MTS Systems Corp., Eden Prairie, MN) with the 

MTS TestSuite TW Elite Software. Before the test, bones were removed from the freezer 

and brought to room temperature. Bones were sheared at midshaft using a crosshead 

speed of 5.0 mm/min to minimize splintering (Onyango et al., 2003; ASABE, 2007).  

2.3.4 Parameters of Bone Turnover  

Plasma samples collected from hens of the same cage were pooled. Commercial 

ELISA kits (MyBioSource, San Diego, CA) were used for detecting plasma 

concentrations of OC and CTX. The Pi concentrations were determined using a 

QuantiChrom kit (BioAssay Systems, Hayward, CA) following manufacturer’s 

instructions. 

2.3.5 Cecal Microbial Analysis 

Microbial analysis of the cecal content was conducted the next d following 

collection. One gram of the cecal content that was collected from each hen and diluted 

with 9 mL of buffered peptone water (Neogen Corp., Lansing, MI) and homogenized in a 

snap-cap tube. Each homogenized sample was serially diluted from 10-1 to 10-5. Ten 

microliters of each diluted sample were plated on Rogosa agar and BSM agar to 

determine if Lactobacillus spp. and Bifidobacterium spp. were present, respectively. Both 

plates were incubated anaerobically at 37° C and counted for bacterial colonies after 48 h 

of incubation. The results were expressed as log10 cfu per gram of fresh sample (Salim et 

al., 2013). 

2.3.6 Serotonin System 

Plasma samples were measured for 5-HT and its precursor TRP by using 

commercial ELISA kits (MyBioSource, San Diego, CA). Cecal tissue without lumen 

contents was analyzed for 5-HT. Briefly, a small piece of cecum was weighed and 

homogenized (10 mg tissue to 100 µl PBS) using a tissue homogenizer. Homogenates 
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were centrifuged for 15 min at 1500 x g. The supernatants were collected and assayed 

immediately following manufacturer’s instruction. 

The hypothalamus and raphe nuclei from the left hemisphere of the brain were 

analyzed using HPLC (UltiMate™ 3000 RSLCnano System, Thermo Fisher Scientific 

Inc., Waltham, MA). The brain regions were weighed and homogenized in ice-cold 0.2 M 

perchloric acid, at a 10:1 ratio (4 μL of perchloric acid:mg of sample). The homogenized 

mixture was centrifuged at 18,187g for 15 min at 4° C. The resultant supernatant was 

drawn into a microcentrifuge tube and diluted 1:1 with mobile phase. The mixture was 

centrifuged at 18,187g for 10 min at 4° C. The supernatant was draw off and filtered 

through a 0.2-μm polyvinylidene fluoride filter into an HPLC sample vial. The mobile 

phase flow rate was 0.8 mL/min. The concentrations of NE, EP, DOPAC, DA, 5-HIAA, 

HVA, 5-HT, and TRP were calculated from a reference curve made using relative 

standards. 

2.3.7 Cytokines and Immunoglobulin Analyses  

Commercial ELISA kits were used for measuring plasma cytokine concentrations 

of IL-1β (Lifeome BioLabs, Oceanside, CA), IL-6 (MyBioSource, San Diego, CA), IL-

10 (MyBioSource, San Diego, CA), and IFN-γ (MyBioSource, San Diego, CA) as well as 

immunoglobulin concentrations of IgA, IgG, and IgM (Bethyl Laboratories Inc., 

Montgomery, TX). 

Cecal tonsil mRNA expression of IL-6, IL-1β, and LITAF was detected by real-

time PCR using primers and probes (Table 2.2) developed elsewhere (Strong et al., 

2015). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a 

housekeeping gene. Cecal tonsils were homogenized using a tissue homogenizer, and 

RNA was extracted using the RNeasy Mini Kit (Qiagen, Valencia, CA). After 

quantifying using the GeneQuant™ 100 Spectrophotometer (GE Healthcare, UK), RNA 

sample and RNase-free water (Ambion Inc.) were added to 61.5 μL of master mix for a 

total of 100 μL. The master mix consisted of 2.5μL of Multi-Scribe reverse transcriptase, 

22 μL of 25 mM MgCl, 5 μl random hexamers, 2μL RNase inhibitor, 20 μl dNTPs, and 

10 μL of TaqMan reverse transcription buffer provided in the TaqMan Reverse 

Transcription Reagent Pack (Applied Biosystems, Foster City, CA). It was followed by 

https://ps-oxfordjournals-org.ezproxy.lib.purdue.edu/content/91/7/1542.full#T2
https://www.fishersci.com/shop/products/ge-healthcare-genequant-100-spectrophotometers-2/p-3679237
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reverse transcription using Techne TC-3000G PCR Thermal Cycler (Bibby Scientific 

Limited, UK) and amplification using StepOnePlus™ System (Applied Biosystems, 

Foster City, CA). The PCR mixture contained 1.625 μL of TaqMan probe, 2.25 μL of 

gene- specific TaqMan forward and reverse primers each, 12.5 μL of PCR Mastermix 

(Applied Biosystems), 3.875 μL RNase-free water, and 2.5 μL of sample cDNA. The 

cycling conditions were 50° C for 2 min and 95° C for 10 min of the holding stage, 

followed by 40 cycles of 95° C for 15 s, 60° C for 1 min. Results were quantitated by 

standard curve method. Standards were measured in triplicates unless duplicates had a 

standard deviation of less than 2.0 and a coefficient of variation less than 2.0%. 

2.3.8 CORT and H:L ratio 

Plasma samples were analyzed for CORT concentrations using a commercial kit 

(Arbor Assays LLC, MI). Blood smears were stained with Camco 3 step staining reagents 

(Cambridge Diagnostic, Inc., Fort Lauderdale, FL). The heterophils and lymphocytes 

were counted at 1,000× (oil immersion lens) until a total of 100 cells per slide was 

reached. The H:L ratio was calculated by dividing the number of heterophils by the 

number of lymphocytes (Cheng et al., 2001). The ratios from the 2 slides per pullet were 

averaged and the mean was used for the statistical analysis.  

2.3.9 Statistical Analysis 

The BW, egg production, % unmarketable egg, % cracked egg, % shell-less 

egg, % dirty egg, egg weight, eggshell strength, % shell, shell thickness, feed intake, and 

feed conversion were analyzed using a 2-way ANOVA with repeated measures over the 

age of the hen. The mixed model procedure of SAS 9.4 software was used (SAS Institute 

Inc., Cary, NC). Fixed effects included probiotic treatment and the hen's age. A one-way 

ANOVA was used for all other measures including the weekly cumulative cracked, shell-

less, and unmarketable eggs. BW was used as a covariate for bone mineralization and 

bone area (Steel et al., 1997). Transformation of data was performed for normality when 

variances were not homogeneous (Steel et al., 1997). Logarithmic transformation was 

performed for cecal microbial count, and arcsine square root transformation was 

performed for % unmarketable egg, % cracked egg, % shell-less egg, and % dirty egg. 

https://www.google.com/search?espv=2&biw=1280&bih=899&q=Foster+City+California&stick=H4sIAAAAAAAAAOPgE-LSz9U3MKoyzMkuUuIAsYtMi020tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUAcxXrNkQAAAA&sa=X&ved=0ahUKEwie7-msjILLAhXH9h4KHanRDIkQmxMIhgEoATAO
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Statistical trends were similar for both transformed and untransformed data; therefore, the 

untransformed least square means and SEM were presented, except for microbial 

analysis. The Tukey-Kramer test was used to partition differences among means. 

Statistical significance was set at P < 0.05. 

2.4 Results  

The concentrations of probiotic microorganisms in the probiotic-supplemented 

diets at the start and end of the experiment were similar to the targeted levels (Table 2.3). 

There was no probiotic treatment effect on BW, feed intake, feed conversion, egg 

weight, egg production, % dirty eggs, % cracked eggs, and shell quality traits (Table 2.4). 

No mortality occurred in the study. The percentage of unmarketable eggs (sum of cracked 

and shell-less eggs) was decreased in hens from both the 0.5X and 2.0X groups as 

compared to the controls (P = 0.02) with the reduction in % shell-less eggs, and 

uncracked eggs, being the main reason for this reduction (P = 0.05, Table 2.4). The % of 

unmarketable eggs laid by hens given the 1.0X probiotic treatment was intermediate in 

value, not differing from the other groups (Table 2.4). There was no probiotic treatment 

by age interaction for any parameter measured in the study. The percentages for the 

weekly cumulative shell-less eggs (Figure 2.1b) and unmarketable eggs (Figure 2.1c) 

were reduced by at least one-half in hens given probiotics as compared to control hens at 

64, 65, and 66 wk of age with no differences among treatments prior to 64 wk of age.  An 

age effect occurred only with BW. As expected, hens weighed more as they aged (1.47, 

1.48, and 1.51 kg at 60, 63, and 66 wk of age, respectively; P < 0.0001).  

In comparison to the control group, cecal Bifidobacterium spp. counts, but not 

Lactobacillus spp., were increased in all probiotic groups (P < 0.001, Figure 2.2) at 66 

wk of age.  

Increases in tibial and femoral mineral density and femoral mineral content (P = 

0.04, 0.03, and 0.02, respectively), with a concomitant trend for increases in humerus 

mineral density and tibial mineral content (P = 0.07 and 0.08, respectively), occurred in 

the 2.0X group as compared to the control group.  Bone mineralization values for the 

0.5X and 1.0X groups were intermediate between the control and 2.0X groups. Keel 
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mineralization, bone area, bone breaking force (Table 2.5), and the bone remodeling 

indicators of circulating OC, CTX, and Pi were similar among treatments (Figure 2.3).  

As the 2.0X group exhibited the greatest bone accrual effect as compared to the 

controls, it was chosen to further investigate the effects of the probiotic treatment on the 

serotonin system, immune cytokines, and indicators of stress. The cecal and plasma 5-HT  

and plasma TRP concentrations (Figure 2.4), monoamines and their metabolites of the 

raphe nuclei (Table 2.6) and the hypothalamus (Table 2.7), including DA, NE, EP, 

DOPAC, HVA, TRP, 5-HT, and 5HIAA were unaffected by treatment. Moreover, no 

differences were observed for plasma concentrations of cytokines, including pro-

inflammatory IL-1β, IL-6, IFN-γ and TNF-α as well as anti-inflammatory IL-10 (Figure 

2.5). In line with the plasma cytokine concentrations, similar mRNA expression of IL-1β, 

IL-6, and LITAF in the ceca tonsil occurred between the 2.0X group and controls (Figure 

2.6). Plasma concentrations of IgM, IgY, and IgA in the probiotic group were also 

comparable to the control group (Figure 2.7). With respect to the stress response, the 

probiotic supplementation did not affect the H:L ratio and plasma CORT concentrations 

(Figure 2.8). 

2.5 Discussion 

2.5.1 Performance 

Dietary probiotic inclusion was beneficial in decreasing unmarketable eggs (sum 

of cracked eggs and shell-less eggs) in aging hens of the present study. Similar decreases 

in unmarketable and shell-less eggs using a wide array of probiotics fed at different ages 

with multiple strains of laying hens have been reported (Balevi et al., 2001; Kurtoglu et 

al., 2004; Mikulski et al., 2012; Zhang et al., 2012; Abdelqader et al., 2013a, 2013b). For 

example, laying hens fed diets mixed with Pediococcus acidilactici (Mikulski et al., 

2012) or Bacillus subtilis (Abdelqader et al., 2013a, 2013b) or a multiple strain based 

probiotic (Mikulski et al., 2012; Zhang et al., 2012) showed reduced production of 

unmarketable eggs as compared to control hens fed no probiotic. Among these studies, 

Mikulski et al. (2012) additionally found an increase in shell thickness, specific gravity, 

and % shell in hens fed probiotic for 24 wk, whereas Zhang et al. (2012) failed to find 
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any difference in eggshell thickness when probiotic was fed to Lohman Pink hens for 8.6 

wk, similar to the results of the current study. The short duration of the current study (7 

wk) along with the study of Zhang et al. (2012) could be one reason for a lack of an effect 

on shell traits. The cumulative production of unmarketable eggs of the current study did 

not show a reduction until the last 3 wk of the 7 wk study (Figure 2.1c) suggesting that 

the beneficial bacteria in the probiotic supplement required time to establish themselves 

in the intestinal lumen before beneficial effects occurred. Other studies have reported 

improvements in shell traits such as thickness, strength, density, weight, etc., as a result 

of feeding probiotics for 47 wk (Panda et al., 2003), 16 wk (Panda et al., 2008), 39 wk 

(Gallazzi et al., 2008), and 8 wk (Lei et al., 2013).  However, there are many studies 

reporting that probiotics have no effect on shell quality traits in laying hens (Nahashon et 

al., 1994; Haddadin et al., 1996; Yoruk et al., 2004; Hayirli et al., 2005; Mahdavi et al., 

2005; Li et al., 2006; Applegate et al., 2009; Aghaii et al., 2010; Yalcin et al., 2010; 

Ribeiro et al., 2014). In addition to length of time the probiotic supplement is fed, 

variations in microbial strain content and dose, the genetics and age of the hens, and 

environmental conditions such as ambient temperature are factors that can influence the 

outcome of experiments.  

An age-induced increase of unmarketable eggs in laying flocks is common due to 

the reduction in eggshell quality (Zita et al., 2012; Roberts et al., 2013) resulting from 

age-associated changes in hormone profile (Bar et al., 1999; Wistedt et al., 2014), 

including decreased sensitivity to reproductive hormones and diminished calcium 

absorption efficiency (Bar et al., 1999; Hansen, 2002). Therefore, it is reasonable to 

hypothesize that aging hens with poor shell quality may be more responsive to probiotics 

in improving shell traits than younger hens. For example, Abdelqader et al. (2013b) 

reported a decrease in unmarketable eggs accompanied by improved eggshell weight, 

thickness, and density in aged Lohmann Leghorns fed Bacillus subtilis. Aging laying 

hens can respond to increased levels of dietary calcium by placing more Ca in the shell as 

indicated by increased eggshell thickness as well as reduced broken and shell-less egg 

percentage (Safaa et al., 2008). The production of short chain fatty acids through 

fermentation by intestinal microbiota decreases the pH of the intestinal lumen creating an 

acidic environment that facilitates the ionization of minerals such as Ca leading to 
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improved absorption (Haddadin et al., 1996). Specifically, the reduction in the pH of the 

intestines caused by enhanced microbial fermentation converts water-insoluble calcium 

to its soluble, ionic form (Remesy et al., 1993) increasing calcium bioavailability and 

retention in egg laying strains of chickens (Abdelqader et al., 2013a). A variety of 

microbial species fed for varying lengths of time to a wide array of egg laying strains of 

chickens of different ages have shown improvements in egg production (Haddadin et al., 

1996; Panda et al., 2003; Kurtoglu et al., 2004; Yoruk et al., 2004; Gallazzi et al., 2008; 

Panda et al., 2008; Aghaii et al., 2010; Yalcin et al., 2010; Zhang et al., 2012; Abdelqader 

et al., 2013a, 2013b; Lei et al., 2013; Zhang and Kim, 2013; Ribeiro et al., 2014). As an 

example, Lohman white hens consuming Bacillus subtilis at doses of 0.5 and 1 g/kg of 

feed from 64 to 73 wk of age exhibited an increase in egg production in a dose dependent 

matter. Hens responded with increased egg production as early as the 3rd and 6th wk of 

feeding the high and low dose of Bacillus subtilis, respectively (Abdelqader et al., 

2013b). However, for reason already stated with respect to shell traits, there are several 

studies, including the current one, reporting no improvement in egg production in hens 

supplemented with probiotics (Balevi et al., 2001; Davis and Anderson, 2002; Mahdavi et 

al., 2005; Applegate et al., 2009; Ramasamy et al., 2009; Capcarova et al., 2010; 

Mikulski et al., 2012; Salma et al., 2012).  

Numerous studies have reported an increase in egg weight when hens are given 

probiotics in their feed (Nahashon et al., 1994; Davis and Anderson, 2002; Ramasamy et 

al., 2009; Yalcin et al., 2010; Mikulski et al., 2012; Abdelqader et al., 2013a; Ribeiro et 

al., 2014). For example, hens consuming a mixture of different microbial species laid 

eggs that were 0.6 g heavier than that of control laying hens causing the weight grade to 

shift from medium to extra-large eggs (Davis and Anderson, 2002). However, there are 

many studies, similar to the current one, where egg weight was not affected by probiotic 

supplementation (Haddadin et al., 1996; Balevi et al., 2001; Panda et al., 2003; Kurtoglu 

et al., 2004; Yoruk et al., 2004; Mahdavi et al., 2005; Li et al., 2006; Gallazzi et al., 2008; 

Panda et al., 2008; Applegate et al., 2009; Aghaii et al., 2010; Lei et al., 2013). Egg 

production improved in all but 4 of the above studies (Balevi et al., 2001; Mahdavi et al., 

2005; Li et al., 2006; Applegate et al., 2009). An explanation for these results may be due 
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to the negative correlation between egg production and egg weight (Du Plessis and 

Erasmus, 1972; Zeidler, 2002). 

Feed efficiency is often improved when hens consume probiotics (Haddadin et al., 

1996; Balevi et al., 2001; Kurtoglu et al., 2004; Yoruk et al., 2004; Hayirli et al., 2005; Li 

et al., 2006; Gallazzi et al., 2008; Panda et al., 2008; Aghaii et al., 2010; Yalcin et al., 

2010; Mikulski et al., 2012; Zhang et al., 2012; Abdelqader et al., 2013a, 2013b). Feed 

efficiencies in other studies, like the current one, were similar (Davis and Anderson, 

2002; Panda et al., 2003; Mahdavi et al., 2005; Lei et al., 2013; Ribeiro et al., 2014) or 

worse (Nahashon et al., 1994) in hens due to the consumption of supplemental probiotics 

as compared to hens fed a control diet.  

Inhibiting the growth of pathogens within the intestines (Jin et al., 1996; Fulton et 

al., 2002) and altering the intestinal flora (Netherwood et al., 1999; Jadamus et al., 2001) 

towards non-pathogenic facultative anaerobic and Gram positive bacteria that generate 

hydrogen peroxide and lactic acid and may contribute to improvements in feed efficiency 

(Ehrmann et al., 2002). As mentioned with Ca, improved nutrient availability and 

utilization can contribute to improved feed conversion (Schneitz et al., 1998; Jin et al., 

2000).  

2.5.2 Bone health 

Previous studies, including the current study, reported that probiotics with various 

strains of bacteria have positive effects on skeletal health in both broiler chickens and 

laying hens (Mutus et al., 2006; Panda et al., 2006; Houshmand et al., 2011; Ziaie et al., 

2011; Wideman et al., 2012; Abdelqader et al., 2013b; Fuentes et al., 2013; Sadeghi, 

2014). A possible mode of action could involve modulation of calcium metabolism and 

bone remodeling cells. For example, short chain fatty acids, a major product of anaerobic 

bacterial fermentation in the intestine, regulate bone remodeling directly through 

inhibiting osteoclast formation and activating the bone-forming osteoblasts (Iwami and 

Moriyama, 1993) and indirectly through increased intestinal absorption of minerals 

(Scholz-Ahrens et al., 2007; Yonezawa et al., 2007; Legette et al., 2012). Although cecal 

short chain fatty acids concentrations were not measured in the current study, increased 

cecal propionate, butyrate, and total short chain fatty acids concentrations occurred in 
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broilers using the same probiotic product of the current study (Murugesan and Persia, 

2015). However, the lack of a probiotic effect on the bone remodeling indicators of 

circulating OC, CTX, and Pi in hens of the current study provided no indication of 

possible modes of action of probiotics in improving bone mineralization. Because EDTA 

was used as the anticoagulant when collecting blood samples, Ca was not measured as 

EDTA interferes with the assay. 

2.5.3 Cecal microbial composition 

Cecal microbiota composition was modified in hens of the present study as 

indicated by the expected increase in Bifidobacterium spp. population in all of the 

probiotic treatment groups compared with the control group (Figure 2.2). However, the 

concentrations of Lactobacillus spp. were not affected by probiotic supplementation. Our 

results are comparable to studies on broilers at 42 d of age using the same probiotic 

product (Giannenas et al., 2012; Mountzouris et al., 2015); although some studies 

reported an increase in the counts of both Bifidobacterium spp. and Lactobacillus spp. 

(Mountzouris et al., 2007; Mountzouris et al., 2010).  

Bifidobacterium spp. produce a wide range of metabolites in the intestines 

including vitamins (Deguchi et al., 1985; Hou et al., 2000; Crittenden et al., 2003), short 

chain fatty acids (Wang et al., 2007), and conjugated linoleic acid (Coakley et al., 2003; 

Coakley et al., 2006; Barrett et al., 2007). Bifidobacterium also inhibits the secretion of 

pro-inflammatory cytokines (Drago et al., 2015). Similar to short chain fatty acids, 

conjugated linoleic acid (Drago et al., 2015), vitamins (Weber, 1999), and folate 

(Hancock and Viola, 2001) are involved in calcium metabolism and are required for bone 

matrix formation and bone accretion. In the current study, increased Bifidobacterium spp. 

may lead to increased calcium absorption, which may in turn lead to the improvement in 

bone health.  

2.5.4 The possible mechanisms  

To further elucidate the possible mechanisms of how probiotics promotes bone 

health, we measured metabolites involved in the 5-HT system, the stress response, and 

immune cytokines, all of which regulate bone health (Charles et al., 2015). Only the 2.0X 
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group among the probiotic treatments was selected for further investigation as it showed 

the greatest bone benefits. Our hypothesis was that dietary probiotics fed to laying hens 

would reduce cecal 5-HT, pro-inflammatory cytokines and indicators of stress and 

enhance brain 5-HT. Our hypothesis was rejected as none of these parameters were 

affected by probiotic treatment. 

2.5.4.1 The 5-HT system 

In the intestinal tract, enterocytes together with goblet cells, Paneth cells, and 

enteroendocrine cells (including 5-HT secreting enterochromaffin cells) constitute the 

intestinal mucosal epithelia that directly or indirectly interacts with gut microbes (Kim 

and Ho, 2010). Therefore, it is reasonable to explore whether gut-derived 5-HT is 

affected by supplementary probiotics. To determine if peripheral serotonergic system 

plays a role in the probiotic related upregulation of bone mineralization in White Leghorn 

laying hens, we first determined the 5-HT level in plasma, which functions directly to 

reduce bone mass via binding to its receptors in bone (Yadav et al., 2010). We found 

probiotic fed laying hens had similar concentrations of plasma 5-HT compared to the 

hens from the control group. We further measured 5-HT concentrations in the ceca tissue, 

where 5-HT is synthesized and released into the systemic circulation. Again, no 

differences in cecal 5-HT concentrations were found between these 2 groups. The source 

of blood 5-HT is the ceca, so a similar pattern in 5-HT concentrations in circulation and 

the cecal tissue were expected. These data suggest that the increase in bone 

mineralization in probiotic fed hens was not caused by the peripheral 5-HT system. In 

line with the current study, altered serum 5-HT level was also excluded as a main cause 

of high bone mass in a study conducted in GF mice (Sjogren et al., 2012). Because a lack 

of intestinal microbiota causes an increase in bone mass in GF mice, it was used as a 

model to elucidate the mechanisms of action of gut microbiota on bone. Compared to 

conventional mice, GF mice exhibited higher bone mass with a concomitant reduction in 

both serum 5-HT concentrations and colon mRNA expression of TPH1, an enzyme 

needed for 5-HT synthesis. In addition, the expression of SERT was also increased in the 

colon. However, when bone mass of GF mice was normalized by colonization with gut 

microbiota from donor mice, serum 5-HT concentrations did not change.  
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Recent advances in understanding how gut microbiota regulates brain function 

through the gut-brain axis have pointed to a critical role of 5-HT in this regulation 

(O'Mahony et al., 2015). Brain-derived 5-HT can stimulate bone mass accrual via binding 

to 5-HT2C receptor on ventromedial hypothalamic neurons, which modulates sympathetic 

tone and in turn regulates both bone formation and bone resorption (Yadav et al., 2009). 

Dietary probiotic supplementation may regulate the central 5-HT system via the gut-brain 

axis, thus promoting bone mass in laying hens. To investigate if the central 5-HT was 

affected in probiotic fed laying hens, we first measured plasma TRP concentrations. Free 

TRP, as the precursor of 5-HT, can cross the blood-brain barrier and be metabolized to 5-

HT in the brain neurons via TPH2. In the current study, group 2.0X hens fed probiotics 

exhibited similar plasma TRP concentrations to the control hens. The concentrations of 

monoamines and their metabolites were further measured in the raphe nuclei and the 

hypothalamus. The raphe nuclei is the major site of 5-HT synthesis in the brain, whereas 

the hypothalamus is the site where 5-HT binds to its receptors to initiate its regulation of 

bone via the sympathetic system. There were no difference of 5-HT and 5-HT turnover at 

both brain areas. In addition, catecholamine concentrations of NE, EP, and DA were not 

affected by probiotic supplementation, indicating similar sympathetic activities between 

treatment groups. In contrast to our findings, alteration of brain 5-HT metabolism were 

reported in GF animals and animals fed probiotics (Desbonnet et al., 2010; Diaz Heijtz et 

al., 2011; Liu et al., 2016). These studies, however, were not designed to investigate the 

effect of microorganisms on bone health but on behavior and stress response instead. For 

example, GF mice displayed increased motor activity and reduced anxiety, associated 

with increased NE, DA, and 5-HT turnover in the striatum (Diaz Heijtz et al., 2011). Rats 

with maternal separation showed an increase in immobility and a decrease in swimming 

behavior in forced swimming test. Supplementation of Bifidobacteria infantis to these 

rats attenuated the behavioral changes and reduced 5-HIAA concentration in the frontal 

cortex (Desbonnet et al., 2010). A recent study also reported that Lactobacillus 

plantarum normalized both stress-like and anxiety-like behaviors, with elevated 5-HT 

concentrations and decreased 5-HIAA concentrations in the prefrontal cortex, in both 

normal mice and mice subjected to early life stress (Liu et al., 2016).  
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2.5.4.2 The immune system 

Numerous evidence has demonstrated the important role of cytokines in 

regulating bone mass (Lorenzo et al., 2008), making it one of the major themes in 

pursuing the proposed mechanisms of how the intestinal microbiome influences bone 

biology.  Our results showed that dietary probiotic inclusion in hens did not lead to 

changes in immune cytokines in both blood and the ceca tonsil. Whether cytokines were 

altered in the bone of probiotic fed hens remains to be determined. Most studies on the 

effect of probiotics on bone physiology and health have been conducted in rats and mice 

under different pathophysiological conditions. Among them, a number of research groups 

have attributed the bone accrual function of probiotics to cytokine regulation. For 

example, oral Saccharomyces cerevisiae administration, alone or with standard therapy, 

led to reduced alveolar bone loss, associated with decreased pro-inflammatory cytokines 

concentrations of TNF-α and IL-1β as well as increased anti-inflammatory cytokine IL-

10 concentrations (Garcia et al., 2016). In a type 1 diabetes-mediated bone loss model, 

Lactobacillus reuteri inhibited bone loss and rescued the TNF-α induced down-regulation 

of Wnt10b in whole bone and osteoblasts (Zhang et al., 2015). Moreover, the anti-TNF-α 

activity of Lactobacillus reuteri given to healthy mice reduced bone resorption (McCabe 

et al., 2013). Going back to the model of GF mice with high bone mass that lack gut 

microbiota, these mice also have reduced CD4+ T helper cells as well as expression of 

the osteolytic cytokine of TNF-α in the colon and bone. It was hypothesized that a 

decrease in the expression of inflammatory cytokines such as TNF-α leads to fewer 

osteoclasts causing bone mass to increase in GF mice. This hypothesis was supported by 

the fact that colonizing GF mice with gut microbiota from donor mice caused bone mass 

to normalize and increased the CD4+ T cells and expression of TNF-α in bone and the 

colon (Sjogren et al., 2012).  

Probiotic inclusion in the diet stimulates humoral immunity. Probiotics induce 

production of B-cell activating factor, such as TGF-β, in the intestinal epithelial cells and 

dendritic cells, which in turn promotes the differentiation of B cells into IgA producing 

plasma cells. Furthermore, IgA producing plasma cells can traffic from the intestinal 

lymphoid tissue to the bloodstream through the lymphatics in mammals (Praharaj et al., 

2015). Plasma immunoglobulin concentrations of IgM, IgY, and IgA of the current study 
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were unaffected by dietary probiotics in unchallenged hens, similar to results in humans 

(Wen et al., 2014; Mansouri-Tehrani et al., 2015). Other studies reported an increase in 

antibody concentrations regardless of vaccination or disease in chickens (Brisbin et al., 

2011; Surono et al., 2014; Salehimanesh et al., 2016) consuming probiotics. 

2.5.4.3 The stress response 

Excessive CORT is well known to decrease bone mass through inhibition of 

osteoblastogensis, increasing osteoblast and osteocyte apoptosis, and promoting 

osteoclast survival (O'Brien et al., 2004; Jia et al., 2006; Rauch et al., 2010). Probiotics 

alleviate the stress response along the HPA axis by reducing plasma or brain 

concentrations of CRH, ACTH, and CORT (Sohail et al., 2010; Ait-Belgnaoui et al., 

2012; Sohail et al., 2012; Ait-Belgnaoui et al., 2014; Yang et al., 2016). In these studies, 

stressors were applied such as heat or psychological factors. The laying hens in the 

current study were raised under normal management and were not subjected to stressors, 

so it is not surprising that plasma CORT concentrations and H:L ratios were unaffected 

by the probiotic treatment. Under stressful conditions, the hens consuming probiotics 

may have responded with reduced circulating concentrations of CORT as well as H: L 

ratios.  

2.6 Conclusions 

The present study demonstrated that dietary probiotic inclusion that increased the 

cecal population of Bifidobacterium spp. provided beneficial effects to aging White 

Leghorn laying hens that included a reduction in the production of unmarketable eggs 

and improved bone mineralization. The possible modes of action of improving bone 

mineralization and increasing saleable eggs do not appear to be through the modulation 

of the peripheral and central 5-HT system, immune cytokines, or CORT. Because the 

probiotic supplement used in the current study was multi-species, investigating the 

mechanisms of probiotic on bone biology may be more difficult as compared to using a 

single strain of beneficial bacteria. Therefore, future studies evaluating the role of 5-HT 

in probiotic associated bone improvement should use a single-species probiotic. In 
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addition, extending the length of time the probiotic is fed to laying hens may facilitate 

detecting a bone remodeling response. 
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Table 2.1 Composition and nutrient analysis of the layer diet 

Item Amount 

Ingredient (%)  

Corn  54.27 

Soybean Meal (48% crude protein) 29.54 

Soybean Oil 3.91 

Salt 0.41 

DL Methionine 0.19 

Limestone 10.42 

Monocalcium phosphorus  0.83 

Mold inhibitor 1 0.05 

Antioxidant2 0.03 

Vitamin and mineral premix3 0.35 

Calculated analysis  

Crude protein (%) 18.30 

ME (MJ/kg) 12.09 

Calcium (%) 4.20 

Phosphorus (%) 0.53 

Lys (%) 1.01 

Met (%) 0.48 
1Myco curb Dry: propionic acid, sodium hydroxide, calcium hydroxide, amorphous 

silicon dioxide, sorbic acid, benzoic acid, propylparaben, methylparaben, and BHA. 
2Ethoxyquin. 
3The premix supplied per kg of diet: vitamin A, 12,320 IU; vitamin D3, 4,620 IU; vitamin 

E, 15.4 IU; vitamin K, 3.08 mg; riboflavin, 6.16 mg; niacin, 46.2 mg; vitamin B12, 23.1 

mg; pantothenic acid, 15.4 mg; folic acid, 0.31 mg; choline, 401 mg; iron, 50.4 mg; zinc, 

71 mg; manganese, 90 mg; copper, 7 mg; iodine, 0.7 mg; and selenium, 0.25 mg. 
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Table 2.2 Taqman primers and probes used 

Gene1 Primers and Probe (5'-3')2 
Application 
Efficiencies 

(%) 

Product 
Length 

(bp) 

Reference/ 

Accession no. 

IL-1β 

(f)TGCTGGTTTCCATCTCGTATGTAC 
(r)CCCAGAGCGGCTATTCCA 

(p)AGTACAACCCCTGCTGCCCCGC 

(VIC/MGB) 

95 80 NC_006096.3 

IL-6 

(f)CCCGCTTCTGACTGTGTTT 
(r)GCCGGTTTTGAAGTTAATCTTTT 

(p)TGTGTTTCGGAGTGCTTT 

(VIC/MGB) 

86 139 NC_006089.3 

LITAF 

(f)CCCCTACCCTGTCCCACAA 

(r)ACTGCGGAGGGTTCATTCC 

(p)CTGGCCTCAGACCAG (VIC/MGB) 

75 62 NC_006101.3 

IL-1β = interleukin 1 beta mRNA; IL-6 = interleukin 6 mRNA; LITAF = 

lipopolysaccharide-induced TNF factor mRNA. 
1Gene expression reported in relative abundance to GAPDH. 
2f = forward primer; r = reverse primer; p = probe 

  

http://www.ncbi.nlm.nih.gov/nucleotide/358485503?report=genbank&log$=nucltop&blast_rank=2&RID=61VM2DE5013
http://www.ncbi.nlm.nih.gov/nucleotide/358485510?report=genbank&log$=nucltop&blast_rank=1&RID=5N922GCB013
http://www.ncbi.nlm.nih.gov/nucleotide/358485498?report=genbank&log$=nucltop&blast_rank=1&RID=5N942C9C013
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Table 2.3 The targeted concentrations of probiotic microorganisms and the actual 

concentrations in feed samples collected at the beginning and end of the experiment 

Treatment 
Targeted 

(cfu/g feed) 

Beginning 

(cfu/g feed) 

End 

(cfu/g feed) 

Control 0 0.02 x 105 0.04 x 105 

0.5X 1.0 x 105 1.11 x 105 0.95 x 105 

1.0X 2.0 x 105 2.04 x 105 1.87 x 105 

2.0X 4.0 x 105 4.05 x 105 3.80 x 105 

The duration between beginning and end was 7 wk. 
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Table 2.4 The effects of dietary supplementation of a probiotic on the 

performance traits of White Leghorn hens 

a,b Least square means within a row lacking a common superscript differ (P < 0.05). 
1Values for BW represent the least square means averaged over 3 ages of the hen at 60, 

63, and 66 wk of age. The number of observations per least square mean is 72. 
2Values for feed intake, feed conversion rate, and egg weight were determined over a 3-d 

period and averaged by cage over 4 ages of the hen at 60, 62, 64, and 66 wk of age. The 

number of observations per least square mean is 24. 
3Values for hen-d egg production and the proportion of dirty egg, shell-less egg, and 

cracked egg were calculated on a weekly basis. Unmarketable eggs are the sum of 

cracked and shell-less eggs. The number of observations per least square mean is 42. 
4Values for % shell, eggshell thickness and strength were determined over 4 ages of the 

hen at 60, 62, 64, and 66 wk of age. The number of observations per least square mean is 

96. 
5 The probiotic dosage was 0 (Control), 0.5 (0.5X), 1.0 (1.0X), or 2.0 (2.0X) g/kg of feed.  

  

Parameter 
Treatment5 

SEM P 
Control 0.5X 1.0X 2.0X 

BW (kg)1 1.52 1.48 1.48 1.47 0.01 0.36 

Feed intake (g)2 104.92 101.26 106.30 102.61 0.72 0.21 

Feed conversion 

(kg of feed/kg of eggs)2 
1.85 1.89 1.76 1.87 0.03 0.59 

Egg weight (g)2 65.19 62.71 64.69 63.90 0.33 0.18 

Egg production (%)3 91.44 88.12 93.26 88.21 0.91 0.30 

Dirty eggs (%)3 1.13 0.85 1.59 1.78 0.17 0.37 

Cracked eggs (%)3 2.24 0.48 1.53 0.82 0.28 0.30 

Shell-less eggs (%)3 3.49a 1.51ab 1.35ab 1.09b 0.26 0.05 

Unmarketable eggs (%)3 5.73a 2.00b 2.87ab 1.92b 0.37 0.02 

% Shell4 8.12 8.29 7.96 8.19 0.06 0.45 

Eggshell thickness (mm)4 0.33 0.33 0.32 0.33 0.002 0.71 

Eggshell strength (kg)4 3.24 3.23 3.05 3.28 0.05 0.53 
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Table 2.5 The effects of dietary supplementation of a probiotic on the bone 

mineral density, mineral content, area, and breaking force of bones retrieved from 66-wk-

old White Leghorns1 

Parameter 
Treatment2 

SEM P3 
Control 0.5X 1.0X 2.0X 

Bone mineral density      

Tibia (g/cm2) 0.1912b 0.2018ab 0.1978ab 0.2034a 0.001  0.04 

Femur (g/cm2) 0.1931b 0.2048ab 0.2023ab 0.2100a 0.002  0.03 

Humerus (g/cm2) 0.1069B 0.1102AB 0.1124AB 0.1136A 0.001  0.07 

Keel (g/cm2) 0.1109 0.1122 0.1164 0.1138 0.001  0.30 

Bone mineral content       

Tibia (g) 2.2463B 2.3495AB 2.3498AB 2.3556A 0.02  0.08 

Femur (g) 1.7068b 1.8304ab 1.8259ab 1.8597a 0.02  0.02 

Humerus (g) 1.0441 1.0698 1.0966 1.1048 0.008  0.11 

Keel (g) 0.6880 0.7067 0.7312 0.7178 0.008  0.50 

Bone area       

Tibia (cm2) 11.75 11.65 11.90 11.58 0.04  0.16 

Femur (cm2) 8.72 8.97 8.99 8.84 0.04  0.16 

Humerus (cm2) 9.77 9.69 9.77 9.72 0.04  0.92 

Keel (cm2)  6.37 6.32 6.26 6.29 0.06  0.88 

Bone breaking force       

Tibia (N)  394.60 398.11 347.35 412.03 9.30  0.21 
A, B Least square means within a row lacking a common superscript tend to differ (P < 

0.1). 
a,b Least square means within a row lacking a common superscript differ (P < 0.05). 
1The number of observations per least square mean is 24. 

2 The probiotic dosage was 0 (Control), 0.5 (0.5X), 1.0 (1.0X), or 2.0 (2.0X) g/kg of feed. 
3BW was used as a covariate except for keel bone area and tibia breaking force. 
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Table 2.6 The effects of dietary supplementation of a probiotic on catecholamine, 

5-HT, metabolites, and turnover in the raphe nuclei of 66-wk-old White Leghorns1 

Parameter 
Treatment2 

SEM P 
Control 2.0X 

Catecholamine system     

DA (ng/g) 250.78 268.25 15.76  0.76 

NE (ng/g) 1075.45 1214.42 60.21  0.52 

EP (ng/g) 240.64 258.28 12.64  0.70 

DOPAC (ng/g) 43.36 47.32 2.04  0.59 

HVA (ng/g) 94.74 101.88 7.54  0.79 

DOPAC/DA 0.20 0.21 0.02  0.94 

HVA/DOPAC 1.68 1.76 0.04  0.54 

5-HT system     

TRP (ng/g) 3272.42 3839.35 109.89  0.17 

5HT (ng/g) 618.95 763.60 49.44  0.42 

5HIAA (ng/g) 171.58 207.42 6.86  0.16 

5HIAA/5HT 0.29 0.30 0.01  0.92 
1The number of observations per least square mean is 6. 
2The probiotic dosage was 0 (Control) or 2.0 (2.0X) g/kg of feed. 
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Table 2.7 The effects of dietary supplementation of a probiotic on catecholamine, 

5-HT, metabolites, and turnover in the hypothalamus of 66-wk-old White Leghorns1 

Parameter 
Treatment2 

SEM P 
Control 2.0X 

Catecholamine system    

DA (ng/g) 376.45 335.41 11.83  0.34 

NE (ng/g) 2520.88 2163.81 64.18  0.14 

EP (ng/g) 654.42 548.75 30.68  0.34 

DOPAC (ng/g) 115.50 107.59 2.39  0.36 

HVA (ng/g) 192.75 185.84 2.22  0.39 

DOPAC/DA 0.31 0.33 0.008  0.56 

HVA/DOPAC 2.11 2.10 0.09  0.97 

5-HT system     

TRP (ng/g) 3524.07 3487.84 76.60  0.89 

5HT (ng/g) 1329.86 1219.37 32.31  0.35 

5HIAA (ng/g) 268.94 257.27 5.58  0.56 

5HIAA/5HT 0.21 0.21 0.004  0.78 
1The number of observations per least square mean is 6. 
2The probiotic dosage was 0 (Control) or 2.0 (2.0X) g/kg of feed. 
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Figure 2.1 The weekly production of unmarketable eggs (c) which is the sum of 

shell-less (b) and cracked eggs(a) in hens fed with probiotic from 60 to 66 wk of age 

The probiotic dosage was 0 (Control), 0.5 (0.5X), 1.0 (1.0X), or 2.0 (2.0X) g/kg of feed. 

Least square means ± the SEM within the age of a hen lacking common superscripts 

differ (P < 0.05). The average number of observations per least square mean is 6.  
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Figure 2.2 The cecal microbial count of Bifidobacterium (a) and Lactobacillus (b) 

in hens supplied with a probiotic at 66 wk of age 

The probiotic dosage was 0 (Control), 0.5 (0.5X), 1.0 (1.0X), or 2.0 (2.0X) g/kg of feed.  

Least square means ± the SEM lacking common superscripts differ (P < 0.05). The 

number of observations per least square mean is 24.  
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Figure 2.3 The plasma bone remodeling indicator OC (a) and CTX (b) and 

phosphate (c) concentrations in hens supplied with a probiotic at 66 wk of age 

The probiotic dosage was 0 (Control) or 2.0 (2.0X) g/kg of feed. The average number of 

observations per least square mean is 6. 
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Figure 2.4 The cecal (a) and plasma (b) 5-HT and plasma TRP (c) in hens 

supplied with a probiotic at 66 wk of age  

The probiotic dosage was 0 (Control) or 2.0 (2.0X) g/kg of feed. The average number of 

observations per least square mean is 6. 
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Figure 2.5 The plasma concentrations of immune cytokines in hens supplied with 

a probiotic at 66 wk of age  

The probiotic dosage was 0 (Control) or 2.0 (2.0X) g/kg of feed. The average number of 

observations per least square mean is 6. 
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Figure 2.6 The ceca tissue immune cytokines expression in hens supplied with a 

probiotic at 66 wk of age 

The probiotic dosage was 0 (Control) or 2.0 (2.0X) g/kg of feed. The average number of 

observations per least square mean is 6. 
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Figure 2.7 The plasma immunoglobulin concentrations of Ig M (a), Ig Y (b), and 

Ig A (c) in hens supplied with a probiotic at 66 wk of age  

The probiotic dosage was 0 (Control) or 2.0 (2.0X) g/kg of feed. The average number of 

observations per least square mean is 6. 
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Figure 2.8 The H:L ratio (a) and plasma CORT (b) concentrations in hens 

supplied with a probiotic at 66 wk of age 

The probiotic dosage was 0 (Control) or 2.0 (2.0X) g/kg of feed. The average number of 

observations per least square mean is 6. 
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CHAPTER 3. EFFECTS OF A BACILLUS SUBTILIS BASED 

PROBIOTIC ON BONE HEALTH IN BROILERS 

3.1 Abstract 

The objective of this study was to determine the effect of dietary supplementation 

of probiotic, a Bacillus subtilis based probiotic, on broiler bone health. One hundred and 

twenty 1-d-old Ross 708 chicks were assigned to 24 floor pens based on their BW. The 

pens were evenly divided into 2 groups (n = 12). One group was fed a control diet, and 

another group was fed a diet mixed with a commercial probiotic (250 ppm, 1 x 106 cfu/g 

of feed) for 6 wk. Compared to controls, the tibias and femurs of probiotic fed broilers 

had greater bone mineralization, wall thickness, size, and weight at 43 d of age (P < 

0.05). Concomitantly, serum Ca concentrations were increased by probiotic at 14 d of 

age; whereas a trend of lower serum CTX concentrations (P = 0.08), a bone resorption 

indicator, occurred in 43-d-old broilers consuming probiotic. In addition, 5-HT 

concentrations were increased in the raphe nuclei, whereas NE and DA concentrations 

were decreased in the hypothalamus of broilers fed probiotic at 43 d of age (P = 0.04, 

0.03, and 0.02, respectively). No differences in plasma concentrations of pro-

inflammatory cytokines (IL-6, TNF-α, and IFN-γ), anti-inflammatory cytokine (IL-10), 

5-HT, and TRP were observed (P > 0.05). These results indicate that dietary 

supplementation of a Bacillus subtilis based probiotic improved broiler bone traits, most 

likely through increased Ca intestinal absorption and also perhaps through reduced bone 

resorption mediated by 5-HT induced reduction of sympathetic activity. Dietary probiotic 

supplementation may be a useful strategy for improving skeletal health and welfare in 

broilers. 

3.2 Introduction 

Skeletal disorders are common in domesticated poultry. Due to its negative effects 

on the locomotor system, resulting in impaired mobility or lameness, leg disorders in 

broilers and turkeys are a serious economic loss to the commercial poultry meat industry. 

Over 27.6% of broilers are estimated to exhibit poor locomotion in the United Kingdom 
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(Knowles et al., 2008), with a range from 14.1% to 30.1% in other European countries 

(Sanotra et al., 2001; Sanotra et al., 2003). Selection for rapid growth rates and greater 

breast meat deposition is a likely contributor to lameness (Talaty et al., 2009). The effects 

of an uneven load and overweight on developing bones results in a high incidence of leg 

abnormalities causing lameness (Kestin et al., 2001). When adjusted for BW, fast-

growing broilers had lower tibia density and percentage of bone ash than slow-growing 

broilers (Shim et al., 2012) as a consequence of less mineralization and higher porosity 

(Williams et al., 2004).  

The effect of serotonin (also known as 5-HT) on bone is dependent on its source. 

Serotonin is synthesized in the brain as well as peripherally. Brain serotonin, acting as a 

neurotransmitter, stimulates bone formation and inhibits bone resorption causing an 

increase in bone mass, whereas peripheral serotonin, acting as a hormone, has the 

opposite effect resulting in inhibition of bone formation (Ducy and Karsenty, 2010). The 

majority (95%) of serotonin is found in the periphery (El-Merahbi et al., 2015). Serotonin 

produced in the brain cannot cross over into the blood (Mann et al., 1992), creating 2 

independent sources with independent functions. Gut-derived 5-HT that directly regulates 

bone metabolism is dependent on its receptors. Specifically, when the 5-HT1B receptor is 

blocked, bone mass, the number of osteoblasts, and bone formation are increased. Yadav 

et al. (2008) revealed the inhibitory effect of 5-HT on osteoblast proliferation through 5-

HT1B receptor, as 5-HT1B-/- mice displayed increased bone mass and bone osteoblast 

numbers. Intracellular serotonin is essential in osteoclast differentiation (Battaglino et al., 

2004). Bone resorption in Tph1-/- (the key 5-HT synthesis enzyme in the gut) mice were 

markedly decreased, whereas addition of serotonin rescued osteoclastogenesis in bone 

cultures from Tph1-/- mice (Chabbi-Achengli et al., 2012). These results may explain, at 

least partially, why patients treated with some antipsychotic drugs, e.g., serotonin 

reuptake inhibitors, have low bone mass of the hips and a high risk of osteoporotic 

fractures (Gebara et al., 2014).  

The sympathetic nervous system has also been known to negatively regulate bone 

mass via β2-adrenergic receptors expressed on osteoblasts and osteocytes (Elefteriou et 

al., 2005; Bonnet et al., 2008a; Kajimura et al., 2011). Upon activation, sympathetic 

nerves release NE which binds to β2-adrenergic receptors. The stimulated β2-adrenergic 
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receptors on osteoblasts subsequently trigger a series of signaling pathways leading to 

inhibition of osteoblast proliferation (Fu et al., 2005) and an increase in osteoclast 

formation (Bonnet et al., 2005; Bonnet et al., 2007; Niedermair et al., 2014). Brain-

derived 5-HT stimulates bone mass accrual through reduction in sympathetic activity by 

binding to 5-HT2C receptors on the ventromedial hypothalamic neurons (Yadav et al., 

2009). 

Probiotics are live microorganisms which confer health benefits, including 

improvements in bone (Scholz-Ahrens et al., 2007; Parvaneh et al., 2014; mccabe et al., 

2015), on the host when administered in appropriate amounts (FAO/WHO, 2001). Few 

studies have directly tested the possible mode of actions underlying bone remodeling of 

probiotics, although some mechanisms have been proposed including nutrient 

acquisition, immune regulation, and hormonal regulation (Charles et al., 2015; mccabe et 

al., 2015; Ohlsson and Sjogren, 2015; Weaver, 2015; Hernandez et al., 2016). Serotonin 

has also been proposed to be one of the possible mechanisms involved in probiotic-based 

improvement of bone (Charles et al., 2015; mccabe et al., 2015). However, no study has 

been conducted to determine the effect of probiotics on bone fitness and the possible role 

of serotonin in broilers. The objective of the present experiment was to investigate the 

effect and mechanism of a Bacillus subtilis based probiotic on broiler bone health. We 

hypothesized that probiotic supplementation would improve bone traits in broilers 

through regulating mineral bioavailability, synthesis and release of 5-HT, sympathetic 

activity, immune cytokines, or combinations thereof.  

3.3 Materials and Methods 

3.3.1 Birds, Management, and Sample Collection 

A total of one hundred and twenty d-old Ross 708 male broiler chicks were 

obtained from a commercial hatchery (Miller Poultry, Orland, IN). Chicks were weighed 

and placed into 24 floor pens (243 × 51 cm) ensuring similar average BW across pens. 

There were 5 chicks per pen resulting in a stocking density of 2,478.6 cm2/broiler. The 

litter source was wood shavings and each pen was equipped with 1 hanging feeder and 

drinker. Room temperature was gradually decreased from 35 ºc on d 1 to 21 ºc by 0.55 
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ºc/d, and maintained at 21 ºc for the rest of the experimental period. The lighting program 

was gradually decreased from 23 light:1 dark (0100-0200h) at 30 lux up to the first 7 d of 

age, then 20 light:4 dark (0100-0500h) at 10 lux until 44 d of age. Pens were assigned to 

2 dietary treatments of 12 replicate floor pens per treatment: regular diets and the diets 

mixed with 250 ppm probiotic (Sporulin®, Pacific Vet Group-USA, Inc., Fayetteville, 

AR). The probiotic consisted of 3 strains of Bacillus subtilis resulting in 1.0 × 106 

spores/g of feed. The level of probiotic was recommended by the company, and the 

regular diets were formulated using the recommendations for nutrients by Aviagen 

(2014). Birds were fed a starter, grower, or finisher diet from 1 to 14, 15 to 28, and 29 to 

44 d of age, respectively (Table 3.1). Feed and water were provided ad libitum. Prior to 

the experiment, all the diets were prepared and sampled for bacterial analysis to ensure 

the diets were mixed properly. The husbandry and the following procedures were 

approved by the Purdue Animal Use and Care Committee (Number: 1111000262).  

At 14 and 28 d of age, starting from 0900h 1 bird per pen was weighted then 

sedated using intravenous administration of sodium pentobarbital (30 mg/kg of BW) 

followed by blood collection via cardiac puncture. A total of 8 mL blood was collected 

from each bird; 5 mL were placed into ice cooled EDTA-coated plasma tube and 3 mL 

were placed into a serum tube. The bird was euthanized immediately after bleeding by 

cervical dislocation. At dissection, the left tibia and femur were removed from the 

chicken and placed in individual plastic bags and kept at -20° C until assayed. After the 

sample collection at 28 d of age, 24 broilers (13 from probiotic and 11 from control 

groups) were culled due to mal-development (unknown reason) and the remaining 

broilers were randomly regrouped within each treatment to ensure same group size of 3. 

The subsequent replicate was 7 for probiotic and 8 for control groups during finisher 

period. At 43 d of age, samples of plasma, serum, and bones were collected from 1 bird 

per pen as previously described. The hypothalamus and raphe nuclei were additionally 

collected and immediately frozen on dry ice and stored at -80° C until assayed.  

As an indication of a broiler’s desire and capability to stand during an 

uncomfortable situation, the 2 broilers remaining in each pen at the end of the study were 

used to perform the latency to lie test at 44 d of age following the procedure of Berg and 

Sanotra (2003). Briefly, each bird was individually placed into a tub filled with 3 cm 
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water at 28° C. The length of time it took for the bird to sit down and touch the water was 

recorded. If the bird flew away, it was not included in the data set. If the broiler was still 

standing after 600 s, the test was stopped and the data retained for statistical analysis. 

3.3.2 Bone traits 

The BMD, BMC, and bone area of the tibia and femur were measured using 

DEXA (Norland Medical Systems Inc., Fort Atkinson, WI) following a previously 

described procedure (Hester et al., 2013). After scanning, all the bones were boiled for 5 

min followed by the removal of muscle, connective tissue, epiphyseal caps, and the fibula 

(Hall et al., 2003). The bones were air dried overnight at room temperature. The bones 

were weighed individually, and its length, width, and cortical bone thickness on the 

medial and lateral sides were determined using a digital micrometer (Coolant Proof 

Micrometer Series 293, Mitutoyo America Corp., Aurora, IL). Traditional bone density 

indicators of robusticity index and bone weight to length index were also calculated 

(Riesenfeld, 1972; Seedor et al., 1991). Higher bone density was indicated by higher 

weight to length index but lower robusticity index. 

𝑅𝑜𝑏𝑢𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  
𝑏𝑜𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

√𝑏𝑜𝑛𝑒 𝑤𝑒𝑖𝑔ℎ𝑡3
 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑑𝑒𝑥 =
 𝑏𝑜𝑛𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑏𝑜𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
 

3.3.3 ELISA 

Commercial ELISA kits (Mybiosource, San Diego, CA) were used for detecting 

serum concentrations of OC, a bone formation indicator, and CTX, a bone resorption 

indicator. The serum Ca and Pi concentrations were determined using quantichrom kits 

(Bioassay Systems, Hayward, CA) following manufacturer’s instructions.  

Plasma concentrations of 5-HT, its precursor TRP, and cytokines, IL-6, IL-10, 

TNF-α, and IFN-γ were measured using commercial ELISA kits (Mybiosource, San 

Diego, CA). 
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3.3.4 HPLC 

Metabolites of the hypothalamus and raphe nuclei from the left hemisphere of the 

brain were analyzed using HPLC (Ultimate™ 3000 RSLCnano System, Thermo Fisher 

Scientific Inc., Waltham, MA). The brain regions were weighed and homogenized in ice-

cold 0.2 M perchloric acid at a 10:1 ratio (μl of perchloric acid:mg of sample). The 

homogenized mixture was centrifuged at 18,187g for 15 min at 4° C. The resultant 

supernatant was drawn into microcentrifuge tube and diluted 1:1 with mobile phase (MD-

TM, Thermo Fisher Scientific, Waltham, MA). The mixture was centrifuged again at 

18,187g for 15 min at 4° C. The supernatant was draw off and filtered through a 0.2-μm 

polyvinylidene fluoride filter into an HPLC sample vial. The mobile phase flow rate was 

0.8 ml/min. A MD-150 column (3.2mm x 150mm, 3 μm C18; Thermo Fisher Scientific, 

Waltham, MA) was used. The concentrations of NE, EP, DOPAC, DA, 5-HIAA, HVA, 

5-HT, and TRP were calculated from a reference curve made by using relative standards. 

The DOPAC/DA and the HVA/DOPAC turnover ratios were calculated as an index of 

dopaminergic activities (Bast et al., 2002; Badruzzaman et al., 2013).  

3.3.5 RIA 

Plasma concentrations of CORT were measured using a commercial 125I CORT 

RIA kit (MP Biomedicals, Orangeburg, NY) following a method described previously 

(Cheng et al., 2001). 

3.3.6 Statistical Analysis 

A one-way ANOVA of the mixed model procedure of SAS 9.4 software (SAS 

Institute Inc., Cary, NC) was used to analyze all of the data. The fixed factor was the 

probiotic treatment. BW was used as a covariate for measures of bone mineralization and 

bone size when necessary. Transformation of data was performed for normality when 

variances were not homogeneous (Steel et al., 1997). Statistical trends were similar for 

both transformed and untransformed data; therefore, the untransformed least square 

means were presented. Statistical significance was set at P < 0.05. 
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3.4 Results  

The concentrations of probiotic microorganisms in the probiotic-supplemented 

diets at the start and end of the experiment were similar to the targeted levels (Table 3.2). 

Broiler pen averaged BW (Wang et al., unpublished data) was improved by 

probiotic inclusion at 43 d of age (control vs probiotic: 2296 vs 2493 g, P = 0.0003), but 

not at 14 (control vs probiotic: 242 vs 242 g, P = 0.99) and 28 d of age (control vs 

probiotic: 906 vs 867 g, P = 0.57). After culling and regrouping at 28 d of age, BW 

between the 2 groups still did not differ (control vs probiotic: 1026 vs 974 g, P = 0.25). 

Compared to controls, supplementing the diet with a Bacillus subtilis based 

probiotic dramatically improved all measured bone traits of 43-d-old broilers including 

mineralization, weight, and physical parameters such as area, length, and width (Table 

3.5). The response of earlier aged broilers to the probiotic on bone traits was either 

minimal (14 d of age, Table 3.3) or there was no effect (28 d of age, Table 3.4). Latency 

to lie was not affected by the probiotic treatment (P = 0.58; Figure 3.1).  

Dietary probiotic increased serum Ca concentrations in 14 d-old broilers (P = 

0.05), but not at 28 and 43 d of age (P = 0.40 and 0.64, respectively; Figure 3.2a). Serum 

Pi concentrations were unaffected by treatment (P = 0.0.2, 0.49, and 0.47, respectively; 

Figure 3.2b). Probiotic supplementation tended to reduce bone resorption as indicated by 

the decrease in serum CTX concentrations (P = 0.08; Figure 3.3b), but OC, an indicator 

of bone formation, was unaffected by dietary treatment (P = 0.58; Figure 3.3a). Neither 

plasma pro-inflammatory (IFN-γ, Figure 3.4d, P = 0.43; TNF-α, Figure 3.4b, P = 0.15; 

and IL-6, Figure 3.4a, P = 0.50) nor anti-inflammatory (IL-10; P = 0.14 Figure 3.4c) 

immune cytokines were affected by probiotic. Plasma CORT concentrations (P = 0.23; 

Figure 3.5) as well as the peripheral concentrations of plasma 5-HT (P = 0.43; Figure 

3.6), and its precursor plasma TRP (P = 0.76; Figure 3.6) were similar between 

treatments. However, concentrations of 5-HT were increased in the raphe nuclei which is 

a major location for 5-HT synthesis in the brain (P = 0.04; Table 3.6). This upregulation 

was not found in the hypothalamus (P = 0.24; Table 3.7), nor were there any changes in 

brain TRP concentrations (P = 0.59 and 0.53; Tables 3.6 and 3.7, respectively). 

Hypothalamic concentrations (Table 3.7) of the catecholamines of DA and NE were 

dramatically reduced (P = 0.02 and 0.03, respectively) accompanied by an increase in the 
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turnovers of DA (expressed as DOPA/DA, P = 0.004) and DOPAC (expressed as 

HVA/DOPAC, P = 0.001). The concentrations of catecholamine, their metabolites, as 

well as turnover indices of the raphe nuclei were not affected by the probiotic treatment 

(Table 3.6, P = 0.24 or greater).  

3.5 Discussion 

There are several studies conducted in broilers indicating the positive effects of 

probiotics on bone health. These studies focused on measurements of the tibia, most 

likely due to its proneness to deformities such as valgus/varus angulations, 

osteodystrophy, and dyschondroplasia that can cause poor walking ability. The improved 

tibia traits as a result of providing probiotic supplementations included weight, size, wall 

thickness, tibiotarsal index, ash content, ash Ca and P percentage, and breaking strength 

(Mutus et al., 2006; Panda et al., 2006; Houshmand et al., 2011; Ziaie et al., 2011; 

Fuentes et al., 2013; Sadeghi, 2014). In line with previous findings, the supplementation 

of probiotic improved both tibia and femur bone traits in broilers of the current study, but 

the effect was not profoundly evident until market age of 43 d. Due to the short life cycle 

of broilers, providing probiotics at hatch or possibly even earlier through in ovo feeding 

prior to hatch is essential to allow establishment and growth of beneficial microbiota, 

providing the necessary time for the favorable physiological effects to take effect. The 

improved bone traits in the probiotic group, however, did not contribute to longer latency 

to lie in water, a test designed to assess lameness in broilers (Weeks et al., 2002; Berg 

and Sanotra, 2003). The chickens used in the latency to lie test were not evaluated for 

their ability to walk (e.g., gait score) or for the presence of leg deformities such as 

angular deviations. Any further studies evaluating the effect of probiotics using this test 

should first evaluate individual gait score and then select and compare broilers with 

similar gait scores. Probiotics show promise in improving walking ability as broilers 

purposely reared on a wired floor to induce bacterial chondronecrosis with osteomyelitis 

and fed probiotics beginning at 1 d of age had a lower incidence of lameness (Wideman 

et al., 2012).  

Probiotics alter the composition and metabolic activity of the gut microbiota 

(Ohlsson et al., 2014). Intestinal integrity, as indicated by increased villi height, 
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absorptive area, and the secretion of the lubricant, mucin, is enhanced by probiotics 

(Thanh et al., 2009). A more favorable intestinal environment with optimum ph improves 

nutrient digestibility, retention, and absorption. For example, the organic matrix of bone 

would benefit from increased absorption of amino acids as building blocks for collagen 

and non-collagenous proteins. Likewise, bone mineralization would gain from the 

increased availability of minerals such as Ca and P as well as vitamins such as 

cholecalciferol. Osteoblasts synthesize and release OC to facilitate bone building and 

mineralization. Another role for OC is to assist in maintaining Ca homeostasis. Although 

circulating concentrations of Ca increased only in 14-d-old broilers and not in 28- and 43-

d-old chickens and OC concentrations at 43 d of age were unaffected, it is hypothesized 

that bone sequestered the increased availability of intestinal Ca and P for placement in its 

hydroxyapatite matrix as evidenced by the dramatic increase in BMD in 43-d-old broilers 

consuming probiotics (Table 3.4). As a result of increased bone mineral accrual, 

circulating concentrations of Ca and Pi remained at consistent concentrations even 

though probiotics most likely allowed for more mineral absorption at the level of the 

intestines. Similar concentrations of OC between treatment groups may have contributed 

to maintaining concentrations of circulating Ca in probiotic fed broilers similar to 

controls. Increased solubility and absorption of minerals have been associated with 

probiotic-induced bone health benefits (Scholz-Ahrens et al., 2007). Bacillus subtilis 

enhanced utilization of Ca (Anderson et al., 2013), most likely due to the increase in 

lactic acid production from proliferating Lactobacilli.  

Besides increased availability of nutrients needed for bone formation, other 

pathways, such as reduced bone resorption, may also be involved in increasing bone mass 

in probiotic fed broilers. Clinicians use serum CTX as a biomarker to evaluate bone 

turnover in patients as circulating concentrations of CTX are positively correlated to 

osteoclastic activity. The assay for CTX determines the concentrations of c-terminal 

telopeptide of type I collagen. This specific peptide sequence is cleaved from collagen by 

osteoclasts during bone resorption, so lower concentrations of CTX suggest reduced 

osteoclast activity. Bone resorption through the modulation of osteoclasts may have been 

reduced in 43 d-old broilers consuming probiotic as suggested by lower serum CTX 

concentrations as compared to controls (Figure 3.3, P = 0.08).   
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In rodents, one of the proposed mechanisms of gut microbiota regulating bone 

mass is through the down regulation of pro-inflammatory cytokines via the gut-blood-

bone axis (Sjogren et al., 2012), as pro-inflammatory cytokines support osteoclast 

formation (Yokota et al., 2014; de Vries et al., 2015). For example, reduced TNF-α 

mRNA levels in the jejunum and ileum were accompanied by increased trabecular bone 

mass in healthy male mice after supplementation of Lactobacillus reuteri for 4 wk 

(Mccabe et al., 2013). On the other hand, cytokines such as INF-γ and IL-10 inhibit 

osteoclastogenesis (Takayanagi et al., 2000; Pappalardo and Thompson, 2013; Zhang et 

al., 2014). In the current study, plasma concentrations of IFN-γ, IL-10, IL-6, and TNF-α 

in the probiotic fed broilers were similar to those in the control group (Figure 3.4), 

indicating that the bone promoting effect of probiotic may not be through the regulation 

of systemic inflammation. Limited studies have been conducted on the effect of Bacillus 

subtilis on systemic immune cytokine levels with some studies focusing on gut and 

spleen cytokine expression. Dietary inclusion of 3 Bacillus subtilis strains (Enviva Pro, 

Danisco Animal Nutrition, UK) for 28 d did not affect mRNA expression of IFN-γ and 

IL-10 in the gut (pooled jejunal and ileal samples) of Ross 708 broilers (Lee et al., 2014). 

In contrast, reduced ileal IL-6 as well as splenic IL-6 and IL-10 transcripts in Ross 308 

broilers were found after using the same probiotic product for 22 d suggesting a role for 

probiotics in suppressing inflammation (Waititu et al., 2014). Ducks also showed 

cytokine responses after consuming a single-strain of Bacillus subtilis for 63 d. 

Specifically, jejunal IFN-γ expression was higher, and ileal IL-10 expression was lower 

(Xing et al., 2015). Unfortunately, bone traits were not measured in these studies.  

Corticosterone is the major avian glucocorticoid, which has biphasic effects on 

bone (Mak et al., 2009). Normal concentrations of endogenous glucocorticoid promote 

the differentiation of mesenchymal progenitor cells to the osteoblast lineage rather than to 

the adipocyte and chondrocyte lineages through regulating Wnt signaling (Zhou et al., 

2008). In contrast, excessive glucocorticoid, especially when administered exogenously, 

profoundly suppresses bone formation by inhibiting osteoblast differentiation and 

inducing osteoblast apoptosis. High concentrations of glucocorticoids transiently promote 

bone resorption, probably by stimulating the production of RANKL but inhibits 

osteoclastogenesis in the long-term (Henneicke et al., 2014). In the current study, plasma 
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CORT concentrations between the probiotic and the control groups were similar with 

concentrations (2.28 ng/ml) indicative of unstressed broilers (Quinteiro-Filho et al., 

2010). The broilers were raised under normal management and were not subjected to 

stressors, so it is not surprising that plasma CORT concentrations were unaffected by the 

probiotic treatment. It is hypothesized that under stressful conditions, the long bones of 

broilers consuming probiotic as compared to controls would show improved 

mineralization and strength because of reduced circulating concentrations of CORT.  

With respect to the role of serotonin in bone remodeling, only concentrations in 

the raphe nuclei, and not in the hypothalamus or the blood, of broilers consuming 

probiotic were affected. The increased concentrations of 5-HT of the raphe nuclei of 

probiotic fed broilers (Table 3.5) suggest that brain serotonin may have played a role in 

bone mass accural by stimulating bone formation and inhibiting resorption. Located in 

the brain stem, the main function of this cluster of nuclei is to synthesize and release 

serotonin to the remaining part of the brain. Most of the brain 5-HT is synthesized in the 

raphe nuclei (Tork, 1990). The serotonergic projections arising from the raphe nuclei 

target many brain areas, among which the hypothalamus receive extremely dense 

serotonergic inputs (Heym and Gladfelter, 1982; Martin et al., 1985). 

With respect to the catecholamines, as long as normal feed intake and BW were 

maintained, blocking sympathetic activty in mice increased bone mass (Gordeladze and 

Reseland, 2003). Both NE and DA concentrations of the hypothalamus (Table 3.6), but 

not the raphe nuclei, were reduced by supplementing the broiler diet with probiotics. The 

hypothalamus is the site where 5-HT is proposed to play an important role in bone 

regulation via binding to its specific 5-HT2C receptor to modulate sympathetic tone 

(Yadav et al., 2009). The NE releasing neurons are located in the locus coeruleus, a 

nucleus in the pons which is an area of the brain stem. Both NE and 5-HT neurons 

terminate densely in the hypothalamus, suggesting an interaction between the 5-HT and 

NE neurons (Tian et al., 1993). The reduction of hypothalamic NE and DA, with a trend 

for lowered hypothalamic EP (P = 0.08, Table 3.6), in probiotic fed broilers suggests that 

serotonergic neurons topically inhibit central noradrenergic neuron activities in the 

hypothalamus (Tian et al., 1993). The reduced NE bioactivity through increased brain 5-
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HT concentrations in probiotic fed broilers could be related to improved bone traits in the 

femur and tibia. However, the hypothesis needs to be further examined.  

In the current study, higher DA turnover in probiotic fed broilers was also 

observed as indicated by increased DOPAC/DA and HVA/DOPAC ratios in the 

hypothalamus (Table 3.6) but not in the raphe nuclei. The hypothalamus is an integrated 

sensing system, receiving dense inputs from the mesocorticolimbic DA system (Quarta 

and Smolders, 2014) and contains dopaminergic neurons in its periventricular nucleus 

and the arcuate nucleus (Lerant et al., 1996). Our results suggest an enhanced activation 

of catecholaminergic neurons in the hypothalamus. Metabolism of DA involves several 

pathways. It could be degraded into inactive metabolites, such as DA to DOPAC via 

monoamine oxidase, and then to HVA via catechol-O-methyltransferase or be 

synthesized to NE by the enzyme, DA beta-hydroxylase (Meiser et al., 2013; Saylor et 

al., 2015). Our results suggest that DA metabolism in the hypothalamus of probiotic fed 

broilers was shifted away from NE production to degradation. The main neurotransmitter 

in the sympathetic nervous system is NE with its neurons innervating numerous organs 

including bone (Elefteriou et al., 2014). Sympathetic nerve fibers as well as adrenergic β2 

receptors are present in bone (Duncan and Shim, 1977; Fan et al., 2010), suggesting that 

sympathetic neurons that release NE could regulate bone homeostasis through binding to 

its β2 receptor (Bonnet et al., 2008b). When stimulated, the β2 receptors expressed on 

osteoblasts enhance the production of bone remodeling regulatory factors, such as IL-6, 

RANKL, and prostaglandin E2 (Kondo and Togari, 2003; Elefteriou et al., 2005; Wang et 

al., 2015), which subsequently inhibit bone formation and promote bone resorption. 

Altogether, the possibility exists that dietary inclusion of probiotic up-regulates the 

synthesis of 5-HT in the raphe nuclei (Table 3.5), which is then released in the terminal 

areas of the hypothalamus leading to decreased NE synthesis (Table 3.6). This reduced 

sympathetic outflow in turn could possibly contribute to reduced bone resorption. 

3.6 Conclusions 

Dietary supplementation of Bacillus subtilis based probiotic conferred an 

improvement in broiler bone traits perhaps due to increased intestinal absorption of 

nutrients such as Ca. Another possible mechanism involved in bone mass accrual in 
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probiotic fed broilers is the increased brain 5-HT, which may function to reduce 

sympathetic activity, and thus inhibit bone resorption. Dietary probiotic supplementation 

has potential as a management strategy for improving skeletal health and welfare in 

broilers. 
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Table 3.1 The composition of the starter, grower, and finisher diets 

 Starter Grower Finisher 

Ingredient, %    

Corn 52.0 52.3 62.8 

Soybean meal, 48 % crude protein 40.0 39.1 29.7 

Soybean oil 3.59 4.97 4.11 

Sodium chloride 0.51 0.46 0.43 

DL Methionine 0.30 0.24 0.23 

L-Lysine HCl 0.13 - - - 0.07 

Threonine 0.06 - - - - - - 

Limestone 1.29 1.15 1.12 

Monocalcium phoshate 1.75 1.48 1.17 

Vitamin/mineral premix1 0.35 0.35 0.35 

Calculated analyses 

Crude protein % 23.4 22.8 19.2 

ME kcal/kg 3050 3151 3200 

Ca % 0.95 0.85 0.75 

Available P % 0.50 0.44 0.36 

Methionine % 0.66 0.59 0.53 

Methionine + cystine % 1.04 0.97 0.86 

Lysine % 1.42 1.29 1.09 

Threonine % 0.97 0.89 0.74 

Na % 0.22 0.20 0.19 
1Provided per kilogram of diet: vitamin A, 13,233 IU; vitamin D3, 6,636 IU; vitamin E, 

44.1 IU; vitamin K, 4.5 mg; thiamine, 2.21 mg; riboflavin, 6.6 mg; pantothenic acid, 24.3 

mg; niacin, 88.2 mg; pyridoxine, 3.31 mg; folic acid, 1.10 mg; biotin, 0.33 mg; vitamin 

B12, 24.8 μg; choline, 669.8 mg; iron from ferrous sulfate, 50.1 mg; copper from copper 

sulfate, 7.7 mg; manganese from manganese oxide, 125.1 mg; zinc from zinc oxide, 

125.1 mg; iodine from ethylene diamine dihydroiodide, 2.10 mg; selenium from sodium 

selenite, 0.30 mg. 
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Table 3.2 The targeted concentrations of probiotic microorganisms and the actual 

concentrations in feed samples collected at the beginning of the experiment 

Treatment 
Target 

(cfu/g diet) 

Starter 

(cfu/g diet) 

Grower 

(cfu/g diet) 

Finisher 

(cfu/g diet) 

Control 0 0.027 x 106 0.013 x 106 0.006 x 106 

Probiotic  1.0 x 106 1.1 x 106 1.3 x 106 0.84 x 106 
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Table 3.3 The effects of Basillus subtilis based probiotic on bone traits of 14-d-

old broilers 

 Control2 Probiotic2 SEM P 

Tibia     

BMD (g/cm2) 1 0.061 0.069 0.001 0.49 

BMC (g) 1 0.22 0.29 0.007 0.71 

Area (cm2) 3.68 4.12 0.099 0.38 

Weight (g) 0.57 0.68 0.009 0.01 

Relative weight (g/kg) 2.25 2.19 0.014 0.38 

Length (mm) 1 44.88 45.47 0.147 0.10 

Width (mm) 1 3.27 3.71 0.032 0.51 

Weight/length index (mg/mm) 12.56 14.97 0.171 0.009 

Robusticity index (g,cm) 5.45 5.19 0.016 0.004 

Femur     

BMD (g/cm2) 1 0.058 0.064 0.001 0.30 

BMC (g) 1 0.16 0.20 0.005 0.87 

Area (cm2) 2.79 3.10 0.085 0.47 

Weight (g) 0.41 0.48 0.007 0.04 

Relative weight (g/kg) 1.63 1.54 0.010 0.10  

Length (mm) 1 34.33 34.57 0.147 0.15 

Width (mm) 1 3.31 3.81 0.030 0.17 

Weight/length index (mg/mm) 11.93 13.95 0.180 0.03 

Robusticity index (g,cm) 4.64 4.44 0.020 0.05 
1BW was used as a covariate. 
2The number of observations per least square mean is 12. 
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Table 3.4 The effects of Basillus subtilis based probiotic on bone traits of 28-d-

old broilers 

 Control2 Probiotic2 SEM P 

Tibia     

BMD (g/cm2) 1 0.150 0.161 0.003 0.33 

BMC (g) 1 1.27 1.33 0.029 0.58 

Area (cm2) 1 8.40 8.14 0.078 0.29 

Weight (g) 3.66 4.01 0.055 0.21 

Relative weight (g/kg) 3.25 3.64 0.068 0.26 

Length (mm) 70.21 71.50 0.277 0.35 

Width (mm) 6.93 7.10 0.061 0.57 

Weight/length index (mg/mm) 51.73 56.10 0.686 0.21 

Robusticity index (g,cm) 4.59 4.51 0.018 0.35 

Femur     

BMD (g/cm2) 1 0.129 0.128 0.001 0.90 

BMC (g) 1 0.83 0.82 0.014 0.76 

Area (cm2) 1 6.39 6.29 0.062 0.55 

Weight (g) 2.73 2.94 0.049 0.39 

Relative weight (g/kg) 2.43 2.67 0.057 0.40 

Length (mm) 54.46 56.25 0.326 0.27 

Width (mm) 6.65 7.00 0.059 0.24 

Weight/length index (mg/mm) 49.67 52.35 0.767 0.48 

Robusticity index (g,cm) 3.94 3.94 0.021 0.94 
1BW was used as a covariate. 
2The number of observations per least square mean is 12. 
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Table 3.5 The effects of Basillus subtilis based probiotic on bone traits of 43-d-

old broilers 

 Control2 Probiotic3 SEM P 

Tibia     

BMD (g/cm2)  0.168  0.190  0.001  0.001  

BMC (g)  2.03 2.78 0.05  0.002  

Area (cm2)  12.07 14.57 0.20  0.006 

Weight (g) 6.52  8.80  0.21  0.01 

Relative weight (g/kg) 2.92  3.51  0.07  0.05 

Length (mm) 89.88 94.86 0.56  0.04 

Width (mm)1 8.52  10.36  0.11  0.02 

Medial thickness (mm) 1.27 1.41 0.04  0.38 

Lateral thickness (mm) 1.60 1.86 0.03  0.05 

Weight/length index (mg/mm) 72.49  92.12  1.89  0.02 

Robusticity index (g,cm) 4.82 4.63 0.03  0.09 

Femur     

BMD (g/cm2)  0.138  0.157  0.001  0.002 

BMC (g)  1.27 1.71 0.03  0.001 

Area (cm2)  9.16 10.86 0.15  0.01 

Weight (g) 4.55 6.55 0.16  0.006 

Relative weight (g/kg) 2.03  2.61  0.06  0.02 

Length (mm) 68.00 71.71 0.44  0.05 

Width (mm) 8.21 9.85 0.09  0.0005 

Medial thickness (mm) 1.27 1.53 0.03  0.04 

Lateral thickness (mm) 1.50 1.59 0.03  0.45 

Weight/length index (mg/mm) 66.91  90.72  1.89  0.006 

Robusticity index (g,cm) 4.12  3.87  0.03  0.02 
1BW was used as a covariate. 
2The number of observations per least square mean is 8. 
3The number of observations per least square mean is 7.  
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Table 3.6 The effects of Basillus subtilis based probiotic on catecholamines, 5-

HT, and respective metabolites in the raphe nuclei of 43-d-old broilers 

 Control1 Probiotic2 SEM P 

Catecholamine system     

DA (ng/g) 118.16 111.44 1.79 0.35 

NE (ng/g) 1097.12 1123.97 22.82 0.77 

EP (ng/g) 182.36 296.88 24.24 0.24 

DOPAC (ng/g) 58.54 58.19 1.14 0.94 

HVA (ng/g) 154.83 151.14 1.29 0.47 

DOPAC/DA 0.50 0.52 0.007 0.42 

HVA/DOPAC 1.32 1.37 0.02 0.53 

5-HT system     

TRP (ng/g) 5299.45 5423.97 58.68 0.59 

5HT (ng/g) 452.60 523.97 8.19 0.04 

5HIAA (ng/g) 362.31 387.34 8.42 0.46 

5HIAA/5HT 0.82 0.74 0.02 0.42 
1The number of observations per least square mean is 8. 
2The number of observations per least square mean is 7.  
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Table 3.7 The effects of Basillus subtilis based probiotic on catecholamines, 5-

HT, and respective metabolites in the hypothalamus of 43-d-old broilers 

 Control1 Probiotic2 SEM P 

Catecholamine system     

DA (ng/g) 354.70  267.35  8.17  0.02 

NE (ng/g) 2138.45  1541.95  60.96  0.03 

EP (ng/g) 362.30  268.76  12.95  0.08 

DOPAC (ng/g) 95.55  83.72  1.81  0.11 

HVA (ng/g) 233.09  212.51  4.92  0.30 

DOPAC/DA 0.27  0.32  0.003  0.004 

HVA/DOPAC 0.66  0.81  0.009  0.001 

5-HT system     

TRP (ng/g) 4463.87  4235.27  92.14  0.53 

5HT (ng/g) 1055.00  934.25  25.35  0.24 

5HIAA (ng/g) 234.43  216.04  4.50  0.31 

5HIAA/5HT 0.22  0.24  0.004  0.41 
1The number of observations per least square mean is 8. 
2The number of observations per least square mean is 7.  
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Figure 3.1 The effects of Basillus subtilis based probiotic on the latency to lie test 

in 44-d-old broilers.  

The number of observations per least square mean is 16 for control and 14 for probiotic 

groups 
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a) 

 

b) 

 

Figure 3.2 The effects of Basillus subtilis based probiotic on serum Ca (a) and Pi 

(b) concentrations in broilers at 14, 28, and 43 d of age  

The number of observations per least square mean is 8 for control and 7 for probiotic 

groups. Significant treatment differences (P < 0.05) are indicted by letters (a,b).  
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Figure 3.3 The effects of Basillus subtilis based probiotic on OC (a) and CTX (b) 

concentrations in broilers at 43 d of age  

The number of observations per least square mean is 8 for control and 7 for probiotic 

groups. Trend treatment differences (P < 0.10) are indicted by letters (A,B). 
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Figure 3.4 The effects of Basillus subtilis based probiotic on systemic immune 

cytokines in broilers at 43 d of age  

The number of observations per least square mean is 8 for control and 7 for probiotic 

groups. 
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Figure 3.5 The effects of Basillus subtilis based probiotic on plasma CORT 

concentrations in 43-d-old broilers  

The number of observations per least square mean is 8 for control and 7 for probiotic 

groups. 
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Figure 3.6 The effects of Basillus subtilis based probiotic on plasma 5-HT (a) and 

TRP (b) concentrations in 43-d-old broilers  

The number of observations per least square mean is 8 for control and 7 for probiotic 

groups. 
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CHAPTER 4. EFFECTS OF A BACILLUS SUBTILIS BASED 

PROBIOTIC ON BONE HEALTH IN BROILERS SUBJECTED 

TO CYCLIC HEATING EPISODES 

4.1 Abstract 

Heat stress as an environmental stressor causes abnormalities and architectural 

deterioration of bone tissue in animals including chickens. The objective of this study 

was to determine whether dietary supplementation of Bacillus subtilis can improve bone 

health in heat stressed broilers. One hundred and twenty 1-d-old Ross 708 broilers were 

assigned to 24 floor pens based on their BW. The pens were evenly divided into 2 groups 

(n=12). One group was fed a regular diet and the other group was fed the diet mixed with 

a commercial probiotic (250 ppm, 1 x 106 cfu/g of feed; consisting of 3 types of Bacillus 

subtilis) for 6 wk. Room temperature was gradually decreased from 35° C on d 1 by 

0.55° C /d for the first 14 d. When broilers were 15 d of age, ambient temperature was 

increased from 28 to 32° C for 10 h (0700h to 1700h). These cycling heating episodes 

were imposed on the broilers daily until termination of the study at 44 d of age. 

Compared with the control fed broilers, probiotic supplementation increased BMC, 

weight, size, bone weight to length index, and reduced robusticity index in both the tibia 

and femur (P < 0.05) of 43-d-old broilers but had no effect on BMD or cortical thickness. 

The increase in bone size traits were observed in broilers subjected to elevated 

temperatures at 43 d of age and not at 28 d of age. Serum concentrations of Ca and Pi 

were not affected by probiotic, whereas the concentrations of serum CTX were reduced 

by the probiotic supplementation (P = 0.02). Pro-inflammatory TNF-α was decreased (P 

= 0.003) with no changes in plasma IL-6, IL-10, IFN-γ, and CORT concentrations as a 

result of including probiotic into the diet of broilers subjected to a cyclic heating episode. 

Moreover, both peripheral 5-HT and central 5-HT and catecholamines (NE, EP and DA) 

as well as their metabolites were not affected by probiotic (P > 0.05). These results 

indicate that dietary supplementation of Bacillus subtilis based probiotic probiotic 

increased bone growth and bone size of broilers under cyclic heating episodes via 

inhibition of bone resorption resulting from down-regulation of circulating pro-

inflammatory TNF-α concentrations. Dietary probiotic supplementation may be a 



150 

 

management strategy for increasing skeletal growth in broilers under conditions of 

elevated ambient temperatures. 

4.2 Introduction 

Poultry is one of the most popular animals used as food sources world-wide. 

Global poultry meat production has increased remarkably over the last 40 years 

surpassing beef and veal production beginning in 1995 (Windhorst, 2006; Scanes, 2007; 

USDA-FAS, 2016). Another notable change is the rapid increase in broiler production in 

developing regions, especially in South America and Asia, which includes many tropical 

regions of the world (Windhorst, 2006). High ambient temperature, especially combined 

with high humidity, imposes severe stress on broilers, due to their limited ability to 

regulate heat loss by feathering and their rapid growth with heavy BW at market age 

(Geraert et al., 1996). Subsequently, reduced growth, carcass quality, and even death not 

only induce economic loss for poultry producers but also lead to welfare concerns for 

chickens (St-Pierre et al., 2003; Lara and Rostagno, 2013).  

Leg disorders are common in broilers that cause chronic pain and lameness 

(Danbury et al., 2000; Caplen et al., 2013a; Caplen et al., 2013b). The situation is even 

worse when birds suffer from heat stress. Reduced bone mass, such as ash content and 

bone volume, occurs in both broilers and turkeys exposed to high temperatures 

(Jankowski et al., 2015; Hosseini-Vashan et al., 2016). Heat stress-associated 

mechanisms are still under investigation, but Ca bioavailability, hormones, and immunity 

are all directly impacted.  

Heat stress induced behavioral changes include decreased feeding, increased 

water consumption, panting, and wing spreading (Syafwan et al., 2012; Mack et al., 

2013). Whereas a depressed appetite decreases metabolic heat production, it also reduces 

the availability of nutrients for intestinal absorption like amino acids and Ca required for 

bone and body growth. Panting is the major method used by birds to dissipate excess heat 

through evaporation of moisture in the upper respiratory tract, but excessive rapid 

breathing causes respiratory alkalosis and upsets electrolyte balance. For example, in 

laying hens, acute heat stress caused an increase in blood pH due to exhalation of excess 

carbon dioxide. It was also noted that lactate and pyruvate increased and ionized Ca 
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decreased in the blood as the hens were experiencing respiratory alkalosis. Although 

excretion of Ca in urine or through heat-stressed induced diarrhea may be involved as 

well, the reduced concentrations of circulating ionized Ca could be due to the binding of 

Ca to these organic acids reducing the pool of freely available ionized Ca needed for shell 

formation (Odom et al., 1986) and skeletal health. In addition, chronic heat stress in 

broilers induces intestinal injury such as reduced height of villi, thinner gut mucosa, and 

reduced alkaline phosphatase activity (Hu et al., 2016) that can hamper Ca intestinal 

absorption. Therefore, a decrease in the bioavailability of circulating Ca concentrations 

may be a contributing factor towards reducing bone mineralization, strength, ash, and 

other indicators of skeletal health in heat stressed meat-type fowl (Jankowski et al., 2015; 

Hosseini-Vashan et al., 2016).  

Heat stress induces over activation of the HPA axis and elevates blood CORT 

concentrations (Garriga et al., 2006; Star et al., 2008; Quinteiro-Filho et al., 2010, 2012; 

Manhiani et al., 2011). Excessive CORT negatively affects bone mass through inhibiting 

osteoblastogenesis, increasing osteoblast and osteocyte apoptosis, and promoting 

osteoclast survival (O'Brien et al., 2004; Jia et al., 2006; Rauch et al., 2010). In addition, 

many studies have demonstrated that heat stress induces immunosuppression in broilers 

(Bartlett and Smith, 2003; Niu et al., 2009; Jahanian and Rasouli, 2015) including 

mucosal immunity of the intestines (Hu et al., 2016), accompanied by the changes of 

cytokines concentrations such as increased spleen levels of TNF-α and IL-4 but 

decreased levels of IFN-γ and IL-2 (Xu et al., 2014). The pro-inflammatory cytokine of 

TNF-α that is locally produced in bone induces bone resorption by directly enhancing 

osteoclastic activity (Schett, 2011), or an indirect mode of action may be through 

downregulation of OPG or other bone metabolites that reduce bone resorption (Boyce et 

al., 2005). As a check and balance system and in contrast to TNF-α, the release of IFN-γ 

by mesenchymal stem cells and cells of immune origin in the bone microenvironment 

promotes bone formation in mice (Duque et al., 2011) and are exceptionally strong 

inhibitors of osteoclast differentiation (Schett, 2011). Considering the vital role of 

cytokines on bone cells (Inada and Miyaura, 2010; Schett, 2011), an upset in bone 

homeostasis may be caused by changes in immune cytokines under heat stress. 
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As discussed in chapter 3 of this dissertation, serotonin and the sympathetic 

nervous system may contribute to probiotic-based improvement of bone (Charles et al., 

2015; mccabe et al., 2015). Specifically, our results showed that the inclusion of a dietary 

Bacillus subtilis based probiotic promoted bone mass in broilers raised under a standard 

management regimen. The mechanism of action was most likely through increased 

intestinal Ca absorption and a reduction in bone resorption, perhaps mediated by 5-HT 

induced reduction of sympathetic activity. Similar bone promoting results were also 

reported using other types of probiotics (Mutus et al., 2006; Panda et al., 2006; 

Houshmand et al., 2011; Ziaie et al., 2011; Fuentes et al., 2013; Sadeghi, 2014). 

However, little information is available regarding the effects of probiotic 

supplementation on bone health of broilers subjected to elevated ambient temperatures. 

The objective of the present study was to investigate the effects of a Bacillus subtilis 

based probiotic on bone health of broilers subjected to cycling high environmental 

temperatures. We hypothesized that probiotic supplementation would protect bone mass 

in broilers under elevated temperatures by increasing mineral bioavailability and the 

synthesis of brain 5-HT in the raphe nuclei, and diminishing the release of pro-

inflammatory immune cytokines and the adrenal stress hormone of CORT. 

4.3 Materials and Methods 

4.3.1 Birds, Management, and Sample Collection 

A total of one hundred and twenty d-old Ross 708 male broiler chicks were 

obtained from a commercial hatchery (Miller Poultry, Orland, IN). Chicks were weighed 

and placed into 24 floor pens (243 × 51 cm) ensuring similar average BW across pens. 

There were 5 chicks per pen resulting in a stocking density of 2,478.6 cm2/broiler. The 

litter source was wood shavings and each pen was equipped with 1 hanging feeder and 

drinker. Room temperature was gradually decreased from 35° C on d 1 by 0.55° C /d 

until 15 d of age at which time ambient temperature was increased from 28 to 32° C for 

10 h (0700h to 1700h). The cyclic increase in ambient temperature to 32° C was done 

daily by turning on a furnace until the end of the experiment at 44 d of age. The study 

was conducted in the summer months of June and July. The furnace was turned off at 
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1700 h allowing ambient temperatures to return to normal during evening and early 

morning hours. Data loggers (HOBO®, Onset Computer Corporation, MA) were used in 

recording of the room temperature and humidity (Table 4.1). 

The lighting program was gradually decreased from 23 light:1 dark (0100-0200h) 

at 30 lux up to the first 7 d of age, then 20 light:4 dark (0100-0500h) at 10 lux until 44 d 

of age. Pens were assigned to 2 dietary treatments of 12 replicate floor pens per 

treatment: regular diets and the diets mixed with 250 ppm probiotic (Sporulin®, Pacific 

Vet Group-USA, Inc., Fayetteville, AR). The probiotic consisted of 3 strains of Bacillus 

subtilis resulting in 1.0 × 106 spores/g of feed. The level of probiotic was recommended 

by the company, and the regular diets were formulated using the recommendations for 

nutrients by Aviagen (2014). Birds were fed a starter, grower, or finisher diet from 1 to 

14, 15 to 28, and 29 to 44 d of age, respectively (Table 4.2). Feed and water were 

provided ad libitum. Prior to the experiment, all the diets were prepared and sampled for 

bacterial analysis to ensure the diets were mixed properly. The husbandry and the 

following procedures were approved by the Purdue Animal Use and Care Committee 

(Number: 1111000262).  

At 14 and 28 d of age starting from 0900h, 1 bird per pen was weighted then 

sedated using intravenous administration of sodium pentobarbital (30 mg/kg of BW) 

followed by blood collection via cardiac puncture. Sampling began 2 h into the heating 

episode for 28-d and 43-d old broilers. A total of 8 ml blood was collected from each 

bird; 5 ml were placed into ice cooled EDTA-coated plasma tube and 3 ml were placed 

into a serum tube. The bird was euthanized immediately after bleeding by cervical 

dislocation. At dissection, the left tibia and femur were removed from the chicken and 

placed in individual plastic bags and kept at -20° C until assayed. After the sample 

collection at 28 d of age, 24 broilers (16 from probiotic and 8 from control groups) were 

culled due to mal-development (unknown reason) and the remaining broilers were 

randomly regrouped within each treatment to ensure same group size of 3. The 

subsequent replicate was 6 for probiotic and 9 for control groups during finisher period. 

At 43 d of age, samples of plasma, serum, and bones were collected from 1 bird per pen 

as previously described. The hypothalamus and raphe nuclei were additionally collected 

and immediately frozen on dry ice and stored at -80° C until assayed.  
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The 2 broilers remaining in each pen at the end of the study were used to perform 

the latency to lie test at 44 d of age following the procedure described previously (Berg 

and Sanotra, 2003). Briefly, each chicken was individually placed into a tub previously 

filled with 3 cm water at 28° C. The time for chicken to sit down and touch the water was 

recorded. If the chicken flied or still stood after 600s the test was interrupted. The latency 

to lie test was conducted between 1000 and 1600 h when broilers were subjected to an 

elevated temperature. The broilers were removed from their pens one at a time and taken 

to the tub which was located in an adjacent room where normal ambient temperature was 

maintained.  

4.3.2 Bone traits 

Tibia and femur were measured for BMD, BMC, and bone area using DEXA 

(Norland Medical Systems Inc., Fort Atkinson, WI) following a previously described 

procedure (Hester et al., 2013). The entire bone was scanned. The area of the scanned 

bone was determined and expressed as cm2. The BMD was calculated as BMC (measured 

in g) divided by the area of the bone and expressed as g/cm2. After scanning, all the 

bones were broiled for 5 min and then meat, connective tissue and the fibula bone were 

completely removed (Hall et al., 2003). The bones were air dried overnight at room 

temperature and determined for weight, length, width, as well as cortical bone thickness 

(only determined in 43-d old broilers) using a digital micrometer (Coolant Proof 

Micrometer Series 293, Mitutoyo America Corp., Aurora, IL). Traditional bone density 

indicators, bone weight to length index and robusticity index, were also calculated 

(Riesenfeld, 1972; Seedor et al., 1991). Higher bone density was indicated by higher 

weight to length index but lower robusticity index. 

𝑅𝑜𝑏𝑢𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  
𝑏𝑜𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

√𝑏𝑜𝑛𝑒 𝑤𝑒𝑖𝑔ℎ𝑡3
 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛𝑑𝑒𝑥 =  
𝑏𝑜𝑛𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑏𝑜𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
 

4.3.3 ELISA 

Commercial ELISA kits (Mybiosource, San Diego, CA) were used for detecting 

serum concentrations of OC, a bone formation indicator, and CTX, a bone resorption 
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indicator. The serum Ca and Pi concentrations were determined using quantichrom kits 

(Bioassay Systems, Hayward, CA) following manufacturer’s instructions.  

Plasma concentrations of 5-HT, its precursor TRP, and cytokines, IL-6, IL-10, 

TNF-α, and IFN-γ were measured using commercial ELISA kits (Mybiosource, San 

Diego, CA). 

4.3.4 HPLC 

Metabolites of the hypothalamus and raphe nuclei from the left hemisphere of the 

brain were analyzed using HPLC (UltiMate™ 3000 RSLCnano System, Thermo Fisher 

Scientific Inc., Waltham, MA). The brain regions were weighed and homogenized with 

ice-cold 0.2 M perchloric acid, at a 10:1 ratio (for μl of perchloric acid:mg of sample). 

The homogenized mixture was centrifuged at 18,187g for 15 min at 4° C. The resultant 

supernatant was drawn into a microcentrifuge tube and diluted 1:1 with mobile phase. 

The mixture was then centrifuged again at 18,187g for 10 min at 4° C. The supernatant 

was filtered through a 0.2-μm polyvinylidene fluoride filter into a HPLC sample vial. The 

mobile phase flow rate was 0.8 mL/min. The concentrations of NE, EP, DOPAC, DA, 5-

HIAA, HVA, 5-HT, and TRP were calculated from a reference curve made using relative 

standards. 

4.3.5 RIA 

Plasma concentrations of CORT were measured using a commercial 125I CORT 

RIA kit (MP Biomedicals, Orangeburg, NY) following the method described previously 

(Cheng et al., 2001). 

4.3.6 Statistical analysis 

A one-way ANOVA of the mixed model procedure of SAS 9.4 software (SAS 

Institute Inc., Cary, NC) was used to analyze all the data. The fixed factor was the 

probiotic treatment. Transformation of data was performed for normality when variances 

were not homogeneous (Steel et al., 1997). Statistical trends were similar for both 

transformed and untransformed data; therefore, the untransformed least square means 

were presented. The Tukey-Kramer test was used to partition differences among means. 

Statistical significance was set at P < 0.05. 
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4.4 Results  

The concentrations of probiotic microorganisms in the probiotic-supplemented 

diets at the start and end of the experiment were similar to the targeted levels (Table 4.3). 

Broilers of the current study were demonstrating signs of distress during the 

heating episodes as indicated by panting, wing spreading, and squatting close to the 

ground (Wang et al., unpublished data).  

Broiler pen averaged BW (Wang et al., unpublished data) was improved by 

probiotic inclusion at 43 d of age (Control vs Probiotic: 1921 vs 2177 g, P = 0.0001), but 

not at 14 (Control vs Probiotic: 232 vs 219 g, P = 0.34) and 28 d of age (Control vs 

Probiotic: 918 vs 748 g, P = 0.01). After culling and regrouping at 28 d of age, BW 

between the 2 groups still differed (Control vs Probiotic: 975 vs 933 g, P = 0.03). 

Bone traits of 14-d-old broilers 1 d before implementing the cyclic heating 

episode showed early benefits due to the dietary inclusion of the probiotic probiotic. In 

particular, the BMC of the tibia (P = 0.03) and femur (P = 0.04) increased as did tibial 

area (P = 0.04) and weight (P = 0.05, Table 4.4). However, 13 d after initiating the cyclic 

heating episode, any probiotic induced increases in bone traits observed prior to 

increasing ambient temperature had dissipated. More specifically, all bone traits in 28-d-

old broilers were similar between the probiotic and control fed broilers (Table 4.5). After 

28 d of elevated cycling temperatures, the probiotic induced increase in bone traits once 

again became evident in 43-d-old broilers. Both the tibia and femur of broilers responded 

similarly to the probiotics under an elevated temperature; in particular, traits associated 

with size, such as BMC, area, weight, and the weight/length index, all increased when 

compared to control-fed broilers also subjected to high ambient temperature. However, 

BMD and cortical thickness of bones were unaffected by probiotic feeding in 43-d-old 

broilers (Table 4.6). Latency to lie in 44-d-old broilers was similar between the probiotic 

fed and the control broilers (P = 0.85; Figure 4.1).  

Serum concentrations of Ca and Pi at 14 (normal ambient temperature), 28, and 

43 d of age (Figure 4.2) and OC at 43 d of age (Figure 4.3a) were similar between the 

probiotic fed and control broilers. Probiotic supplementation reduced serum CTX 

concentrations in 43-d-old broilers exposed to elevated temperature (P = 0.02, Figure 

4.3b).  
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Peripheral plasma concentrations of 5-HT (Figure 4.4a, P = 0.50) and its 

precursor, TRP (Figure 4.4b, P = 0.93), were not affected by probiotic supplementation in 

43-d-old broilers subjected to elevated temperatures. Similarly, concentrations of 5-HT, 

its precursor TRP, and metabolite 5-HIAA, as well as the catecholamines (NE, EP, and 

DA) and their metabolites (DOPAC and HVA) were not affected by probiotic 

supplementation in both the raphe nuclei and hypothalamus (Tables 4.7 and 4.8, 

respectively). Under conditions of elevated temperatures, plasma pro-inflammatory 

cytokine concentrations of TNF-α were decreased in 43-d-old broilers supplemented with 

probiotic (Fig. 4.5b, P = 0.003) with no effect on plasma concentrations of IL-6 (Figure 

4.5a, P = 0.22), IL-10 (Figure 4.5c, P = 0.31), IFN-γ (Figure 4.5d, P = 0.62) and CORT 

(P = 0.42; Figure 4.6) as compared to control broilers. 

4.5 Discussion 

Probiotic supplementation improved bone mass in poultry (Mutus et al., 2006; 

Panda et al., 2006; Houshmand et al., 2011; Ziaie et al., 2011; Abdelqader et al., 2013; 

Fuentes et al., 2013; Sadeghi, 2014) and rodents (Rodrigues et al., 2012; Foureaux Rde et 

al., 2014; Zhang et al., 2015; Li et al., 2016). Under conditions of an elevated cycling 

temperature, our results showed that dietary inclusion of a probiotic increased the size 

and weight of the bones in 43-d-old broilers, but did not improve BMD or cortical 

thickness of bones (Table 4.4) as it did in Yan et al. (2016) using the same probiotic 

probiotic at an identical dosage. The strain and age of the broilers were the same between 

the current study and that of Yan et al. (2016) as well as the management of the chickens 

except for room temperature. Apparently, the elevated cycling temperature of the current 

study impaired the effectiveness of the probiotic in its ability to absorb intestinal Ca and 

deposit it along with P into bone to increase BMD. The latency to lie test also suggests 

that probiotic under conditions of elevated temperatures did not improve the leg health of 

broilers. The broilers subjected to elevated temperature may have sat down in the water 

more quickly than normal to cool themselves making it more difficult to show treatment 

effects due to diet. Gait score was not accessed in the current study, but lameness was 

reduced in wire-reared broilers fed probiotics (Wideman et al., 2012).  
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The increase in bone growth and bone size traits of broilers fed a probiotic as 

compared to controls was most likely due to increased nutrient absorption as a result of 

improved intestinal integrity, as bone traits were not influenced by increased intake of 

nutrients because feed consumption was not affected by probiotics (Wang et al., 2016). 

Although the current study was not able to compare the bone traits of broilers in the 

heated with the control environment due to the lack of replication, it has been reported by 

others that the inclusion of various probiotics ameliorates the negative effect of heat on 

gut health in broilers (Sohail et al., 2012; Song et al., 2014) and laying hens (Deng et al., 

2012). 

Calcium is a nutrient of interest that was most likely made more bioavailable in 

the probiotic fed broilers because of increased intestinal absorption. Other nutrients, such 

as P and amino acids used to build hydroxyapatite and the osteoid matrix of bone, 

respectively, also likely benefited from enhanced intestinal absorption due to probiotic 

feeding. If increased intestinal absorption of Ca and P occurred as a result of feeding 

probiotics to broilers, it was not reflected in the concentrations measured in the sera, 

which were similar between dietary treatments (Fig. 2). Calcium circulating in the blood 

is either unbound as an ionized salt or complexed to anions such as bicarbonate, 

phosphate, pyruvate, citrate, or lactate or to proteins like albumin. About 40% of the total 

Ca is in bound form. When circulating ionized Ca is utilized by tissues causing a drop in 

circulating concentrations, the Ca bound to protein is released to replenish the ionized Ca 

so as to maintain consistent concentrations. The protein-bound Ca in circulation is 

physiologically inactive because it cannot cross capillary membranes. It is the ionized 

pool of Ca that is available for use by animal tissues. Although Ca along with P are major 

constituents of hydroxyapatite, playing important roles in bone remodeling, Ca is also 

critical for other biological functions, such as blood clotting, muscular contraction, and 

release of synaptic neurotransmitters. Therefore, a possibility for the lack in difference in 

serum ionized Ca between the probiotic and control dietary treatments is that the 

concentrations in circulation are tightly regulated by Ca regulating hormones such as 

parathyroid hormone, calcitonin, and 1,25-dihydroxycholecalciferol (Stanford, 2006; de 

Matos, 2008). Even though heat stress reduces Ca and P bioavailability because of 

damaged intestinal integrity (Quinteiro-Filho et al., 2012; Santos et al., 2015), 
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concentrations in circulation may either remained constant or quickly stabilized so as to 

return to homeostasis if heat stress was not too severe. To support the concept of 

hormones tightly regulating blood Ca concentrations, no changes in circulating Ca 

concentrations were reported in laying hens acclimated to high temperature as compared 

to those subjected to a control ambient temperatures (Samara et al., 1996). 

Concentrations of serum Ca measured in broilers of the current study under elevated 

temperatures were normal as concentrations were similar to broilers raised under control 

temperatures that were sampled 2 h earlier (see Fig. 2 of Chapter 3).  

The lack of difference in serum Ca concentrations between the probiotic fed and 

control broilers at 28 and 42 d of age under conditions of elevated temperatures could 

also be due to the fact that the broilers were not panting excessively and as a result, they 

were not experiencing respiratory alkalosis. In the study of Odom et al. (1986), laying 

hens were exposed to acute rather than chronic heat stress at a much higher temperature 

of 35° C than the 32° C used in the current study. A drop in ionized Ca occurred during 

acute heat stress as blood pH increased, proving that the hens were in a state of 

respiratory alkalosis. Total or bound Ca was not measured, but because lactate and 

pyruvate increased during respiratory alkalosis, the authors hypothesized that the bound 

Ca was most likely increasing in these acutely heat stressed laying hens (Odom et al., 

1986).  

Osteoblasts synthesize and release OC to facilitate bone building and 

mineralization. Another role for OC is to assist in maintaining Ca homeostasis along with 

the classical Ca regulating hormones described previously. Similar concentrations of 

serum OC between dietary treatment groups under conditions of cycling elevated 

temperature (Figure 4.3a) may have contributed to maintaining concentrations of 

circulating Ca in probiotic fed broilers similar to controls. 

Besides increased availability of nutrients needed for bone formation, other 

pathways, such as reduced bone resorption, may also be involved in stimulating bone 

growth and bone size traits in probiotic fed broilers under conditions of elevated 

temperatures. Serum CTX is often used as a biomarker to evaluate bone turnover in 

humans because circulating concentrations of CTX are positively correlated to 

osteoclastic activity. The lower concentration of serum CTX as compared to controls 
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(Figure 4.3b, P =0.02) indicates that bone resorption was reduced in 43 d-old broilers 

consuming probiotic as compared to control fed chickens under conditions of elevated 

temperatures which may have facilitated bone growth, but did not result in bone with 

denser minerals (see BMD values for the tibia and femur at 43 d of age, Table 4.4).  

The effect of 5-HT on bone is dependent on its source. Serotonin is synthesized in 

the brain as well as peripherally. Brain serotonin, acting as a neurotransmitter, stimulates 

bone formation and inhibits bone resorption causing an increase in bone mass, whereas 

peripheral serotonin, acting as a hormone, has the opposite effect resulting in inhibition 

of bone formation (Yadav et al., 2009; Yadav et al., 2010). Results with broilers 

consuming the same probiotic without heat stress provided evidence suggesting that 

reduced bone resorption was perhaps mediated by 5-HT induced reduction of 

sympathetic activity (see Chapter 3). More specifically, dietary probiotic up-regulated the 

synthesis of 5-HT in the raphe nuclei of the brain of 43-d-old broilers. The serotonin was 

then perhaps released in the terminal areas of the hypothalamus leading to decreased NE 

synthesis. The reduced sympathetic outflow in turn could possibly contribute to reduced 

bone resorption. However, this proposed mechanism was not upheld under conditions of 

cycling heating episodes as there was no effect of probiotic on both peripheral 5-HT and 

its precursor of TRP and central 5-HT and catecholamines (NE, EP and DA) as well as 

their metabolites or ratios. Perhaps if the serotonin response had been elicited in the 

probiotic fed broilers subjected to a cyclic heating episode, the BMD and cortical 

thickness of bone would have responded favorably as it did in the study of Yan et al. 

(2016). 

Although both 5-HT and DA are involved in the regulation of behaviors such as 

locomotion, eating, and drinking (Fuller, 1984; Muller et al., 2003; King, 2006), the 

similar concentrations between treatments measured in the serum and brain suggest that 

these metabolites did not play an important role in the modified behavior noted in the 

probiotic fed broilers. The behavior of broilers consuming probiotic as compared to 

control fed chickens during periods of elevated temperature showed reduced drinking, 

sleeping, and sitting but increased feeding and standing (P < 0.05, unpublished data). The 

increase in feeding behavior, however, did not affect feed intake as inclusion of probiotic 

had no effect on feed consumption (Wang et al., 2016). Serotonin is known as an appetite 
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suppressant (Voigt and Fink, 2015), but because peripheral and brain 5-HT 

concentrations were similar between treatment groups under conditions of elevated 

temperature, similar feed intake levels would be expected (Wang et al., 2016).  

 The immune system and bone health are tightly linked (Criscitiello et al., 2015). 

Osteoblasts are derived from pluripotent mesenchymal stromal cells, whereas osteoclasts 

are derived from hematopoietic stem cell that also generate immune cells (Ohlsson and 

Sjogren, 2015). The RANKL is the direct regulator of osteoclast formation and bone 

turnover; which is expressed by the mesenchymal originated cells inside bones as well as 

T and B cells upon activation (Guerrini and Takayanagi, 2014). The binding of RANKL 

to its receptor RANK on osteoclast precursor cells activates the intracellular signaling 

cascades that leads to osteoclastogenesis (Kanazawa and Kudo, 2005). The 

RANKL/RANK axis is regulated by a variety of cytokines. For instance, IFN-γ, the main 

Th1 cytokine, functions to inhibit osteoclastogenesis (Takayanagi et al., 2000; 

Pappalardo and Thompson, 2013). IL-10 also shows the function to inhibit osteoclastic 

bone resorption and regulate osteoblastic bone formation (Zhang et al., 2014; Fujioka et 

al., 2015). In contrast, some cytokines support osteoclast formation, including the pro-

inflammatory cytokines such as IL-6 (Axmann et al., 2009; Yokota et al., 2014) and 

TNF-α (Kitaura et al., 2013; de Vries et al., 2016).  

Heat stress has been shown to suppresses immunity (Bartlett and Smith, 2003; 

Niu et al., 2009; Jahanian and Rasouli, 2015), including a rapid change of circulating 

cytokines. For instance, a study reported increased TNF-α and IL-4 concentrations but 

decreased IFN-γ and IL-2 concentrations in the spleen of chickens exposed to cycling 

heat for 16 h daily (4 h of 23.9 to 37° C, 8 h of 37° C, and 4 h of 37 to 23.9° C) for 4 wk 

(Xu et al., 2014). Elevated expressions of TNF-like, IFN-γ, and IL-1β genes occurred in 

chicken hepatocytes incubated at 40° C in vitro (Oskoueian et al., 2014). Our results 

showed that probiotic supplementation as compared to control fed broilers reduced the 

plasma concentrations of TNF-α but not IL-6, IL-10, and IFN-γ in broilers under heat 

conditions. The lowered concentrations of TNF-α may in turn decrease osteoclast 

formation, which agrees with the finding of reduced serum concentrations of CTX, a 

bone resorption indicator, in the current study. These lowered concentrations of plasma 

TNF-α may have facilitated greater bone growth and size in probiotic fed 43-d-old 
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broilers as compared to control-fed chickens. In line with our results, reduced pro-

inflammatory cytokine TNF-α concentrations or gene expression were also considered as 

the main cause of improved bone mass in GF mice or mice fed probiotic supplementation 

(Sjogren et al., 2012; mccabe et al., 2013). In addition, probiotics, such as Bacillus 

licheniformis, reduce heat stress-induced elevation of serum concentrations TNF-α (Deng 

et al., 2012). Serum concentrations of CORT were also reduced by probiotic Bacillus 

licheniformis in the study of Deng et al. (2012). However, similar CORT concentrations 

occurred in broilers with and without probiotic supplementation subjected to an elevated 

cycling temperature in the current study suggesting that the probiotic may not regulate 

bone traits through adrenal glucocorticoids, but through down-regulation of the 

circulating pro-inflammatory TNF-α cytokine. 

4.6 Conclusions 

Dietary supplementation of Bacillus subtilis based probiotic caused larger bones 

under cycling elevated temperatures, but did not improve BMD or cortical thickness. 

Reduced circulating concentrations of the pro-inflammatory cytokine of TNF-α may have 

facilitated bone growth in broilers consuming the probiotic under conditions of elevated 

temperatures. Dietary probiotic supplementation may be a management strategy for 

increasing skeletal growth in broilers under heat stress. 
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Table 4.1 Ambient temperature and humidity recorded from d 15 to 44 

Relative Humidity (%) 
 

Temperature (° C) 
Age 

1700 to 0700 h 0700 to 1700 h 1700 to 0700 h 0700 to 1700 h 

55.0 ± 1.8 52.2 ± 1.7  26.4 ± 0.7 31.9 ± 0.6 d 15-28 

59.2 ± 1.7 56.8 ± 1.4  26.7 ± 0.8 32.1 ± 0.5 d 29-44 

Values represent the least square means ± SEM.  
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Table 4.2 The ration formulation 

 Starter Grower Finisher 

Ingredient, %    

Corn 52 52.3 62.8 

Soybean meal, 48 % crude protein 40 39.1 29.7 

Soybean oil 3.59 4.97 4.11 

Sodium chloride 0.51 0.46 0.43 

DL Methionine 0.3 0.24 0.23 

L-Lysine HCl 0.13 - - - 0.07 

Threonine 0.06 - - - - - - 

Limestone 1.29 1.15 1.12 

Monocalcium phoshate 1.75 1.48 1.17 

Vitamin/mineral premix1 0.35 0.35 0.35 

Calculated analyses 

Crude protein % 23.4 22.8 19.2 

ME kcal/kg 3050 3151 3200 

Ca % 0.95 0.85 0.75 

Available P % 0.5 0.44 0.36 

Methionine % 0.66 0.59 0.53 

Methionine + cystine % 1.04 0.97 0.86 

Lysine % 1.42 1.29 1.09 

Threonine % 0.97 0.89 0.74 

Na % 0.22 0.20 0.19 
1Provided per kilogram of diet: vitamin A, 13,233 IU; vitamin D3, 6,636 IU; vitamin E, 

44.1 IU; vitamin K, 4.5 mg; thiamine, 2.21 mg; riboflavin, 6.6 mg; pantothenic acid, 24.3 

mg; niacin, 88.2 mg; pyridoxine, 3.31 mg; folic acid, 1.10 mg; biotin, 0.33 mg; vitamin 

B12, 24.8 μg; choline, 669.8 mg; iron from ferrous sulfate, 50.1 mg; copper from copper 

sulfate, 7.7 mg; manganese from manganese oxide, 125.1 mg; zinc from zinc oxide, 

125.1 mg; iodine from ethylene diamine dihydroiodide, 2.10 mg; selenium from sodium 

selenite, 0.30 mg. 
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Table 4.3 The targeted concentrations of probiotic microorganisms and the actual 

concentrations in feed samples collected at the beginning of the experiment 

  

Treatment 
Target 

(cfu/g diet) 

Starter 

(cfu/g diet) 

Grower 

(cfu/g diet) 

Finisher 

(cfu/g diet) 

Control 0 0.027 x 106 0.013 x 106 0.006 x 106 

Probiotic  1.0 x 106 1.1 x 106 1.3 x 106 0.84 x 106 
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Table 4.4 The effects of Basillus subtilis based probiotic on bone traits of 14-d-

old broilers 

 Control1 Probiotic1 SEM P 

Tibia     

BMD (g/cm2) 0.060 0.066 0.001 0.07  

BMC (g) 0.25 0.32 0.006 0.03 

Area (cm2) 4.07 4.73 0.06 0.04 

Weight (g) 0.55 0.65 0.01 0.05 

Relative weight (g/kg) 2.24 2.23 0.02 0.90 

Length (mm) 43.00 44.63 0.19 0.10  

Width (mm) 3.38 3.59 0.03 0.21 

Weight/length index (mg/mm) 12.71 14.42 0.18 0.06  

Robusticity index (g,cm) 5.29 5.19 0.02 0.26 

Femur     

BMD (g/cm2) 0.055 0.060 0.001 0.08  

BMC (g) 0.17 0.22 0.004 0.04 

Area (cm2) 3.12 3.61 0.05 0.06  

Weight (g) 0.39 0.46 0.01 0.09  

Relative weight (g/kg) 1.58 1.58 0.01 0.93 

Length (mm) 33.21 34.17 0.14 0.18 

Width (mm) 3.40 3.67 0.03 0.12 

Weight/length index (mg/mm) 11.71 13.41 0.18 0.07  

Robusticity index (g,cm) 4.58 4.45 0.01 0.08  
1The number of observations per least square mean is 12. 
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Table 4.5 The effects of Basillus subtilis based probiotic on bone traits of 28-d-

old broilers subjected to daily cycling heating episodes 

 Control1 Probiotic1 SEM P 

Tibia     

BMD (g/cm2) 0.141 0.133 0.002 0.43 

BMC (g) 1.17 1.03 0.02 0.25 

Area (cm2) 8.12 7.67 0.07 0.23 

Weight (g) 3.41 2.99 0.08 0.30 

Relative weight (g/kg) 3.13 3.10 0.06 0.90 

Length (mm) 69.92 69.17 0.31 0.63 

Width (mm) 6.77 6.56 0.06 0.52 

Weight/length index (mg/mm) 48.26 43.07 0.95 0.28 

Robusticity index (g,cm) 4.71 4.83 0.02 0.27 

Femur     

BMD (g/cm2) 0.127 0.120 0.001 0.32 

BMC (g) 0.79 0.71 0.01 0.26 

Area (cm2) 6.18 5.88 0.06 0.28 

Weight (g) 2.39 2.19 0.04 0.33 

Relative weight (g/kg) 2.24 2.26 0.04 0.88 

Length (mm) 53.92 52.42 0.19 0.11 

Width (mm) 6.48 6.25 0.05 0.37 

Weight/length index (mg/mm) 44.12 41.69 0.65 0.45 

Robusticity index (g,cm) 4.06 4.07 0.02 0.89 
1The number of observations per least square mean is 12. 
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Table 4.6 The effects of Basillus subtilis based probiotic on bone traits of 43-d-

old broilers subjected to daily cycling heating episodes 

 Control1 Probiotic2 SEM P 

Tibia     

BMD (g/cm2) 0.167  0.176  0.001  0.074  

BMC (g) 2.05 2.44 0.02  0.001  

Area (cm2) 12.23 13.91 0.12  0.003  

Weight (g) 6.50  9.04  0.22  0.01  

Relative weight (g/kg) 3.37  4.09  0.09  0.07  

Length (mm) 92.11 93.50 0.44  0.44  

Width (mm) 8.17  9.31  0.11  0.02  

Medial thickness (mm) 1.07 1.14 0.01  0.15 

Lateral thickness (mm) 1.61 1.60 0.02  0.91 

Weight/length index (mg/mm) 70.29  96.87  2.37  0.01  

Robusticity index (g,cm) 5.00  4.52  0.04  0.02  

Femur      

BMD (g/cm2) 0.142  0.145  0.001  0.56  

BMC (g) 1.33  1.55  0.02  0.01 

Area (cm2) 9.38  10.75  0.11  0.01 

Weight (g) 5.42  7.45  0.22  0.03 

Relative weight (g/kg) 2.80  3.38  0.09  0.13  

Length (mm) 69.33 71.33 0.37  0.20 

Width (mm) 8.51 9.19 0.09  0.07 

Medial thickness (mm) 1.41 1.27 0.03  0.25 

Lateral thickness (mm) 1.41 1.50 0.02  0.38 

Weight/length index (mg/mm) 77.85 103.74 2.66  0.03 

Robusticity index (g,cm) 3.99  3.68  0.03  0.03 
1The number of observations per least square mean is 9. 
2The number of observations per least square mean is 6.  
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Table 4.7 The effects of Basillus subtilis based probiotic on catecholamines, 5-

HT, and respective metabolites in the raphe nuclei of 43-d-old broilers subjected to daily 

cycling heating episodes 

 Control1 Probiotic2 SEM P 

Catecholamine system     

DA (ng/g) 106.69  103.08  2.00  0.79 

NE (ng/g) 921.93  946.96  23.34  0.83 

EP (ng/g) 156.46  161.41  5.71  0.66 

DOPAC (ng/g) 52.32  53.29  0.71  0.74 

HVA (ng/g) 156.39  155.82  2.40  0.95 

DOPAC/DA 0.49  0.53  0.01  0.3 

HVA/DOPAC 1.48  1.56  0.04  0.64 

5-HT system     

TRP (ng/g) 5753.77  5887.75  141.30  0.81 

5HT (ng/g) 472.39  448.69  10.97  0.6 

5HIAA (ng/g) 376.39  411.81  11.69  0.46 

5HIAA/5HT 0.84  0.95  0.04  0.51 
1The number of observations per least square mean is 9. 
2The number of observations per least square mean is 6. 
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Table 4.8 The effects of Basillus subtilis based probiotic on catecholamines, 5-

HT, and respective metabolites in the hypothalamus of 43-d-old broilers subjected to 

daily cycling heating episodes 

 Control1 Probiotic2 SEM P 

Catecholamine system     

DA (ng/g) 301.77  295.84  6.76  0.37 

NE (ng/g) 1673.75  1780.36  28.71  0.11 

EP (ng/g) 273.22  322.92  7.39  0.83 

DOPAC (ng/g) 88.25  97.36  1.31  0.1 

HVA (ng/g) 235.71  268.94  4.27  0.07 

DOPAC/DA 0.30  0.33  0.01  0.23 

HVA/DOPAC 0.80  0.92  0.02  0.19 

5-HT system     

TRP (ng/g) 5041.90  5609.00  107.84  0.21 

5HT (ng/g) 966.84  954.74  13.43  0.82 

5HIAA (ng/g) 275.33  328.64  7.21  0.08 

5HIAA/5HT 0.28  0.35  0.01  0.07 
1The number of observations per least square mean is 9. 
2The number of observations per least square mean is 6.  
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Figure 4.1 The effects of Basillus subtilis based probiotic on the latency to lie test 

in 44-d-old broilers subjected to daily cycling heating episodes 

The number of observations per least square mean is 18 for control and 12 for probiotic 

groups.
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Figure 4.2 The effects of Basillus subtilis based probiotic on serum Ca (a) and Pi 

(b) concentrations in broilers at 14, 28, and 43 d of age  

Broilers subjected to daily cycling heating episodes during 14 to 43 d of age. The number 

of observations per least square mean is 9 for control and 6 for probiotic groups. 
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Figure 4.3 The effects of Basillus subtilis based probiotic on OC (a) and CTX (b) 

concentrations in 43-d-old broilers subjected to daily cycling heating episodes  

The number of observations per least square mean is 9 for control and 6 for probiotic 

groups. Significant treatment differences (P < 0.05) are indicted by letters (a,b).  
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Figure 4.4 The effects of Basillus subtilis based probiotic on plasma 5-HT (a) and 

TRP (b) concentrations in 43-d-old broilers subjected to daily cycling heating episodes 

The number of observations per least square mean is 9 for control and 6 for probiotic 

groups. 
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Figure 4.5 The effects of Basillus subtilis based probiotic on systemic immune 

cytokines in 43-d-old broilers subjected to daily cycling heating episodes 

The number of observations per least square mean is 9 for control and 6 for probiotic 

groups. Significant treatment differences (P < 0.05) are indicted by letters (a,b).  
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Figure 4.6 The effects of Basillus subtilis based probiotic on plasma CORT 

concentrations in 43-d-old broilers subjected to daily cycling heating episodes 

The number of observations per least square mean is 9 for control and 6 for probiotic 

groups. 
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CHAPTER 5. EFFECTS OF A MULTIPLE SPECIES PROBIOTIC 

ON BONE HEALTH IN BROILERS SUBJECTED TO CYCLIC 

HEATING EPISODES 

5.1 Abstract 

The objective of this study was to determine the effect of a multi-species probiotic 

on broiler bone health under daily cycling heating episodes. Three hundred and sixty 

Ross 708 broiler straight-run hatchlings were randomly assigned to 3 dietary treatments 

(n = 8): basal diet (control) and the basal diet mixed with a commercial probiotic product 

at 0.5 (0.5X) or 1.0 (1.0X) g/kg of feed. Room temperature was gradually decreased from 

35 ºC on d 1 by 0.55 ºC/d for the first 14 d. When broilers were 15 d of age, ambient 

temperature was increased from 28 to 32 ºC for 9 h (0800 h to 1700 h) and then dropped 

to 25 to 26° C for the remainder of the 24 h period. The cyclic heating episodes were 

instigated daily from 15 d of age until termination of the experiment at 6 wk of age. Gait 

score and the latency to lie test were conducted when broilers were 40 and 41 d of age, 

respectively. The tibia, femur, and humerus were collected for measuring bone 

parameters at 42 d of age. The BMD, BMC, and bone area increased and the gait score 

decreased in the 1.0X group compared to the controls (P < 0.05), whereas the 0.5X group 

was similar to controls. The proportions of broilers showing signs of lameness were in 

the order of 1.0X < 0.5X < control dietary treatments or 25, 45, and 54%, respectively. 

For the latency to lie test, adding probiotic to the feed caused birds to stand longer in 

water as compared to controls (P = 0.03), but there was no additional benefit to doubling 

the dosage of the probiotic from 0.5X to 1.0X. In conclusion, dietary supplementation of 

probiotic improved bone health of broilers subjected to daily cycling heating episodes 

resulting in an improvement in walking ability.  

5.2 Introduction 

Leg disorders are a serious welfare and economic problem of the poultry meat 

industry as it affects the musculoskeletal system causing lameness and impairing mobility 

(Bokkers and Koene, 2003; Reiter and Bessei, 2009). Multiple factors influence the 
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incidence of leg disorders in broilers such as genetics, age, sex, growth rate, nutrition, 

housing, environment factors, and management (Kestin et al., 1999; Sorensen et al., 

2000; Bercik et al., 2010; Toghyani et al., 2011; Schwean-Lardner et al., 2013). Fast 

growth rate is a key factor affecting lameness in commercial broiler flocks (Talaty et al., 

2009; Toscano et al., 2013). For example, rapidly growing broilers have lower tibia 

density and percentage of bone ash than slow-growing broilers (Shim et al., 2012) with 

lower bone mineralization causing high bone porosity (Williams et al., 2004). Broilers 

with a poor gait score spend more time lying (86%) than non-lame (76%) chickens with 

no leg problems (Weeks et al., 2000). The lack of activity further exacerbates lameness as 

mechanical loading is essential for normal bone formation. For example, broilers in cages 

as compared to those in large enclosures where the chickens could walk freely had lower 

leg bone mineralization which the authors attributed to inactivity (Aguado et al., 2015). 

Heat stress reduces growth because of reduced feed intake and impaired intestinal 

function (Lott, 1991; Belay and Teeter, 1993). High ambient temperatures also cause 

mortality, immunosuppression (Jahanian and Rasouli, 2015), acid-base imbalance 

(Borges et al., 2004), and tissue damage as indicated by increases in plasma lactate 

dehydrogenase, glutamic-oxaloacetic transaminase, and creatine kinase (Xie et al., 2015).  

Heat stress induces bone loss in broilers (Hosseini-Vashan et al., 2016), laying 

hens (Koelkebeck et al., 1993), and turkey (Jankowski et al., 2015). Although lameness 

was not triggered with repeated episodes of heat (33° C, 3 d/wk from 4 to 6 wk of age), 

the subclinical incidence of tibial head necrosis was substantially greater at 28 and 35 d 

of age in heat-stressed broilers (Wideman and Pevzner, 2012). Elevated temperatures 

increase circulating CORT (Henneicke et al., 2014) and reactive oxygen substances in 

mitochondria leading to oxidative stress (Huang et al., 2015), perhaps contributing to 

impaired skeletal health. Excessive CORT negatively affects bone mass through 

inhibiting osteoblastogenesis, increasing osteoblast and osteocyte apoptosis, and 

promoting osteoclast survival (O'Brien et al., 2004; Jia et al., 2006; Rauch et al., 2010). 

Femoral health status was improved in laying hens fed a multi-species based 

probiotic (Yan et al., 2015). The objective of this study was to determine the effects of 

the commercial probiotic product on broiler bone health when subjected to cycling 
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heating episodes. We hypothesized that probiotic would improve bone health and reduce 

lameness in broilers under conditions of cycling elevated temperatures.  

5.3 Materials and Methods 

5.3.1 Birds, Management, Diets 

The experimental protocol was approved by the Purdue Animal Use and Care 

Committee (Number 1111000262). Three hundred and sixty d-old straight-run Ross 708 

broiler chicks were obtained from a commercial hatchery (Miller Poultry, Orland, IN). 

Birds were weighed in groups of 15 chicks each and placed into 24 floor pens (243 x 152 

cm), ensuring each pen had similar average BW. Stocking density was 2,462 cm2/broiler. 

One hanging feeder and Plasson bell drinker were provided per pen. Feed and water were 

provided for ad libitum consumption. 

Pens were randomly assigned to 3 dietary treatments of 8 replicate littered floor 

pens each for 42 d: control diet (Table 5.1) and the control diet mixed with a multi-

species probiotic (PoultryStar®, BIOMIN America, Inc., San Antonio, TX)) at 0.5g/kg of 

feed (0.5X) or 1.0g/kg of feed (1.0X). The composition of the probiotic included 4 

microbial strains of Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium 

animalis, and Lactobacillus reuteri. Starter, grower, and finisher diets were fed from 1 to 

14, 15 to 28, and 29 to 42 d of age (Table 5.1) using the nutrient recommendations of 

Aviagen (2014b). Room temperature was gradually decreased from 35 ºC on d 1 by 0.5 

ºC/d for the first 14 d. When broilers were 15 d of age, ambient temperature was 

increased from 28 to 32 ºC for 9 h (0800h to 1700h) and then dropped to 25 to 26° C for 

the remainder of the 24 h period (Table 5.3). The cyclic heating episodes were instigated 

daily from 15 d of age until termination of the experiment. Data loggers (HOBO®, Onset 

Computer Corporation, Bourne, MA) were used to record room temperature and 

humidity when boilers were 3 to 6 wk of age (Table 5.2). The lighting program was 

23light:1dark at 30 lux until 3 d of age, then 20light:4dark at 10 lux until 42 d of age.  

5.3.2 Data Collection 

At 40 d of age, 7 broilers per pen were randomly selected and individually 

evaluated for walking ability using a 3-point gait score system (Webster et al., 2008). 
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Using the individual gait scores collected from 7 broilers per pen, the proportion of 

broilers within a gait score for each dietary treatment was calculated and expressed as a 

percentage. The gait scores from the same pen were averaged and used in the statistical 

analysis rather than using individual data.  

At 41 d of age, 2 broilers per pen were randomly selected and used to perform the 

latency to lie test using the procedure of (Berg and Sanotra, 2003). This test is an 

indicator of a broiler's desire and capability to stand in an uncomfortable situation. 

Briefly, an individual bird was placed into a tub previously filled with 3 cm of water at 

28° C. The test was conducted between 1000 and 1300 h when broilers were 

experiencing the heat. The chicken was removed from its pen and taken to the tub located 

in an adjacent room where ambient temperature was normal. The time it took for the 

chicken to sit down and touch the water was recorded. If the bird flew away, it was not 

included in the data set. If the broiler was still standing after 600 s, the test was stopped 

and the observation of 600 s was recorded.  

At 42 d of age, 2 broilers per pen were randomly selected. The chickens were 

sedated using sodium pentobarbital injected intravenously in the brachial vein (30 mg/kg 

of BW) followed by BW determination and cervical dislocation. The left wing, thigh, and 

drum were collected from each broiler, placed in a labelled plastic bag, and frozen (-20° 

C) for later analysis. 

5.3.3 DEXA 

Carcass samples were thawed and scanned using DEXA (Norland Medical 

Systems, Inc., Fort Atkinson, WI) with muscle, skin, and feathers intact to quantify 

BMD, BMC, and bone area of the humerus, femur, and tibia with fibula (Hester et al., 

2013). 

5.3.4 Statistical Analysis 

A one-way ANOVA of the mixed model procedure of SAS 9.4 software (SAS 

Institute, Inc., Cary, NC) was used to analyze data. Linear and quadratic effects were 

tested for using regression analysis. The fixed factor was the probiotic treatment. The 

BW was used as a covariate for measures of bone mineralization and bone area when 
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necessary. Transformation of data was performed for normality when variances were not 

homogeneous (Steel et al., 1997). Statistical trends were similar for both transformed and 

untransformed data; therefore, the untransformed least square means and SEM were 

presented. The Tukey-Kramer test was used to partition differences among means. 

Statistical significance was set at P < 0.05. A Pearson correlation analysis was performed 

on bone traits and BW.  

5.4 Results  

Broilers of the current study were demonstrating signs of distress during the 

heating episodes as indicated by panting and wing spreading (Mohammed et al., 

unpublished data).  

The 42-d-old BW of broilers increased linearly with increasing dosages of 

probiotic (P = 0.01, Figure 5.1), whereas gait score of 40-d-old broilers decreased linearly 

with increasing dosages of the combined product (P = 0.05; Figure 5.2a). Most of the 

broilers of the current study were categorized with a gait score of 0 (normal gait) or 1 

(awkward gait) with only a small proportion (< 2%) identified with a poor gait score of 2 

(Figure 5.2b). With respect to distribution of birds of the 3 dietary treatments within a 

gait score, the proportion of broilers with a normal gait (score of 0) increased linearly as 

the dosages of probiotic increased. Specifically, 46, 55, and 75% of the broilers 

consuming the control, 0.5X, and 1.0X diets, respectively, had a normal gait of 0 (P = 

0.03, Figure 5.2b). Concomitantly, the awkward gait score of 1 showed the opposite 

effect, whereby the proportion of broilers among diets decreased linearly as dosages of 

probiotic increased. Specifically, 52, 41, and 23% of the broilers consuming the control, 

0.5X, and 1.0X diets, respectively, had an awkward gait (score of 1). No differences in 

distribution were found among dietary treatments for the poor gait score of 2 (P = 0.77). 

For the latency to lie test, broilers consuming the 0.5X and 1.0X diets spent a greater 

length of time standing in water than the controls (P = 0.03; Figure 5.3), but the 1.0X 

group did not differ from the controls.  

Mineralization (BMD and BMC) and area of the tibia 42-d-old broilers increased 

linearly as the dosage of probiotic increased in the diet (see individual P values in Table 

5.4). The mineralization of the femur and humerus (BMD and BMC) did not respond 
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favorably to the probiotic treatment until a dosage level of 1.0X was used. The area of the 

humerus was unaffected by the dietary supplementation (P= 0.09, Table 5.4).  

Positive correlations (P < 0.05 or lower) were found between BW and the bone 

traits of BMD, BMC, and bone area for the tibia, femur, and humerus (Table 5.5). Using 

BW as a covariate resulted in no differences among dietary treatments for tibia and femur 

bone traits (see adjusted P values in Table 5.4). An analysis of covariance was not used 

for traits of the humerus, because BW was not significant as a covariate.  

5.5 Discussion 

During the 9 h of elevated temperature of 32 ºC, broilers were panting. According 

the performance standards of the Ross 708 broiler, straight run chickens raised under 

normal management should have an average BW of 2,678 g at 42 d of age (Aviagen, 

2014a). The controls of the current study were slightly below this performance standard 

with an average 42-d-old BW of 2,600 g, suggesting that the elevated temperature slowed 

growth, even when using very low stocking densities.  

Use of a multi-species probiotic had a profound effect in countering the 

detrimental effects of elevated ambient temperatures on broilers. Market BW and skeletal 

health of the supplement fed-broilers were remarkably improved as compared to controls 

given no probiotic that were also subjected to daily cycling heating episodes. All 

measures of skeletal health used in the current study, including bone mineralization of leg 

(unadjusted for BW) and wing bones, gait score, and latency to lie test, showed benefits 

when the probiotic supplement was added to the diet. Of the 2 dosages of probiotic used 

in the current study, the higher dose (1.0X) is recommended under conditions of elevated 

temperatures as the response of broilers to the lower dosage of 0.5X was intermediate and 

in many instances did not differ from controls. Broilers raised under commercial 

conditions experience more crowded conditions than the chickens of the current study, 

therefore using the 1.0X as compared to 0.5X dosage provides a safeguard against 

competition at the feeders.  

There are several other studies supporting improved skeletal health in poultry as a 

result of consuming probiotics. For example, probiotics reduced lameness in broilers 

diagnosed with BCO. Broilers purposely reared on wire floor to induce this bone disease 
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showed a reduction in lameness using the same probiotic and similar dosage (probiotic 

beginning at 1 d of age with the dose 0.55 g/kg of feed) of the lower dosage (0.50 g/kg of 

feed) used in the current study (Wideman et al., 2012). Utilizing another commercial 

product, broilers raised on wire and consuming BacPack 2X (a mannan oligosaccharide 

beta-glucan yeast cell wall prebiotic product plus a probiotic containing Bacillus subtilis) 

experienced a delay in age of onset as well as a lower incidence of BCO (Wideman et al., 

2015). Additionally, feeding a single species probiotic of Enterococcus faecium (0.55 

g/kg of feed) beginning at 1 d of age to broilers reared on wire resulted in a low incidence 

of femoral head transitional degeneration and tibial head necrosis. Dietary 

supplementation of a Bacillus subtilis based probiotic beginning at 1 d of age improved 

mineralization and cortical thickness of leg bones of 43-d-old broilers raised under a 

normal temperature regimen (see Chapter 3 of dissertation), but only bone size traits and 

growth were improved with the same supplementation for broilers exposed to cycling 

elevated temperatures (see Chapter 4 of dissertation). Other studies with poultry have 

also shown that probiotic supplementation improved bone mass (Abdelqader et al., 2013; 

Sadeghi, 2014). Collectively, these studies provide strong evidence that probiotics 

improve skeletal health in poultry.  

Probiotics improve intestinal integrity allowing for increased absorption and 

bioavailability of minerals such as Ca and P for bone mineralization. Under conditions of 

high ambient temperatures, probiotics may be even more effective in enhancing intestinal 

absorption as it has been reported that the inclusion of various probiotics ameliorates the 

negative effect of heat on gut health in broilers (Sohail et al., 2012; Song et al., 2014) and 

laying hens (Deng et al., 2012). Chronic heat stress in broilers induces intestinal injury 

such as reduced height of villi, thinner gut mucosa, and reduced alkaline phosphatase 

activity (Hu et al., 2016) that can hamper Ca and P intestinal absorption. 

The positive correlation between BW and bone mineralization as measured 

through DEXA (Table 5.5) is in agreement with previous studies (Talaty et al., 2010; 

Gonzalez-Ceron et al., 2015). Larger birds have higher bone mineralization than smaller 

birds. As an example, Leghorn and Cobb broiler females were raised together using 

standard management procedures. The mean BMD of the tibia of 55-wk-old Leghorn 

hens with an average BW of 1.53 kg was 0.186 g/cm2. The same age broiler female had 
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over double the BW and BMD. Specifically, the mean BMD of the tibia of 55-wk-old 

broiler females with an average BW of 4.40 kg was 0.389 g/cm2 (Schreiweis et al., 2005). 

Because of the strong association between BW and bone mineralization, an analysis of 

covariance using BW as a covariate is often conducted on bone traits (Lang et al., 2005; 

Schreiweis et al., 2005; Talaty et al., 2009, 2010; Hester et al., 2011; Hester et al., 2013) 

which was done in the current study. However, there are numerous studies using different 

animal models demonstrating the bone enhancing effect of probiotics that use only 

unadjusted skeletal data (Ziaie et al., 2011; Abdelqader et al., 2013; Li et al., 2016; 

Messora et al., 2016). With respect to the current study, the probiotic effect on the bone 

mineralization of leg bones, but not the wing bone (humerus), dissipated as a result of 

using BW as a covariate suggesting that the dietary supplement's main influence on 

weight bearing limbs was through stimulation of growth. The 17% increase in BW of 

broilers consuming the 1.0X probiotic as compared to controls (Figure 5.1) under 

conditions of cycling elevated temperatures exemplifies the profound effect that this 

supplement had in promoting growth. Nevertheless, because BMD and BMC of the 

humerus, gait score and the latency to lie test showed improvements in broilers 

consuming probiotics, it can still be concluded that skeletal health benefited from the 

dietary supplement under conditions of cycling elevated temperatures.  

It is important to point out that the probiotic induced improvement in gait score 

and latency to lie results occurred without detrimentally affecting growth. Gait score and 

BW are positively and strongly correlated with heavier broilers having poorer walking 

ability (Sorensen et al., 1999; Su et al., 1999; Sorensen et al., 2000; Venalainen et al., 

2006; Brickett et al., 2007), but this was not the case in the current study as BW was 

actually increased in 42-d-old broilers of the 1.0X fed group as compared to the controls 

(Fig. 5.1) without deleteriously affecting gait score. 

5.6 Conclusion  

The inclusion of a multi-species probiotic in the diets of broilers exposed to daily 

cycling heating episodes, that began at 15 d of age, increased market BW and bone 

mineralization and improved walking ability as compared to control fed broilers. Dietary 



194 

 

use of the multi-species probiotic is effective in improving broiler welfare as well as 

performance during hot weather. 
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Table 5.1 The ration formulation 

 Starter Grower Finisher 

Ingredient, %    

Corn 52 52.3 62.8 

Soybean meal, 48 % crude protein 40 39.1 29.7 

Soybean oil 3.59 4.97 4.11 

Sodium chloride 0.51 0.46 0.43 

DL Methionine 0.3 0.24 0.23 

L-Lysine HCl 0.13 - - - 0.07 

Threonine 0.06 - - - - - - 

Limestone 1.29 1.15 1.12 

Monocalcium phoshate 1.75 1.48 1.17 

Vitamin/mineral premix1 0.35 0.35 0.35 

Calculated analyses 

Crude protein % 23.4 22.8 19.2 

ME kcal/kg 3050 3151 3200 

Ca % 0.95 0.85 0.75 

Available P % 0.5 0.44 0.36 

Methionine % 0.66 0.59 0.53 

Methionine + cystine % 1.04 0.97 0.86 

Lysine % 1.42 1.29 1.09 

Threonine % 0.97 0.89 0.74 

Na % 0.22 0.20 0.19 
1Provided per kilogram of diet: vitamin A, 13,233 IU; vitamin D3, 6,636 IU; vitamin E, 

44.1 IU; vitamin K, 4.5 mg; thiamine, 2.21 mg; riboflavin, 6.6 mg; pantothenic acid, 24.3 

mg; niacin, 88.2 mg; pyridoxine, 3.31 mg; folic acid, 1.10 mg; biotin, 0.33 mg; vitamin 

B12, 24.8 μg; choline, 669.8 mg; iron from ferrous sulfate, 50.1 mg; copper from copper 

sulfate, 7.7 mg; manganese from manganese oxide, 125.1 mg; zinc from zinc oxide, 

125.1 mg; iodine from ethylene diamine dihydroiodide, 2.10 mg; selenium from sodium 

selenite, 0.30 mg. 
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Table 5.2 Ambient temperature and humidity recorded during the third through 

the sixth wk of the experiment 

Relative Humidity (%) 
 

Temperature (° C) 
Age 

1700 to 0800 h 0800 to 1700 h  1700 to 0800 h 0800 to 1700 h 

55.1 ± 1.6 49.2 ± 1.5  25.9 ± 0.4 31.9 ± 0.3 Third wk 

52.7 ± 1.5 50.9 ± 0.8  25.4 ± 0.2 31.6 ± 0.3 Fourth wk 

61.4 ± 1.4 60.0 ± 1.7  25.5 ± 0.3 31.7 ± 0.5 Fifth wk 

53.7 ± 1.3 57.5 ± 1.2  25.4 ± 0.1 31.6 ± 0.3 Sixth wk 

Values represent the least square means ± SEM.  
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Table 5.3 Description of a 3-point gait-scoring system 

Score Lameness Walking ability 

0 None 
Bird can walk at least 1.5 m with a balanced gait. Bird may 

appear ungainly but with little effect on function. 

1 
Obvious 

signs 

Bird can walk at least 1.5 m but with a clear limp or decidedly 

awkward gait. 

2 Severe signs 
Bird will not walk 1.5 m. May shuffle on shanks or hocks with 

assistance of wings. 
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Table 5.4 The effect of a multi-species probiotic on bone mineralization and area 

of 42-d-old broilers subjected to cyclic heating episodes 

a,bLeast square means within a row lacking a common superscript differ (P < 0.05). The 

average number of observations per least square means was 16. 
1The probiotic dosage was 0 (Control), 0.5 (0.5X), or 1.0 (1.0X) g/kg of feed.  

2BW was used as a covariate. 
3NA: not applied. 

  

 Treatment1    

Parameter Control 0.5X 1.0X SEM P Adjusted P2 

Tibia       

BMD (g/cm2) 0.209b 0.216ab 0.226a 0.004 0.03 0.97 

BMC (g) 2.82b 3.02ab 3.30a 0.09 0.002 0.76 

Area (cm2) 13.46b 13.98ab 14.62a 0.25 0.008 0.59 

Femur       

BMD (g/cm2) 0.180b 0.185b 0.199a 0.004 0.006 0.81 

BMC (g) 1.80b 1.92b 2.21a 0.08 0.002 0.81 

Area (cm2) 9.99b 10.39ab 11.08a 0.25 0.01 0.82 

Humerus       

BMD (g/cm2) 0.215b 0.214b 0.234a 0.006 0.05 NA3 

BMC (g) 1.60b 1.62b 1.87a 0.05 0.0003 NA 

Area (cm2) 7.47 7.62 8.00 0.17 0.09 NA 
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Table 5.5 Correlation values for bone mineralization, bone area, and BW  

 Tibia  Femur  Humerus 

 BMD BMC Area  BMD BMC Area  BMD BMC Area 

BW 0.52** 0.63** 0.51**  0.63** 0.67** 0.55**  0.29* 0.52** 0.35* 

*The r values are significant at P < 0.05. 

**The r values are significant at P < 0.001. 
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Figure 5.1 The effect of a multi-species probiotic on the BW of 42-d-old broilers 

subjected to cyclic heating episodes  

The probiotic dosage was 0 (Control), 0.5 (0.5X), or 1.0 (1.0X) g/kg of feed. Least square 

means lacking a common superscript differ (P < 0.05). The average number of 

observations per least square means was 16. 
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Figure 5.2 The effect of a multi-species probiotic on gait score (a) and its 

distribution (b) of 40-d-old broilers subjected to cyclic heating episodes  

The probiotic dosage was 0 (Control), 0.5 (0.5X), or 1.0 (1.0X) g/kg of feed. Least square 

means lacking a common superscript differ (P < 0.05). The average number of 

observations per least square mean was 8. 

  

a) 

b) 
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Figure 5.3 The effect of a multi-species probiotic on latency to lie test of 41-d-old 

broilers subjected to cyclic heating episodes  

The probiotic dosage was 0 (Control), 0.5 (0.5X), or 1.0 (1.0X) g/kg of feed. Least square 

means lacking a common superscript differ (P < 0.05). The average number of 

observations per least square mean was 16. 
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SUMMARY 

Skeletal disorders are a global welfare issue in the poultry industry. Bone fracture 

in laying hens and lameness in broilers commonly occur under routine management 

causing chickens to experience chronic pain and mortality. Probiotics are live 

microorganisms with health benefits for the host when administered in appropriate 

amounts. Studies conducted to date provide evidence that probiotics improve skeletal 

health in poultry. Probiotics improve gut health allowing for increased intestinal 

absorption and bioavailability of minerals such as Ca and P for bone mineralization. 

Besides enhanced bioavailability of nutrients, other modes of action of probiotics that 

may include neuroendocrine mechanisms have not been investigated. In this study, the 

effects of probiotics on skeletal health and underlying cellular mechanisms were 

examined under different circumstances, including using single or multiple species based 

probiotics at different dosages, laying hens or broilers, as well as thermoneutral or 

elevated temperatures.  

Skeletal health was improved as a result of dietary probiotic supplementation 

regardless of the probiotic species, type of poultry (egg laying or meat-type fowl), and 

environmental temperature. Laying hens consuming a multi-species based probiotic 

PoultryStar® experienced an increase in tibial and femoral bone mineral density as well 

as a reduction in shell-less egg production. PoultryStar® increased bone mineralization of 

the tibia, femur, and humerus in heat stressed broilers and reduced lameness as indicated 

by a lower gait score and longer latency to lie. Similarly, a single-species based probiotic 

consisting of Bacillus subtilis with the trade name of Sporulin®, improved bone 

mineralization and bone size traits in broilers at 43 d of age. Moreover, Sporulin® 

reduced the concentration of systemic inflammatory cytokine TNF-α thereby inhibiting 

the promoting effect of TNF-α on bone resorption, ultimately stimulating bone growth 

and bone size traits of 43-d-old broilers subjected to daily cycling elevated temperatures. 

In addition to improved bioavailability of minerals from the gut, probiotic induced 

improvement of bone mineralization and other traits indicative of skeletal health may be 

related to low sympathetic activity mediated by central serotonin. 
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In conclusion, the current results support our hypothesis that dietary probiotic 

supplementation improves skeletal health and well-being in poultry. Dietary inclusion of 

probiotics is a management strategy for the poultry industry to use to improve skeletal 

health in chickens, especially during hot weather. 
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