
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

12-2016

Students' explanations in complex learning of
disciplinary programming
Camilo Vieira
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons, Engineering Commons, and the Science and
Mathematics Education Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Vieira, Camilo, "Students' explanations in complex learning of disciplinary programming" (2016). Open Access Dissertations. 1023.
https://docs.lib.purdue.edu/open_access_dissertations/1023

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1023?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1023&utm_medium=PDF&utm_campaign=PDFCoverPages


STUDENTS’ EXPLANATIONS IN COMPLEX LEARNING OF DISCIPLINARY

PROGRAMMING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Camilo Vieira

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana



Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of 
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): 

Approved by:
Head of the Departmental Graduate Program Date

Camilo Vieira Mejia

STUDENTS' EXPLANATIONS IN COMPLEX LEARNING OF DISCIPLINARY PROGRAMMING

Doctor of Philosophy

Alejandra J. Magana
Chair

 Marisa E. Exter

 R. Edwin Garcia

Senay Purzer

Alejandra J. Magana

Kathryne A. Newton 12/6/2016



ii

Dedicated to my parents and to Charito.



iii

ACKNOWLEDGMENTS

I would like to acknowledge my graduate committee for their contributions

throughout the whole process, Dr. Magana for supporting me and believing in me,

and the National Science Foundation for sponsoring this project under the award

number EEC# 1329262.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . 10
2.1 Computational science and engineering (CSE) . . . . . . . . . . . . 10
2.2 Learning Programming . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Misconceptions in programming . . . . . . . . . . . . . . . . 12
2.3 Supporting CSE Education . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Approaches for Complex Learning . . . . . . . . . . . . . . . 18
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 3. THEORETICAL FRAMEWORK . . . . . . . . . . . . . . . 22
3.1 Complex Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Cognitive Load Theory . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Cognitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Measuring Cognitive Loads . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 How to support complex learning? . . . . . . . . . . . . . . . . . . . 30

3.5.1 Reducing Intrinsic Load . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Reducing Extraneous Load . . . . . . . . . . . . . . . . . . . 31
3.5.3 Goal Free Effect . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.4 Worked Example Effect . . . . . . . . . . . . . . . . . . . . 34
3.5.5 Completion Effect . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.6 Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 38



v

Page
3.5.7 Nature of Explanations . . . . . . . . . . . . . . . . . . . . . 38
3.5.8 Quality of Explanations . . . . . . . . . . . . . . . . . . . . 40
3.5.9 Self-Explanation Effect . . . . . . . . . . . . . . . . . . . . . 41
3.5.10 Self-explanations in Programming . . . . . . . . . . . . . . . 43
3.5.11 Promoting Self-explanations . . . . . . . . . . . . . . . . . . 46

3.6 Critiques to Cognitive Load Theory . . . . . . . . . . . . . . . . . . 48
3.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 4. METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.0.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Analytical Framework . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Methods Case One - Glass Box Approach . . . . . . . . . . . . . . . 59

4.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Procedures, Data Collection and Data Analysis . . . . . . . 59

4.3 Methods Case Two Black Box . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Procedures, Data Collection and Data Analysis . . . . . . . 67

4.4 Validity and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Research with Human Subjects . . . . . . . . . . . . . . . . . . . . 73
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

CHAPTER 5. GLASS BOX APPROACH . . . . . . . . . . . . . . . . . . . 76
5.1 Affordances of in-code commenting activities for students . . . . . . 76

5.1.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Characteristics of Students’ Explanations . . . . . . . . . . . . . . . 85
5.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Patterns within each activity . . . . . . . . . . . . . . . . . 90
5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Relationship between Students’ Explanations and Student Ability to
Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.1 Data Collection and Data Analysis . . . . . . . . . . . . . . 107
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Summary of the findings . . . . . . . . . . . . . . . . . . . . . . . . 112

CHAPTER 6. GLASS BOX APPROACH . . . . . . . . . . . . . . . . . . . 114
6.1 Affordances of in-code commenting activities for students . . . . . . 114

6.1.1 Data Collection and Data Analysis . . . . . . . . . . . . . . 115
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Characteristics of Students’ Explanations . . . . . . . . . . . . . . . 119
6.2.1 Data Collection and Data Analysis . . . . . . . . . . . . . . 120
6.2.2 Patterns within each activity . . . . . . . . . . . . . . . . . 123
6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



vi

Page

6.3 Relationship between Students’ Explanations and Student Ability to
Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4 Summary of the findings . . . . . . . . . . . . . . . . . . . . . . . . 144

CHAPTER 7. DISCUSSION AND IMPLICATIONS FOR TEACHING AND
LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.1 Affordances of in-code commenting activities for students . . . . . . 148

7.1.1 What is the effect of using in-code commenting activities on
students’ engagement with the worked-examples in the context
of black box and glass box approaches to computational science
and engineering? . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1.2 What are affordances of in-code comments self-explanation activities
in the contexts of black box and glass box approaches to computational
science and engineering? . . . . . . . . . . . . . . . . . . . . 150

7.2 Characteristics of Students’ Explanations . . . . . . . . . . . . . . . 152
7.2.1 What are the characteristics of students’ explanations in a glass

box and a black box approaches to CSE education? . . . . . 152
7.2.2 How does the characteristics of students’ explanations in a glass

box and a black box approaches to CSE education change over
time? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2.3 What common misunderstandings in programming can be identified
from students’ explanations in a glass box and a black box
approaches to CSE education? . . . . . . . . . . . . . . . . . 157

7.3 Relationship between Students’ Explanations and Student Ability to
Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.4 Implications for Teaching and Learning . . . . . . . . . . . . . . . . 162
7.4.1 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.4.2 Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4.3 Instructional Principles of Worked-Examples in CSE . . . . 165

CHAPTER 8. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . 168

APPENDIX A. SAMPLE WORKED EXAMPLE CPMSE - EXAMPLE 11 -
ATOMIC BONDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.1.1 For a video explanation of this example see: . . . . . . . . . 171
A.2 What is the problem asking us to do? . . . . . . . . . . . . . . . . . 171
A.3 Addressing the Problem . . . . . . . . . . . . . . . . . . . . . . . . 172

APPENDIX B. SAMPLE MODULE IN THERMODYNAMICS . . . . . . . 174

APPENDIX C. SAMPLE QUOTES FROM STUDENTS’ EXPLANATIONS 176



vii

Page

APPENDIX D. APPENDIX D STUDENTS’ RESPONSES TO INTERVIEW
QUESTIONS GLASS BOX - CPMSE . . . . . . . . . . . . . . . . . . . 180

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



viii

LIST OF TABLES

Table Page

2.1 Misconceptions and difficult concepts in computer programming . . . . 16

3.1 Effects and How They Reduce the Extraneous Load - Based on (Moreno
& Park, 2010a; Sweller, Ayres, & Kalyuga, 2011; Van Merrienboer &
Sweller, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Design characteristics for effective worked examples (Atkinson, Derry,
Renkl, & Wortham, 2000; M. Chi, Bassok, Lewis, Reimann, & Glaser,
1989; Renkl, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Overview of the pilot study . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Overview of the two case studies . . . . . . . . . . . . . . . . . . . . . 55

4.3 Coding scheme for the characteristics of students explanations . . . . . 58

4.4 Summary of research procedures for the glass box context . . . . . . . 66

4.5 Summary of research procedures for the black box context . . . . . . . 72

7.1 Misconceptions and difficult concepts in computer programming . . . . 158

7.2 Design characteristics for effective worked examples . . . . . . . . . . . 167



ix

LIST OF FIGURES

Figure Page

1.1 Timeline of the investigated courses . . . . . . . . . . . . . . . . . . . . 4

3.1 A model of human information processing stages (Wickens, Hollands,
Banbury, & Parasuraman, 2015) . . . . . . . . . . . . . . . . . . . . . 24

3.2 A model of human information processing stages (Wickens et al., 2015) 26

3.3 A model of human information processing stages (Wickens et al., 2015) 29

4.1 SA1 in-code comments for the Example #11. . . . . . . . . . . . . . . 61

4.2 SA2 in-code comments for the Example #11. . . . . . . . . . . . . . . 61

4.3 Sample analysis of students’ explanations for section two of activity #5 63

4.4 In-code comments of Shay T and Santana T for the first THERMO module. 68

4.5 Sample pretest for Module # 1 . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Three main elements of students’ explanations explored in this study . 74

5.1 Percentage of student submissions of in-code comments assignments . . 80

5.2 Percentage of students who watched the video explanations of the worked-examples 81

5.3 Student distribution on the five-level Likert scale questions for 2016 . . 84

5.4 Geometric figure for the example in activity #2 . . . . . . . . . . . . . 87

5.5 MATLAB code of worked-example activity #2: CosineLaw . . . . . . . 88

5.6 MATLAB code of worked-example activity #5 - Get Numbers . . . . . 89

5.7 MATLAB code of worked-example activity #11 - Atomic Bonds . . . . 90

5.8 Students’ use of the types of knowledge for each section of the code:
Activity #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 Patterns of students’ explanations by section type: Activity #2 . . . . 93

5.10 Students’ use of the types of knowledge for each section of the code:
Activity #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.11 Patterns of students’ explanations by section type: Activity #5 . . . . 96



x

Figure Page

5.12 Students’ use of the types of knowledge for each section of the code:
Activity #11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.13 Patterns of students’ explanations by section type: Activity #11 . . . . 99

5.14 Percentage of occurrences of the types of knowledge within each activity 101

5.15 Number of instances of each category within the types of knowledge . . 103

5.16 Distribution of types of explainers between activities: CPMSE . . . . . 105

5.17 Average differences in student performance by explainer type . . . . . . 110

5.18 Number of categories, explanations, and words in students’ explanations
for activity #2: (a) perceived ability; (b) performance in midterm one; (c)
performance in midterm two; and activity #5: (d) perceived ability; (e)
performance in midterm one; (f) performance in midterm two . . . . . 111

6.1 Student distribution on the five-level Likert scale questions for 2015 and
2016 - I feel writing comments within the sample code helped me to: (a)
Understand the examples (2015); (b) Solve the Homework Assignments
(2015); (c) Understand Thermo Concepts (2015); (d) Understand the
examples (2016); (e) Solve the Homework Assignments (2016); (f) Understand
Thermo Concepts (2016); . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Python code for Module 1 - State Function . . . . . . . . . . . . . . . . 122

6.3 Python code for Module 2 - Free Energy Plot . . . . . . . . . . . . . . 123

6.4 Python code for Module 2 - Free Energy Plot . . . . . . . . . . . . . . 124

6.5 Students’ use of the types of knowledge for each section of the code:
Module #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Patterns of students’ explanations by section type: Module #1 . . . . . 127

6.7 Students’ use of the types of knowledge for each section of the code:
Module #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.8 Patterns of students’ explanations by section type: Module #2 . . . . . 130

6.9 Students’ use of the types of knowledge for each section of the code:
Module #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.10 Patterns of students’ explanations by section type: Module #3 . . . . . 133

6.11 Percentage of occurrences of the types of knowledge within each module 135

6.12 Number of instances of each category within the types of knowledge . . 136

6.13 Distribution of types of explainers between activities: THERMO . . . . 138



xi

Figure Page

6.14 Distribution of types of explainers between activities: THERMO . . . . 141

6.15 Average differences in student performance by explainer type . . . . . . 143

6.16 Number of categories, explanations, and words in students’ explanations
for module #2 and #3 based on: (a) perceived ability [Module #2];
(b) pretest performance [Module #2]; (c) gain from posttest to pretest
[Module #2]; (d) perceived ability [Module #3]; (e) pretest performance
[Module #3]; (f) gain from posttest to pretest [Module #3]. . . . . . . 144

7.1 Three main elements of students’ explanations explored in this study . 148

7.2 Students’ explanations for activity #5 (a) high perceived ability, high
performer in midterm one; (b) low perceived ability, low performers in
midterm two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



xii

ABBREVIATIONS

CLT Cognitive Load Theory

THERMO Thermodynamics

CPMSE Computation and Programming for Materials Scientists and

Engineers

CK Declarative Knowledge

PK Procedural Knowledge

SK Schematic Knowledge

TK Strategic Knowledge

LK Limited Knowledge



xiii

GLOSSARY

Intrinsic CL Cognitive load that is inherent to the complexity of the

learning material. It is given by the interaction of different

elements. Everything that is supposed to be learned is an

element. Learning materials are understood when all the

elements and their interactions have been processed (Sweller

& Chandler, 1994)

Extraneous CL Cognitive load that is not beneficial to learning. This load is

given by the way the information is presented. Hence, it can

be modified by an appropriate or inappropriate instructional

design (Sweller et al., 2011)

Worked-Example

effect The learners study worked examples before engaging in

problem solving activities. The worked example effect focuses

learners attention on the problem states (i.e. the different

steps that are taken until a problem is solved) and prevents

them from using a means-ends-analysis. The worked examples

provide the learners with an expert solution to the problem

(Van Merrienboer & Sweller, 2005)

Self-explanation

effect When learners engage in a self-explanation process of the

examples to take an additional advantage from them (M. Chi

et al., 1989)
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ABSTRACT

Vieira, Camilo Ph.D., Purdue University, December 2016. Students’ Explanations
in Complex Learning of Disciplinary Programming. Major Professor: Alejandra J.
Magana.

Computational Science and Engineering (CSE) has been denominated as the

third pillar of science and as a set of important skills to solve the problems of a

global society. Along with the theoretical and the experimental approaches,

computation offers a third alternative to solve complex problems that require

processing large amounts of data, or representing complex phenomena that are not

easy to experiment with. Despite the relevance of CSE, current professionals and

scientists are not well prepared to take advantage of this set of tools and methods.

Computation is usually taught in an isolated way from engineering disciplines, and

therefore, engineers do not know how to exploit CSE affordances.

This dissertation intends to introduce computational tools and methods

contextualized within the Materials Science and Engineering curriculum.

Considering that learning how to program is a complex task, the dissertation

explores effective pedagogical practices that can support student disciplinary and

computational learning. Two case studies will be evaluated to identify the

characteristics of effective worked examples in the context of CSE. Specifically, this

dissertation explores students explanations of these worked examples in two

engineering courses with different levels of transparency: a programming course in

materials science and engineering glass box and a thermodynamics course involving

computational representations black box.

Results from this study suggest that students benefit in different ways from

writing in-code comments. These benefits include but are not limited to: connecting



xv

individual lines of code to the overall problem, getting familiar with the syntax,

learning effective algorithm design strategies, and connecting computation with

their discipline. Students in the glass box context generate higher quality

explanations than students in the black box context. These explanations are related

to students prior experiences. Specifically, students with low ability to do

programming engage in a more thorough explanation process than students with

high ability. This dissertation concludes proposing an adaptation to the

instructional principles of worked-examples for the context of CSE education.
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CHAPTER 1. INTRODUCTION

Computational science and engineering (CSE) focuses on complex problem

solving using a multidisciplinary approach including science, computer science,

engineering and mathematics (EDUCATION et al., 2011). CSE’s capacity to solve

complex problems in several sectors has led some scholars to denominate CSE -

along with theoretical and physical experimentation - as “the third pillar of

science.” (PITAC, 2005). This reflects CSE’s vital contribution to the United

States’ scientific, economic, social, and national security goals.

National agencies such as National Science Foundation (NSF), the

President’s Information Technology Advisory Committee (PITAC), and the World

Technology Evaluation Center, Inc. (WTEC), among others, have stressed the

importance of introducing CSE as part of the engineering curricula. They argue

that, by integrating CSE into the engineering curricula, professionals and scientists

will be better prepared with the computational and disciplinary skills necessary to

face increasingly complex problems in an evolving world (Chesnais, 2012; Glotzer

et al., 2009; NSF, 2011; PITAC, 2005).

However, current undergraduate curriculum strategies frequently use

computation as a restricted technical tool applied in an isolated way for the

fundamentals in engineering (PITAC, 2005). This means that engineering students

have disciplinary training and also computational training, but they do not have

training on how to use computing in their discipline. One of the models that has

been proposed to increase the exposure of students to computational concepts is to

incrementally use small add-on courses to supplement conventional courses in

mathematics, engineering, and science (Turner et al., 2002).

These curricular innovations involve at least two different ways in which

users interact with computation: black box and glass box (Mayer, 1981). The black
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box approach uses computational tools without providing access to the underlying

mechanisms. Meanwhile, with the glass box approach the learners have access to

see, and often modify, these mechanisms. Students exposed to the black box

approach often mention that they would prefer to have access to the underlying

mechanisms. However, the glass box approach involves more complex learning

material, which often overwhelms students Magana, Brophy, and Bodner (2010,

2012). These conflicting concerns related to the level of transparency provided to

students is known as the transparency paradox. For instance, in preliminary work,

initial offerings of a computational materials science and engineering course showed

that, although the experience was relevant for the students, and increased their

perceived ability to create and use computation, students found the content of the

course to be time consuming with a high workload, and very challenging, in part

because they not only had to learn programming but also mathematical modeling

(Magana, Falk, & Reese Jr, 2013). Programming is a complex skill to learn (Mselle

& Twaakyondo, 2012), since it involves many interacting elements (e.g., syntax,

programming logic, the problem, how a computer works) to be considered at once.

We hypothesize that glass box courses are even more complex, since they involve

understanding the disciplinary and mathematical concepts that are being

transformed into a computer program (Magana, Falk, & Reese Jr, 2013).

This project focuses on integrating computational tools and methods into

engineering disciplinary courses. However, to successfully do that, the challenges

regarding the complexity of programming courses must be addressed. Cognitive

Load Theory (CLT) can support this form of complex learning (Van Merrienboer &

Sweller, 2005). CLT establishes a cognitive architecture and a cognitive process to

understand how learning occurs (Sweller et al., 2011). Using these components,

CLT identifies instructional design guidelines considering the complexity of the

learning material and the learner. One of the pedagogical strategies suggested by

the CLT is called worked examples.
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A worked example comprises a problem statement and an expert solution to

the problem (Atkinson et al., 2000). This strategy can be useful for novice learners

under certain conditions. One of those conditions is to engage the learners in an

active exploration of the examples by a self-explanation process. However, this

process has not been studied in the context of computational science and

engineering within naturalistic settings.

1.1 Scope

The research process took place during different engineering courses between

Fall 2013 and Spring 2016. One pilot study and two case studies were investigated

aiming to contribute to the identification of effective pedagogical practices in

computational science and engineering courses. First, a pilot case study explored an

introductory programming course in the Purdue Polytechnic Institute (former

College of Technology at Purdue University). The purpose of this pilot study was to

examine the characteristics of effective programming worked examples and whether

writing comments within the code can be an effective self-explanation approach.

Thirty five students participated on this study during Fall 2013. Results from this

pilot study are presented in Vieira, Yan, and Magana (2015)

During the spring semesters in 2015 and 2016, two different courses were

investigated. First, a course at Johns Hopkins University called “Computation and

Programming for Materials Scientists and Engineers” (CPMSE) was explored.

Approximately 25 students enroll in this course that is offered every spring

semester. The other course that was explored it “Thermodynamics of Materials”

(THERMO) at Purdue University, which included four computational sciences and

engineering modules. Approximately 60 sophomore Materials Engineering (ME)

students enroll in this course every spring semester a first-year Materials Science

and Engineering (MSE). The difference between these two courses is that THERMO

is a disciplinary course that includes computational tools and methods to support
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student disciplinary learning (black box approach). On the other hand, CPMSE

aims to introduce applied algorithmic thinking in the context of MSE problems

(Magana, et. al. 2015): glass box. Two rounds of data collection took place for each

of these cases, one during Spring 2015 and the other one during Spring 2016. Figure

1.1 summarizes the three case studies that were investigated for the purpose of this

dissertation.

Figure 1.1. Timeline of the investigated courses

For the context of this study, we classified the two different contexts as glass

box (CPMSE) and black box (THERMO). Computing education can be approached

using different levels of transparency regarding the underlying mechanisms of the

program (Mayer, 1981). In a glass box approach, students access to the actual code

to manipulate the mathematical models that determine the behavior of the

simulation. A black box approach to CSE education enables students to perform

advanced experiments, but limits their understanding about the underlying

mechanisms of the scientific phenomena (Resnick, Berg, & Eisenberg, 2000).

However, although students often prefer to have access to these mechanisms, this

level of transparency increases the complexity of the learning materials, which can
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overwhelm and frustrate students. This phenomenon has been denominated as the

transparency paradox (Magana et al., 2010).

Although results can be expanded to other materials science and engineering

(MSE) courses and engineering disciplines, additional evaluation processes are

required to adapt the learning materials and procedures. The curricular intervention

included the worked examples and the computational modules introduced in these

courses. The worked examples involved the acquisition and application of

MATLAB R© and Python programming skills to solve disciplinary problems. Hence,

the characteristics of students’ explanations described as result of this inquiry

process may only apply to these specific contexts.

1.2 Significance

Several studies have established that there is a lack of well-prepared

engineers and scientists in the United States with the disciplinary and

computational skills needed to approach global grand challenges (PITAC, 2005).

As shown by one of the findings presented in the International Assessment of

Research and Development in Simulation-Based Engineering and Science, this is a

challenge and an impediment for this country to overcome. The finding states:

“Continued progress and U.S. leadership in SBE&S (Simulation-Based

Engineering and Science) and the disciplines it supports are at great risk

due to a profound and growing scarcity of appropriately trained students

with the knowledge and skills needed to be the next generation of

SBE&S innovators. (Glotzer et al., 2009) ”

The U.S. has a decreasing number of professionals in Computational Sciences

compared with the European Union and Asia and there is a need for computing

science education at all the levels (Chesnais, 2012; Glotzer et al., 2009; PITAC,

2005). The percentage of U.S. undergraduate students with a science and

engineering degree is comparatively low: South Korea, 38%; France, 47%; China,
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50%; Singapore, 67%; United States, 15% (Glotzer et al., 2009). This means the

U.S. should not only increase its number of professionals in sciences and engineering

but also existing students should be trained with knowledge and skills to compete

and maintain leadership in innovation. This training and exposure to CSE skills

usually come very late during the engineering career (i.e., during the graduate

studies) (Magana & Mathur, 2012)

Despite this shortfall, current undergraduate curriculum strategies are

frequently designed to prepare the next generation of engineers to use computation

as a restricted technical tool applied in an isolated way for the fundamentals in

engineering (PITAC, 2005). This proposal is focused upon the first stages of

addressing this problem - by examining how we can better design curricula and

pedagogies to prepare the next generation of scientists and engineers to use

computation to compete in a global and continually evolving society. The

significance and broader impacts for this project involve not only the identification

of adequate approaches to prepare the next generation of MSE professionals, but in

several engineering disciplines. By understanding the way learning occurs in

integrated computational-disciplinary learning courses, new possibilities for better

designing engineering curricula emerged. The use of such an innovative pedagogical

practice along the research process offers the description and dissemination of new

and better approaches to train new engineers with the disciplinary and

computational skills required by the U.S to be a competitive nation. In addition,

this approach can demonstrate not only an increased intention of students to

continue participating in computing courses but an increased participation for

female and minority students. Hence, although the project is designed to be applied

in MSE, the practices and some of the modules can be applied to many other

engineering disciplines having a direct impact on engineering curricula.
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1.3 Research Question

The goal of this dissertation is to understand students’ explanations of

worked examples for an integrated disciplinary-programming complex task. To do so,

the researcher explores the following derived research questions:

RQ1. What are affordances of in-code commenting self-explanation activities

in the context of black box and glass box approaches to computational science and

engineering?

RQ2. : What are the characteristics of students’ explanations in a glass box

and a black box approach to CSE education?

RQ3. How do the characteristics of students’ self-explanations in glass box

and black box approaches to CSE education relate to their ability to program?

1.4 Assumptions

The following assumptions are inherent to this study:

• Participants in this study answered honestly to the assessment instruments.

• Participants enrolled in the explored courses may have had previous computer

programming experience.

• Participants enrolled in the thermodynamics course have previous knowledge

in chemistry, calculus and computer programming.

• Participants completed the laboratory assignments including the examples

self-explanations, pretest and posttest based on what they know.

1.5 Limitations

The limitations for this study include:
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• This study takes place at a naturalistic context. Thus, students participating

on this study may be influenced by elements of this course and other courses

that were not part of the study.

• Students participating in this study were enrolled in specific courses of the

MSE curricula at Purdue University and Johns Hopkins University. Thus,

inferences from the study are applicable to student with similar

characteristics. However, in order to generalize the findings follow-up studies

should be carried out.

• The number of participants was given by the number of students enrolled in

the courses that were explored. During the semester, as the students were able

to drop the course, the study was vulnerable to incomplete procedures by

some of the participants

• Students previous programming knowledge may affect their performance and

responses to the study. Since there is no standardized computing curriculum

for K12, it was expected that students would arrive with a broad range of

experiences in this field.

• Some of the activities involved in this study correspond to homework

assignments, and therefore the order in which students do a sequence of

activities students (e.g. writing self-explanations and completing the

performance tests). As a consequence, the conclusions relating students

explanations and performance are only exploratory, and future experimental

research is needed to validate them.

1.6 Delimitations

The delimitations inherent to this study are the following:

• This study is developed from a Cognitive Load Theory perspective. This

means that learning is narrowed down to the cognitivist perspective. The
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author recognizes that there are other factors such as collaboration or

motivation that might affect the learning process and student performance.

These were not taken into account in the scope of the study.

• There might be different effective pedagogical approaches to support complex

learning. This study did not compare the worked examples approach to other

approaches nor to a control group. The aim of the study is not to evaluate the

effectiveness of the worked examples approach. The purpose is to understand

how students create and use their own explanations of worked examples, and

what factors influenced them.

1.7 Summary

This chapter described the context of the study and the problem this

dissertation is addressing. The next chapter provides a review of the literature in

computational science and engineering education.
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CHAPTER 2. LITERATURE REVIEW

2.1 Computational science and engineering (CSE)

Computational science and engineering (CSE) focuses on complex problem

solving using a multidisciplinary approach including science, computer science,

engineering and mathematics (EDUCATION et al., 2011). CSE’s capacity to solve

complex problems in several sectors has led it to be denominated - along with

theoretical and physical experimentation - as “the third pillar of scientific inquiry”

(PITAC, 2005, p. 1). National agencies such as National Science Foundation (NSF),

the President’s Information Technology Advisory Committee (PITAC), or the

World Technology Evaluation Center, Inc. (WTEC), have stressed the importance

of introducing CSE as part of the engineering curricula in order to enable future

professionals and scientists to face the increasing complex problems in an evolving

world (Chesnais, 2012; Glotzer et al., 2009; NSF, 2011; PITAC, 2005).

An example of this phenomenon is the establishment of a Materials Science

and Engineering (MSE) sub-discipline: “computational materials science and

engineering (CMSE)” (Magana, Falk, & Reese Jr, 2013). The sub-discipline

emerged as a response to the need of computational tools to solve complex

problems, simulate and predict materials’ responses, and increase reliability using

computer experiments (Hafner, 2000; Magana, Falk, & Reese Jr, 2013) . Another

example is the introduction of computational science as one of the computer science

disciplines according to the computer science curricula 2013 (Joint Task Force on

Computing Curricula & Society, 2013; Sahami, Roach, Cuadros-Vargas, &

LeBlanc, 2013). The computational science discipline comprises six topics: (1)

Introduction to modeling and simulation, (2) Modeling and simulation; (3)
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Processing; (4) Interactive visualization; (5) Data, information and knowledge; and

(6) Numerical analysis.

In spite of these initial efforts, current undergraduate curriculum strategies

frequently use computation as a restricted technical tool applied in an isolated way

for the fundamentals in engineering (PITAC, 2005). One of the possible reasons for

this phenomenon is that the responsibility of integrating CSE into disciplinary

courses falls between the computing science department and the disciplinary

departments, and none of them assume responsibility for it (NSF, 2011). The

consequences are that the students do not learn how to apply computational

practices to a real-world problem within their discipline (NSF, 2011). Hence,

students might have the disciplinary training, and also computational training, but

they may not have training on how to use computing in their discipline.

2.2 Learning Programming

Programming is a complex and hard skill to learn (Du Boulay, 1986; Mselle

& Twaakyondo, 2012; Rogalski & Samurçay, 1990). Programming involves so

many interacting elements to be learned at once, that overwhelms the cognitive

capacity of novice programmers (Sweller et al., 2011). The purpose of the program,

the language syntax and semantics, the programming logic, and new abstract data

structures are some of the interacting elements that need to be considered (Du

Boulay, 1986).

Programming itself can be seen as putting together different instructions

that will solve a problem. Consequently, programming can be seen as a design

process, which does not have a unique solution (i.e., a computer program), but

instead has multiple solutions to achieve the end goal: performing a given task

(Confrey, 1990; Soloway, 1986). In this context, programming is also an iterative

process, where the programmer tries and refines a potential solution multiple times

until the desired product (the execution of a given task) is reached. At the end, the
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programmer needs to understand and be able to explain why all the program parts

together provide an accurate solution (Soloway, 1986).

A large multi-institutional project found that novice programmers tend not

to have problems with individual programming instructions but with groups of

instructions that have a given purpose (Lister, 2011; Lister et al., 2012; Whalley

& Lister, 2009). These studies identified three levels of expertise in novice

programmers (Lister, 2011). First, students are able to trace values in a

programming code without understanding its whole purpose. Second, students are

able to understand and describe the overall purpose of a program, but are unable to

use it in a different context. The third level involves students able to make

abstractions of the programming code, understanding its purpose, and use it in the

appropriate contexts.

Novice programming learners focus on what each line of code does (Mselle &

Twaakyondo, 2012), while experts identify an abstract explanation of the overall

purpose of the code (Whalley & Lister, 2009). Expert programmers do not only

know language syntax or semantics, nor do they only understand individual lines of

code, but they also know solutions to common problems that can be used in

different contexts (Soloway, 1986). As in the experiments about expertise with

chess players (Bransford, Brown, & Cocking, 2000), expert programmers identify

existing solutions and strategies, and apply these chunks of code to solve other

problems (Mayer, 1981; Soloway, 1986). Consequently, novice programmers face

more problems with transfer tasks that require from them to apply acquired

knowledge to different contexts, than with understanding tasks such as tracing

values (Whalley & Lister, 2009).

2.2.1 Misconceptions in programming

Students’ misconceptions in programming have been studied for a long time.

Several researchers argue that one of the main sources of programming
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misconceptions is the novices’ lack of knowledge about the underlying mechanisms

of the machines and the programming languages (Mselle & Twaakyondo, 2012).

Many misconceptions are related to things that happen during execution-time and

are not visible when writing a program (e.g., memory allocation) (“Difficulties in

Learning and Teaching Programming Views of Students and Tutors”, 2002; Sorva,

2013). Common misconceptions in programming deriving from the student lack of

mental models about the computer mechanisms comprise student understanding of

(Bayman & Mayer, 1983): (1) input-output commands, how the machine stores

inputted values in memory, or where the data comes from; (2) transitions from one

line to other one that is not the next one in the sequence of the program; (3) the

equal sign, considered as an equation instead of an assignment; (4) the name of a

variable compared to the value contained in that variable.

A second source has been denominated the ’superbug’, which describes the

fact that novice programmers tend to assume that the computer ’understands’

human language beyond its capacity, and therefore, can infer instructions that are

not explicit in the code (Kaczmarczyk, Petrick, East, & Herman, 2010; Pea, 1986;

Pea, Soloway, & Spohrer, 1987). Pea 1986, for example, described three types of

student misconceptions in programming known as language-independent bugs that

fall under the umbrella of the superbug. First, students incorrectly assume that the

computer understands human language, and therefore provide imprecise and limited

instructions through the program. Second, learners misinterpret the order in which

the instructions are executed. Novice programmers may think that all instructions

are executed at the same time instead of sequentially. For instance, if the value of a

variable is modified at certain point of the code, novices would expect that

instructions using this variable at different points (even previous points) will be

immediately affected by that change. Third, assuming that a computer program has

its own intention to do something. In this case, students first see the code to

identify the goal of the program, and then assume that the computer wants to do

this and knows it at each instruction.
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Pea et al. (1987) extended these three language-independent bugs to include

students’ misconceptions related to the use of metacognitive strategies and the

language-dependent bugs. The language-dependent bugs relate to specificities of the

language such as syntax, semantics, or memory management, which the students

misinterpreted on the first place, or things that they know but are unable to apply

it in a different context (i.e., transfer). Students’ use of metacognitive strategies

such as monitoring their own learning are very limited, and they often skip lines

code and do not validate their work. Although these monitoring activities are

usually overlooked, they can be promoted through self-explanations (Williams &

Lombrozo, 2010) .

A third source of misconceptions relates to the fact that students make

assumptions about whether certain elements can be used in other contexts or not

(Fleury, 2000). For example, students consider the dot operator only applicable to

invoke methods, although it can also be used for other purposes. Another example

is that students often incorrectly use the abstraction of a loop to describe how a

recursive method works (Sorva, 2013). In general, this source of misconceptions is

related to the use of correct knowledge that is incorrectly applied in a broader

domain, as students perform systematic errors by applying incorrect rules resulting

in common patterns of mistakes (Confrey, 1990).

Several attempts have been made to create concept inventories that would

enable educators and researchers to assess conceptual knowledge in programming

(Taylor et al., 2014; Tew & Guzdial, 2011). One of the big challenges to

successfully complete this task is that computer science is a dynamic field that not

only changes technologies (e.g., computer architectures and programming

languages) but also paradigms (e.g. functional programming to object oriented

programming). All these changes involve different concepts that are usually

challenging for students to learn. Nonetheless, these attempts provide useful

information regarding students’ common misconceptions within a given context. For

example, Kaczmarczyk et al. (2010) presented the preliminary findings of a study to
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design a concept inventory for computer programming. Four themes emerged from

their qualitative analysis on what students struggle with: (1) language properties

and memory usage; (2) misunderstanding of while-loop; (3) lack of understanding of

objects from the object oriented programming paradigm; and (4) inability to trace

code linearly. In addition to these themes, it has also been identified that students

usually believe that a variable can store more than one value at a given time, which

is related to the fact that arrays are a complex concept to learn for beginner

programmers (Taylor et al., 2014).

Similarly, Goldman et al. (2008, 2010) employed a Delphi study to identify

the difficult and important topics to learn in computing courses. Specifically, they

explored the courses of discrete mathematics, introductory programming, and logic.

The most difficult and important topics among the ones identified for programming

fundamentals are: (1) scope of the parameters; (2) design of procedures; (3) local

vs. global variables; (4) inheritance; (5) pattern recognition and use; (6) recursion;

(7) memory model; (8) decomposition of the problem in different functions; (9)

design of a solution for a given problem; (10) debugging; and (11) test design. Table

2.1 summarizes the misconceptions and difficult concepts that were described in this

section.

In the context of computational science, there are additional components

that go beyond the programming skills. Additional misconceptions and difficulties

can emerge due to student limited ability to make clear connections among the

disciplinary phenomena, the mathematical models, and computational

representations (Magana, Falk, & Reese Jr, 2013).

2.3 Supporting CSE Education

PITAC proposes to start addressing this gap with the design of individual

courses including CSE concentrations. This would lead to developing computational

concepts in students but also would involve and encourage faculty members to
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explore the capabilities of those concepts in their disciplines (PITAC, 2005). Also,

several models have been proposed to increase the exposure of students to CSE such

as (a) building programs from existing courses, creating concentrations in CSE; (b)

introducing multidisciplinary team-taught project courses; (c) incrementally using

small add-on courses to supplement conventional courses in mathematics,

engineering, and science (Yaar, 2013); and (d) using a particular vehicle, such as

computer graphics, to introduce key CSE ideas into regular courses (Turner et al.,

2002).

Table 2.1.

Misconceptions and difficult concepts in computer programming

Source
of misconceptions or

difficult concept
Misconception or Difficult Concept

Lack
of understanding

underlying mechanisms

Input-output commands and memory management
(Goldman et al., 2010; Kaczmarczyk et al., 2010; Pea et al., 1987)
Non-linear sequence of program (Bayman & Mayer, 1983)
Equal sign: equation vs. assignment (Bayman & Mayer, 1983)
Name of a variable compared to the value in that variable.(Bayman & Mayer, 1983)

Superbug
(Pea, 1986)

Assuming that the computer understands human language (Pea, 1986)
The order in which the instructions are executed
(Kaczmarczyk et al., 2010; Pea, 1986)
Intentionality of the computer program (Pea, 1986)
Language-dependent bugs: syntax and semantics
(Pea et al., 1987)
Lack of meta-cognitive strategies (monitoring learning) (Pea et al., 1987)

Systematic errors
(Confrey, 1990)

Difficulty to identifying chunks of code with certain purpose
(Mselle & Twaakyondo, 2012; Whalley & Lister, 2009)
Use of correct knowledge that is incorrectly applied in a broader domain
(Fleury, 2000)

Difficult
and important concepts
(relevant to this study)

Objects (Kaczmarczyk et al., 2010)
Loops (Kaczmarczyk et al., 2010)
Arrays (Taylor et al., 2014)
Scope of Parameters (Goldman et al., 2010)
Procedures (Goldman et al., 2010)
Local and Global Variables (Goldman et al., 2010)

Magana, Vieira, Polo, Yan, and Sun (2013) surveyed engineering faculty to

identify how engineering professors would integrate computation into disciplinary

courses. Computation is used in disciplinary courses to support the solution of real

world problems and facilitating complex calculations. Homework assignments,

laboratory activities and projects were the preferred tasks to have students applying
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computation. However, there is no evidence in the study of professors providing

scaffolding techniques for all these independent work activities (Magana et al.,

2012). These complex learning activities that integrate computational tools into

disciplinary contexts require pedagogical practices to avoid overwhelming students

(Magana, Falk, & Reese Jr, 2013; Magana, Vieira, et al., 2013).

Similar areas may provide an insight into effective pedagogical approaches.

However, the picture in areas such as computer science is not very encouraging

either. Guzdial (2011) urged computing education researchers to develop better

approaches to teach computer science. Although some reports say that there

unemployment rate for technology-related jobs is raising, professionals are not well

prepared for the needs of the job market. There is strong evidence that courses such

as CS1 are not preparing students in the basics of programming and algorithm

design (Guzdial, 2011). Moreover, a systematic literature review carried out by

Radermacher and Walia (2013) listed programming and testing as two of the top

ten knowledge deficiencies to meet employers’ expectations.

Another example of the current status of educational practices on related to

computing areas is presented by Exter (2014). Professionals in software design

considered they are not well prepared in their formal education to be successful in

their careers (Exter, 2014). The participants of a study comparing their work-force

experiences to their educational experiences highlighted the importance of being

exposed to real-world problem solving from the beginning of their undergraduate

programs (Exter, 2014; Exter & Turnage, 2012). These problems should be

several semester-long in order to simulate real world practices. The participants also

discussed that learning a specific programming language is not very important.

Instead, understanding programming logic and concepts provide students with

relevant tools to understand other programming languages (Exter & Turnage,

2012).
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2.3.1 Approaches for Complex Learning

Understanding what complex learning is and how this process can be

supported, is an important step to effectively introduce CSE into the engineering

curricula. Chapter 3 addresses these topics. Nevertheless, it is worth to mention

some of the existing pedagogical approaches that have been evaluated to support

CSE and computer science learning processes.

Congitive load theory (CLT) (Sweller et al., 2011) describes different

pedagogical approaches to support complex learning. The goal free effect consists of

allowing the students to interact with the available tools and get to different

possible sub-goals. Thus, the students do not consider all the steps they would need

to do in order to get to a specific final goal. The goal free effect has been evaluated

in areas such as physics (C. S. Miller, Lehman, & Koedinger, 1999; Sweller,

Mawer, & Ward, 1983; Wirth, Künsting, & Leutner, 2009), geometry (P. Ayres &

Sweller, 1990; Sweller et al., 1983), and trigonometry (Owen & Sweller, 1985).

Other approaches described by the CLT are the worked example effect and

the completion effect. The worked example effect refers to providing students with a

problem statement, a step by step solution, and auxiliary representations. Hence,

students explore an expert solution before engaging on problem solving on their

own. The completion effect also uses a worked example but this time the example is

only partially solved. The worked example effect has been evaluated in several areas

such as: Computer Programming (Trafton & Reiser, 1994; Vieira et al., 2015);

Mathematics (Carroll, 1994), Geometry (F. G. W. C. Paas & Van Merrinboer,

1994) and Physics (M. Chi et al., 1989) while he completion effect has been

evaluated in domains such as modeling (Mulder, Bollen, de Jong, & Lazonder,

2016), Physics (Renkl, Atkinson, Maier, & Staley, 2002), Electrical circuits

(Reisslein, Atkinson, Seeling, & Reisslein, 2006), Engineering (Moreno, Reisslein, &

Ozogul, 2009), and Mathematics (Kalyuga & Sweller, 2004; Salden, Aleven,

Schwonke, & Renkl, 2010; Schwonke, Renkl, Salden, & Aleven, 2011). An
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instance of the completion effect in supporting CSE was identified by Magana et al.

(2012), where students highlighted the use of templates and blueprints as a useful

scaffolding technique for implementing coding solutions. These effects and strategies

are focused on supporting the design of specific instructional materials. However, it

is not always clear how to integrate them in a classroom context (e.g., what is the

role of the teacher) or when to use each approach (Van Merrienboer & Sluijsmans,

2009). 4C/ID is a model to effectively design educational programs for complex

learning tasks (Van Merrienboer & Sluijsmans, 2009; Van Merriënboer, Clark, &

De Croock, 2002). The model comprises four interrelated components that should

be considered:

(1) Learning tasks that encourage the schema creation through the

abstraction of the specific application of the task. Instructional designers should

promote an inductive approach to the task to facilitate this creation process. These

need to be presented as a progression of an increasingly task complexity (i.e., task

classes) to avoid a cognitive overload in a novice student from the beginning

(Van Merriënboer, Kirschner, & Kester, 2003). Within each “task class”, the

scaffolding provided to the learner should be gradually removed in order to develop

students’ expertise. For example, the first task can be supported with high level

scaffolding such as worked examples; the second task will only need goal free or

completion; and the last task may not have any explicit support.

Another example of these progressions was proposed by Lee and

collaborators (2011). Use-modify-create is a three-stage progression used to

introduce CSE concepts. The first activity intends to expose the student to use and

become familiar with a computational tool or model. Once the student has acquired

certain familiarity with the concepts, she/he starts making increasingly complex

changes to the existing solution. Once the student has reached certain level of

competence and confidence, she/he can be encouraged to create and refine new

solutions for different ideas and needs.
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(2) Supportive information that connects learners’ existing schemata to what

is required to complete the task. This information refers to the ”theories” or the

tools that are provided to the learner to enable her/him to complete a task. Part of

this information comes from the progression of ”task classes”. Therefore, an earlier

and less complex task will provide more supportive information than a more

complex task. This supportive information should be presented using an

”inductive-expository strategy” in which individual case-studies are provided to the

learners so that they find relationships among them. Hence, this approach will

empower the creation of abstract schemata in the long-term memory.

(3) Just-in-time information provided by the instructor. It includes the

required rules, procedures and corrective feedback to enable the learner to complete

the task. The delivery of this information is gradually faded since the learner only

requires it at a very early stage, after which it becomes automatic. In a

programming context, this information would include indications of how to create a

new program or how to compile it and run it. This information can be delivered

using demonstrations and instances in order to avoid memorizing activities for such

information.

(4) Part-task practice for recurrent aspects of the learning task that require a

high level of automaticity. The whole task learning process might not be enough

practice to achieve the required automaticity level. Some examples of these aspects

can be the multiplication tables or the scales in musical instruments. It is suggested

that these part-task practices are only introduced after an initial exposure to the

complex task context. Thus, the learner will have a complete view of how this

part-task will support the complex learning.

2.4 Summary

CSE is a set of important skills and tools for a competitive global society.

CSE uses the power of computation to solve complex problems in several
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disciplinary areas, which would not be possible to approach by using theoretical or

experimental techniques. Nevertheless, current professionals are not well prepared

to advance in their fields using computational methods and tools. The current

engineering curricula include computation courses in an isolated way from

disciplinary courses. Hence, students do not learn how to apply their computation

knowledge to solve disciplinary problems.

Some initial approaches have been suggested to fill this gap in undergraduate

education. Among others, the creation of CSE concentrations, the modification of

existing courses to include computational modules, and the use tools such as

computational visualization to support student disciplinary learning, are some

alternatives.

Several pedagogical strategies for computer science and CSE education have

been explored in this chapter. However, introducing computational concepts such as

programming within a disciplinary course may add an additional layer of complexity

to the learning process. Thus, this study explores the characteristics of worked

examples as a pedagogical approach that could reduce the cognitive load on

students while learning CSE concepts.

The next chapter describes what complex learning is, techniques to reduce

the cognitive load, how can complex learning be pedagogically supported, and what

are the considerations to implement these scaffolding strategies.
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CHAPTER 3. THEORETICAL FRAMEWORK

3.1 Complex Learning

Complex learning refers to the acquisition, understanding, integration and

coordination of concepts, procedures, and skills in order for these to be applicable to

real-life experiences(Kester, Paas, & van Merriënboer, 2010; Van Merriënboer et

al., 2003; van Merriënboer, Clark, & Croock, 2002). Although approaches such as

project-based education or problem-based learning intend to provide the learner

with these experiences, the task complexity can be such that learners are

overwhelmed with the learning activity (Merril, 2002; Van Merrienboer & Sweller,

2005).

The complexity of these tasks lies on the high level of interactivity among

the different elements that compose them (Sweller et al., 2011; Sweller, van

Merriënboer, & Paas, 1998). In order to understand how the element interactivity

affects a learning task, and how we can effectively help students overcome such

complexity, it is necessary to examine the Cognitive Load Theory (Van Merrienboer

& Sweller, 2005).

3.2 Cognitive Load Theory

The Cognitive Load Theory (CLT) intends to “explain the relationship

between the human cognitive architecture, instructional design, and learning”

(Moreno & Park, 2010a, p. 20). CLT uses the complexity of the information to be

learned and the way humans process it to guide effective instructional design

practices (Van Merrienboer & Sweller, 2005).
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The main component of CLT is the cognitive architecture, which describes

the way information is processed by humans. The cognitive architecture comprises a

limited working memory and a vast long-term memory (F. Paas, Renkl, & Sweller,

2003). The first one is limited in size and time. In adults, depending on how it is

measured (i.e., storing individual chunks, compound chunks, or processing chunks),

the working memory is able to manage between three to five chunks of information

(Cowan, 2001, 2010) or seven, plus or minus two (G. A. Miller, 1956). This

variation is not important from an instructional design perspective, because what is

relevant is the fact that it is limited (Sweller et al., 2011). The time constraint

refers to the need of either processing or rehearsing the information we are working

with, if we do not want to forget it. In this regard, there is a range of possible values

going from two to 20 seconds (Cowan, 2001; Van Merrienboer & Sweller, 2005).

The long term memory stores information as schemata that can be retrieved

by the working memory when needed. A schema is a conceptual structure that

groups different elements as a unit, based on how these can be represented or used

(Bransford et al., 2000; M. T. Chi, Glaser, & Rees, 1981). The schemata allow us

to solve problems using approaches we know are effective. Thus, it is important to

acquire and automate schemata in order to recognize problem types and actions to

be taken in a particular situation (Sweller et al., 2011). The size and time

constraints in the working memory only apply to information from the environment

and not to information from the long-term memory (Sweller et al., 2011). In this

case, the schemata can be organized such that they do not overload the working

memory. In fact, Ericsson and Kintsch (1995) coined the term “long-term working

memory” to suggest that there are two different working memories, one for the

environmental information and another for the long-term memory schemata.

Information is processed through several stages within the cognitive

architecture as depicted in Figure 3.1 (Wickens et al., 2015). Once the senses

process the information from the environment, the perception process filters it and

gives it a meaning based on our attention and our previous knowledge. Hence, not
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all the information processed by our senses is actually perceived. Instead, we select

what to focus on, and we use prearranged schemata stored in the long term memory

to give a meaning to the information. From the perception stage, it can go to

either/both the working memory stage and/or the response selection stage.

Reaction to an external stimulus will trigger the information to go directly to the

response selection stage. However, whenever learning is going to happen, it must go

through the working memory stage. Another way to look at the perception and

working memory stages is as a single cognition stage (Wickens et al., 2015).

Figure 3.1. A model of human information processing stages (Wickens et al., 2015)

When learning occurs, the information in the working memory is

transformed into a schema that is stored and automated into the long-term memory

(F. Paas, Tuovinen, Tabbers, & Van Gerven, 2003). First, when the information

gets to the working memory, it devotes its resources to reflect on it, bringing

additional information (preexisting schemata) from the long term memory. The

attention resources are also connected to the working memory to alert for any
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changes on the environment. At this point, the information becomes a schema that

is going to be stored in the long-term memory. The automation process does not

come to our mind right after studying a material. First the schema is acquired and,

after some period of practice, the schema is automatized so that it can be invoked

without a conscious action (Sweller et al., 2011).

3.3 Cognitive Loads

During a learning task, the student is exposed to different types of cognitive

load in the working memory: intrinsic, extraneous, and germane load. The intrinsic

load refers to the inherent complexity of the task or concepts to be learned (F. Paas,

Renkl, & Sweller, 2003; F. Paas, Tuovinen, et al., 2003; Sweller et al., 2011).

The only way to reduce this load would be by changing or reducing the concepts

under study. The extraneous load is given by the way the information is presented.

Hence, it can be modified by an appropriate or inappropriate instructional design

(Sweller et al., 2011). The germane resources, also called germane load, are those

that are beneficial to the learning process and therefore are oriented towards the

intrinsic load. Germane resources are not given by the learning activity but by the

working memory (Moreno & Park, 2010a). There are also extraneous resources

that are used to deal with the extraneous load. The intrinsic load and the

extraneous load are handled by the germane resources and extraneous resources.

When the required germane and extraneous resources exceed the capacity of the

working memory, a cognitive overload takes place.

The intrinsic cognitive load is given by the element’s interactivity (Sweller et

al., 2011). Everything that is supposed to be learned is an element. Learning

materials are understood when all the elements and their interactions have been

processed (Sweller et al., 2011; Sweller & Chandler, 1994). If the individual

elements, in certain learning materials can be learned independently from each

other, they have low interactivity and therefore low intrinsic cognitive load. The
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element interactivity can be increased by the instructional materials. A given

instructional design that involves many different elements, which otherwise are not

required to be processed simultaneously, will modify the element interactivity and

the extraneous cognitive load. However, a material with very low element

interactivity that is learned using an inadequate instructional design might not

interfere with learning. The intrinsic load may be too small that the extraneous

load does not exceed the working memory resource constraints.

An example for low element interactivity is learning new vocabulary (Sweller

et al., 2011). A person can study and practice independent words as opposed to

learning them all together. Learning a small set of words has a low intrinsic load.

On the other hand, programming concepts such as loops are an example of high

element interactivity. Consider a single loop that adds up all the numbers from one

to nine as depicted in Figure 3.2. Besides the need of the learner to understand the

goal of the program and the syntax and semantics of the programming language,

there are several elements that interact within this for-loop clause. Consider line

number 2: the variable i is initialized to zero; then, an upper limit has been set to

10; finally a one-by-one increment is established for variable i. The learner also

needs to be aware that the for clause means ‘iteratively repeat what is between the

brackets’. She/he needs to process it all together to actually understand the loop

concept and the function of the program.

Figure 3.2. A model of human information processing stages (Wickens et al., 2015)

A distinct concept to element interactivity, regarding learning materials, is

its difficulty. Some concepts can be difficult and have low element interactivity. In

the vocabulary example, it can be difficult to learn a whole new set of vocabulary
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because it involves many individual words. Furthermore, learning materials with a

small number of elements, but high element interactivity, can be also considered

difficult concepts.

Different forms of learning can be used for different kinds of materials. While

learning by rote can be useful for low element interactivity concepts, high element

interactivity concepts would benefit more from a ‘learning with understanding’

approach (Sweller et al., 2011, p. 62). As mentioned before, the understanding is

achieved when all the elements and their interactions are processed.

3.4 Measuring Cognitive Loads

Different approaches to measure cognitive load have been studied for several

years (for a review see Ch. 6 Sweller et al. (2011) ). Aside from the early attempts

to measure it, this document will only describe the most used during the last few

years: subjective measures, secondary tasks and physical measures. The subjective

measures use learner reflections to assess the mental effort required to complete a

task and the difficulty of the task.

Mental effort refers “to the cognitive capacity that is actually allocated to

accommodate the demands imposed by the task” (F. Paas, Tuovinen, et al., 2003,

p. 64). The subjective measure of mental effort assumes that a learner is able to

assess how much mental effort he/she had to invest to complete a learning task.

This assessment is carried out after the learning task using a nine-level Likert scale

instrument from very, very low mental effort to very, very high mental effort. First

presented by F. G. Paas (1992), there is evidence that this approach can objectively

measure the cognitive load of a learning task (F. Paas, Tuovinen, et al., 2003).

(F. G. W. C. Paas & Van Merrinboer, 1994) propose a model to represent

the cognitive load, which is comprised by causal factors and assessment factors. The

causal factors include the learner, the task and the relation between them. Each of

these elements has characteristics that interact with each other. The task
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characteristics include the format, the novelty, the complexity and the time

pressure. The learner characteristics are the expertise, the age and the preferences

(F. Paas, Tuovinen, et al., 2003; F. G. W. C. Paas & Van Merrinboer, 1994).

The assessment factors include the mental load, the mental effort and the

performance. The mental load is inherent to the task and therefore, independent

from the learner. On the other hand, the mental effort relates to how much

cognitive resources a learner needs to assign to the task. Hence, this factor is not

only affected by the task but also by the learner’s previous knowledge and cognitive

skills. The performance factor describes how the learners perform in a task. As with

the mental effort, this factor is also influenced by the task, the learner, and the

interaction among their characteristics (F. G. W. C. Paas & Van Merrinboer,

1994). The measurement of the cognitive load is difficult to determine because it

has multiple variables that can be assessed and that can mitigate the effect of the

others. For example, the amount of mental effort invested by the learner can

influence her/his performance characteristics (F. G. W. C. Paas & Van Merrinboer,

1994). However, this would also increase the cognitive load.

Additional models have been built based on the subjective measure of mental

effort. F. G. Paas and Van Merriënboer (1993) proposed a model to assess the

efficiency of an instructional design based on the mental effort and the performance.

They suggested that if the performance for two instructional materials were the

same but the mental effort were less for one of them, that instructional material

could be considered more efficient. A graphical representation of the efficiency

construct is depicted in Figure 3.3. The mental effort goes along the x axis while

the student performance goes along the y axis. A low mental effort together with a

high score means high instructional efficiency, while a high mental effort with a low

performance implies a low instructional efficiency.

The secondary task measurement employs an additional task to the learning

activity to measure the cognitive load (Sweller et al., 2011). This additional task is

not related to the learning materials. Instead, it is usually an external stimulus
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Figure 3.3. A model of human information processing stages (Wickens et al., 2015)

(e.g., a sound or a visual signal) to measure performance factors such as accuracy or

response time (F. Paas, Tuovinen, et al., 2003). The assumption under this

measurement is that when the learner i facing high cognitive load, the performance

in the secondary task will decrease. Similarly, when the cognitive load is low, the

working memory will have available resources to receive the external stimulus and

respond to it.

In addition to these approaches, physical measures have also been used to try

to calculate the cognitive load. Heart rate, pupil dilation and magnetic resonances

are some examples of these (F. Paas, Tuovinen, et al., 2003; Sweller et al., 2011).

Although some of these approaches have demonstrated some efficacy (e.g., pupil

dilation), they will not be considered in this document due their invasive nature.

Also, although the secondary task has shown to be a useful measure, it also intrudes

in the learning task by interrupting the learner while working with the material.

Therefore, the cognitive load measure that will be employed for this project is the

subjective measure of mental effort.
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Nevertheless, is there any way to differentiate among the intrinsic, the

germane, and the extraneous load? Sweller et al. (2011) suggested that the

extraneous load can be measured by varying the instructional design for the same

learning material (i.e., intrinsic load is constant). Some other authors have proposed

different subjective scales trying to map specific questions to certain cognitive loads.

For example, Cierniak, Scheiter, and Gerjets (2009) mapped the intrinsic load to the

question “How difficult was the learning content for you?”; the extraneous load to

“How difficult was it for you to learn with the material?”; and the germane load to

“How much did you concentrate during learning?”. They found a positive

correlation between the germane load and the students’ performance suggesting that

they were able to measure germane load adequately. However, they found

inconsistency in the measurement of intrinsic and extraneous load. As in the

Cierniak et al. (2009) study, other attempts have failed to measure different

cognitive load. Different authors suggest that learners, especially novice learners,

cannot differentiate between different kinds of cognitive load (Cierniak et al., 2009;

Sweller et al., 2011). Therefore, it is unlikely that researchers will be able to

distinguish among these cognitive loads (Kirschner, Ayres, & Chandler, 2011).

3.5 How to support complex learning?

Using pure complex learning tasks for novice learners would generate a high

cognitive load, which would have a negative impact on students’ learning, motivation

and performance (Van Merriënboer et al., 2003). If the learners are not motivated

during the learning activity, independently of how much the extraneous load is

reduced, they will not devote the resources to the intrinsic load (Van Merrienboer &

Sweller, 2005). Besides, the purpose of an effective instructional design is not just

reducing the cognitive load to zero. It should also reduce the extraneous load and

activate the germane load so that the working memory can be devoted to the

intrinsic load (Moreno & Park, 2010a; Sweller, 2010).
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A good instructional design should encourage the creation of schemata and

the automation of elements that are consistent across problems (Van Merrienboer &

Sweller, 2005). There are different approaches that use CLT to propose

instructional design methods, in order to support complex learning. They vary from

techniques that reduce the intrinsic or the extraneous load, to general guidelines

describing how to organize these techniques.

3.5.1 Reducing Intrinsic Load

There is no yet an agreement on whether the intrinsic load can be reduced

(Moreno & Park, 2010b). Sweller et al. (2011) suggest two indirect ways of

“reducing” it. Splitting the elements from a learning task, as much as possible, will

reduce the interactions and consequently the number of germane resources from the

working memory that are required to fully understand a learning material. In the

example from Figure 3.2, an alternative would be to introduce loops, by first using a

while loop clause, which has a simpler structure. Also, making sure that the student

understands that ‘i++’ increases the value of i by one. However, not everyone

agrees on this approach, arguing that the reduction of element interactivity can also

reduce the learning outcomes (Moreno & Park, 2010b)

The other way to reduce intrinsic load is when learning occurs. As described

before, when learning takes place, multiple elements become a schema in the

long-term memory (F. Paas, Tuovinen, et al., 2003). This schema is then treated as

a whole and can be retrieved from the working memory using only one germane

resource as opposed to the many resources that would be needed to deal with

distinct elements.

3.5.2 Reducing Extraneous Load

Problem solving approach alone involves a high extraneous cognitive load

(Merril, 2002; F. G. Paas & Van Merriënboer, 1994; Sweller et al., 2011). Novice
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learners usually approach a problem backwards using means-ends analysis

(Bransford et al., 2000; Sweller, 1988). They start from the goal and use the

“givens” (i.e., initial problem state) to try to fill the gap with the current problem

state (F. Paas & Kirschner, 2012). This search process generates extraneous load to

the learners, because they have to consider many elements at once.

Empirical research in CLT has identified several effects of instructional

design practices in the extraneous load (see Table 3.1 for a summary). The following

sections will describe each of these.

3.5.3 Goal Free Effect

The main idea of this practice is to allow learners to explore the materials

without a specific goal in mind (P. L. Ayres, 1993; Gray, St Clair, James, & Mead,

2007; Sweller et al., 2011). For example, instead of asking them to find a specific

angle in a triangle, the learners can be requested to use the givens and their

previous knowledge to find as many unknowns as possible (P. L. Ayres, 1993).

This approach is founded in the different ways experts and novices solve a

problem. As opposed to experts, novices usually start from the goal, using a

means-ends analysis to find the solution to a problem (Bransford et al., 2000;

M. T. Chi et al., 1981). If the activity does not include a specific goal, the learners

have to explore the givens and work forward as experts do (Sweller et al., 2011).

They will only use the current state and the givens to find the next possible

problem state (F. Paas & Kirschner, 2012). This would become an iterative process

until no additional states can be found.

It has been suggested that the goal-free approach generates less cognitive

load than the means-ends analysis for problem solving (For a summary, see Ch 7.

(Sweller et al., 2011)). However, this can only be productive for problems with a

limited number of unknowns (Sweller, 1988). If the problem contains hundreds or

thousands of possible states, this technique is unproductive because the learner will
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Table 3.1.

Effects and How They Reduce the Extraneous Load - Based on (Moreno & Park,
2010a; Sweller et al., 2011; Van Merrienboer & Sweller, 2005)

Effect Description Reduction of Cognitive Load
Goal-free
effect

The learner works in the materials
without a specific goal in mind.
Instead, she/he uses the given
information to explore the possible
actions and states in a problem.

By removing the goal, the novice
learner will no longer be able to use
means-ends analysis. The learner now
has to focus on the givens and the
problem states, and work forward to
solve the problem.

Worked
example
effect

The learners study worked examples
instead of a problem solving
approach alone.

It focuses learners’ attention on the
problem states and prevents her/him
from using a means-ends-analysis. It
provides the learners with an expert
solution to the problem

Completion
problem
effect

Partially solved worked examples
are studied and completed by the
learner.

It diminishes the cognitive load of the
problem solving approach by reducing
the problem. After an initial exposure
to worked examples, the learners need
to engage in practice problem with
some support.

Split
attention
effect

Integrating different representations
of mutually referring information
into a single one.

The learner does not need to devote
cognitive resources to integrate two
sources of information

Modality
effect

Using two different channels (e.g.,
visual and auditory) instead of a
single one.

The different channels can be
processed simultaneously but
independently.

Redundancy
effect

Integrating different source of
“self-contained” information into a
single one.

The learner no longer will need to
process redundant information.

have to go through all of them. Therefore, this approach will be beneficial for

learning whenever the intrinsic load is high and the number of problem states and

operator is limited.
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3.5.4 Worked Example Effect

A worked example comprises a problem statement, a step-by-step solution,

and auxiliary representations of the given problem (Atkinson et al., 2000). It

provides novices with a model about how experts solve certain problems (Atkinson

et al., 2000; Van Merrienboer & Sweller, 2005). After studying the example(s),

this model can become a schema stored in the long-term memory that will support

the solution of similar problems (Sweller et al., 2011).

As with the goal-free effect, the worked examples may reduce the cognitive

load as compared to novice problem solving (Sweller et al., 2011). Presenting

demonstrations is a more effective form of instruction than only presenting

information (Merril, 2002). The learners can be focused on specific steps of a

well-solved problem, instead of exploring all potential solutions (Kester et al., 2010;

F. G. W. C. Paas & Van Merrinboer, 1994). Thus, they are reducing the

extraneous load from the working memory, which should be devoted to germane

load. The addition of paired practice problems to the worked examples can be more

effective than just studying a block of examples (Kester et al., 2010; Trafton &

Reiser, 1994).

There are some conditions under which the worked example effect does not

occur (Kalyuga, Chandler, Tuovinen, & Sweller, 2001). Examples of these

conditions include mutually referring instruments or non-integrated multiple

representations in a worked example. The split attention effect and the redundancy

effect explain this phenomenon. The learner has to devote their working memory

resources to integrate the separate instruments, or to process redundant

information. These resources would otherwise be devoted to manage the intrinsic

load towards schema creation and automation.

Another condition is when the learners have achieved certain level of

knowledge (Kalyuga et al., 2001; Renkl, 2005). Learners with predefined schemata

prefer to use them instead of studying examples. Through the use of predefined
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schemata, they may not need to use means-end analysis for problem solving and

consequently, it will not generate a cognitive overload.

However, empirical research has demonstrated the effectiveness of worked

examples under specific conditions (For a summary, see Atkinson et al. (2000);

Renkl (2005)). These conditions were proposed as instructional principles for

worked examples (Table 7.2). The key aspects of introducing worked examples

include: (1) the alignment/integration of multiple formats; (2) the clear definition of

the problem states and sub goals; (3) the variability of the problems in the examples

(Merril, 2002; F. G. W. C. Paas & Van Merrinboer, 1994); and (4) the active

exploration of examples through a self-explanation process (M. Chi et al., 1989;

Stark, Mandl, Gruber, & Renkl, 2002). The active exploration is highly relevant

because the use of worked examples is not equally effective for a learner who just

reads them and one who actually depicts understanding through a self-explanation

process. This understanding can be identified if the self-explanation comprises these

four elements (M. Chi et al., 1989): (1) the conditions of application of the actions;

(2) the consequences of actions; (3) the relationship of actions and goals; and (4)

the relationship of goals and actions to natural laws and other principles. In fact, it

has been demonstrated that providing an initial training session as part of the

self-explanation process, may have a positive impact in both the generated

explanations and the learning outcomes (Renkl, 2005). See section 3.3.6 for further

description of the self-explanation effect.

3.5.5 Completion Effect

The goal-free and the worked example approaches are effective instructional

practices for novice learners. However, as the learners’ schemata start to consolidate

and automate, the expertise reversal effect takes place (Kalyuga, Ayres, Chandler,

& Sweller, 2003). This effect is intimately related to the split attention and the

redundancy effects. When the learners study the worked example and have acquired
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Table 3.2.

Design characteristics for effective worked examples (Atkinson et al., 2000; M. Chi
et al., 1989; Renkl, 2005)

Feature Description

Intra-Example

• The easy mapping guideline (Renkl, 2005): The use of multiple
formats and resources is important when designing worked
examples. However, different formats should be fully integrated to
avoid extra cognitive load generated by the split attention effect.

• The meaningful building-blocks guideline (Renkl, 2005): The
example should be divided in sub goals or steps to make it easier for
the student to understand. Labels and visual separation of steps
can be used for this purpose.

Inter-Example

• The structure-emphasizing guideline (Renkl, 2005): The use of
multiple worked examples (at least two of them) with structural
differences can improve the learning experience. The worked
examples should be presented with similar problem statements that
encourage the students to build schemata based on analogies and
the identification of declarative and procedural rules.

Environmental

• Self-explanation effect (M. Chi et al., 1989): Students should be
encouraged to self-explain the worked examples in order to be
actively engaged with them. Some strategies that support this
process are: (1) Labelling worked examples and using incomplete
versions of them; (2) Training self-explanations; and (3) Using
cooperative learning.

some schemata, they will try to make the connection between the two sources (i.e.,

schemata and examples), generating an additional unnecessary cognitive load.

Another explanation to the expertise reversal effect is provided by Renkl and

Atkinson (2003). They explained that once a schema has been acquired, then the

goal is to automate it. Hence, practice in problem solving will be more beneficial

than just self-explaining examples.
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Anderson, Fincham, and Douglass (1997) presented a framework of skill

acquisition called Adaptive Control of Thought-Rational (ACT-R). In this

four-stage framework, the learners start to solve problems using analogies from the

examples. After studying the worked examples, the learners will have gathered the

basic declarative rules of the complex task, which allow them to understand the

basic principles of the problems. Then, during a third stage, the procedural rules

start to be evident to the learner due to the practice problems. Finally, on the

fourth stage, they have already created schemata that allow them to solve different

problems without using the examples.

The ACT-R framework is similar to the three phases of skill acquisition

identified by VanLehn (1996). During the early phase, the learners are exploring the

materials without trying to solve any problems. Instead, they are gathering the

concepts and principles around the topic. For the intermediate phase, the learners

are starting to solve some problems. Before they try to solve problems on their own,

they explore existing solutions (i.e., worked examples). They go back and forth to

the examples in order to reference certain steps. During the late phase, learners do

not need to reference other materials to solve problems. They have acquired

schemata that are starting to be automatized and refined for accuracy.

Both models (Anderson et al., 1997; VanLehn, 1996) suggest that the

learner only needs the worked examples during the initial or intermediate stage of

skill acquisition. At the beginning, the learners are only able to manage some

context, principles and rules. Then, they use analogies from the experts’ approaches

to acquire some procedural knowledge. After some practice, they are able to solve

problems on their own using the schemata and without any additional references to

the worked examples. These phases or stages do not have a clear boundary with

each other. At a given moment, the learners might be in different phases for

different concepts from a complex task (Renkl & Atkinson, 2003).

Renkl and Atkinson (2003) conducted various studies to understand how the

transition from worked examples to problem solving should be implemented. They
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suggested a fading approach in which the learner is first exposed to a fully worked

example. One step of the solution is removed for the second task. Two steps are

removed for the third one. This process will continue until the learners have to solve

a whole problem on their own. They evaluated two different approaches for fading:

(1) Backward fading removing the last step of the solution, then the previous one,

and so on; and (2) Forward fading removing the first step of the solution, then the

second one, and so on. Both approaches were effective in near transfer but only the

backward fading supported far transfer. They argued that the backward fading

would keep the cognitive load low, by providing the first steps of the solution.

However, additional studies have suggested that the better fading approach might

depend on the learning material (Sweller et al., 2011).

3.5.6 Explanations

Creating explanations is a vital part of the learning process as well as an

important communication skill in science and engineering (Lombrozo, 2006).

Scientific theories are basically explanations of phenomena (Sandoval & Millwood,

2005). By constructing explanations we make sense of the world around us. We

create connections between the phenomenon experienced and the knowledge

previously acquired. Hence, creating effective explanations requires that we have a

clear conceptual understanding of the principles and theories, plus the knowledge of

how to apply these principles to different context, and the understanding of what

entails a high quality explanation (Sandoval & Millwood, 2005).

3.5.7 Nature of Explanations

The process of explaining can be described as a process of pattern

subsumption (Williams, Lombrozo, & Rehder, 2010). In this view, an explanation

involves the generalization of a phenomenon to a known pattern. The generalization

process is given by using features of the phenomenon, either provided by the context
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or artificially created by the explainer (Lombrozo, 2006). The identification and

extension of these patterns allow us to use them in other contexts.

Explaining and self-explaining have demonstrated to be important cognitive

processes beneficial to a meaningful learning that can support transfer (M. T. Chi &

Roy, 2010; Mayer, 1981). Explaining can help to (a) generalize properties to

common abstract patterns (Williams et al., 2010), (b)identify causal inferences

constraining the possible causes to the available prior knowledge (Lombrozo, 2006),

and (c) identify and repair learners’ misconceptions, and fill the gaps of

instructional materials with inferences based on previous knowledge (Chiu & Chi,

2014; Lombrozo, 2006). When an explainer tries to identify the causes, she/he will

seek for similar phenomena that can be applicable to this context.

The causality perspective to explanations relates to Aristotle’s four causes of

explanations. Aristotle considered that we cannot really know something until we

understand what causes it, answering the question ‘why?’ Thus, he identified four

ways to answer this question: (1) the efficient cause involves the sources of change

in the phenomenon, who or what was the responsible for making something what it

is; (2) the material cause describes what the object is made of; (3) the formal cause

focuses on the properties and characteristics that make the phenomenon what it is;

and (4) the final cause describes the function or goal of the phenomenon. The

formal and final causes are “psychologically real modes of understanding”

(Lombrozo, 2006, p. 465). For instance, while children equally accept writing as

the final cause of a pencil, and climbing as the final cause of mountains, adults are

more selective about when to accept the final causes. Similarly, the features that

make an object what it is (formal cause) can be naturally selected by the explainer,

but they do not depend on personal preferences (Prasada & Dillingham, 2006). For

example, we accept that a dog has four legs and that is one of the characteristics

that makes it a dog, but we do not accept the color of the dog (e.g. brown) as one

of these formal causes.
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In the learning process, the function of explanations is to facilitate the

integration of novel information and previous knowledge (Aleven & Koedinger,

2002; M. T. H. Chi, De Leeuw, Chiu, & Lavancher, 1994; Lombrozo, 2006). The

learners’ previous knowledge will enable them to identify relevant characteristics of

the phenomenon that can be related to the causation. Hence, learners’ previous

knowledge determines their ability to identify these patterns. Once a concept has

been understood, the explainer will apply that knowledge to similar contexts

(Shafto & Coley, 2003). Consequently, understanding the characteristics and

structure of students’ explanations allow us to identify when and how these improve

(Sandoval & Millwood, 2005). Moreover, by exploring multiple student

explanations within the same course, we can also identify whether the

characteristics and the quality of their explanations are changing over time or not.

3.5.8 Quality of Explanations

How can we distinguish high quality explanations to low quality ones? One

approach to the quality of explanations correspond to the appropriate use of

principles or laws within certain context. For example, Küchemann and Hoyles

(2003) developed a coding scheme based on students’ explanations to geometric

concepts. The lowest quality involved students’ perceptions, or simply paraphrasing

the given information. Higher quality explanations involved the use of geometrical

properties and principles. Similarly, several studies have found that students making

connections to laws or principles while self-explaining, perform better in assessment

tasks (Pirolli & Recker, 1994; Renkl, 1997).

Another existing approach to the quality of explanations involves their

appropriate application of conceptual knowledge, and the structure of the evidence

on which the claims are backed up (Sandoval & Millwood, 2005). This structure

involves the warrant (i.e., the data used to support a claim), and how the explainer

presents this warrant: rhetorical reference. This reference could go from simply
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including the data, to an actual interpretation of the data in the context of the

explained phenomenon. When students use their own experiences to back up their

claims, they better integrate the explained ideas to their own beliefs (Bell, 2000).

Nevertheless, students often fail to provide warrants during their explanations

(Sandoval & Millwood, 2005).

Finally, M. Chi et al. (1989) proposed that for an explanation to depict

understanding, it should include these four elements: the consequences of actions,

the conditions of application of actions, the relationship action-goals, and the

relationship of actions to laws and principles. These three approaches to quality of

explanations have in common the use of domain knowledge (laws and principles) to

go beyond the explained material.

3.5.9 Self-Explanation Effect

Instructional materials such as textbooks or worked-examples often omit

certain components or features of the phenomena they present (M. T. H. Chi et al.,

1994). Each phenomenon involves local features and components, hierarchies and

relationships among them, as well as relationships with other components. However,

describing all these elements in detail would not be feasible nor practical for an

instructional material. According to the self-explanation effect, learners must

engage in a self-explanation process of examples or instructional materials to take

an additional advantage from them (Sweller et al., 2011). A systematic explanation

involves understanding all these features and components of the phenomenon, and

the interactions among them by contrasting the provided information with

background knowledge (M. T. H. Chi et al., 1994).

Self-explaining is a constructive activity that engages the learners in

generating explanations of an instructional material (Chiu & Chi, 2014).

Constructive activities generate a requirement on the learners to perform an action

that will result in an output beyond the provided materials (M. T. H. Chi, 2009).



42

Constructive activities are a more effective instructional approach than active

learning, and passive learning activities. The use of a constructive activity such as

promoting self-explanations supports different mechanisms that favor the learning

process (M. T. Chi & Roy, 2010): (1) integrating previous knowledge to the

learning material; (2) integrating different elements within the learning materials;

(3) helping the students to complete missing information; and (4) by integrating to

previous knowledge, helps to expose, modify or repair misconceptions (Makatchev,

Jordan, & VanLehn, 2004). The self-explanation process involves a mechanism that

connects new learning materials with existing knowledge, in order to create

schemata in the long-term memory (Chiu & Chi, 2014). The process of making

these connections to create new schemata or modify existing ones makes this

process a personal meaningful learning (M. T. Chi & Roy, 2010; Mayer, 1981).

Therefore, learners with different skills and background knowledge may benefit

differently from the self-explanations (Chiu & Chi, 2014).

Self-explanations also enable subjects to identify more abstract categories

that can be integrated into a pattern. For instance, Williams et al. (2010) compared

students’ ability to identify two categories of robots. The experiment asked one

group to explain why certain robot belonged to a given category, and the other

group just described each robot. While the description group made significantly

more mentions to explicit characteristics of the robots (i.e., color, body, and feet),

the explaining group was able to identify the pattern under which the categories

divided the robots: pointy feet vs. flat feet.

Self-explanations can also be used as a meta-cognitive strategy through the

use of monitoring activities that allow the student to identify what they understand

and what they do not understand (Williams et al., 2010). For example, M. Chi et

al. (1989) suggested that a clear understanding of the example can be seen by a

self-explanation containing the following elements: (1) the conditions of application

of the actions; (2) the consequences of actions; (3) the relationship of actions to

goals; and (4) the relationship of goals and actions to natural laws and other
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principles. They identified different characteristics of “good” and “poor” explainers

of worked examples. “Good” students learn with understanding by: (a) producing

more explanations; (b) monitoring their learning process with statements such as “I

can see now how they did it”; and (c) visiting the examples less frequently and more

accurately when solving additional problems. In a follow-up study, M. T. H. Chi

(2009) confirmed that high performers produced more explanations, and

additionally identified three sources of these explanations: (1) background

knowledge (30%); (2) previous sentences (41%); and (3) experiences, analogies, and

logical inferences (29%).

Renkl (1997) built on top of these and other findings to identify individual

differences on students’ self-explanations with a larger sample size and a more

controlled experiment. The author identified two types of effective explainers: the

“reasoners” and the “principle-based” explainers. The “reasoners” would try to

solve a worked-example while explaining it. Reasoners attempted to describe what

would be the next step in the solution before reading it. The “principle-based” ones

would come up with instances of laws or principles from their background

knowledge to explain the examples.

In spite of the described characteristics for effective self-explainers, only a

small number of students fall under this category (Chiu & Chi, 2014).

Furthermore, although explanations are beneficial to learning, and can support

generalization and transfer, they are profoundly influenced by learners’ previous

knowledge (Kuhn & Katz, 2009; Lombrozo, 2006). Learners with different skills

and background knowledge may benefit differently from the self-explanations

(M. T. Chi & Roy, 2010; Chiu & Chi, 2014).

3.5.10 Self-explanations in Programming

Self-explanations have also been explored in the context of programming

(Pirolli & Recker, 1994; Vieira, Roy, Magana, Falk, & Reese Jr., 2016; Vieira et
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al., 2015). Using think-aloud protocols, Pirolli and Recker (1994) analyzed student

self-explanations of worked examples on recursion programming. They found similar

patterns for good vs. poor explainers as those presented by M. Chi et al. (1989),

and Renkl (1997). They analyzed the student think-aloud activities using a coding

schema that included domain statements, monitoring statements, strategy

statements, activity statements, and reread statements. The domain statements

were focused on explanations related to Lisp, programming, and recursion. These

domain statements could fall into one of the following categories: (1) an operation

of Lisp code; (2) a result of a computation; (3) an input or parameter; (4) a

structure of the code, conditionals or loops; (5) an ‘is-a’ statement mention an

instance of a concept; (6) a ‘reference’ statement mention a concept based on an

instance; (7) a purpose of the code; (8) an analogy; (9) entailments or implications

of an action; or (10) a programming plan.

The findings from Pirolli and Recker (1994) suggest that good explainers

produce significantly more domain explanations. The authors integrated

explanations in the categories ‘is-a’ and ‘reference’ statements as a single category

called ‘tie’. Within the domain statements, good explainers produced more ‘ties’

together with analogies than poor explainers. Good explainers also produced more

explanations related to recursion than poor explainers, who focused on surface

features of the code.

In this context, written explanations have also been used as an assessment

strategy in the context of programming. The BRACElet (Building Research in

Australasian Computing Education) project integrated academics from several

Australian universities aiming at using action research to explore college student

learning process in programming assignments (Lister et al., 2012). Through the

analysis of a modified version of the end-of-the-first-semester exams, the BRACElet

team determined a hierarchy of skills related to programming (Lopez, Whalley,

Robbins, & Lister, 2008): (1) Explaining an existing code; (2) Tracing values of

variables after a code has been executed; and (3) Write code. They also identified
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that student proficiency on explaining the code, and tracing activities can explain a

larger percentage of student ability to write an algorithm (Lopez et al., 2008).

These findings suggest that explaining and tracing programming code are

intermediate skills towards the end goal of writing a computer program, while the

basic skills comprise the recognition of programming constructs (“A Closer Look at

Tracing, Explaining and Code Writing Skills in the Novice Programmer”, 2009).

The research team adapted the SOLO taxonomy (Biggs & Collis, 1982) to

categorize the student explanations among four levels (Sheard et al., 2008):

• Prestructural comprised incorrect student explanations.

• Unistructural involved brief descriptions of only parts of the code.

• Multistructural described the explanations that showed basic understanding of

all independent lines of code, but not the program as a whole. An alternative

category that was identified in the data was Multistructural with error, when

the explanation involved characteristics of multistructural explanations but

was not entirely correct.

• Relational level groups student explanations that describe the overall purpose

of the code, the students “see the forest” and not just the individual trees.

This level included three subcategories: (a) Relational with extra, when the

student not only explained the purpose of the code, but how it was achieved;

(b) Relational but error, when the explanation of the overall goal was not

entirely correct; and (c) Relational incomplete, when the explanation of the

overall goal of the function was limited.

The research teams compared how a novice explanation would differ from an

expert explanation. They found that novice programmers will explain each line of

code independently from each other, while experts tend to explain the ‘big picture’:

“see the forest and not just the trees.” (Tan & Venables, 2010, p. IIP29). For

instance, a novice programmer would describe a chunk of code such as a loop in
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terms of the execution of this instruction instead of summarizing the overall purpose

of creating this loop (Thompson, Luxton-Reilly, Whalley, Hu, & Robbins, 2008).

Since their focus was on assessment and not on understanding of a worked-example,

students were actually instructed on giving this holistic explanations of the code.

Nonetheless, novice programmers kept explaining lines of code independently from

each other (Lister et al., 2012). Students’ levels of explanations were consistent

throughout different questions, and students in the multistructural or relational

levels would perform better in questions related to writing code, than students in

the prrestructural or unistructural levels (Tan & Venables, 2010).

3.5.11 Promoting Self-explanations

Fostering and training learners in how to carry out self-explanations can be

beneficial for learning (Aleven & Koedinger, 2002; Chiu & Chi, 2014; Renkl,

2005). Student learning can be enhanced by simply prompting self-explanations

(M. T. H. Chi et al., 1994; Schworm & Renkl, 2006). In the context of

worked-examples, Schworm and Renkl (2006) suggested that prompting or eliciting

self-explanations should be a “must”. These prompts can be performed either by a

human or a computer with the same effectiveness in both cases (Hausmann & Chi,

2002).

Self-explanations are more frequent and more effective in learning materials

that involve multiple representations such as graphics instead of only text. However,

the learners need to engage in order to make connections among these multiple

representations in order to take advantage of the self-explanation effect (M. T. Chi

& Roy, 2010). Hence, the multiple representations in the instructional material

should be easy to integrate in order to avoid the split-attention effect. Similarly,

these explanations do not necessarily need to be talked, but it can take other forms

such as written (Schworm & Renkl, 2006) or using diagrams (M. T. H. Chi et al.,
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1994), although the use of written explanations can reduce the number of student

descriptions as compared to verbal explanations (Hausmann & Chi, 2002).

Identifying effective self-explanations strategies and sharing them with the

students can extend the self-explanation effect. For instance, a couple of existing

models for introducing self-explanations involve having students evaluating existing

self-explanations (Aleven & Koedinger, 2002), or a three step process where

students are exposed to: (1) an introduction to self-explanations; (2) a video

representation of other students doing self-explanations; and (3) an activity to

practice and provide feedback on self-explanations (Chiu & Chi, 2014). Conversely,

when instructional explanations are present, the self-explanation effect is diminished

(Schworm & Renkl, 2006). A possible cause of this phenomenon is that the teacher

is already providing certain schemata that will later limit the reflection process

during the self-explanation stage, hindering the learning process.

Other instructional elements that have been studied as related to the

self-explanation effect are (Chiu & Chi, 2014): (1) using incorrect or incomplete

examples can also promote the monitoring and revision of learners’ misconceptions;

(2) the coherence in the instructional material makes a difference in the effectiveness

of the self-explanation; and (3) encouraging gap-filling when the students have little

background knowledge, and transitioning towards example comparison in a more

advanced level of expertise.

In general, promoting self-explanations in a learning environment can

support the development of student meaningful learning, beneficial for transfer and

problem solving skills. The benefit of this process comes from actively engaging

students to ask themselves why something is as it is presented, which makes them

focus on causes that are not obvious (Williams & Lombrozo, 2010). Moreover, this

process makes the learner reflect and validate what they already know, contrasting

this with new available information (Chiu & Chi, 2014). Effective self-explainers

produce more explanations, connect these explanations to laws or principles existing

in their background knowledge, and highlight more often the conditions and goals
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(Chiu & Chi, 2014). By doing this, explainers fill the gaps of information existing

in the instructional materials, integrate different parts of the instructional material

(M. T. Chi & Roy, 2010), and identify abstract patterns from the learning materials

that will be applicable in transfer problems (Williams & Lombrozo, 2010).

Lombrozo (2006) presented a review on the structure and function of

explanations. A prevalent structure of explanations is the causal explanation. The

learner identifies what is causing the phenomenon that is being explained and how

that cause can be an instance of a common pattern. Hence, the previous knowledge

of the learner determines her/his ability to identify these patterns. Furthermore, the

learner needs to identify relevant characteristics of the phenomenon that can be

related to the causation.

3.6 Critiques to Cognitive Load Theory

In spite of the 30 years of research and the several applications of CLT in

educational research, there is still a lot of work to do. There are some authors that

have specific critiques to this approach. Kirschner et al. (2011) presented a review of

the good, bad and ugly elements of a special issue in CLT. First, learning is more

complex than just reducing extraneous load, and assuming all other cognitive load is

germane. It is very difficult to control all the aspects that may affect a learning

environment (e.g., previous knowledge, beliefs, motivation) to be able to simplify a

phenomenon under research to these forms of cognitive load (De Jong, 2010;

Moreno & Park, 2010a). Hence, there are some studies that contradict each other

or have unexpected outcomes. Authors usually try to explain their unexpected

outcomes with external factors, not included in CLT, as opposed to trying to

understand them with a follow-up experiment (Kirschner et al., 2011).

Another challenge in CLT is to find an adequate and trustworthy method to

measure the cognitive load. In fact, probably the most popular method is a single

question that cannot even be statistically evaluated for reliability and validity in a
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single study (De Jong, 2010). There are also differences regarding when the

question should be asked. To complete the problem, the ideal method should not

only measure the overall load, but also should distinguish among the different types

of load.

3.7 Summary and Discussion

Complex learning intends to integrate and coordinate concepts, procedures

and skills to be applicable to real-life problems. The interactivity of all these

elements is what makes it cognitively complex. The cognitive load theory explains

how learning occurs by describing a cognitive architecture with a vast long-term

memory and a limited working memory.

Two types of cognitive load are directly related to the learning task: intrinsic

load and extraneous load. The intrinsic load is given by the element interactivity. It

is managed by the germane load, which is directly beneficial for the learning

process. When all the interacting elements are processed, a schema is created in the

long term memory and learning has happened. The intrinsic load cannot be reduced

unless the interactivity or some of the elements are removed from the learning task.

This would arguably change the learning outcome and affect the learners’

understanding.

The extraneous load is not beneficial for the learning process and is usually

generated by a poor instructional design. For example, a problem solving approach

generates a high extraneous load in novice learners. Novice learners employ a

means-ends analysis technique that engages them in a search process with many

variables. They need to close the gap between the current problem state and the

goal, using the differences among them, the available operators and the sub goals.

The cognitive effects related to complex learning were introduced: (1)

goal-free effect; (2) worked example effect; (3) completion effect; and (4)

self-explanation effect. The goal-free effect removes the goal from the problem
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solving approach so that the learner works forward to solve the problem. She/he

will go step-by-step using the current problem state and the available operators.

Eventually, the learner will get to complete the solution.

The worked example and the completion effect provide the learner with an

expert solution to the problem. Both approaches benefit from the self-explanation

effect, which relates the learner prior knowledge to the materials. The difference is

that the completion approach deals with the expertise reversal effect. It assumes

that after been exposed to worked examples, the learners need to start working on

problem solving (at least partially). Otherwise, at that skill acquisition stage, the

worked examples would provide extraneous load.

The cognitive load theory provided an explanation to complex learning using

the cognitive architecture and the cognitive loads associated with a learning

material. Therefore, the instructional strategies presented here are grounded on this

theory. However, there are other instructional design strategies that may reduce the

extraneous load to effectively support complex learning. Some examples of these

strategies are: productive failure (Kapur & Bielaczyc, 2012), feedback (Hattie &

Timperley, 2007), and scaffolding for problem solving (Xun & Land, 2004).

Futhermore, there are some critiques to CLT related to the lack of availability of

measuring methods for the cognitive load and the limited view of learning that this

theory has. These can be considered a limitation of the CLT studies.

In the context of the project, programming tasks paired with disciplinary

knowledge are a form of complex learning. This project will explore student

self-explanations of programming worked examples. It will use different measures of

performance and cognitive load to characterize the students’ comments to the code.

Thus, we expect to reduce the probable lack of reliability of a single-item cognitive

load measure. Worked examples have been evaluated in several cognitively complex

areas such as mathematics (F. G. Paas & Van Merriënboer, 1994; Schwonke et al.,

2011), computer programming (Pirolli & Recker, 1994; Trafton & Reiser, 1994;

Vieira et al., 2015), and physics (M. Chi et al., 1989; Renkl et al., 2002). However,
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it is not clear how worked examples should be designed and delivered for computer

programming or computational science contexts. Moreover, the self-explanation

effect has been explored in lab settings using think-aloud protocols. This approach

has been useful to understand how explanations can foster learning. Nevertheless,

this approach do not provide an in-class strategy to encourage self-explanations.

This study will evaluate: what are the characteristics of students’

explanations of worked examples for an integrated disciplinary-programming

complex task? Students will be asked to write in-code comments as a strategy to

self-explain the examples. This strategy would allow teachers and faculty members

to integrate the self-explanations into the classroom and homework activities.

Chapter 4 describes the methodologies employed for each case study. Chapter 5

presents the first case study that focuses on the glass box approach to computing

education: CPMSE. Chapter 6 describes the case study related to the black box

approach to computing education: THERMO. Chapter 7 discusses the results of

both cases to find similarities and differences, in the light of existing literature of

self-explanations.
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CHAPTER 4. METHODS

The goal of this dissertation is to understand students’ explanations of

worked examples for an integrated disciplinary-programming complex task. To do so,

I explored the following research questions:

• RQ1. What are affordances of in-code commenting self-explanation activities

in the contexts of black box and glass box approaches to computational

science and engineering?

• RQ2. : What are the characteristics of students’ explanations in a glass box

and a black box approach to CSE education?

• RQ3. How do the characteristics of students’ self-explanations in glass box

and black box approaches to CSE education relate to their ability to program?

First, for RQ1, we defined these affordances to be comprised of the benefits

derived by students in writing the in-code comments, and the ways individual

students take advantage of them (Gibson, 2014). The relevance of exploring

affordances lies on the fact that this relationship between an environment and the

subjects is different for each individual. Then, for RQ2 we analyzed students’

written explanations as in-code comments of the worked-examples, and compared

them to students’ ability to program for RQ3.

A pilot case study (Vieira et al., 2015) was carried out with two purposes:

(1) to identify the characteristics of effective programming worked examples; and

(2) to validate the effectiveness of writing in-code comments as a self-explanation

strategy. The use of worked examples to scaffold programming and algorithm design

learning was explored in the context of an object-oriented programming course.

Different instructional design elements were assessed in order to identify effective
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Table 4.1.

Overview of the pilot study

Course
Introduction to Object-Oriented Programming
Purdue University

Semester Fall 2013

Participants
35 freshmen Computer and Information
Technology students

Computational Component Introductory C# Programming

Procedures
Three lab sessions solving in class-exercises
after self-explaining one worked example.

design characteristics for worked examples. We employed multiple representations of

the solution, including textual, graphical and computational representations. The

results suggest that providing in-code explanations as simple sentences enhanced

code readability and improved students perceptions about the examples. Moreover,

introducing the self-explanation process by asking students to write in-code

comments helped them to actively engage with the examples. Specific suggestions

include encouraging students to write detailed comments as opposed to superficial

ones in order to take advantage of the examples. This approach seems to be useful

for novice students who did not have previous experience in programming.

The contribution of the study is the detailed description of the

implementation of worked examples in a programming context. It included the use

of multiple representations as well as the use of comments within the code as a

self-explanation process. These design and implementation characteristics of worked

examples become the main contribution of this pilot study to this dissertation. The

case studies that comprise this dissertation involved writing in-code comments as

the self-explanation strategy. Furthermore, the worked examples included multiple

representations and no in-code comments. The complete description of the pilot

study and its implications for this dissertation are presented in Vieira et al. (2015).

Table 4.1 depicts an overview of the context of this pilot study.
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4.0.1 Design

This dissertation comprises two case studies to explore students’

explanations in two different levels of transparency. The case study is an

appropriate approach for this project because the researcher explored specific

instances of the self-explanation phenomenon in the real-life context of CSE

education. The findings are concrete and context dependent, which is useful to

“address research questions concerned with the specific application of initiatives or

innovations to improve or enhance learning and teaching” (Case & Light, 2011,

p.191). In two different contexts of CSE education, we implemented an innovative

instructional strategy that could help to elicit self-explanations: students’ written

explanations as in-code comments for computer programming.

The aim of a case study is not to generalize among populations, which would

require representative samples; instead, the aim of these two case studies is to

generalize towards the theory of students’ explanations (Yin, 2009). Moreover, the

case studies take advantage of using multiple sources and forms of data including

quantitative data, qualitative data, or both strands of data (Hartley, 2004;

Kohlbacher, 2006). We used students’ written explanations, their responses to

open-ended questions, and quantitative scores related to their ability to do

computer programming. Table 4.2 includes an overview of the two case studies.

The units of analyses for these case studies are the self-explanations reported

by the students on each of three activities for each course. Using two case studies

allowed the researcher to compare findings doing a cross-case analysis. The

cross-case analysis identified common patterns of the self-explanation effect to

generalize the findings among the cases (Khan & VanWynsberghe, 2008). This

strategy also supports the identification of differences on the phenomenon for these

two different contexts (Patton, 2002).
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Table 4.2.

Overview of the two case studies

Course CPMSE THERMO
Semesters Spring 2015 / Spring 2016 Spring 2015 / Spring 2016

Participants
25-30 freshmen Materials Science
and Engineering students /
semester

60 Sophomore Materials
Engineering students /
semester

Computational
Component

Write MATLAB programs to
solve engineering problems.

Using Virtual Kinetics
of Materials Laboratory
(VKML) Python to represent
THERMO phenomena

4.1 Analytical Framework

In order to organize the structure and characteristics of students’

explanations, I employed the knowledge framework for science achievement

(Shavelson, Ruiz-Primo, Li, & Ayala, 2003). This framework describes four

independent types of knowledge that comprise science achievement. The declarative

knowledge (knowing that) corresponds to definitions and facts of the phenomenon.

The procedural knowledge (knowing how) refers to if-then rules, and the steps to

achieve a goal. The schematic knowledge (knowing why) comprise the use principles

and mental models to describe why something is as it is, and to predict effects of

actions. Finally, the strategic knowledge (knowing when, where, and how)

corresponds to the identification of the conditions under which certain procedures

can be applied, and the use of monitoring activities.

We aligned these four types of knowledge to the three levels of programmers’

expertise (Lister et al., 2012). The level one, in which the programmer is able to

understand individual instructions and trace the value of a variable falls under the

declarative and procedural knowledge. The programmer knows what the variable is,

and how this value changes over time once the program is executed. For the level

two, the programmer already knows what the overall goal of a program is, so the
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programmer should know why these instructions are solving the problem, while

making connections to principles and background knowledge. Finally, programmers

in level three should be able to identify when, where, and how certain chunks of

instructions can be applied. Students should not only explain line by line but

identify the relationship that the lines have towards a general goal or a sub goal of

the program. This alignment was validated with two educational researchers (one

senior one junior) who had experience on the use of Shavelson et al. (2003)’

framework for qualitative analysis in the context of modeling and simulation

practices for engineering education.

The students’ explanations were qualitatively analyzed using a coding

scheme that was initially derived from previous research, and locally refined with

our data. The first iteration of qualitative data analysis started with a coding

scheme that included the four elements of understanding that should depict an

explanation (M. Chi et al., 1989): conditions of applications of actions,

consequences of actions, relationship action-goals, and relationships of the action

and goals to laws and principles. This analysis process for students’ comments of a

worked-example from the CPMSE course extended the coding scheme to ten codes

(Vieira et al., 2016). This coding process was carried out in a line by line basis.

This is, assigning one or more of these codes to each line, and then counting the

total number of instances of each code within each student file.

However, further analysis of different examples showed that students usually

write comments by sections. For example, in one of the Python codes that started

by creating six different variables, some of the students would simply write a single

comment describing what all these lines did, while some other students would write

the same comment six times (e.g. #Creates a variable ). If we use the former

approach (i.e., line by line), students replicating the same text multiple times would

inflate the results. As a consequence, the qualitative analysis is now presented by

code sections instead of individual lines. These types of sections were established for
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each context because the programs, the goals, and the way students used them were

different from each other.

Table 4.3 presents how we implemented this conceptual framework for the

qualitative data analysis process. The declarative knowledge involves comments

where students limited their explanations to what a line of code was doing (COA),

what a variable represented (VAR), what data type it was (DAT), what the

parameters of an instruction were (PAR), and what an instruction of code was

(COD). The procedural knowledge involves describing how something was done

(HOW), or how it would happen in execution time (EXE). The schematic

knowledge involves understanding the problem (PRO) and its goal (GOA), the use

of background knowledge (BGK) or examples (INS), usually to explain why

something happened (WHY), or its relationship with the overall goal (RAG). The

strategic knowledge is related to the conditional knowledge (CON), monitoring

statements (MON), and the identification of chunks of code with certain purpose

(CHK). If a student wrote and explained their own solution (OWN), it is also

considered an instance of strategic knowledge because they were able to identify

when, where, and how to apply their knowledge.

In addition to the four types of knowledge and the three levels of expertise,

we added a Level Zero of expertise, which comprises the explanations that were

limited, incorrect, paraphrased, or copied literally from the example text.

These categories within each type of knowledge were also grouped based on

the type of explanation the students wrote. For instance, the declarative knowledge

was divided between those categories focused on what the program did, and the

ones focused on the code itself (e.g. DAT data type). Likewise, the schematic

knowledge was divided into two types of explanations: use of schemata and

rationale. The former type focuses on student use of background knowledge (e.g.

PRO, BGK), while the latter refers to explanations of why the code was built this

way. Finally, the strategic knowledge was divided between explanations identifying

chunks of code that worked under certain conditions (i.e. CON and CHK), and the
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Table 4.3.

Coding scheme for the characteristics of students explanations

Level
Type of
Knowledge

Type of
Explanation

Code Description

Zero
Limited
Knowledge
(LK)

Limited

SIM The comment is similar to the example text
INC The statement is incorrect
LIM The statement is incomplete
PHR The comment is paraphrasing the instruction

One

Declarative
Knowledge
(CK)

Program
COA

Describes what an instruction does, the
consequences of actions

VAR Describes what a variable represents

PAR
Describes the parameters or returning values of
an section

Code
DAT Describe the data type of the variable
COD Describe the code in terms of the program

Procedural
knowledge
(PK)

Process
HOW

Describes how this instruction does what it
does

EXE
The comment describes what will happen in
execution time

Two
Schematic
Knowledge
(SK)

Use of
Schemata

PRO
The student makes connection with the
problem phenomenon

GOA
Describes the goal what is the goal of a
function for example

BGK
The student uses background knowledge or
principles to describe the instruction

Rationale

WHY
Describes the rationale for an instruction Why
it is set certain way

RAG
Describes the relationship action-goal what is
some instruction for

INS
The comment includes an instance of the
instruction with certain values

Three
Strategic
Knowledge
(TK)

Chunks
CON

Describes the conditions under which the
instruction works

CHK
The student identifies chunks of code that with
certain goal (one set of comments for more than
one line describing its purpose).

Meta -
cognition

MON The comment involves monitoring statements

OWN
The student developed his/her own solution to
the example
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use of meta-cognitive strategies such as the monitoring statements or building their

own solution.

4.2 Methods Case One - Glass Box Approach

The glass box approach corresponds to a freshmen level course called

computation and programming for materials scientists and engineers (CPMSE).

This course was considered to be the glass box approach to CSE education because

students had access to the underlying mechanisms of the simulations they used and

created. The learning outcomes of this course were focused on students’ ability to

create MATLAB R© programs to solve engineering problems using models of physical

and biological systems (Magana, Falk, & Reese Jr, 2013).

4.2.1 Participants

The students enrolled in the course Computation and Programming for

Materials Scientists and Engineers (CPMSE) at Johns Hopkins University during

the spring 2015 and spring 2016 semesters participated in this study. Approximately

25 students enrolled in this freshmen level course every spring semester. The main

learning outcome of this course was for the students to“to apply algorithmic thinking

and computer programming toward the solution of engineering and scientific

problems” (Magana, Falk, & Reese Jr, 2013). The students came with different

background from high school and therefore, it is not possible to describe a unique

programming background on the students.

4.2.2 Procedures, Data Collection and Data Analysis

The CPMSE course used an inverted classroom as the pedagogical approach;

students watched a video lecture and took an online quiz before coming to class.

During each session, students worked on solving a set of in-class programming
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exercises. Each set of exercises included a worked example using multiple forms of

representation for the solution (e.g., text, figures, MATLAB R© code, video). A

sample worked example for this class is included in Appendix A.

Two strands of data were collected for this case study. The qualitative

strand focused on student self-explanations from the in-code comments (RQ2), and

students’ response to open-ended questions where they described their affordances

of the written explanations (RQ1). The quantitative strand comprised students’

perceived ability to program, student performance (RQ3), and their frequency of

use of the worked-examples (RQ1).

Qualitative Strand

Students’ explanations

Each of the worked-examples was posted as a PDF document on the learning

management system (Blackboard) as an assignment within the in-class exercises

section. The document was organized in four sections (1) problem statement; (2)

understanding the problem; (3) addressing the problem; and (4) MATLAB R©

solution. In some cases, the worked-example would include one or more links to

online videos with additional explanations of the example. The instructions for the

assignment were:

1. Please download the attached worked-out example.

2. Insert comments at the code segment of the example to explain what the code

is doing.

3. Upload a MATLAB R© (.m) file with the comments you made.

4. In order to receive CREDIT, please complete the Exercise 02 Worked example

Quiz once you have submitted the commented file

These comments were considered the student self-explanation to the

worked-examples. Sample comments for the activity #11 (Appendix A) from two
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students are presented in Figure 4.1 (SA1) and Figure 4.2 (SA2). These names

correspond to neutral pseudonyms assigned to two students from spring 2015.

Figure 4.1. SA1 in-code comments for the Example #11.

Figure 4.2. SA2 in-code comments for the Example #11.
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Several differences can be spotted from these two examples. The most

obvious distinction is the number of self-explanations. SA2 described the objective

of the function as well as their parameters. Justice limited her comments to the

inner lines of the function. Furthermore, SA2 described the function and the steps

of the solution in terms of atoms (i.e., the disciplinary problem), while Justice was

only describing programming steps. Finally, contrary to SA1’s self-explanation, SA2

explicitly described the initial and end conditions of the for-loops.

The student self-explanations were analyzed using a coding scheme described

in section 4.2. For instance, if a student wrote a comment within a section that says

“Define function”, this was coded as COA. However, if the student also described

the goal and parameters of this function like: “Create a function that keeps asking

numbers until it’s less than all the numbers so far, then output the biggest number”,

the explanation for this section would be coded as COA, GOA, and PAR. Another

example is when they explained the rationale for the way a section of the code was

built (WHY): “Since the previous line only determined the difference between each

coordinate vector (x,y,z), this line finds the magnitude of the distance”, or when

they make a connection between an action and a goal (RAG): “Essentially we are

finding the number of atoms involved so we can set up our sparse matrix”.

Appendix C presents sample quotes from all the worked-examples for all the

categories in this coding scheme.

Since different students wrote different explanations, we grouped them based

on the type of explanations they wrote within each section. For this analysis, each

type of explanation was treated as a binary variable within each section. The binary

data corresponded to whether the student used (1) or not (0) each type of

knowledge within the sections of the code. For instance, Figure 4.3 shows the types

of explanations students wrote for the second section of activity #5. The rows in

the box represent students while the columns represent the codes described in Table

4.3. The colors represent the different types of explainers we identified for this

activity. In this example, student S5 (in red) was the only one who identified the
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conditions of application of actions (CON), so he/she had a one in Chunks for this

section. The rest of the students had a zero. When students showed more than one

category within the same type (e.g. S14 COA and VAR within Program), this was

still counted as one. The distance between students was computed as the proportion

of columns that do not match with a zero or one value, and the number of clusters

depended on the variability of students’ explanations within each activity.

Figure 4.3. Sample analysis of students’ explanations for section two of activity #5

When students showed incorrect or limited knowledge, we classified these

instances using the common misunderstandings in programming (Table 2.1). These

were be used to try to identify students’ misunderstandings of the programming
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code from their written explanations (RQ3). Note that some important concepts

were excluded because these were unrelated to this study. For instance, our

examples do not include inheritance, or the design of tests, and therefore we do not

expect to find them within students’ explanations. The concepts listed on this table

can potentially being identified within the examples explored in this study.

Open-ended Responses

An additional qualitative data source for this study corresponds to

open-ended questions students answered either in an interview or at the

end-of-the-semester survey. Six students from each semester participated in a

retrospective think-aloud protocol aimed at identifying student experiences with:

(1) the curricular innovation; (2) modeling and simulation practices to approach a

disciplinary-computational project; and (3) instructional support they are provided

with. The participants of these procedures kept an online journal while working on

the project: Modeling Heart Tissue and Diffusion of the Electrical Potential. Once

finished, they individually attended a 90 minute session to discuss their approach to

the project. At the end of the interview protocol, these six students were specifically

asked about their experiences and perceptions regarding the self-explanations.

Sample questions for the last section of the interview protocol are:

Use of the examples

• Have you explored the examples along the semester?

• What do you think should be added to the examples to be more useful to you?

Self-explanations

• Did you write in-code comments in the examples for extra-credit? Why or

why not?

• What do you think was the value of commenting the examples?

Quantitative Strand
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The quantitative data comprises three main sources: students’ usage of the

worked-examples (RQ1), students’ perceived ability to do computer programming,

and students’ performance in both midterms (RQ3).The course started with a

pre-survey where students described the courses they had taken previously, and

their perceptions about their ability to write computer programs. Two questions

that were asked in this survey were: (1) [Likert Scale] I have the ability to design an

algorithm; and (2) [Likert Scale] I have the ability to write a computer program.

Student performance on the midterm exams was considered as the student

course performance. Both scores were normalized (0-10), and students were grouped

as low-mid-high performers. The groups for these scores were created as: low below

6; mid between 6 and 8.5; and high above 8.5. The distribution for midterm one

was as: six students were low performers, seven students were mid performers, and

11 students were high performers. Meanwhile, six students were mid performers and

18 students were high performers for midterm two. There were no low performers in

midterm two. The rationale for using these scores instead of the overall course grade

is that these were individual scores that were not affected by other components of

the course. For instance, the overall course grade could have been higher for those

students who decided to submit all the extra-credit assignment as compared as

those who did not. Likewise, the collaborative nature of the projects, where

students discussed ideas and troubleshoot together, may have had an effect that

does not relate to their own ability to do computer programs.

Summary Methods for Glass Box Approach

The summary of the research procedures for the glass box context during

spring 2015 and spring 2016 is depicted in Table 4.4. The main difference between

the two semesters is that in 2015, the self-explaining activities were only

implemented as extra-credit, starting in activity #9. On the other hand, activities

#2 to #5 were graded and the rest of them were extra-credit for the spring semester

2016.
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Table 4.4.

Summary of research procedures for the glass box context

Research Question Semester Data Source Analysis

RQ1 Affordances
Spring
2014/
2015/
2016

Students’ responses to
open-ended questions

Thematic Analysis

Students usage statistics
of the worked-examples

Identification of trends
and comparison among
years

RQ2 Characteristics
of students’
explanations

Spring
2016

Students written
explanations of activities
#2, #5, and #11

Coding scheme from
Table 4.3, and cluster
analysis

RQ3 Relationship
between students’
explanations and
student ability to
program

Spring
2016

Survey scale questions
regarding student
self-perceived ability

Comparison of the
characteristics of
students explanations
based on the performance
measures

Student performance in
midterms #1 and #2

4.3 Methods Case Two Black Box

The glass box approach to CSE education corresponds to a sophomore level

course in thermodynamics of materials. These students were exposed to three

computational modules in the spring semesters 2015 and 2016. The modules used

the Virtual Kinetics of Materials Laboratory (VKML) to represent disciplinary

phenomena. Although students had access to the Python code in VKML, this was

considered a black box approach because students mostly interacted with the

graphical user interface. Furthermore, the changes that they needed to make in the

code only involved changing parameters, and most of the Python code was

implemented under the functions of the GIBBS library. Thus, students did not have

access to the underlying implementation.

The participants of this part of the study were students enrolled in a

Thermodynamics of Materials (THERMO) course ( 45 students/semester), which is
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part of the Materials Engineering (MSE) program at Purdue University. Students in

this program were first exposed to a general engineering first-year experience and

then, they moved to the School of Materials Engineering (Purdue, 2014a). During

the First Year Engineering (FYE) program, students were required to take the

course CS 15900: Programming Applications for Engineers.

During the CS 15900 course, students worked with C and MATLAB as

programming environments to solve engineering problems taking advantage of

fundamental computational methods and concepts. The FYE program also required

students to enroll ENGR 13100: Transforming Ideas to Innovation I, and ENGR

13200: Transforming Ideas to Innovation II (Purdue. 2014c, 2014d). Although not

specifically focused on computational concepts, these courses deal with some

MATLAB programming skills such as data structures, decision and loop clauses,

and transforming flowcharts to algorithms. Therefore, when students got to the

thermodynamics course, they were expected to understand basic programming

structures but not necessarily to be familiar with the Python syntax.

4.3.1 Procedures, Data Collection and Data Analysis

The THERMO course started with a baseline test to identify what is the

students’ previous knowledge in Chemistry, Calculus, and programming

background. Three 50-minute computational modules were implemented as part of

the course in 2015 and 2016. A sample module is described in Appendix B. Each

module started with a ten-minute pretest regarding thermodynamics concepts. The

students then explored a computational worked example guided by the course

instructor. As part of a homework assignment, students were asked to write in-code

comments to explain the example. The students submitted their homework

assignment one week later. At this point, students completed the posttest intended

to assess changes in their understanding of the thermodynamics concepts.
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Qualitative Strand

As in case study one (i.e., Glass Box CPMSE), students in THERMO had

the possibility of commenting the code of the given example for extra credit. Figure

4.4 depicts sample self-explanations that comprise the first THERMO module

described in Appendix B. The worked example was intended to evaluate whether a

given equation was a state function or not. Here we compare the self-explanations

provided by Shay T and Santana T as in-code comments for this example.

Figure 4.4. In-code comments of Shay T and Santana T for the first THERMO

module.

Santana T described what each variable stands for in terms of

thermodynamics variables (e.g., volume, number of moles, gas constant). Shay T
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did not describe all the steps or variables and, when she/he did, the comments were

not too explicit. Interestingly, neither of them mention the result as being a state

function. Shay T mentioned that the “function is exact” while Santana T said that

the “differentiations are equal”.

These differences in student in-code comments were analyzed using the

coding-book described in Table 4.3. Then, a hierarchical cluster analysis was carried

out as described in section 5.3.2.1. Students were grouped as different explainers

based on the types of explanations they submitted for each of the modules.

The second qualitative component corresponded to students’ responses to a

set of open-ended questions. At the end of the semester, students completed a

survey focused on identifying the change on students’ perceptions about

computation, and students’ comments about the self-explanation activities. Two of

the questions that were used as qualitative data source for RQ1 are: (a) Please

include any additional ideas in which you think that commenting the examples or

the lab sessions supported your learning process in this course (b) What would you

improve about the Python lab sessions?

Six students were invited to participate in a retrospective think aloud

protocol aimed at identifying student computational problem solving process after

being exposed to worked examples and self-explanations. However, only three

students participated of the interview in 2015, and none in 2016. At the end of the

interview, students asked specific questions about the worked examples and the

self-explanation process such as (1) How did the worked examples help you to solve

your problem? (2) Did you write in-code comments for the extra credit? How did

that process help or hinder your understanding of the examples? (3) What do you

think should be added to the examples to be more useful to you?
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Quantitative Strand

The quantitative strand for the THERMO course involved several data

points. At the beginning of the semester, students completed a survey that asked

two Likert scale questions: (1) I have the ability to design an algorithm; and (2) I

have the ability to write a computer program. Students’ responses for these two

questions were averaged to compute a composite score related to the self-perceived

ability to do computer programming. This score was used to identify whether

student initial ability to do computer programming was related to the types of

explanations they write (RQ3).

Pretest/posttest instruments were used before and after the computational

module to assess student disciplinary conceptual change. The concepts that were

tested had been explored during the lectures previous to the module. Students were

awarded 5 extra points for every correct instrument (i.e., pretest/posttest) they

completed. For instance, the pretest instrument for the first module consisted of a

single question, as depicted in Figure 4.5.

Figure 4.5. Sample pretest for Module # 1

The posttests took place one week after the computational module, when the

homework was due. The posttest instruments were similar to the pretest but

involving different values/equations.

The pretest/posttest instruments were scored by the teaching assistant of the

course in a scale 0-5. The gain for each student was computed as posttest -pretest.

Furthermore, the gain score was employed to group students as low, mid, and high

performers, and compare these performances to their written explanations. A low
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gain score was considered to be zero or less, an intermediate gain comprised values

between one and two, and a high gain score corresponded to values of three or more.

Then, at the end of the semester, students were asked to answer three

five-level Likert scale questions related to the in-code comments activities in the

form : “I feel writing comments within the sample code helped me to”: (1)

understand the Python examples; (2) solve the homework exercises; (3) understand

better thermodynamics concepts. The distribution of students’ responses to these

three questions were compared using a non-parametric Wilcoxon rank test.

Summary Methods for Black Box Approach

The summary of the research procedures for the black box context during

spring 2015 and spring 2016 is presented in Table 4.5. Note that the

self-explanation activities in 2015 were not graded but students were granted extra

credit for them. Moreover, students in 2015 could submit them in groups. This

changed in 2016, were the homework assignments became individual, and students’

written in-code comments were graded.

4.4 Validity and Reliability

The procedures that ensured the reliability of the qualitative data analysis of

students’ explanations were as follow. First, one researcher coded the whole data set

to identify the possible categories within the students’ explanations. This researcher

then compared the coded sections across students looking for consistency among

different data points. A second researcher was introduced with the coding scheme as

well as sample explanations within the different activities for each code (see

Appendix C). This researcher completed a qualitative coding for a random sample

of 20% of students’ explanations for each worked-example. The two researchers

compared their coded data and negotiated discrepancies to refine the coding
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Table 4.5.

Summary of research procedures for the black box context

Research Question Semester Data Source Analysis

RQ1 Affordances
Spring
2014/
2015/
2016

Students’ responses
to open-ended and
Likert-scale questions

Thematic Analysis
/ Distribution and
Wilcoxon Rank-test

Number of submitted
self-explanations

Identification of trends
and comparison among
semesters

RQ2 Characteristics
of students’
explanations

Spring
2016

Students written
explanations of modules
#1, #2, and #3

Coding scheme from
Table 4.3, and cluster
analysis

RQ3 Relationship
between students’
explanations and
student ability to
program

Spring
2016

Survey scale questions
regarding student
self-perceived ability

Comparison of the
characteristics of
students explanations
based on the performance
measures

Student performance
pretest/posttest
instruments

scheme. The first researcher then refined the rest of the qualitative coding process

based on the new coding scheme.

For the open-ended responses, one of the researchers first reviewed all

student responses and assigned an emerging category to each response. Then, a

second researcher reviewed 50% of the responses. The reviewer was provided with

the set of categories and definitions to use while coding. If the second researcher

considered that additional categories were required, they were allowed to create

them. The two researchers then negotiated their categories until agreement. Finally,

the first researcher went through the whole data set again to re-code the quotes

using the refined set of categories.
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4.5 Research with Human Subjects

The research procedures presented for this dissertation were approved by the

Instructional Review Board under the protocols #1308013870 and #1412015574.

Consent forms were be signed by the interview participants and the participants

were allowed to withdrawal at any time. These consent forms as well as all data

collection instruments were kept by the principal investigator.

Student identity and confidentiality was kept throughout the study. Student

identity was not, and will not be revealed to any of the course instructors or

teaching assistants. Gender neutral pseudonyms replaced student names.

4.6 Summary

This dissertation explored the characteristics of students’ written

explanations in two courses using different levels of transparency to teach CSE

concepts. The first course corresponded to a programming course for materials

scientists and engineers (CPMSE) where students mostly focused on algorithm

design and mathematical models to solve disciplinary problems. Because students

had access, and often implement the underlying mechanisms of the simulations, this

was considered a glass box approach to CSE education. The second course was a

thermodynamics of materials course (THERMO) where students used VKML to

manipulate computational representations of disciplinary phenomena. Although

these students had access to the Python code that implements these

representations, this was considered the black box approach because the simulations

mostly used encapsulated functions from VKML, and so the underlying mechanisms

were not actually visible. Each course was treated as an independent case study,

and the two cases were compared to each other in the discussion (Chapter 7).

Three elements were explored within each case to understand the

characteristics of students’ explanations in CSE (Figure 4.6): (1) the affordances of

in-code comments for students; (2) the characteristics of students’ explanations; and
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(3) the relationship between students’ explanations and student ability to program.

First, the affordances in-code commenting activities for students were explored from

open-ended responses to interview and survey questions. We also used the usage

statistics of the worked examples to identify changes on students’ engagement with

the worked-examples after the self-explanation activities were implemented. Then,

students’ in-code comments were qualitatively analyzed using the coding book

described in section 5.2. The presence or absence of each of these codes within

students’ explanations was used to group students based on a hierarchical clustering

technique. Finally, the characteristics of these explanations and the groups of

explainers were compared to students’ ability to do computer programming. We

employed survey questions and performance measures to assess this construct.

These three elements were connected to each other in the figure because as part of

the discussion, we aimed to identify whether there was relationship between them or

not.

Figure 4.6. Three main elements of students’ explanations explored in this study
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The next chapter presents the detailed procedures and results for case one:

glass box CPMSE. Then Chapter 6 describes the procedures and results for case

two: black box THERMO. Chapter 7 presents a discussion of the findings in both

cases to identify commonalities and differences under the lens of explanation

literature. Finally, Chapter 8 presents the conclusions of this dissertation, and

proposes future work to expand on the findings of this study.
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CHAPTER 5. GLASS BOX APPROACH

The first case study that we explored corresponded to a programming course

for materials scientists and engineers (CPMSE). The learning goals of this course

focused on students’ ability to create computer programs to solve disciplinary

problems. Students often need to start from understanding the disciplinary

problem, identify or design a mathematical model, and implement an algorithmic

representation of this model. Students in this context had access and often created

themselves the underlying mechanisms of these simulations. Hence, this level of

transparency was denominated as the glass box approach to CSE education.

This chapter is divided in three main sections plus a final section

summarizing the findings for this context. Section 5.1 focuses of the affordances of

in-code commenting activities students in this course: RQ1. Section 5.2 identifies

the characteristics of students’ explanations and the types of explainers in this

context: RQ2. Section 5.3 compares the types of explainers and the characteristics

of students’ explanations to students’ ability to do computer programming: RQ3.

Each section defines its own questions that contribute to answer the overall research

questions of the study. These sections also describe in more detail than Chapter 4,

the specific procedures for each research question.

5.1 Affordances of in-code commenting activities for students

The worked-examples were first implemented into the CPMSE course during

the spring semester 2014. They were accessible through a website including a

problem statement, a description of the solution, and a MATLAB R© commented

code. The different components were presented to the students using multiple

representations: video explanations, graphics, text, mathematical equations, and
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programming code. There was no course credit associated with the exploration of

the examples, nor was there a self-explanation strategy associated with this

implementation. At the end of the semester, students claimed to be unaware of

their existence, and the usage statistics of the examples were nearly zero.

As a consequence, the implementation strategy for the worked-examples was

refined for future offerings of CPMSE course (spring semesters in 2015 and 2016).

Each of the worked-examples was posted as a PDF document on the learning

management system (Blackboard). The document was organized in four sections:

(1) problem statement; (2) understanding the problem (3) addressing the problem;

and (4) an uncommented MATLAB R© solution. During spring 2015, for in-class

activities starting with number nine and up through number fifteen 10-points of

extra-credit (out of 1000 total) could be earned by those students who submitted

in-code comments as a self-explanation strategy. During spring 2016, the in-code

comments for in-class activities number two to number five constituted part of the

students’ class grade; students could additionally earn five-extra credit points for

submitting the explanations and completing a quiz evaluating their understanding

of the example. The instructions for the assignment were:

1. Please download the attached worked-out example.

2. Insert comments at the code segment of the example to explain what the code

is doing.

3. Upload a MATLAB R© (.m) file with the comments you made.

4. In order to receive CREDIT, please complete the Exercise 02 Worked example

Quiz once you have submitted the commented file

After the changes the way we implemented the worked-examples in this

course, the first part of this study was to identify what was the effect of this changes

for the students in this course. Specifically, we looked into the effect of these

self-explanation activities on student’ engagement with the example, and the
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different ways students afforded these activities. The guiding research questions for

this component of the study are:

• What is the effect of using in-code commenting activities on students’

engagement with the worked-examples in the context of a glass box approach

to computational science and engineering?

• What are affordances of in-code commenting self-explanation activities in the

context of black box and glass box approaches to computational science and

engineering?

5.1.1 Data Collection

The data sources for this part of the study involved three main components.

First, the usage statistics of the worked-examples during the spring semesters in

2014, 2015, and 2016. These helped us to identify the effectiveness of in-code

comments as the self-explanation strategy to engage students in the study of

worked-examples. These statistics comprise both, the number of views of the video

explanations within the examples, and the number of extra-credit assignments

submitted. Note that the students were not required to watch the videos

accompanying the examples. This was only one of the representations, but some

students might have chosen to study the other representations (e.g. text and

graphics, MATLAB R© code).

At the end of the semester, students completed a survey that asked them

about the self-explanation activities, whether they chose to complete them or not,

and why. In addition to this open-ended question, students answered two five-level

Likert scale questions: (1) Writing comments within the sample code helped me

understand the examples; (2) Writing comments within the sample code helped me

to solve the projects. Finally, six students per semester were invited to participate

in a retrospective think-aloud protocol in which they described how they solved one

of the course projects, and what resources they used. Both the survey and some of
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the interview questions were employed to identify in-code comments’ affordances for

students in a glass box approach to CSE.

5.1.2 Data Analysis

The usage statistics data from the video explanations, and the number of

extra-credit submissions were compared among the three semesters: spring 2014,

spring 2015, and spring 2016. In order to make it comparable across years, the

number of views for the worked-example videos, and the number of extra-credit

submissions are presented as a percentage of the number of students enrolled in the

course that semester. Additional trends, such as usage peaks for certain activities at

a given year are described and explained in the context of that course offering.

The open-ended questions and the interview responses were analyzed using

categorical analysis. This approach allows us to identify common student

perceptions about the worked-examples and the self-explanation activities, as well

as their affordances for students in this context. The two Likert-scale questions were

first plotted as a histogram to identify trends in students’ level of agreement. A

non-parametric Wilcoxon Rank Test was employed to compare the distribution of

the two questions.

5.1.3 Results

The percentage of students submitting in-code commenting assignments

during spring 2015 and 2016 are presented in Figure 5.1. Activities #2 to #5 were

graded during spring 2016, and as a result the number of student submissions

approaches 100%. Once the extra-credit assignments started, both in 2015 (activity

#9) and in 2016 (activity #6), the number of students who submitted their

explanations decreased over time. Interestingly, the number of submissions

stabilized in 2016 between activities #8 and #9.
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Figure 5.1. Percentage of student submissions of in-code comments assignments

The percentage of students watching the video-explanations from the

worked-examples for 2014, 2015, and 2016 are presented in Figure 5.2. Although the

videos were available for most of the examples (11 out of 14), students were not

required to watch them. The videos were an additional representation besides the

text, graphics, and MATLAB R© code. Hence, most of the percentages do not reach

100%, even in 2016 for the graded activities (number #3 and #4).

The number of views by students of the videos within the examples was

larger for both spring 2015 and 2016, as compared to 2014. During the first part of

the semester (i.e., activities #3 to #9), the number of views was higher for 2016

compared to 2015. Note that the extra-credit assignments in 2015 started from

in-class activity number nine. Consequently, the number of views showed a boost

from this activity onwards during 2015. In activity #9, students should have

watched the videos more than once, since the percentage was 185.2%, above the

maximum possible value of 100%. For visualization purposes in Figure 5.2, we

adjusted the percentage to the maximum value of 100%. This result suggests that
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Figure 5.2. Percentage of students who watched the video explanations of the

worked-examples

promoting in-code comments as extra-credit assignments is an effective strategy to

increase student engagement in studying the examples.

At the end of the semester, students voluntarily completed a survey that

asked them whether they used the worked-examples or not, and why. In 2015, 13

students completed the survey; 11 students answered that they had used them, and

only two students said that they did not use them. The students who did not use

them argued that they did not feel they needed the extra-credit nor did they see

value in exploring the examples; therefore, they preferred to spend more time on the

course projects. The rest of the students provided the following reasons for using

the worked-examples: self-explaining helped to understand the examples (five

students); the worked-examples helped to solve other problems (three students); and

self-explanation activity gave them extra-credit (three students).

On spring semester 2016, 21 students completed the survey question

regarding the use of worked-examples. Three students said they did not use them,

while 18 students said they did. Two of the students who did not use them said
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they did not need them, while the other student did not provide any reason for not

using them. These three students must have referred to the extra-credit ones, since

the number of submissions showed that up to 100% of students completed the

graded activities. Eleven students said that the worked-examples helped them to

better understand difficult concepts, four students said they did the activity mostly

because of the extra credit, and three students said they used them, but did not

give any reasons.

A representative quote from one student who found the worked examples to

be useful was:

“Yes, all the time. Especially in the earlier stages of the course.

Dissecting the worked examples line-by-line really helped with gaining

an intuition for algorithm design and knowing how to think like a näıve

computer.”

Another student said:

“Yes. They helped me transition from Java to vectorized MATLAB R©

code. They also helped guide my coding to more efficient and

abbreviated writing. Also, the worked examples solved some questions I

had.”

During the interview, six students were invited to explain how they

completed one of the projects and what resources they used. Within the resources,

they were explicitly asked about the worked-examples and the extra-credit activity.

A table in appendix D includes the complete student responses to this question. In

2014, only five students participated in the interview. There were not

self-explanation activities and, as described above, most of the students said they

were unaware of the existence of the worked examples. Those students who accessed

at least one of the worked-examples during the semester, thought they were

confusing and stopped exploring them.
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Extra-credit self-explanation activities were introduced starting on in-class

activity #9 during spring 2015. Five out of the six interviewed students said they

did these activities. Three of the students said the activity engaged them to go line

by line through the MATLAB R© code, which helped them to better understand the

examples and learn new functions. Two students said it was useful because it forced

them to explore the exercises that were not discussed in class, and one of the

students also mentioned that it was a good practice for them to improve their

commenting skills.

Spring 2016 involved graded extra-credit assignments for in-class exercises

two to five, and extra-credit ones for the rest of the exercises. As a consequence, all

students had explored some of the worked-examples, and had done at least a few of

the commenting activities. Five out of six students considered these activities as

helpful to better understand the example. However, three of them confessed that

they did them mostly for the extra-credit. One student said it was useful at the

beginning of the class to get familiar with the MATLAB R© syntax, since he/she

already had some programming experience. One of the students considered that

these activities enabled him or her to connect the individual lines of code with the

overall goal of the examples:

“... it made you actually engage with the program on a very detailed

level you have to actually say, All right, what is this line actually doing

and how does that relate to sort of the overall functionality that you’re

trying to implement?’ ”.

The two Likert-scale questions asking to what extent writing comments

within the examples had helped them to either understand the examples or solve

the projects were only asked in 2016. The distribution of student responses are

presented in Figure 5.3. The measures of central tendency associated with each

question are: (1) Understanding the worked-examples (mean=3.48, median=3,

standard deviation= 0.93, N=21); and (2) Solving the Projects (mean=2.75,

median=3, standard deviation= 0.91, N=20). While a large portion of the students
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agreed that writing comments within the code helped them to better understand

the worked-examples (a), a rather neutral response was found for the benefits that

the worked-examples provided in competing the projects (b). The non-parametric

Wilcoxon rank test suggests that the distributions for both questions are

significantly different (Z-value=3.28, p-value <0.01, effect-size r=1).

(a) Writing Comments within the sample code
helped me understand the examples

(b) Writing Comments within the sample code
helped me to solve the projects

Figure 5.3. Student distribution on the five-level Likert scale questions for 2016

Overall, providing extra-credit activities for writing in-code comments helped

students to be aware of the existence of the worked-examples, and engaged students

to study them. The number of extra-credit submissions decreased after a few

exercises, but stabilized at approximately fifty percent. We hypothesize this can be

attributed to the course-load students may have with the CPMSE projects and

other assignments.

Writing in-code comments within the MATLAB R© code helped students to

better understand the worked-examples, connecting the individual lines of code to

the overall goal of the example. These activities also helped students to better

understand algorithm design, how the computer works along with other difficult

concepts, as well as to getting familiar with the MATLAB R© syntax, especially for
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those students who already had some programming experience. Although some of

the students did not feel that commenting their code helped them to solve the course

projects, several students said that the activity engaged them enough to learn new

algorithms, syntax, and programming skills that they could use in other problems.

5.2 Characteristics of Students’ Explanations

After identifying that students benefited in different ways from writing

explanations, the next step was to identify what were the characteristics of these

explanations. Twenty-six students enrolled in the CPMSE course during the spring

semester 2016 participated in this part of the study. There were 16 in-class

activities, of which 15 included one worked-out example describing an expert

solution to one of the programming challenges. The guiding research questions to

characterize students’ written explanations are:

• What are the characteristics of students’ explanations in a glass box approach

to CSE education?

• How does the characteristics of students’ explanations in a glass box approach

to CSE education change over time?

• What common misunderstandings in programming can be identified from

students’ explanations in a glass box approach to CSE education?

5.2.1 Data Collection

For the scope of this dissertation, students’ explanations of three examples

were explored in the glass box approach: Activity #2, Activity #5, and Activity

#11. These examples were purposefully selected to comprise a variety of complexity

and a distribution from the beginning to the end of the semester. The first example

that was analyzed corresponded to the first activity in which students submitted

explanations during this semester. The second worked-example corresponded to the
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activity #5, which involved the concept of loops for the first time within an

example, a challenging concept in programming. The third worked-example that

was explored corresponded to activity #11 and also included complex programming

concepts: nested loops and a sparse matrix.

Each section within the sample codes was assigned a section type that

described their purpose. Thus, we were able to compare the characteristics of

students’ explanations among different section types within a worked example, as

well as students’ comments for the same type of sections from different worked

examples. The section types that were defined for these worked-examples are: (1)

“Creating the Function” when a function is been declared; (2) “Setting up problem

parameters” when a value related to the problem is computed; (3) “Setting up

Supporting Variables” when other variables that are used to solve the problem are

computed; (4) “Validating the result” when the result is being computed and

sometimes printed for validation; (5) Iterating when a loop structure starts; (6)

Validation when an if-clause starts; and (7) “End of the function” when the

function is being closed by an end statement.

Activity #2

The purpose of the first worked example was to create a sequence of steps

within a function that could compute the length of the side c2 for the geometric

figure presented in Figure 5.4, given the lengths b1, b2 and c1, and the angles A1

and A2. The example introduced the Law of Cosines and described how the

solution could be approached.

The code consisted of eight lines of code divided in five sections (see Figure

5.5). The first section was the declaration of the function, its parameters and

returned values. The second section applied the Law of Cosines to find the length of

the side a, a problem parameter. The third section identified the coefficients of a

quadratic equation (i.e., supporting variables) to then find out the two possible
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Figure 5.4. Geometric figure for the example in activity #2

solutions on section four: validating the results. The final section closed the

function with an end’ command. Students were not given these sections

distinguished from each other, nor their descriptions, but some of their explanations

demonstrated that students were able figured out the sections themselves.

Activity #5

Activity #5 was the last graded assignment in which students needed to

write their comments to explain the worked examples. The rest of the in-class

activities involved extra-credit assignment for this purpose. The goal of activity #5

was to have students exposed to the concept of loops and user inputs. The problem

statement required students to ask for a number to the user and continue asking

until the most recent input corresponded to the smallest number so far. The

returning value should be the largest inputted value. Figure 5.6 presents the sample

code that was provided to the students with the sections marked as identified during

the data analysis process. The first section defined the function with no input

parameters, and the biggest number as an output. Section two requested the inputs
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Figure 5.5. MATLAB code of worked-example activity #2: CosineLaw

from the user an initialize the variables related to the problem statement (i.e.,

smallest and biggest). The third section comprised a loop structure that only stops

when a smaller number has been entered. Section four compared the new input with

the current values, and requested an additional new input. The final section closed

the while-loop structure and the function.

Activity #11

Activity #11 involved a worked-example called Atomic Bonds. The purpose

of the activity was to identify which ones of a set of atoms where within certain

cutoff distance of the rest of them in a three-dimensional space. The input for this

function is the cutoff distance an Nx3 matrix where each row corresponds to an

atom, and the three columns represent the position vector X, Y, Z of this atom.

The output is a matrix with the distances between the atoms that satisfied the

cutoff condition, or zero otherwise. The output should be a sparse matrix for
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Figure 5.6. MATLAB code of worked-example activity #5 - Get Numbers

efficiency reasons, since the output would include multiple zeros and repeated values

(i.e., the upper and lower triangular parts of the matrix are the same).

Figure 5.7 presents the MATLAB R© code that the students submitted

explanations for. The first section created the function with the atom-position

matrix pos, and the cutoff distance. Section two identified the number of atoms (a

problem-related parameter) and section three initializes the output sparse matrix.

The two loop structures in section four were designed so that each atom is only

compared once to the rest of them. Section five found the Euclidian distance

between the two vectors by first subtracting them, and then normalizing this vector.

The sixth section validated the cutoff condition and saves the distance in the output

sparse matrix.
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Figure 5.7. MATLAB code of worked-example activity #11 - Atomic Bonds

5.2.2 Patterns within each activity

Activity #2

Twenty-four students submitted their explanations for this activity. The

distribution of students’ use of the different types of knowledge within each section

is presented in the Figure 5.8. The most commonly used type of knowledge

throughout all sections was the declarative knowledge. Students used procedural

knowledge mostly in section two, and schematic and strategic knowledge more often

in sections three and four, although one group of students used them also to explain

section two. Only two students showed limited knowledge within their explanations

and in different sessions. Eight students used the four types of knowledge (CK, PK,

SK, and TK) within the same section: three in section two, three in section three,
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and two students did in section four. One student (S24) used these four types of

knowledge again in section five, but this section was not considered for the cluster

analysis. The rationale for this decision was that section five only represented the

end of the function, and the only rich explanations within this section corresponded

to the five students who actually created their own solution to the problem.

Figure 5.8. Students’ use of the types of knowledge for each section of the code:

Activity #2

Four groups of students were identified using this clustering approach:

problem-oriented (S6, S7, S14, S20), schematic explainers (S1, S1, S2, S3, S4, S8,
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S9, S10, S12, S13, S15, S16, S21, S22, S23); procedural explainer (S5); and the

reasoners (S11, S17, S18, S19, and S24). In order to characterize these groups, it

was important to go into a more detailed level. Figure 5.9 differentiates these

clusters using different colors for their explanations within each sections. The boxes

in Figure 5.9 are highlighted if the student demonstrated one of these categories in

their explanation for the given section. The different colors correspond to different

clusters.

The problem-oriented explainers (brown) mostly focused on using declarative

knowledge throughout the four sections, with connections to the problem in sections

one and two (Figure 5.9(a) and 5.9(b)). They would explain what an instruction

does and what a variable represent, but would not explain how, why, or when this

instruction would work. For instance, student S6 talked about the coefficients for

the quadratic formula as: “set the value of variable ’m’,’m’ is the a variable in the

quadratic formula”

The schematic explainers comprises a total of 15 students who used

schematic and strategic knowledge to explain sections two, three, and four. This

group would consistently explain how to compute the value of side a in section two,

making connections to the problem (“by using the law of cos states for the top

tr[i]angle, we could calculate the length of a, also since A1 is given in degree we

need to convert it to rad”), and would use the background knowledge to connect the

use of quadratic formula with the goal to find the solutions (“now we directly use

the equation x = (−n + /− sqrt(n2 − 4 ∗m ∗ p))/(2 ∗m) to solve the problem since

it has two option +/2 it will also have to possible solution c2a and c2b”).

Student S5 was the only student in the group of the procedural explainers.

This student was not close to any other student in the group because his/her

explanations included procedural knowledge in sections two, three, and four, and

where explicit about what would happen in execution time. For most of the

sections, this student would explain that because the instruction had a semicolon at

the end, “This line of code will be hidden from the command window”. These
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Figure 5.9. Patterns of students’ explanations by section type: Activity #2

explainers that focused on what will happen on execution time, are denominated

procedural explainers.

The fourth and final group can be described as the reasoners, which

corresponds to the group of students who explained their own solution to the

program instead of the provided one (OWN). This group also made rich conclusions

in the last sections, making connections to their schematic and strategic knowledge

(BGK, INS, and CON). This group of explainers had been previously identified by

Renkl (1997), when students tried to come up with their own solution to the

example while explaining it.

Figure 5.9 also describes the patterns of students’ explanations per section.

For instance, on the function definition, more than half of the students described

that a function was being created (COA) and listed the parameters (PAR), while

only a third of the students explicitly mentioned the goal of the function (GOA)
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and made a connection to the original problem (PRO). Five students commented

their own solution instead of the worked example (OWN).

The second section, in which the Law of Cosines was applied to estimate the

value of a corresponding to the diagonal, showed a larger number of connections to

the problem (PRO), and students described how this parameter was being

computed (HOW). In section three, students used their schematic knowledge to

describe why the quadratic formula could be used to solve this problem, and five

students identified the definition of coefficients as a chunk of code with certain

purpose (CHK). The fourth section identified the two solutions of the quadratic

formula, and so students needed to identify the two conditions for the two possible

solutions. Hence, 19 students identified these conditions (CON), 13 students made

connections between the action and the goal (RAG), and 17 of the students used

their background knowledge to explain this section (BGK). In general, connections

between the background knowledge and the goal of the function were present more

often in sections that involved the use of the quadratic formula to find the solution

(sections three and four), while the connections to the problem took place when

specific problem parameters were being computed. These patterns were further

compared to similar sections in the other activities.

Activity #5

The explanations for activity #5 were submitted by 26 students (see Figure

5.10). Similar to what had been identified in the previous activity, the most used

type of knowledge was the declarative knowledge. However, this activity showed an

increment on the use of procedural knowledge in sections two, three and four, and

schematic knowledge in section two, where several students explained why biggest

and smallest needed to be the same at the beginning. More instances of strategic

knowledge for section three (i.e., the loop section) and section four means that

students clearly highlighted the conditions of the loop (CON), and related these
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conditions to the user interaction during execution time (EXE). The additional

complexity of this activity that involved the use of loops did not represent more

instances of limited knowledge (LK), of which only two were identified (COD).

Figure 5.10. Students’ use of the types of knowledge for each section of the code:

Activity #5

The hierarchical cluster analysis suggested four different groups of students

for this activity: limited (S26, S27), schematic (S14, S2, S16, S21, S19, S8),

procedural (S11, S18, S12, S13, S15, S1, S3, S7, S25, S17, S22, S23, S4, S5, S10,

S20), and reasoners (S9, S24). The detailed categories these groups used are

presented in Figure 5.11. The limited explainers only explained sections two and

four, using mostly declarative knowledge with simple explanations like: “the

smallest number is determined” and “this is the initial input, which will be both the
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smallest and largest number starting out”. However, these two students did not

described the goal of the function or explained how this program was solving the

problem.

Figure 5.11. Patterns of students’ explanations by section type: Activity #5

The schematic explainers described rationales for the instructions in section

two (“Here we are defining biggest as smallest because as it stands, the first entry is

the biggest number.”), and the relationship of actions with goals in section four

(“assigns biggest number as the largest number input so far, so if the new input was

larger than any other input so far, it would be stored as the new largest”). This

group is slightly different to the schematic explainers from the activity #2, because

they did not use background knowledge in their explanations. However, none of the

students did. A possible reason for this phenomenon is that the problem itself did

not involve any disciplinary knowledge that could be applied here during the

explanation process.
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As in the previous activity, the procedural explainers focused mostly in what

would happen in execution time. In this case, students described the user interacted

with the program: “variable smallest is inputted by the user after the prompt ’Give

me a number:”’. Finally, the reasoners commented all four main sections, but

describing their own solution to the problem. These students may have had the

background knowledge to be able to solve the problem on their own as opposed to

being interested on learning from examples.

In general, Figure 5.11 shows that a larger number of students mentioned the

goal of the function (GOA nine students) as compared to the previous activity

(seven students). There were almost no connection to the problem (PRO) or to the

background knowledge (BGK) in students’ explanations. When setting the initial

conditions, all students used the declarative knowledge to describe what the

variables represented (VAR), and more than half of the group were able to explain

why the code was setting the same value for the variables smallest and biggest

(WHY). In the loop section (third section), the conditions of application of the loop

were highlighted by 23 out of 26 students(CON), and 20 students explained that

these conditions depended on the user input, which would occur in execution time

(EXE). The fourth section (i.e., setting up problem parameters) was a mix between

the sections two and three, with instances of procedural (EXE 12 students),

schematic (RAG seven students), and strategic knowledge (CON 15 students). The

parameters that were being estimated would become the conditions for the loop,

and one of these values would come from the user in execution time. Another

interesting thing about the fourth section is that four students included monitoring

statements. The first line of code among the three that comprised this section was

unnecessary because if the variable newnum was smaller than the variable smallest,

the loop condition would not have allowed its execution on the first place. These

four students included comments like: “I think we don’t need this command,

because if there is a number smaller than smallest the program stop”.
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Activity #11

Sixteen students submitted their explanation for this activity that was not

graded, but provided extra-credit for those who decided to write comments within

the code. The most common type of knowledge continued to be the declarative

knowledge in all sections. However, since this was a more complex and

disciplinary-related example, the schematic and strategic knowledge were also used

in all sections. The use of procedural knowledge was limited to a handful of

students, especially in section five, and only one of the students wrote an

explanation involving the four types of knowledge within the same section. Figure

?? presents the types of knowledge students used within each section.

Figure 5.12. Students’ use of the types of knowledge for each section of the code:

Activity #11

Four groups of explainers were identified among the 16 students (see Figure

5.13): problem-oriented (S4, S12, S20), limited (S5, S16), schematic (S2, S8, S10,

S11, S17, S18, S22, S24), and procedural (S3, S21, S15). The problem-oriented

explainers mostly used declarative knowledge but made multiple connections to the

problem. The limited explainers mostly used declarative knowledge, and showed
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limited knowledge of the problem and the program by paraphrasing (PHR) and

making incorrect statements (INC) in at least four of the sections. The schematic

explainers made connections to the problem and explained the rationale behind the

use of a sparse matrix in section two (RAG and WHY). Finally, the procedural

explainers identified the parameters in section two, and explained how the distance

between the atoms was being computed in section five (HOW).

Figure 5.13. Patterns of students’ explanations by section type: Activity #11

There are coincidences and differences in students’ explanations of these

sections as compared to the two previous activities. For instance, the sections two

and five (setting up problem parameters) shown connections to the problem, and

section three (setting up supporting variables) depicted rationales from schematic

knowledge, a pattern that had been identified in activity #2. On the other hand,

the portion of students describing the goal of the function (GOA) and the data type
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of the parameters (DAT) increased significantly. This could be the case because of

the nature of the problem, which was more applied to students’ disciplinary

knowledge, and requires to deal with complex data structures. Also, the conditions

in the loop section were not highlighted as often as in Activity #5. More than 65%

of the students made connection to the problem in section two, when the number of

atoms was being calculated, and more than half of the students (68.75%) used the

schematic knowledge in section three to describe why a sparse matrix was important

for the goal of the function (WHY, RAG). Nevertheless, these differences in portion

of students should be considered with caution because the number of students that

submitted these explanations decreased due to the extra-credit nature of the

assignment.

5.2.3 Results

What are the characteristics of students’ explanations in a glass box approach to

CSE education?

Student use of different types of knowledge slightly varied among the three

activities, although a consistent distribution can be identified. Figure 5.15

represents the percentage of occurrences for each type of knowledge within each

activity. The most used type of knowledge was declarative knowledge throughout

the three activities, which was employed to explain what an instruction was doing,

often limiting students’ explanations. The procedural knowledge was rarely used, so

students did not often explain how each section was actually completing the action

they described. The schematic knowledge was also commonly used, especially for

activities #2 and #11, which involved disciplinary problems that required some

kind background knowledge (e.g. law of cosines and distance function). The

strategic knowledge was the third most used one among the students, especially for

activity #5, where students highlighted the conditions for the loop to iterate

through. Finally, the percentage of limited knowledge increased as the complexity of
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the activity increased, particularly with activity #11 that involved nested loops and

if-clauses, as well as the use of a complex structure as the sparse matrix.

Figure 5.14. Percentage of occurrences of the types of knowledge within each activity

In order to identify what type of categories were the most used within each

type of knowledge, Figure 5.15 depicts the number of instances for all the categories

grouped by type of knowledge. The most common limited knowledge category

among the three activities was the use if incorrect explanations (INC 10 instances),

followed by paraphrasing (PHR 5 instances). Students’ use of declarative

knowledge often focused on the consequences of actions (“what an instruction

does”), but a third part of these instances were also dedicated to what the variables
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represented (VAR). The lower number of parameter descriptions (PAR) is

understandable given that not all sections involved parameters.

Student who used procedural knowledge focused mostly on how it would

happen in execution time (EXE), rather than how the instructions where doing

what they did. Likewise, 97 of the instances in schematic knowledge involved

connections to the problem (PRO), almost twice the connections to background

knowledge (BGK), but a significant number of rationale explanations (WHY 56)

and relationship action-goals (RAG 68) were also present. Finally, the most used

strategic knowledge involved the identification of conditions of application of actions

(CON), especially loops and if-clauses.

These values should be revised in relation to the possible number of instances

that we could have found among the three activities. One or more categories could

be assigned to each commented section of the code, and we had 24, 26, and 16

students’ explanations for activities #2, #5, and #11 correspondingly. Since we had

five sections in activity #2, five in activity #5, and seven sections in activity #11,

assuming that students did not comment the last section (i.e. end of the function),

we have a total of (24*4)+(26*4)+(16*6) = 296 “commentable” sections. Hence,

even though we see important categories for all the types of knowledge in terms of

the number of instances, these might not correspond to the most cognitively

engaging. For instance, the categories who appeared at least 30% of the times were

COA, VAR, PRO, and CON. These categories comprised either simple descriptions

or the use of information at hand (e.g., the problem statement and the conditions of

a loop). On the other hand, the number of monitoring statements in the three

activities was only seven, and the number of identified chunks was only 25. Finally,

in the middle of the spectrum we have the connections to background knowledge

(BGK) and rationale for decisions within the code (WHY and RAG), which were all

around 20% of the possible instances.



103

Figure 5.15. Number of instances of each category within the types of knowledge
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How does the characteristics of students’ explanations in a glass box approach to

CSE education change over time?

Six types of explainers where identified among these three activities:

problem-oriented, limited, declarative, procedural, schematic, and reasoners.

Students’ distribution among these types of explainers changed from one activity to

another, and the time of the semester for the activity as well as the type of example

and the characteristics of the programming code seem to have influenced in these

shifting. For instance, only activities #2 and #5 involved reasoners, students who

explained their own solutions instead of the provided one. It is possible that these

students were able to come up with their own solution given the low complexity of

these explaining activities, but needed to use the worked-out solution for more

complex exercises.

Another example is that when the worked-example involved disciplinary

knowledge such as activities #2 and #11, we were able to identify a large percentage

of schematic explainers. These explainers used their background knowledge to

describe the rationale for the instructions. However, in activity #5 that was

basically a programming problem with user interactions, students did not have to

use background knowledge to explain it, and the size for this group of explainers

decreased. Instead, the percentage of students in the procedural group increased for

activity #5 to describe how the interaction with the user in execution time would

affect the program. Finally, the percentage of limited explainers increased with the

complexity of the activities. For instance, activity #11, the most complex activity,

which solved a disciplinary problem involving atoms and distance functions, showed

the largest percentage of schematic explainers, and the largest percentage of limited

explainers. Figure 5.16 presents the distribution of explainers within each activity.
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Figure 5.16. Distribution of types of explainers between activities: CPMSE

What common misunderstandings in programming can be identified from students’

explanations in a glass box approach to CSE education?

The percentage of explanations involving limited knowledge for these three

activities was low compared to the other types of knowledge. Only 10 instances of

incorrect explanations and one instance of limited explanation were identified

among students’ in-code comments for these three activities. One of the

misunderstandings that students showed was related to the sequence of execution of

multiple lines of code. For example, in a while loop that had three instructions

inside, one student said that the third line would not be executed if the condition of

the loop was later satisfied: “this part of loop will not run if newnum ¡ smallest
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from the first line of the body of the loop”. This is assuming that the loop condition

is constantly checked, as opposed to at the end of every iteration.

The loops also showed students’ misunderstanding of their use during

activity #11. While one student considered that a loop and an if-else clause were

the same thing: “We can use an if loop to correct for the cutoff minimum distance.”;

three students assumed that the conditions for the loop was to iterate through rows

and columns: “Create two for loops’ that will first loop through different columns in

a row and then rows”. This was not the case because both indexes were being used

to iterate through rows, since the columns of the matrix represented the coordinates

X, Y, Z. It is possible that students were referring to the sparse matrix, where the

data is saved by row-column pairs, but the iteration process was definitely not

through that matrix. There was also a misunderstanding related to the complex

data structures such as matrices, and sparse matrices. For instance, one of the

students assumed that if the if-clause condition was not satisfied then the bondmat

would keep the original assigned value: “the output ’bondmat(n,m)’ is equal to ’len’

or the vector length of ’dist’. If the conditon len¡cutoff is not true, then

’bondmat=sparse(N,N)’.” This is incorrect because the original instruction simply

initializes the structure, but the initial values correspond to zero. In the same

instruction, other student assumed that this was storing n and m instead of the

length between atoms n and m: “stores n and m as the ”bondmat” that is output”.

Another element to highlight for this group was that four students

demonstrated monitoring statements within their explanations for activity #5.

These students highlighted that one of the lines was unnecessary because once the

condition of the loop was met, this comparison inside the loop was simply replicating

it. These four students included comments like “I think we don’t need this

command, because if there is a number smaller than smallest the program stop”.
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5.3 Relationship between Students’ Explanations and Student Ability to Program

The previous section showed how students wrote different explanations for all

the activities, and how we could group them based on the types of explanations

they used. This chapter focuses on identifying the relationship between the

characteristics of students’ explanations and their ability to do computer

programming.

Twenty-six freshmen engineering students enrolled in the CPMSE course

participated in this part of the study. Eighteen students reported not having any

prior programming experiences, seven students had taken one programming course,

and two students had taken two previous courses, and two students had been

exposed to more than two courses. The guiding research questions are:

• How do the characteristics of students’ self-explanations in a black box

context relate to relate to their perceived ability to program?

• How do the characteristics of students’ self-explanations in a black box

context relate to their performance in the course?

5.3.1 Data Collection and Data Analysis

Two of the self-explanation activities were explored in this part study:

exercise #2 and exercise #5. The activity #2 corresponded to the first exercise in

which students would be required to submit their written explanations, while the

in-class assignment #5 was the last one that was graded. These two activities

allowed us to have the entire classroom as the sample, and not only to have those

students who decided to do the extra-credit assignment. Moreover, activity #5 was

the first worked-example that included a while-loop structure, a complex concept in

computer programming.

The qualitative analysis of exercises #2 and #5 resulted in four clusters for

each activity. Twenty four students submitted their explanations for in-class
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activity #2, while 26 students completed the assignment for activity #5. The four

groups of explainers for activity #2 are: problem-oriented (S6, S7, S14, S20),

schematic explainers (S1, S1, S2, S3, S4, S8, S9, S10, S12, S13, S15, S16, S21, S22,

S23); procedural explainer (S5); and the reasoners (S11, S17, S18, S19, and S24).

While the explainers in activity #5 were distributed as: limited (S26, S27),

schematic (S14, S2, S16, S21, S19, S8), procedural (S11, S18, S12, S13, S15, S1, S3,

S7, S25, S17, S22, S23, S4, S5, S10, S20), and reasoners (S9, S24). These groups of

explainers in both activities were used to identify the relationship among perceived

ability, explanation style, and performance.

Previous studies had identified that good explainers produce more

explanations (e.g. (M. Chi et al., 1989)). Hence, it is important that we identify

this quantity in our context. In order to account for the number of explanations,

three different measures were considered. The most obvious one corresponded to the

number of words students employed within their explanations. However, a lot of

words does not necessarily mean multiple explanations. Therefore, the second

measure corresponded to the number of categories from the coding scheme found

within students’ explanations. Finally, the third measure corresponded to the

number of categories without considering those showed as limited knowledge.

Besides the characteristics of students’ explanations, the first data source we used in

this section corresponded to students’ perceived ability to do computer

programming. The five-level Likert-scale questions from the beginning of the

semester survey were averaged out to compute a composite score that could assess

the student perceived ability to do computer programming. Then students were

grouped as low perceived ability, mid perceived ability, and high perceived ability.

Values between 1 and 2.5 were considered low, values between 2.51 and 3.99 were

considered mid ability, and values equal or above 4 were considered high perceived

ability. These groups were used to identify whether student perceived ability had an

effect in the way they generated explanations in this context.
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Finally, students’ performance on the midterm exams were considered as the

student course performance. Both scores were normalized (0-10), and students were

grouped as low-mid-high performers. The groups for these scores were created as:

low below six; mid between six and 8.5; and high above 8.5. The distribution for

midterm one was as: six students were low performers, seven students were mid

performers, and 11 students were high performers. Meanwhile, six students were

mid performers and 18 students were high performers for midterm two. There were

no low performers in midterm two. The rationale for using these scores instead of

the overall course grade is because they were individual scores that were not

affected by other components of the course. For instance, the overall course grade

could be higher for those students who decided to submit all the extra-credit

assignment as compared as those who did not. Likewise, the collaborative nature of

the projects, where students discussed ideas and troubleshoot together, may have an

effect that does not relate to their own ability to do computer programs.

5.3.2 Results

The first analysis we conducted aimed at identifying whether there were

differences in students’ perceived ability and performance measures among the

groups of explainers that had previously been identified. Figure 5.17 presents a

comparative bar plot of these performance measures for the groups of explainers

within activity #2 (a) and activity #5 (b).

Schematic explainers showed a lower perceived ability compared to reasoners

explainers in both activities, and to procedural explainers in activity #5. Although

the trends were similar in both activities, the results were only significant for

activity #5 (F(2,17)=5.74, p-value=0.0125). These schematic explainers from

activity #5 also showed a lower performance in midterm one as compared to

reasoners and procedural explainers. This result suggests that the less experienced

students created explanations that involved more schematic knowledge than
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students with more experience. The two students that were part of the limited

explainers did not complete this survey. Thus, the group of limited explainers are

inconclusive, because it only involved two students, one of which dropped the course

and did not complete the performance measures.

(a) Activity #2 (b) Activity #5

Figure 5.17. Average differences in student performance by explainer type

The second step was to identify whether the initial perceived ability also had

an effect on the number of explanations the students created. Figure 5.18 presents

the comparison among the number of identified categories, explanations, and words,

from students’ in-code comments in activity #2 (a,b, and c) and #5 (d, e, f). The

number of categories correspond to the instances of all the codes from the coding

scheme (see Section 4-2) found in students’ in-code comments, while the number of

explanations did not consider the categories related to limited knowledge. Figure

5.18 (a and d) confirms that students with a higher perceived ability wrote shorter

explanations, as compared to mid and low performers. This results were only

statistically significant for activity #2 (F(2,16)=3.796, p-value=0.048). Likewise,

the number of words for low performers in midterm one was significantly higher

compared to high performers both in activity #2 (F(2,20)=6.543, p-value=0.0065)

and #5 (F(2,21)=4.519, p-value=0.0233), trend that was confirmed in midterm two.
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These results suggest that students with higher ability to program write

shorter explanations. Although these explanations showed non-significant

differences in the number of categories (see Figure 5.18), the types of knowledge

students used were indeed different. While, high performers wrote simple

declarative and procedural explanations, the low performers used schematic

knowledge. It is possible that while high performers were simply describing what

they already understand from the code, the low performers were actually engaging

in a thorough self-explanation process to make sense out of the example.

Figure 5.18. Number of categories, explanations, and words in students’ explanations

for activity #2: (a) perceived ability; (b) performance in midterm one; (c)

performance in midterm two; and activity #5: (d) perceived ability; (e) performance

in midterm one; (f) performance in midterm two
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5.4 Summary of the findings

This case study explored the characteristics students’ explanations as in-code

commenting activities in a glass box approach to CSE education. Students in a

programming course submitted their written explanations to programming

worked-examples as part of the weekly in-class activities. Specifically, we explored

the affordances of these activities for different students, the characteristics of

students’ explanations, and the relationship between students’ explanations and

students’ ability to do computer programming.

Four types of explainers were identified within each of the activities that

were analyzed. The reasoners corresponded to students who had a strong

background knowledge that enabled them to solve the problem on their own instead

of self-explaining the provided solution. The limited explainers corresponded to a

small group of students who depicted some common misunderstandings in

programming, while the procedural explainers focused on the execution of the

program, and the interactions with the user. The schematic explainers were

students who described the rationale for several sections of the code and made

connections to background knowledge. These students actually started with a low

perceived ability to do computer programming, but performed on average, as good

as the rest of the students. We hypothesize that these students were actually

engaged in a reflective process, while the high-ability students were simply

describing what they already knew.

The findings from this study also suggest several affordances of in-code

commenting activities for different students. For instance, out of twenty-one

students who answered the final survey, three students said they did not need them,

while three more gave no reason for their use. Four students said they only did

them for extra-credit, while 11 students said these activities actually helped them to

better understand concepts of the class. From students’ explanations in activity #2,

four out of these 11 students were described as reasoners, while six of them were
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described as schematic explainers, and one student was described as

problem-oriented. Similar patterns were identified in activity #5 (two reasoners,

three schematic, and six procedural), and in activity #11 (six schematic, on

procedural, one limited, and one problem-oriented). This connection between the

affordances and the characteristics of students’ explanations reinforces our

hypothesis: most of the students doing comprehensive schematic explanations were

actually reflecting on their own learning.



114

CHAPTER 6. GLASS BOX APPROACH

The second case corresponds to a sophomore level course in materials

engineering called thermodynamics of materials. As opposed to the first case, this

was not a programming course but a core course in materials engineering that

involved the use of computational tools to represent disciplinary phenomena.

Students had access to Python code and could use it for their projects, but most of

the functions were encapsulated into libraries. Students did not have access to the

underlying mechanisms of the simulations, and therefore, they were considered a

black box approach to CSE education.

This chapter is divided into four sections aimed at responding the three

guiding research questions. Section 6.1 explores the affordances of in-code

commenting activities students in the black box context: RQ1. Section 6.2 describes

the characteristics of students’ explanations for three computational modules in this

course: RQ2. Section 6.3 compares the types of explainers and the characteristics of

students’ explanations to students’ ability to do computer programming: RQ3.

Each section defines its own questions that contribute to answer the overall research

questions of the study. These sections also describe in more detail than Chapter 4,

the specific procedures for each research question.

6.1 Affordances of in-code commenting activities for students

Students participating in this part of the study were enrolled in a

sophomore-level course called thermodynamics of materials (THERMO) at Purdue

University, either during spring 2015 or spring 2016. The THERMO course included

three computational modules in which students used a simulation tool to represent

disciplinary phenomena. The simulation tool is a set of GIBBS Python libraries as
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implemented in the Virtual Kinetics of Materials Laboratory (VKML) hosted a

nanohub.org (Alabi et al., 2015; Cool et al., 2010). In each module, the course

instructor walked students through a worked-example, interpreting the program

output, and briefly describing the Python code. The students had attended two

lecture sessions the same week before the module, where they were explained the

THERMO concepts. Students were assigned two questions related to the module

within the weekly homework assignment. One of the questions asked students to

write in-code comments as part of the worked-example presented during the

module. The second question asked students to modify part of the code to make it

work for some other situation (e.g. changing the equations). These questions were

only extra-credit and students could submit the homework working in groups in

2015. The questions and the homework assignments became individual and graded

for the spring semester, 2016. This section explores the effect of this activities on

students’ engagement with the worked-examples, and the different ways in which

students afforded them. The guiding research questions are:

• What is the effect of using in-code commenting activities on students’

engagement with the worked-examples in the context of a black box approach

to computational science and engineering?

• What are affordances of in-code commenting self-explanation activities in the

context of black box approach to computational science and engineering?

6.1.1 Data Collection and Data Analysis

The data collected for this part of the study comprised three elements: (1)

the number of submitted self-explanations in 2015 and 2016; (2) students’ responses

to interview open-ended questions related to their use of the worked-examples and

the self-explanation activities; (3) students’ responses to Likert scale and

open-ended questions in an end-of-the-semester survey. For the final project of the

course, students were invited to describe in an interview how they approached their
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solution, what was the role of computation in their learning process, and their

perceptions about the computational modules and the self-explanation activities.

At the end of the semester, students were asked three five-level Likert scale

questions related to the in-code comments activities in the form : “I feel writing

comments within the sample code helped me to”: (1) understand the Python

examples; (2) solve the homework exercises; (3) understand better thermodynamics

concepts. In 2016, two open-ended questions were added to this final survey asking:

(a) Please include any additional ideas in which you think that commenting the

examples or the lab sessions supported your learning process in this course (b)

What would you improve about the Python lab sessions?

Student responses to the open-ended, as well as the interview comments were

analyzed using categorical analysis. The procedures of analysis for reliability were

the same as the ones employed in the glass box context, having two researchers

looking at fifty percent of the data and negotiating until agreement was reached.

The Likert-scale questions were plotted as a histogram to identify trends in their

distributions, and the non-parametric Wilcoxon rank test was employed to compare

distribution of student responses.

6.1.2 Results

The number of students who commented the worked-examples code for

extra-credit in 2015 decreased over time. The worked-example for module 1 was

commented by 14 groups of students corresponding to 45 students. Three groups of

students wrote in-code comments for the worked-example in the module 2, and none

of the groups wrote in-code comments for the module 3. When asked about this

phenomenon during the interview, the three students who agreed to participate

explained their own reasons, and what they thought could be the rationale from

other groups:
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Student One: “I never did that [the extra credit]- I decided I wasn’t

very worried about the code. I was like, ”Okay. Do I understand what’s

happening, kind of? Yes. All right. Then I don’t need to do the code.”

Student Two: “I think I did for the first one [commenting the code]

was sort of just to be able to bridge the gap between, you know, what

something is and how it looks when you’re trying to do it in a

computer.”

Student Three: “I explained it [the worked examples] for other people,

so that they could comment it. So I understand it a little bit. .. the way

[the course instructor] does extra credit, is not really extra credit,

because he teaches a curved class. I think I understand pretty well. Uh..

but other groups had a lot more trouble on the homework, so by the

time they’d get to the extra credit, they’re like ”I’m just ready to be

done with the assignment.”

The distributions of student responses to the Likert scale questions are

presented in Figure 6.1. Similar patterns were found for both semesters regarding

the comparison of distributions to student responses: a large percentage of students

( 70%) agrees or strongly agrees that the self-explanation activities help them to

understand the examples.

The Wilcoxon ranked test showed that writing in-code comments helped

students to understand the Python examples more than to: (1) solve the homework

exercises ([2015] Z-value=3.99, p-value <0.01, effect size r=0.75; [2016]

Z-value=3.17, p-value <0.01, effect size r=0.89); and (2) better understand

THERMO concepts ([2015] Z-value=3.86, p-value <0.01, effect size r=0.75; [2016]

Z-value=3.96, p-value <0.01, , effect size r=0.86). The student responses regarding

the usefulness of writing comments to solve homework exercises or to better

understand THERMO concepts were neutral and non-significantly different from

each other ([2015] Z-value=-0.14, p-value=0.9; [2016] Z-value=1.71, p-value=0.09).
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This result suggests that writing in-code comments within the Python code helped

students to better understand the Python code within the worked-example even in a

black box approach.

(a) Understand the examples (b) Solve the homework (c) Understand Thermo concepts

(d) Understand the examples (e) Solve the projects (f) Understand Thermo concepts

Figure 6.1. Student distribution on the five-level Likert scale questions for 2015

and 2016 - I feel writing comments within the sample code helped me to: (a)

Understand the examples (2015); (b) Solve the Homework Assignments (2015); (c)

Understand Thermo Concepts (2015); (d) Understand the examples (2016); (e) Solve

the Homework Assignments (2016); (f) Understand Thermo Concepts (2016);

Additional insights regarding the affordances of writing in-code comments for

the worked-examples were provided at the end of the semester. Nineteen students

answered to the question: “Please include any additional ideas in which you think

that commenting the examples or the lab sessions supported your learning process

in this course”. Their responses were distributed as follows: four students
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considered this was helpful to better understand how the code works, three students

used it to learn how to use these programs to solve other THERMO problems, three

students identified the underlying equations of the model while writing comments,

two students said it helped to understand how computation can support

thermodynamics models, two students thought the examples were useful to visualize

THERMO concepts, one student became familiar with Python syntax, and one

student was able to connect individual lines of code with the overall purpose of the

example. Two quotes from these responses are:

Student One: “The commentary helped me better understand how the

Python session was connected to the thermodynamics problem it

modeled. [Understanding how computation can support THERMO]”

Student Two: “I think commenting helps me look the code more

carefully, and in a more general view, rather than just focus one line, but

a section of code. [Connect individual lines with overall purpose]”

Finally, 30 students made suggestions to the computational modules. Ten

students would like to have additional support in terms of Python programming,

while nine students would like to have more transparency to the libraries, being able

to access and even edit the underlying functions of the GIBBS framework: “More

explanation of what the built-in functions do, like comon tangentsolver or

PhaseDiagramSolver”. Five students would like to have more sessions dedicated to

computation in the context of THERMO, and three students suggested having more

coding activities during the sessions. Two students suggested changes in the

graphical user interface, and one student would like to work in a locally installed

version of the GIBBS framework instead of using the online version.

6.2 Characteristics of Students’ Explanations

The previous section showed how the implementation of in-code commenting

activities helped students: to better understand the examples, see the connection
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between computation and thermos, and to even get familiar with the Python

syntax. In this section, we explore the characteristics of students’ explanations

based on the analytical framework described in section 4.2.

Forty-three students enrolled in thermodynamics of materials participated in

this part of the study. As part of the weekly homework, students were asked to

comment the worked-example code explaining what each line was doing, and to

make changes to the code. The submission of the homework assignment was due

one week after the computational module had been implemented. We analyzed the

written comments to answer the following guiding research questions:

• What are the characteristics of students’ explanations in a black box approach

to CSE education?

• How does the characteristics of students’ explanations in a black box approach

to CSE education change over time?

• What common misunderstandings in programming can be identified from

students’ explanations in a black box approach to CSE education?

6.2.1 Data Collection and Data Analysis

Students’ comments were analyzed using the framework described in section

4.2. The types of sections that were identified for these examples slightly varied

with respect to the ones in the other context: (1) importing libraries when packages

or libraries are being imported to be used into the code; (2) setting up Problem

Parameters when a value related to the problem is computed ; (3) setting up

Supporting Variables when other variables that are used to solve the problem are

computed; (4) creating GUI Object when an object to control the graphical user

interface is created; (5) creating Function when a function is been declared; (6)

setting up GUI when sliders and user interface objects are being configured; (7)

validation when an if-clause starts; (8) validating Result when the result is being
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computed and sometimes printed for validation ; (9) launching Program when the

graphical user interface is related to the created functions and launched.

Module #1

The purpose of the first computational module was for the students to get

familiar with the VKML user interface and Python programming. The example was

a simple sequence of steps to identify whether a given function was a state function

or not. A state function is “a mathematical property of a material system that

mathematically describes the equilibrium state of the system independently on what

process the system followed to arrive at that condition” (DeHoff, 2006). Thus, the

way to validate a state function is by differentiating the function with respect to one

variable, and then differentiate to a second variable. If this process is repeated in

reverse order, and the result is the same, the function is a state function.

The sample Python code is presented in Figure 6.2 divided into six sections.

The first two sections imported the required libraries to deal with symbolic variables,

and defines the symbolic variables. The third section defined the function U to be

tested. Sections four and five differentiated the function first with respect to one

variable and then with respect to the other one. The final section validated whether

the function was a state function or not by subtracting one of the derivatives from

the other one. The result must be zero if U was indeed a state function.

Module #2

The second computational module focused on the creation of an interactive

free energy plot in which the user could modify the variables omega, enthalpy, and

melting points from the graphical user interface (GUI). The Python code (Figure

6.3 started by importing the required libraries in section one: the regular free energy

variable, the binary solver, the graphical user interface, and the plot viewer. The

second section created the plot object, where the free energy plot is presented. The
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Figure 6.2. Python code for Module 1 - State Function

call back function created in section three encompasses the THERMO

computational model created in section four. Section five, six, and seven initialized

the graphical user interface and the parameters. The last section made the

connection between the GUI and the callback function, and runs the GUI.

Module #3

The third module included an example that aimed at plotting a phase

diagram and the common tangent lines associated with the two different phases of a
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Figure 6.3. Python code for Module 2 - Free Energy Plot

material. The Python code presented in Figure 6.4 is somewhat similar to the one

for the previous module but has two important changes. First, two functions were

created to be controlled from the graphical user interface. Section three created the

function that configures and plots the phase diagram. Section six created the

function for configuring and plotting the common tangent lines. Hence, the

parameters to change these plots were different to the previous ones, and the parser

p needed to connect the two functions with the GUI. The second change was that

two phases (DG1 and DG2) were defined within each function.

6.2.2 Patterns within each activity

Module #1

Forty-three students submitted their in-code explanations as part of their

weekly homework assignment. Figure 6.5 presents the distribution of students’ use
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Figure 6.4. Python code for Module 2 - Free Energy Plot

of the five types of knowledge within the code sections. The declarative knowledge

was commonly used among the six sections, while the procedural knowledge was

only used in sections three to six, only by a group of students who described what

would happen during execution time (EXE). The schematic knowledge was mostly

used in sections two and three, where students made connections between the

variables and the state function to the THERMO principles. Four of these students

actually brought principles that were not evident in the example by mentioning that
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the differentiation that was carried out corresponded to the Maxwell equations:

“using same sympy functions to take cross derivatives of dudn and .dudv. to check

is maxwells equations hold.” The strategic knowledge was almost limited to section

six, when students described the conditions of the difference to conclude that U was

a state function: “The difference line test to see if (du/dUdN)=(dU/dNdV), in

which case the function is a state function”. Twelve students showed limited

knowledge in at least one of the sections. These instances of limited knowledge

ranged from incorrect statements (INC) to paraphrasing (PHR) explanations

Figure 6.5. Students’ use of the types of knowledge for each section of the code:

Module #1

Four clusters were identified from the types of knowledge students used along

the six sections: problem-oriented (TS38, TS24, TS39, TS40, TS42, TS25, TS17,
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TS30, and TS41); summarizers (TS32, TS9, TS18, TS1, TS29, TS33, TS6, TS27,

TS36, and TS35); procedural (TS16, TS15, TS20, TS3, TS7, TS19, TS34, and

TS37); declarative (TS21, TS44, TS10, TS31, TS4, TS5, TS28, TS46, TS2, TS45,

TS23, TS14, TS12, TS13, TS8, and TS22). Since many students did not explain the

first section, where the libraries were imported, and those who did only mention

that something was being imported, this section was not considered for the

clustering process.

The first group (problem-oriented) did not explain the first section (i.e.,

importing libraries) and did not identify any group of instructions with common

purpose (CHK). These students rarely showed any instances of procedural or

schematic knowledge, and only did it to make reference to the problem. Moreover,

all of them identified the conditions of application of actions (CON) in the

validation of results section, making appropriate connections to the problem (PRO).

The second group corresponded to the summarizer explainers, who also

identified these conditions and made connections to the problem at the end of the

code, but also identified chunks of code with certain goal, and highlighted these

goals. These students rarely used background knowledge (BGK) and never

explained the rationale for certain instructions (WHY). The third group of students

comprised the procedural explainers, who consistently talked about the problem in

execution time throughout sections three, four, five, and six, while the fourth group,

comprising declarative explainers mostly focused on saying what the instruction

does (COA), and which parameters uses (PAR). Figure 6.6 (b f ) shows the

characteristics of students’ explanations for sections two to six.

Overall, we see that the definition of the variables in the second section

(Figure 6.6 (b)) was the one with the largest number of connections to background

principles (BGK 12), since the students described what these variables represented

using THERMO principles: “the symbols for volume, Temperature, R, Pressure,

Entropy and N are being defined as variables”. The third section (Figure 6.6(c)), in

which the function to be tested was defined, was the first one to present connections
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to the problem (PRO 17 students) to define of the overall goal (GOA 13 students).

In the sections in which the derivatives were calculated (four and five Figure 6.6(d,

e)), almost all students described the parameters for these derivatives. Interestingly,

students did not include (or very rarely) any explanations as how something was

done (HOW only one student) nor a rationale for any given instruction (WHY one

student).

Figure 6.6. Patterns of students’ explanations by section type: Module #1

Module #2

Thirty six students submitted their explanations for the second module.

Sections two and six often showed several instances of limited knowledge involving a

common misunderstanding that students had: students seemed to guide their

interpretation of the instructions by the parameters these received. For instance,

when the plot viewer variable was created in section two, students often explained
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that this instruction “#Set[s] a title to GUI”. While the instruction did set a title for

the GUI, this was a very limited explanation. The main objective of this instruction

was to create a plot object that could be used to show the free energy diagram. As

part of this process, the code gave a title to this object. The same misunderstanding

was commonly identified in section six. Figure 6.7 depicts the distribution of the

types of knowledge students used within each section of the worked-example.

Figure 6.7. Students’ use of the types of knowledge for each section of the code:

Module #2

Regarding the other types of knowledge, the largest number of instances of

procedural knowledge was found in section seven, when students talked about the

interaction of the user with the menu. The schematic and strategic knowledge often

appeared in section four, when the actual THERMO variables were being

configured, and several students either did not explained the section three or limited

their explanations to declarative knowledge. This section involved the definition of a
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function to configure the parameters of the problem, but these students often just

said things like: “## defines a function, and calls certain variables to be in the

function”.

The cluster analysis for student explanations related to the second

computational module revealed four groups of explainers: summarizer (TS4, TS9,

TS17, TS33), limited (TS7, TS6, TS41, TS21, TS45, TS31, TS43, TS10, TS44, TS8,

TS40, TS28, TS16), procedural (TS34, TS23, TS39, TS14, TS1, TS25, TS3, TS35),

and declarative (TS22, TS36, TS27, TS11, TS24, TS13, TS30, TS38, TS42, TS19,

TS37) explainers. The patterns of their explanations within each section of code are

presented in Figure 6.8. The first group (i.e. summarizer) corresponded to four

students who wrote summarizing explanations for the chunks of code they

identified. As a consequence, they did not write explanations for sections six, seven,

and eight. Instead, they grouped them all using a single explanation in section five,

where they described the goal of these chunks: “gui where the user can control the

temperature and initial omega value”.

The limited explainers depicted multiple instances of limited knowledge in

sections one, two, four and six. These instances were mostly limited explanations of

instructions where students only described part of the purpose of an instruction.

This group only showed sporadic instances of schematic and strategic knowledge in

the fourth section to make connections to the problem.

The procedural explainers focused on how this program would execute,

writing multiple instances of the interaction between the user and the GUI in

section seven. This group also used instances of procedural, schematic, and strategic

knowledge in sections four and seven, but did not explained section five.

The fourth group corresponded to the declarative explainers, who

consistently used declarative knowledge to explain what the program did

throughout all sections, but section four. In section four, some of these explainers

made connections to the problem either by talking what some variables represented:

“the melting temperature at a, and the melting temperature at b”; or by clarifying
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Figure 6.8. Patterns of students’ explanations by section type: Module #2

what the plot was about: “plots the graph of Gibbs vs. Temperature in the GUI”.

However, this was the case for all the groups of explainers in this section.

Overall, this module had all students writing some kind of explanation for

the first section (Figure 6.8(a)), where libraries where imported. This contrasts with

the first module where only 40% of the students explained that section. However, 10

students paraphrased this instructions (PHR), and only seven students made
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connections with the goal of importing this libraries (RAG). Students from all

groups showed instances of limited explanations in section two, where as described

above, their explanations focused on setting a title and not creating a handler for

the plot.

Only one student mentioned what was the actual goal of the function

(GOA), and none of the students mentioned the rationale for the instructions

(WHY). In general, the schematic knowledge was limited to the connections to the

problem (PRO), the use of background knowledge (BGK) and the relationship

action goals (RAG), especially in section four, when setting up problem parameters.

Strategic knowledge was limited to the conditions of application of actions (CON)

both in sections four and five.

Module #3

Thirty-five students submitted explanations for the example of this

computational module. Figure 6.9 presents the types of knowledge students used

within each section of the code. The most used type of knowledge was the

declarative knowledge across the sections. Similar to what was described in the

worked-example for Module #2, several students wrote limited explanations for

sections two and nine, where the GUI objects were being created. However, four

and eight students also showed limited knowledge in sections five and six

correspondingly, where they paraphrased the configuration of the model, depicting

unclear understanding of this configuration. Only four students (TS3, TS20, TS23,

TS24) employed the four types of knowledge within one section.

The schematic knowledge was mostly used in sections four, six, seven, and

eight, which purpose was to configuring parameters related to the problem, while

the strategic knowledge was mostly employed in sections seven and eight, identifying

chunks of code with certain purpose. Also, the use of procedural knowledge was
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Figure 6.9. Students’ use of the types of knowledge for each section of the code:

Module #3

very low, with a higher frequency within the last three sections, which involved user

interface, and execution time and almost non-existent in the rest of the sections.

Four groups of explainers where identified for this activity: problem-oriented

(TS26, TS13, TS43, TS37, TS1, TS9), summarizer (TS33, TS42, TS24, TS31, TS45,

TS25, TS41, TS35, TS30, TS19, TS6, TS20, TS11, TS40, TS23, TS36), limited

(TS17, TS44, TS16, TS10, TS8, TS2, TS38, TS21), and declarative (TS27, TS3,

TS22, TS28, TS5). The first group of explainers (problem-oriented) used multiple

instances of declarative knowledge and made consistent connections to the problem

in the sections where the parameters were being configured (i.e., sections four, five,

seven, and eight). This group of explainers also used background knowledge to

describe what certain variables represented. However, they were not considered

schematic explainers because they did not explain why the instruction works as it is.
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The summarizer explainers was the second group of explainers, who only

wrote comments for six out of 11 sections of the code. These explanations were

mostly focused on identifying chunks of code and describing the goal of these groups

of instructions. The third group comprised the limited explainers because they often

wrote limited or incorrect explanations, and these were merely based on declarative

knowledge. The fourth and final group did not often use schematic nor strategic

knowledge, and instead limited their explanations to simple descriptions of

consequences of actions such as “solves equations” and “plots data”. The patterns

of the explanations for the four clusters of students that were identified in this

module are presented in Figure 6.10.

Figure 6.10. Patterns of students’ explanations by section type: Module #3

Overall, this activity had students actively explaining all sections, although a

small group of them preferred to summarize their explanations in sections three, six,
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and ten (Figure 6.10 (c,f,j)). Sections related to setting up problem parameters (i.e.,

four, five, seven, and eight) involved explanations that made these connections to

the problem. The number of limited explanations decreased as compared to the

previous module, but again, no instances of the rationale (WHY) for the given

instructions were identified.

6.2.3 Results

What are the characteristics of students’ explanations in a black box approach to

CSE education?

Students’ explanations in the black box approach involved the use of all

types of knowledge in different proportions (see Figure 6.11). Declarative knowledge

was the most widely used type of knowledge across the three different

computational modules being at least 50% for each explanation activity. Students

often described what certain section of the code did, but did not explain how, why,

or under which conditions it worked.

The schematic was the second most used type of knowledge, usually to make

connections to the problem, and to a lesser extent, to bring background knowledge

into their explanations and to describe the relationship action-goals. The limited

knowledge peaked on the modules #2, where students showed a common

misunderstanding of the use of parameters while creating objects, which remained

present in a lower degree, for module #3. The strategic knowledge was consistently

used around 10% of the times, and the procedural knowledge was the least used

type of knowledge across all three modules.

There were also differences in the number of occurrences for each category

within each type of knowledge (Figure 6.12). These values need to be taken into

perspective considering the number of possible instances based on the number of

commentable sections and the number students submitting explanations for each

module: (1) 43 students, six sections; (2) 36 students, eight sections; and (3) 35
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Figure 6.11. Percentage of occurrences of the types of knowledge within each module

students, 11 sections. Assuming that there was one section students did not

comment in each exercise (e.g. importing libraries), the total possible number of

instances would be (43 * 5) + (36 * 7) + (35 * 10) = 817.

Student use of declarative knowledge corresponded to more than 50% in all

the three activities, and this was mostly thanks to the large number of explanations

that involved consequences of actions (COA 653), which is almost three times the

next category (PAR 234), and almost four times the number of connections to the

problem (PRO 170). This result suggests that only one fourth of the students’

explanations described the consequences of actions. These explanations were
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Figure 6.12. Number of instances of each category within the types of knowledge
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connected to the problem, and only once every 10 times students connected to

background knowledge (BGK 57). Furthermore, there were almost no explanations

of the rationale (WHY 2), and only 32 descriptions of the goal of certain section

(GOA).

The limited explanations (LIM 60 instances) and paraphrasing (PHR 54)

where the most common ones within the identified instances of limited knowledge,

but a significant number of incorrect statements (INC 29) were also identified. The

few instances of procedural knowledge (87 in total) were mostly due to descriptions

of user interaction in execution time (EXE 76). Likewise, three quarters of the

instances of strategic knowledge were related to the identification of chunks of the

program (CHK 129), and the remaining third focused on identifying the conditions

for these instructions (CON 45).

How does the characteristics of students’ explanations in a black box approach to

CSE education change over time?

Five types of explainers were identified within this context: limited,

declarative, problem-oriented, summarizer, and procedural. The limited explainers

were those students who consistently showed limited or incorrect explanations. The

declarative explainers focused on simply describing what an instruction or a section

did, without actually explaining how, why, or under what conditions this worked.

The third group, problem-oriented explainers, was similar to the declarative

explainers, but made multiple connections to the problem when describing the

consequences of actions, or what certain variables represented. The summarizer

explainers usually did not write comments in all sections but summarized them in a

single one, identifying chunks of code with certain purpose, while the procedural

explainers described user interactions with the program during execution time.

Figure 6.13 depicts the distribution of the groups of explainers within each

activity. The first module did not show any limited explainers, probably because the
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code was rather a simple sequence of instructions with no complex data structures,

loops or functions. However, this group corresponded to 36.11% of the students in

module 2 and 22.86% in module 3. Declarative explainers were 37.21% of the

students for module 1 and 30.56% in module 3, but only 14.29% in module 2. One

possible explanation is that this group of students moved to the limited explainers,

who peaked in module 2 (36.11%) with a common misunderstanding, which was

also present in module 3 (22.86%). Likewise, the group of students who made

consistent connections to the problem was only present in modules one and three.

Figure 6.13. Distribution of types of explainers between activities: THERMO
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What common misunderstandings in programming can be identified from students’

explanations in a black box approach to CSE education?

Students in the black box context showed a large percentage of explanations

depicting limited knowledge, especially for modules #2 and #3. These explanations

were distributed among limited explanations, paraphrasing, and incorrect

explanations. The first module did not include limited knowledge, probably because

it was a simple sequence of instructions that did not require complex programming

experience. Among the instances of limited knowledge, the most common one was a

false assumption that the parameters determine the purpose of an instruction. For

instance, in the lines of code such as this one: Viewer2=

GnuplotViewer(title=’Common Tangent’), many comments would be like “titles a

graph window”, “creates the graph title”, or “give title to the plot in

Viewer2:Common Tangent”. Although it is true that the program assigned a title

by passing the parameter, the purpose of the instruction was actually to create a

GnuplotViewer object, which would be titled Common Tangent, and would be used

to invoke methods that showed the resulting plots.

Another difficult concept for this group of students was to understand the

use of the callback function in the module #2. Seven students did not explain this

function, 11 students either paraphrased or wrote simple consequences of actions

(e.g., “Creates a function callback”, “callback variables”) and two students related

this function that would be later connected to the graphical user interface to an

actual loop statement: “Creates a loop in which variables pass between”, “starts

callback loop with 5 variables”.

Finally, students did often not talk about objects or libraries in any of their

explanations. In fact, one of the students considered that importing all elements

from the Sympy library in module #1 corresponded to “Import [a] file”, other

students talked about it as a database, a directory of functions, or an interface.

Likewise, in modules #2 and #3 students assumed that importing the regular free
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energy variable from gibbs.variables was to “import value of RFE”. However, this

was actually a function from the library that would be later used with different

parameters.

6.3 Relationship between Students’ Explanations and Student Ability to Program

After identifying the different types of explainers in a black box context, we

wanted to identify whether these characteristics had a relationship with student

ability to do programming. Forty-three sophomore engineering students

participated of this part of the study. These students completed a pre-survey at the

beginning of the semester, and a pretest/posttest instruments before and after each

computational module. The guiding research questions were:

• How do the characteristics of students’ self-explanations in a black box

context relate to relate to their perceived ability to program?

• How do the characteristics of students’ self-explanations in a black box

context relate to their performance in the course?

6.3.1 Data Collection

Each module started with a five-minute pretest that evaluated student

understanding of the topics that would be represented in that session. These topics

had already been presented during the two lectures sessions immediately before the

computational module. The test consisted of a single open-ended question where

students needed to identify certain properties or phases of a given material. For

instance, in module #2 students created a free energy plot with modifying

parameters: omega, enthalpy, and melting points. Students would analyze under

which conditions this material would be stable and unstable. Therefore, the

pretest/posttest instruments provided students with a similar plot and asked them

to identify where the solution would be unstable (see Figure ??).
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Figure 6.14. Distribution of types of explainers between activities: THERMO

After the pretest, the instructor of the course introduced the worked-example

and the students played with the parameters to make inferences about the

phenomenon. As part of a weekly homework assignment, students were required to

write comments within the code to describe what the code was doing, as well as to

modify part of the code to make it work for certain given conditions. One week

after, when the homework was due, students started the next module with a

posttest plus the pretest of the new module.

6.3.2 Data Analysis

Students’ explanations were qualitatively analyzed following the same

process as in the glass box context. Students’ in-code comments were categorized

using the codes from Table 4.3, which were then used to identify types of explainers

based on the types of knowledge they used in each section. The types of explainers

that were identified for module #2 were: summarizer (TS4, TS9, TS17, TS33),
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limited (TS7, TS6, TS41, TS21, TS45, TS31, TS43, TS10, TS44, TS8, TS40, TS28,

TS16), procedural (TS34, TS23, TS39, TS14, TS1, TS25, TS3, TS35), and

declarative (TS22, TS36, TS27, TS11, TS24, TS13, TS30, TS38, TS42, TS19, TS37)

explainers. Two new types of explainers were identified as compared to the ones

previously described in the CPMSE course: summarizer and declarative explainers.

The declarative explainers used mostly declarative knowledge in their explanations,

saying what an instruction does. On the other hand, the summarizer explainers

would regularly identify chunks of code with certain goal, and would highlight the

relationship action goals. Similar types of explainers were identified in module #3:

problem-oriented (TS26, TS13, TS43, TS37, TS1, TS9), summarizer (TS33, TS42,

TS24, TS31, TS45, TS25, TS41, TS35, TS30, TS19, TS6, TS20, TS11, TS40, TS23,

TS36), limited (TS17, TS44, TS16, TS10, TS8, TS2, TS38, TS21), and declarative

(TS27, TS3, TS22, TS28, TS5).

The beginning of the semester survey asked the same two questions related

to student ability to create a computer program: (1) [Likert Scale] I have the ability

to design an algorithm; and (2) [Likert Scale] I have the ability to write a computer

program. These were averaged to identify a composite score for student perceived

ability to create computer programs. Both, the perceived ability and the

pretest/posttest scores were employed to identify their relationship with the type of

explainers.

The pretest/posttest instruments were scored by the teaching assistant of the

course in a scale 1-5. The gain for each student was computed as posttest-pretest.

Furthermore, the gain score was employed to group students by low, mid, and high

performers. A low gain score was considered to be zero or less, an intermediate gain

comprised values between one and two, and a high gain score corresponded to gains

of three or more.
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6.3.3 Results

Figure 6.15 presents the comparison among these types of explainers on

average student perceived ability, and average pretest/posttest performance.

Although there were no significant differences among these groups regarding the

student perceived ability, or pretest/posttest scores, we identified similar trends in

both modules: (1) the limited explainers seem to have started with a lower

perceived ability to program; (2) the declarative explainers showed the highest

average performance on the pretest in both modules; and (3) the summarizers

showed an intermediate gain from pretest to posttest. It is possible that students

who felt confident after completing the pretest, did not see the value of reflecting

deeply on the code. These students did not show a significant learning gain, in part

because of the already high scores in the pretest.

(a) Module #2 (b) Module #3

Figure 6.15. Average differences in student performance by explainer type

The second part of the analysis consisted of identifying whether the

extension of their explanations and the number of identified categories within their

comments were different based on their ability and their disciplinary knowledge.

Figure 6.16 shows the number of explanations based on the students’ perceived
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ability (a,d), pretest score (b, e), and posttest-pretest gain (c, f). There were no

significant differences nor clear patterns among students’ explanations for any of the

performance measures.

Figure 6.16. Number of categories, explanations, and words in students’ explanations

for module #2 and #3 based on: (a) perceived ability [Module #2]; (b) pretest

performance [Module #2]; (c) gain from posttest to pretest [Module #2]; (d) perceived

ability [Module #3]; (e) pretest performance [Module #3]; (f) gain from posttest to

pretest [Module #3].

6.4 Summary of the findings

This chapter explored the characteristics of students’ written explanations in

a black box context. Students were exposed to three computational modules using a

Python-based simulation tool to represent thermodynamics phenomena. As part of
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the homework assignments, students were asked to write in-code comments to

explain how the Python code solved the problem. Three elements were explored

during the implementation of these instructional approach to elicit students’

self-explanations: (1) the affordances of in-code commenting activities for students;

(2) the characteristics of students’ explanations; and (3) the relationship between

students’ explanations and student ability to do computer programming.

Students in the black box context described the different ways in which they

afforded the written explanations. While writing in-code comments, students

commonly reflected on how the sample code worked, how these simulations solved

problems in thermodynamics, and even learned about the Python syntax. To a

lesser extent, these activities helped students to learn more about thermodynamics

and to solve the course project. Nevertheless, nine students would also like to have

access to the encapsulating libraries that implement the underlying mechanisms of

the simulations.

Students’ explanations in this context showed five different types of

explainers: declarative, problem-oriented, summarizer, procedural, and limited.

Three of these types (i.e., declarative, problem-oriented, and summarizer) mostly

used declarative knowledge, with some variations. The problem-oriented explainers

made connections to the problem, while the summarizer commented chunks of code

with certain purpose. The procedural explainers described how the program would

execute, and the limited explainers showed incorrect or limited explanations, and

misunderstandings of the code. In general, there was very limited use of schematic

knowledge, especially in terms of the rationale for any given section of the code, and

almost no instances of monitoring activities.

The characteristics of students’ explanations did not show a clear

relationship to the students’ perceived ability to do computer programming. There

was a common pattern between modules two and three, where declarative explainers

performed better in the pretest as compared to the other groups of explainers.
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However, these result was not statistically significant. Further discussion on these

findings is presented in the next chapter.
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CHAPTER 7. DISCUSSION AND IMPLICATIONS FOR TEACHING AND

LEARNING

Students’ ability to explain is an important skill for science and engineering

(Lombrozo, 2006). Humans communicate science through explanations that they

build based on what they know (Sandoval & Millwood, 2005). Computer

programmers usually communicate with collaborators using in-code comments. This

study explored students’ explanations in the form of in-code comments in the

context of computational science and engineering.

Three elements of students’ written explanations were studied (see Figure

7.1). We first identified the affordances of in-code commenting activities for

students. We defined affordances in this context as the benefits derived by students

in writing the in-code comments, and the ways individual students take advantage

of them (Gibson, 2014). We then explored the characteristics of students’

explanations, organizing them based on the type of knowledge they employed. This

analysis allowed us to group students based on the types of explanations they used

on different sections of the code. Finally, we compared these characteristics of

students’ explanations to their ability to do computer programming. The three

following sections discuss these three elements under the lens of existing literature in

explanations. Last section (8.4) discusses the implications for teaching and learning.

Two different contexts were studied. The first group was the glass box

approach, a programming course applied to disciplinary knowledge from materials

science and engineering. The second group was the black box approach, in which

students enrolled in a thermodynamics of materials course that used computational

tools to represent disciplinary phenomena. Students were assigned to write in-code

comments within programming worked-examples to explain what the programming
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Figure 7.1. Three main elements of students’ explanations explored in this study

code was doing. These explanations where qualitatively analyzed and characterized

based on the types of knowledge students employed on them.

7.1 Affordances of in-code commenting activities for students

This first part of the study explored the affordances of in-code commenting

activities for students in the context of CSE. Self-explaining can be beneficial to

learning because students engage in constructive learning activities (Chiu & Chi,

2014). Students use their background knowledge to make inferences about the

worked-examples, creating, or adapting their own schemata. Eliciting

self-explanations in the context of CSE education had not been previously explored.

Moreover, the use of in-code comments as the self-explanation strategy is also an

innovative contribution of this study.
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Computing education can be approached as a glass box or a black box

approach. While the glass box provides students with access to the underlying

mechanisms of the computer simulations, it also involves higher cognitive demands.

In the following sections we present the affordances of in-code commenting activities

for students participating in one of these two contexts.

7.1.1 What is the effect of using in-code commenting activities on students’

engagement with the worked-examples in the context of black box and glass

box approaches to computational science and engineering?

Using in-code comments as self-explanation strategy engaged students to

access the worked-examples more often and more deeply, especially in the glass box

approach. Several students in the glass box context submitted the in-code

comments for extra-credit and became aware of the existence of the

worked-examples. When the activity became graded in 2016 for the first few in-class

exercises, a higher percentage of students kept submitting their written explanations

during the whole semester.

The black box approach showed that in 2015 several students did the first

extra-credit activity, but this rapidly decreased. Students argued that they were

already too busy with the homework assignments and that the extra-credit was not

completely real, given this was a curved class. In addition, they might not have seen

the value of accessing the code, since the graphical user interface already helped

them to better understand the THERMO-related concepts. Furthermore, previous

studies have suggested that while novices take advantage of worked examples,

experts prefer to focus on problem solving activities (Atkinson et al., 2000; Vieira

et al., 2015). Hence, a possible explanation for the decrease in the number of

submissions is that students were increasingly acquiring schemata that allowed them

to face the problems on their own. Overall, although writing in-code comments can

engage both the glass box and the black box approaches to study the
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worked-examples, students in the glass box approach showed a higher level of

engagement, given that the purpose of the class was to learn programming skills

rather than to represent phenomena.

Another effect of the in-code comments for the black box approach relates to

the transparency paradox (Magana et al., 2010). Students in this context were

provided with certain level of access to the underlying mechanisms of the

simulations. Although the representations of the THERMO phenomena during the

modules would not usually require students to access the Python code, students

were encouraged to write in-code comments. This process certainly had an effect

that represents the paradox. While some students would like to have additional

transparency by being able to access the code inside the GIBBS libraries, other

students felt under-prepared and under-supported with Python programming skills,

necessary to better understand these mechanisms. This result suggests that a higher

transparency is important for students, but educators need to consider additional

instruction or scaffolding strategies so that students can benefit from this

transparency (Magana et al., 2012).

7.1.2 What are affordances of in-code comments self-explanation activities in the

contexts of black box and glass box approaches to computational science and

engineering?

Self-explaining can be beneficial for learning in several ways (Chiu & Chi,

2014; Williams & Lombrozo, 2010). Self-explaining can integrate new learning

materials to existing knowledge, or it can help students to fill the gaps of missing

information in the learning materials relying on previous knowledge. This

constructive learning activity also engages students in meta-cognitive processes that

help to identify and modify misconceptions. Moreover, self-explaining can help

students to focus on individual parts of a learning material, scaffolding their

learning process.
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Students either in the black box or the glass box context identified some of

these and other affordances of in-code comments as a self-explanation strategy. The

most common affordance in both contexts was the better understanding the

worked-examples, while connecting individual lines of code to the overall purpose of

the program. Writing comments in the glass box context gave students familiarity

with MATLAB syntax, helped them to understand difficult concepts that were

taught during the class, and to learn new functions. Going line-by-line writing

comments helped students understand how the computer works, to practice

algorithm design by seeing experts’ solutions to these problems, and even to

practice commenting skills.

On the other hand, students in the black box approach to computation were

able to identify underlying mathematical equations that model thermodynamic

phenomena. Likewise, students engaging in self-explanations were able to better see

the connection between thermodynamics and computation, while identifying how

they could use these simulation programs for their own projects. The explanation

process commonly involves the generalization of the explained phenomenon to

common patterns, which allow students to use this knowledge in other contexts

(Lombrozo, 2006). In a lesser extent than for the glass box approach, writing

comments also helped students in the black box approach to become familiar with

the programming language syntax.

A small portion of both groups did not find the in-code comments activities

useful. They argued that doing so required additional time that they could better

spend working on the projects. One of these students confessed having previous

experience in programming, so the activities only helped them at the beginning of

the semester to get familiar with the MATLAB syntax. This result was also

expected. Previous research has shown that worked-examples are usually useful for

novices, who do not have the background knowledge to solve problems on their own

from scratch (Sweller et al., 2011). Conversely, more experienced students prefer to

learn by problem solving, using their schemata and testing their own ideas.
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7.2 Characteristics of Students’ Explanations

The second part of this study explored the characteristics of students’

written explanations in the two contexts. Students’ in-code comments were

analyzed using categories within the four types of knowledge for science assessment,

and this analysis was used to group students based on their explanation style. The

following sections discuss the types of knowledge students used, the types of

explainers that were identified, and the common misunderstandings that were

identified from students’ written explanations.

7.2.1 What are the characteristics of students’ explanations in a glass box and a

black box approaches to CSE education?

Student use of the four types of knowledge varied among contexts, activities,

and sections. The declarative knowledge was the most used one, in part, because

the most common type of explanation is to say what an instruction does. The

procedural knowledge did not appeared very often in either context, and when did,

it was mostly to describe the execution of the program, or the interaction with the

user. However, only on very few occasions students explained how an instruction

was doing what it did. The schematic knowledge was more often used to connect to

background knowledge or to the problem statement (i.e., use of schemata) than to

describe the rationale of actions. Likewise, the strategic knowledge was mostly

focused on the conditions of applications of actions, and identifying chunks of

instructions, especially in the black box context.

Different types of explanations were also identified for different types of

sections. For instance, the connections to the problem often emerged when the

section involved setting up problem parameters. Meanwhile, the use of background

knowledge was employed when the example actually involved some type of

disciplinary knowledge, independently of whether the section had direct connection

with a problem variable or not (e.g., when setting up supporting variables).
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Likewise, the identification of conditions was present when a loop statement or an

if-clause were present, but also when the section involved different meanings for its

result. Two examples of this case correspond to the penultimate section of activity

#5, and the final section of module #1. In the former example, students made

connections between the stopping conditions of the program and the resulting

output. In the latter example, students talked about the condition of a subtraction

between two derivatives, and what was the meaning of a zero or non-zero value (i.e.,

state function or not). The identification of chunks of instructions, as well as their

rationale, and how they relate to the overall goal, comprise important evidence of

student understanding of programming code (M. Chi et al., 1989; Lombrozo,

2006; Soloway, 1986). However, students often focus on the most visible aspects of

the phenomenon, and therefore, fail to see the interactions among different parts (or

chunks) (Watson, Prieto, & Dillon, 1997). This was the case for students’

explanations in these two contexts. The explanation of the rationale for a given

section was only present in the glass box approach, while the identification of

chunks of code with a given purpose was more common in the black box approach.

In both contexts, the number of instances for these categories was rather small.

In general, the least identified categories within students’ explanations were

those who could actually demonstrate students’ ability to transfer what they

understood from one example to another context. The use of laws and principles

has been demonstrated to be an important factor in effective explanation processes

(Chiu & Chi, 2014; Kuhn & Katz, 2009), and being able to explain why the

program solves a problem represent the third level of programming expertise (Lister

et al., 2012). However, the number of explanations including the rationale in the

black box context was almost zero, the connection to background knowledge was

only present in about 20% of the times for the glass box context, and 10% of the

times for the black box context.

On average, students’ explanations in the black box approach showed lower

quality (Küchemann & Hoyles, 2003; Sandoval & Millwood, 2005) as compared to
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the glass box approach. First, only the glass box approach showed students using

meta-cognitive strategies (MON and OWN). These students may have had a strong

background knowledge in programming that enabled them to come up with their

own solution (Renkl, 1997). Second, the black box context presented more

instances of limited knowledge (INC and LIM), and no instances of rationales for

almost any section in the code (WHY). In this context, student use of schematic

knowledge was mostly focused on making connections to the problem and to the

background principles. In fact, two groups of explainers that connected with the

goals and with the problem were identified in the black box context. Students may

be more interested on actually thinking about what the program solves and

represents, rather than actually understanding how or why it is built in a certain

way. Conversely, students in the glass box approach might be looking more into

actually understanding the code to a level of being able to build it themselves.

Another possible explanation for these differences between approaches might be

related to the format of the worked-example. While the glass box approach

provided students with a problem to be solved, a strategy on how to solve it, and

the MATLAB code, the black box example was introduced by the course instructor

and only consisted of the Python code. These instructional designs can affect the

way students generate explanations (Schworm & Renkl, 2006). Hence, these

students might have not seen the need for understanding what the algorithm design

process was like to get to their solution.

These findings need to be taken with caution because usually the

explanations we give depend on the audience (Southerland, Abrams, Cummins, &

Anzelmo, 2001). These students may have assumed that their audience (i.e. the

course instructor) actually understood the lines of code from the example, and

therefore, the might have not seen the relevance of rich descriptions. Students may

have considered that simple comments and the code would “spoke for themselves”,

an effect that as has been shown in other contexts (Sandoval & Millwood, 2005).

Nevertheless, although this effect might explain the results, especially in the black
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box context, it is important that students learn to effectively communicate to their

audience. Further discussion on the implications for teaching and learning is

presented in Section 8.4.

7.2.2 How does the characteristics of students’ explanations in a glass box and a

black box approaches to CSE education change over time?

Seven types of explainers were identified in these two contexts of CSE

education. Students in the glass box approach fell into one out of these five

categories: limited, problem-oriented, procedural, schematic, and reasoners. The

limited explainers were small groups of students identified in activities #5 (7.69% of

the students) and #11 (12.5%), where they included either very few and simple

descriptions of the code, or incorrect and limited explanations. The

problem-oriented explainers used declarative knowledge to describe what a section

of code did, focusing on the most visible sections of the code (Pirolli & Recker,

1994), and not engaging in a reflective process. This group was found in activities

#2(16.67%) and #11(18.75%), when students made connections to the problem,

which was explicitly related to their background knowledge in mathematics.

Conversely, activity #5 showed the largest percentage of procedural explainers

(61.54%), those who approach their written explanations making constant

connections to how the program will execute, and how the interaction with the user

is.

The schematic explainers and the reasoners where only identified in the glass

box approach. The schematic explainers would have instances describing the

rationale of at least one of the sections in the code of the three activities (58.33%,

23.08%, and 50%). These reasoners usually made connections to laws or principles,

which according to the self-explanation effect can help them to better understand

the examples (M. Chi et al., 1989; Renkl, 1997). The reasoners comprised a

specific group of students that explained their own solution to the problem instead
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of the provided sample code in activities #2 (20.83%) and #5 (7.69). This type of

explainers used their background knowledge to come up with their own solution

before validating it with the worked-out solution (Renkl, 1997).

Neither the reasoners nor the schematic explainers were identified into the

black box context. However, two additional groups of explainers were identified here:

declarative and summarizer explainers. The declarative explainers were identified in

all three modules of the THERMO course (37.21%, 30.56%, and 14.29%), and

mostly used declarative knowledge to explain all sections of each example.

Meanwhile, the summarizer explainers (23.26%, 11.11%, and 45.71%) did not

usually write explanations for all sections but used a chunking strategy that allowed

them to identify group of instructions or sections and describe the goal of these

chunks. Identifying these chunks is an important step towards the development of

programming expertise (Lister et al., 2012; Mayer, 1981; Soloway, 1986).

Although it is expected that the overall characteristics of students’

explanations as a group change for different activities, the distribution of students

among these groups was reasonably similar between activities. For instance, the

schematic explainers dominated the glass box context for all activities, but activity

#5. The difference of this activity as compared with activities #2 and #11 is that

it did not involve any disciplinary or mathematical knowledge in its solution.

Moreover, activity #5 was a programming problem, which stopping condition was

dependent on the user input. Thus, students focused more in the procedural part of

the code, and how it interacted with the user.

Likewise, the groups who mostly used declarative knowledge (declarative,

problem-oriented, summarizer, and limited explainers) were the most common ones

in the black box approach. The limited explainers where only present in modules

#2 and #3, which involved a more complex program. The group of summarizer

explainers increased in size in module #3, where the program was bigger, and when

students had already explained a simpler version of a similar program in module

#2. However, even in this third module, there were not schematic explainers.
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Students learning from examples need to connect their background

knowledge to make sense of these learning materials (Chiu & Chi, 2014). It is

important, especially for novices, that the self-explanation activities elicit these

schemata and promote sense-making and meta-cognitive activities from students

(Pea et al., 1987; Williams et al., 2010). This was more often the case in the glass

box context, where students were interested on actually learning algorithm design,

as opposed to THERMO students who might have been more interested in using the

computational representation. Two additional factors might be eliciting this effect

in the glass box context: the students’ level of expertise and the level of

transparency of the course. Students in the black box context might not have the

necessary background knowledge to make connections to while explaining

programming code. The next section discusses the common misunderstandings

students showed in their written explanations, especially in the black box context.

7.2.3 What common misunderstandings in programming can be identified from

students’ explanations in a glass box and a black box approaches to CSE

education?

The characterization of students’ explanations in both contexts led to several

instances of incorrect or limited explanations. Although this was more often the

case in the black box approach, students in the CPMSE course also showed some

misunderstandings. The higher percentage of instances of limited knowledge for the

black box context can be explained by the fact that students did not have specific

programming instruction, but instead used programming as a means to understand

THERMO-related phenomena.

Table 7.1 describes the common misunderstandings or difficult concepts that

were identified in each context. For instance, the concept of objects and the scope of

parameters were a common misunderstanding in the black box approach. This is a

very limited explanation that can be understood as a misclassification of a formal
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cause of explanation (Lombrozo, 2006). Students may have incorrectly assumed

that the parameter is the feature that describes what this instruction is, omitting

the creation of an object that would be later used for a more important purpose.

Furthermore, novice programmers in this case not only focused on an individual line

of code (Mselle & Twaakyondo, 2012), but on a surface feature of this instruction

(Pirolli & Recker, 1994). This misunderstanding demonstrates that students in the

black box approach may require additional support to understand the programming

code behind the simulations.

Table 7.1.

Misconceptions and difficult concepts in computer programming

Source of
misconceptions or
difficult concept

Misconception or Difficult Concept
Glass
Box

Black
Box

Lack
of understanding

underlying mechanisms

Input-output commands and memory management
(Bayman & Mayer, 1983; Goldman et al., 2010; Kaczmarczyk et al., 2010)
Non-linear sequence of program (Bayman & Mayer, 1983) X
Equal sign: equation vs. assignment (Bayman & Mayer, 1983)
Name of a variable compared to the value in that variable.
(Bayman & Mayer, 1983)

X

Superbug
(Pea, 1986)

Assuming that the computer understands human language (Pea, 1986)
The order in which the instructions are executed
(Kaczmarczyk et al., 2010; Pea, 1986)

X

Intentionality of the computer program (Pea, 1986)
Language-dependent bugs: syntax and semantics
(Pea et al., 1987)
Lack of meta-cognitive strategies (monitoring learning) (Pea et al., 1987) X

Systematic errors
(Confrey, 1990)

Difficulty to identifying chunks of code with certain purpose
(Mselle & Twaakyondo, 2012; Whalley & Lister, 2009)
Use of correct knowledge that is incorrectly applied in a broader domain
(Fleury, 2000)

X

Difficult
and important concepts
(relevant to this study)

Objects (Kaczmarczyk et al., 2010) X
Loops (Kaczmarczyk et al., 2010) X
Arrays (Taylor et al., 2014) X X
Scope of Parameters (Goldman et al., 2010) X
Procedures (Goldman et al., 2010) X
Local and Global Variables (Goldman et al., 2010)

Likewise, the use of loops demonstrated to be a challenging concept for

students in both contexts. Students in the CPMSE course were confused regarding

the sequence of execution of the instructions inside the loop (Bayman & Mayer,

1983; Kaczmarczyk et al., 2010; Pea, 1986), and their relationship to the

condition inside the parenthesis. Meanwhile, students in the THERMO course

described the call back function from the module #2 as a loop. Loops are a difficult
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concept (Goldman et al., 2008, 2010; Kaczmarczyk et al., 2010), and students

might be trying to apply their knowledge of loops to an incorrect context. This

phenomenon was also previously identified when students used loops to describe a

recursive function (Fleury, 2000; Sorva, 2013).

All these misconceptions that were evident from students’ explanations of

code did not necessarily affected their disciplinary learning in the black box

approach. Moreover, we did not identify any explicit misunderstanding related to

students’ disciplinary knowledge. The examples in THERMO involved a graphical

user interface that represented THERMO phenomena and that did not required

them to actually write the code themselves; this approach limited students’

explanations to little use of schematic and strategic knowledge. However, if the level

of transparency is increased, as some students requested, additional support needs

to be provided for them to succeed. This support could be in the form of prior

programming courses applied to students’ disciplinary knowledge (Magana, Falk,

Vieira, & Reese, 2016) or multiple forms of scaffolding within the course that allow

them to manage the cognitive loads of such complex learning (Magana et al., 2012).

7.3 Relationship between Students’ Explanations and Student Ability to Program

The third and final part of the study explored the relationship between the

characteristics of students’ written explanations, their ability to do computer

programming, and their course performance. Survey questions and performance

tests were used to compare among groups of explainers.

Students’ explanations in the glass box context showed a common pattern

when compared to the students’ perceived ability to program. Students who started

with an average lower perceived ability to do computer programming wrote longer,

and more complex explanations than students with an average higher perceived

ability. Schematic explainers, those who described the rationale for several sections

in the code, had an average lower perceived ability, and an average lower score on
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the first midterm. An example that compares two of these different approaches to

self-explain is presented in Figure 7.2. The first set of explanations (Figure 7.2a)

had simple explanations, without rationale for the instructions, but with one

monitoring statement in line six. This student (S4) was among the high-perceived

ability group, and the high performers in the midterm one. Conversely, the second

set of explanations (Figure 7.2b) corresponds to a student (S16) with an initial low

perceived ability and a low performance on the first midterm. This student wrote

longer explanations, explaining the rationale for each section of the code.

Learners with different skills and background knowledge may benefit

differently from the self-explanations (Chiu & Chi, 2014). As described in the

affordances of these activities for students, there are different ways in which

students may have benefited from the in-code commenting activities. When we

compared these affordances to the types of explainers, we also identified that

students who used them to learn concepts and not only to familiarize with the

syntax, were often schematic explainers. These results suggests that those students

in the glass box approach who had limited programming experiences used these

explanation activities to engage in a reflective process of understanding of the

examples. Conversely, students with high ability to do computer programming

wrote simple comments that although depicted their understanding of the example,

corresponded to a limited explanation for communicating in CSE. As we mentioned

before, the explanations we generate depend on the audience (Southerland et al.,

2001). These high ability students may have just decided to complete the task for

the course instructor as the audience.

From the perspective of the worked-examples, this result is also expected:

being an expert solution to a problem, the worked-examples are usually useful for

novices who do not have a relevant background knowledge to allow them to solve

the problems on their own; the more experienced students prefer to engage in

problem solving rather than in worked-example exploration (Kalyuga et al., 2001;

Kester et al., 2010; Renkl, 2005; Sweller et al., 2011).
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(a) High Perceived Ability

(b) Low Perceived Ability

Figure 7.2. Students’ explanations for activity #5 (a) high perceived ability, high

performer in midterm one; (b) low perceived ability, low performers in midterm two
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On the other hand, students’ explanations in the black box context did not

show a clear relationship to students’ ability to do computer programming. The

different types of explainers had a similar average perceived ability to do computer

programming at the beginning of the semester. A possible explanation for this effect

can be given by the format in which these computational modules were introduced.

Students had limited access to the underlying mechanisms, and they did not have

any explicit instruction on Python programming as part of the thermodynamics

course. These led into limited explanations, where students incorrectly described

some of the sections, and they did not explain the rationale for any given section.

Furthermore, the worked-examples in this context were introduced by the course

instruction, and when instructional explanations are present, the self-explanation

effect is diminished (Schworm & Renkl, 2006).

7.4 Implications for Teaching and Learning

7.4.1 Learning

Using in-code comments as a self-explanation strategy demonstrated to be an

effective approach to engage students in the active exploration of worked-examples

in CSE. Students afforded these explanation activities in different ways. Students in

the glass box context dissected the worked-examples, learned about effective

algorithm design techniques, got familiar with the MATLAB syntax, and practiced

their commenting abilities. In this context, the use of graded activities at the

beginning of the semester allowed students to identify how they could benefit from

them, and decide whether it would be useful for them to continue submitting their

explanations for extra-credit.

In the black box context, students also understood how each line of the code

was related to the overall goal of the program, and got familiar with the Python

syntax. Furthermore, students in this context were able to see the connection

between the computational modules and the disciplinary problems. However,
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although students would like to have additional transparency on the encapsulated

functions, some of them also advocated for additional instruction in Python

programming to be able to take advantage of the activities. This result suggests

that while a higher transparency is important for students, this transparency cannot

be given without proper instruction or scaffolding strategies.

From the learning perspective, it is important that students, especially

novice programmers, reflect and use meta-cognitive strategies while studying the

examples. Students in the black box approach did not explain the rationale for how

the code was designed. The learning outcomes for this context focused on student

understanding of disciplinary phenomena, and therefore, the design of the course

did not involve explicit instruction in programming. It is important then to provide

further instruction, prompting, or scaffolding, to engage students in higher quality

explanations of the programming code. Explicit instruction on what these

explanations should comprise, might have an effect both in student explanations,

and in student learning (Renkl, 2005).

Besides the use of in-code commenting activities for the benefit of student

learning, these comments can also be analyzed to identify students’ ability to

communicate through their code, as well as students’ misunderstandings of

programming concepts. This study showed that different students, activities,

sections, and contexts, produce different explanations.

In the two contexts we explored, students’ explanations relied mostly in

declarative knowledge. These simple statements did not effectively communicate

how the code solves a problem or why it was built in certain way, but only what it

did. From the instructional perspective, we would like to have students writing

comprehensive in-code comments that would enable them to collaborate in CSE

projects. Also, as a communication strategy, we would expect that high quality

students’ explanations go beyond describing what an individual line of code does, to

say: what the goals for certain chunks of code are, the conditions under which these

chunks work, and the rationale for writing these instructions. All this, while making
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connections to appropriate principles or laws from their background knowledge. As

a consequence, one implication of this study lies on the importance of educating

students in how to create these explanations that can be effectively used as a

communication strategy. These effective characteristics do not only need to consider

the types of knowledge students used, but also the length of these explanations.

Lengthy comments within a programming code negatively impacts readability of the

code, and so students usually prefer simple but informative comments (Vieira et al.,

2015).

7.4.2 Teaching

Another implication of this study is that instructors can potentially use this

mechanism of in-code comments as an assessment strategy. First, we were able to

identify students’ misunderstandings with programming from their written

explanations. These activities can also potentially be used with incorrect,

incomplete, or inefficient examples where students could evidence their monitoring

strategies to identify these mistakes. Seven students in the glass box approach

included monitoring statements for an instruction that was not incorrect but was

unnecessary. Providing incorrect examples could promote students’ ability to

monitor and revise their own understanding of the program, the code, or the

phenomenon (Chiu & Chi, 2014).

Also, different types of sections led to different types of knowledge (e.g.

setting up problem parameters showed more connections to the problem). An

instructor can just look specific sections to focus the assessment process on certain

types of knowledge. For example, if an instructor in the glass box approach is

interested in assessing declarative knowledge, they might choose to look at students’

comments in the function definition type of section. On the other hand, if the

instructor would like to elicit schematic and strategic knowledge, looking at sections
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of the code where there are more connections to the problem and background

principles would be more appropriate.

7.4.3 Instructional Principles of Worked-Examples in CSE

Building upon Atkinson et al. (2000), we adapted the instructional principles

of worked-examples for the specific contexts that we explored. The two cases we

described in this document (i.e. Chapter 5 and Chapter 6) and the pilot study

(Vieira et al., 2015) produced empirical results that can support the implementation

of programming worked-examples. For instance, having multiple representations of

the worked-examples helped students in the glass box context. While some students

watched the video explanations more than once for certain exercises, other students

preferred the textual and mathematical representations. In this regard, one of the

representations we used in (Vieira et al., 2015) was the in-code comments. When

we provided these comments, students often suggested us to reduce their length,

because lengthy comments reduced the readability of the code.

This representation (i.e., in-code comments) was also used to elicit students’

explanations of the worked-examples. While students did not access the

worked-examples in the glass box context in 2014, the implementation of this

self-explanation strategy started to make them aware of the different benefits this

could have. Furthermore, it was important to have the first few explanation

activities graded in 2016 so that all students could at least see whether this process

would help them or not. After these graded activities were finished, giving students

the possibility of submitting additional explanations kept half of the group engaged

in the active exploration of the worked-examples. These were especially useful for

novices in the glass box context, who reflected on their understanding of the

worked-examples and made sense out of them.

The use of in-code commenting activities in the black box context was also

an effective approach to have students actively explore the Python code behind the
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visual simulation. Students benefited from these activities by relating individual

lines of code to the overall functionality, seeing the connection between computation

and thermodynamics, and getting familiar with the Python syntax. In this context,

it was also important to have the activities individually graded so that students

could see the benefit of completing them. However, students in this context may

have needed additional support to deal with the additional complexity that having

access to the code might provide. Table 8-2 summarizes the instructional principles

with our additions for the specific context.
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Table 7.2.

Design characteristics for effective worked examples

Feature Description

Intra-
Example

• The easy mapping guideline: Students take advantage of different
forms of representation of a worked-out example (e.g., videos, diagrams,
mathematical model, and programming code). However, different formats
should be fully integrated to avoid extra cognitive load generated by the
split attention effect (Renkl, 2005). Furthermore, when in-code comments
are used as a representation to explain the example, these should be simple
and comprehensive to avoid affecting the readability of the code.

• The meaningful building-blocks guideline (Renkl, 2005): The example
should be divided in sub goals or steps to make it easier for the student
to understand. Labels and visual separation of steps can be used for
this purpose. One approach for this guideline can be the use of the
problem-solving steps, as we did in the glass box context.

Inter-
Example

• The structure-emphasizing guideline (Renkl, 2005): The use of multiple
worked examples (at least two of them) with structural differences
can improve the learning experience. The worked examples should be
presented with similar problem statements that encourage the students
to build schemas based on analogies and the identification of declarative
and procedural rules.

• The programming worked-examples help students to learn about
algorithm design, the syntax of the programming language, and the
connection to their discipline. Worked-examples in these context should
provide these meaningful elements to be valuable for students: provide
useful strategies of algorithm design to solve similar problems; make
connections between the sample code and relevant disciplinary problems.

Environ-
mental

• Self-explanation effect (M. Chi et al., 1989): Students should be
encouraged to self-explain the worked examples in order to be actively
engaged with them. Writing in-code comments is an effective strategy
to engage students in the active study of worked-examples, and brings
several benefits to the learning process.

• The fading effect of the self-explanation strategy can promote students’
use of this scaffolding strategy on demand. For instance, providing credit
for the first few activities and leaving the rest of them for extra-credit has
demonstrated to keep at least half of the students engaged in this process
throughout the semester.

• Students with limited instruction on programming concepts may need
extra-support to be able to create meaningful explanations.
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK

The use of in-code comments as a self-explanation strategy was explored in

the context of two approaches for CSE education. The glass box approach involved

a programming course for materials science and engineering students, while the

black box approach was implemented in a thermodynamics course using

computational tools. The in-code commenting activities increased the students

awareness of worked-examples, and the active exploration of these materials.

Students found that these commenting activities were useful to better

understand the examples, to connect the programming code to the disciplinary

problems and mathematical models, to practice algorithm design and MATLAB R©

syntax, and to improve their commenting skills. Students in the black box approach

would like to have higher transparency of the underlying mechanisms, but they

would also like to have additional support to be able to take advantage of these

activities. Hence, future research should explore what other forms of support can be

provided in a black box context, where the learning outcomes regarding the

computational tools is not at a level of creating but at a level of applying. Although

students would like to have more transparency, the main learning outcomes in this

context are usually the ones related to the disciplinary knowledge (i.e.,

thermodynamics of materials), and not to the computational component.

Students explanations were characterized in both contexts by the abundant

use of declarative knowledge, and the limited use of schematic and strategic

knowledge. While some of the students in the glass box context explained the

rationale for the instructions and used meta-cognitive strategies, this was not the

case in the black box context. Looking at students explanations as their ability to

communicate programming code, these written comments were very limited.

However, this could be the case because students may have felt that they were
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writing comments for the course instructor, and he already knew the examples.

Thus, a future study will compare students explanations of their own code to the

ones for the worked-examples. Furthermore, having extensive written explanations

is a detriment to the readability of the code. Hence, we would like to explore how

expert programmers create their explanations in a similar context, and what are the

best practices that need to be taught to the students to better communicate

through written comments.

This study also showed that different students created explanations

differently, and that at least in the glass box context, students prior knowledge was

an important factor to determine the way they created explanations. Students with

low perceived ability to do computer programming wrote explanations that involved

the use of schematic knowledge more often that students with high perceived ability.

Future research should also focus on understanding how certain type of explanations

affects student understanding of the learning materials. In other contexts, the

elements students use in their explanations have demonstrated to affect how much

they understand the materials (Chiu & Chi, 2014). Hence, identifying the

characteristics of effective explanations for learning could potentially benefit student

learning. Once detected, these strategies can be taught and promoted among

students to further increase the effectiveness of their study of worked-examples

(Sweller et al., 2011).

These criteria for effective explanations should also consider how the use of

programming or disciplinary background knowledge in the explanations affects the

learning process. The principles in the context of Computational Science and

Engineering, especially for the black box approach can have two different sources:

the programming principles and the disciplinary principles. While some students

may fail to identify the programming principles, they might still get the disciplinary

understanding, and vice versa.

Identifying these effective self-explanations strategies can be also used for

intelligent tutoring systems. Several semantic analysis techniques have been
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explored to provide automatic feedback to students when they provide limited

explanations (Aleven & Koedinger, 2002; Makatchev et al., 2004). The large

number of existing massive open online courses (MOOC) related to computer

programming could benefit from this instructional strategy, both as a learning

material and as automatic assessment.

Some of the relevant research questions that can be further explored after

this study are:

• What are the characteristics of students explanations that lead to a better

understanding of worked-examples in different contexts of CSE education?

• How do expert computer programmers write in-code comments to

communicate with other people working on the same code?

• What instructional strategies can be used to promote students ability to

communicate through written in-code comments?

• What are the characteristics of students explanations of their own computer

programs?

• What are effective instructional strategies that can support student learning of

transparent computational tools in a black box context?

• How can we promote the use of schematic and strategic knowledge in the

black box context to CSE education?

• How can the in-code commenting activities be integrated into programming

massive open online courses?
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CHAPTER A. SAMPLE WORKED EXAMPLE CPMSE - EXAMPLE 11 -

ATOMIC BONDS

A.1 Problem Statement

Write a function called atomicbonds that determines which atoms from a list

are closer than a distance called cutoff. The function should accept as input a

matrix of atomic positions (x, y, z) where each row represents a different atom, in a

N by 3 matrix where N is the number of atoms.

The output should be a sparse connectivity matrix similar to the one

discussed in the podcast, where the row and column represent atom numbers and

the value for each pair is set to the separation distance between the atoms if the two

are within the cutoff or 0 if they are not. To avoid redundancy only the upper

triangular part of the matrix should be non-zero (those values where row ¡ column).

A.1.1 For a video explanation of this example see:

Part 1 https://www.youtube.com/watch?v=AlLGsGgUCPQ

Part 2 https://www.youtube.com/watch?v=ENgHexFqoc4

See the correct version of the code at the end of this document

A.2 What is the problem asking us to do?

Suppose we have a matrix with the position of a set of atoms. Each row in

the matrix corresponds to one atom. The columns are the coordinates x, y, z of a

given position of the atom.

If you have large tables or figures to include and need to use margin space,

use the right margin and bottom margin.
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The problem asks us to write a program to identify the pairs of atoms closer

than a given cutoff distance.

The result should be another matrix relating each atom to the rest of them.

A.3 Addressing the Problem

How should we do it?

Let’s take the matrix again. It needs to be transformed as follows:

Please notice the following elements on the result:

• The diagonal is not important because we only want to identify distances

between atoms.

• Only one of the triangular parts of the matrix will be important. Otherwise,

the result will be redundant. In this case, we care for the upper part.

• The smaller is the cut off, the more zeros the matrix has. Using a matrix to

store this data would be very inefficient. More than half of the matrix consists

of irrelevant values.

Therefore, this is more efficiently carried out by having a sparse matrix

which only stores the non-zero values.

MATLAB Code
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CHAPTER B. SAMPLE MODULE IN THERMODYNAMICS

The lab session lasts for 50 minutes in total. The learning objective of this

first computational module is to enable students to create and run a new program

using Python, as well as to solve simple state function problems using the

computational approach. The tool used during the class is the Virtual Kinetics of

Materials Laboratory (VKML), hosted in Nanohub (

https://nanohub.org/tools/vkmllive ).

The lab session starts with a ten-minute pretest. The test consists of a single

question asking whether a provided function was a state function or not. Students

are allowed to use any method they considered appropriate to find the correct

response. A correct answer of the test would give the students five extra-points on

the weekly homework.

The professor lectures the students on simple actions such as: create a new

file; declare variables; write a hello world program; write a for loop; execute a

program; import Python packages; and write comments within the code. The
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professor also highlights the importance of commenting the code to be able to

collaborate and better understand a program.

The next part of the activity is intended to identify whether a given equation

was a state function or not using VKML. First, the group discussed the activity

conceptually and mathematically. Then, the professor starts to guide the

implementation of the program. The class may end before the professor finish

activity. Therefore, the example is published on blackboard. The student

assignments for the following week include commenting the code to describe each

steps, and modify the program so that is evaluates a different function. Both

assignments are optional and provided extra credit in the homework. The code that

was provided to the student was:
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CHAPTER C. SAMPLE QUOTES FROM STUDENTS’ EXPLANATIONS

Activity #2
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Activity #5

Activity #11
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Module #1

Module #2
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Module #3
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CHAPTER D. APPENDIX D STUDENTS’ RESPONSES TO INTERVIEW

QUESTIONS GLASS BOX - CPMSE
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