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ABSTRACT

Woods, Daniel C., Ph.D., Purdue University, December 2016. On the Use of Mechan-
ical and Acoustical Excitations for Selective Heat Generation in Polymer-Bonded En-
ergetic Materials. Major Professors: Jeffrey F. Rhoads and J. Stuart Bolton, School
of Mechanical Engineering.

To address security issues in both military and civilian settings, there is a press-

ing need for improved explosives detection technologies suitable for trace vapor de-

tection. In light of the strong dependence of vapor pressure on temperature, trace

vapor detection capabilities may be enhanced by selectively heating target materials

by external excitation. Moreover, polymer-bonded energetic materials may be partic-

ularly susceptible to heating by mechanical or acoustical excitation, due to the high

levels of damping and low thermal conductivities of most polymers. In this work,

the thermomechanical response of polymer-based energetic composites and methods

for acoustical excitation are investigated in order to improve the understanding of

the temperature rises induced by applied excitation, and to uncover waveforms which

may efficiently transmit excitation energy to generate heat and enhance trace vapor

detection capabilities.

The heat generation in the binder material of energetic and surrogate systems

under harmonic excitation was investigated analytically through the application of

a viscoelastic material model. Specifically, structural-scale heating was considered

under low-frequency direct mechanical excitation as applied to a beam geometry.

Experiments were conducted with a mock mechanical material, wherein the mechan-

ical and thermal responses were recorded by scanning laser Doppler vibrometry and

infrared thermography, respectively. Direct comparisons between the model and ex-

perimental results demonstrated good agreement with the predicted response, with

low-order, bulk-scale heating observed along the modal structure in areas of higher
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strains. In addition, localized heating near individual crystals was investigated an-

alytically by extending the viscoelastic heating model to general three-dimensional

stress-strain states. Application of the model to a Sylgardr 184 binder system with

an embedded HMX (octogen) crystal under ultrasonic excitation revealed predictions

of significant heating rates, particularly near the front edge of the crystal, due to the

wave scattering and the resulting stress concentrations.

In considering methods for such excitation through incident acoustical or ultra-

sonic waves, the form of the wave profile was tuned in this work for the purpose of

maximizing the energy transmission into solid materials. That transmission is gener-

ally limited by the large impedance mismatch at typical fluid–solid interfaces, but by

varying the spatial distribution of the incident wave pressure, significant transmission

increases can be achieved. In particular, tuned incident inhomogeneous plane waves

were found to predict much lower values of the reflection coefficient, and hence large

increases in the energy transmission in the context of lossless and low-loss dissipative

media. Also, material dissipation was found to have a strong effect on the optimal

incident waveform, generally causing a shift to lower inhomogeneity values. Similar

results were obtained for parameterized forms of bounded incident waves with respect

to the local reflection phenomena and surface wave excitation. These results suggest

that, depending on the targeted solid material, substantial energy transmission and

heat generation increases may be achieved by tailoring the spatial form of the incident

wave profile.
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1. INTRODUCTION

To address security concerns in both military and civilian settings, there is an urgent

need for improved technologies for detecting explosive materials. In particular, im-

provised explosive devices (IEDs) are a pervasive and growing threat, and present a

number of challenges to detection. For one, the composition of IEDs varies widely,

as their construction is limited by the available materials and ease of preparation [1–

4]. As a result, such devices often contain components and materials that are not

common in military or commercial explosives, which may render detection methods

for common explosives ineffective. In addition, the composition of IEDs varies from

region to region and evolves over time as countermeasures are implemented, which

presents further challenges to detection.

A wide array of detection methods are currently in use, which may be broadly

divided into those which seek to detect bulk explosive materials or components, and

those which attempt to sense trace material, whether deposited on a given surface

or in the form of vapors in the surrounding air [1–3, 5]. For the detection of bulk

explosives, x-rays, infrared waves, neutron beams, terahertz lasers, and other types

of interrogation have been employed to produce subsurface images that may be used

to identify suspicious objects [1, 5–7]. However, these methods are often severely

limited by metal barriers, which can prevent effective imaging. Similarly, methods

which identify circuitry elements that may be indicative of explosive devices, such as

metal detectors or non-linear junction detectors, suffer from an inability to distinguish

between IED components and parts of common, innocuous electronic devices [1, 5, 8].

In light of the limitations of bulk detection systems, much of the recent and current

research has focused on methods for trace detection [2, 3, 9, 10]. Trace material may

be deposited on a surface during the preparation or packaging of an explosive, and

vapors associated with the material may exist in the surrounding air. Recent efforts
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have focused on improving the sensitivity of trace detection methods, as low amounts

of deposited material or low vapor concentrations can render detection impossible.

Of particular note for this work is the observation of the strong dependence of vapor

pressures on temperature, which suggests that if temperatures of explosive materials

could be increased in a controlled manner (and prior to deflagration or detonation),

then the resulting increase in vapor pressure may better facilitate the detection of

trace vapors.

1.1 Brief Review of Trace Detection Technologies

Trace detection of explosives is an active area of research, with many recent ad-

vances [2, 3, 9, 10]. The existing methods for trace detection can be divided into those

which attempt to sense material deposited on surfaces, whether by swabbing the sur-

face or by non-contact spectroscopic methods, and those which attempt to detect

associated vapors in the surrounding air.

Methods of trace detection which attempt to sense deposited material, or surface

residue, often do so by swabbing surfaces which may have come into contact with

the explosive. The obtained surface sample is then analyzed by techniques such as

mass spectrometry [11, 12] or ion mobility spectrometry [13–15], or by other chemical

methods [16, 17]. However, in light of recent advances, non-contact methods for de-

tecting surface residue, which use laser-based excitation and spectroscopic methods,

have become more prominent [3, 9, 10]. These methods seek to leverage characteris-

tics in the scattered spectrum which may be indicative of target species. Examples

include Infrared Absorption Spectroscopy [9, 18], Raman Spectroscopy [19–21], and

terahertz-range methods [22–24], the interest in which has especially grown in recent

years. Deposited materials on surfaces usually offer higher concentrations than do

surrounding vapors and, as such, surface residue detection methods have the advan-

tage of good sensitivity and selectivity as compared to trace vapor detection methods.

However, methods which swab the surface require direct contact with the device or
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packaging, which is often not possible, and may be hazardous depending on the mate-

rial’s volatility. Similarly, the spectroscopic methods, which are especially hampered

by metal barriers, generally require direct visual access, and also may be of limited

utility for composite materials, whose structures interfere with the desired scattering

characteristics. Perhaps most importantly, surface residue methods are dependent

on the presence of the material on the interrogated surfaces, which may be absent if

the deposits are allowed to evaporate over time or if care is taken in the preparation,

packing, and cleaning of the device.

On the other hand, trace vapor detection methods attempt to detect saturated

vapors in the vicinity of explosive materials. The use of trained animals remains the

most sensitive means of detecting trace vapors [2, 3, 10]. Dogs, as the gold standard

in sensitivity in detection, have been the most commonly employed, but rats, honey

bees, and moths have also been successfully trained and deployed [25–27]. Other

methods of trace vapor detection directly sample the surrounding air and identify

present species in conjunction with methods such as gas chromatography or mass

spectroscopy [28–31]. However, these approaches generally require extensive pre-

concentration methods, due to the low concentrations of vapors, and still yield samples

below the detection limits for some explosives, including RDX, HMX (octogen), and

pentaerythritol tetranitrate (PETN) [1, 2]. In addition, micro- and nano-scale devices

have been investigated for detection on the basis of changes in the resonant behavior

of, for example, microcantilevers in the presence of such vapors [32, 33].

Trace vapor detection suffers from, as mentioned above, low vapor concentra-

tions, particularly as the distance from the surface of the explosive increases [1–3].

This issue is exacerbated if the explosive material is sealed or packed in a bag, as

is often the case, which causes severe decreases in vapor pressures. In addition, the

pressures may also drop significantly in certain environmental conditions, such as in

the presence of strong winds or at lower temperatures [1]. However, provided these

issues in sensitivity can be addressed, trace vapor methods offer the possibility of

detection from a safe, standoff distance and do not require direct visual access to the
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sample. The prospect of selective heating of target explosives, also preferably from

a standoff distance, may help to address the low vapor concentrations by increasing

the temperatures and vapor pressures of these materials.

1.2 Vapor Pressure Dependence on Temperature

A recent review of the vapor pressures of many common explosives was presented

by Östmark et al. [4], including for RDX, HMX, ammonium perchlorate (AP), PETN,

acetone peroxide (TATP), trinitrotoluene (TNT), and nitroglycerin (NG), among

others. The vapor pressures of all of the explosive materials were shown to increase

dramatically with temperature. For example, the vapor pressure of RDX, referenced

at 25 ◦C, increases by approximately 40% with a 2 ◦C increase in temperature and

by nearly 430% with a 10 ◦C increase. The increase in vapor pressure for HMX

is even more dramatic, with increases of approximately 60% for a 2 ◦C increase in

temperature and 880% for a 10 ◦C increase, again referenced to 25 ◦C. The aggregated

vapor pressure vs. temperature plots for RDX and HMX as presented by Östmark et

al. [4] are shown in Figures 1.1(a) and 1.1(b), respectively.

If it is sought to selectively heat explosives for the purpose of increasing the vapor

pressures, polymer-bonded explosives may be especially susceptible to temperature

increases induced by external excitations. Due to the large levels of internal dissipa-

tion and poor thermal conductivities of most polymers, significant heat is generated

when polymer-based materials are subjected to intensive loading [34–37]. Moreover,

though considerable variation exists in the composition of explosive materials, par-

ticularly improvised explosives, many traditional energetic compositions consist of a

polymer-based binder with embedded energetic crystals. Examples include RDX in

polystyrene, HMX in polyurethane rubber, and PETN in Sylgardr. In light of the

vapor pressure dependence on temperature and the heat generation exhibited under

mechanical excitation, the thermomechanics of polymer-based materials present an

intriguing pathway to increased vapor pressures and improved detection capabilities.
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(a) (b)

Figure 1.1. The vapor pressure dependence of (a) RDX and (b) HMX
as presented in the review by Östmark et al. [4].

Furthermore, such an approach, if viable, may be applied rather broadly to the large

class of polymer-bonded explosives.

1.3 Thermomechanical Response to Applied Excitation

Applied mechanical and acoustical excitations were considered for the purpose of

eliciting thermal responses in polymer-bonded energetic materials. Direct mechanical

excitation was studied prior to standoff acoustical or ultrasonic excitation in order

to isolate the thermomechanical behavior of these materials. That is, this portion

of the work sought to ascertain an understanding of the induced deformations and

elicited temperature distribution under a known applied dynamic stress distribution,
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as distinct from the fluid–solid interface phenomena that play an important role in

acoustical excitation. The purpose of this section is to give an introduction to the

methods for heat generation by applied excitation, particularly through low-frequency

mechanical excitation on the order of the structure’s primary resonance and through

high-frequency contact excitation.

Heat generation elicited by mechanical or acoustical excitation is well-documented.

Thermomechanical coupling in the presence of mechanical or thermal loading, or

both, is described by the thermodynamic theory of solids, which accounts for both

irreversible (e.g., material damping) and reversible (e.g., thermoelastic) effects [38].

This coupling is commonly exploited for nondestructive testing in the field of vibroth-

ermography [39–42] by applying acoustical or ultrasonic excitation to samples to elicit

thermal responses. Since temperature excursions are noted near stress concentrations,

thermal imaging can be used to identify defects in the structure.

Heat is also generated on a bulk scale within samples under external loading due

to material damping, as energy losses caused by internal dissipation are converted to

heat. Since greater heat generation is observed in areas of higher stress, the elicited

temperature distributions are dependent on modal structures. For example, Dimarog-

onas and Syrimbeis studied the heat generated along the modal structures of vibrating

metal plates [43]. In the case of polymers, the effect is even more pronounced, at-

tributable to the large levels of internal damping and poor thermal conductivities.

This was demonstrated in the seminal studies by Ratner and Korobov [34, 35], and

in numerous subsequent experiments, e.g. [44].

Moreover, similar results have been observed for polymer-based composites. Katu-

nin and Fidali, for instance, conducted experiments with glass fiber-reinforced lam-

inate plates and observed significant heating along modal structures near resonance

[45, 46]. In the context of particulate composites, the effect of the particle/binder ratio

on material properties has been studied as well [47–52]. Changes in the damping prop-

erties with increasing particle/binder ratio have been attributed to mismatched ther-

mal expansion coefficients [47] and to particle-scale interactions of the crystals [52].
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For explosive materials, however, few studies have considered the heat generation

as a function of the excitation parameters and material composition. The works of

Loginov [53, 54], which focus on the response of explosives to mechanical vibration,

shed light on the nature of the heating, but are largely phenomenological in nature

and do not address frequency-selective excitation.

In the case of polymer-bonded energetic materials, the composite nature may pro-

vide a pathway to heating in addition to the bulk-scale thermal response elicited along

the modal structure. In particular, the scattering of elastic waves at individual crys-

tals, which may be induced through mechanical or acoustical excitation, may result

in stress concentrations that contribute significantly to the generation of hot spots

within the energetic material. This effect has recently been investigated experimen-

tally for samples consisting of a polymer-based binder material and discrete numbers

of embedded energetic crystals subjected to ultrasonic excitation [55–58]. Substantial

heating was observed over short time scales in those investigations, with the response

attributed to both bulk heating of the binder material and crystal-scale effects inclu-

sive of the scattering at the crystal–binder interface. Moreover, the generation of hot

spots near energetic crystals, particularly at stress concentrations due to defects or

voids, has long been considered a cause for the initiation of deflagration or detonation

events in composite explosives [59–62].

In considering the underlying mechanical behavior of polymer-based materials, a

viscoelastic model is generally employed to obtain the stress-strain relationship [63–

65]. For a linear viscoelastic model and considering only the steady-state response

to harmonic loading, the stress and strain can be approximated as harmonically-

varying with the same frequency as the forcing, but with the strain lagging behind

the stress by a phase difference. The stress and strain time histories under this

assumption are shown in the conceptual diagram in Figure 1.2 for one-dimensional

loading. The associated hysteretic damping behavior can be used to approximate the

heat generated per unit volume by computing the area under the hysteresis loop on the

stress-strain plot, which yields the loss in the strain energy density, or the volumetric
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energy generation (assuming the mechanical losses are converted to heat), per cycle

[65]. This result can be extended to three-dimensional stress-strain states through

the application of the generalized Hooke’s law for linear viscoelastic media [66], and

the net loss in the strain energy density is given by the sum of the contributions from

the individual stress-strain components. Provided that the temperature varies on a

much slower order than the mechanical forcing, this can be time-averaged to yield

the volumetric energy generation rate [37]. The energy generation rate can then be

used in conjunction with an appropriate heat transfer equation, such as the Fourier

Law of Conduction, and numerical solvers to predict the temperature evolution and

distribution within polymer-based samples.

Figure 1.2. A conceptual diagram of the stress-strain phase lag in
the steady-state response to one-dimensional, harmonic loading with
a linear viscoelastic model. For the horizontal axis, ω denotes the
angular frequency and t denotes the time variable.

In order to maximize the heat generated on the structural scale, it is clear that

the excitation should be near the sample’s primary resonance. At the resonance, the

response amplitudes and, consequently, the stresses and elicited temperature increases

are greatest. It should also be noted that the material moduli generally depend on the
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frequency, which may have a sizable effect if large frequency ranges are considered [64,

65]. In the experimental investigations of heat generation in this work, a mechanical

mock material intended to resemble common polymer-bonded energetic materials

was used. The mixture consisted of a hydroxyl-terminated polybutadiene (HTPB)

binder, commonly used in energetic composites, with embedded ammonium chloride

(NH4Cl) crystals in various volume ratios. The NH4Cl crystals were selected to

approximate the particle sizes of energetic crystals such as ammonium perchlorate

(AP). Representative samples are shown in Figure 1.3. The cylindrical sample shown

along with the beam and plate in Figure 1.3(a) was used by a colleague in related

experiments which sought to measure the material properties of the composition [51].

Note that the samples are qualitatively similar to hard rubber- or soap-like materials

in terms of their bending stiffness. Also note the rough texture of the samples, as is

evident in the close-up image of the beam in Figure 1.3(b).

(a) (b)

Figure 1.3. Samples of the mechanical mock material presented as
(a) several geometries and (b) a close-up of the beam sample. The
composition consists of a hydroxyl-terminated polybutadiene (HTPB)
binder with embedded ammonium chloride (NH4Cl) crystals.

With reference to the loading which targets heating on the particle-scale, ul-

trasonic excitation was considered since, in the context of elastic wave propagation

induced through contact transducers, greater heat generation rates can be achieved
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at higher frequencies. Moreover, these greater levels of heating have facilitated ex-

perimental studies by colleagues on hot spot generation in polymer-bonded energetic

materials [44, 55, 58], for which the considerations of the present work provide an

analytical basis for the viscoelastic heating of the binder material, including in the

presence of stress concentrations at an embedded crystal.

1.4 Methods for Acoustical Excitation

Due to the hazards associated with explosive materials, it is preferable that ex-

citation and detection be done from a safe, standoff distance. As such, acoustical

excitations were studied for the purpose of generating heat in, and increasing the

vapor pressures of, polymer-bonded energetic materials. The attenuation in air in-

creases dramatically with frequency, and also depends on factors that include the

temperature, pressure, relative humidity, and carbon dioxide content [67–69]. The

attenuation, or absorption, coefficient as a function of frequency and for several dis-

crete values of the relative humidity is shown in Figure 1.4, as presented by Bass

et al. [69], based on empirical formulas. In light of this dependence, low-frequency

acoustical excitations up to a few kHz may be considered to allow for reasonable trans-

mission distances in air and penetration through metal barriers. Higher-frequency

wave profiles, however, may be generated remotely on solid surfaces by laser-based

methods to induce elastic wave propagation, by air-coupled systems, and by other

approaches [70–76], though such methods are generally severely limited by metal

barriers. The purpose of this section is to give an introduction to the methods for

increased energy transmission by tuning the spatial profile of incident acoustic waves,

particularly with regard to air–solid interfaces.

Since most liquid and solid materials have densities and wave speeds which far

exceed those of air, stress and energy transmission by acoustic waves across typical

air–liquid and air–solid interfaces is limited by substantial reflection and refraction at

the interface surface [77, 78]. Moreover, for homogeneous incident plane waves and in
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Figure 1.4. The attenuation coefficient in air as a function of fre-
quency and relative humidity as presented by Bass et al. [69]. The
curves correspond to values of the relative humidity in %, as marked.
The results scale with the pressure, as indicated by the axes labels.
All curves are taken at 20 ◦C.

the absence of material dissipation, no energy can be transmitted above the critical

angle for the interface, which is rather small when there are large differences in the

wave speeds among the two media. However, when inhomogeneous or evanescent

plane waves are incident at such interfaces, a bulk wave is transmitted even above the

critical angle, which provides a mechanism for energy propagation below the interface.

Transmission across high impedance-difference interfaces has been studied in a

number of contexts, including for the possible detection of aircraft by underwater
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sensors [79, 80], to assess the impact of man-made noise on marine life [81], and

in evaluating the effect of sonic booms on ground pressure patterns and building

structures [82–84]. Extensive studies have been conducted on the air–water interface

[79, 80, 85–89], in particular, due to its significance in naval applications. For example,

Urick [79, 80] presented significant contributions on underwater sound propagation

and Chapman et al. [85, 86] developed a normal mode theory for transmission into

water from a homogeneous atmosphere. Subsequent studies on the air–water interface

have extended those results, accounting for increased complexity in the environmental

conditions or in the source. In the context of both liquid and solid interfaces, Godin

[90–92] and others [93, 94] have studied conditions for anomalous transparency with

a source situated in the higher-impedance material (i.e., in the liquid or solid) within

a wavelength of the interface, with the perfect transmission into air attributable to

the interaction of the inhomogeneous wave components at the surface. However, this

cannot be exploited with the source instead located in air, as the wave speed in the

liquid or solid on the transmission side of the interface would exceed that on the

incident side.

Inhomogeneous, or evanescent, plane waves are of particular interest for energy

transmission across high impedance-difference interfaces because, as noted, bulk trans-

mitted waves (which are also inhomogeneous) are generated even above the critical

angle. In contrast, only surface waves are generated in an elastic solid (or in a lossless

fluid) if the incident wave is homogeneous and above the critical angle [77, 78]. For

evanescent plane waves in lossless media, the planes of constant phase are perpendic-

ular to the planes of constant amplitude. The pressure field of a homogeneous plane

wave in a lossless medium is shown conceptually in Figure 1.5(a), and an evanes-

cent plane wave is shown in Figure 1.5(b), with an arbitrary rate of decay for the

evanescent wave. Each wave propagates from left-to-right in Figure 1.5 and, for the

homogeneous wave in Figure 1.5(a), the wavefronts propagate with no decay along

the propagation direction nor perpendicular to that direction. In contrast, for the

evanescent wave, the amplitude of the pressure decays along a line perpendicular to
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the direction of propagation (i.e., along the vertical direction), as is evident in Fig-

ure 1.5(b). When material losses are included, a component of amplitude decay in

the direction of propagation (i.e., due to dissipation) must also be included for both

homogeneous and inhomogeneous plane waves [66, 78]. Thus, for the case of inho-

mogeneous waves in dissipative media, the angle of amplitude decay relative to the

propagation direction, known as the “degree of inhomogeneity,” always lies between

0◦ and 90◦.

Low-frequency inhomogeneous waves of the type discussed here can be generated

by various methods [95–99]. For instance, homogeneous plane waves can be passed

through a triangular prism made of an absorbing material [97]. Due to the different

path lengths through the absorbing prism, decay of the amplitude of the transmitted

wave is achieved perpendicular to the direction of propagation. More generally, the

spectral division method can be applied with phased arrays of sources to reproduce

the desired propagation and decay characteristics [98]. However, for waves in the

ultrasonic regime, due to the large attenuation coefficients in air at higher frequencies,

alternate methods, such as laser-based phased arrays [70, 73, 76], would need to be

employed for non-contact excitation at appreciable standoff distances.

The theory of the energy flux of evanescent waves was studied by Hayes [100], and

energy conservation was verified by Leroy et al. [101] in the context of lossless, homo-

geneous, isotropic fluid–fluid and fluid–solid interfaces. The reflection and refraction

phenomena occurring at these interfaces in the presence of incident evanescent plane

waves have been investigated as well [97, 101]. Of particular note in these studies

is the minimum of the reflection coefficient which is observed at the Rayleigh angle

for air–solid interfaces. At this angle, the spatial resonance of coupled longitudinal

and shear motions in the solid is excited by the incident wave. Consequently, the

transmitted intensity is maximized, where energy propagates below the interface by

means of the transmitted bulk longitudinal and shear waves. As adapted from Leroy

et al. [101], Figure 1.6(a) shows the magnitude of the reflection coefficient for an in-

cident homogeneous plane wave, and Figure 1.6(b) for an incident evanescent plane
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(a)

(b)

Figure 1.5. The pressure field, shown conceptually, of a plane wave
propagating in a lossless medium with the wave as (a) homogeneous
and (b) evanescent, or inhomogeneous. Arbitrary scalings are used
for the purpose of illustration.

wave, where the “dip” in the reflection coefficient is observed. Note that, for the

homogeneous incident wave in Figure 1.6(a), no distinct minimum in the reflection
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coefficient is observed since, above the critical angle, the energy of the surface wave

is reradiated into the fluid to yield total internal reflection.

(a) (b)

Figure 1.6. The magnitude of the reflection coefficient |R̃| at an
air–solid interface as a function of the incidence angle θinc with the
incident plane wave as (a) homogeneous and (b) evanescent, or inho-
mogeneous, as adapted from Leroy et al. [101]. The Rayleigh angle
for the interface is approximately 48◦.

The extension from the theory for lossless media to that for dissipative media is

generally implemented by assuming a hysteretic damping model, as for linear vis-

coelastic materials [64–66]. With the material further assumed to be homogeneous

and isotropic, the phase and attenuation relations, as well as the energy fluxes, of

inhomogeneous plane waves (including both longitudinal and shear waves) have been

described in detail by Borcherdt [66, 102, 103] and others [104, 105]. The reflection

and refraction phenomena of inhomogeneous waves at material interfaces, where lin-

ear viscoelastic or fluid media occupy the two semi-infinite half-spaces, have also been

described [66, 106–110]. Notably, except for the special case of equal dissipation in

the two media, the transmitted waves are found to be inhomogeneous even when

the incident wave is homogeneous, and transmission is likewise maximized at the

Rayleigh angle, where the transmitted longitudinal and shear motions on the solid
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surface are coincident [66, 111, 112]. Moreover, the fraction of the incident energy

that is transmitted is again maximized when the reflection coefficient is minimized.

Though the interface phenomena for incident plane waves provide insight into the

acoustic wave profiles which optimize the energy transmission into solid materials,

bounded waves must be employed in practice. Transmission by bounded incident

waves having a Gaussian profile, particularly the excitation of Rayleigh-type surface

waves on the solid surface, has previously been considered in depth [111, 113–116].

However, broadly speaking, little attention has been given to other waveforms and to

the effect of tuning the waveform to enhance the energy transmission or surface wave

excitation efficiency at fluid–solid interfaces. To this end, Vanaverbeke et al. [117] con-

sidered more general incident wave profiles, termed “bounded inhomogeneous waves,”

where a component of exponential decay was introduced perpendicular to the prop-

agation direction and the well-known Fourier method was applied to decompose the

profile into plane wave components. Their work drew a strong connection between

the reflection and transmission of the bounded incident waves at the fluid–solid in-

terface and inhomogeneous plane wave theory, where the local reflection coefficient

in the specular direction was observed to remain close to that predicted by plane

wave theory, particularly for larger beamwidths. More importantly, it was shown

that the surface wave excitation efficiency for the bounded inhomogeneous incident

waves was considerably higher than that for Gaussian and square profiles. Though

Vanaverbeke et al. [117], along with others [118, 119], have given a detailed account

of the effects of the frequency, beamwidth, and steepness of the incident profiles, they

have not reported tuning the decay parameter to improve the surface wave excitation

efficiency.

In the present work, the previous investigations highlighted above are extended

by varying the inhomogeneity of plane waves and the analogous exponential decay

of bounded incident waves to uncover incident wave profiles which enhance the en-

ergy transmission into solid materials. In particular, in the context of plane waves,

by tuning the incidence angle and decay rate of the incident inhomogeneous wave,
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parameters can be found, for any elastic solid, which yield no reflection of the inci-

dent wave. That is, the impedance of the incident wave is matched exactly by the

contributions of the transmitted longitudinal and shear waves. This condition yields

substantial increases in the energy transmission, since none of the incident energy

normal to the interface is reflected. Moreover, analogous results are observed for

dissipative media and for bounded incident waves.

1.5 Overview of Dissertation

In Chapter 2, an analytical model for the deflection and volumetric heat generation

within a polymer-based beam subjected to direct harmonic excitation is presented,

where a linear viscoelastic material model is assumed. The temperature evolution and

distribution is recovered through the use of numerical solvers with the analytical heat

generation term. Model predictions for the beam deflection and temperature field are

compared with experiments on a surrogate material, a beam composed of an HTPB

binder with embedded NH4Cl crystals (75% crystal by volume). The viscoelastic

heating model is extended in Chapter 3 to general three-dimensional stress-strain

states. The model is then applied to a composite system consisting of a single energetic

crystal embedded in a large viscoelastic binder medium. A numerical solution method

is again applied to recover the temperature solution over a finite time interval, and

the effects of the excitation amplitude and frequency are discussed as well.

Chapters 4, 5, and 6 focus on acoustic wave profiles which enhance the energy

transmission at fluid–solid interfaces, as compared to more commonly-studied wave-

forms. Chapter 4 presents the interface theory for inhomogeneous plane waves in

lossless media, and the conditions for zero reflection at the interface (and conse-

quently total transmission of the normal incident energy) are considered. Chapter 5

extends the discussion in Chapter 4 to include material dissipation, which has impli-

cations for the types of plane waves which may propagate and for the conditions of

minimal reflection at the fluid–solid interface. Chapter 6 then extends the results to
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bounded wave profiles, which have been effectively windowed in space and contain

an exponentially decaying term corresponding to that of inhomogeneous plane waves.

For the bounded profiles, results for the local reflection coefficient and surface wave

excitation efficiency at the interface are analogous to the results presented for plane

waves. Finally, Chapter 7 summarizes the contributions of this work and suggests

several directions for subsequent research.
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2. THERMOMECHANICAL RESPONSE OF A POLYMER-BASED

PARTICULATE COMPOSITE BEAM SUBJECTED TO DIRECT

MECHANICAL EXCITATION

2.1 Introduction

Though explosives detection capabilities may be significantly enhanced by heating

the target material (due to the strong dependence of vapor pressure on temperature),

the elicited thermal response under mechanical loading has not previously been stud-

ied in depth for the class of polymer-bonded energetic materials. The purpose of this

chapter is thus to characterize the thermomechanical response of a polymeric particu-

late composite material subjected to mechanical excitation. Specifically, a viscoelastic

model is applied to predict the thermomechanical behavior of an HTPB beam with

embedded NH4Cl crystals subjected to harmonic mechanical loading near the pri-

mary structural resonance to maximize the self-heating. The sample composition, as

highlighted in Section 1.3, is a mock mechanical material intended to resemble com-

mon polymer-bonded energetic materials. An analytical model, based on classical

Euler-Bernoulli beam theory and a homogenized linear viscoelastic material model,

is presented for the volumetric heat generation and used with numerical solvers to

compute the temperature distribution and evolution in the beam. The model pre-

dictions are subsequently compared to the thermal and mechanical responses of the

experimental sample, which are recorded using infrared thermography and scanning

laser Doppler vibrometry, respectively. Major portions of this chapter first appeared

in the Proceedings of the ASME 2014 International Design Engineering Technical

Conferences & Computers and Information in Engineering Conference [120], and sub-

sequently in the Journal of Vibration and Acoustics [121]. This work was completed

in conjunction with Jacob K. Miller.
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2.2 Viscoelastic Behavior of Polymers Subjected to Harmonic Excitation

Polymers subjected to time-varying loading can be described by a viscoelastic

model [63–65]. In general form, the one-dimensional stress-strain relationship for

linear viscoelastic materials involves successive time derivatives of both stress and

strain [65], according to:

M0σ +M1
∂σ

∂t
+M2

∂2σ

∂t2
+ ... = N0ε+N1

∂ε

∂t
+N2

∂2ε

∂t2
+ ..., (2.1)

where σ(t) and ε(t) are the stress and strain histories, respectively, and the Mi and

Ni are material parameters.

Though the representation as a differential equation is general, a more convenient

approach is the hereditary integral method, attributed to Boltzmann [122]. Accord-

ing to the Boltzmann superposition principle, the stress-strain relationship can be

expressed as [65]:

σ(t) =

� t

−∞
Υ(t− τ)

∂ε

∂τ
dτ, (2.2)

where Υ is the relaxation kernel, τ is the relaxation time, and the lower limit of

negative infinity indicates that all previous events, including, for example, production

processes, should be included in the stress analysis for polymer structures.

With the assumption of harmonic loading, the steady-state stress and strain can

be represented as:

σ̃ = σ0e
jωt+jδ(ω),

ε̃ = ε0e
jωt,

(2.3)

where σ0 and ε0 are the stress and strain amplitudes, respectively, ω is the angu-

lar frequency, δ is the phase difference between the stress and strain, and j is the

imaginary unit. The complex dynamic modulus representation for the steady-state

behavior of linear viscoelastic materials [64] follows as:

Ẽ(ω) = E ′(ω) + jE ′′(ω) = |Ẽ(ω)|ejδ(ω), (2.4)
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where Ẽ is the complex modulus, E ′ is the storage modulus (associated with elastic

behavior), and E ′′ is the loss modulus (associated with dissipative behavior). The

material loss factor, η, is defined as the ratio of the loss modulus to the storage

modulus: η = E ′′/E ′ = tan(δ). The complex dynamic modulus is related to the

relaxation kernel through the Fourier transform [65]:

Ẽ(ω) = jω

� ∞
0

Υ(t)e−jωt dt. (2.5)

Also taking into account the temperature-dependence of the dynamic modulus

[65], the steady-state stress-strain relationship is given by:

σ̃(t) = Ẽ(ω, T )ε̃(t), (2.6)

where T represents the temperature of the material.

Thermomechanical coupling in polymers is due to both reversible thermoelas-

tic effects and internal energy dissipation. Experiments show that under intensive

loading, the dominant mechanism in polymers is internal dissipation [36], generally

described by a viscoelastic model. During harmonic loading, the energy losses caused

by out-of-phase oscillations between stress and strain generate heat [46]. Due to the

poor thermal conductivity of most polymers, this leads to considerable self-heating.

That is, the temperature of the polymer rises until a thermal steady state is reached,

at which point the heat dispelled to the environment balances that generated from

dissipation. Thermal runaway is also possible [37].

2.3 Modeling of a Thin Polymer-based Beam Subjected to Harmonic

Excitation

2.3.1 Equation of Motion

The polymeric particulate composite material of interest here is modeled as a

homogenized linear viscoelastic material. The utilized x-axis is defined along the

beam axis at the centroid of the cross-section, and the y- and z-axes are as shown
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in Figure 2.1. The exact geometry of the rectangular beam is also prescribed in the

figure. The beam is subjected to harmonic excitation in the transverse, y, direction.

Figure 2.1. An undeformed rectangular beam.

The standard assumptions of Euler-Bernoulli beam theory are used. Namely,

effects due to shear deformation and rotary inertia are neglected [123]. The equation

for transverse motion is thus given by:

D̃(ω, T )
∂4ũ

∂x4
+ ρh

∂2ũ

∂t2
= f̃ , (2.7)

where, using complex quantities where appropriate, ũ is the transverse displacement

of the neutral surface, ρ is the mass density, f̃ is the forcing function per unit area,

and D̃ is the flexural rigidity, which is given by [123]:

D̃(ω, T ) =
Ẽ(ω, T )h3

12[1− ν2(ω, T )]
, (2.8)

where ν is Poisson’s ratio. For beams with a considerable aspect ratio (b/h), the

effective stiffness is increased due to the two-dimensional effect in the xz-plane, as

in plate-like bending [123, 124]. Accordingly, the flexural rigidity for a thin plate is

used, which accounts for the effect of Poisson’s ratio on the flexural stiffness.

Considered here is the case for which the ends of the beam, x = 0 and x = `,

are subjected to a harmonic acceleration Gejωt. The suspended beam is then under

inertial excitation with the complex forcing function f̃ set to zero. The transverse

displacement is assumed to have the form:

ũ(x, t) =
G

ω2
ejωt + ũ1(x, t), (2.9)
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where ũ1 is the relative deflection of the beam resulting from the base excitation
G

ω2
ejωt. The equation for transverse motion becomes:

D̃(ω, T )
∂4ũ1

∂x4
+ ρh

∂2ũ1

∂t2
= ρhGejωt. (2.10)

For a beam clamped on both ends, the boundary conditions are given by:

ũ1|x=0 =
∂ũ1

∂x
|x=0 = 0,

ũ1|x=` =
∂ũ1

∂x
|x=` = 0.

(2.11)

Using the normal mode approach [123], the steady-state displacement is then:

ũ1(x, t) =
∞∑
n=1

Un(x)
ρhG

� `
0
Un(x)dx

D̃(ω, T )ζ4
n − ρhω2

ejωt, (2.12)

where the Un are the mode shapes that satisfy the boundary conditions provided in

Eq. (2.11), which are given by [123]:

Un(x) = Cn
[

cos(ζnx)− cosh(ζnx)

− cos(ζn`)− cosh(ζn`)

sin(ζn`)− sinh(ζn`)
(sin(ζnx)− sinh(ζnx))

]
;

n = 1, 2, 3, ...,

(2.13)

and where the constants Cn are given according to the normalization condition:

� `

0

U2
n dx = 1. (2.14)

The constants ζn are the nth positive roots of the corresponding characteristic equation

[123]:

cos(ζn`) cosh(ζn`)− 1 = 0. (2.15)

2.3.2 Heat Transfer Equation

Given that the polymer composite is modeled as a homogenized linear viscoelas-

tic material, thermal isotropy is assumed as well. In addition, the material’s thermal
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properties are modeled as constant and the effects of thermal expansion are neglected

for the small temperature fluctuations considered. Using the Fourier Law of Conduc-

tion and considering heat diffusion in all three dimensions, the heat transfer equation

is [125]:

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
+

1

κ
q =

1

χ

∂T

∂t
, (2.16)

where κ is the thermal conductivity, χ is the thermal diffusivity, and q is the volu-

metric energy generation.

A Green’s function approach [126] can be employed to analytically solve the tran-

sient heat transfer equation highlighted above. Specifically, the Green’s function for

a given geometry and set of boundary conditions can be used to construct the tem-

perature solution in conjunction with spatially- and temporally-dependent volumetric

energy generation terms. However, even one-dimensional Green’s functions typically

involve infinite summations, and two- and three-dimensional Green’s functions for a

rectangular coordinate system use the product of the one-dimensional infinite sum-

mations. In addition, spatially-dependent volumetric energy generation is difficult

to incorporate analytically in a convenient way, and the aforementioned summations

tend to converge slowly [126]. Alternate basis functions, including the beam’s mode

shapes, have been explored, but convergence issues likewise hamper the utility of

these analytical approaches. As such, the volumetric energy generation is computed

analytically here and used in conjunction with numerical methods to recover the

predicted temperature distributions.

The mechanical energy dissipated in the beam per cycle of harmonic loading can

be approximated as the area under the hysteresis loop of the stress-strain plot in

the mechanical steady state [65]. Assuming that the temperature varies on a much

slower order than the mechanical loading, the volumetric energy generation can be
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time-averaged over one mechanical loading cycle [37]. If the energy is dissipated solely

as heat, then the time-averaged volumetric energy generation is given by:

q =
ω

2π

� t0+2π/ω

t0

σ
∂ε

∂t
dt

=
E ′ηωε20

2(1− ν2)
,

(2.17)

where t0 is an arbitrary initial time for the steady-state cycle.

In Euler-Bernoulli beam theory, the strain magnitude depends on the transverse

position y and on the curvature of the neutral surface [127], according to:

ε0(x, y) = −yΓ0(x), (2.18)

where Γ0(x) is the maximum value of the curvature, computed using the second

spatial derivative:

Γ0(x) = max

[
∂2ũ1(x, t)

∂x2

]
;

t ∈ [t0, t0 + 2π/ω].

(2.19)

For a thin beam, the volumetric energy generation can also be spatially-averaged

over the thickness [43]. This gives the one-dimensional heat source:

q(x) =
E ′ηωh2

24(1− ν2)
Γ2

0(x). (2.20)

If a thermal steady state is reached, the heat lost to the environment balances

that generated from dissipation, though thermal runaway can occur, for example in

materials with sufficiently poor thermal conductivity [37]. In this work, the tran-

sient temperature behavior is investigated in two- and three-dimensional numerical

simulations using the heat source given in Eq. (2.20).

2.4 Experimental Study of a Particulate Composite Beam

Experiments were conducted using an HTPB beam with embedded NH4Cl crys-

tals. These ammonium chloride crystals were selected to approximate the particle
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sizes of ammonium perchlorate (AP), and, as such, the sample serves as a mechanical

mock material for a common propellant or polymer-bonded explosive. The thermal

and mechanical responses of the sample were recorded using infrared thermography

and scanning laser Doppler vibrometry, as subsequently described.

2.4.1 Sample Preparation

To create the experimental sample, powder-form HTPB was heated to 60 ◦C and

allowed to harden using an isocyanate agent. For mixing with the NH4Cl crystals, a

wetting agent, Tepanol, was applied and a Resodyn acoustic mixer was used to ensure

homogeneity. The mixture, designed to be 75% NH4Cl by volume, was poured into a

purpose-built plate mold and cured overnight, and then cut into a beam measuring

25.6 x 2.5 x 1.4 cm. The density of the beam was computed from direct length and

mass measurements as 1028.2 kg/m3. This density is significantly lower than what

would be predicted by a linear mix of the densities of pure HTPB and crystalline

NH4Cl, a discrepancy likely attributable to voids in the mixture.

2.4.2 Experimental Setup

A TIRA 59335/LS AIT-440 electrodynamic shaker was used to provide mechanical

excitation to the beam, allowing for band-limited white noise or single-frequency har-

monic inertial excitation. A VibeLab VL-144 vibration control system was employed

to control the system through direct monitoring of an accelerometer mounted on the

shaker head. The beam was attached to the shaker using a custom fixture, which

was machined to simulate clamped boundaries on both short ends of the beam. The

final mounting yielded a 22.9 cm (9 in) unsupported length. The frequency responses

and operational deflection shapes of the beam were recorded using a Polytec PSV-400

scanning laser Doppler vibrometer. The test sample and experimental apparatus are

shown in Figure 2.2.
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Figure 2.2. The experimental sample, an HTPB beam with embed-
ded NH4Cl crystals, mounted on a TIRA 59335/LS AIT-440 electro-
dynamic shaker.

For the purposes of mechanical analysis, broadband (10–1000 Hz) white noise

excitation was applied at three forcing levels (1, 1.86, and 2.44 g RMS). The sys-

tem response was estimated using the classical H1 estimator, which compares the

measured cross-spectral density of the accelerometer and vibrometer readings to the

measured power spectral density of the accelerometer. The H1 frequency response

estimators were calculated at two distinct points, the geometric center of the top face

of the beam and an offset point on the top face, for all three forcing levels. The offset

point was located one quarter of the distance along the beam, on the centerline.

The transient and steady-state thermal responses of the top face were recorded

using a FLIR A325 thermal camera, which has a temperature sensitivity of 0.07 ◦C

at 30 ◦C and an accuracy of ±2 ◦C or ±2%. The infrared data was calibrated to

the emissivity of the beam using a thermocouple at ambient conditions. For thermal

testing, the beam was excited near first resonance for 60 min and was seen to approach

thermal steady state within this time. Though no attempt was made to control the

ambient temperature or flow conditions, neither was observed to change significantly

for the duration of the experiment.
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2.5 Numerical Simulation

To solve the heat transfer equation highlighted above, numerical methods were

employed. First, an in-house Wolfram Mathematicar code was utilized to compute

the mechanical response of the beam and numerically solve the two-dimensional prob-

lem of heat diffusion in the xz-plane using the heat source given in Eq. (2.20). For

the mechanical portion of the simulation, the density value was specified as 1028.2

kg/m3, as obtained from direct measurement. The Poisson’s ratio was estimated as

0.39, based on perceived similarities to more common materials. The storage mod-

ulus was estimated from the resonant response of a cylindrical sample of the same

HTPB composite as 83.57 MPa [128]. The material loss factor was estimated as 0.35

by using the half-power bandwidth method [129] on data taken from experimental

frequency responses.

To solve the heat equation, the thermal conductivity and thermal diffusivity were

measured using the transient plane source technique [130] as 0.52 W/(m-K) and

3.13×10−7 m2/s, respectively. For the two-dimensional Mathematicar solution, a

stiffness switching method was employed. A convective heat sink was applied to the

two-dimensional surface, using a convection coefficient of 5 W/(m2-K) in an attempt

to match the transient behavior observed experimentally. This value is compara-

ble with coefficients found in experimental investigations [131–133] and is within the

range for free convection estimates presented in [125]. Insulated boundary conditions

were applied on all edges. An additional three-dimensional finite element simula-

tion, implemented in COMSOL Multiphysicsr, was employed as a further point of

comparison. In this simulation, the same heat source was applied to a 259-node

three-dimensional mesh with insulated boundary conditions on the ends and con-

vective conditions elsewhere. Both methods were used to generate simulations of

transient behavior over 60 min, as well as top-down thermal profiles, which allow for

direct comparison to the experimentally-obtained thermal images.



29

2.6 Results and Discussion

2.6.1 Mechanical Response

The H1 frequency response estimators for the beam in response to the three levels

of band-limited white noise excitation are presented as Figure 2.3. Data at both the

center and offset points on the top face are presented. The beam exhibits multiple

clear resonant peaks, which decrease slightly in relative amplitude and frequency as

the forcing level increases.

Figure 2.3. The experimental H1 mechanical frequency response
estimators for three levels of excitation. The blue, green, and red
curves represent responses at 1, 1.86, and 2.44 g RMS, respectively.
Solid lines correspond to data from the center point and dashed lines
correspond to data from the offset point.

The beam was then excited with harmonic forcing at the first resonant frequency,

which was estimated from the H1 frequency response estimators for each of the re-

spective forcing levels. A representative operational deflection shape recorded at 2g

harmonic forcing is presented with the theoretically-recovered magnitude of steady-

state displacement in Figure 2.4. As is evident from the figure, the system model

approximates the behavior of the particulate composite to an acceptable degree. The
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magnitudes of the experimentally-recorded displacements show good agreement with

the theoretical predictions. For example, in the representative operational deflection

shape shown in Figure 2.4, there is a 4.5% error in the measured response compared

to the theoretical prediction at the center of the beam. Due to the imperfect nature

of the clamping fixture, there are notable deviations at the ends, resulting in higher

local predicted stresses as compared to the stresses encountered in the experiment.

These deviations may also be attributable to the fact that the scanning laser Doppler

vibrometer had difficulty in measuring the response near the clamping fixture.

Figure 2.4. A representative operational deflection shape recorded
at 2g harmonic forcing near the beam’s first natural frequency (red
curve) plotted with the theoretical magnitude of the steady-state dis-
placement (blue curve).

2.6.2 Thermal Response

With the beam excited with 1g, 2g, and 3g harmonic forcing near the first nat-

ural frequency, the transient thermal response of the top surface was recorded. The

recorded maximum and mean transient surface temperatures are presented as Figure

2.5. Due to the intrinsic noise in infrared temperature measurement, the data points
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presented represent the average of five temporally-adjacent thermal measurements.

For each of the forcing levels, the temperatures asymptotically approach steady-state

values in the 60 min of recording time. In general, greater forcing levels lead to greater

heating, and the maximum recorded surface temperatures increase with forcing level.

The highest mean surface temperatures are for 3g forcing, though the recorded mean

temperatures for 1g and 2g forcing are comparable. In addition, the largest separation

between the maximum and mean temperatures was recorded for the 3g forcing.

The surface temperature distributions recorded after 60 min are presented in Fig-

ure 2.6. Maximal heating was recorded near the center of the surface for all forcing

levels. The axial variation of temperature is observed to coincide with the stress

and strain fields expected with a linear viscoelastic material. As noted in Eq. (2.17),

the volumetric heat generation is proportional to the square of the strain magnitude.

This effect is especially prominent with the 2g and 3g forcing levels, where higher lo-

cal temperatures are observed in areas of high local stress near the ends of the beam.

Variations in temperature through the width of the beam are attributable to the con-

vective boundaries on each surface. Specifically, heat is dispelled to the environment

at the surfaces and greater temperatures are generated at the center, farthest away

from those surfaces. The effects of the stress field and convective boundaries interact

in the surface temperature distributions recorded. The lesser prominence of struc-

ture for the 1g forcing level is due to the comparatively-lower temperature deviations

recovered.

The numerical simulation results for the maximum and mean transient surface

temperatures at all three forcing levels are presented in Figures 2.7 and 2.8 for the

two- and three-dimensional simulations, respectively. Likewise, the steady-state sur-

face temperature distributions recovered from the simulations for 3g harmonic exci-

tation are presented in Figures 2.9 and 2.10, again for the two- and three-dimensional

simulations, respectively. The steady-state surface temperatures computed for 3g har-

monic excitation were also averaged over the width of the beam and the profiles are

presented as a function of axial position in Figure 2.11. The experimental tempera-
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Figure 2.5. The experimental maximum and mean transient surface
temperatures obtained with harmonic forcing near the first natural
frequency. The red, green, and blue data points represent responses
to forcing at 1g, 2g, and 3g, respectively. Circles correspond to maxi-
mum surface temperatures and ×’s correspond to mean surface tem-
peratures.

ture recorded after 60 min at 3g harmonic forcing, likewise averaged over the width of

the beam, is also shown in Figure 2.11. The temperature magnitudes recovered from

the three-dimensional simulation show reasonable agreement with the recorded dis-

tributions. Temperatures in the two-dimensional simulation are seen to approach the

thermal steady state more slowly than do the temperatures in the three-dimensional

simulation. This is attributable to the fact that, since heat is only allowed to diffuse

in two dimensions in the former case, internal diffusion and rejection of heat to the

environment is less effective. This also accounts for the greater temperatures obtained

in the two-dimensional simulation. The steady-state surface temperature distribution

computed in the three-dimensional simulation shows a character consistent with the

distribution recorded at 3g forcing. A local region of higher temperatures is gener-

ated near the center and the effect of the convective boundaries is apparent at the

edges. The simulation also captures the higher relative temperatures at the ends of
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(a) (b)

(c)

Figure 2.6. The experimental surface temperature distribution
recorded after 60 min in response to harmonic forcing at (a) 1g, (b)
2g, and (c) 3g. Forcing was near the first natural frequency for each
case.

the beam, but the observed effect is magnified as compared to experiments. As previ-

ously noted, this is likely due to the imperfect nature of the clamping fixture, which

leads to higher predicted stresses near the ends of the beam when they are modeled

as clamped boundaries.

2.7 Conclusions

In this chapter, a thermomechanical model of a polymeric particulate compos-

ite beam has been presented, wherein the composite is modeled as a homogenized

linear viscoelastic material. The composition under consideration, which consists of

an HTPB binder with embedded NH4Cl crystals, is intended to resemble common

polymer-bonded energetic materials. Despite the material composition as a particu-

late composite, classical Euler-Bernoulli beam theory, along with the complex modu-

lus model for viscoelastic materials, yielded predictions of the thermal and mechanical

responses consistent with experimental measurements. The acquired results revealed
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Figure 2.7. The maximum and mean transient surface temperatures
obtained in the two-dimensional numerical simulation with harmonic
forcing near the first natural frequency. The red, green, and blue
curves represent responses to forcing at 1g, 2g, and 3g, respectively.
Bold lines correspond to maximum surface temperatures and thin
lines correspond to mean surface temperatures.

a strong dependence of the thermal response on the stress and strain fields produced

within the beam. In addition to modal structure, convection at the surfaces was

shown to impact the thermal response, and temperature excursions were noted near

the center of the beam geometry.

As previously highlighted, since explosive vapor pressures exhibit a strong de-

pendence on temperature, the capabilities of vapor-based detection systems may be

enhanced significantly by heating. Heat generation in response to harmonic excita-

tion increases, as noted in Section 2.3.2, with strain magnitude and, for a given strain

level, with forcing frequency. The strain magnitude may be increased with greater

forcing levels or selective boundary conditions, though obviously there is limited con-

trol over boundary conditions in many explosives detection systems. Heat generation

is also intensified as the phase difference between stress and strain oscillations, quan-

tified by the material loss factor, is increased. The phase difference depends on the
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Figure 2.8. The maximum and mean transient surface temperatures
obtained in the three-dimensional numerical simulation with harmonic
forcing near the first natural frequency. The red, green, and blue
curves represent responses to forcing at 1g, 2g, and 3g, respectively.
Bold lines correspond to maximum surface temperatures and thin
lines correspond to mean surface temperatures.

Figure 2.9. The steady-state surface temperature distribution ob-
tained in the two-dimensional numerical simulation in response to 3g
harmonic forcing near the first natural frequency.

forcing level and frequency [64], and thus may be used to enhance heating. Though

heating also depends on other moduli, there is little control over material properties

and sample geometry in explosives detection applications.

In addition to the structural heating considered in this chapter, microscale heat-

ing of energetic materials through laser-based or ultrasonic excitation [44, 134, 135]

may also constitute a viable pathway to improved trace vapor detection capabilities.
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Figure 2.10. The steady-state surface temperature distribution ob-
tained in the three-dimensional numerical simulation in response to
3g harmonic forcing near the first natural frequency.

Figure 2.11. The experimental surface temperature distribution
recorded after 60 min and the steady-state surface temperature distri-
butions obtained in numerical simulations in response to 3g harmonic
forcing near the first natural frequency. The red data points cor-
respond to the experimental temperatures, and the green and blue
curves correspond to the two- and three-dimensional numerical sim-
ulations, respectively. The temperatures are averaged over the beam
width at the surface and presented as a function of axial position.

Targeting local hot spots in the composite structure can result in greater thermal re-

sponses, but doing so generally requires proximal access to the material’s surface. In

contrast, low-frequency acoustical excitations can be transmitted over large distances,

and thus may be useful for standoff heating. Localized heating near a single energetic

crystal under ultrasonic excitation is the subject of Chapter 3, and the waveforms
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which optimize the energy transmission through acoustical or ultrasonic excitation

are considered in Chapters 4, 5, and 6.
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3. VISCOELASTIC HEATING OF A SPHERICAL PARTICLE EMBEDDED IN

A POLYMER-BASED BINDER MATERIAL SUBJECTED TO PLANE WAVE

EXCITATION

3.1 Introduction

Polymer-bonded energetic materials generally consist of a polymer-based binder

material with embedded energetic crystals. When elastic waves propagate in the

composite system, the scattering at the crystals may yield significant stress concen-

trations, which in turn may result in relatively high levels of localized heating that

contribute to the formation of hot spots near the crystals. The purpose of this chap-

ter is to investigate an idealized case specified as a single energetic crystal embedded

in a viscoelastic binder medium under plane wave excitation, in order to assess the

magnitude of the predicted viscoelastic heating of the binder material. An analytical

solution for the stress field, available in the literature, is employed and the ener-

getic crystal is treated as a rigid particle. The viscoelastic heating model presented

in Chapter 2 is extended to general three-dimensional stress-strain states through

the use of the generalized Hooke’s law for linear viscoelastic media. The model for

the heat generation field is then used with a numerical solution scheme to solve the

Fourier Law of Conduction to predict the temperature evolution and distribution in

the system. It should be noted that the generation of large temperature gradients

near energetic crystals is generally modeled by assuming defects or voids near the

crystal [59–62], which result in stress concentrations. The model results investigated

here, however, predict significant heating near the crystal due to the viscoelastic heat-

ing of the binder alone, even if perfect bonding is maintained at the crystal–binder

interface.
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In relation to Chapter 2, this chapter serves to not only extend the viscoelastic

heating model to three-dimensional stress-strain states, but also to examine the scale

of the heating at individual energetic crystals, in contrast with the bulk-scale heating

along modal structures. Though the configuration investigated here represents an

idealized case, considering a single energetic crystal, the analytical model which is

developed provides a physics-based approach to the prediction of initial viscoelastic

heating rates near crystals under harmonic excitation, particularly with regard to

informing the generation of localized hot spots in energetic systems, which may be

extended in higher-fidelity simulations. Major portions of this chapter first appeared

in the Proceedings of the ASME 2016 International Mechanical Engineering Congress

& Exposition [136], and a manuscript on the work was subsequently submitted to the

Journal of Applied Mechanics [137]. This work was completed in conjunction with

Jesus O. Mares and Caroline E. Baker.

3.2 Stresses Induced in a Viscoelastic Medium with a Rigid Spherical

Inclusion Subjected to Longitudinal Plane Wave Excitation

The analytical solution for the stress fields in an infinite elastic medium with a

spherical inclusion subjected to harmonic longitudinal plane wave excitation has been

presented for numerous cases [138–147]. The case under consideration in this work is

that of a movable rigid sphere in an infinite, homogeneous, isotropic, linear viscoelastic

medium. For the sake of brevity, only the equations for the wave potentials and the

solutions for the stress fields and particle displacement will be given here. Detailed

derivations can be found in the works of Pao and Mow [139] and Sessarego et al. [146].

Since only the steady-state response is considered, those derivations for a lossless

elastic medium can be easily extended to a linear viscoelastic medium by replacing

the real elastic parameters with the corresponding complex material parameters [143,

145], which accounts for the viscoelastic losses at the specified excitation frequency.
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The utilized rectangular and spherical coordinate systems are shown in Figure

3.1. The surrounding viscoelastic medium, or binder, is characterized by density ρ1,

complex longitudinal wavenumber k̃1L, and complex shear wavenumber k̃1S. The first

and second Lamé parameters, λ̃1 and µ̃1, as well as all other material moduli, can

be subsequently calculated from the relations for linear viscoelastic media [66]: λ̃1 =

ρ1ω
2(1/k̃2

1L− 2/k̃2
1S) and µ̃1 = ρ1ω

2/k̃2
1S, where ω is the angular excitation frequency.

The spherical particle, since it is modeled as rigid, is characterized mechanically only

by the density ρ2 and particle radius a. The incident longitudinal plane wave, as

shown in Figure 3.1, travels in the positive z-direction in the surrounding medium

and is characterized by its longitudinal wave potential:

Φ̃inc = Φ̃0e
j(k̃1Lz−ωt), (3.1)

where t is the time variable and Φ̃0 is the incident wave potential amplitude at z = 0.

Since there is no transverse incident wave, the incident shear wave potential is zero.

The stresses in the viscoelastic binder medium are recovered through the applica-

tion of the boundary conditions at the particle–binder interface, r = a, which require

continuity of the displacement component normal to the interface ũr (i.e., the radial

component), the displacement component in the in-plane rotational direction ũθ, the

stress normal to the interface σ̃rr, and the in-plane shear stress σ̃rθ [139, 146]. It

should be noted that, due to the symmetry about the z-axis, there is no displacement

in the φ-direction, and the shear stresses σ̃rφ and σ̃θφ are likewise zero.

In order to apply these conditions, the incident wave potential can be expressed

in spherical coordinates as a summation [139]:

Φ̃inc = Φ̃0e
−jωt

∞∑
n=0

(2n+ 1)jnPn(cos θ)Jn(k̃1Lr), (3.2)
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Figure 3.1. A diagram of the rectangular and spherical coordinate
systems at a rigid spherical particle of radius a in an infinite linear
viscoelastic medium. An incident harmonic longitudinal plane wave
travels in the positive z-direction in the viscoelastic medium.
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where the Pn are the Legendre polynomials and the Jn are the spherical Bessel func-

tions of the first kind. Similarly, the wave potentials for the scattered longitudinal

and shear waves in the viscoelastic medium can be written, respectively, as:

Φ̃sctd = e−jωt
∞∑
n=0

ÃnPn(cos θ)Hn(k̃1Lr),

Ψ̃sctd = e−jωt
∞∑
n=0

B̃nPn(cos θ)Hn(k̃1Sr),

(3.3)

where the Hn are the spherical Hankel functions of the first kind, and the Ãn and B̃n
are the coefficients which are determined by the boundary conditions. The reader is

referred to the work of Pao and Mow [139] for the expressions for the coefficients Ãn
and B̃n (written in [139] as unscripted and without the tilde accents, An and Bn), as

given for the case of a movable rigid inclusion. The refracted wave potentials do not

need to be taken into account since the particle is modeled as rigid. Moreover, since

no deformations are developed within a rigid particle, all of the strain components

are identically zero in the region r < a, and the particle simply undergoes rigid body

motion along the direction of the incident wave.
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The solution for the stresses in the binder material (i.e., in the region r ≥ a),

which allows for the translational motion of the spherical inclusion, follows from the

wave potentials and can be explicitly expressed, in spherical coordinates, as [139, 146]:

σ̃1,rr =
2µ̃1

r2
e−jωt

∞∑
n=0

Pn(cos θ)
{

Φ̃0j
n(2n+ 1)

[
(n2 − n− k̃2

1Sr
2/2)Jn(k̃1Lr) + 2k̃1LrJn+1(k̃1Lr)

]
+ Ãn

[
(n2 − n− k̃2

1Sr
2/2)Hn(k̃1Lr) + 2k̃1LrHn+1(k̃1Lr)

]
− B̃n

[
n(n+ 1)(n− 1)Hn(k̃1Sr)− n(n+ 1)k̃1SrHn+1(k̃1Sr)

]}
,

σ̃1,rθ =
2µ̃1

r2
e−jωt

∞∑
n=0

dPn(cos θ)

dθ

{
Φ̃0j

n(2n+ 1)
[
(n− 1)Jn(k̃1Lr)− k̃1LrJn+1(k̃1Lr)

]
+ Ãn

[
(n− 1)Hn(k̃1Lr)− k̃1LrHn+1(k̃1Lr)

]
− B̃n

[
(n2 − 1− k̃2

1Sr
2/2)Hn(k̃1Sr) + k̃1SrHn+1(k̃1Sr)

]}
,

σ̃1,θθ =
2µ̃1

r2
e−jωt

∞∑
n=0

(
Pn(cos θ)

{
Φ̃0j

n(2n+ 1)
[
(n+ k̃2

1Lr
2 − k̃2

1Sr
2/2)Jn(k̃1Lr)− k̃1LrJn+1(k̃1Lr)

]
+ Ãn

[
(n+ k̃2

1Lr
2 − k̃2

1Sr
2/2)Hn(k̃1Lr)− k̃1LrHn+1(k̃1Lr)

]
− B̃nn(n+ 1)Hn(k̃1Sr)

}
+

d2Pn(cos θ)

dθ2

{
Φ̃0j

n(2n+ 1)Jn(k̃1Lr) + ÃnHn(k̃1Lr)

− B̃n
[
(n+ 1)Hn(k̃1Sr)− k̃1SrHn+1(k̃1Sr)

]})
,

σ̃1,φφ =
2µ̃1

r2
e−jωt

∞∑
n=0

(
Pn(cos θ)

{
Φ̃0j

n(2n+ 1)
[
(n+ k̃2

1Lr
2 − k̃2

1Sr
2/2)Jn(k̃1Lr)− k̃1LrJn+1(k̃1Lr)

]
+ Ãn

[
(n+ k̃2

1Lr
2 − k̃2

1Sr
2/2)Hn(k̃1Lr)− k̃1LrHn+1(k̃1Lr)

]
− B̃nn(n+ 1)Hn(k̃1Sr)

}
+ cot θ

dPn(cos θ)

dθ

{
Φ̃0j

n(2n+ 1)Jn(k̃1Lr) + ÃnHn(k̃1Lr)

− B̃n
[
(n+ 1)Hn(k̃1Sr)− k̃1SrHn+1(k̃1Sr)

]})
.

(3.4)
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Finally, the displacement of the rigid particle in the z-direction can then be written

as [139]:

ũ2,z =
ρ1

ρ2a

[
3jΦ̃0J1(k̃1La) + Ã1H1(k̃1La)− 2B̃1H1(k̃1Sa)

]
e−jωt. (3.5)

It should be noted here that, though the binder medium was assumed to be

infinite for the purpose of developing the analytical stress solution, for the solution

of the thermal response in Section 3.3.2, the binder will be treated as a large sphere,

concentric with the particle, with a convective surface condition applied at the outer

radius router. This outer radius at which the thermal boundary condition is applied

must be large in comparison with the incident wavelength and particle radius, so that

the computation of the stresses in an infinite medium remains a valid approximation.

3.3 Viscoelastic Heating of the Surrounding Medium

3.3.1 Volumetric Heat Generation

The mechanical energy dissipated in a viscoelastic medium per unit volume can

be approximated by the losses in the strain energy density over each harmonic loading

cycle [37, 65, 148–151]. Under the assumption that the temperature variation is on a

much slower time scale than the mechanical loading, this energy dissipated per cycle

can be time-averaged to give the rate of energy dissipation. If it is further assumed

that the mechanical energy is dissipated entirely as heat, then this rate is equal to

the volumetric heat generation:

q =
ω

2π

� t0+2π/ω

t0

(
σrr

∂εrr
∂t

+ σθθ
∂εθθ
∂t

+ σφφ
∂εφφ
∂t

+ 2σrθ
∂εrθ
∂t

+ 2σrφ
∂εrφ
∂t

+ 2σθφ
∂εθφ
∂t

)
dt,

(3.6)

where the εln are the strain components and t0 is the initial time for the specified

cycle. Note that the real parts of the stress and strain components are used in the

integral computation, as the phase lags introduced by the material losses yield the

net mechanical energy losses.
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By using the linear viscoelastic model employed in Section 3.2, the heat generation

in the binder material can be written explicitly in terms of the complex material

moduli [66]. The generalized Hooke’s law for isotropic media can be applied to relate

the strain components to the nonzero stress components, which yields the strain

magnitudes and relative phase lags. The volumetric heat generation in the binder

medium for this particular loading case is then the sum of four nonzero contributions

to the net change in strain energy density:

q1 =
ω

2|Ẽ1|
(ξ1,rr + ξ1,θθ + ξ1,φφ + 2ξ1,rθ) , (3.7)

where Ẽ1 is the complex Young’s modulus of the binder and the scaled contributions

ξ1,ln are given by:

ξ1,rr = sin(δ1,rr) |σ̃1,rr| |σ̃1,rr − ν̃1 (σ̃1,θθ + σ̃1,φφ)| ,

ξ1,θθ = sin(δ1,θθ) |σ̃1,θθ| |σ̃1,θθ − ν̃1 (σ̃1,rr + σ̃1,φφ)| ,

ξ1,φφ = sin(δ1,φφ) |σ̃1,φφ| |σ̃1,φφ − ν̃1 (σ̃1,rr + σ̃1,θθ)| ,

ξ1,rθ = sin(δ1,rθ) |1 + ν̃1| |σ̃1,rθ|2 ,

(3.8)

where ν̃1 is the corresponding complex Poisson’s ratio and the δ1,ln are the phase

differences between the respective stress and strain components:

δ1,rr = ∠Ẽ1 + ∠σ̃1,rr − ∠[σ̃1,rr − ν̃1 (σ̃1,θθ + σ̃1,φφ)],

δ1,θθ = ∠Ẽ1 + ∠σ̃1,θθ − ∠[σ̃1,θθ − ν̃1 (σ̃1,rr + σ̃1,φφ)],

δ1,φφ = ∠Ẽ1 + ∠σ̃1,φφ − ∠[σ̃1,φφ − ν̃1 (σ̃1,rr + σ̃1,θθ)],

δ1,rθ = ∠Ẽ1 − ∠[1 + ν̃1].

(3.9)

The symbol ∠ denotes the phase of the argument. The complex Young’s modulus is

related to the Lamé parameters by Ẽ1 = µ̃1(3λ̃1 + 2µ̃1)/(λ̃1 + µ̃1), and the complex

Poisson’s ratio by ν̃1 = λ̃1/[2(λ̃1 + µ̃1)] [66]. It should be noted that the stress

components at any given point are, in general, not in phase with one another, which

is taken into account in Eqs. (3.8) and (3.9).

The heat generation term specified by the relations in Eqs. (3.7), (3.8), and (3.9)

represents the extension of loss predictions based on the hysteresis loop for one-
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dimensional stress-strain states [65] (as was discussed in Chapter 2) to the three-

dimensional state under consideration here. Direct application of the relations, along

with the nonzero stress components, yields the volumetric heat generation induced

in the binder material. Since the particle is treated as rigid, there is no viscoelastic

heat generation in the spherical inclusion (i.e., q2 = 0). Thus, the only bulk heating

in the system due to material dissipation is the viscoelastic heating of the binder.

It should also be emphasized here that this three-dimensional heat generation

model applies broadly to linear viscoelastic materials subjected to general three di-

mensional stress-strain states, assuming steady-state harmonic deformations. The

model requires only the material properties and the stress state as specified in an or-

thogonal coordinate system. For a generic orthogonal system, with the axes denoted

by x1, x2, and x3, and in a given linear viscoelastic medium, the volumetric heat

generation is then:

q =
ω

2|Ẽ|
(ξx1x1 + ξx2x2 + ξx3x3 + 2ξx1x2 + 2ξx1x3 + 2ξx2x3) . (3.10)

For the normal stress components, the scaled contributions ξln to the heat generation

take the form:

ξx1x1 = sin(δx1x1) |σ̃x1x1| |σ̃x1x1 − ν̃ (σ̃x2x2 + σ̃x3x3)| , (3.11)

where the phase difference δx1x1 is:

δx1x1 = ∠Ẽ + ∠σ̃x1x1 − ∠[σ̃x1x1 − ν̃ (σ̃x2x2 + σ̃x3x3)]. (3.12)

Equations analogous to Eqs. (3.11) and (3.12) can be written for ξx2x2 and ξx3x3 . For

the shear stress components, the scaled contributions have the form:

ξx1x2 = sin(δx1x2) |1 + ν̃| |σ̃x1x2 |
2 , (3.13)

for which the phase difference is:

δx1x2 = ∠Ẽ − ∠[1 + ν̃]. (3.14)

Equations analogous to Eqs. (3.13) and (3.14) can similarly be written for ξx1x3 and

ξx2x3 .
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3.3.2 Heat Transfer Equation

The temperature distribution and evolution in the system are modeled in this work

by application of the Fourier Law of Conduction and are solved by using a finite differ-

ence approach. Thermal isotropy is assumed in both the binder and the particle. The

strains due to thermal expansion and the corresponding losses due to thermoelastic

damping [152–155] are neglected in the temperature predictions. This approxima-

tion is valid only in the limit of small temperature increases, or, equivalently, over

a time interval sufficiently small such that only small temperature rises occur, with

the result that the thermal strains are negligible in comparison to those from the

applied mechanical excitation. The residual thermal stresses at the particle–binder

interface, which develop due to the mismatch of the thermal expansion coefficients

and would introduce a nonzero offset into the harmonic stresses, are therefore also

not computed here. By the same considerations, the temperature-dependence of the

material properties is also neglected. The magnitudes of the stresses in Eq. (3.4)

and the time-averaged heat generation term in Eq. (3.7) are thus approximated as

stationary.

Since there is no variation in the stress distribution in the φ-direction, and hence

no variation in the heat generation in that direction, heat diffusion takes place only

in the rθ-plane. The Fourier Law of Conduction in spherical coordinates [125] thus

simplifies, in each medium m, to:

ρmcpm
∂T

∂t
= κm

[
1

r2

∂

∂r

(
r2∂T

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)]
+ qm,

(3.15)

where κ and cp denote, respectively, the thermal conductivity and specific heat ca-

pacity at constant pressure.

The boundary conditions in the θ-coordinate, in both the particle and the binder,

are specified by the requirement of zero heat flux in the θ-direction at θ = 0 and

θ = π, due to the symmetry of the stresses and heat generation about the θ = 0 axis.

At the particle–binder boundary, r = a, the conductive interface requires continuity
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of the temperature and heat flux. At the outer boundary of the binder, r = router,

the convective surface condition is applied, with convection coefficient Λ0. Finally,

the remaining boundary condition in the radial coordinate in the particle is given

by continuity of the heat flux at r = 0. The boundary conditions in the r- and

θ-coordinates can thus be summarized, respectively, as:

κ2
∂T

∂r
(0, θ, t) = −κ2

∂T

∂r
(0, θ + π, t),

T (a−, θ, t) = T (a+, θ, t),

κ2
∂T

∂r
(a−, θ, t) = κ1

∂T

∂r
(a+, θ, t),

κ1
∂T

∂r
(router, θ, t) = Λ0 [T0 − T (router, θ, t)] ,

κm
∂T

∂θ
(r, 0, t) = 0,

κm
∂T

∂θ
(r, π, t) = 0,

(3.16)

where the superscripts − and + denote the limits from the negative and positive

radial directions, respectively, and T0 is the constant ambient temperature. The

initial condition is specified as an isothermal state at the ambient temperature:

T (r, θ, 0) = T0. (3.17)

The heat transfer equation, Eq. (3.15), was solved in this work by a finite difference

method, implemented in MATLABr. The Crank-Nicholson method [156], an implicit,

second-order scheme in time, was used to solve for the evolution of the temperature.

Similarly, for the spatial derivatives, a second-order central difference approximation

was used for all interior mesh points, and also for the boundary condition at r =

router. For the boundary conditions at the particle–binder interface, r = a, second-

order backward and forward difference approximations were used for the negative and

positive limits, respectively. Due to the singularities in the analytical heat equation

at r = 0, θ = 0, and θ = π, first-order finite difference approximations were employed

for the application of the boundary conditions at those points.

Additional effects which are not taken into account in the proposed model, includ-

ing interface effects (such as debonding and intermittent contact), chemical decompo-
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sition or phase changes of the energetic crystal, and, as previously mentioned, thermal

strains and the temperature-dependence of the material properties, are expected to

play significant roles in the thermomechanics of energetic composites subjected to

high-frequency excitation. However, since the thermal model presented here is valid

in the limit of small temperature rises and perfect bonding of the crystal and binder,

the analytical equations and temperature predictions may provide insight into the

initial heating of these composite systems. Moreover, the relations provide a ba-

sis for understanding the quantitative effect of the various material and excitation

parameters on the initial thermomechanics of such systems.

3.4 Numerical Results and Discussion

In order to illustrate the model predictions for a typical energetic crystal embedded

in a viscoelastic medium, the case of a spherical cyclotetramethylene-tetranitramine

(HMX, or octogen) crystal situated in a Sylgardr 184 binder is considered here.

Sylgardr is a silicone-based elastomer, developed by the Dow Corning Corporation,

and is typically employed as an encapsulant in electrical applications [157, 158]. It has,

however, also been used as the binder material in polymer-based energetic composites

[159, 160]. Moreover, for the purpose of the future experimental validation of model

predictions, the optical transparency of Sylgardr may prove useful in providing a

pathway for measurements on embedded crystals in configurations similar to that

considered in this work.

The material properties of the Sylgardr 184 binder were taken as: density ρ1 =

1030 kg/m3 [158], longitudinal wave speed v1L = 1100 m/s [161], shear wave speed

v1S = 570 m/s [161], longitudinal wave attenuation coefficient α1L = 2.4 dB/MHz/cm

[162], thermal conductivity κ1 = 0.27 W/(m-K) [158], and thermal diffusivity χ1 =

1.02 × 10−7 m2/s [157]. The specific heat capacity is then specified by the relation

cp1 = κ1/(ρ1χ1). No suitable value could be found in the literature for the shear

wave attenuation coefficient in Sylgardr. In order to specify the missing material
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parameter, the assumption was made that the imaginary part of the Poisson’s ratio is

negligible (i.e., Im[ν̃1] ≈ 0), an approximation that is supported by measurements on

other polymers [163, 164]. All other material moduli can then be computed through

the relations for linear viscoelastic media [66].

Since the crystal is modeled as a rigid particle, only the density of HMX is required

to characterize its mechanical properties, which was taken as ρ2 = 1910 kg/m3 [165].

The particle radius was set as a = 0.25 mm, and the thermal properties were specified

as κ2 = 0.4184 W/(m-K) and cp2 = 1015 J/(kg-K), taken at 21 ◦C [159]. For the

heat transfer equation, the convection coefficient of the surrounding fluid was set as

Λ0 = 5 W/(m2-K), which is within the range for the free convection of air [125],

and the constant ambient (and initial) temperature T0 was assumed to be 21 ◦C

for consistency with the property specifications. The outer radius of the binder was

specified as 20 times the particle radius: router = 5 mm. Finally, except where the

excitation frequency and amplitude are varied in Section 3.4.3, the incident wave

frequency is given as f = 500 kHz (f = ω/[2π]) and the amplitude is specified as

Φ′ = 1 µm at the Sylgardr outer boundary z = −router, x = 0 (thus, the wave

potential amplitude at z = 0 is Φ̃0 = Φ′ejk̃1Lrouter/k̃1L).

3.4.1 Induced Stresses

The analytical model for the stresses induced by the harmonic ultrasonic excitation

was applied to the HMX–Sylgardr system. The magnitudes of the nonzero stress

components in the rθ-plane are presented in Figure 3.2 for the radial and in-plane

shear stresses, and in Figure 3.3 for the polar and azimuthal stresses. Note that

only the stresses induced in the surrounding binder medium are computed, and the

rigid crystal is shown as a null region in the figures. It should also be noted that

an arbitrarily fine grid was used for the generation of these distributions, since the

relations are analytical, but this grid differs from the mesh used for the finite difference

method to solve the heat transfer equation, which is detailed in Section 3.4.2. As is
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evident in Figure 3.2(a), the radial stress shows a maximum near the front edge of the

crystal, at which point the constructive interference due to scattering is maximal, and

also a local maximum in stress just behind the crystal, attributable to the harmonic

motion of the crystal and binder in the z-direction. Additional stress concentrations

of lower magnitudes are observed at greater distances in front of the crystal, which are

caused by the constructive interference of the incident wave and the waves scattered

from the crystal–binder interface.

The maxima of the magnitudes of the other stress components are lower than

that of the radial stress. The shear stress in Figure 3.2(b) also shows stress concen-

trations near the crystal interface, but at locations offset from the front and rear of

the crystal, at which points the shear wave scattering is strongest. The shear waves

then propagate at the scattered angles through the lossy medium. The polar stress in

Figure 3.3(a) exhibits maximum values at larger angles with respect to the incident

wave’s propagation direction, since the induced normal stresses in the polar direction

are strongest at these angles. Lastly, in Figure 3.3(b), the variation in the azimuthal

stress magnitude, as for the radial stress, shows stress concentrations at several loca-

tions of constructive interference in front of the crystal, as well as over a small region

immediately behind the crystal.

3.4.2 Heat Generation and Thermal Response

The time-averaged volumetric heat generation was computed by application of

Eqs. (3.7), (3.8), and (3.9) to the stresses computed in Section 3.4.1. The result

is presented as Figure 3.4, where the same arbitrarily fine grid as was used for the

stresses has been employed to show the analytical solution. The maximum in the

heat generation is observed directly in front of the crystal, and the elevated heating

induced at several additional points of constructive interference in the z-direction in

front of the crystal is also evident. Though the heat generation distribution is largely

dominated by the radial stress component, the effects of the in-plane shear stress and
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(a)

(b)

Figure 3.2. The magnitudes (in MPa) of the (a) radial stress σ̃rr and
(b) shear stress σ̃rθ induced in the HMX–Sylgardr system by a 1-µm,
500-kHz longitudinal plane wave traveling in the positive z-direction.

polar stress are readily apparent as well, with appreciable heating observed along the

shear wave scattering angles and along the vertical direction near the crystal. The
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(a)

(b)

Figure 3.3. The magnitudes (in MPa) of the (a) polar stress σ̃θθ
and (b) azimuthal stress σ̃φφ induced in the HMX–Sylgardr system
by a 1-µm, 500-kHz longitudinal plane wave traveling in the positive
z-direction.

effects of the azimuthal stress are less prominent, but also influence the topology of

the heating distribution, particularly near the crystal–binder interface.
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Figure 3.4. The time-averaged volumetric heat generation q (in
W/mm3) induced in the HMX–Sylgardr system by a 1-µm, 500-kHz
longitudinal plane wave traveling in the positive z-direction.

The heat transfer equation was solved by the finite difference scheme described

in Section 3.3.2. The spatial mesh was specified to consist of 241-points in the r-

coordinate from r = 0 to router, and 121-points in the θ-coordinate from θ = 0 to

π. The solution was then mirrored over the line of symmetry θ = 0 for the purpose

of plotting the full distributions. The condition of temperature continuity at the

particle–binder interface was enforced by specifying r = a as one of the mesh points.

For the implicit Crank-Nicholson method [156], 100 time steps were used to advance

the temperature solution from t = 0 to 0.5 s. The temperature results with respect

to both the spatial and temporal mesh sizes were observed to converge to within a

tolerance of 1%.

The predictions for the maximum transient temperatures of the crystal and binder

are presented in Figure 3.5. Though the maximum heat generation is induced near the

crystal–binder interface, noticeably larger temperature rises are observed in the binder

due to its lower thermal conductivity as compared to the crystal. The location of the

maximum crystal temperature is, as expected, at the nearest point on the incident
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side (x = 0, z = −0.25 mm), and the location of the maximum binder temperature

is a small distance along the z-direction in front of the crystal, at x = 0, z ≈ −0.38

mm for this particular excitation frequency. The maximum crystal temperature rises

by about 32.6 ◦C over the 0.5 s of excitation, and the rate of temperature increase

for the crystal approaches approximately 55 ◦C/s.

Figure 3.5. The maximum transient temperature increase in the
crystal (blue curve) and binder (green curve) induced in the HMX–
Sylgardr system by a 1-µm, 500-kHz longitudinal plane wave.

The computed temperature distribution at t = 0.5 s is shown as Figure 3.6. The

point of the maximum thermal response in the binder, located close to the crystal

interface, is clearly evident. The local maxima in temperature that appear at the

stress concentrations along the z-direction in front of the crystal are also apparent, as

are the lesser temperature rises at angles offset from the incident wave propagation

direction, where the shear stress and polar stress contribute significantly to the heat

generation. The minimum temperature in the system is located at a point within

the back half of the crystal, where the thermal diffusion induced by the greater heat

generation near the front surface of the crystal meets the diffusion induced by the

lower heat generation near the back surface. The results presented here indicate
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that viscoelastic heating of the binder material induced by the applied excitation is

significant, particularly near the crystal, and that this heating mechanism is likely to

play an important role in the formation of hot spots at the crystal–binder interface.

It should be further noted that this heating is predicted in the absence of voids or

debonding between the crystal and binder, but that these interface effects may also

contribute substantially to the response through frictional heating.

Figure 3.6. The temperature distribution (in ◦C above ambient T0) at
t = 0.5 s induced in the HMX–Sylgardr system by a 1-µm, 500-kHz
longitudinal plane wave traveling in the positive z-direction.

3.4.3 Effects of Excitation Amplitude and Frequency

In the context of the cyclic loading of energetic composites, the excitation parame-

ters, in contrast with the material properties in the system, are considered tunable to

a degree, and so the quantitative effect of these parameters on the thermal response

is of interest here. Specifically, the effects of varying the incident wave amplitude and

frequency on the maximum crystal temperature are investigated.

Figure 3.7(a) shows the effect of varying the excitation amplitude on the maximum

crystal temperature at t = 0.5 s and the corresponding rate of temperature increase.
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The amplitude Φ′ is, as before, specified at the Sylgardr outer boundary z = −5

mm, x = 0. Since the dynamic model for the stresses is linear, each of the stress

components scales directly with the amplitude and, therefore, the volumetric heat

generation scales with the square of the amplitude. As such, the temperature increases

and the corresponding heating rates exhibit a simple quadratic variation with the

incident wave amplitude, which is evident in Figure 3.7(a). Though the predicted

thermal response shows large temperature increases for higher excitation amplitudes,

the resulting thermal strains, changes in material properties, interface effects, and

physical and chemical changes would have to be taken into account to accurately

assess the temperature evolution and distribution.

The effect of varying the excitation frequency is presented in Figure 3.7(b), again

considering both the maximum crystal temperature at t = 0.5 s and the corresponding

rate of temperature increase. The variation with frequency also resembles a quadratic

dependence, but the relation is more complicated due to the frequency-dependence

of the Bessel and Hankel function terms in the analytical solution for the stresses. As

a result, the phase differences given in Eq. (3.9) for the volumetric heat generation

term also vary with frequency, in addition to the linear dependence of the heating

shown in Eq. (3.7) and the variation of the stress magnitudes. It should be noted,

too, that for the case of linear variation of the wave attenuation coefficients with

frequency, specified in this work by the longitudinal coefficient α1L = 2.4 dB/MHz/cm

and the condition Im[ν̃1] = 0, the phases of the material moduli are independent

of frequency. But if the frequency-dependence of the attenuation coefficients is not

linear, then the changes in the phases of the material moduli would further contribute

to the variation of the phase differences in Eq. (3.9). As for the amplitude variation,

additional effects related to the temperature increases, as well as to the frequency

levels, should be considered to accurately assess the thermal response at the higher

excitation frequencies.
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(a)

(b)

Figure 3.7. The maximum crystal temperature at t = 0.5 s (blue
curve) and corresponding rate of temperature increase (green curve)
in the HMX–Sylgardr system as a function of incident wave (a) am-
plitude and (b) frequency.

3.5 Conclusions

In this chapter, the thermomechanical response of a system consisting of a rigid

spherical crystal embedded in a viscoelastic medium under harmonic longitudinal



59

plane wave excitation was considered. An analytical model for the viscoelastic heating

of the binder was developed for general three-dimensional stress-strain states and

was used in conjunction with a numerical solution scheme and an analytical stress

solution to predict the temperature distribution and evolution in the binder and

crystal. Numerical results were presented for the case of an HMX crystal embedded

in a Sylgardr 184 binder, with the excitation frequency set at 500 kHz and the

excitation amplitude set at 1 µm. The results reveal that significant heat generation

and temperature rises are predicted near the front edge of the embedded crystal, due

to the stress concentrations induced by the scattering of the incident wave. Moreover,

the poor thermal conductivity of the viscoelastic binder material exacerbates the local

temperature increases. Locations of elevated heat generation, though on a lower level

than that near the crystal, were also predicted within the binder medium at locations

of constructive interference, corresponding to lesser stress concentrations. For the

nominal case considered in this chapter, viscoelastic heating of the binder resulted

in a rate of temperature increase of approximately 55 ◦C/s for the energetic crystal,

which is comparable to that estimated from an analogous set of experiments by Mares

et al. [55].

The model was presented as an idealized case, with a single crystal and where

perfect bonding at the crystal–binder interface was maintained, in order to isolate

the effect of the viscoelastic heating of the binder material, specifically near the crys-

tal. The substantial heating which is predicted even in the absence of defects or

debonding at the interface suggests that this heating mechanism may play a signif-

icant role in the formation of hot spots near the crystal under applied excitation.

Moreover, the model provides a basis for quantifying the thermal response elicited

by this mechanism, which may prove useful in systems which target the heating of

the composite material for enhanced trace detection capabilities. It should be noted,

however, that beyond relatively short excitation times, additional mechanisms of heat

generation are expected to become significant, such as thermal stresses and debond-

ing at the crystal–binder interface, changes in material properties, and physical or
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chemical changes (such as decomposition) of the energetic crystal. In addition, crys-

tal morphology has been shown to impact the heat generation of similar systems [58],

with additional stress concentrations introduced by irregular morphologies, so the

results presented here for the spherical particle may represent a conservative estimate

of the viscoelastic heating levels in the binder material.

In the chapters that follow, the focus of this work transitions from the prediction

of the heating rates under known harmonic stress distributions to the form of incident

acoustical or ultrasonic waves which may efficiently generate such stress and energy

distributions in solid materials, with the incident wave specified in a fluid (such as

air) and considering the interface phenomena. As such, Chapter 4 first considers

idealized (lossless) material interfaces, and Chapters 5 and 6 subsequently increase

the complexity of the model to include material dissipation as well as asymmetrical,

bounded incident waveforms.
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4. ACOUSTIC ENERGY TRANSMISSION INTO ELASTIC SOLIDS BY

INHOMOGENEOUS PLANE WAVES

4.1 Introduction

In the context of the excitation of polymer-bonded energetic materials, particu-

larly hidden explosives, remote excitation is preferable to contact excitation due to the

volatile nature of the target materials. Low-frequency acoustic waves may represent

an intriguing pathway to standoff excitation, given their relatively low attenuation in

air and the ability to potentially transmit energy through metal barriers. Conversely,

higher-frequency waves offer the benefit of greater near-field energy fluxes, but present

challenges with respect to the high attenuation coefficients in air. Broadly speaking,

applications which seek to excite energetic materials for the purpose of generating

heat and increasing vapor pressures would require efficient transmission of the in-

cident wave energy into the target specimen. In either frequency regime, however,

acoustic energy transmission from air into typical solid materials, as well as into typ-

ical liquid media, is generally severely limited by the reflection and refraction at the

interface, which are attributable to the large differences in the densities and wave

speeds among the two media [77, 78, 166]. Moreover, from a theoretical point of view,

in ideal or lossless media, it is well-known that homogeneous plane waves transmit

no energy above the critical angle for the fluid–fluid or fluid–solid interface, an angle

which is typically quite small given the large differences in wave speeds with air as

the incident fluid.

However, if spatially-decaying incident plane waves are considered, termed inho-

mogeneous or evanescent plane waves, energy can be transmitted across the interface

even above the critical angle of incidence for lossless media. By introducing a decay-

ing component into the incident trace wavenumber, the wavenumber components of
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the transmitted wave are composed of both propagating and decaying terms for all

oblique angles of incidence. Consequently, the surface normal wavenumber in the sec-

ond material (i.e., in the medium below the interface) has a nonzero propagating (real)

part and energy thus propagates away from the interface into the second medium.

The transmitted intensity then decays with distance into the second medium due to

the spatial decay characteristics of the incident, and transmitted, waves.

In relation to Chapters 2 and 3, this chapter, along with Chapters 5 and 6, serves

to inform the spatial distribution of the incident wave pressure (through analytical

predictions) which will most efficiently transmit energy into solid materials. As such,

this portion of the work represents a fundamental study of the incident wave pa-

rameters in the context of fluid–solid interfaces, particularly air–solid interfaces, for

the purpose of maximizing the energy transmission into the solid. For the sake of

convenience, the pressure fields in a fluid (or stress fields in a solid) of homogeneous

and evanescent plane waves are shown conceptually here in Figure 4.1, as were shown

previously in Figure 1.5. This investigation seeks to tune the rate of spatial amplitude

decay of incident inhomogeneous waves, as is evident in Figure 4.1(b), along with the

incidence angle, in the context of the energy transmission.

The purpose of this chapter, in particular, is thus to characterize the energy

transmission across idealized material interfaces for incident inhomogeneous plane

waves, in order to uncover incident wave parameters which maximize the transmission.

To this end, a model of evanescent plane waves and their transmission across lossless

fluid–fluid and fluid–solid interfaces is developed based on the theory presented by

Brekhovskikh [77], and numerical results are presented for an air–water interface and

for typical air–solid interfaces. Of particular interest is the result for the air–solid

interface (or, generically, a given fluid–solid interface) that, with incidence near the

Rayleigh angle, a unique value for the decay rate of the incident wave can be found

such that no reflected wave is generated at the interface, which is attributable to the

exact matching of the incident impedance by the sum of the impedance contributions

from the transmitted longitudinal and transverse, or shear, waves. Moreover, in the
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(a)

(b)

Figure 4.1. The pressure field, shown conceptually, of a plane wave
propagating in a lossless medium with the wave as (a) homogeneous
and (b) evanescent, or inhomogeneous. Arbitrary scalings are used
for the purpose of illustration.

region near the zero of the reflection coefficient, the energy transmitted across the

interface can be increased substantially, compared to homogeneous plane waves below
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the critical angle. Major portions of this chapter first appeared in the Journal of the

Acoustical Society of America [167].

4.2 Representation of Evanescent Plane Waves in Lossless Media

For a harmonic plane wave traveling in a homogeneous, isotropic fluid of constant

speed of sound (longitudinal wave speed) vL and away from material interfaces (i.e.,

in free space), the complex acoustic pressure p̃ can be represented as [78]:

p̃ = p̃0e
j(ωt− ~K·~r), (4.1)

where p̃0 is the complex amplitude, ω is the angular frequency, t is the time variable, ~K

is the wavevector, and ~r is the position vector. When utilizing a Cartesian coordinate

system, the position vector can be expressed in terms of the respective unit vectors:

~r = xêx + yêy + zêz. The wavevector can likewise be expressed, for an arbitrary

direction of propagation, as:

~K = kxêx + kyêy + kz êz, (4.2)

where the kn are the wavevector components in the respective directions. For plane

longitudinal waves propagating in a linear, inviscid fluid, the wavevector and the

wavevector components satisfy the relation [78]:

~K · ~K = k2
x + k2

y + k2
z =

(
ω

vL

)2

. (4.3)

The scalar quantity k = ω/vL is known as the material wavenumber. Since no shear

waves are sustained in an inviscid fluid, the wavenumber k can be written here,

omitting the subscript L for longitudinal waves, without ambiguity.

Homogeneous plane waves exhibit a constant pressure amplitude and phase on

any plane perpendicular to the propagation direction. That is, in the absence of

material dissipation, the pressure does not decay in any dimension for the harmonic

wave. Such homogeneous plane waves are thus represented by real components kn in

the wavevector, which together give the direction of propagation.
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In contrast, evanescent waves are disturbances which show an exponential decay

in one or more dimensions. Examples include surface waves, such as Rayleigh, Lamb,

and Stoneley waves, as well as bulk evanescent waves [77, 97, 101]. In general, such in-

homogeneous waves may simultaneously decay and propagate in arbitrary directions.

Each of the wavevector components is represented as a complex quantity, where the

real part represents propagation and the imaginary part represents exponential decay

of the wave, in the respective dimensions: k̃x = kx,< − jkx,=, k̃y = ky,< − jky,=, and

k̃z = kz,< − jkz,=. Substitution of the complex components into Eq. (4.1) yields:

p̃ = p̃0e
−kx,=x−ky,=y−kz,=zej(ωt−kx,<x−ky,<y−kz,<z). (4.4)

Note that the real parts of the wavevector components give the direction of phase

propagation, ~P = kx,<êx + ky,<êy + kz,<êz, and the imaginary parts give the direction

of amplitude attenuation, ~A = kx,=êx + ky,=êy + kz,=êz. The complex wavevector can

thus be written as: ~̃K = ~P − j ~A.

In non-dissipative media, evanescent waves decay along a vector perpendicular

to the direction of propagation, and the propagation and decay characteristics can

be represented by complex angles of propagation. By using this representation, the

angles can be integrated directly into the theory for homogeneous waves, including

interactions at material interfaces. In the case of two-dimensional propagation, one of

the wavevector components is zero, and the wave characteristics can be represented

by a single complex angle.

Figure 4.2 shows a two-dimensional (i.e., k̃y = 0) plane wave propagating in free

space. Using the complex angle θ̃ = θ<+jθ= (in radians), the wavevector components

k̃x and k̃z are determined, as for a real angle, by using the sine and cosine functions:

k̃x = k sin(θ< + jθ=)

= k sin(θ<) cosh(θ=) + jk cos(θ<) sinh(θ=),

k̃z = k cos(θ< + jθ=)

= k cos(θ<) cosh(θ=)− jk sin(θ<) sinh(θ=).

(4.5)
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In this formulation, the imaginary part of the complex angle prescribes the rate of

exponential decay. The wave decays as e−β∆, where ∆ is the position measured

perpendicular to the propagation direction, and the decay parameter β is given by:

β = k sinh(θ=). (4.6)

Substitution of Eq. (4.5) into Eq. (4.1) yields:

p̃ = p̃0e
−β[− cos(θ<)x+sin(θ<)z]ej[ωt−k sin(θ<) cosh(θ=)x−k cos(θ<) cosh(θ=)z]. (4.7)

The real component θ< of the complex angle thus gives the physical direction of

propagation, and the imaginary part θ= controls the decay rate and the effect of

the decay on phase propagation. Note also that the phase is constant on any plane

perpendicular to the propagation direction, but the amplitude is not.

Figure 4.2. A diagram of a two-dimensional plane wave propagating in free space.

The sense of decay along the line perpendicular to the propagation direction is

determined by the sign of the imaginary part θ=. If the decay parameter β is pre-

scribed, then the value of θ= which represents the corresponding rate of decay can be

obtained by inverting Eq. (4.6):

θ= = ± ln

 |β|
k

+

[(
β

k

)2

+ 1

]1/2
 , (4.8)

where the sign of θ= coincides with that of β.



67

Evanescent plane waves of the type discussed here are spatially-distributed distur-

bances of infinite extent. An analogy can be made with spatially-distributed waves

that exhibit concentrated peaks in amplitude, such as Gaussian beams. However, in

the case of evanescent plane waves, the unidirectional spatial decay characteristics

perpendicular to the direction of propagation imply growth without bound in the

opposite direction, which is clearly not possible. That being said, like homogeneous

plane waves, the representation can be a reasonable approximation over a given region

of space, where the pressure phase is approximately constant on any perpendicular

plane and where the pressure amplitude varies exponentially [95, 98].

4.3 Evanescent Wave Transmission across Material Interfaces

For acoustic waves traveling in air, or in other low-density fluids, energy transmis-

sion into liquid or solid media is generally limited by the large impedance-difference,

which causes significant reflection at the interface [77, 78, 166]. In addition, liquid

and solid media typically have wave speeds much greater than the speed of sound

in air, which causes significant refraction beyond the interface in the liquid or solid

medium. It is well-known that for incident homogeneous plane waves, no energy

can be transmitted across an elastic interface above the critical angle, and an ex-

ponentially decaying pressure field is generated in the second medium. In terms of

the wavevector, the transmitted wave propagates along (“clings to”) the interface,

and the surface normal wavevector component is purely imaginary. Thus, no energy

propagates away from the interface and into the second medium.

However, for incident evanescent plane waves which simultaneously propagate

and decay, energy can be transmitted at physical angles above the critical angle.

Through the introduction of a decaying component in the incident trace wavenumber,

the transmitted trace wavenumber (e.g., k̃x) is given both propagating and decaying

components for all oblique incidence angles, which in turn also yields propagating and

decaying terms in the transmitted normal wavenumber (e.g., k̃z) to satisfy Eq. (4.3).
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Therefore, the transmitted wave travels at a physical angle below the interface line,

with a nonzero real part of the normal wavenumber, and energy can propagate away

from the interface into the second material.

Evanescent wave transmission is investigated here for a single material interface,

where homogeneous, isotropic, linear, lossless media occupy the two acoustic half-

spaces on either side of the interface. The incident medium is assumed to be a

fluid, and both fluid and solid media are considered for the second medium. As

was previously discussed, the fluid media under consideration support longitudinal

waves, but cannot sustain shear waves. The fluids on the incident and transmission

sides of the interface are thus characterized by densities ρ1 and ρ2, respectively, and

longitudinal wave speeds v1L and v2L, respectively. In solids, transverse waves can also

propagate, and the solid medium is additionally characterized by the shear wave speed

v2S. For homogeneous wave incidence, θcr = arcsin(v1L/v2L) gives the critical angle for

longitudinal waves and, in the case of the solid medium, θcrS = arcsin(v1L/v2S) gives

the critical angle for shear waves. For small ratios v1L/v2L and v1L/v2S, the critical

angles are close to zero, or normal incidence, which prevents energy transmission for

most angles. However, as alluded to above, the use of incident evanescent waves

effectively eliminates the critical angle criterion.

4.3.1 Fluid–Fluid Interface

A diagram of the fluid–fluid interface is shown in Figure 4.3 for two-dimensional

propagation in the xz-plane, where a right-handed rectangular coordinate system is

assumed. In general, reflected and transmitted longitudinal waves are generated at

the interface. The incident wave is assumed to decay perpendicular to the direction of

propagation, and is represented by the complex angle θ̃1 = θ1,<+ jθ1,=. The reflected

angle matches that of the incident wave, and the transmitted angle is denoted as

θ̃2L = θ2L,< + jθ2L,=, where the subscript L is included to indicate the transmitted

wave as longitudinal, as distinct from the transmitted shear wave that will be included
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in the next section with a solid material as the second medium. The details of

the computation of the transmitted angle, and transmitted wavevector, are given in

Section 4.3.5. Since both fluid media are considered linear and inviscid, no shear

waves propagate on either side of the interface.

Figure 4.3. A diagram of the incident, reflected, and transmitted
waves at the fluid–fluid interface.

The pressure and particle velocity associated with the transmitted wave can be

derived by using the longitudinal wave potentials [77]. The displacement potential

on the incident side of the interface is the sum of the potentials associated with the

incident and reflected waves:

Φ̃1 = Φ̃0e
j[ωt−k1 sin(θ̃1)x]

[
e−jk1 cos(θ̃1)z + R̃ejk1 cos(θ̃1)z

]
, (4.9)

where Φ̃0 is the potential amplitude of the incident wave, R̃ is the reflection coefficient,

and k1 = ω/v1L is the material wavenumber in the incident fluid. On the transmission



70

side, the only disturbance is the transmitted longitudinal wave, whose potential, using

the associated transmission coefficient T̃L, is given as:

Φ̃2 = Φ̃0T̃Lej[ωt−k2L sin(θ̃2L)x−k2L cos(θ̃2L)z], (4.10)

where k2L = ω/v2L is the material wavenumber of the second fluid. (Note the use of

the scripted letter T here for the transmission coefficient, to distinguish it from the

temperature T defined in Chapters 2 and 3.)

The boundary conditions at the interface (i.e., at z = 0) require continuity of

the normal component of the particle displacement and continuity of the normal

stress [77]. The displacement vector in either medium m is calculated as the gradient

of the wave potential: ~̃um = ∇Φ̃m. The normal displacements in the fluids on the

incident and transmission sides of the interface are thus computed as ũ1,z = ∂Φ̃1/∂z

and ũ2,z = ∂Φ̃2/∂z, respectively. The corresponding particle velocities are simply the

time derivatives of the displacements: ∂ũm,z/∂t = jωũm,z. Continuity of the trace

wavenumber k̃x across the interface, also known as generalized Snell’s law, follows

from the normal displacement condition:

k1 sin(θ̃1) = k2L sin(θ̃2L). (4.11)

The normal stresses in the first and second media are given by σ̃1,zz = ρ1v
2
1L∇2Φ̃1

and σ̃2,zz = ρ2v
2
2L∇2Φ̃2, respectively.

The solution of the two boundary conditions at the interface yields the expressions

for the coefficients R̃ and T̃L [77]:

R̃ =
Z̃2L − Z̃1L

Z̃2L + Z̃1L

,

T̃L =
ρ1

ρ2

(
2Z̃2L

Z̃2L + Z̃1L

)
,

(4.12)

where Z̃1L = ρ1v1L/ cos(θ̃1) and Z̃2L = ρ2v2L/ cos(θ̃2L) are the surface normal impedances

for longitudinal waves in the first and second fluids, respectively.
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In the first and second media, the pressures can be deduced, respectively, as

p̃1 = ρ1ω
2Φ̃1 and p̃2 = ρ2ω

2Φ̃2. It can be observed that the pressure amplitude p̃0 of

the incident wave is related to the amplitude Φ̃0 of its wave potential by p̃0 = ρ1ω
2Φ̃0.

The normal particle velocities on each side of the interface can be calculated

directly from the wave potentials by using the expressions given above. In the first

and second fluids, the normal velocities can be expressed, respectively, as:

∂ũ1,z

∂t
=

p̃0

Z̃1L

ej[ωt−k1 sin(θ̃1)x]
[
e−jk1 cos(θ̃1)z − R̃ejk1 cos(θ̃1)z

]
,

∂ũ2,z

∂t
=
ρ2

ρ1

(
p̃0T̃L
Z̃2L

)
ej[ωt−k2L sin(θ̃2L)x−k2L cos(θ̃2L)z].

(4.13)

4.3.2 Fluid–Solid Interface

The analysis presented in the previous section is extended here to the case of

a solid medium on the transmission side of the interface. Solid materials support

shear stresses, so transmitted shear waves are also generated by the interaction at

the interface. Figure 4.4 shows a diagram of the fluid–solid interface, where a right-

handed rectangular coordinate system is again assumed. The shear wave propagates

at the transmitted shear angle, θ̃2S = θ2S,< + jθ2S,=, and with the shear wave speed

v2S in the solid medium. The details of the computation of the transmitted shear

angle and wavevector are likewise given in Section 4.3.5.

Of particular note for the fluid–solid interface is the phenomena which occur near

the Rayleigh angle. Rayleigh waves constitute a particular surface wave solution to

the wave equation whereby the longitudinal and shear waves travel at a common ve-

locity along the interface of the solid half-space, which may be bordered by vacuum

or, for generalized Rayleigh waves, by an ambient fluid [77, 168, 169]. If a homoge-

neous plane wave in the ambient fluid is incident at the elastic interface above the

critical angle, a Rayleigh-type surface wave is generated whose energy, in the absence

of material dissipation, is reemitted into the fluid to yield total reflection, and no

bulk wave is transmitted. In contrast, if an evanescent plane wave is incident on the
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Figure 4.4. A diagram of the incident, reflected, and transmitted
waves at the fluid–solid interface.

solid, bulk evanescent waves (both longitudinal and shear) are transmitted, and the

amplitudes are greatest at the Rayleigh angle. A minimum in the reflection coefficient

is observed at this angle [97, 101], owing to the resonance phenomenon (and increased

transmission) that occurs when the excitation is coincident with the free wave solu-

tion. Thus, the use of an incident evanescent wave, in generating the transmitted

bulk waves, provides a mechanism for energy to propagate below the interface, which

is maximized at the Rayleigh angle.

The Rayleigh wave speed vRay for an elastic half-space is computed from the

characteristic equation [77, 168]:(
vRay
v2S

)6

− 8

(
vRay
v2S

)4

+

[
24− 16

(
v2S

v2L

)2
](

vRay
v2S

)2

− 16

[
1−

(
v2S

v2L

)2
]

= 0,

(4.14)

which has a unique positive real root such that vRay < v2S. The Rayleigh angle can

be subsequently computed as θRay = arcsin(v1L/vRay).
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The derivation for the fluid–solid interface parallels that of the fluid–fluid interface,

except that, in general, transverse waves also exist in the solid medium [77]. The

longitudinal potential is as given in Eq. (4.10), and the shear wave potential is given

by:

Ψ̃2 = Φ̃0T̃Sej[ωt−k2S sin(θ̃2S)x−k2S cos(θ̃2S)z], (4.15)

where T̃S is the transmission coefficient for the shear wave potential and k2S = ω/v2S

is the material shear wavenumber in the solid material.

The boundary conditions at the interface require, as before, continuity of the nor-

mal particle displacement and continuity of the normal stress. In addition, the shear

stress must also be continuous across the interface, which necessitates that the shear

stress in the solid be zero at the interface, since the incident fluid medium is assumed

to be inviscid, and so cannot sustain shear waves [77]. The displacement vector in the

solid medium is computed as the sum of the gradient of the longitudinal potential and

the curl of the shear potential’s associated vector field ~̃Ψ2: ~̃u2 = ∇Φ̃2+∇× ~̃Ψ2. For the

case of two-dimensional propagation, the shear potential field is simply ~̃Ψ2 = Ψ̃2êy,

and the normal displacement in the solid reduces to ũ2,z = ∂Φ̃2/∂z + ∂Ψ̃2/∂x. The

normal velocity is again simply the associated time derivative. Continuity of the trace

wavenumber, which also includes the shear trace wavenumber k̃2S,x = k2S sin(θ̃2S),

again follows from the normal displacement condition:

k1 sin(θ̃1) = k2L sin(θ̃2L) = k2S sin(θ̃2S). (4.16)

The normal stress in the solid medium also includes contributions from the shear

wave potential, and is given as [77]:

σ̃2,zz = ρ2v
2
2L∇2Φ̃2 + 2ρ2v

2
2S

(
∂2Ψ̃2

∂x∂z
− ∂2Φ̃2

∂x2

)
. (4.17)

Similarly, the shear stress in the solid, which must be zero at the interface, is expressed

as [77]:

σ̃2,xz = ρ2v
2
2S

(
2
∂2Φ̃2

∂x∂z
+
∂2Ψ̃2

∂x2
− ∂2Ψ̃2

∂z2

)
. (4.18)



74

Solving for the three boundary conditions at the interface yields the expressions

for the coefficients R̃, T̃L, and T̃S. Brekhovskikh [77] gives the solution in terms of

the transmitted shear angle θ̃2S:

R̃ =
Z̃2L cos2(2θ̃2S) + Z̃2S sin2(2θ̃2S)− Z̃1L

Z̃2L cos2(2θ̃2S) + Z̃2S sin2(2θ̃2S) + Z̃1L

,

T̃L =
ρ1

ρ2

[
2Z̃2L cos(2θ̃2S)

Z̃2L cos2(2θ̃2S) + Z̃2S sin2(2θ̃2S) + Z̃1L

]
,

T̃S =
ρ1

ρ2

[
2Z̃2S sin(2θ̃2S)

Z̃2L cos2(2θ̃2S) + Z̃2S sin2(2θ̃2S) + Z̃1L

]
,

(4.19)

where Z̃2S = ρ2v2S/ cos(θ̃2S) is the surface normal impedance for shear waves in the

solid medium.

The pressure in the incident fluid is again given by p̃1 = ρ1ω
2Φ̃1. In the solid, the

transmitted normal and shear stresses can be expanded and written, respectively, in

terms of the pressure amplitude p̃0 of the incident wave as:

σ̃2,zz =
ρ2p̃0

ρ1

{
T̃L

[
2

(
v2S

v2L

)2

sin2(θ̃2L)− 1

]
ej[ωt−k2L sin(θ̃2L)x−k2L cos(θ̃2L)z]

− T̃S sin(2θ̃2S)ej[ωt−k2S sin(θ̃2S)x−k2S cos(θ̃2S)z]

}
,

σ̃2,xz =
ρ2p̃0

ρ1

{
T̃S cos(2θ̃2S)ej[ωt−k2S sin(θ̃2S)x−k2S cos(θ̃2S)z]

− T̃L
(
v2S

v2L

)2

sin(2θ̃2L)ej[ωt−k2L sin(θ̃2L)x−k2L cos(θ̃2L)z]

}
.

(4.20)
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Finally, the particle velocities in the solid medium can be computed from the

wave potentials using the expression given above. For the normal and tangential

components of the velocity, this yields, respectively:

∂ũ2,z

∂t
=
ρ2p̃0

ρ1

{
T̃L
Z̃2L

ej[ωt−k2L sin(θ̃2L)x−k2L cos(θ̃2L)z]

+
T̃S sin(θ̃2S)

ρ2v2S

ej[ωt−k2S sin(θ̃2S)x−k2S cos(θ̃2S)z]

}
,

∂ũ2,x

∂t
=
ρ2p̃0

ρ1

{
T̃L sin(θ̃2L)

ρ2v2L

ej[ωt−k2L sin(θ̃2L)x−k2L cos(θ̃2L)z]

− T̃S
Z̃2S

ej[ωt−k2S sin(θ̃2S)x−k2S cos(θ̃2S)z]

}
.

(4.21)

4.3.3 Intensity Transmission

In non-dissipative media, the instantaneous intensity of a given wave is the rate

of energy transmission per unit area in the direction of propagation [78, 166]. For

harmonic waves, the instantaneous intensity can be time-averaged to give what is

known as the “acoustic intensity,” or simply the intensity. The intensity is represented

as a vector ~I, where the components correspond to the acoustic intensities in the

respective directions. For stress tensor σ̃ln and velocity vector ∂ũl/∂t, the components

of the instantaneous energy flux vector (per unit area) are expressed as [100, 101, 170]:

En(t) = −
3∑
l=1

Re [σ̃ln] Re

[
∂ũl
∂t

]
, (4.22)

where Re denotes the real part of the argument and the subscripts 1, 2, and 3 cor-

respond to the x, y, and z directions, respectively. The intensity is computed by

time-averaging the energy flux over one period:

In =
ω

2π

� t0+2π/ω

t0

En(t) dt, (4.23)

where t0 is an arbitrary time.

An inviscid fluid cannot support shear stresses, so by using the pressure (p̃ =

−σ̃xx = −σ̃zz), the tangential and normal intensities can be computed conveniently
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as Ix = Re[p̃ ∂ũ∗x/∂t]/2 and Iz = Re[p̃ ∂ũ∗z/∂t]/2, where the asterisk denotes the

complex conjugate. In the solid, however, these expressions cannot be used, as

the contributions of the shear stresses to the energy flux must be taken into ac-

count [100, 170]. The longitudinal and transverse waves propagate with different

wavenumbers along the respective dimensions and the phase difference must be incor-

porated by time-averaging according to Eq. (4.23), where the instantaneous intensities

are Ex = −(Re[σ̃xx]Re[∂ũx/∂t] + Re[σ̃xz]Re[∂ũz/∂t]) and Ez = −(Re[σ̃zz]Re[∂ũz/∂t] +

Re[σ̃xz]Re[∂ũx/∂t]).

For the incident evanescent waves under consideration, the transmitted normal

wavenumbers (i.e., k̃2L,z and, in the case of the solid, k̃2S,z) have both propagating and

decaying components, corresponding to their real and imaginary parts, respectively.

Energy thus propagates away from the interface and into the second material. In

terms of the normal intensity expression, the normal particle velocity is related to the

wave pressure, or stress, by the normal wavenumber. When the real part is taken in

computing the intensity, the real (propagating) component of the normal wavenumber

yields nonzero intensity transmission across the material interface. Conversely, for the

case of homogeneous waves incident beyond the critical angle, the transmitted normal

wavenumber is purely imaginary and no energy is transmitted; all of the energy is

reflected back into the incident medium.

4.3.4 Energy Conservation in the System

If energy is to be conserved, the energy fluxes approaching and leaving the inter-

face, which are given by the normal intensities Iz in the two media taken at z = 0,

must balance. Since the boundary conditions at the interface require continuity of

the normal particle velocity and continuity of the stress tensor, it can be readily ob-

served from Eq. (4.22) that the normal intensities are equal at z = 0, and energy is

conserved at the interface.
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Moreover, energy conservation within the media in the presence of the evanescent

disturbances can also be demonstrated. It can be shown that, in the absence of

material dissipation, there is no net energy flux through any closed control surface S,

which may be constructed in either medium or which may stretch across the interface,

since the energy flux is continuous through the interface plane [100, 101]. The net

energy flux through the closed surface is thus given by the surface integral:�
S

~Im · d ~S = 0, (4.24)

where d ~S is the differential area element on the control surface, oriented along the

outward normal vector to the surface, and m denotes the appropriate medium for

the given differential element of S. For the case of two-dimensional propagation in

the xz-plane, there is no variation in the y-direction, and the control surface can be

replaced by a closed curve C in the xz-plane. The surface integral is therefore replaced

by a line integral to give the net energy flux per unit width:�
C

~Im · d~C = 0, (4.25)

where d~C is the differential line element of the curve, oriented along the outward

normal vector.

4.3.5 Calculation of Transmitted Wavevectors

For two-dimensional propagation in the xz-plane, the transmitted wavevector can

be computed using the condition for trace wavenumber continuity, k̃1,x = k̃2L,x,

and the condition for the material wavenumber, Eq. (4.3). The transmitted trace

wavenumber k̃2L,x is simply that of the incident wave. By using the material wavenum-

ber of the second medium k2L and Eq. (4.3), the transmitted normal wavenumber is:

k̃2L,z = ±
(
k2

2L − k̃2
2L,x

)1/2

, (4.26)

where the sign should be chosen to yield a negative imaginary part, which represents

decay with distance into the second medium. This is equivalent to using the principal

square root [66].
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In the case of the solid medium on the transmission side of the interface, the shear

wavevector must also be computed. Again using the condition for trace wavenumber

continuity, the transmitted shear trace wavenumber k̃2S,x is also that of the incident

wave: k̃2S,x = k̃1,x. And with the material shear wavenumber k2S, the transmitted

shear normal component can likewise be computed as:

k̃2S,z = ±
(
k2

2S − k̃2
2S,x

)1/2

, (4.27)

with the sign again chosen to yield a negative imaginary part.

For evanescent waves which decay along the line perpendicular to the direction

of propagation, the transmitted angles can be computed directly, which can in turn

be used to calculate the normal wavenumbers: k̃2L,z = k2L cos(θ̃2L) and, for the solid,

k̃2S,z = k2S cos(θ̃2S). By writing the material wavenumbers in the trace wavenum-

ber continuity equation, Eq. (4.16), in terms of the frequency and wave speeds, the

frequency-dependence in the relation can be eliminated. Also, by expanding the sine

terms, as in Eq. (4.5), and equating the real and imaginary parts, one obtains:

sin(θ2L,<) =
v2L

v1L

[
cosh(θ1,=)

cosh(θ2L,=)

]
sin(θ1,<),

cos(θ2L,<) =
v2L

v1L

[
sinh(θ1,=)

sinh(θ2L,=)

]
cos(θ1,<).

(4.28)

It is assumed here that the real part θ1,< of the incidence angle is positive and,

thus, the imaginary part θ1,= must also be positive to yield decay in the direction

of the second medium. If the real part θ1,< were negative, then θ1,= would also be

negative. In that case, the negative root in the transmitted angle component θ2L,=

would be chosen as the physical solution, again to yield decay with distance into the

second material, but otherwise the computations are the same as those presented

here.

The real part θ2L,< of the transmitted angle satisfies the trigonometric identity:

sin2(θ2L,<) + cos2(θ2L,<) = 1, (4.29)
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and the substitution of the expressions from Eq. (4.28) yields:[
cosh(θ1,=)

cosh(θ2L,=)

]2

sin2(θ1,<) +

[
sinh(θ1,=)

sinh(θ2L,=)

]2

cos2(θ1,<) =

(
v1L

v2L

)2

. (4.30)

Since the incidence angle θ̃1 = θ1,< + jθ1,= is known, θ2L,= is the only unknown

quantity in Eq. (4.30). The equation can be solved for any values of the wave speed

ratio and incidence angle. Note first that the solution for θ2L,= must be real, owing to

the expanded form of the transmitted angle, θ̃2L = θ2L,< + jθ2L,=. At θ2L,= = 0, the

value of the left-hand side of Eq. (4.30) is infinite. As θ2L,= is increased from zero,

the values of cosh(θ2L,=) and sinh(θ2L,=) increase monotonically, so the left-hand side

decreases monotonically. Therefore, θ2L,= can be increased until the value of the

left-hand side matches the finite, positive value of the right-hand side, (v1L/v2L)2,

to yield the unique solution θ?2L,=. The equation has even symmetry in θ2L,=, as

each term in Eq. (4.30) is squared. However, the physical solution is the positive

root in θ2L,=, which yields decay of the wave with distance into the second medium.

Eq. (4.30) can thus be solved numerically for the unique positive real root to yield the

solution θ?2L,=, which was the approach taken here. (Note, however, that Eq. (4.30)

can alternatively be expressed in terms of exponentials by using the definitions of

the hyperbolic functions. The resulting equation is eighth-order in θ2L,=, with even

symmetry, which can be solved in closed form to yield up to eight distinct roots, of

which the physical solution is the unique positive real root.)

To solve for the real part of the transmitted angle θ2L,<, either of the expressions

in Eq. (4.28) can be inverted. By using the sine expression, the solution θ?2L,< is given

by:

θ?2L,< = arcsin

[
v2L cosh(θ1,=) sin(θ1,<)

v1L cosh(θ?2L,=)

]
. (4.31)

For the solid medium, the transmitted shear angle, θ̃2S = θ2S,< + jθ2S,=, can

be computed by the same method. The quantities θ2L,<, θ2L,=, and v2L should be

replaced by θ2S,<, θ2S,=, and v2S, respectively, in Eqs. (4.28)–(4.31).
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4.4 Numerical Results and Discussion

The transmitted intensities were investigated for an air–water interface, and for

various parameters which characterize typical air–solid interfaces. For the air–water

interface, the pressure and normal particle velocity distributions in the water medium

were also considered. For the air–solid interfaces, the normal stress distributions

in the solid were considered, along with the normal particle velocity and intensity

distributions. In the case of the solid media, conditions for zero reflection at the

interface, and consequently total transmission of the incident normal intensity, were

additionally explored.

It should be noted here that the boundary conditions at the interface were verified

for each parameter variation considered. In addition, continuity of the energy flux

within the two media was also verified, and computations of the flux passing through

a sample control volume will be presented for both the air–water and the air–solid

interface.

4.4.1 Air–Water Interface

Methods of energy transmission from the incident air medium into water may be

of interest in numerous applications, but are limited for homogeneous plane waves

by the critical angle criterion. Considered here is the case of air at 20 ◦C and 1

atm (ρ1 = 1.21 kg/m3, v1L = 343 m/s), and fresh water under the same conditions

(ρ2 = 998 kg/m3, v2L = 1481 m/s) [78]. The critical angle for the interface is

θcr ≈ 13.4◦. The incident evanescent plane wave is given a pressure amplitude of

p̃0 = 1 Pa (i.e., as prescribed at the point x = z = 0) and a frequency of f = 1000

Hz (f = ω/[2π]). The transmitted (and incident) pressures and velocities scale with

the incident pressure magnitude |p̃0|, and the intensities scale with |p̃0|2.

The transmitted normal intensity at the interface (i.e., at z = 0) and at the

tangential position x = 0 was first considered as a function of the incidence angle

component θ1,<, which gives the physical angle of propagation according to Eq. (4.7).
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Figure 4.5 shows the transmitted normal intensity (at x = z = 0) as a function of

the angle θ1,< for several values of the decay parameter: β = 0, 0.001, 0.01, and

0.02 rad/m, where the case of a homogeneous plane wave (β = 0) is included to

allow for direct comparison. It should be noted that the intensities of the evanescent

waves vary with x and z according to the equations highlighted above. Below the

critical angle, the evanescent wave intensities are close to those of homogeneous plane

waves at the same incidence angles, with little variation with β. Above the critical

angle, however, the intensity transmission from evanescent waves remains nonzero and

increases with β, though larger values of β also yield more rapid decay with distance

into the second medium. The transmitted intensities monotonically decrease with

increasing incidence angles beyond the critical angle.

Figure 4.5. The transmitted normal intensity, at the interface and at
tangential position x = 0, as a function of the incidence angle θ1,< for
the air–water interface. The markers as ×’s, triangles, and squares on
the curves correspond to values of the decay parameter of β = 0.001,
0.01, and 0.02 rad/m, respectively. The unmarked curve corresponds
to a homogeneous plane wave (β = 0). Note that a logarithmic scale
has been used for the vertical axis.
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Figure 4.6. A sample closed curve constructed in the xz-plane in the
second medium.

Energy conservation in the second medium is verified here by using an arbitrary

sample control volume. Since there is no variation in the y-direction, a closed curve

C was constructed and the net energy fluxes were given per unit width. The sample

curve utilized here took the form of a rectangle in the xz-plane, stretching from

x = 0.5 to 1.5 m and from z = 0 to 0.25 m, as shown in Figure 4.6. Using Eq. (4.25),

the intensity vector in the second medium ~I2(x, z), and the unit vectors along the

respective coordinate axes (êx and êz), the net energy fluxes in units of W/m entering

and leaving the planar region (QI and QII , respectively) are given, with the sign

convention, as:

QI =

� 0.25

0

~I2(0.5, z) · êx dz +

� 1.5

0.5

~I2(x, 0) · êz dx

=

� 0.25

0

I2,x(0.5, z) dz +

� 1.5

0.5

I2,z(x, 0) dx,

QII =

� 0.25

0

~I2(1.5, z) · êx dz +

� 1.5

0.5

~I2(x, 0.25) · êz dx

=

� 0.25

0

I2,x(1.5, z) dz +

� 1.5

0.5

I2,z(x, 0.25) dx,

(4.32)
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where the position values are given in m. The results of the computation are presented

in Figure 4.7 as a function of the incidence angle, with the decay parameter set at

a nominal value of β = 0.01 rad/m. It can be readily observed that the energy flux

entering the volume matches the flux exiting the volume, so energy conservation is

verified.

Figure 4.7. The net energy flux per unit width entering and leaving
the sample control volume in water. The solid line and the markers as
circles represent the net energy fluxes entering and leaving the volume,
respectively. For visual clarity, the energy flux leaving the volume is
shown with data points only at 0.5◦ increments.

The transmitted pressure, normal particle velocity, and normal intensity distribu-

tions were also investigated for subcritical and supercritical angles, with the decay

parameter set at the nominal value of β = 0.01 rad/m. Figures 4.8 and 4.9 give

the pressure, velocity, and intensity distributions in the second medium (water) at

a subcritical angle of θ1,< = 5◦. The dark bold line indicates the position of the

interface (z = 0). The transmitted pressure wave propagates at an angle of approx-

imately 22.1◦. It can be observed that the normal particle velocity distribution is

similar to that of the pressure, with a small phase difference introduced by the decay

of the incident wave. The spatial dependence of the incident wave intensity can be
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conceptualized as lines of constant intensity along the direction of propagation, which

are refracted at the interface to yield the transmitted intensity distribution shown in

Figure 4.9. The normal intensity of the transmitted wave is thus constant along the

direction of propagation, but decays perpendicular to that direction. It should be

noted that the spatial decay of the intensity, like the decay of the incident wave pres-

sure, is a characteristic of the disturbance itself, and that no dissipation is included

in the second medium. At a given tangential position x, the intensity decays with

distance into the second material, and the rate of decay is relatively small for the

large area shown.

The transmitted pressure, normal velocity, and normal intensity distributions are

likewise presented in Figures 4.10 and 4.11 for the supercritical angle θ1,< = 15◦. The

decay parameter was again set at β = 0.01 rad/m. In this case, the transmitted wave

propagates at an angle of approximately 89.7◦. The angle is close to, but slightly

less than, 90◦ (i.e., along the interface), so nonzero energy transmission occurs above

the critical angle. The pressure and velocity distributions are out-of-phase with each

other, and show the transmitted wave propagating at the slight angle with respect to

the interface plane. The amplitudes peak at the interface and decay along a vector

nearly aligned with the normal distance into the second medium. The refracted lines

of constant intensity again lie along the direction of propagation, and as a result

are slightly offset from the interface, as shown in Figure 4.11. Note that the angle

of propagation, though still barely evident as deviating from the tangential axis, is

exaggerated in the intensity plot since the horizontal position range is narrower than

that of the vertical position. Like the pressure and velocity, the normal intensity

distribution decays approximately normal to the interface but, since the pressure

and velocity are out-of-phase, it does not show the same spatial variation near the

interface. The intensity transmission for most supercritical angles is considerably less

than that for the subcritical angles, but remains finite.
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(a)

(b)

Figure 4.8. The subcritical transmitted distributions of (a) pressure
(in Pa) and (b) normal velocity (in m/s) for the air–water interface.
The subcritical angle is θ1,< = 5◦ and the decay parameter is β = 0.01
rad/m.
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Figure 4.9. The subcritical transmitted normal intensity distribution
(in W/m2) for the air–water interface. The subcritical angle is θ1,< =
5◦ and the decay parameter is β = 0.01 rad/m.
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(a)

(b)

Figure 4.10. The supercritical transmitted distributions of (a) pres-
sure (in Pa) and (b) normal velocity (in m/s) for the air–water inter-
face. The supercritical angle is θ1,< = 15◦ and the decay parameter is
β = 0.01 rad/m.
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Figure 4.11. The supercritical transmitted normal intensity distribu-
tion (in W/m2) for the air–water interface. The supercritical angle is
θ1,< = 15◦ and the decay parameter is β = 0.01 rad/m. Note that the
horizontal axis shows the decay over only the first 1 m away from the
interface.
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4.4.2 Air–Solid Interface

Though the air–water interface, as a typical fluid–fluid interface, demonstrates

interesting results with respect to the energy transmission by incident evanescent

waves, fluid–solid interfaces (particularly air–solid interfaces) are of primary interest

for the application in this work. As such, an exemplary air–solid interface is considered

in this section. The incident air medium is again taken at 20 ◦C and 1 atm (ρ1 = 1.21

kg/m3, v1L = 343 m/s). Solid materials typically have densities at least 1000 times

that of air, and longitudinal wave speeds at least 10 times the speed of sound in

air. The density and longitudinal wave speed in the solid medium were thus set at

ρ2 = 1210 kg/m3 (ρ2/ρ1 = 1000) and v2L = 3430 m/s (v2L/v1L = 10), respectively.

The shear wave speed in the solid was taken as v2S = 2400 m/s (v2S/v1L = 7). The

critical angles for the interface are θcr ≈ 5.7◦ for transmitted longitudinal waves, and

θcrS ≈ 8.2◦ for transmitted shear waves. The incident wave was again given a pressure

amplitude of p̃0 = 1 Pa and a frequency of f = 1000 Hz.

As for the air–water interface, the transmitted normal intensity, taken at the

interface (i.e., at z = 0) and at the tangential position x = 0, was investigated as

a function of the incidence angle component θ1,<. The normal intensity is shown in

Figure 4.12 for decay parameter values of β = 0, 0.001, 0.01, and 0.02 rad/m, where

the case of a homogeneous plane wave (β = 0) is again included for comparison. The

evanescent wave intensities are again close to those of homogeneous plane waves for

incidence below the critical angles, with negligible variation with β. Between the

critical angles, θcr ≈ 5.7◦ and θcrS ≈ 8.2◦, the intensities remain close to those of

homogeneous plane waves, since the transmitted transverse waves dominate in this

regime. However, whereas the transmission from homogeneous waves goes to zero

above the critical angle for shear waves, the intensities from evanescent waves drop

significantly slightly above that angle before climbing to a peak near 9.4◦, which is

the Rayleigh angle as predicted by the wave speed in Eq. (4.14). At this angle, the

incident wave is coincident with the resonance phenomenon of coupled longitudinal
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and shear waves in the solid half-space. This condition corresponds to a minimum in

the reflection coefficient, and consequently maximum normal intensity transmission,

which is discussed in depth in Section 4.4.4 below. Above the supercritical peak,

the transmitted intensities monotonically decrease with further increasing incidence

angles.

Figure 4.12. The transmitted normal intensity, at the interface and at
tangential position x = 0, as a function of the incidence angle θ1,< for
the air–solid interface. The markers as ×’s, triangles, and squares on
the curves correspond to values of the decay parameter of β = 0.001,
0.01, and 0.02 rad/m, respectively. The unmarked curve corresponds
to a homogeneous plane wave (β = 0). Note that a logarithmic scale
has been used for the vertical axis.

Energy conservation in the solid medium is verified here, again using the sam-

ple control curve shown in Figure 4.6. The intensity vector in the solid ~I2(x, z) is

computed with Eq. (4.23), and the net energy fluxes entering and leaving the planar

region are again given by Eq. (4.32). The results of the computation are shown in

Figure 4.13 as a function of the incidence angle, where the decay parameter is set at

β = 0.01 rad/m. A large increase in energy flux is observed at the Rayleigh angle,

attributable to the minimum in the reflection coefficient and the increased intensity
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transmission. As with the fluid medium considered above, it can be readily observed

that the energy flux entering the control volume matches the flux exiting, so energy

conservation in the solid is verified as well.

Figure 4.13. The net energy flux per unit width entering and leaving
the sample control volume in the solid. The solid line and the markers
as circles represent the net energy fluxes entering and leaving the
volume, respectively. For visual clarity, the energy flux leaving the
volume is shown with data points only at 0.5◦ increments. Note that
a logarithmic scale has been used for the vertical axis.

Figures 4.14 and 4.15 depict the transmitted normal stress, normal particle veloc-

ity, and normal intensity distributions for a supercritical angle of θ1,< = 15◦, with a

decay parameter of β = 0.01 rad/m. The transmitted longitudinal wave propagates

at an angle of approximately 89.87◦, and the transmitted shear wave propagates at

approximately 89.86◦, each less than 90◦, so permitting energy transmission into the

solid medium. The transmitted shear angle is always less than the transmitted lon-

gitudinal angle, provided the longitudinal wave speed in the solid is greater than

the shear wave speed, and both angles asymptotically approach 90◦ as the incidence

angle is increased towards grazing. Due to the interaction of the transmitted lon-

gitudinal and shear waves, the transmitted normal stress peaks at a small distance
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(i.e., a fraction of a wavelength) beneath the interface surface. As with the air–water

interface, the normal velocity is out-of-phase with the stress, which is evident in the

intensity distribution. The lines of constant intensity in the incident wave can again

be conceptualized as refracted in the second medium, but due to the contributions

from the transmitted shear wave, the interaction in the solid is more complex. The

intensity, however, likewise decays with distance into the second medium, at a slight

angle with respect to the interface plane, with the angle again exaggerated in Figure

4.15 since the horizontal position range is narrower than the vertical range. Also, as

with the air–water case, no dissipation was incorporated in the fluid or solid medium

and the spatial decay of the normal intensity is solely a consequence of using incident

waves with spatially-dependent pressure amplitudes.

4.4.3 Effects of Frequency, Decay Rate, and Material Properties

The effects of the frequency, incident wave decay rate, and density and wave speed

ratios for the air–solid interface were considered as well. For these investigations, the

incident wave in air (ρ1 = 1.21 kg/m3, v1L = 343 m/s) is again given a pressure

amplitude of p̃0 = 1 Pa. In addition, except where the parameters are varied, the

nominal values are taken as follows: frequency f = 1000 Hz, decay parameter β = 0.01

rad/m, density ratio ρ2/ρ1 = 1000, longitudinal wave speed ratio v2L/v1L = 10, and

shear wave speed ratio v2S/v1L = 7. For each parameter, three values of the incidence

angle were used: θ1,< = 5◦, 15◦, and 30◦. For all cases, the transmitted normal

intensity is presented at the interface (i.e., at z = 0) and at the tangential position

x = 0.

The frequency was varied in the range from f = 100 to 1500 Hz. The normal

intensity as a function of frequency is presented in Figure 4.16(a). For the subcritical

angle of 5◦, the frequency has a negligible effect on the intensity at the interface,

with only a slight decrease with increasing frequency, attributable to the decaying

component of the incident evanescent wave. However, for all angles, the frequency
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(a)

(b)

Figure 4.14. The transmitted distributions of (a) normal stress (in
Pa) and (b) normal velocity (in m/s) for the air–solid interface at
a supercritical angle of θ1,< = 15◦. The decay parameter is set to
β = 0.01 rad/m.
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Figure 4.15. The transmitted normal intensity distribution (in
W/m2) for the air–solid interface at a supercritical angle of θ1,< = 15◦.
The decay parameter is set to β = 0.01 rad/m. Note that the hor-
izontal axis shows the decay over only the first 1 m away from the
interface.
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significantly impacts the spatial variation in the second medium (with shorter varia-

tions and more rapid decay observed at higher frequencies), and affects the incident

wave potential amplitude Φ̃0, according to its relation with the pressure amplitude

(p̃0 = ρ1ω
2Φ̃0). For the supercritical angles, the normal intensities can be observed

to monotonically decrease with increasing frequencies (since β is held constant and

not increased proportionally with the frequency), and to also decrease for increas-

ing incidence angles (since the pressure amplitude is similarly held constant in the

variation).

To explore the effect of the decay rate, the decay parameter was chosen to remain

small and was varied in the range of β = 10−5 to 10−1 rad/m. The normal intensity as

a function of the decay parameter is given in Figure 4.16(b). In a similar way to the

frequency, the decay rate has a negligible impact on the intensity at the interface for

the subcritical angle, with slight increases for increasing decay rates. At supercritical

angles, a larger effect is evident, with dramatic increases in intensity with increasing

decay rates, and with intensities again lower for larger incidence angles as the pressure

amplitude is held constant. However, when increasing the decay rate of the incident

wave, the transmitted waves will decay at a greater rate with distance into the second

medium. The transmitted energy is thus increasingly concentrated near the surface

for increasing decay rates.

Finally, the effects of the density and wave speed ratios of the interface materials

were investigated. The density ratio was varied from ρ2/ρ1 = 10 to 104 to represent

a range of typical solid materials, including some high-density solids. Steel and lead,

for example, have density ratios of around 6400 and 9300, respectively [78]. By sim-

ilar considerations, the longitudinal wave speed ratio was varied from v2L/v1L = 10

to 20, and the shear wave speed ratio from v2S/v1L = 5 to 10, to not exceed the

longitudinal ratio. The normal intensities as functions of the density ratio, longi-

tudinal wave speed ratio, and shear wave speed ratio are presented in Figures 4.17,

4.18(a), and 4.18(b), respectively. As the density ratio is increased, the difference in

the surface normal impedances of the two media also increases and, therefore, more
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(a)

(b)

Figure 4.16. The transmitted normal intensity, at the interface and
at tangential position x = 0, as a function of the (a) frequency f and
(b) decay parameter β. The markers as ×’s, triangles, and squares
on the curves correspond to values of the incidence angle of θ1,< = 5◦,
15◦, and 30◦, respectively. Note that a logarithmic scale has been
used for the vertical axes, and for the horizontal axis in (b).
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of the intensity is reflected back into the incident medium and less is transmitted.

As such, the transmitted normal intensity decreases with increasing density ratio,

which is evident in Figure 4.17. Similarly, increasing the longitudinal wave speed

ratio yields greater reflection of the incident intensity, and also greater refraction of

the transmitted longitudinal waves, which can be observed for the supercritical angles

in Figure 4.18(a). In the case of the θ1,< = 5◦ curve in Figure 4.18(a), the incidence

angle is initially subcritical at v2L/v1L = 10, but as the wave speed ratio is increased,

the angle becomes coincident with the longitudinal critical angle at v2L/v1L ≈ 11.4

(which corresponds to the local decrease in the curve). Above that value, the angle

becomes supercritical for longitudinal waves, but remains subcritical for transverse

waves. Consequently, above the coincident value, shear waves dominate in the second

medium and the normal intensity increases with further increasing longitudinal wave

speed ratios. With respect to the shear wave speed ratio effect in Figure 4.18(b), the

variation in the normal intensity is due to the change in the longitudinal wave–shear

wave interaction with changes in the shear ratio. The variation for the subcritical

angle mirrors that of the supercritical angles, but on a much larger scale. Note that

the supercritical angles remain supercritical for both longitudinal and shear waves for

all of the shear wave speed values shown. The peaks that are evident for the super-

critical angles are due to the minima in the reflection coefficient for the respective

incidence angles. The minimum in the reflection coefficient is discussed in the next

section.

4.4.4 Conditions for Zero Reflection

In the case of the fluid–solid interface, for a prescribed value of the incident wave

decay rate, a minimum in the reflection coefficient can be located at a supercritical

angle of incidence. The minimum corresponds to the resonance phenomenon of the

coupled longitudinal and shear motions in the solid half-space, which occurs at the

Rayleigh angle [97, 101]. In terms of the impedances, the local minimum is the point
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Figure 4.17. The transmitted normal intensity, at the interface and
at tangential position x = 0, as a function of the density ratio ρ2/ρ1.
The markers as×’s, triangles, and squares on the curves correspond to
values of the incidence angle of θ1,< = 5◦, 15◦, and 30◦, respectively.
Note that a logarithmic scale has been used for the horizontal and
vertical axes.
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(a)

(b)

Figure 4.18. The transmitted normal intensity, at the interface and at
tangential position x = 0, as a function of the (a) longitudinal wave
speed ratio v2L/v1L and (b) shear wave speed ratio v2S/v1L. The
markers as ×’s, triangles, and squares on the curves correspond to
values of the incidence angle of θ1,< = 5◦, 15◦, and 30◦, respectively.
Note that a logarithmic scale has been used for the vertical axes.
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at which the surface normal impedance of the incident wave is closely matched by

the sum of the impedance contributions from the transmitted longitudinal and shear

waves, and, as such, the effect is not observed for the fluid–fluid interface. In fact, for

the fluid–solid interface, the decay rate and incidence angle can be varied to locate a

set of values for which the reflection coefficient goes to zero (i.e., exact matching of

the incident impedance), which depend on the material properties that characterize

the two media. The corresponding decay rate and incidence angle values consequently

yield total transmission of the incident normal intensity, since none of the incident

energy is reflected.

This phenomenon is shown here for the example of the air–solid interface con-

sidered in Section 4.4.2. The properties of air are thus again specified as: density

ρ1 = 1.21 kg/m3 and longitudinal wave speed v1L = 343 m/s. The properties of the

solid medium are likewise again set as: density ρ2 = 1210 kg/m3 (ρ2/ρ1 = 1000),

longitudinal wave speed v2L = 3430 m/s (v2L/v1L = 10), and shear wave speed

v2S = 2400 m/s (v2S/v1L = 7). As before, the pressure amplitude of the incident

wave is p̃0 = 1 Pa and the frequency is f = 1000 Hz.

The location of the zero in the reflection coefficient R̃ was found numerically

through variation of the decay parameter β and the incidence angle θ1,<. The values at

which the zero occurs are, approximately: β? ≈ 1.07×10−4 rad/m and θ?1,< ≈ 9.3657◦.

The value of the incidence angle is in agreement with the Rayleigh angle, as predicted

by Eq. (4.14). The topology of the magnitude of the reflection coefficient in the

immediate locale of the zero point is shown in Figure 4.19. It can be observed that

the magnitude increases steeply away from the local minimum, as the ranges shown of

the input parameters are narrow. However, the reduction of the reflection coefficient

across much wider ranges of the angle and decay rate yields significant increases in the

intensity transmission in those wider domains, as is evidenced by the region near the

peaks in Figure 4.12. Note that, in Figure 4.12, dramatic increases in the intensity

are observed even for decay rates that far exceed the value of β?. In addition, sources
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creating a band of incidence angles and decay rate components may be used in practice

to exploit the phenomenon around the zero point for increased energy transmission.

Figure 4.19. The magnitude of the reflection coefficient near the zero
point as a function of the incidence angle θ1,< and decay parameter β
for the air–solid interface.

Much greater values of the transmitted normal stress, as well as the normal in-

tensity, can be achieved for incidence angles and decay rates near the zero of the

reflection coefficient. With reference to Eq. (4.19), at the minimum, the impedance

contributions from the transmitted longitudinal and shear waves cancel that of the

incident wave to yield a zero in the numerator of R̃. Consequently, the denominator

of the transmission coefficients (excluding the density ratio) is 2Z̃1L, and the trans-

mitted normal stress terms in Eq. (4.20) are proportional to Z̃2L/Z̃1L and Z̃2S/Z̃1L,

which are large ratios for the high impedance-difference. (Note that the density ratio

in the coefficient equations cancels with that in the stress equation, and enters in the

coefficient equations as a consequence of converting the stress to the wave potential.)

The transmitted normal stress, normal particle velocity, and normal intensity distri-

butions are presented in Figures 4.20 and 4.21 for those parameters corresponding to

the approximate zero point. In addition to the much greater amplitudes, the peak in
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the transmitted stress is shifted a greater distance beneath the interface surface for

the case of zero reflection. The transmitted normal intensity near the interface is on

the order of 10−3 W/m2, more than 1500 times that transmitted at subcritical angles

by homogeneous waves. The zero point corresponds to total intensity transmission,

as no reflected wave is generated. Values of the decay rate and incidence angle away

from the zero point, as expected, yield less intensity transmission. But, again re-

ferring to the peaks observed in Figure 4.12, compared to homogeneous waves, the

intensity transmission is increased dramatically across reasonable ranges of the in-

put parameters. In the case of the incident evanescent waves, however, the intensity

decays normal to the surface at a rate which increases with the decay parameter β.

4.5 Conclusions

In this chapter, a model for the transmission of evanescent plane waves across

idealized fluid–fluid and fluid–solid material interfaces has been presented. For both

interfaces, nonzero energy transmission was shown to occur for all oblique angles of

incidence, owing to the introduction of a decaying component in the incident wave,

which yields a nonzero propagating (real) part of the transmitted normal wavenumber

even above the critical angle. Numerical results were presented which demonstrate

the phenomena for an air–water interface and for typical air–solid interfaces. The

transmitted intensities decay with distance into the media below the interface, at-

tributable to the spatial decay characteristics of the incident and transmitted waves,

but the intensities remain nonzero for all such angles of incidence. The rate of decay

in the second medium depends on the frequency, angle, and decay rate of the incident

wave, as well as on the interface material properties. For the fluid–solid interface,

an incidence angle and decay rate could be found for which the reflection coefficient

is zero and intensity transmission is maximized, to yield energy transmission on the

order of 1500 times that from homogeneous waves at subcritical incidence for the

particular interface under consideration. This phenomenon at the Rayleigh angle is
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(a)

(b)

Figure 4.20. The transmitted distributions of (a) normal stress (in
Pa) and (b) normal velocity (in m/s) near the reflection coefficient
zero point for the air–solid interface.
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Figure 4.21. The transmitted normal intensity distribution (in
W/m2) near the reflection coefficient zero point for the air–solid in-
terface. Note that the horizontal axis shows the decay over only the
first 3 m away from the interface.
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attributable to the spatial resonance that occurs when the excitation is coincident

with the coupled free wave solution, and the transmitted bulk evanescent waves pro-

vide a mechanism for energy propagation beyond the material interface.

The results for the air–solid interface, particularly the zero in the reflection coeffi-

cient, suggest that the transmission of incident acoustic energy into target materials

for enhanced vapor-based detection capabilities may be significantly improved by

tuning the spatial form of the excitation. Moreover, as previously noted, this phe-

nomenon can be exploited for significant transmission increases not only at the zero

point, but also in the surrounding neighborhood of incidence angles and decay rates.

However, the investigations presented in this chapter for plane waves incident at loss-

less material interfaces are largely theoretical in nature, as a number of factors are

not taken into account which must be considered in practice, including material dis-

sipation and the bounded form of the incident wave. Thus, to provide further insight

into the phenomena for real fluid–solid interfaces, Chapter 5 considers the effect of

material dissipation, and Chapter 6 considers bounded incident waves.
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5. ACOUSTIC ENERGY TRANSMISSION INTO DISSIPATIVE SOLIDS BY

INHOMOGENEOUS PLANE WAVES

5.1 Introduction

This chapter extends the discussion in Chapter 4 of incident inhomogeneous plane

waves at lossless fluid–solid interfaces to real, or dissipative, fluid–solid interfaces.

The incorporation of material dissipation is particularly important in the context

of polymer-bonded energetic materials, which generally exhibit appreciable levels of

material damping. The aim of this chapter is to uncover the incident plane wave

parameters which minimize the reflection coefficient, and consequently maximize the

energy transmission, in the presence of material losses, and also to investigate the ef-

fect of varying solid dissipation levels. In a similar investigation, for dissipative media

and with incident homogeneous plane waves, Becker and Richardson [171, 172] con-

sidered arbitrary variation of the shear attenuation coefficient for a water–stainless

steel interface, including the variation with frequency, and found that significantly

lower values of the reflection coefficient were predicted for certain values of the shear

attenuation. In this chapter, rather than varying the frequency, the degree of inhomo-

geneity of the incident wave will be tuned for the purpose of minimizing the reflection

coefficient.

The types of inhomogeneous plane waves which may propagate in dissipative me-

dia differ from those which may propagate in lossless media. In analog with Figure 4.1

for lossless media, Figure 5.1 shows conceptually the pressure fields (or stress fields

in a solid) of homogeneous and inhomogeneous plane waves in a linear viscoelastic

medium. For the homogeneous plane wave in Figure 5.1(a), there is a nonzero com-

ponent of amplitude decay along the direction of propagation (left-to-right in Figure

5.1), due to the presence of material dissipation. For the inhomogeneous plane wave
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in Figure 5.1(b), there are components of decay both along that propagation direction

(due to material damping) and perpendicular to that direction (due to the nonzero

degree of inhomogeneity). Similar to the investigation in Chapter 4, tuning the inci-

dent wave parameters to maximize the energy transmission into solid media in this

case thus requires varying the degree of inhomogeneity, which is further discussed

below.

In order to incorporate the material losses in the incident wave parameter vari-

ation, an interface model which allows for both inhomogeneous and homogeneous

incident plane waves and arbitrary levels of material dissipation is developed in this

chapter, which is based on the theory presented by Borcherdt [66] for linear viscoelas-

tic media. It should be noted that this viscoelastic model, also used in Chapter 6, is

the same as that which was employed in Chapters 2 and 3 in relation to the heat gen-

eration. This portion of the work thus serves to inform the optimal incident waveform

for excitation under the same material assumptions. Specifically, numerical results

for the reflection coefficient with inhomogeneous incident waves are presented in this

chapter for a low-loss solid interface, and also with the solid dissipation level varied.

The results reveal that near-zero values of the reflection coefficient can be achieved

near the Rayleigh angle by varying the degree of inhomogeneity, provided the losses

in the solid are sufficiently small, a result analogous to that for lossless media. How-

ever, above a certain threshold of the solid dissipation level, no local minimum in

reflection can be found and homogeneous plane waves yield lower reflection values

than inhomogeneous waves. Analytical conditions related to this critical level of dis-

sipation are derived by using approximations for low-loss media. Major portions of

this chapter first appeared in the Proceedings of the 12th International Conference

on Recent Advances in Structural Dynamics [173], and were subsequently published

in the Journal of Physics: Conference Series [174].
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(a)

(b)

Figure 5.1. The pressure field, shown conceptually, of a plane wave
propagating in a dissipative (linear viscoelastic) medium with the
wave as (a) homogeneous and (b) inhomogeneous. Arbitrary scalings
are used for the purpose of illustration.
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5.2 Representation of Inhomogeneous Plane Waves in Dissipative Media

When assuming a hysteretic damping (i.e., viscoelastic) model, monochromatic

wave propagation in homogeneous, isotropic, linear media may be characterized by

the complex material wavenumbers for longitudinal and shear waves, k̃L and k̃S,

respectively:

k̃L =
ω

vL
− jαL,

k̃S =
ω

vS
− jαS,

(5.1)

where ω is the frequency of the wave, vL and vS are the respective wave speeds for ho-

mogeneous waves, αL and αS are the respective attenuation coefficients, and the time

dependence is assumed to be ejωt. With a knowledge of the complex wavenumbers

and the density ρ, the material is completely characterized through the relations for

linear viscoelastic media [66]. If the complex Lamé parameters are used as the two

material moduli, then the first parameter is given by λ̃ = ρω2(1/k̃2
L − 2/k̃2

S), and the

second parameter by µ̃ = ρω2/k̃2
S. For the frequency-dependence of the wavenumbers,

a power law is generally assumed for the attenuation coefficients, which is dependent

on the material under consideration, and the variation of the wave speeds is typically

much weaker [175].

For homogeneous plane waves, only the frequency, amplitude, and propagation

angle with respect to a given coordinate system must be specified to characterize

the wave, since the directions of phase propagation and amplitude attenuation are

aligned. However, for inhomogeneous plane waves, the degree of inhomogeneity must

be additionally specified. Figure 5.2(a) shows a generic diagram of the propagation

vector ~Pi, attenuation vector ~Ai, and degree of inhomogeneity γi for an inhomo-

geneous plane wave propagating in the xz-plane, where, for the sake of generality,

the subscript i = L, S indicates the wave type as longitudinal or shear. It follows

from the Helmholtz equation that the complex wavevector for either type of wave,

~̃Ki = ~Pi − j ~Ai, must satisfy the material wavenumber condition [66]:

~̃Ki · ~̃Ki = k̃2
i . (5.2)
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In turn, it follows from this relation that when αi 6= 0, the degree of inhomogeneity

(0◦ ≤ γi < 90◦) is related to the magnitudes of the propagation and attenuation

vectors according to:

|~Pi|2 =
1

2

Re[k̃2
i ] +

√
(Re[k̃2

i ])
2 +

(Im[k̃2
i ])

2

cos2(γi)

 ,

| ~Ai|2 =
1

2

−Re[k̃2
i ] +

√
(Re[k̃2

i ])
2 +

(Im[k̃2
i ])

2

cos2(γi)

 ,

(5.3)

where Re denotes the real part of the argument and Im the imaginary part. It should

be emphasized here that the degree of inhomogeneity, if nonzero, thus impacts both

the effective phase speed ω/|~Pi|, which is lower than that for homogeneous waves vi,

and the effective attenuation | ~Ai|, which exceeds that for homogeneous waves αi.

Finally, the wave potentials also follow from the solution to the Helmholtz equation

which, for longitudinal and shear waves, respectively, are given by [66]:

Φ̃ = Φ̃0 exp[− ~AL · ~r] exp[j(ωt− ~PL · ~r)],

~̃Ψ = ~̃Ψ0 exp[− ~AS · ~r] exp[j(ωt− ~PS · ~r)],
(5.4)

where ~r is the position vector, and Φ̃0 and ~̃Ψ0 are the amplitudes of the potentials. It

should also be noted here that, in the case of lossless media (i.e., αi = 0), the degree

of inhomogeneity γi must be either 0◦ (for a homogeneous plane wave) or 90◦ (for

an inhomogeneous plane wave), since there is never a component of decay along the

propagation direction (see Chapter 4). In contrast, for dissipative media as investi-

gated in this chapter, there is always a component of decay along the propagation

direction due to material losses, which results in the condition 0◦ ≤ γi < 90◦.

5.3 Fluid–Solid Interface

The reflection and transmission coefficients, as well as the stresses and energy

fluxes, are developed here for a semi-infinite material interface between fluid and solid

media. As in the preceding section, both media are assumed to be homogeneous,
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(a) (b)

Figure 5.2. A diagram showing (a) the propagation and attenuation
vectors for an inhomogeneous plane wave propagating in the xz-plane
(where the subscript i = L, S indicates the wave type as longitu-
dinal or shear), and (b) the reflected and transmitted waves at the
fluid–solid interface for an incident inhomogeneous plane wave. Prop-
agation vectors are shown as solid lines, and attenuation vectors as
dotted lines.

isotropic, and linear, and to have an associated hysteretic damping model. The

incident wave is taken to be a longitudinal plane wave in the fluid, which may be either

homogeneous or inhomogeneous. The interface is shown conceptually in Figure 5.2(b),

where a right-handed, rectangular coordinate system is assumed. As in Chapter 4, to

denote whether quantities apply in the fluid or solid medium, a preceding subscript

1 will be used for the fluid medium, and a subscript 2 will be used for the solid (e.g.,

k̃1L will denote the material wavenumber for longitudinal waves in the fluid, and k̃2L

will denote that in the solid).

The boundary conditions at the interface (i.e., at z = 0) require continuity of the

stress and particle displacement normal to the interface, and also continuity of the

shear stress [66, 77]. It is straightforward to compute the particle displacement in
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either medium m from the wave potentials: ~̃um = ∇Φ̃m +∇× ~̃Ψm. For propagation

in the xz-plane, the normal and in-plane shear stresses can be computed, respectively,

in either medium as:

σ̃m,zz = λ̃m

(
∂ũm,x
∂x

+
∂ũm,z
∂z

)
+ 2µ̃m

(
∂ũm,z
∂z

)
,

σ̃m,xz = µ̃m

(
∂ũm,x
∂z

+
∂ũm,z
∂x

)
,

(5.5)

where the subscript on the right-hand side after the comma again denotes the com-

ponent of the vector. It is assumed here that the fluid medium does not sustain

shear waves (i.e., µ̃1 = 0, ~̃Ψ1 = 0), so the displacement and stress equations simplify

considerably in the fluid. As a consequence of the shear stress continuity, the shear

stress at the surface of the solid is thus equal to zero in this case.

The reflection and transmission coefficients are computed by application of the

aforementioned boundary conditions. Trace wavenumber continuity, or the gener-

alized Snell’s law, subsequently follows: k̃1L,x = k̃2L,x = k̃2S,x. Therefore, k̃x can

be simply written here without ambiguity. The z-components of the transmitted

wavevectors are then computed from the material wavenumber condition, Eq. (5.2),

by using the principal value of the square root [66]: k̃2L,z = (k̃2
2L − k̃2

x)
1/2 and

k̃2S,z = (k̃2
2S − k̃2

x)
1/2. Finally, the three boundary conditions yield the linear sys-

tem that can be solved for the reflection and transmission coefficients:
k̃1L,z k̃2L,z k̃x

−λ̃1k̃
2
1L λ̃2k̃

2
2L + 2µ̃2k̃

2
2L,z 2µ̃2k̃xk̃2S,z

0 2µ̃2k̃xk̃2L,z µ̃2(k̃2
x − k̃2

2S,z)



R̃

T̃L
T̃S

 =


k̃1L,z

λ̃1k̃
2
1L

0

 , (5.6)

where R̃ is the (longitudinal) reflection coefficient, and T̃L and T̃S are the transmission

coefficients for the transmitted longitudinal and shear waves, respectively, in terms

of the wave potentials.

It is then straightforward to compute the stresses in either medium by using

Eq. (5.5). The instantaneous energy flux vector in the dissipative media [66, 102, 170]
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can be written, like the expression given for the lossless media in Chapter 4, in terms

of the stress tensor σ̃m,ln and particle velocity vector ∂~̃um/∂t:

En(t) = −
(

Re [σ̃m,xn] Re

[
∂ũm,x
∂t

]
+ Re [σ̃m,zn] Re

[
∂ũm,z
∂t

])
, (5.7)

for n = x, z. The average energy flux, or intensity, is then computed by time-averaging

the instantaneous flux over one period, as in Eq. (4.23).

5.3.1 Minimization of the Reflection Coefficient

In order to maximize the energy transmitted across the fluid–solid interface, the

reflection coefficient should be minimized. Provided that the density and Rayleigh

wave speed in the solid exceed the density and longitudinal wave speed, respectively,

in the fluid, it is well-known that transmission is optimized when incidence is at

the Rayleigh angle for the interface, at which point the incident wave is coincident

with the free wave solution of resonant longitudinal and shear motions on the solid

surface [111, 112, 169]. The degree of inhomogeneity of the incident wave also affects

the energy transmission, and the optimal value of the inhomogeneity depends on the

dissipation levels in the solid, as well as on the other parameters which characterize

the interface.

The wavenumber k̃Ray for the Rayleigh-type surface wave on a linear viscoelastic

half-space can be numerically computed as for a lossless elastic half-space, but with

the complex values for the longitudinal and shear material wavenumbers inserted into

the characteristic equation [66]:(
k̃2

2S

k̃2
Ray

)3

− 8

(
k̃2

2S

k̃2
Ray

)2

+

(
24− 16

k̃2
2L

k̃2
2S

)(
k̃2

2S

k̃2
Ray

)
− 16

(
1− k̃2

2L

k̃2
2S

)
= 0, (5.8)

where the solution is the root such that |k̃2
2S/k̃

2
Ray| < 1. The complex wave speed

ṽRay of the Rayleigh-type wave is then ṽRay = ω/k̃Ray, and the Rayleigh angle for the

fluid–solid interface is θRay = arcsin(v1L/Re[ṽRay]), where v1L is the wave speed for

homogeneous longitudinal waves in the fluid medium. For low-loss solids, the effect
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of material dissipation on the Rayleigh wave speed is negligible, and the wave speed

can be approximated as: ṽRay ≈ Re[ṽRay] ≡ vRay.

With respect to the degree of inhomogeneity γ1L of the incident wave which mini-

mizes the reflection coefficient, analysis reveals a strong dependence on the dissipation

levels in the solid medium. For the lossless fluid–solid interface, it was shown that,

with incidence at the Rayleigh angle, a unique value of the inhomogeneity yields a zero

of the reflection coefficient magnitude (see Chapter 4). For the dissipative fluid–solid

interface under consideration here, a unique value for the degree of inhomogeneity

can likewise be found which yields a local minimum of the reflection coefficient if the

dissipation levels in the solid are sufficiently small. The value of the reflection coeffi-

cient magnitude there is typically near-zero, but remains nonzero due to the material

dissipation in the system.

However, above a critical level of dissipation in the solid, homogeneous incident

waves yield lower values of the reflection coefficient at the Rayleigh angle than do

inhomogeneous incident waves, regardless of the value of the degree of inhomogene-

ity. This is due to the fact that, with sufficient dissipation levels in the solid, the

transmitted waves inherently have a high degree of inhomogeneity, even for homo-

geneous incident waves, and so there is no benefit to introducing an additional level

of inhomogeneity through an inhomogeneous incident wave. Therefore, the reflection

coefficient is minimized for a homogeneous incident wave, but the value is neither a

local minimum nor typically near-zero (see also Section 5.4.2).

An approximation for the critical value of solid dissipation below which inhomoge-

neous incident waves improve energy transmission can be derived by assuming small

losses in the solid and negligible losses in the fluid. The derivation is given in Section

5.3.2. The ratio of the longitudinal attenuation coefficient in the solid to the shear at-

tenuation coefficient was held constant in the variation: αratio = α2L/α2S = constant.

The result for the approximation, in terms of the shear attenuation coefficient, is:

α?2S ≈
1

4

(
ρ1v1L

ρ2v2S

)(
vRay√

v2
Ray − v2

1L

)
ω

V
, (5.9)
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where the quantity V is a function of only the wave speeds and attenuation ratio

in the solid and is given by Eq. (5.15). The first term in parentheses is the ratio

of the longitudinal wave impedance in the fluid to the shear wave impedance in the

solid, and the second term accounts for the effect of the incident medium (fluid) on

the transmitted waves when incidence is at the Rayleigh angle. If a power law is

assumed for the frequency variation of the attenuation coefficient, α2S = aαω
bα , then

the condition can instead be framed in terms of the frequency:

ω? ≈

 1

4aαV

(
ρ1v1L

ρ2v2S

)(
vRay√

v2
Ray − v2

1L

)1/(bα−1)

. (5.10)

Thus, for a homogeneous incident wave and set material parameters (except for the

frequency-dependence of the attenuation), a frequency can be found which yields a

minimum of the reflection coefficient, a conclusion which is supported by the inves-

tigations of Becker and Richardson [171, 172]. However, since the present work is

focused on the extension to inhomogeneous incident waves, the frequency will be held

constant.

5.3.2 Derivation of the Critical Value of Solid Dissipation below which

Inhomogeneous Waves Minimize Reflection

An approximation for the critical value of the shear attenuation coefficient below

which inhomogeneous incident plane waves improve the energy transmission at the

Rayleigh angle is derived here. Since the degree of inhomogeneity of the incident wave

which minimizes the reflection coefficient magnitude is zero in the right-hand limit at

the critical value of attenuation (see also Section 5.4.2), the system in Eq. (5.6) can

be analyzed to minimize R̃ for a homogeneous incident wave.



116

In order to simplify the system, the losses in the fluid are assumed to be negligible

compared to the real part of the incident wavevector and compared to the losses in

the solid: α1L � ω/vRay and α1L � α2L, α2S. These conditions yield, for the fluid:

λ̃1 ≈ ρ1v
2
1L, k̃x ≈

ω

vRay
, k̃1L,z ≈

ω
√
v2
Ray − v2

1L

vRayv1L

. (5.11)

In the solid, the losses are assumed to be small in the sense that the squares of

the attenuation coefficients are negligible in comparison to those of the real parts

of the material wavenumbers: α2
2L, α

2
2S � (ω/v2L)2, (ω/v2S)2. Thus, the imaginary

part of the complex Rayleigh-type wave speed can be neglected and the real part

vRay is sufficient. The imaginary part of the first Lamé parameter is also neglected

here for the purpose of stress computations, since the effects of the longitudinal and

shear attenuation coefficients partially offset each other for the first Lamé parameter.

Consequently, for the solid:

λ̃2 ≈ ρ2

(
v2

2L − 2v2
2S

)
, µ̃2 ≈ ρ2v

2
2S

(
1 +

2jv2Sα2S

ω

)
. (5.12)

The z-components of the transmitted wavevectors are computed by using the

principal value of the square root, and must also be approximated here. This approx-

imation can be made by using the assumptions listed above, the material wavenumber

condition in Eq. (5.2), and the observation that the magnitudes of the real part of

the z-components are small for supercritical incidence at the Rayleigh angle (i.e.,

|Re[k̃2L,z]| � |Im[k̃2L,z]| and |Re[k̃2S,z]| � |Im[k̃2S,z]|). The real and imaginary parts

of the resulting equation then yield the approximations for the real and imaginary

parts of the z-components of the transmitted wavevectors:

k̃2L,z ≈
α2L

v2L

√
v−2
Ray − v

−2
2L

− jω
√
v−2
Ray − v

−2
2L ,

k̃2S,z ≈
α2S

v2S

√
v−2
Ray − v

−2
2S

− jω
√
v−2
Ray − v

−2
2S .

(5.13)

The substitution of the above approximations into Eq. (5.6) yields an approxi-

mation to the system in terms of only the frequency ω and the material parameters
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sufficient to characterize the two media under the assumptions used (ρ1, ρ2, v1L, v2L,

v2S, α2L, α2S, and, as computed from the relations highlighted in Section 5.3.1, vRay).

Finally, the ratio of the longitudinal attenuation coefficient in the solid to the shear

attenuation coefficient is held constant in the variation: αratio = α2L/α2S = constant.

The system can then be solved by row reduction and, given the assumptions used

here, terms of order (α2S)2 or higher can be neglected.

The minimum of the reflection coefficient magnitude with respect to the atten-

uation occurs when the real part of the reflection coefficient is zero. Thus, setting

that part equal to zero yields the approximation presented in Eq. (5.9) for the critical

value of the shear attenuation coefficient:

α?2S ≈
1

4

(
ρ1v1L

ρ2v2S

)(
vRay√

v2
Ray − v2

1L

)
ω

V
, (5.14)

where the quantity V (with units of velocity) is a function of only the wave speeds

and attenuation ratio in the solid and is given by:

V (v2L, v2S, vRay, αratio) = ϕS
[
v2

2Sv
−2
Ray(1 + 2v2

2Sϕ
−2
S )
]

− ϕL
[
v2

2Sϕ
−2
L + v−2

2L (v2
2S − v2

2L/2)

+ v3
2S(v−2

Ray + ϕ−2
S )(v2Sϕ

−2
L + v−1

2Lαratio)
]
,

(5.15)

for which the quantities ϕL = (v−2
Ray − v

−2
2L )−1/2 and ϕS = (v−2

Ray − v
−2
2S )−1/2 have been

introduced for the sake of convenience.

5.4 Numerical Results and Discussion

For the purpose of illustrating the effect of the degree of inhomogeneity of the

incident plane wave on the reflection coefficient and transmitted intensity, a high-

frequency water–stainless steel interface is considered here, with the incidence angle

near the Rayleigh angle for the interface. Additionally, simultaneous variation of the

inhomogeneity of the incident wave and the solid dissipation level is considered, and

the exact results for the critical value of dissipation are directly compared with those
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predicted by the approximation in Eq. (5.9). Since shear waves in the fluid medium

are neglected, the incidence angle and degree of inhomogeneity of the incident wave

can be simply written as θ1 and γ1, respectively, omitting the subscript L, without

ambiguity. It should also be noted here that, as in Chapter 4, the boundary conditions

at the interface, as well as the continuity of the energy flux normal to the interface,

were verified for each parameter variation considered.

5.4.1 Low-loss Solid Interface: Water–Stainless Steel

For the water–stainless steel interface at a frequency of 10 MHz, the material

properties were taken as those used by Borcherdt [66]: for water, ρ1 = 1000 kg/m3,

v1L = 1490 m/s, and α1L = 2.530 rad/m; and for stainless steel, ρ2 = 7932 kg/m3,

v2L = 5740 m/s, v2S = 3142 m/s, α2L = 39.95 rad/m, and α2S = 127.0 rad/m. The

Rayleigh wave speed, from the equations presented in Section 5.3.1, is vRay ≈ 2907

m/s (where the imaginary part is negligible), and the Rayleigh angle is θRay ≈ 30.833◦.

Figure 5.3(a) shows the magnitude of the reflection coefficient as the incidence

angle θ1 is varied near the Rayleigh angle and the degree of inhomogeneity γ1 is var-

ied from 0◦ (homogeneous wave) to values near 90◦. As is evident, with respect to

the variation of the incidence angle, the lowest values of the reflection coefficient are

achieved at the Rayleigh angle. More importantly, with incidence at the Rayleigh

angle, the variation of the degree of inhomogeneity is observed to yield near-zero re-

flection values, and hence near-perfect energy transmission into the solid. The degree

of inhomogeneity which yields the local minimum is γ1 ≈ 88.85◦. This phenomenon

is illustrated in Figure 5.3(b), where only the degree of inhomogeneity is varied, and

the incidence angle is held constant at the Rayleigh angle. The value of the reflec-

tion coefficient at the local minimum is |R̃| ≈ 0.0203, which represents a significant

reduction from the value of |R̃| ≈ 0.295 for homogeneous incident waves.

In order to illustrate the corresponding effect on the transmitted energy flux,

Figure 5.4 presents the transmitted normal intensity Iz at the interface (i.e., at z = 0)
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(a)

(b)

Figure 5.3. The magnitude of the reflection coefficient for the water–
stainless steel interface at 10 MHz as a function of (a) incidence angle
θ1 and degree of inhomogeneity γ1 of the incident wave, and (b) degree
of inhomogeneity γ1 of the incident wave at the Rayleigh angle θ1 =
θRay ≈ 30.833◦.

and at the tangential position x = 0 as a function of the degree of inhomogeneity γ1,

with incidence again at the Rayleigh angle. The amplitude of the incident wave was



120

set as 1 Pa at x = z = 0, as for the analogous cases presented in Chapter 4 for lossless

media. As is evident in Figure 5.4(a), the variation of the transmitted intensity with

the inhomogeneity largely mirrors that of the reflection coefficient shown in Figure

5.3(b). However, the variation exhibited in the energy flux is somewhat smoother than

that of the reflection coefficient, particularly near the local maximum in transmission.

A close-up view near the local maximum at γ1 ≈ 88.85◦, which corresponds to the

location of the local minimum in reflection, is shown in Figure 5.4(b).

5.4.2 Variation of the Solid Dissipation Level and Incident Wave Inho-

mogeneity

Though a unique value of the degree of inhomogeneity of the incident wave can be

found for low-loss solid interfaces to yield a local minimum of the reflection coefficient

at the Rayleigh angle, no such value can be found if dissipation levels in the solid are

above a critical level. Since the transmitted waves in such higher-loss solids inherently

have considerable degrees of inhomogeneity when incidence is at the Rayleigh angle,

no additional benefit is conferred by making the incident wave inhomogeneous. In

order to illustrate this effect, the properties of the interface considered in Section 5.4.1

were used, except that the attenuation coefficients in the solid were varied along with

the incident wave inhomogeneity. The ratio of the longitudinal to shear attenuation

coefficients in the solid was held constant at the value computed from the parameters

in Section 5.4.1: αratio = α2L/α2S = 0.3146. The frequency was held constant at

10 MHz, and so the variation of the attenuation here is considered to be a simple

variation of material parameters, rather than that from frequency-dependence.

Figure 5.5 presents the results for the reflection coefficient magnitude for simulta-

neous variation of the incident wave inhomogeneity γ1 and solid dissipation level, as

specified in terms of the shear attenuation coefficient α2S. As can be observed, on the

left side of the figure (i.e., at lower losses), there is a locus of small reflection values

where, for each value of the attenuation, a unique, nonzero value of the inhomogeneity
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(a)

(b)

Figure 5.4. The transmitted normal intensity, at the interface and
at tangential position x = 0, for the water–stainless steel interface at
10 MHz as a function of the degree of inhomogeneity γ1 of the 1-Pa
incident wave at the Rayleigh angle θ1 = θRay ≈ 30.833◦. A close-up
view near the local maximum is shown in (b).

can be found to yield the minimum of the reflection coefficient. However, above a

critical level of dissipation, no such local minima exist and there is simply a slight
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Figure 5.5. The magnitude of the reflection coefficient at 10 MHz,
where the properties are those for the water–stainless steel interface
except that the attenuation in steel is varied as shown, as a func-
tion of the shear attenuation coefficient in steel α2S and the degree of
inhomogeneity γ1 of the incident wave. The incident wave is propa-
gating at the Rayleigh angle and the ratio of the longitudinal to shear
attenuation coefficients in steel is held constant at αratio = 0.3146.

variation of the reflection coefficient with respect to the incident wave inhomogeneity,

where the lowest values occur for homogeneous incident waves (i.e., at γ1 = 0◦).

Based on the variation along the line γ1 = 0◦ in Figure 5.5, it is clear that the

critical value of the attenuation coincides with the local minimum in the reflection

coefficient with respect to attenuation for a homogeneous incident wave, which was

used in the derivation of the approximation for the critical value, Eq. (5.9). As

such, for a homogeneous incident wave at the Rayleigh angle, Figure 5.6 presents a

direct comparison between the exact result for the reflection coefficient, computed by

solving the system in Eq. (5.6), and the result computed by solving the approximate

system derived in Section 5.3.2, as the shear attenuation coefficient is varied. For

both the magnitude shown in Figure 5.6(a) and the phase shown in Figure 5.6(b), for

low values of the attenuation, the approximation is very close to the exact result, as

anticipated based on the assumptions used in the approximation. The results diverge,
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but remain relatively close, as the attenuation is increased towards the critical value,

at which point the magnitude is a minimum and the phase passes through −90◦.

With further increases in the attenuation values, the approximation diverges since

the low-loss assumptions are violated. The prediction for the critical value based on

the approximation, Eq. (5.9), is α?2S ≈ 217.9 rad/m, which yields an error of 6.2%

compared to the exact value of α?2S = 232.2 rad/m. In the context of applications

which seek to maximize the energy transmitted into the solid, the critical value of

the dissipation provides an upper bound below which inhomogeneous incident waves

may improve the transmission.

5.4.3 Application to a Low-frequency Air–Solid Interface

Finally, in order to illustrate the phenomena discussed in this chapter in the con-

text of air–solid interfaces, particularly for solids resembling polymer-based binders

used in energetic systems and at low frequencies (which may permit reasonable stand-

off distances), an air–Sylgardr 184 interface is considered here, with the frequency

set at 1000 Hz. The properties of air were again taken as those specified in Chap-

ter 4, at 20 ◦C and 1 atm: density ρ1 = 1.21 kg/m3 and longitudinal wave speed

v1L = 343 m/s [78]. The longitudinal wave attenuation coefficient in dry air (0%

relative humidity) at 1000 Hz can be computed as α1L = 0.176 rad/km [69]. The

elastic properties of Sylgardr were set as those used in Chapter 3: density ρ2 = 1030

kg/m3 [158], longitudinal wave speed v2L = 1100 m/s [161], and shear wave speed

v2S = 570 m/s [161]. Since no suitable values could be found in the literature for

the attenuation coefficients of Sylgardr in the low-frequency regime, the attenuation

levels will be varied in a similar way as in Figure 5.5, as detailed below.

First, the shear attenuation coefficient was set at an arbitrary low value for the pur-

pose of illustrating the effect of the incidence angle and degree of inhomogeneity on the

reflection coefficient. That shear attenuation value was set as α2S = 1 rad/km, and the

longitudinal attenuation value was computed using the ratio of the coefficients that
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(a)

(b)

Figure 5.6. The (a) magnitude and (b) phase of the reflection coeffi-
cient at 10 MHz, where the properties are those for the water–stainless
steel interface except that the attenuation in steel is varied as shown,
as a function of the shear attenuation coefficient in steel α2S. The in-
cident wave is homogeneous and is propagating at the Rayleigh angle,
and the ratio of the longitudinal to shear attenuation coefficients in
steel is held constant at αratio = 0.3146. The blue curve corresponds
to the exact solution, as computed from Eq. (5.6), and the red curve
corresponds to the approximation, as derived in Section 5.3.2.
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can be calculated from the properties given in Chapter 3 (αratio = α2L/α2S = 0.518),

to yield α2L = 0.518 rad/km. Figure 5.7(a) presents the magnitude of the reflection

coefficient as the incidence angle θ1 is varied near the Rayleigh angle (θRay ≈ 40.321◦)

and the degree of inhomogeneity γ1 is varied from 0◦ to values near 90◦. As for the

high-frequency water–stainless steel interface investigated in Figure 5.3, it is clear

that tuning the degree of inhomogeneity at the Rayleigh angle yields much lower

reflection values for the air–Sylgardr interface, with the local minimum observed at

γ1 ≈ 78.88◦. Figure 5.7(b) shows the direct dependence on the degree of inhomo-

geneity, with the incidence angle held constant at the Rayleigh angle. The reflection

coefficient at the local minimum is |R̃| ≈ 0.00027 for the low level of dissipation as-

sumed in Sylgardr, a reflection value which is significantly lower than the value of

|R̃| ≈ 0.263 for homogeneous incident plane waves.

The dependence of the interface phenomena on the material dissipation level in

Sylgardr is also considered here. As noted above, no values could be found in the lit-

erature for the attenuation coefficients in the low-frequency regime. The attenuation

values are thus varied here, as in Section 5.4.2 for steel, by setting the ratio of the lon-

gitudinal to shear coefficients to a constant, nominal value: αratio = α2L/α2S = 0.518.

Figure 5.8 shows the results for the reflection coefficient magnitude as the incident

wave inhomogeneity γ1 and solid dissipation level are varied simultaneously, as spec-

ified in terms of the shear attenuation coefficient α2S. As was previously observed

in Figure 5.5, a locus of small reflection values is evident for attenuation values up

to a critical level (α?2S = 1.636 rad/km in this case), below which a unique, nonzero

value of the inhomogeneity can be found to yield the minimum of the reflection co-

efficient. However, above that critical attenuation value, no local minima exist and

homogeneous plane waves yield lower reflection coefficient values. This result sug-

gests that, if the wave attenuation levels at low frequencies in Sylgardr and other

polymers used as binder materials are found to lie above the specified threshold, then

inhomogeneous incident waveforms may confer no benefit in terms of the subsurface

energy transmission.



126

(a)

(b)

Figure 5.7. The magnitude of the reflection coefficient for the air–
Sylgardr interface at 1000 Hz as a function of (a) incidence angle θ1

and degree of inhomogeneity γ1 of the incident wave, and (b) degree
of inhomogeneity γ1 of the incident wave at the Rayleigh angle θ1 =
θRay ≈ 40.321◦.
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Figure 5.8. The magnitude of the reflection coefficient at 1000 Hz,
where the properties are those for the air–Sylgardr interface except
that the attenuation in Sylgardr is varied as shown, as a function of
the shear attenuation coefficient in Sylgardr α2S and the degree of
inhomogeneity γ1 of the incident wave. The incident wave is propa-
gating at the Rayleigh angle and the ratio of the longitudinal to shear
attenuation coefficients in Sylgardr is held constant at αratio = 0.518.
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5.5 Conclusions

In this chapter, a model for the transmission of inhomogeneous plane waves across

dissipative fluid–solid interfaces has been presented, where a linear hysteretic damping

model was assumed. For low-loss solids, inhomogeneous incident waves were shown

to substantially reduce the magnitude of the reflection coefficient in comparison with

homogeneous waves, and thus increase the energy transmission, for incidence at the

Rayleigh angle. Moreover, a unique value of the degree of inhomogeneity could be

found which yields the local minimum of the reflection coefficient and, therefore,

the maximum energy transmission into the solid at a given frequency. This result

is analogous to that for lossless fluid–solid interfaces, as discussed in Chapter 4.

However, above a critical level of material dissipation in the solid, inhomogeneous

incident waves were found to yield slightly higher reflection values than homogeneous

waves, which is attributable to the high degrees of inhomogeneity inherent in the

transmitted waves in higher-loss solids. An analytical approximation was derived for

the critical dissipation value, and it was found to give predictions close to the exact

result for the exemplary interface under consideration.

In the context of the excitation of polymer-bonded energetic materials, the result

showing a critical level of solid dissipation above which the use of inhomogeneous

plane waves does not improve the energy transmission suggests that the specific ma-

terial composition and frequency range under consideration will play an integral role

in determining the optimal waveform. That is, if the material losses are small in com-

parison with the elastic wave propagation properties, then the use of inhomogeneous

waves may offer substantial transmission increases. But if those relative losses are

high, then an inhomogeneous wave may confer no benefit.

Also, since bounded acoustic waves can be described by a decomposition of plane

waves, the work presented in Chapter 4 and in this chapter suggests that the construc-

tion of beam profiles of limited spatial extent for optimal energy transmission may

be informed by inhomogeneous plane wave theory. The construction of such bounded
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waveforms, particularly the parameters which enhance the surface wave excitation

efficiency, is the subject of Chapter 6.
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6. BOUNDED INHOMOGENEOUS WAVE PROFILES FOR OPTIMAL

SURFACE WAVE EXCITATION EFFICIENCY

6.1 Introduction

Though plane wave theory may provide insight into the acoustic wave profiles

which optimize the energy transmission into solid materials, as detailed in Chapters

4 and 5, bounded waves must be used in practice. It is thus the purpose of this

chapter to investigate incident wave profiles of limited spatial extent, again with in-

cidence near the Rayleigh angle. In the study of bounded waves, the surface wave

excitation efficiency is a metric of particular utility, since it accounts for the pen-

etration of the incident wave energy at specified points along the interface, which

is subsequently reradiated in the form of the Rayleigh-type surface wave [113, 117].

With polymer-bonded energetic materials as the target surfaces, this metric may ul-

timately be insightful as a quantitative measure of the fraction of the incident energy

transmitted near the solid surface, which may prove useful in designing wave profiles

to elicit maximal heating near the surface. As such, the investigations presented in

this chapter seek to maximize the surface wave excitation efficiency by varying the

incident wave profile.

A versatile form of the incident profile based on the work of Vanaverbeke et

al. [117] is considered, which contains a component of exponential decay perpendic-

ular to the propagation direction (analogous to that of inhomogeneous plane waves).

Such “bounded inhomogeneous wave” profiles are compared with the more commonly-

studied Gaussian and square profiles. The Fourier method is used to decompose the

incident profiles and then compute the reflected wave profiles, from which the energy

fluxes and surface wave excitation efficiencies can be subsequently calculated. In ad-

dition, the correspondence between the local reflection coefficient as a function of the
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incident wave decay rate and that predicted by plane wave theory is also considered.

The results reveal that unique values of the incident wave decay rate and beamwidth

can be found which yield the global maximum of the surface wave excitation efficiency

with incidence near the Rayleigh angle, a result that is analogous to the minimal re-

flection values observed for plane waves. Moreover, inhomogeneous plane wave theory

predicts, to a close approximation, the location of the minimum in the local reflec-

tion coefficient with respect to the decay rate for the bounded inhomogeneous waves,

which is exact in the limit of large beamwidths. Major portions of this chapter were

submitted in a manuscript to the Journal of the Acoustical Society of America [176].

6.2 Fourier Decomposition of Bounded Inhomogeneous Wave Profiles

A bounded harmonic acoustic wave, with an arbitrary incident profile, in a semi-

infinite fluid medium is considered here. The two-dimensional wave propagating in

the xz-plane is incident at a solid interface, and the rectangular coordinate systems

are shown in Figure 6.1. The fluid is assumed to be linear, isotropic, homogeneous,

and lossless. The solid is also assumed to be linear, isotropic, and homogeneous, but

may be either lossless or linear viscoelastic.

By using the form presented by Vanaverbeke et al. [117] for the particle displace-

ment, the wave potential of a longitudinal, bounded inhomogeneous incident wave

can be modeled, in the frame of the wave and at z′ = 0, by the analytical expression:

Φ̃inc(x
′, 0) = Φ̃0e

[
βx′− 1

c

(
|x′|
W

)c]
e−jωt, (6.1)

where β is the decay parameter, W is the half beamwidth, c is the steepness param-

eter, ω is the angular frequency, t is the time variable, and Φ̃0 is the wave potential

amplitude. This versatile form of the profile not only allows for an exponentially

decaying term that is analogous to the decay of inhomogeneous plane waves perpen-

dicular to the propagation direction, but it also facilitates the modeling of other wave-

forms, including Gaussian and square profiles [117]. Note that the term “bounded”

is used to describe profiles of this type since the amplitude takes on very small values
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Figure 6.1. A diagram showing the utilized rectangular coordinate
systems at the fluid–solid interface. The unprimed system lies in the
frame of the interface, and the primed system lies in the frame of the
incident wave, which propagates in the positive z′-direction.

outside of the spatial region near x′ = 0, a spatial windowing which is controlled by

the term e
− 1
c

(
|x′|
W

)c
in Eq. (6.1). The function is, however, defined over the entire

x′-axis.

The Fourier transform can be applied to this incident profile in a straightforward

way in order to subsequently obtain the reflected wave profile in the frame of the

interface (i.e., in the xz-frame). For the sake of brevity, the details of the derivation,

which are given in the literature [77, 111, 113–117], are omitted here. The profile of

the incident wave at the interface can be approximated as:

Φ̃inc(x, 0) = Φ̃0e

[
β0x− 1

c

(
|x|
W0

)c]
ej(k0x+k1Ld−ωt), (6.2)

where k1L is the longitudinal material wavenumber in the fluid, k0 = k1L sin(θ1)

is the x-component of the mean wavevector, β0 = β cos(θ1) is the projected de-

cay parameter, and W0 = W/ cos(θ1) is the projected half beamwidth. The phase

propagation effect has been incorporated through the term ejk0x, which accounts
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for the variation along the interface, and through the plane wave propagation term

ejk1Ld [111, 113, 117]. The Fourier transform in the interface frame is then given as:

F̃inc(kx) =

� +∞

−∞
Φ̃inc(x, 0)e−jkxxdx, (6.3)

and the wave potential profile of the reflected wave is thus:

Φ̃refl(x, 0) =
1

2π

� +∞

−∞
R̃(kx)F̃inc(kx)e

jkxxdkx, (6.4)

where R̃ is the plane wave reflection coefficient, which, as previously discussed, has

been presented in the literature for both the lossless fluid–solid interface [77] (see

Chapter 4) and the viscoelastic fluid–solid interface [66, 106, 107, 110] (see Chapter

5). The term ejk1Ld in Eq. (6.2), which introduces a constant factor due to the offset

distance d between the frame of the incident wave and the frame of the interface, will

be omitted in subsequent calculations (i.e., d is set to 0) for the sake of simplicity.

6.3 Efficiency of Rayleigh-type Surface Wave Excitation

When a bounded acoustic beam is incident at a solid surface near the Rayleigh

angle, a portion of the incident energy is transmitted into the solid and carried within

the solid medium along the interface (i.e., in the x-direction in Figure 6.1) [111, 113,

117]. This energy flux generates a Rayleigh-type surface wave on the solid, which then

reradiates energy into the fluid to form the displaced portion of the reflected profile.

This shift of the reflected wave along the interface has been described in detail for

Gaussian incident profiles [111, 113] and for bounded inhomogeneous incident profiles

[117]. There thus exists, near the incident beam, an energy flux at any given position

x along the interface which will be reradiated into the fluid by the excitation of the

surface wave.

In order to quantify the surface wave generation by bounded inhomogeneous inci-

dent waves, the surface wave excitation efficiency, as a function of the position along

the interface, can be defined as the difference between the incident and reflected inten-
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sities normal to the interface, integrated from −∞ to x and normalized with respect

to the total incident normal intensity [113, 117]:

ηeff (x) =

� x
−∞ [ |Iinc,z(Ξ, 0)| − |Irefl,z(Ξ, 0)| ] dΞ� +∞

−∞ |Iinc,z(Ξ, 0)|dΞ
, (6.5)

where Iinc,z(x, z) and Irefl,z(x, z) are the normal intensities of the incident and re-

flected waves, respectively. The intensities for each wave, denoted with the subscript

m, are straightforward to compute in the lossless fluid as Im,z = Re
[
−σ̃m,zz ∂ũ∗m,z/∂t

]
/2,

where Re denotes the real part of the argument, the asterisk denotes the complex

conjugate, σ̃m,zz = −ρ1ω
2Φ̃m is the associated normal stress (ρ1 is the density of the

fluid), and ũm,z is the associated normal displacement:

ũinc,z(x, 0) =
ω

2π

� +∞

−∞
k̃zF̃inc(kx)e

jkxxdkx,

ũrefl,z(x, 0) =
ω

2π

� +∞

−∞
−k̃zR̃(kx)F̃inc(kx)e

jkxxdkx,

(6.6)

where k̃z = (k2
1L − k2

x)
1/2 is evaluated as the principal square root [66] and is the z-

component of the constituent wavevector. The surface wave excitation efficiency takes

on its maximum value at a position xmax, beyond which point the reflected normal

intensity exceeds the incident intensity. However, it should be noted that, for the

case of a plane incident wave, the excitation efficiency is independent of the position

along the interface, since the ratio of the incident and reflected wave amplitudes is a

function of only the plane wave reflection coefficient. Eq. (6.5) thus simplifies, for a

plane wave, to ηeff = 1− |R̃|2.

6.4 Numerical Results and Discussion

In order to illustrate the effect of the spatial decay rate of the incident wave on the

surface wave generation at fluid–solid interfaces, a water–stainless steel interface is

considered here. The interface is first treated as lossless, and then viscoelastic losses

in stainless steel are incorporated in the results. The frequency was set to f = 4

MHz (f = ω/[2π]), which is within the range for typical ultrasonic nondestructive
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testing applications (referred to here as a discipline in which surface wave excitation

is commonly employed). The densities and wave speeds of the two media were taken

to be those used by Vanaverbeke et al. [117]: for water, density ρ1 = 1000 kg/m3 and

longitudinal wave speed v1L = 1480 m/s; and for stainless steel, density ρ2 = 7900

kg/m3, longitudinal wave speed v2L = 5790 m/s, and shear wave speed v2S = 3100

m/s. For the case in which viscoelastic losses in stainless steel are included, which is

considered in Section 6.4.2, the longitudinal and shear wave attenuation coefficients at

the given frequency were taken, respectively, to be α2L = 16.0 rad/m and α2S = 50.8

rad/m, which were computed from the inverse quality factors used by Borcherdt [66]

for stainless steel. The steepness parameter in Eq. (6.1) was set to c = 8 for the

bounded inhomogeneous incident profiles [117], and the wave potential amplitude Φ̃0

was taken to be an arbitrary constant.

To illustrate the form of the incident and reflected wave profiles, several incident

profiles are presented in Figure 6.2(a), and an incident profile along with the cor-

responding reflected profile at the lossless water–stainless steel interface is shown in

Figure 6.2(b), with incidence at θ1 = 30.968◦, near the Rayleigh angle. The shift

of the peak in the reflected wave profile along the interface is analogous to the shift

observed for Gaussian incident waves [111, 113]. For a detailed account of the form of

the incident and reflected profiles, the reader is referred to the work of Vanaverbeke

et al. [117].

In addition to the surface wave excitation efficiency defined by Eq. (6.5), the lo-

cal reflection coefficient [117], defined as the ratio |Φ̃refl|/|Φ̃inc|, was considered at

x = z = 0 as a measure of the local transmission efficiency at this point. Specifically,

the effect of the decay parameter β was of interest here. It should also be noted

that convergence of the numerical implementation of the Fourier decomposition and

incident wave reconstruction was verified for all of the cases considered here. More-

over, the boundary conditions at the interface and the conservation of the energy flux

carried by the incident, reflected, and transmitted waves were verified as well.
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(a)

(b)

Figure 6.2. (a) Several incident bounded wave profiles (c = 8) of half
beamwidth W = 20 mm, with decay parameters β = 50 rad/m (×
markers), β = 100 rad/m (triangular markers), and β = 200 rad/m
(square markers); and (b) an incident bounded wave profile (W = 20
mm, β = 50 rad/m, c = 8; × markers) along with the reflected wave
profile (triangular markers) for the water–stainless steel interface at
4 MHz, with losses neglected.
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6.4.1 Water–Stainless Steel Interface

For the lossless water–stainless steel interface, the magnitude of the reflection co-

efficient for an incident inhomogeneous plane wave and the magnitude of the local

reflection coefficient for several bounded inhomogeneous incident waves are presented

in Figure 6.3 as a function of the decay parameter β. The waves are incident at

the angle that minimizes the reflection coefficient, θ1 ≈ 30.968◦, which is near the

Rayleigh angle. For the plane wave, the decay parameter gives the rate of exponential

decay perpendicular to the propagation direction, as was detailed in Chapter 4. As

is evident, the form of the plane wave reflection coefficient, including the location

of the minimum, is closely matched by the local reflection coefficients for the higher

beamwidths. The decay parameter which yields the minimum for the profile with the

half beamwidth W = 30 mm is β ≈ 110.8 rad/m, which gives a 0.18% error with

respect to the value for the plane incident wave, β ≈ 111.0 rad/m. Moreover, as

expected, the correspondence between this decay value for bounded waves and that

predicted by plane wave theory is found to be exact in the limit of large beamwidths.

The profile with the smallest beamwidth in Figure 6.3, however, shows a considerable

shift to a lower value of the decay parameter to yield the minimum. This is due to the

fact that smaller beamwidths inherently possess a greater degree of inhomogeneity

(as the spatial windowing dominates over a larger portion of the profile), and so less

inhomogeneity must be introduced through the exponentially decaying term in order

to achieve the optimal level of inhomogeneity. Also of note in Figure 6.3(b) is the

small nonzero value of the reflection coefficient at the minimum for the bounded wave

profiles, as opposed to the zero value for the incident plane wave. The nonzero mini-

mum value is attributable to the effect of the presence of the suboptimal wavevector

components which are inherent in the bounded wave profile and which are quantified

by the decomposition in Eq. (6.3).

Figure 6.4(a) shows the surface wave excitation efficiency, evaluated at the critical

point xmax that yields the maximum efficiency, as a function of the decay parameter
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(a)

(b)

Figure 6.3. The magnitude of the reflection coefficient for the water–
stainless steel interface at 4 MHz, with losses neglected, as a function
of the incident wave decay parameter β. The incident waves are speci-
fied as an inhomogeneous plane wave (unmarked curve), and bounded
wave profiles (c = 8) of half beamwidths W = 10 mm (× markers),
W = 20 mm (triangular markers), and W = 30 mm (square markers).
The curves for the inhomogeneous plane wave and bounded wave pro-
file of half beamwidth W = 30 mm are nearly coincident. Note that
(b) gives a zoomed-in view near the local minima.
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and half beamwidth of the incident wave. The global maximum of the excitation

efficiency is observed at a decay parameter of β ≈ 134.2 rad/m and a half beamwidth

of W ≈ 7.7 mm, which yield an efficiency of ηeff (xmax) ≈ 92.8%. Vanaverbeke et

al. [117] noted the local maximum with respect to the beamwidth, and the results

presented here indicate that a maximum with respect to the decay parameter can

also be located. As a point of comparison with more common incident wave profiles,

the peaks in the excitation efficiency with respect to the beamwidth for Gaussian

(β = 0, c = 2) and square (β = 0, c = 8; i.e., an approximation to a square profile)

waves are found to be approximately 80.2% and 80.9%, respectively. The use of the

bounded inhomogeneous profiles considered here, with the optimal decay parameter

and beamwidth, thus yields an improvement of around 12 − 13% over those more

common profiles. This improvement is even more pronounced for beamwidths which

are larger than that at the peak value, and the relative increase in the excitation effi-

ciency at a half beamwidth of 50 mm, for example, exceeds 50% as compared to both

Gaussian and square incident waves (see also [117]). As is evident in Figure 6.4(a),

the value of the decay parameter which yields the global maximum lies above the

value which yields the reflection coefficient minimum, and this result is attributable

to the greater spatial concentration of the incident wave’s energy for the higher spatial

decay rates. As such, the peak in the fraction of the energy flux available for surface

wave generation is larger for greater decay rates, and the energy is reradiated over a

larger distance (i.e., the peak in the reflected wave profile is shifted farther along the

interface). Moreover, for beamwidths larger than the width which yields the global

maximum, the optimal decay parameter is shifted to higher values since the greater

spatial concentration of the incident wave provided by larger decay values is more

significant for the larger beamwidths. This effect is balanced by the increased trans-

mission at the local minimum of the reflection coefficient at lower decay parameter

values.

Figure 6.5(a) presents the surface wave excitation efficiency as a function of only

the decay parameter at the same half beamwidths as were used for calculating the
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reflection coefficients shown in Figure 6.3, along with a plane incident wave, where

the decay parameter range is increased to show the maximum for each beamwidth.

For the plane wave, the peak in the excitation efficiency (which reaches an efficiency

of 100%) is observed to occur at the exact decay value which yields the zero of the

reflection coefficient, and the shift in the optimal decay rate to higher values for the

bounded waves, which increases with beamwidth, is readily apparent. It should also

be noted that, for the case of a homogeneous plane incident wave (i.e., β = 0), though

stress fields are induced near the solid surface, at any given point along the interface,

the energy from the incident wave is entirely reflected back into the fluid, and thus no

energy is available for surface wave excitation at other points on the interface, which

is shown by the zero value of the efficiency in Figure 6.5(a).

6.4.2 Effect of Viscoelastic Losses in the Solid Medium

The effect of viscoelastic losses in the solid medium is considered here for the

water–stainless steel interface. The magnitude of the reflection coefficient for an

incident inhomogeneous plane wave and for several bounded inhomogeneous incident

waves (using the local reflection coefficient, as before, at x = z = 0) is presented in

Figure 6.6, with the waves again incident near the Rayleigh angle to minimize the

reflection coefficient. It should be noted that this optimal angle, θ1 ≈ 30.973◦, is

slightly shifted relative to the lossless case. As is evident in Figure 6.6, the main

effect of the incorporation of the viscoelastic losses is the shift in the minimum of the

reflection coefficient to significantly smaller values of the decay parameter. Since losses

in the solid medium introduce additional levels of inhomogeneity in the transmitted

waves, a smaller degree of inhomogeneity is necessary to optimize the transmission,

as was previously noted for the case of incident inhomogeneous plane waves (see

Chapter 5). Moreover, the plane wave reflection coefficient magnitude remains less

than unity even when the incident wave is homogeneous (β = 0), due to the losses in

the solid. As can be observed, the reflection coefficients for the bounded wave profiles
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(a)

(b)

Figure 6.4. The surface wave excitation efficiency, evaluated at the
critical point xmax, for the water–stainless steel interface at 4 MHz
(a) with losses neglected and (b) with the viscoelastic losses in steel
included, as a function of the incident wave decay parameter β and
half beamwidth W for the bounded incident wave profiles (c = 8).
The + marker indicates the global maximum.



142

(a)

(b)

Figure 6.5. The surface wave excitation efficiency, evaluated at the
critical point xmax, for the water–stainless steel interface at 4 MHz
(a) with losses neglected and (b) with the viscoelastic losses in steel
included, as a function of the incident wave decay parameter β. The
incident waves are specified as an inhomogeneous plane wave (un-
marked curve), and bounded wave profiles (c = 8) of half beamwidths
W = 10 mm (× markers), W = 20 mm (triangular markers), and
W = 30 mm (square markers). The solid, circular markers indicate
the maxima for the respective incident waves.
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again closely match that of the plane wave for the larger beamwidths. Also of note

is the increase in the reflection coefficient value at the minimum as compared to the

lossless case, which is particularly evident for the smallest beamwidth, W = 10 mm,

in Figure 6.6(b). This result also follows from the introduction of material damping,

which increases the value at the local minimum.

Referring back to Figure 6.4, for which results were discussed above for the loss-

less case, Figure 6.4(b) shows the surface wave excitation efficiency, again evaluated

at the critical point xmax, as a function of the decay parameter and half beamwidth

with the viscoelastic losses in stainless steel included. A global maximum can again

be found but, with respect to the lossless case, the corresponding decay parameter

is shifted to a lower value and the corresponding beamwidth is shifted to a higher

value. This optimal decay rate, however, is still above the decay rate which yields

the minimum of the reflection coefficient for the viscoelastic case. Interestingly, for

beamwidths larger than that which yields the global maximum of the excitation ef-

ficiency, the optimal decay parameter decreases with increasing beamwidth, and this

decay value ultimately falls below that which gives the reflection coefficient minimum.

This effect may be due to the greater levels of inhomogeneity introduced in the trans-

mitted waves by the material damping for the larger beamwidths, since these wave

profiles experience the effects of the viscoelastic losses over a greater distance along

the interface.

Finally, referring back to Figure 6.5, Figure 6.5(b) gives the surface wave excitation

efficiency as a function of just the decay parameter for the same half beamwidths as

were previously considered, along with a plane incident wave, with viscoelastic losses

included. As for the lossless case, the excitation efficiency for the plane incident wave

reaches its maximum at the value of the decay parameter which yields the minimum

of the reflection coefficient. Since the half beamwidth W = 10 mm lies below that

which gives the global maximum for this case, the decay parameter which yields the

peak efficiency is shifted to larger values, whereas the other two beamwidths shown

in Figure 6.5(b) lie above the global maximum and therefore show shifts to smaller
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(a)

(b)

Figure 6.6. The magnitude of the reflection coefficient for the water–
stainless steel interface at 4 MHz, with the viscoelastic losses in steel
included, as a function of the incident wave decay parameter β. The
incident waves are specified as an inhomogeneous plane wave (un-
marked curve), and bounded wave profiles (c = 8) of half beamwidths
W = 10 mm (× markers), W = 20 mm (triangular markers), and
W = 30 mm (square markers). The curves for the inhomogeneous
plane wave and bounded wave profile of half beamwidth W = 30 mm
are nearly coincident. Note that (b) gives a zoomed-in view near the
local minima.
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decay parameter values to yield the respective peaks in excitation efficiency. Also

note that the value of the efficiency for the homogeneous plane wave case (β = 0)

is nonzero due to the losses in the solid. It follows that the excitation efficiency for

the bounded wave profiles increases with increasing beamwidth in the limit of small

values of the decay parameter.

6.4.3 Application to a Low-frequency Air–Solid Interface

Similar to the investigation in Section 5.4.3, an air–Sylgardr 184 interface at

1000 Hz is briefly considered here, in order to illustrate the surface wave excitation

efficiency optimization using bounded inhomogeneous waves in the context of low-

frequency air–solid interfaces, with the solid resembling polymer-based binders used

in energetic systems. The material properties utilized are the same as those given

in Section 5.4.3: for air at 20 ◦C and 1 atm (approximated here as lossless at 1000

Hz), density ρ1 = 1.21 kg/m3 and longitudinal wave speed v1L = 343 m/s [78]; and

for Sylgardr, density ρ2 = 1030 kg/m3 [158], longitudinal wave speed v2L = 1100

m/s [161], and shear wave speed v2S = 570 m/s [161].

Figure 6.7 presents the surface wave excitation efficiency for the low-frequency

air–Sylgardr interface, likewise evaluated at the critical point xmax that yields the

maximum efficiency, as the decay parameter and half beamwidth of the incident wave

are varied, with the wave attenuation in Sylgardr neglected in the low-frequency

regime. The incidence angle is set at θ1 = 40.321◦, near the Rayleigh angle. As is

evident, a global maximum in the efficiency can also be identified for this interface at

unique values of the decay parameter and half beamwidth. Those optimal values are

found to be β ≈ 2.5 rad/km and W ≈ 3.1 m, which yield an efficiency of ηeff (xmax) ≈

93.0%. Note the lower values of the decay parameter and the larger values of the

beamwidth as compared to the water–stainless steel case, which are primarily due

to the much lower frequency under consideration, but also due to the differences

in the material properties. The introduction of the nonzero (asymmetrical) spatial
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exponential decay in the profile, as before, thus improves the efficiency of the surface

wave excitation and energy transmission into the Sylgardr medium as compared to

symmetrical waveforms. Moreover, this result suggests that tuning the form of the

wave profile in this manner, which was informed by inhomogeneous plane wave theory,

may ultimately improve the transmission, for certain compositions, in trace vapor

detection applications that seek to employ standoff excitation. It should be further

noted that, depending on the levels of longitudinal and shear wave attenuation in

Sylgardr assumed at this frequency, similar results can be achieved with viscoelastic

losses included, with an observed shift in the optimal decay parameter to lower values.

Figure 6.7. The surface wave excitation efficiency, evaluated at the
critical point xmax, for the air–Sylgardr interface at 1000 Hz, with
losses neglected in the low-frequency regime, as a function of the inci-
dent wave decay parameter β and half beamwidth W for the bounded
incident wave profiles (c = 8). The + marker indicates the global
maximum.

6.5 Conclusions

In this chapter, a comparison of the predictions for the reflection coefficient and

for the surface wave excitation efficiency of incident plane waves and incident bounded
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inhomogeneous waves as a function of the incident wave spatial decay rate has been

presented for an exemplary lossless fluid–solid interface and also with viscoelastic

losses included in the solid. This investigation extends that of Vanaverbeke et al. [117],

who demonstrated that bounded inhomogeneous waves improve the surface wave

excitation efficiency as compared to Gaussian and square waves, by examining the

effect of tuning the decay parameter. It was shown here that the minimum in the

plane wave reflection coefficient with respect to the decay parameter provides a good

prediction of the minimum in the local reflection coefficient for bounded wave profiles,

which is exact in the limit of large beamwidths. Inhomogeneous plane wave theory

also provides an indication of the decay parameter value which maximizes the surface

wave excitation efficiency, but this value is sensitive to the beamwidth of bounded

waves and there is generally a shift to larger decay parameter values due to the greater

spatial concentration of the incident wave energy at those larger decay rates. The

incorporation of viscoelastic losses in the solid, however, has the effect of introducing

additional inhomogeneity to the transmitted waves, and so lower values of the decay

parameter were found to yield the maximum excitation efficiency with the losses

included.

As was discussed in Section 6.4.3, for the application of the excitation of energetic

materials, the results presented in this chapter suggest that the profile of incident

acoustic waveforms of finite extent can be tuned to enhance the local energy trans-

mission and surface wave generation. Namely, optimal values of the incident wave

decay rate and beamwidth could be identified with incidence near the Rayleigh an-

gle to maximize the surface wave excitation efficiency for the interfaces considered.

Moreover, the generation of bounded inhomogeneous waves of the type considered

in this work, in particular, was investigated by Declercq and Leroy [119], and it was

noted that a reasonable approximation may be achievable in the near-field.

It should also be noted here that further investigation of the effective material

properties of typical energetic materials, especially the attenuation coefficients and

the frequency-dependence of the properties, would be needed in order to further assess
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the viability of such incident wave profiles to enhance the energy transmission and

surface wave excitation efficiency for those material compositions. In addition, the

effect of barriers between the target material and air medium, such as metal shells or

plastic casings, which often exist in practice, should be considered in the design of the

incident waveform. Similarly, if the dimensions of the target sample are not sufficiently

large in comparison with an acoustic wavelength, then the effect of the boundary

conditions should also be taken into account in the consideration of the optimal wave

profile. Though these considerations lie beyond the scope of the present work, their

incorporation in expanded analytical models may ultimately shed additional light

on the acoustic wave profiles which improve the energy transmission at fluid–solid

interfaces in the application under consideration and in additional applications.
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7. CONCLUSIONS AND FUTURE DIRECTIONS

In this dissertation, two main areas of research were investigated, namely the vis-

coelastic heating in polymer-bonded energetic and surrogate materials under applied

excitation, and the increased acoustic energy transmission into solid media through

the use of inhomogeneous incident wave profiles. As previously discussed, the vapor

pressures of explosive materials generally exhibit a strong dependence on temper-

ature, and thus the selective heating of hidden explosives may provide a pathway

to improved trace vapor-based detection capabilities. The investigations presented

in this work were undertaken in order to improve the understanding of the ther-

mal response of polymer-based energetic systems as well as to investigate methods

which may ultimately prove useful in providing standoff excitation to elicit temper-

ature rises. This chapter summarizes the major contributions of the work, and then

delineates several areas for related future endeavors.

7.1 Contribution of Research

7.1.1 Viscoelastic Heating in Polymer-Bonded Energetic and Surrogate

Materials

In Chapter 2, an analytical model, which was based on a linear viscoelastic mate-

rial model and classical Euler-Bernoulli beam theory, was presented for the volumetric

heat generation within a polymer-based particulate composite beam under harmonic

mechanical excitation. The HTPB binder material with embedded NH4Cl crystal

served as a surrogate material for polymer-bonded energetic compositions. The ther-

momechanical model was validated with experiments using an electrodynamic shaker,

where good agreement was observed between the predicted and recorded mechanical

and thermal responses of the beam. Though the presented viscoelastic model has
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been previously characterized and utilized, such an analysis had not previously been

applied to compute the bulk heat generation in this specific class of polymer-based

particulate composite materials. Moreover, such an experimental investigation and

corresponding prediction of the temperature distribution and evolution, where the

stress and strain fields were computed analytically along with the heat generation

term, had also not been previously undertaken and validated for this class of materi-

als. The results show low-order, bulk-scale heating along the modal structure of the

polymer-based system, dependent on the stress-strain distribution and particularly

on the square of the strain magnitude for the one-dimensional stress state in a beam

geometry. In addition to implications for the viscoelastic heating that may be attain-

able in systems designed for the mechanical excitation of energetic materials, these

results also have implications for the thermal response of munitions, which may be

subjected to significant excitation levels in the course of normal operation.

The viscoelastic heating model was extended in Chapter 3 to general three-

dimensional stress-strain states, again under the assumption of steady-state harmonic

loading. As in the one-dimensional model, the volumetric heat generation is based

on the time-averaged losses in the strain energy density, and the generalized Hooke’s

law for linear viscoelastic media was applied in a straightforward manner in order

to generalize the model to three-dimensional stress-strain states. This viscoelastic

heat generation model had not been previously extended to general stress-strain

states and applied to compute the thermal response in composite systems, partic-

ularly those resembling polymer-bonded energetic materials. In addition, though

a previously-derived analytical model was employed to compute the stresses in the

single crystal–binder system under plane wave excitation, an investigation of the pre-

dicted heat generation and temperatures had not been previously undertaken for the

wave scattering problem. The results presented for exemplary materials and exci-

tation parameters demonstrated substantial temperature rises near the crystal due

to viscoelastic heating alone, with an area of major stress concentration and heating

observed at the front edge of the crystal, attributable to scattering of the incident
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wave. It is important to note that this effect was observed even in the absence of other

mechanisms that are generally considered to contribute significantly to the localized

heating in energetic systems, including initial voids or defects, thermal stresses near

the crystal, debonding between the crystal and binder, and phase changes or chemi-

cal decomposition of the crystal; moreover, this observation had not been previously

noted. These results have implications for the heating mechanisms which are signifi-

cant in energetic systems under continuous excitation, particularly for the formation

of hot spots near the crystals. Also, the viscoelastic heating model, which requires

only knowledge of the stress state and material properties under harmonic excita-

tion, has broad applicability to the thermal response of polymer-based and other

viscoelastic systems subjected to external loading.

7.1.2 Inhomogeneous Waveforms for Acoustic Energy Transmission into

Solid Media

In Chapters 4 and 5, inhomogeneous plane waves were investigated for the purpose

of increasing the energy transmission at high impedance-difference material interfaces.

Those studies showed increased transmission for a range of the inhomogeneity values

of the incident wave. For the fluid–solid interface in particular, it was demonstrated

that a local minimum of the reflection coefficient could be found by varying the inho-

mogeneity with the incidence angle for propagation near the Rayleigh angle. In the

case of lossless media, this local minimum was further observed to yield a zero of the

reflection coefficient, corresponding to perfect transmission of the incident acoustic

energy normal to the interface. Such an investigation into the effect of the inhomo-

geneity on the attainable energy transmission had not been previously considered, nor

had the local minimum of the reflection coefficient been illuminated in the context of

energy transmission into higher-impedance solid media. Also, in the case of dissipative

media, a strong dependence of the optimal incident wave parameters on the material

dissipation levels in the solid material was observed. Furthermore, a critical level of
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dissipation was uncovered above which no local minimum in reflection could be found

(i.e., with respect to the incident wave inhomogeneity), and homogeneous plane waves

yielded lower reflection values than inhomogeneous waves for the higher dissipation

values. Though these investigations for plane waves were largely theoretical in na-

ture, the results reveal that wave profiles resembling that of an inhomogeneous plane

wave may improve the energy transmission in the acoustical or ultrasonic excitation

of solid materials. For the application of the excitation of polymer-bonded energetic

systems, the observation that higher material losses in the solid (which is typical of

polymer-based materials) may hamper the energy transmission by inhomogeneous

waves implies that the utility of these waveforms may be limited for those systems.

However, the predictions of increased energy transmission through waveform design

may prove useful in areas that include the nondestructive evaluation of materials and

structures [70, 72, 73], medical ultrasound imaging [76, 177], and other applications in

which the use of a couplant is undesirable [71, 74, 75].

The design of optimal wave profiles for energy transmission into solid media was

extended to bounded waves in Chapter 6. By simultaneously tuning the beamwidth

and inhomogeneity (i.e., the rate of one-sided spatial exponential decay), a global

maximum of the surface wave excitation efficiency was observed. It was also noted

that the effect of the inhomogeneity on the local reflection coefficient could be ap-

proximated by plane wave theory, an approximation that is exact in the limit of large

beamwidths. Prior research in this area, particularly that of Vanaverbeke et al. [117],

had observed that increased surface wave excitation efficiencies could be achieved

through the use of bounded inhomogeneous waveforms, but no previous work had

considered tuning the inhomogeneity and subsequently observed the global maxi-

mum in the excitation efficiency. As for the studies with plane incident waves, the

predictions of enhanced energy transmission by tuning the incident wave profile may

prove useful in nondestructive testing, ultrasound imaging, and similar applications.

In nondestructive testing in particular, Rayleigh-type surface waves are often excited

on solid surfaces through a contact transducer to detect structural defects. The re-



153

sults presented in this work suggest that the efficiency of that surface wave excitation

could be improved by using a bounded inhomogeneous incident wave with a tailored

rate of spatial exponential decay, either through contact excitation or through stand-

off excitation, if a viable remote system could be designed. In the context of the

excitation of energetic materials, if effective wave propagation property data could

be obtained (particularly attenuation coefficients and the frequency-dependence of

the material properties), the results discussed here also imply that further work on

waveform design is warranted to efficiently excite such materials.

7.2 Future Directions

Several related areas of future research should be investigated to further the effort

on the selective heating of polymer-bonded energetic materials. Those areas are sum-

marized here and divided into efforts focused on understanding the thermomechanical

response of such systems and efforts concerned with efficient excitation to elicit the

thermal response.

7.2.1 Thermomechanical Response to Applied Excitation

• Models for stresses and heating in many-crystal systems : In Chapter 3, a single

crystal–binder system was considered to isolate the effects of the wave scatter-

ing and heat generation near the crystal. However, typical energetic systems

generally consist of a large number of embedded crystals. As such, the stresses

induced in the composite matrix when subjected to external excitation should

be investigated, as should the volumetric heat generation. Predictions may then

be computed for the temperature increases in such systems through the use of

numerical solvers.

• Viscoelastic heating in additional compositions : An HTPB binder material with

embedded NH4Cl crystals was used in the experimental study in Chapter 2, and
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a Sylgardr binder with an embedded HMX crystal was considered in Chapter

3. Experimental investigations should be conducted on additional binder ma-

terials as well as with alternate energetic and surrogate particles. Provided

that the applicable material properties can be obtained, the analysis for the

prediction of the thermal response presented in this work should be applied

to additional compositions as well. Those investigations would further illumi-

nate the viscoelastic heating mechanisms in the context of the broad class of

polymer-bonded energetic materials.

• Heating mechanisms in the presence of defects : In practice, samples often con-

tain material defects, at which significant stress concentrations and heating

may develop. Moreover, the effects of those stress concentrations may be ex-

acerbated by harmonic excitation, particularly under fatigue loading. As such,

the heating associated with defects should be characterized experimentally for

polymer-bonded energetic and surrogate materials, and corresponding analyti-

cal and finite element models should be developed.

7.2.2 Methods for Acoustical Excitation

• Waveform design for multi-layer systems : In many cases applicable to hidden

explosives detection, the target material is obscured by one or more intervening

layers. For example, the explosive may be concealed behind a metal barrier or

within a plastic packaging material, or may be hidden beneath a soil layer. In

order to inform the efficient excitation of samples in such scenarios, waveform

design efforts should be conducted for multi-layer systems, analogous to those

efforts presented in Chapters 4, 5, and 6 for single fluid–solid interfaces. Specif-

ically, plane and bounded incident wave parameters should be sought which

enhance the energy transmission into the target media.

• Generation of inhomogeneous waveforms : Sound field reproduction techniques,

such as phased arrays of sources, should be investigated for the generation of
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inhomogeneous wave profiles of the type considered in this work. The errors

associated with such an implementation, including the empirical source models

that must be used in practice, should be quantified, as should the input power

requirements. Also, the power requirements for the generation of these types of

waves, if they are found to be notably higher than those for more conventional

waveforms, should be assessed in relation to the improvement in energy trans-

mission discussed in this work, in order to evaluate the practicality of those

profiles for enhanced transmission.

• Wave speed and attenuation coefficient measurements : The longitudinal and

shear wave speeds, as well as the respective attenuation coefficients, should be

measured for polymer-bonded energetic and surrogate compositions of interest

in this work. The frequency-dependence of the attenuation coefficients, in par-

ticular, would be useful in the evaluation of the predicted energy transmission

by various incident wave profiles. Moreover, with accurate wave propagation

and attenuation data, further assessment of the viability of bounded inhomo-

geneous waveforms for enhanced transmission into polymer-bonded energetic

materials would be possible.

• Experimental heat generation through standoff acoustical excitation: In the con-

text of low-frequency excitation, experiments should be conducted from a stand-

off distance using appropriate sources, such as phased arrays, to generate inci-

dent wave profiles of interest on the surfaces of polymer-bonded energetic sam-

ples. The thermal response should be measured, and the acoustical interface

phenomena and elicited heat generation should be assessed in relation to the

analyses presented in this work. Such an experimental investigation would shed

further light on the attainable temperature rises and associated power require-

ments in a standoff excitation system for vapor-based detection applications.
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