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ABSTRACT

Undupitiya Gamage, Dimuthu PhD, Purdue University, December 2016. QoS and
Trust Prediction Framework for Composed Distributed Systems. Major Professor:
Rajeev R. Raje.

The objective of this dissertation is to propose a comprehensive framework to

predict the QoS and trust (i.e, the degree of compliance of a service to its specification)

values of composed distributed systems created out of existing quality-aware services.

We improve the accuracy of the predictions by building context-aware models and

validating them with real-life case studies. The context is the set of environmental

factors that affect QoS attributes (such as response time and availability), and trust of

a service or a composed system. The proposed framework uses available context-QoS

dependency information of individual services and information about the interaction

patterns among the services to make predictions for the QoS and trust values of the

composed system at the design phase of the development lifecycle. Such predictions

made in the early phases of the system development lifecycle will reduce cost, time,

and effort. We demonstrate the use of these predictions in selecting the optimum

set of services to create composed systems using heuristic optimization algorithms.

Additionally, the prediction model is used at runtime with fast heuristic techniques to

build adaptable composed systems. The empirical results show the proposed context-

dependent framework performs well in providing more accurate predictions than the

prevalent approaches.



1

1 INTRODUCTION

With the high availability of public software services, and the increasing tooling sup-

port, Service Oriented Architecture (SOA) [1] has become a common design and

development methodology in developing software systems (especially distributed soft-

ware systems). In SOA, the services, which are software with a specific functionality,

are developed by experts from that particular domain. These services are designed

to be both interoperable and reusable. Therefore, by adopting SOA, software system

developers are able to implement the end system requirements rapidly and efficiently

by composing functionalities of many services.

Typically, each service has a set of Quality of Service (QoS) properties in addition

to having a specific functionality. Prominent examples of QoS properties are response

time, availability, and reliability. In practice, a similar functionality can be provided

by many service providers, but with different QoS properties. For example, there are

many weather forecasting services (that are provided by different providers), and each

service can have different response time, availability, and reliability values. Service

providers publish the QoS properties along with functionality of the service in the

service specification.

Trust is an another property associated with individual services and composed

systems. Trusted Computing Group defines ‘trust’ as the following: ‘An entity can

be trusted, if it always behaves in the expected manner for the intended purpose’ [2].

We have adapted this definition in the context of software services as the following:

‘Trust of a service is the degree of compliance of the service to its specification.’ Each

entry of the service specification (i.e., functional and QoS property) has an associated

trust value indicating the degree of compliance of the actual value to the specified

value. To measure trust, we use both subjective evidences (e.g., end user ratings, and

comments), and objective evidences (e.g., execution traces). We use two metrics for
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trust measurements in our work. Mainly, we use the probability of the compliance

(i.e., a value between 0 and 1) as a metric for trust measurements. As an example,

consider the specification of an object position tracking service, which can list its

response time to be less than 30ms with 0.98 trust, and the tracked error to be less

than 10cm with 0.95 trust. Such trust values are required (that the provider cannot

specify a deterministic value for QoS) due to both the internal effects such as non-

deterministic logic of the software and the external effects such as the changes in

the execution environment of the software. Secondly, we use subjective logic [3] as

another trust metric which is based on the uncertainty principles from the Dempster-

Safer theory [4]. With that metric, an end user of a service/ system can express

the trust subjectively from his experience as a tuple of Belief (B), Disbelief (D), and

Uncertainty (U). For example, a user can express from his experience, the tracker

error is within the satisfied level with (B,D,U) values (0.8, 0.1, 0.1). Here the ’B’ and

’D’ is analog with the probability of success and failure, whereas ’U’ stands for the

ignorance obtained due to the lack of complete details. In Chapter 3.3, we discuss

the reasons for choosing the probabilistic representation of Trust in the majority of

our work.

We refer to the environmental factors that affect the QoS and trust of the service/

system as the ‘Context’ of the service/ system. We are interested in the context and

its effects on the QoS and trust values; hence, we further categorize the context of a

service as the following:

• Physical context – This contains the set of physical attributes that affect QoS

of a service. A few common examples are location, temperature, and humidity.

• Associativity context – This indicates the effect due to the presence of other

services in the system on the QoS of a service. For example, sharing the same

web session, or synchronizing the communication speeds with other services

would affect the QoS of a service.
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• Input and Configuration context – This represents the effects of the input and

the associated configurations on the QoS of a service. Examples are input data

size (for a sorting service), and resolution (for a camera service).

• Execution context – The effect of the hardware that the service is running on

to its QoS. Examples are size of the memory, and processor speed.

Making services context-aware allows them to behave adaptively with the dy-

namics of their environments. Distributed Systems composed out of such services

are immensely valuable in applications such as the Internet of Things (IoT) and

Cyber-Physical Systems(CPS) [5–7]. The IoT and CPS have been predicted as the

technologies that will explode in the near future [8–10]. As many of us start to depend

upon such distributed systems, guaranteeing the trust and the QoS of these systems

will be a major research challenge over the next few years.

In this dissertation, we focus on helping the system developers to predict the val-

ues for the QoS and Trust aspects of distributed composed systems. We study the

predictability of QoS and Trust of the service with different trust models such as

context independent models and context dependent models. Our analysis shows that

consideration of the context provides more accurate predictions with lesser uncer-

tainty. We develop a context dependent trust prediction framework that will help the

developers to infer QoS and trust properties of future systems in some user context

using the available data at the design time such as the domain knowledge, individual

system properties, interaction patterns of services, and existing similar systems. We

demonstrate the application of the proposed framework to select the optimum set of

services that will build QoS and trust optimized composed systems. Additionally,

we further improve the framework to continuously monitor the changes in context

after the services/ systems are deployed in production and makes them adaptive in

real-time when QoS and Trust drops below the required thresholds. We empirically

validate the proposed frameworks and its applications using case studies from indoor

tracking, travel planning, and distributed bullying detection domains.
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1.1 Problem Statement

Our objective is to build a comprehensive framework for accurately predicting the

QoS and Trust values of distributed systems composed of individual services during

both the design phase and the execution phase of the system lifecycle.

1.2 Motivational Case Studies

We present case studies from two domains to show the importance of the proposed

QoS and Trust prediction framework in developing distributed systems. The case

studies are:

1. A travel planning system

2. An adaptive tracking system

1.2.1 Case Study 1: A Travel Planning System

Figure 1.1.: Abstract design of a travel planning system with candidate services

The functionality provided by the travel planning system (shown in Figure 1.1)

includes providing directions, traffic, weather, hotel search and car rental information

for planning a travel itinerary. Prominent QoS properties of the system are response
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time, confidentiality (by encrypting information), availability and cost. Example

context properties that affect these QoS properties are distance to the destination,

which affect the response time of retrieving direction and traffic information, and the

type of travel such as business or personal, which affects the confidentiality of the

information and the associated cost.

When developing a travel planning system, the system developer first decides the

categories of services (referred as abstract services) that should be included in the

system to satisfy the functional requirements of the system user. Let us assume the

included abstract services to be direction, traffic, weather, hotel search, and car rental

services. Then the developer needs to select specific concrete services for each of these

abstract service categories from the available candidate services that are provided by

different vendors. Such decisions should consider the following factors:

• The system should satisfy user requirements of QoS and trust values. An ex-

ample of a QoS and trust requirement is that system should have response time

< 20ms with 90% trust.

• The system should operate in a specific context as indicated by the user. An ex-

ample of a context requirement is that the system should support long distance

traveling.

• The system should deliver optimal QoS and trust values (while satisfying above

user requirements). For example, the system should deliver lowest response

time and cost, and highest availability.

The major challenge faced by such a system developer is that she has to make

these decisions at the design phase of the development lifecycle. If she has to change

these design decisions during the later phases of the development lifecycle, it will

result in high cost. Another challenge is that these decisions depend on the context

of the system, as any change in the context of a service will result in different values

of QoS and trust than the advertised ones. Therefore, there is a need for a model
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that will help the developer to make appropriate design decisions related to QoS and

trust values. The models proposed in this dissertation will address these challenges by

providing high accurate predictions about QoS and trust values of composed systems

and assist in selecting optimum candidate services to build quality and trust-aware

distributed systems.

1.2.2 Case Study 2: An Adaptable Tracking System

Figure 1.2.: Setup of an adaptable tracking system

The adaptable tracking system used in this case study is composed of two pan and

tilt cameras (dynamic-cams), two static web-cams, and a fusions service. This system

continuously tracks the positions of objects. Important QoS properties of the system

are the response time and the tracking error. The context properties that affect the

QoS properties are the distance and the angle of the object from the cameras, which

affect the tracking error, and the resolution of the cameras, which affect both the

response time and the tracking error. When objects are moving, the system triggers

pan and tilt operations of dynamic-cams to keep the objects in tracking range of the

cameras.

The major challenge of developing such a system is whether it is possible to keep

QoS properties (e.g., tracking error) and the associated trust value of the system
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intact with the movements of the objects. If there is a degradation in the QoS and

trust values, the system should self-adapt to minimize the damage and preferably

keep them within a given QoS and trust threshold value. Additionally, it is challenge

to make the self-adaptation process fast enough to keep its functional operations at a

desirable level. The model proposed in this dissertation addresses these challenges by

providing fast and accurate predictions of the QoS and trust values with the changes

in the context, allowing the system to trigger necessary adaptations accurately and

quickly.

In the next sections, we explore each of these challenges in detail, and how we

address them using the proposed approaches.

1.3 Challenges

1. Predicting QoS and trust of a composed system from the data avail-

able at the design time. When developing software systems following the

correctness by construction design principle, the system developers focus on

achieving correctness of the system (in functionality, QoS, and trust aspects)

from the very early phases of the system lifecycle. Otherwise, if defects (in any

of the functionality, QoS, and trust aspects) are found in the later phases of

the system lifecycle, it takes more cost, effort, and time to fix them [11]. That

leads to missing deadlines, going over-budget and even failures of projects.

Many prevalent techniques [12,13] that evaluate QoS and trust of service com-

positions operate on later phases (such as testing or maintenance phases) of the

system lifecycle. These techniques can be used to perform a post-analysis of the

software design, identify its faults, and improve the design in the subsequent

iterations. Their analysis includes,

• Identify QoS/ trust bottlenecks of individual services and interactions

among services.
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• Identify critical paths that affect the QoS/trust degradation or improve-

ment in the overall system.

They use artifacts from tests or execution phases such as actual execution traces

of the software systems, and end user experiences in performing these analyses.

However, as indicated above, fixing the issues found in later phases of the soft-

ware life cycles costs lot higher (and grows exponentially with how later it is)

than fixes issues found in early phases [11].

Therefore, it is important to find techniques that would help developers to carry

out similar analysis in the early phases of the system lifecycle. However, there

are only limited amount of artifacts available in the early phases to perform

such analysis. Example artifacts that are available in the design phase are de-

sign diagrams, service specifications and execution traces of candidate services,

execution traces and user experience of existing similar systems (that use some

subset of the same candidate services), and the knowledge of domain experts.

It is a challenge to do useful analysis about the behavior, QoS and trust of

the final composed system from these data. The techniques proposed in this

work, attempt to overcome this challenge by incorporating the context and its

dependencies in the design of individual services, interaction patterns, and the

overall composed system.

2. Capturing the context-QoS/ trust dependencies of the context-aware

services and composed systems. QoS and trust values of the service can

vary with the changes in its context. For example, in an object position tracking

service that uses a camera images to track the position of an object, the tracked

error and the associated trust can be vary with the change in the angle and

the distance between the object and the camera. Therefore, QoS and trust

prediction model should be able to capture the context-QoS/ trust dependencies

from the evidences available at the prediction time. However, there can be many

possible physical, input/ configuration, and execution context variations and
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exponential amount of associations between participating services. Therefore,

it is a challenge to track all the possible dependencies from context to QoS

and trust quantitatively and use them to achieve useful QoS/trust inferences

about the services and systems. To address this challenge, we use a Bayesian

network based technique and continuous probability distributions to capture

these dependencies and sampling-based techniques to carry out inferences on

these networks.

3. Identifying the optimum set of services to achieve the best QoS and

trust values for the composition in a certain context. When developing

software systems by composing many individual services, the system developers

try to select the most suitable set of services that satisfy their functional, QoS

and trust requirements [14]. Since different QoS properties compete with each

other (for an example, in an object position tracking service the QoS proper-

ties, tracking error and the response time, are competing with each other as

the use of higher amount of processing to minimize the tracking error would

also increase the response time) and different services are designed to optimize

different QoS properties, it is not possible to select the best set of services con-

sidering only the individual QoS and trust values and expect the composition to

have the optimum QoS and trust values. Selecting the optimum set of services

for a composition is a multi-objective multi-variable integer programming op-

timization problem, which is shown to be an NP-complete problem [14]. That

makes solving this problem a time consuming task, specially when there are

lot of candidate services available. There are many prevalent works [14–16]

proposing approximate heuristic algorithms to solve problem with a less time

complexity. However, none of them have considered two important aspect of

the problem, i.e., the optimization of trust and satisfying trust constraints, and

the dependencies between the context and the QoS. It is a challenge to model

this optimization problem and provide a heuristic algorithm that would solve

the problem efficiently. In our work, we propose solutions addressing these
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challenges based on a heuristic based optimization algorithm and validate these

solutions empirically with real-life case-studies.

4. Adaptation of services and composed systems with the changes in

context at runtime. The proposed QoS and Trust prediction model is capa-

ble of capturing the context-QoS dependencies of participating services and the

composed systems using Bayesian networks. By inferencing on the Bayesian

networks, the model can predict the QoS and trust values of the composed

system for the context variations in early phases of the system development

lifecycle. These predictions help the system developers to make better design

and implementation decisions early in the design phase and integration phase

of the system development lifecycle. However, when such systems are deployed

in contexts that change often and rapidly such as the applications in IoT and

CPS domains, it is hard for developers to design for all the anticipated varia-

tions of the context in advance. Therefore, it is important that the model can

be applied to systems at runtime and continuously predict the QoS and trust

values as well as improve the prediction accuracy at runtime. However, it is a

challenge to evaluate Bayesian network models at runtime with the overhead

of inferences techniques. To address this challenge, we develop heuristic-based

fast inference techniques specially designed for the adaptation of services and

systems. Additionally, our QoS and Trust adaptation model based on the QoS

and Trust prediction model to feed data to the system about the changes in

its context, and information about when the adaptation should trigger to keep

the QoS and trust values of the system within satisfactory level. Therefore, the

proposed Trust adaptation model can be used to make existing services and

systems, which were not originally designed to be adaptable, to adapt with the

changes in context and subsequent changes in QoS and Trust.

5. Capturing the context-QoS dependencies of services from existing

systems and use this information in predicting future systems. As our
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prediction model requires the context-QoS dependencies information of each

services, its important to identify these information quantitatively to get highly

accurate predictions. To capture these dependences, the services have to be run

under different possible contexts and monitor its QoS. However, it may not be

possible to test each individual services under all the possible contexts, specially

for different associative contexts where the services have to be tested how it is

interacting with other services.

Since the services are reusable, a service that contribute to a future system

may have been used in existing systems. Since these systems can be executed

in different contexts, we can extract out the context-QoS dependencies of the

individual services by analyzing the execution data from these existing systems.

However, its a challenge to extract out such details from a complete systems,

as systems are made of many services with different types of interactions under

different contexts. In our proposed approach, we expect to tackle this challenge

by using both automatic and manual techniques to learn the service parameters

quantitatively.

1.4 Proposed Approaches and the Contributions

We propose several models (BDUTrust model, RegressionTrust model, Context-

Trust model, OptimumTrust model, AdaptTrust model and ReuseTrust model) to

address the research challenges mentioned in Section 1.3. In this section, we provide

an overview, inputs, outputs and summary of contribution of each model.

1. BDUTrust model: The BDUTrust model predicts the trust values of com-

posed systems using subjective logic operators. We study the use of subjective

logic to capture both subjective and objective evidences in evaluating QoS and

trust values of both the individual services and the composed systems. The

inputs to the model are the execution traces and the user experience (repre-

sented in the subjective logic representation) of individual services, and the
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knowledge of domain experts about the interaction patterns present in the sys-

tem. The output of the model is the trust prediction value of the composed

system. Our contributions include: methods for computing B, D, U (subjec-

tive logic representation of trust) tuples of individual services using execution

traces, identifying trust composition operators (mostly taken from the subjec-

tive logic aggregation operators) for basic composition patterns, prediction of

trust of composed systems, and empirically validating the proposed approach

using real-life case studies. In BDUTrust model we do not consider the impor-

tance of context in evaluating trust of the individual services and the composed

systems.

2. RegressionTrust model: The RegressionTrust model predicts the QoS and

trust of a particular, to be constructed, distributed systems by capturing the as-

sociations present between participating services in other related systems. The

inputs to the model are the execution traces and the interaction patterns of ex-

isting related systems. The output of the model is the QoS and trust predictions

of the future composed systems. Our contributions include: devising a machine

learning based technique to identify associations between services quantitatively,

and the use of QoS/trust values of individual services and associations between

services to predict the trust of future systems. In the RegressionTrust model

we only consider the importance of the association context in evaluating trust

of the individual services and their composed systems.

3. ContextTrust model: The ContextTrust model predicts the QoS and trust

values of the composed systems by considering the context to QoS and trust

dependencies of individual services. We use Bayesian networks and associated

learning and inference techniques to capture and infer the context-QoS/trust

dependencies of the individual services and the composed systems. The in-

puts required to train the model are the execution traces of services, and the

knowledge of domain experts about context-QoS dependencies, and interaction
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patterns. The inputs required to infer the model are user context information.

The output of the model is the QoS and trust prediction values of the composed

system. Our contributions include: the capturing the context-QoS dependen-

cies quantitatively from the execution traces of the services using Bayesian

networks, aggregating these Bayesian networks of individual services to derive

the context-QoS dependency Bayesian network of the composed system, study-

ing different learning and inference techniques of the networks, providing more

accurate predictions of the QoS and trust values of the composed systems when

compared with the prevalent approaches and empirically validating the model

with real-life case studies.

4. OptimumTrust model: The OptimumTrust model selects the optimum set

of services to build QoS and trust optimized distributed systems. The inputs

to this model are the candidate services of each abstract service category, the

user context, the QoS/ trust constraints, and the QoS/trust preferences. The

model outputs the optimum set of candidate services to compose the required

distributed system. Our contributions include: modeling the service selection

problem for context-aware distributed systems, identifying heuristic techniques

to solve the optimization problem efficiently, and validating the efficiency of the

proposed heuristic solution using simulated data with large number of service

groups and candidate services.

5. AdaptTrust model: The AdaptTrust model helps the composed distributed

systems to adapt with the changes in context during their execution. The

inputs to the model are the readings from detector services about the context.

The output of the model is in form of triggers to the adaptation services with

quantitative information about the required adaptation level. Our contributions

include: the study of heuristic techniques to speed up the inferences of context-

QoS dependency Bayesian networks, adaptation model that keeps the QoS and
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trust values within the specified thresholds with the changes in the context at

runtime, and validation of the model using a real-life case study.

6. ReuseTrust models: The ReuseTrust model infers the context-QoS/trust de-

pendencies of participating services using the context-QoS dependency informa-

tion of their composed systems. The QoS and trust values of existing systems

can be evaluated using evidences such as the execution history of the systems.

However, the execution history information may not be available to be used

for evaluating trust of individual services that the systems are composed of.

The reason for that is that the users interface with the systems as a whole

rather than with individual services. In such situations, this model can be used

to infer QoS distributions of individual services. The inputs to the model are

the context-QoS dependency Bayesian networks of composed systems, and the

context-QoS dependency Bayesian networks of known services. The outputs

of the model are the context-QoS dependency Bayesian networks of unknown

services. Our contributions include: building a learning model to infer context-

QoS information of individual services using context-QoS dependency Bayesian

networks of multiple compositions, and validating the model using a real-life

case study.

1.5 Assumptions

The proposed context dependent QoS and trust prediction framework can be

used to make predictions about a composed distributed system. It operates under

the following assumptions.

• The abstract design of the system (which consists of abstract services, and the

interaction patterns among services) is already known. The abstract design of

the system would be prepared to satisfy its functional requirements. Concrete

services corresponding to each abstract service can be selected (from the set of
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candidate services) based on the QoS and trust requirements using the proposed

model in this dissertation.

• For each candidate service, either the complete context-QoS dependencies should

be known or execution logs of existing systems that have used the candidate

service should be available, which will help in deriving the context-QoS depen-

dencies of the service.

1.6 Dissertation Organization

This chapter introduces the problem statement of this dissertation, related chal-

lenges, summary of the contribution and the assumptions made by us in addressing

these challenges. Chapter 2 discusses the existing works that have attempted to ad-

dress the same challenges, and shortcomings of these attempts. Chapter 3 discusses

the context independent QoS and trust prediction framework with the results of the

empirical validations. Chapter 4 discusses the context dependent QoS and trust pre-

diction framework in detail. Chapter 5 presents the experiments done to empirically

validate the QoS and trust prediction framework and along with the results of these

experiments. Chapter 6 discusses the applications of the trust prediction framework

to real world problems with a case study for each application. Finally Chapter 7

concludes the dissertation with lessons learnt, inferences derived and possible further

extensions.
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2 RELATED WORKS

In this chapter, we analyze the related works in three categories mentioned below.

These works attempt to address the same challenges mentioned in section 1.3. We will

compare these efforts with our approach. The content in this chapter is an extension

of our previous publications [17–21].

1. Predicting QoS and Trust of Composed systems

(a) Arithmetic operators based QoS/Trust predictions

(b) Machine learning based QoS/Trust predictions

2. Optimum service selection problem

3. Dynamic adaptations of composed systems

2.1 Predicting QoS and Trust of Composed Systems

There are two sub-categories of works that provide models to predict the QoS and

trust of composed systems at the design phase of the system development lifecycle.

The first sub-category of works uses arithmetic operators, and the second sub-category

uses machine learning techniques to perform predictions. We discuss these two sub-

categories of works separately.

2.1.1 Arithmetic Operators based QoS/Trust Predictions

A model provided by Jaeger et al. [22] uses QoS composition operators, which are

based on the nature of the QoS property and the interaction patterns of the services,

to calculate the QoS of compositions from the QoS of individual services. They have
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identified QoS composition operators for common QoS attributes, such as execution

time, cost, encryption, and throughput, with common service interaction patterns,

such as sequence, loop, and different parallel compositions. However, the proposed

QoS composition operators do not consider the impact of the environment and the

correlations between services in calculating the QoS of a composition. Jaeger et al.’s

model is extended by Hwang et al. [23] by including QoS composition operators that

consider the distribution of QoS values for both individual services and resulting

predictions of composed systems. Their approach also lacks the consideration of the

environment and other external factors (context) in predicting the QoS of composed

systems. In the chapter 5, we show that their approach (which is referred to as

the prevalent approach) gives lower accuracy compared with our approach, when

predicting the QoS values of different composed systems.

Similarly, an operator-based approach is used by Elshaafi et al. [24] to predict the

trust of compositions. They assume that the trust of composition can be predicted

by identifying set of properties (which they call as trustworthiness properties) such

as reputation, reliability and security properties. Similar to Jaeger et al. and Hwang

et al., those properties are calculated using operators, which in turn depend on the

nature of the property and the interaction pattern. However, in contrast to the other

methods(Jaeger et al.’s and Hwang et al.’s), their work includes the operators for

reputation, and shows a comparison of the use of such operators along with results of

just averaging or taking the minimum among the reputations of participating com-

positions. They claim that as the trustworthiness changes with time, their approach

shows the difference better than the other approaches. However, their results use sim-

ulations instead of actual services or compositions, and its debatable whether their

technique would be accurate for practical applications specially when these properties

depends on external factors.

Alagar et al. [25] propose a formal approach for trustworthy composition consid-

ering safety, security and time factors. Their composition model requires the par-

ticipating components to be fully trustworthy. However, as it is common to use
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untrustworthy components in a composition (specially when third party libraries are

required), it is important that the composition model be more flexible to include the

use of untrustworthy components in the composition. In contrast, our model pro-

poses composition operators that can be applied on components with different levels

of trustworthiness.

Buford et al. [26] propose the idea of composition trust binding (i.e., a policy for

composition) to integrate trusted systems among pervasive devices. However, such a

model restricts the composition only among a predefined set of services, which has

a lower applicability in today’s pervasive computing world because of the dynamic

nature of the services. Our model assumes the presence of autonomous evaluations

of individual services, and derives the trustworthiness of the composed system at the

integration time based on various composition operators.

Sherchan et al. [27] present a trust ontology that identifies different types of trust

(including composite trust and propagated trust) and their relationships in a service-

oriented systems. However, they do not provide a concrete model for assessing the

composite trust, which is the main intention of our work.

Mclean el al. [28] and others [29, 30] have proposed formal models for the com-

position of information flow security properties. Their work shows that to preserve

security properties in a composition, all the participating services should at least

hold the separability property. In our work, we extend these models to evaluate

trustworthiness of the composition of security properties.

Charpentier et al. [31,32] present a model for reasoning out a composition of uni-

versal and existential composition operators. In our work, we use these composition

operators to find the corresponding trust operators in evaluating trustworthiness of

the composition.

All the above mentioned models do not consider context dependencies to QoS/

trust values, and address the problem of assessing trust associated with QoS prop-

erties. Therefore, our work contributes to the state of the art of trusted distributed

systems research by presenting a formal model to predict trust of distributed systems.
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2.1.2 Machine Learning based QoS/Trust Predictions

Hang et al. [13] have used a mixture of beta distribution to represent trust of

services/ compositions. They evaluate the trust of participating services from the

trust of compositions by considering dependencies of the composition with its partic-

ipating services. Those dependencies are represented using a Bayesian network. The

beta distribution keeps track whether the service is trustworthy or not as a binary

variable. Mehdi et al. [33] extend their approach to use multinomial variable instead

of a binary variable (which keeps track of different trustworthiness levels) and a mix-

ture of Dirichlet distribution to derive the service trustworthiness. Trustworthiness

of the participating services are derived using Expectation-Maximization algorithm.

The main problem with these approaches is that they validate their approach using

a syntactic dataset, which may not match with the real life situation. In addition,

these approaches do not consider evaluating trust associated with each QoS param-

eter (most of which are continuous variables) of the system and do not consider the

effect of the context on the QoS in their evaluations.

There are other works that use machine-learning techniques to predict the QoS

of compositions. A model provided by Eskenazi et al. [34] uses linear regression to

predict the performance of software systems that are composed of components. This

requires the system developers to identify the performance-related parameters of each

component manually, which are referred to as signature types, and use them as the

features for the regression model while using the weights of each signature type as the

parameters of the model. The regression model helps to extract the importance of

each signature types on the overall performance of existing systems and also provides

ways to predict the performance of new systems. The main drawback of this approach

is the need for manual intervention in identifying signature types (which may not

be shared among more than one service) and mapping them to adequate numerical

values. This work also does not consider the context of the services in the performance

predictions.
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In addition to the approaches mentioned earlier [13,33,34] (approaches that learn

parameters from existing systems, and use the trained models in predicting future

systems), there are other works that focus only on extracting performance parame-

ters form existing systems to identify the performance anti-pattern of the system (and

possibly improve the performance in next versions). For example, Brosig et al. [12]

have proposed a probabilistic approach to capture the data-control flow dependencies

to extract the architectural level performance model of a composed system. Similarly,

Krogmann et al. [35] use data from reverse engineering of byte-codes to capture the

data-control dependencies. However, they do not capture the context-QoS dependen-

cies of existing systems, which we think is an important factor in predicting the QoS

of any compositions.

They are existing works that also study context-QoS dependencies of services. For

example, Silic et al. [36] present a model that predict reliability of services based on

three types of context parameters, i.e, user-specific parameters such as user location,

and user profiles, service-specific parameters such as computational complexity, and

system resources, and environment-specific parameters such as service provider load,

and network performance. Their technique consists of clustering context parameters

based on the reliability levels obtained from the execution traces of the services, and

predict the reliability of future service based on the cluster of each context parameter.

However, their technique will not be much effective in case studies that have continu-

ous QoS parameters (such as response time) and continuous context parameters (such

as the resolution of a camera).

Mabrouk et al. [37] presents optimum QoS aware selection algorithm that is fast

enough to adjust to the changing context and re-evaluate the optimization problem

with new QoS values (which has changed due to the context change). However, their

focus is not to capture the context-QoS dependences of individual services or predict

QoS/ trust of service compositions. There are work [38,39] that consider the associa-

tive between services and their effect to QoS in selecting services for a composition.

However, their approach cannot be extended to find dependencies from other context



21

parameters (such as physical,input/configuration and execution contexts) to QoS of

services and compositions.

Other recent efforts on trust evaluation criteria [40–43] consider only external

evidences including ratings and reviews. However, this requires the composed system

to be available for use. Therefore, these models are not capable of predicting trust

of the composed system in early phases of its lifecycle. In contrast, our approach

considers internal evidences as well as external evidences of related systems and is

capable of predicting trust values of a system before composing it.

2.2 Optimum Service Selection Problem

There are many efforts that study efficient algorithms to the optimum service

selection problem while considering the associativity context of services. Mabrouk

et al. [37] present a QoS-aware selection algorithm that re-evaluate the optimization

problem and select the best set of services for a composed system with changing

QoS values. However, they do not propose a specific model to evaluate context-QoS

dependencies and focus on presenting a fast optimization algorithm assuming QoS

values are known at any specific point in time. Similarly there are studies [44–46]

that focus on fast optimization algorithms to support rapid changes in context. In

contrast, our approach studies fast evaluation of context-QoS dependencies along with

fast optimization algorithms for the optimum service selection problem with dynamic

context.

The model provided by Guo et al. [38] shows that selecting correlated services for a

composition would improve the QoS of the composed system. However, their proposed

model uses a deterministic algorithm that will not scale with the increase of service

groups and the candidate services. Similarly, the model provided by Barakat et al. [39]

uses correlations between services to reduce the search space of candidate services

while selecting the best subset of services for a particular functional requirement.

However, they use greedy approach to check for feasible constraints, hence, it can leads
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to optimum, and non-feasible solutions. Both these approaches ( [38,39]) consider the

associativity context of the services in selecting services for a composition. However,

their approaches cannot be extended to carry out an optimal service selection based

on other context parameters (such as physical, input/configuration, and execution

contexts).

There have been many studies [47–50] about optimizing the resource allocations

when deploying composed systems on cloud federations. Their works mainly focus

on building optimization models that can match available resources (such as CPU,

bandwidth, memory) to services for QoS optimization of individual services (specially

to minimize the deployment cost of each service). However, these model do not focus

on optimizing the composite QoS and trust by selecting the optimum set of services

when multiple services with different QoS, but with same functionalities are available.

The model proposed by Rekik et al. [47] consider the reconfigurability of services in

solving the optimal cloud deployment problem. In contrast, our approach consider

many context aspects including the configuration context. Additionally, Our model

can be used to optimize the composed QoS and trust of systems when there are

multiple competing services available.

There are many theoretical approaches ( [14–16]) for finding efficient algorithms

for the optimum service selection problem. These approaches validate their algorithms

only using a simulated data set, and ignore the impact of the context and trust in their

evaluation. In contrast, we have validated our approach using both simulated and

real-life datasets and our approach considers the dependencies between the context

and the Qos/trust of services and composed systems.

2.3 Dynamic Adaptations of Composed Systems

The existing work on software adaptation can be divided mainly in to two sub-

categories as surveyed by Kell et al. [51]. In the first sub-category, the adaptation is

done for the correctness of functionality and in the second sub-category, the adap-
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tation done for the satisfaction of non-functional attributes such as performance,

reliability and other QoS. They have indicated that the adaptation done for non-

functional attributes is a comparatively harder problem. Since in our work, we are

tackling on the problem of adaptation with regard to QoS and trust, below we discuss

the previous works in the second sub-category and compare them to our work.

Weyns et al. [52] have surveyed existing formal methods for QoS-aware self adap-

tive systems and presented statistics on the trends of modeling techniques, adaptation

concerns and types of software systems that researchers have been focusing in recent

years. Their survey does not report any research with Bayesian networks or probabilis-

tic graphical models as modeling techniques and the trust as an adaptation concern.

However, service-based systems are reported as common types of software systems

these formal methods have been applied to. Therefore, we think that our model,

which uses a Bayesian network as a modeling technique, and trust as an adaptation

concern, brings novelty to the self adaptive service-based system research domain.

Cardellini et al. [53] present a QoS-driven adaptation framework specially de-

signed for SOA systems. It has the capability to act as a service broker in the service

selection and the interaction pattern selection to adapt composed systems. In con-

trast, our framework is capable of reacting to context changes in individual service

and composed systems, and where possible to neutralize the effects of these changes.

In addition to possibly acting as a service broker, our framework feeds input data

about the QoS predictions and context evaluations to adaptation services. Their

framework focuses only on the satisfaction of average value of QoS. In contrast, our

model operates on QoS distributions and the satisfaction of the trust in addition to

the satisfaction of the QoS.

Similar to Cardellini et al., Calinescu et al. [54], and Mabrouk et al. [37] model

the QoS-based adaptation as an optimization process and use linear programming or

heuristic techniques to solve the model equations. Their work is based on the argu-

ment that QoS attributes may compete with each other (i.e. improving one attribute

may worsen some other attributes [55]), therefore, the optimization technique should
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consider optimization of attributes simultaneously while satisfying the constraints of

individual attributes. In contrast, our model consider the competitive or supportive

nature of the QoS attributes implicitly by representing them as nodes in a Bayesian

network that connected through paths with either negative (for competitive) or pos-

itive (for supportive) parameters.

Villegas et al. [56] present a high-level reference model that uses a self adapta-

tion mechanism to ensure the QoS and Service level agreement are met in dynamic

environment. Their approach includes, continuous monitoring of the dynamic con-

text, and feedback loops that automate the dynamics of the system similar to how

control theory applications work. However, they have not presented particular con-

crete techniques that can be used in such feedback loops. We have mainly followed a

similar high-level approach, however, in contrast, we present concrete techniques to

practically realize the feedback loop. Villegas et al. have decoupled the feedback loop

to the sensor process and the effector process. We use the same structure (referred

as ‘detection’ process and ‘trigger’ process) in the feedback loop of our adaptation

model.

Lin et al. [57] propose a framework for adaptive routing for software defined net-

work using a reinforcement learning approach. This learning framework, which had

favors the adaptation actions that has improved the network performance in the past

for a similar state of the network. In contrast, we use Monte Carlo methods [58]

on Bayesian networks to infer the adaption actions. However, we also use caching

techniques to remember the actions that had improved the QoS on past for similar

contexts and apply them as initial seeds to the Monte Carlo methods.

The adaptation techniques are triggered as a reaction to the changes in the system

environment (which we refer to as the context). Most researchers have emphasized

the importance of the context in software adaptation process [53, 56]. However, to

our knowledge, none of the existing adaptation frameworks explicitly model the de-

pendencies of context to functional and non functional attributes. In contrast, in our

model, we consider the ‘context’ as a first-class citizen and represent it along with the
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functional and non-functional attributes. With this approach, we are able to build a

general model for software adaptation that can continually monitor context changes,

detect the QoS and trust violations caused by these changes, and react to recover the

QoS and trust in real-time.

In this chapter, we have presented related works in three categories and discussed

their drawbacks comparing with our approaches. In summary, we found the following

limitations of the prevalent approaches:

• No explicit incorporation of the context in the QoS and trust evaluation during

the design phase and the execution phase of system life-cycle.

• No evaluation of trust associated with various QoS attributes that have contin-

uous values for compositions.

In our work, we address these limitations by proposing models that consider context-

awareness and trust evaluation as primary objectives.
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3 CONTEXT INDEPENDENT QOS AND TRUST PREDICTION

FRAMEWORK

The QoS and Trust prediction framework proposed in this chapter is created with the

assumption that the QoS and trust of a composition solely depends on the QoS and

trust of individual services and their interaction patterns. The prevalent frameworks

by Jaeger et al. [22] and Hwang et al. [23] use the same assumption in predicting QoS

of compositions. In the work presented in this chapter, we extend their framework

to predict trust associated with each QoS of the composition. The content in this

chapter is an extension of our previous publications [17,18].

The proposed context independent QoS and Trust prediction framework consists

of two prediction models, ‘BDUTrust’ and ‘RegressionTrust’. In Section 3.1, we intro-

duce a basic independent trust prediction model (referred as ‘BDUTrust’) in detail.

In Section 3.2, we introduce a regression analysis based model (referred as ‘Regres-

sionTrust’) that uses evidences from existing composed systems to evaluate trust of

future systems based on the BDUTrust model. Finally, in Section 3.3, we discuss

the drawbacks of the context independent QoS and trust prediction framework, and

the improvements we performed to overcome these drawbacks on the novel context

dependent QoS and trust prediction framework discussed in Chapter 4.

3.1 The Compositional Trust Model – BDUTrust

3.1.1 Interaction Patterns of Properties

Trust of a composed system can be evaluated by aggregating the trust of func-

tional and quality-of-service (QoS) properties (e.g., response time, availability, and
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confidentiality) that the system is expected to hold. A single property of a system

can either be a boolean assertion (e.g., confidentiality) or a key-value pair (e.g., re-

sponse time). The trust value of a single property can be derived based on trust

values for the corresponding property from each of the individual service involved in

the composition. The composition of the individual service properties to create the

systemic value, however, depends on the nature of the property and the interaction

pattern (i.e., how the services interact with each other) of the software services in the

composition.

In this Chapter, we focus on the following QoS properties of software systems:

response time (i.e., the length of time it take a client to send a request to a server,

and receive a response for the originating request; availability (i.e., the percentage of

the duration that the service is alive since initial deployment); authentication (i.e.,

confirmation/ rejection of an external entity’s identify that is trying to access a se-

cure part of the system; authorization (i.e., the ability to access a resource in the

environment); confidentiality (i.e., the ability to ensure that information does not

reach parties that are not privy to the information); and integrity (i.e., the measure

of completeness and correctness of the actions and data). It is worth noting that our

approach is not limited to these QoS properties. As discussed in Section 3.1.4, the

approach can be applied to other QoS properties by identifying the corresponding

composition operators for interaction patterns of the system.

As for the common interaction patterns, we use the patterns originally defined by

Hwang et al. [23]:

• Sequence – Sequence is when the output of a software service becomes the

input of another software service (Figure 3.1). For example, a firewall service

is the first service in sequence that authenticates requests to access services

behind (or after) the firewall service.

• Split/Join – Split/join is when many services shares the input from one preced-

ing service and emit the output to one common, succeeding service (Figure 3.2).
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Figure 3.1.: Sequence interaction pattern.

For example, two independent calculations of mathematic equation can be di-

vided into two parallel services, and join them to do the combined calculations.

Figure 3.2.: Parallel split/join interaction pattern.

• Exclusive Choice – Exclusive choice is when one service from a set of services

non-deterministically selected and invoked (Figure 3.3). For example, a load

balancing service uses exclusive choice when selecting a service from a set of

nearly identical services to obtain a higher availability of the composed system.

Figure 3.3.: Exclusive choice interaction pattern.

• Discriminator – Discriminator is when a service is selected from a set of

services that provide the same functional behavior, but different QoS properties
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(Figure 3.4). This pattern is different from the exclusive choice pattern above

in that here the selection is done based on deterministic criteria. For example,

selecting the weather software service that provides the best response time from

all the available weather software services.

Figure 3.4.: Discriminator interaction pattern.

• Loop – Loop is when an output of a service is a feedback as the input of the

same service based on some condition (Figure 3.5). For example, selecting a

weather service from a set of services on the first iteration, and using the result

of the current iteration to select the same, or a different weather service on

subsequent iterations.

Figure 3.5.: Loop interaction pattern.

• Gateway – Gateway is a when a service resides between two other services, and

orchestrates communication between the two other services (Figure 3.6). For

example, if there are two services that provide heterogeneous interfaces (e.g.,

CORBA and SOAP), then the gateway is used to enable the communication

between either service.
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Figure 3.6.: Gateway interaction pattern.

3.1.2 Trust Operators and Representations

For the context independent trust prediction framework, we formally define trust

of a service as TS = (B,D,U) where B is belief that the service conforms to its

specification, D is disbelief that the service conforms to its specification, and U is un-

certainty that the evidences are incomplete or unavailable to decide the conformance

of a service to its specification. We call this the BDU-model and is based on the

subjective-logic trust model proposed by Josang et al. [3]. We selected this model as

the foundation of our trust compositional model because it captures the uncertainty

aspect of the trust, and provides formal operators to evaluate and compose subjective

trust values.

Josang et al. also proposes a set of operators on multiple subjective-logic ex-

pressions that includes traditional logic operators (e.g., conjunction, disjunction, and

negation) and operators specific to the belief theory (e.g., consensus and recommen-

dation). For completeness, we include below the definition of operators originally

defined by Josang et al. [3] that are used throughout the remainder of this Chapter.

In the list below, the term “agent” is used to represent stakeholders in trust rela-

tionships. An agent’s A trust of a proposition or another agent’s recommendation

p is denoted as TAp ≡< bAp , d
A
p , u

A
p >. When only one agent evaluates trust, trust is

represented as Tp ≡< bp, dp, up >.

• Conjunction (∧B,D,U). Given Tp and Tq, then

Tp∧q ≡< bp∧q, dp∧q, up∧q >
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where,

bp∧q = bp · bq
dp∧q = dp + dq − dp · dq
up∧q = bp · uq + up · bq + up · uq

• Disjunction (∨B,D,U). Given Tp and Tq, then

Tp∨q ≡< bp∨q, dp∨q, up∨q >

where,

bp∨q = bp + bq − bp · bq
dp∨q = dp · dq
up∨q = dp · uq + up · dq + up · uq

• Recommendation (⊗B,D,U). Given agents A and B, TAB , and TBp , then

TABp ≡< bABp , dABp , uABp >

where,

bABp = bAp · bBp
dABp = bAp · dBp
uABp = dAB + uAB + bAB · uBp

3.1.3 Trust of Properties in a Composition

As discussed earlier, we define trust of a service to be the degree of confidence

that service conforms to its specification. Although there are broader definitions

of trust [59], we use this definition, as our focus in this paper is to evaluate trust

during the construction of distributed systems. Following this definition, the trust of

a service is evaluated by measuring the degree of the compliance. Furthermore, the
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trust of a composition depends on the properties of its individual services and their

interconnection patterns.

It is therefore important to identify the types of relationships that exist between

properties of the composed system and the individual services. In the BDU-model,

we identify such relationships and the corresponding trust operators for predicting

the trust of the composition from the trust of individual services. More specifically,

the trust about a property P of a service S defined as:

T (PS) ≡< B(PS), D(PS), U(PS) > (3.1)

If the service S is composed of individual services S1, S2, . . . Sn with an interaction

pattern I, then property P of the service S is evaluated as a function of P for the

individual services. This function is called the composition operator OPPS
and is

defined as:

OPPS
: {Ps1 , Ps2 , ..., Psn , I} → PS (3.2)

As shown in Equation 3.2, OPPS
depends on P and the interaction pattern (I) between

individual services.

The trust of a property P in the service S depends on OPPS
and is defined by the

trust composition operator OPT (PS) where

OPT (PS) : {OPPS
, T (Ps1), . . . , T (Psn)} → T (PS) (3.3)

3.1.4 Trust Composition Operators

Existential operator. If OPPS
= ∃, then the composed system will have prop-

erty P , if there exists a service Si that satisfies property P . Likewise, the correspond-

ing trust operator for this composition is the disjunction operator. For example,

availability (in the discriminator pattern) illustrates usage of the existential operator
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because when one service has the availability property, then the composed system

also has the availability property.

Universal operator. If OPPS
= ∀, then the composed system will have property

P , if all its services hold property P . Likewise, the corresponding trust operator for

this composition is the conjunction operator. For example, confidentiality (in the

sequence pattern) illustrates usage of the universal operator because all services in

the composed system must have the confidentiality property for the composed system

to have the confidentiality property.

Min/Max operator. If OPPS
= min(x) or OPPS

= max(x), then the value of

property P of the composed system is the minimum or maximum value, respectively,

of property P out of all services used in the composition. For example, response time

(in the discriminator pattern) illustrates usage of the minimum operator because the

response time of the composed system is equal to the minimum response time of the

participating services. Similarly, response time (in the split/join pattern) illustrates

usage of the maximum operator because the response time of the composed system

is equal to the maximum response time of the participating services.

If the property P is a boolean assertion, then the minimum (or maximum) oper-

ator is equivalent to the universal operator. In this situation, T (PS) = ∧(B,D,U) (or

T (PS) = ∨(B,D,U)). If the property is not a boolean assertion (i.e., a key-value pair

such as response time), then T (PS) must rely on distributions of the operands.

For example, response time is a key-value pair property and example values can be

described using a distribution of values with mean 35ms and 4ms standard deviation.

Assuming that two separate services (i.e., S1 and S2) exhibit the response time distri-

butions above, then the trust value for P of the composed system can be calculated

by using probability theory and the corresponding minimum (or maximum) operator

to join each service’s probability distribution [60]. The resulting joined probability

distribution is then used to calculate the trust of P for the composed system. Further-

more, we can approximate that the min/max operator is equivalent to the universal

operator for non-binary properties as well.
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Addition operator. If OPPS
=
∑

, then the value of property P for the com-

posed service system is the sum of the property P for all services used in the compo-

sition. For example, response time (in the sequence pattern) illustrates the usage of

the addition operator because the response time of a composed system is equal to the

sum of the response times of the participating services (assuming that each services is

running on its own host and there is no competition for CPU resources on the host).

If P is a binary assertion, then the addition operator is equivalent to the existential

operator (see above). If P is not a boolean assertion, then the trust value for P of the

composed system can be calculated by using probability theory and the corresponding

addition operator to join each service’s probability distribution [61]. Furthermore, we

can approximate that the addition operator is equivalent to the existential operator

for non-binary properties as well.

Multiplication operator. If OPPS
=
∏

, then the value of property P for the

composed system is the product of property P for each service used in the compo-

sition. For example, availability (in the sequence pattern) illustrates usage of the

multiplication operator because the availability of a composed system is equal to the

multiplication of the availabilities of the participating services.

If P is a boolean assertion, then the multiplication operator is equivalent to the

universal operator (see above) because both produce the same results. If the property

is not a boolean assertion,then the trust value for P of the composed system can be

calculated by using probability theory and the corresponding multiplication operator

to join each service’s probability distributions. [60]. Furthermore, we can approximate

that the multiplication operator is equivalent to the universal operator for non-binary

properties as well.

Multiplier operator. If OPPS
= multiplier, then the value of property P for the

composed system (PS) is equal to the multiplication of the property that participate in

the composition (Ps) with some constant multiplier n. We denote this as PS = n ·Ps.

For example, response time (in the loop pattern) illustrates usage of the multiplier
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operator because the response time of a composed system in loop pattern is equal to

the response time of the participating service multiplied by the number of loops.

The application of the multiplier operator is equal to applying the addition opera-

tor to a service n times. The trust operator corresponding to the multiplier operator

is therefore equivalent to applying trust operator corresponding to the addition oper-

ator n times. For example, if the response time of a service is 15ms and is composed in

a loop pattern of 10 iterations, then the response time of the composed service is 150

msec (assuming that there is no competition for CPU resources on the host in each

iteration). If the Belief component of the trust of the participating service is high,

then the trust of the composed system can be obtained by applying the conjunction

operator on the on the trust of the participating service n times.

Exponent Operator. If OPPS
= exponent, then the value of property P for

the composed system (PS) will be equal to the exponential value of the property

that participate in the composition Ps with some constant exponent n. We denote

this as PS = Ps
n. For example, availability (in the loop pattern) illustrates usage of

the exponent operator because the availability of a composed system in loop pattern

is equal to exponentiation of the availability of the participating service where the

exponent is number of loops.

The application of exponent operator is equal to applying multiplication operator

for to a service a constant number of times. The trust operator corresponding to the

exponent operator is therefore equivalent to applying the trust operator corresponding

to the multiplication operator a constant number of times.

Non-deterministic operator. If OPPS
= ND, then the value of property P

for the composed system equals the value of P for the non-deterministically selected

service. As shown in Equation 3.4, the application of composition operator for a set of

services will give an expected value for P equal to the probability that the individual

service is selected.

PS = (w1 · Ps1) + (w2 · Ps2) + . . .+ (wn · Psn) (3.4)
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For example, availability (in the exclusive choice pattern) illustrates usage of the

non-deterministic operator because the availability of a composed system in exclusive

choice is equal to the availability of a non-deterministically selected service.

The trust composition operator corresponding to the non-deterministic composi-

tion operator is found by applying both the recommendation operator ⊗ and disjunc-

tion operator ∨. As shown in Equation 3.5, the probabilities of individual service Si

being selected is expressed as a subjective logic expression Wi where Wi is the weight

that service Si to be selected considering uncertainty also as a factor.

T (PS) = (W1 ⊗ T (Ps1)) ∨ (W2 ⊗ T (Ps2))∨

. . . ∨ (Wn ⊗ T (Psn))
(3.5)

Generative operator. If OPPS
is the generative operator, then the composed

system will have the value of property P if the condition in the context (denoted as ξ)

of the composition is met—even if services do not have property P . For example, the

confidentiality property (in the split/join pattern) illustrates usage of the generative

operator because by splitting user data flow at different levels (e.g., authorized users

and non-authorized users) the control and the data can be made confidential. Here the

generative condition ξ is the whether the communications of participating services are

separated (without any back-channels) or not. Lastly, the trust composition operator

corresponding to the generative operator is equal to the trust that the generative

condition ξ for the satified participating services.

Select operator. The select operator is a transformational composition oper-

ator that has to be combined with another composition operator. We denote the

select operator as OPPS
[criteria] where criteria is a condition that a subset of the

participating services must satisfy. When the select operator is present, the relevant

composition operator is applied only on the participating services that meet the given

criteria. For example, authentication (in the discriminator pattern) illustrates the us-

age of the select operator because the authentication of the composed system is equal

to the authentication provided by the participating services with minimum response
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time. The subset of available services can be selected using the criteria “services

having minimum response time”.

When the select operator is applied to property P with a composition operator

OPPS
, the trust of P in the composed system is evaluated by applying the trust

operator of the related composition operator on the set of services within the com-

position that hold the criteria. For example, the trust of the authentication of a

composed system in the discriminator pattern is calculated by applying the conjunc-

tion operator (trust operator corresponding to the universal operator) for the trust of

selected services with minimum response times. Lastly, the trust operator is denoted

as OPT (PS)[criteria].

3.1.5 Mapping Composition Operators for Properties and Interaction Patterns

The composition operators and trust operators depend on the interaction patterns

between individual services and the of the property under evaluation. For example,

evaluating the response time of a system using services that exhibit the sequence

interaction pattern requires using of the addition operator. Table 3.1 and Table 3.2

provide an overview of composition operators for common QoS properties with com-

mon interaction patterns.

As shown in Table 3.1 and Table 3.2, the universal operator is the composition

operator for the confidentiality and integrity QoS property is the irrespective of the

observed interaction pattern. This is because Mclean et al. [28] showed that these

properties are preserved only when all the participating services have the separability

property, which is the ability to ensure that there are no interactions allowed between

users at different authorization levels. To preserve authorization and authentication,

however, all the participating services need not have the corresponding property.

For example, proxy services [62] are used to add authorization and authentication

properties to existing systems that do not contain them, and broker authenticators

are used when client and servers do not share a trust relationship [63]. In such cases,
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Table 3.1.: The composition operators for different QoS properties and each interac-
tion pattern – Part 1.

Response
Time

Availability Authentication

Sequence Addition Multiplication Universal
Parallel Split/
Join

Maximum Multiplication Universal

Exclusive choice Nondeterministic Nondeterministic Universal
Discriminator
(minimum
response time)

Minimum Existential Universal [min-
imum response
time]

Loop Multiplier Exponent Universal
Gateway Addition Multiplication Universal[gateway

service]

Table 3.2.: The composition operators for different QoS properties and each interac-
tion pattern – Part 2.

Confidentiality Integrity Authorization
Sequence Universal Universal Universal
Parallel Split/
Join

Universal/ Gen-
erative

Universal/ Gen-
erative

Universal

Exclusive choice Universal Universal Universal
Discriminator
(minimum
response time)

Universal Universal Universal [min-
imum response
time]

Loop Universal Universal Universal
Gateway Universal Universal Universal[gateway

service]

the authorization and authentication property values of the composed system depend

only on the corresponding property values of the proxy and broker services.

3.1.6 Effect of Environment on Composition Operators

Discussion so far in this chapter assumes that the composition operators depend

only on the property under evaluation and the interaction pattern of the composition.
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The effect of the execution environment, however, is also an important factor that

must be considered when evaluating trust values of the composed system, and its

services. For example, if the runtime environment (e.g., the operating system) is

not trustworthy, the fully trusted services that execute within the environment will

not function as expected. Any trust composition model therefore must be able to

integrate trust of the runtime environment.

Building on Equation 3.2, we denote a service Sx running in an environment e as

Sex, and the property P of the service that runs on the environment e as Psex . The

composition operator for e is denoted as OP e
PS

, as shown in Equation 3.6:

OP e
PS

: {P e
s1
, P e

s2
, . . . , P e

sn} → P e
S. (3.6)

In most situations, we can capture the environment’s effect on the composed sys-

tem as service that participates in the composition. We denote the environment as a

service as Pse . For example, the network that hosts a set of services can be represented

as a service, and network delay and network bandwidth as the network service’s QoS

properties. We can then reuse the environment independent composition operator to

evaluate properties of the composition using the following equation:

OPPS
: {Ps1 , Ps2 , . . . , Psn , Pse} → P e

S

Similarly, we can extend Equation 3.3 to evaluate the trust of the composition

while integrating the as follows:

OPT (PS) : {OPPS
, T (Ps1),

T (Ps2), ..., T (Psn), T (Pse)} → T (P e
S)

(3.7)

As shown in Equation 3.7, the trust of a property in the composed system is evaluated

based on the trust of the property in the participating services and the environment

T (Pse). For example, if there are two services connected in a sequence have response
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times 15 msec each, and the overall network delay of the system is 5 msec, then the

response time of the composed system can be calculated by considering the network

as another service with the response time of 5 msec. The resulting response time

therefore would be 35 msec (assuming that each services is running on its own host

and there is no competition for CPU resources on the host).

In the ContextTrust model, introduced in Chapter 4, we consider the environment

as an important aspect of evaluating QoS and trust of services and compositions.

However, in the subjective logic-based compositional trust prediction we consider the

environment only when evaluating the network delay and its effect on the response

time of the composition.

3.1.7 Experimental Evaluation of the Compositional Trust model

This section discusses how we applied the trust composition operators introduced

in preceding sections to an indoor object tracking system [64] to empirically validate

the proposed trust composition model.

3.1.7.1 Overview of the Indoor Tracking System

The indoor object tracking system is a system that tracks the position of objects

using a set of heterogeneous sensors. It is also a SOA that is composed from the

following services:

• Sensor services. Sensor services represent physical sensors that identify the

location of the objects in the environment, such as a laboratory or office. Exam-

ples of sensor services include, but is not limited to: camera services, wireless

network signal tracking services, and Radio Frequency Identification (RFID)

services.
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• Fusion service. The fusion service fuses the outputs of multiple heterogeneous

sensor services and outputs an accurate position of the tracked object based on

the aggregation of information obtained from each sensor service.

• Discovery service. The discovery service selects the most appropriate sensor

and fusion services that matches the user’s functional and QoS requirements. In

this case study, the discovery service selects the two sensor services that most

accurately tracks objects while maintaining a low response time.

For the indoor tracking system, we are concerned with evaluating the following QoS

properties:

• Response time (RT). Response time is how long it takes to system to return

the position of the tracked object. Because the object’s position can change

over time, it is important that response time be low as low as possible to ensure

the obtained position is up-to-date.

• Error of tracked position. Error of tracked position is the distance between

the actual object position and the position provided by the tracking system.

The error should be as low as possible to increase the indoor object tracking

system’s accuracy.

Lastly, while evaluating these QoS properties, we assume the environment (i.e., the

network, the devices, and operating system) is a fully trusted service. This means

that we exclude the environment in our compositional trust model, but does not mean

we cannot include the environment if necessary. For example, if the environment’s

network has a lot of jitter (i.e., the specified response time of the network is not

trustworthy), then the network’s trust should also be included when evaluating trust

of the composed system.

We selected this case study, because not only it contains distributed heterogeneous

components, but also it has strict QoS requirements in the form of response time and

accuracy.
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3.1.7.2 Experimental Setup

Figure 3.7 shows the experimental setup of the indoor tracking system. As shown

in this figure, three camera sensors track an object that is migrated between ten

different predefined positions within the view range of the each camera. As the

object is tracked, we measure the response time and error of each individual service

and the composed system (i.e., the indoor tracking system). At each position, we

measure 50 samples of response time and error of the tracked position. We then

calculate the uncertainty of each measured QoS property using the ratio of number

of failures to provide the object’s location (e.g., not recognizing the object) to the

number occurrences the service (individually or included in a composition) is invoked

throughout its execution lifetime.

Figure 3.7.: Illustration of the indoor tracking system setup.
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Similarly, the belief and disbelief values of the QoS properties are calculated using

the ratio of the number of occurrences that the reading adheres to a specified threshold

value for the corresponding property to the number of occurrences the reading does

not adhere to the threshold value. This calculation is based on past experience,

and is considered “seeding” the composition model. For example, the response time

of the sensor2 was below 15ms in 304 readings, higher than 15ms in 46 readings,

and the sensor was unable to recognize the object in 150 readings. Using the above

concept, the trust of the specified response time of the sensor2 (i.e., 15ms) is <

0.608, 0.092, 0.3 >. The specifications of QoS properties and trust values based on

our past experience with the indoor track system are shown in the Table 3.3 and

Table 3.4.

Table 3.3.: Specification of response time and trust of services

Service Response time Trust < B,D,U >
Sensor1 (s1) 15ms < 0.59, 0.01, 0.40 >
Sensor2 (s2) 15ms < 0.608, 0.092, 0.3 >
Sensor3 (s3) 15ms < 0.328, 0.072, 0.6 >
Fusion Service (s4) 4ms < 0.616, 0.084, 0.3 >
Discovery Service (s0) 20ms < 0.623, 0.077, 0.3 >
Environment (s5) 3ms < 1, 0, 0 >
Composed system (S) 42ms < 0.58, 0.12, 0.3 >

Table 3.4.: Specification of error and trust of services

Service Error Trust < B,D,U >
Sensor1 (s1) 19cm < 0.600, 0, 0.400 >
Sensor2 (s2) 19cm < 0.60, 0.10, 0.30 >
Sensor3 (s3) 19cm < 0.398, 0.002, 0.60 >
Fusion Service (s4) Correction ratio:

0.842
< 0.614, 0.086, 0.3 >

Discovery Service (s0) N/A N/A
Environment (s5) N/A N/A
Composed system (S) 16cm < 0.53, 0.17, 0.3 >
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Lastly, Figure 3.8 shows the complete service interaction diagram of the indoor

object tracking system. As shown in this figure, the discovery service selects two of

the most appropriate sensors according to accuracy and response time requirements,

which are referred as non-deterministically select sensor services. These services then

track the object in parallel (referred to as composed sensor service) and provide the

tracking result to the fusion service. Lastly, the fusion service outputs the tracked

position to the client through the environment service, which is negligible in our

experiments.
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Figure 3.8.: Interaction patterns for the indoor object tracking system.
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3.1.7.3 Experimental Results of Compositional Trust model

As mentioned Section 3.1.7.1, response time and error of tracked position are

calculated by following a composing pattern of sensor, discovery, and fusion services.

The non-deterministically selected sensor services (sx1, sx2) are composed of three

sensor services (s1, s2, s3) using the exclusive choice pattern as shown in Figure 3.9.

When the composition operator and the trust composition operator related to the

exclusive choice pattern are applied, the following composed property value and the

corresponding trust values are obtained for each property:

Figure 3.9.: Non-deterministically select sensor services.

Composed response time:

Rtsx1 = w1 ·Rts1 + w2 ·Rts2 + w3 ·Rts3
= 1

3
· 15 + 1

3
· 15 + 1

3
· 15

= 15ms
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Trust of composed response time:

T (Rtsx1) = W1 ⊗ T (Rts1) ∨W2 ⊗ T (Rts2) ∨W3 ⊗ T (Rts3)

= < 0.34, 0.66, 0 > ⊗ < 0.59, 0.01, 0.4 >

∨ < 0.34, 0.66, 0 > ⊗ < 0.608, 0.092, 0.3 >

∨ < 0.34, 0.66, 0 > ⊗ < 0.328, 0.072, 0.6 >

= < 0.554, 0.123, 0.433 >

Composed error :

Ersx1 = w1.Ers1 + w2.Ers2 + w3.Ers3

= 1
3
· 19 + 1

3
· 19 + 1

3
· 19

= 19cm

Trust of composed error :

T (Ersx1) = W1 ⊗ T (Ers1) ∨W2 ⊗ T (Ers2) ∨W3 ⊗ T (Ers3)

= < 0.34, 0.66, 0 > ⊗ < 0.6, 0, 0.4 >

∨ < 0.34, 0.66, 0 > ⊗ < 0.6, 0.1, 0.3 >

∨ < 0.34, 0.66, 0 > ⊗ < 0.398, 0.002, 0.6 >

= < 0.566, 0.001, 0.433 >

In the equations above, we have assumed each camera service will be selected with

equal probability (i.e., 1
3
). Similarly, the property value and the trust value of the

second non-deterministically selected sensor service Psx2 can be calculated.

Composed sensor service s6 is composed of two non-deterministically selected sen-

sor services (i.e., sx1 and sx2) using the split/join pattern as shown in Figure 3.10.

The properties of the sensor composed service are evaluated as shown in the following

equations:
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Figure 3.10.: Sensor composed service.

Composed response time:

Rts6 = max(Rtsx1 , Rtsx2)

= max(15, 15) = 15ms

Trust of composed response time:

T (Rts6) = T (Rtsx1) ∧ T (Rtsx2)

= < 0.554, 0.123, 0.433 > ∧ < 0.554, 0.123, 0.433 >

= < 0.319, 0.014, 0.667 >

Composed error :

Ers6 = average(Ersx1 , Ersx2)

= average(19, 19)

= 19cm
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Trust of composed error :

T (Ers6) = T (Ersx1) ∧ T (Ersx2)

= < 0.566, 0.001, 0.433 > ∧ < 0.566, 0.001, 0.433 >

= < 0.57, 0, 0.43 >

Finally, the object tracking system S is composed of discovery service s0, the com-

posed sensor service s6, fusion service s4, and the environment s5 using the sequence

pattern as shown in Figure 3.11. The properties of the object tracking system are

evaluated as shown in the following equations:

Sensor Composed Service (s  )

Fusion Service (s  )

Discovery Service (s )

Output: 
Position

Input: Object 
Marker

Selects

Sensor Readings

Composed object tracking service (S)

0

6

4

Environment  (s )5

Figure 3.11.: Composed object tracking service.
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Composed response time:

RtS = Rts0 +Rts6 +Rts4 +Rts5

= 20 + 15 + 4 + 3

= 42ms

Trust of composed response time:

T (RtS) = T (Rts0) ∧ T (Rts6) ∧ T (Rts4) ∧ T (Rts5)

= < 0.623, 0.077, 0.3 > ∧ < 0.319, 0.014, 0.667 >

∧ < 0.616, 0.084, 0.3 > ∧ < 1, 0, 0 >

= < 0.263, 0.000, 0.737 >

Composed error :

ErS = Ers6 .Ers4

= 19 ∗ 0.842

= 16cm

Trust of composed error :

T (ErS) = T (Ers6) ∧ T (Ers4)

= < 0.57, 0, 0.43 > ∧ < 0.616, 0.084, 0.3 >

= < 0.422, 0.012, 0.566 >

Lastly, the summary of the predicted and the actual trust values of the proper-

ties is shown in the table 3.5. As shown in this table, the predicted trust value of

the proposed model is not mathematically equal to the actual trust value obtained

from executing the composed system empirically. It shows comparatively very high

uncertainty associated with the predicted trust value. This is because the calculation

process of the predicted trust value accumulates the uncertainty factor with the use

of more mathematical operations. However, if the uncertainty is divided between

the belief and disbelief with equal weights (indicated as normalized trust values in
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Table 3.5), then the predicted and actual trust value become comparable. The pre-

dicted trust value therefore conforms to the actual trust value obtained from empirical

evaluations while presenting more uncertainty over the predicted results.

Table 3.5.: Predicted and actual values of properties and trust

Trust of Property Predicted Actual
Trust of RT < 0.263, 0.0, 0.737 > < 0.58, 0.12, 0.30 >
Trust of Error < 0.422, 0.012, 0.566 > < 0.53, 0.17, 0.30 >
Normalized Trust of RT < 0.632, 0.368, 0 > < 0.73, 0.27, 0 >
Normalized Trust of Error < 0.806, 0.194, 0 > < 0.705, 0.295, 0 >

3.2 Trust Composition Based on Regression Analysis – RegressionTrust

The experiments in section 3.1.7.3 show that as the complexity of the composition

grows, the uncertainty of the prediction also grows. One of the reason for this growth

is that the prediction calculation uses a limited number of evidences (namely, the trust

of individual services and the service interaction pattern) in evaluating the trust value

of the composition. Therefore, in this section, we develop RegressionTrust model as an

extension to BDUTrust model with the incorporation of more evidences in evaluating

the trust of a composed system.

The motivation behind the proposed approach is to use the evidences from related

existing compositional systems in evaluating properties and associated trust of new

compositional systems. For example, take a situation that we have a need to evaluate

properties and associated trust of a new online gaming system before it is being built.

The system is expected to be composed of several services, such as game engine, player

management service, social network service, and online scoreboard service. Subsets

of these services, such as social network service, and online scoreboard service, can

be reused by other existing gaming systems. We can measure the properties and

associated trust of these systems and use the measurements in predicting properties

and associated trust of the new system.
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The proposed approach is to use regression analysis to predict the properties and

the associated trust values in new service compositions based on the evidences from

related existing compositional systems. Regression analysis allows us to predict the

output of a function for a given set of input parameters, when a set of training data

is provided. Training data includes set of sample values for input parameters (called

as feature space) and the corresponding known outputs of the function. Regres-

sion analysis-based machine learning techniques evaluate some parameters (called as

model parameters) based on the training data, and use these parameters in evaluating

outputs for new inputs.

As our attempt is to predict properties and the associated trust values, we would

have four different functions for each property (i.e., one for the value of the property,

and three other for the corresponding B, D, and U values). Therefore, we use four

different regression model equations with different model parameters to evaluate each

of these functions.

The feature space of the regression models (i.e., the set of inputs for the func-

tions) would be candidate services for the compositions. Each candidate service is

represented using a binary variable. A binary variable will take the value true, if the

corresponding service is included in a particular composition. The impacts of the

correlations between the services are represented explicitly in the model by including

the multiplication of two binary variables for each binary variable pair into the feature

space.

When evaluating value of the property, the proposed model works only when the

composition operator for the property is addition, as the linear regression models

require the prediction to be linearly dependent on its components. However, most of

the composition operators can be transformed into a particular form of addition. For

example, multiplication can be transformed to addition by taking the logarithms of

the property values; weighted average can be transformed to addition by multiplying

weights together with the property values. Hence, linear regression models can be

used in evaluating different properties of the composition. Additionally, we assume
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existing compositions are available with different number of participating services, as

then the feature matrix is not left invertible and the training model is not capable of

performing inferences.

3.2.1 Machine Learning Model

Let us consider n services, S1, S2, . . . , Sn. The binary variables (X) corresponding

to each of these services are denoted as x1, x2, . . . , xn. Then we choose a basis function

(φ(X)) to generate a feature space consisting of x1, x2, . . . , xn, x1.x2, x1.x3, . . . , x1.xn,

x2.x3, . . . , xn−1.xn terms. When we model the problem using the linear regression

model, the generated model for the response time of a particular composition (y) can

be written as follows (equation 3.8).

y = W Tφ(X) where φ(X) =



x1

x2

. . .

xn

x1.x2

x1.x3

. . .

xn−1.xn



, W =



w1

w2

. . .

wn

w12

w13

. . .

w(n−1)n



(3.8)

Here, the terms wi correspond to the value of the property of the Service Si. The

terms wij (where 1 ≤ i, j ≤ n) indicate how the correlation between service Si and

service Sj impacts on the overall composed property. If the wij is greater than zero,

the correlation of the services increases the overall property value, whereas if the wij

is less than zero, the overall property value reduces due to the correlation between

the services. If the wij is equal or very close to zero, the correlation between services

does not impact the composed property value.
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Similarly, we define a regression model with different model parameters for each

B,D,U value that represents the trust associated with a particular system property.

Although each of these B,D,U values is not linearly composable (because conjunction

is not a linear operator), here we assume they are approximately linearly composable

as an approximate heuristic. This assumption provides our models with the capability

to use relevant information about the trust of associated systems in the prediction

of the system under consideration. We denote the Belief of a particular property of

the composed system to be By and the model learning parameters are B. Hence, the

corresponding regression model is:

By = BTφ(X) where B =



b1

b2

. . .

bn

b12

b13

. . .

b(n−1)n



(3.9)

Similar to the system properties, the term bi corresponds to the value of the belief

of the property of Service Si and the terms bij corresponds how the correlation be-

tween service Si and service Sj impacts the belief of the overall composed property.

Similarly, we model D and U using the regression model as in following representa-

tions:
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Dy = DTφ(X) where D =



d1

d2

. . .

dn

d12

d13

. . .

d(n−1)n



Uy = UTφ(X) where U =



u1

u2

. . .

un

u12

u13

. . .

u(n−1)n


(3.10)

3.2.2 Experimental Evaluation of RegressionTrust

For the experimental setup, we have used sample services from the travel planning

domain; however, services from any other domain, which have multiple services from

different providers for the same service category, could have been used as well. The

services we used along with the related service categories are shown in the Table 3.6.

In addition to using the publically available services, we have written test services

for each category indicated in Table 3.6. These services use an internal database,

which is populated with data retrieved from publically available services, and are

capable of providing results for a limited number of queries. We have created explicit

correlations between some of these services (services that start with a Shared Session

prefix are correlated) by keeping user context information in shared session variables

to study how our learning model captures these known associations. We used the

Bayesian Linear Regression technique to train and predict the models we choose this

technique, because the Bayesian model allows us to control the prediction using prior

distributions over the learning parameters.

For the learning model in Equation 3.8, we use the actual property values of indi-

vidual services (i.e., the response times of each services), which are found empirically,
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Table 3.6.: Services used in travel planning system

Service Category Services

Direction
Services (DR)

Google Direction Service [65] (DR1)
MapQuest Direction Service [66] (DR2)
Open Maquest Direction Service [67] (DR3)
Session-less Test Direction Service (DR4)
Shared-Session Test Direction Service (DR5)
Shared-Session Test Direction Service2 (DR6)

Traffic
Services (TR)

MapQuest Traffic Service [68] (TR1)
Session-less Test Traffic Service (TR2)
Shared Session Test Traffic Service (TR3)

Hotel
Services (HO)

Expedia Hotel Service [69] (HO1)
Google Hotel Service [70] (HO2)
Yahoo Hotel Service [71] (HO3)
Session-less Test Hotel Service (HO4)
Shared Session Hotel Service (HO5)

Weather
Services (WE)

Government Weather Service [72] (WE1)
Ham Weather Service [73] (WE2)
Weather2Weather Service [74] (WE3)
Weather Channel Weather Service [75] (WE4)
World-Weather Weather Service [76] (WE5)
Yahoo Weather Service [77] (WE6)
Session-less Test Weather Service (WE7)
Shared Session Weather Service (WE8)

Car Rental
Services (CR)

HotWire Car Rental Service [78] (CR1)
Session-less Car Rental Service (CR2)
Shared Session Car Rental Service (CR3)

as the prior distributions. We denote the prior distribution of the learning model in

Equation 3.8) as W 0 multivariate normal distribution,
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P (W 0) = N(W 0|M0, S0) where M0 =



m1

m2

. . .

mn

m12

m13

. . .

m(n−1)n



(3.11)

Here M0 is the mean of the prior distribution and S0 = [sij] is the associated

variance-covariance matrix.

As mentioned above, N(mi, sii) (0 ≤ i ≤ n) parameters correspond to the dis-

tribution of the property of the individual service Si. This allows us to keep the

predicted training parameters, wi, close to the value of the property. All the other

parameters, i.e., mij, and sij are set to zero. That will make sure the wij parame-

ters to be close to zero, so the model will not keep unnecessary dependencies (i.e.,

dependencies that are not supported by the training data) between the services.

Similarly, we have used prior distributions for the B,D,U values. Similar to the

early learning model (Equation 3.8), the first n parameters are given the empirically

evaluated (B,D,U) values (as described in the below paragraph.) for each service,

which will make sure that the training parameters will stay close to the individual

(B,D,U) values of the services. As the (B,D,U) tuples are evaluated separately, the

predicted values could add up to higher than one. Therefore, we normalize the tuple

values predicted by the model.

In our experiments, we used 2426 sample compositions from the services shown

in the Table 3.6. Two third of them are used to train the model and the rest of them

are used as test data to test the error of the model. We assume response times of the

compositions behave as Gaussian distributions. We calculated the unbiased estimates

of mean (µ) and covariance (σ) of the response times by repeated invocations of
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composition systems. The Disbelief factor of the Trust value (associated with the

response time) is calculated by taking the ratio of the outliers. The outliers are

response times in the range [x < µ2σ] or [x > µ + 2σ]. Similarly, the Belief factor

is calculated by taking the ratio of the values in the range [µ − 2σ < x < µ + σ].

The Disbelief factor will be equal to 1BU , which corresponds to the ratio of response

times in the range [µ+ σ < x < µ+ 2σ].

Table 3.7.: Comparison of relative absolute errors of the results of models

Composed Property Relative absolute
error of Regression-
Trust

Relative absolute er-
ror of BDUTrust

Response Time 0.83895 1.4052
Belief 1.1302 8.1977
Disbelief 0.94567 3.3491
Uncertainty 1.0032 4.4095

Table 3.7 shows the comparison of relative absolute errors associated with the

prediction results (for the test data). Here the BUDTrust model uses the addition of

the response times of participating services to predict the response time of composed

systems. Additionally, the BDUTrust uses the conjunction operation over the trust

values of the response times of participating services to predict the trust value (BDU

tuple) of composed systems. The Table 3.7 shows that the RegressionTrust model

provides better predictions for all the parameters. Tables 3.8, 3.9, and 3.10 show the

comparisons between the values provided by the two models along with experimentally

evaluated actual values for some selected sample compositions.

The most notable difference between the two models is that the BDUTrust pre-

dictions include lesser belief and relatively higher uncertainty about the predicted

property. The predictions obtained from the RegressionTrust show lesser uncertainty

values, which are comparable with the actual values. We have seen in our previous

experiments that as the complexity of the composition increase (i.e., high number

of participating services and complex interaction patterns), the uncertainty also in-
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Table 3.8.: Predicted values from the BDUTrust model

Composition Response Time Trust
D1+T1+H1+C1+W1 1714 < 0.55, 0.23, 0.21 >
D1+T1+H2+C1+W2 1035 < 0.49, 0.31, 0.19 >
D1+T1+H3+C1+W2 1118 < 0.59, 0.19, 0.22 >
D1+T1+H2+C1+W3 1751 < 0.52, 0.31, 0.17 >
D1+T1+H3+C1+W3 1834 < 0.62, 0.19, 0.19 >
D1+T1+H3+C1+W4 782 < 0.59, 0.19, 0.22 >
D2+T1+H1+C1+W1 1740 < 0.62, 0.15, 0.24 >
D2+T1+H3+C1+W1 1150 < 0.69, 0.10, 0.21 >
D3+T1+H3+C1+W6 1697 < 0.59, 0.19, 0.22 >
D4+T2+H4+C2+W7 1413 < 0.44, 0.38, 0.18 >
D5+T2+H4+C2+W7 2748 < 0.49, 0.27, 0.23 >
D5+T1+H1+C1+W1 3178 < 0.55, 0.15, 0.30 >
D5+T3+H5+C3+W8 5406 < 0.52, 0.19, 0.28 >
D6+T2+H4+C2+W7 4157 < 0.41, 0.49, 0.10 >
D6+T3+H5+C3+W8 6815 < 0.43, 0.43, 0.13 >

Table 3.9.: Predicted values form the RegressionTrust model

Composition Response Time Trust
D1+T1+H1+C1+W1 1332 < 0.86, 0.11, 0.03 >
D1+T1+H2+C1+W2 983 < 0.89, 0.04, 0.06 >
D1+T1+H3+C1+W2 1043 < 0.88, 0.07, 0.06 >
D1+T1+H2+C1+W3 1378 < 0.89, 0.04, 0.07 >
D1+T1+H3+C1+W3 1443 < 0.88, 0.06, 0.07 >
D1+T1+H3+C1+W4 488 < 0.87, 0.07, 0.05 >
D2+T1+H1+C1+W1 1433 < 0.83, 0.14, 0.03 >
D2+T1+H3+C1+W1 919 < 0.83, 0.13, 0.04 >
D3+T1+H3+C1+W6 1466 < 0.88, 0.07, 0.05 >
D4+T2+H4+C2+W7 2466 < 0.88, 0.05, 0.06 >
D5+T2+H4+C2+W7 3184 < 0.85, 0.09, 0.06 >
D5+T1+H1+C1+W1 2891 < 0.81, 0.15, 0.03 >
D5+T3+H5+C3+W8 4895 < 0.78, 0.17, 0.05 >
D6+T2+H4+C2+W7 4476 < 0.79, 0.17, 0.03 >
D6+T3+H5+C3+W8 6166 < 0.79, 0.17, 0.04 >

creases. Similarly, disbelief of the preliminary model can be seen as a worse case

prediction, which acts an upper bound for the actual prediction. Additionally, the
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Table 3.10.: The actual values from empirical evaluations

Composition Response Time Trust
D1+T1+H1+C1+W1 1358 < 0.85, 0.15, 0.00 >
D1+T1+H2+C1+W2 838 < 0.80, 0.15, 0.05 >
D1+T1+H3+C1+W2 964 < 0.85, 0.15, 0.00 >
D1+T1+H2+C1+W3 1476 < 0.90, 0.00, 0.10 >
D1+T1+H3+C1+W3 1541 < 0.85, 0.10, 0.05 >
D1+T1+H3+C1+W4 646 < 0.95, 0.00, 0.05 >
D2+T1+H1+C1+W1 1680 < 0.85, 0.10, 0.05 >
D2+T1+H3+C1+W1 935 < 0.75, 0.25, 0.00 >
D3+T1+H3+C1+W6 805 < 0.80, 0.20, 0.00 >
D4+T2+H4+C2+W7 2523 < 0.85, 0.10, 0.05 >
D5+T2+H4+C2+W7 3403 < 0.85, 0.10, 0.05 >
D5+T1+H1+C1+W1 2960 < 0.85, 0.05, 0.10 >
D5+T3+H5+C3+W8 4814 < 0.80, 0.15, 0.05 >
D6+T2+H4+C2+W7 4934 < 0.75, 0.25, 0.00 >
D6+T3+H5+C3+W8 4054 < 0.70, 0.30, 0.00 >

results show that when the actual disbelief is low, both the model predicts relatively

low disbelief for that composition.

Table 3.11.: Parameters related to service associations

i j wij bij dij uij
D1 H2 -9 -0.150 0.001 -0.014
D1 H3 17 -0.163 0.133 -0.016
D1 W5 1022 -0.094 -0.246 -0.004
D2 T1 -327 -0.241 0.004 -0.003
D1 T3 209 -0.289 0.003 -0.019
D3 T1 11 -0.221 -0.002 -0.018
D5 H5 -1017 -0.014 -0.009 -0.012
D5 T2 53 -0.005 -0.025 -0.011
D6 T2 -438 -0.034 -0.002 -0.009
D6 T3 -2455 -0.006 -0.039 0.004
D6 H5 -1342 -0.024 -0.019 0.007
D6 W8 -1441 -0.041 0.012 -0.009
D6 C3 -1308 -0.044 -0.21 0.024
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In order to examine how the associations between services have impacted the re-

sults of the RegressionTrust model, we show, in Table 3.11, the parameters of the

learning models for some selected service associations. It indicates that when two

services are provided by the same company/organization, the association parameter

tends to be negative (therefore, reduces the composed response time). Examples

are Google Direction Service (D1) with Google Hotel Service (H2), and MapQuest

Direction Service (D2) with MapQuest Traffic Service (T1). A reason for this obser-

vation can be that both sets of services require the service invocations to provide an

authentication key. Therefore, if two related invocations happen, it is possible the

providers have optimized the performance by keeping the user context data. This also

explains the observation that although the Open-MapQuest Direction Service (D3),

and MapQuest Traffic Service (T1) are provided by the same organization, as the

Open-MapQuest Direction service does not require a key, the association parameters

have not become negative. Thus, the proposed model has successfully captured the

explicit associations made using shared session services (they keep the user context

in shared session). For example, Services D6, and T3 shares sessions, and thus, the

associated parameters have relatively high negative values.

Similar to response time, the association parameters also indicates how theB,D,U

values change as the services compose together. However, unlike in response time,

experimental results show the services provided by same organization will not make

a more trusted composition than services from different organizations. For example,

the disbelief has positive values (D1 with H2 and D2 with T1) when the services have

been provided by the same organization. The reason for this observation is that the

response times of these compositions vary a lot among service invocations (i.e., some

invocations perform well better than others).

RegressionTrust performs better in predicting QoS and trust of compositions com-

pared with BDUTrust; however, it has the drawback of needing existing systems that

re-uses the same candidate services, which may not hold true for all the scenarios.
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Therefore, it is important to study more techniques that would give better predictions

of QoS and trust of systems at early stages of the system life-cycle.

3.3 Lessions

Experimental evaluations of the BDUTrust model shows that the context inde-

pendent trust evaluations yield higher uncertainties in both individual services and

composed systems. We identified there are two reasons causing these higher uncer-

tainties.

1. As the QoS evaluations done under a verity of contexts, the corresponding QoS

values also have a high variance. In section 3.1.7.2, we evaluate the trust of

each sensor services by keeping the object to track in different positions and

aggregating the QoS values corresponding to each positions. That has yielded

high uncertainty in the trust of these sensors as shown in Table 3.3 and Table 3.4.

Similarly, that has caused an higher uncertainty in the trust prediction of the

composition.

2. Aggregations of trust values that have contradictory ‘Belief’ values yields high

‘Uncertainty’ results. As the experiment discussed in section 3.1.7.2 aggregates

the trust values of different contexts, which may have variety of ‘Belief’ values,

the predicated trust value has a higher ‘Uncertainty’ component. This can be

observed from the results shown in Table 3.5.

3. Subjective logic operators such as conjunction, disjunction, and negations can

be effectively used only in representing trust of binary QoS properties. In our ex-

periments, we mostly deals with QoS properties like tracked error and response

time, which are non-binary properties with continuous values. Therefore, the

subjective logic operators only provide approximate aggregated trust values for

these QoS properties.
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These drawbacks of the context independent trust prediction framework motivated

us to develop the next framework with the following improvements.

1. We choose to make the trust predictions context-aware that lead to predictions

with lesser variations, and hence lesser uncertainty. From the available evi-

dences, we extract out context-QoS dependencies, and then we use the propos-

ing model to predict the QoS localized to the context that system will run. In

the proposing model, we use Bayesian networks to capture such context-QoS

dependencies and use sampling based inference techniques to predict the QoS

for a particular contexts.

2. We choose to use probability (i.e., B, D representation) as opposed to subjective

logic (i.e., B, D, U representation) as the trust evaluation metric. The reasons

for this change are:

(a) Most of the QoS properties have continuous values (in contrast to binary

values). With the use of probability representation, we can represent these

values as probability distributions. Aggregations of probability distribu-

tions with continuous variables are well defined [60, 61]. For non-binary

properties, the subjective logic operators only provide approximation ag-

gregated trust values. Therefore, the use of probability distributions for

continuous QoS properties provides more accurate predictions.

(b) Many learning and inferences techniques for Bayesian networks are read-

ily available for probability representations as opposed to subjective logic

representations of data. Therefore, we will be able to use these techniques

in our model, when we represent trust as a probability.

(c) Probability distributions such as the Gaussian distribution has parameters

such as variance that indicate the uncertainty of the data. Therefore, when

we have the trust represented with a probability distribution, we can easily

transform the trust representation between subjective logic and probability

representation.
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With these improvements, we build the context dependent trust prediction frame-

work that is discussed more in detail from Chapter 4.
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4 CONTEXT DEPENDENT QOS AND TRUST PREDICTION FRAMEWORK

– CONTEXTTRUST

As the context independent QoS and trust prediction framework described in Chap-

ter 3 has resulted predictions with higher uncertainty, we concluded that it is im-

portant to consider the context in predicting QoS and trust of compositions. The

proposed context dependent QoS and trust prediction framework consists of four

models. There are: the basic prediction model (referred as ‘ContextTrust’) described

in detail in this Chapter, optimization model (referred as ‘OptimumTrust’) discussed

in Section 6.1, adaptation model (referred as ‘AdaptTrust’) discussed in Section 6.2,

and trust evaluation model of reusable services (referred as ‘ReuseTrust’) discussed

in Section 6.3. The content in this chapter is an extension of our previous publica-

tion [19].

The ContextTrust model uses Bayesian network-based machine learning tech-

niques to capture the context-QoS dependencies in predicting QoS and trust of com-

posed systems. The model mainly consists of four phases.

1. To collect the Context-QoS dependency information of individual services.

2. To collect information about the interaction patterns in the composed system.

3. To derive Bayesian networks for the context-QoS dependency for compositions.

4. To use inference techniques to answer relevant QoS/trust queries.

Each of the above phase is described with the help of a case study involving an

Indoor Tracking System [79]. The tracking system is used to track positions of markers

placed inside an indoor environment. The tracking system is created by composing

three atomic services. The Table 4.1 describes the role of each of the participating

services.
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Table 4.1.: Services in indoor distributed tracking system

Service Description
Camera Tracking Service (sc) Track the position of a marker relative to

a smart phone camera (physical setup of
the camera tracking service is shown in
Figure 4.1).

WiFi Tracking Service (sw) Track the position of a smart phone by tri-
angulation of signal strengths from three
WiFi routers (physical setup of the WiFi
tracking service is shown in Figure 4.2).

Average Fusion Service (sf ) Fuse two or more independently predicted
positions to derive an accurate position of
the marker.

Figure 4.1.: Physical setup of the camera tracking service.

4.1 Phase 1: To Collect the Context-QoS Dependency Information of Services

To predict trust of a future system, the model needs information about the

context-QoS dependencies of each participating service. In addition to that, the

model keeps track of the context-context, and QoS-QoS dependencies as well. If a
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Figure 4.2.: Physical setup of the WiFi tracking service.

service (S) has QoS properties (QS = q1S, q
2
S, .., q

n
S) and associated context properties

(CS = c1S, c
2
S, .., c

m
S ), then there are functions fqxS , and fcyS , such that

fqxS : CS → QS for x = 1, 2, .., n (4.1)

fcyS : CS → CS for y = 1, 2, ..,m (4.2)

Here fqxS indicates the dependencies of the context properties to a QoS property,

whereas fcys represents the dependencies between a context property to another con-

text property.

These context-QoS dependencies context-context dependencies, and QoS-QoS de-

pendencies of each service are represented as a Bayesian network [80]. A Bayesian

network is a directed graph (Gs) with a set of vertices(V ), edges(E) and dependency

functions (F ) such that,

Gs = (V,E, F ) (4.3)

e = (v, u) ∀e ∈ E where v ∈ V, u ∈ V (4.4)
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∃f bnu ∈ F, f bnu : V → V such that u = f bnu (v1, v2, ..vn),

∀u where (v1, u) ∈ E, (v2, u) ∈ E, .., (vn, u) ∈ E
(4.5)

If (v, u) ∈ E, then u is called as a child vertex and the v is called as a parent

vertex of u. Equation 4.5 indicates the relationship of each child vertex (u) to its

parent vertices (v1, v2, .., vn) when there are edges (v1, u), (v2, u), .., (vn, u).

We use the following mapping to translate the context-QoS, context-context, and

QoS-QoS dependencies of a service to a Bayesian network.

V = Qs ∪ Cs (4.6)

(cys , q
x
s ) ∈ E if ∃qxs = fqxs (.., cys , .., c

z
s, ..)

for x = 1, 2, .., n, y = 1, 2, ..,m, and z = 1, 2, .., n 6= x
(4.7)

(cys , c
x
s) ∈ E if ∃cxs = fcxs (.., cys , ..) for x = 1, 2, .., n,

y = 1, 2, ..,m and x 6= y
(4.8)

f bnu =

fqxs if u = qxs for x = 1, 2, .., n

fcys if u = cys for y = 1, 2, ..,m

 (4.9)

The equations 4.6, 4.7, 4.8, and 4.9 can be explained as following.

• Each context property (cxs) and QoS property (qxs ) is mapped into a vertex of

the graph (equation 4.6).

• There are edges that are directed either from a context vertex to a QoS vertex

or from a context vertex to an another context vertex. (equations 4.7 and 4.8).

If there are edges coming towards a particular vertex, we call such a vertex
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dependent vertex. If a vertex do not have any incoming edges, then such a

vertex is called a independent vertex.

• The function (f bnu ) is called as the dependency function. It keeps track of

the context-QoS, context-context, and QoS-QoS dependencies in a quantitative

format. The function can be represented as either an algebraic function, or

function of distributions (e.g., conditional linear Gaussian distribution) or as a

tabular format (equation 4.9).

.

The dependency functions are associated with all the dependent vertices in the

Bayesian network. The independent vertices could also be associated with a paramet-

ric distribution. In our case studies, we associate uniform distributions or Gaussian

distributions with a high variance for the independent vertices.

The advantage of using Bayesian network is that it has a graphical representation

that can be easily interpreted by Humans in addition to the software applications. For

example, for a camera tracking service (Sc), the QoS properties (QSc) are response

time (rt), tracked error (e). Associated context parameters (CSc) are distance to the

object (d), angle to the object from the direction perpendicular to the camera face(a),

resolution width (w), and resolution height (h). The Bayesian network corresponding

to the context-QoS dependencies of camera tracking service is shown in the Figure 4.3.

There the d, a, rw, and rh are independent vertices, and ex, ey, e, and rt are

dependent vertices.

The representation of a service context-QoS, context-context, and QoS-QoS de-

pendencies in a Bayesian network requires two steps:

1. To evaluate the structure of the Bayesian network. (Structure Learning)

2. To evaluate the dependency functions for each node of the Bayesian network.

(Parameter Learning)
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Figure 4.3.: Bayesian network of the camera tracking service.

4.1.1 To Evaluate the Structure of the Bayesian Network (Structure Learning)

The structure of the Bayesian network consists of its vertices (V ) and the edges

(E). This can be evaluated either manually, automatically or semi-automatically.

Manual evaluation have to be done with the help of a domain expert. The expert

would first list the important QoS properties of a particular service in the domain,

and the context properties that would affect the QoS properties. Those properties

would form the vertices of the Bayesian network. Then the expert would indicate the

context-QoS, context-context, and QoS-QoS dependencies based on his experience

and knowledge about the domain. These connections form the edges of the Bayesian

network.

The automatic evaluation requires enough data to learn the structure of the net-

work using machine learning methods. To identify the important context and QoS

properties feature selection techniques such as Principle Component Analysis [81], or

Singular Value Decomposition [82] can be used. These techniques select the vertices

of the Bayesian network. To identify the edges of the network, machine learning

algorithms based on likelihood scores [80] can be used.
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However, even in the automatic evaluation of the structure, there are many thresh-

old parameters that should be decided by the human experts. Therefore, the structure

of the Bayesian network always have to be either evaluated or validated by a domain

expert.

4.1.2 To Evaluate the Dependency Functions (Parameter Learning)

Since the dependency functions have to be evaluated quantitatively, it is recom-

mended to use automatic learning techniques (along with the help of a domain experts

to perform parameter tuning), than the manual techniques. However, as most of the

interested QoS properties are continuous variables, it is important to find parameter

learning techniques that can be used with continuous variables. In the case study, we

have used three of such techniques.

• Using probability tables after discreting the data

• Regularized least squares regression

• Bayesian linear regression with sampling

All these technique requires data points that are obtained from execution traces.

Each data point should include the instance values of interested QoS properties and

context properties. If the execution traces of individual services are not available,

we can not use these techniques directly. In such situations, if the execution traces

of composed systems that has reused these services are available, a model called

‘ReuseTrust’ can be used to learn the parameters of the Bayesian networks of these

service. We discuss the ‘ReuseTrust’ model in detail in Section 6.3.

4.1.2.1 Using probability tables after descreting the data

As there are many inferences techniques such as sum-product algorithm, max-sum

algorithm [83] for Bayesian networks that can be easily applied with discreet data,
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it is very common to first descretize the continuous data to a discrete format [84]

and then use the discreet inferences techniques. If there is a continuous property (ac)

with the range (sac , eac), then it is transformed in to a discreet property (ad) with the

range (0, n− 1) by applying the function (gcd). This transformation is equivalent to

partitioning the continuous value range to n partitions where the size of a partition is

d. When tuning the parameter n for each vertex, we should make it an appropriately

high value to minimize the loss of the continuity of data. However, making the n too

high increase the overhead of learning and inference algorithms, therefore we should

consider make it appropriately low value to make sure that algorithms can be run

efficiently with the available resources.

gcd(ac) =


0 if ac < sac

r if sac + rd ≤ ac < sac + (r + 1)d

n− 1 if ac ≥ eac

 (4.10)

The range for the continuous variables ((sac , eac)) can be selected by checking the

minimum and maximum values of the corresponding data values. However, that may

consist of outliers that can make the range to be unnecessary wide. Therefore, it is

recommended to use an outliers elimination algorithm to eliminate such outliers from

the data and then take the minimum and maximum of the filtered data to decide the

range. In our case studies, we used the standard deviation based outlier elimination

technique [85] to evaluate the above range.

All the data values are mapped to discrete values using the above technique and a

probability table are created for each node. The probability table of an independent

vertex consists of n probability values, as it has to keep track of the probability of

each of the discrete value of that variable. In contrast, a dependent vertex with m

incoming edges keeps track of a probability table of n(m+1) entries corresponding to

the all the possible combinations of the discreet values (values of m incoming vertices

and the values of the current vertex).
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Although there are advantages of using this technique such as the simplicity and

ability to use of many discreet inferencing algorithms, it has many disadvantages such

as the loss of continuity of data, and the low scalability. As the amount of memory to

keep the probability tables and the processing power to carry out inferencing increases

exponentially with the increase of variables (as message passing algorithms have to

transform large probability tables [83]), this technique can not be used with complex

Bayesian networks.

4.1.2.2 Regularized least squares regression

In the regularized least squares regression method, the context-QoS, context-

context, QoS-QoS dependencies are trained as a linear regression problem. Here,

the vertex (vt) that have incoming edges from vertices (Vs = v1, v2, .., vn) are written

as a linear function of Vs. However, as the dependency relationship can be non-

linear, we use basis functions (φ) to convert the elements in Vs to polynomial terms

or multiplications of each other.

vt = wTφ(Vs) (4.11)

Here, the w is the set of parameters (corresponding to the weights of each ele-

ments of the basis function) to be trained by the regularized least squares regression

algorithm.

To invoke the algorithm, the data points are divided in to training, validation

and testing data sets conventionally with the ratios of 60% 20% and 20%. If Vs

values of the training data set (after applying the basis function) is represented as

a matrix Φ (where rows represent different data points and columns represent the

terms of the basis function φ for each data point), and vt values of the training data
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set is represented as a vector t, then the w can be evaluated using the following

equation [58],

w = (λI + ΦTΦ)−1Φtt (4.12)

Here, the λ is a regularization parameter (for a quadratic regularization term) to

avoid over-fitting of the model to the training data. [58]. The parameter is tuned by

minimizing the error with the set of validation data, and then the performance of the

model is calculated using the testing data.

With this approach, the dependency functions of the Bayesian network can be

represented as in the form of the equation 4.11. Compared with the tabular rep-

resentation discussed in Section 4.1.2.1, this representation requires lesser memory.

However, most of the Bayesian network inferencing algorithms can not be used with

this approach. Only forward inferencing (i.e, infer the probabilities of child vertices,

when all the parent vertices are known) can be performed efficiently. Additionally,

this technique only provides the point values and not the probability distributions of

the target variables. That is not useful in evaluating the trust of the some common

QoS properties (such as response time, tracking error), which are distributions of

values in nature.

4.1.2.3 Bayesian linear regression with sampling

Similar to regularized least square method in Section 4.1.2.2, the Bayesian linear

regression also keeps the dependency function as a space and computational efficient

equation. However, this equation used in this technique (equation 4.13) is a linear
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Gaussian distribution resulting a probability distribution instead of a point value like

in equation 4.11.

vt = N{mT
Nφ(Vs), σ

2
N(Vs)} where σ2

N(Vs) =
1

β
+ φ(Vs)

TSNφ(Vs) (4.13)

Similar to the regularized least square technique, the parameters mN , and SN

would be trained using a set of training data using the equations 4.14, and 4.15. The

parameters α, and β is tuned by trying out different values until the validation set

gives a minimum error value.

mN = βSNΦT t (4.14)

S−1N = αI + βΦTΦ (4.15)

Although the direct use of the representation in equation 4.13 can be used only

for forward inferencing with known independent variables, it is possible to use other

sampling techniques such as forward sampling, rejection sampling and Gibbs sam-

pling [58] to perform forward inferencing with some unknown independent variables

and backward inferencing.

To perform forward inferencing with unknown independent variables using forward

sampling, first, the independent vertices are sampled from a probability distributions

chosen by domain experts to simulate the possible value ranges of the corresponding

independent variables. For an example, the ‘distance (d)’ independent variable in the

Bayesian network shown in Figure 4.3 can be sampled from a Uniform distribution

with ranges of distance or from Gaussian distribution around a mean value for dis-

tance. Second, the child vertices are recursively sampled from Gaussian distributions

with a deterministic mean and variance. (i.e., because the φ(Vs) in equation 4.13

can be deterministically evaluated from the parent’s sample values). If some or all

the independent variables are known, then we can use the known values as samples

instead of sampling from probability distributions, and carry out the same process to
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generate samples for dependent variables. For an example, in the Bayesian network

in Figure 4.3, if the distance(d), angle(a), resolution width(rw), and height(rh) is

known, the forward sampling can be used to evaluate the tracked error(e) and re-

sponse time(r). These evaluations are equivalent to the evaluation of p(e|d, a, rw, rh)

and p(r|rw, rh).

If some of the dependent vertices are known, then we alter the forward sampling

technique by rejecting samples that do not produce the values of the known dependent

vertices. This altered technique is called rejection sampling. However, the main issue

of using this method for continuous variable is, that it is very unlikely to generate a

samples that have the exact known values. One possible solution is to use a range

surrounding the known value as an acceptable value for the sample of the known

dependent vertices. This could increase the probability of generating enough samples

to do required inferences. The possible inferences that can be done with rejection

sampling on the Bayesian network in Figure 4.3 are p(d|e, a) and p(e|d, a, rt).

If the network is more complex, it is possible that generating samples with known

values for some vertices is very less probable for both discreet and continuous Bayesian

networks. Gibbs sampling provides a technique to generate samples locally for each

vertex (i.e., generate samples for each vertex depending only on its parents at a

time). It can be used to generate samples for all the vertices of the Bayesian network

iteratively. As the rejections have to be done only on local samples with Gibbs

sampling, the probability of accepting samples are relatively higher. Therefore, Gibbs

sampling technique can be used for inferencing complex Bayesian networks.

4.1.3 To Evaluate Trust from the Context-QoS Bayesian Network

After modeling the Bayesian network for a service (or a composed service), we

will first find the cumulative distribution of the QoS property under the context that

service is actually going to operate. Since trust is defined as the degree of compli-

ance of the service to its specification, we will evaluate the trust corresponding to a
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particular QoS property by calculating the ‘y’-axis value of cumulative distribution

within the specification range. An example cumulative distribution for the response

time (rt) of the camera service is shown in Figure 4.4. It also indicates the trust value

corresponding to a selected specification of the response time.

Figure 4.4.: Trust evaluation of the response time (rt) of camera tracking service of
specification: rt < 15msec.

In the experiments shown in Chapter 5, we present the trust corresponding to

different possible specification values as it shows the errors of different approaches in

predicting trust of the service/composed service more clearly.

4.1.4 Collecting Context-QoS Dependency Information for the Case Study

In this section, we build Bayesian networks of camera tracking service (Figure 4.1

and WiFi tracking service (Figure 4.2). For both of the services, we use the do-
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main knowledge to create the structure of the Bayesian networks. The dependency

functions of the networks are learned from the data from execution traces using the

algorithms mentioned in the Section 4.1.2.

The structure of the Bayesian network designed for the camera tracking service is

shown in Figure 4.3. Each data point used to train the Bayesian network consists of

values of context properties (i.e., distance(d), and the angle(a) to the tracked object

from the camera axis, resolution width(rw), and height (rh)), and the QoS properties

(i.e., the tracking error (e), and the response time (rt)). The equations in Table 4.2

indicate the dependency functions of the Bayesian network, when Bayesian linear

regression with sampling technique is used. Note that the dependency function for e

is an arithmetic operator instead of a linear Bayesian equation derived from a learning

technique.

Table 4.2.: Dependency functions for the Bayesian network in Figure 4.3

Vertex
Linear Gaussian Function
Mean Variance

rt 0.52542w − 0.57251h+ 0.0018238wh 0.9
ex 0.01545d + 52.988a − 0.0088268w + 0.018061h −

0.23193da− 0.00016626d2 + 0.000022915d2a2
0.7

ey −0.042133d + 12.654a − 0.0093142w + 0.018025h −
0.092207da− 0.000169d2 + 0.000028905d2a2

0.7

e
√

(ex2 + ey2) 0

Similarly, the structure of the Bayesian network designed for the WiFi tracking

service is shown in Figure 4.5. It can be shown that the response time of the service

is independent of the context by representing it in a vertex without any incoming

edges. The equations in Table 4.3 indicate the dependency functions of the Bayesian

network, when Bayesian linear regression with sampling technique is used.

The results of the QoS and Trust inferences of the Bayesian networks of Camera

tracking service and WiFi tracking service is presented in Section 5.1.1.
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Figure 4.5.: The Bayesian network corresponding to the context-QoS dependencies
of WiFi Tracking Service.

Table 4.3.: Dependency functions for the Bayesian network in Figure 4.5

Vertex
Linear Gaussian Function
Mean Variance

s1 −0.082514− 0.17789d1− 0.0039916d12 21
s2 −0.086065− 0.19640d2− 0.0018085d22 19
s3 −0.030455− 0.18340d3− 0.0013946d32 20
ex −12.747s1 − 48.911s2 + 63.271s3 − 0.19723s1.s2 −

0.74909s2.s3 + 0.49537s3.s1− 0.0098339s1.s2.s3
7

ey −45.968s1 + 71.844s2 − 8.0355s3 − 0.36115s1.s2 +
0.99769s2.s3 + 0.19579s3.s1 + 0.0088851s1.s2.s3

7

e
√

(ex+ ey) 0

4.2 Phase 2: To Collect Information about the Interaction Patterns in the System

In service compositions, services interact with each other to provide additional

functionalities. Interaction patterns between services are selected by system design-

ers to fulfill the system functionality requirements as well as improve the QoS of the

system. There are primitive interaction patterns [23], [17] as shown in list in Sec-

tion 3.1.1. Complex interaction patterns are made by recursively combining these
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primitive patterns. We have shown in Section 3.1.4 that each interaction pattern has

an associated operator that evaluate the QoS value of the composed system when we

know the QoS values of the participating individual services.

4.2.1 Identifying Interaction Patterns and Composition Operators of the Case Study

In this sub-section, we use indoor tracking system composed out of services men-

tioned in table 4.1 as a case study. The design of the system is shown in Figure 4.6.

Figure 4.6.: Design of the indoor tracking system

The design in Figure 4.6 uses two interaction patterns from the list shown in

Section 3.1.1.

1. Sequence: The camera tracking service (which track the position of the marker

object relative to the camera), and the WiFi tracking service (which track the

absolute position of the camera of the mobile phone) is interacting sequentially

to get the absolute position of the object. Additionally, the network delay is



80

also represented as an another service that is interacting sequentially with the

other services. The composed service out of these three services is denoted as

sa. Two instances of this service is created in the design in Figure 4.6 and they

are denoted as sa1 , and sa2 .

2. Split/ Join: In order to get better prediction accuracy of position, the system

averages out two independently predicted positions from sa1 and sa2 using a

fusion service. The resultant composed service is equivalent to the complete

tracking system which is denoted as sb.

We are interested in two QoS properties of the composed system, response time

and tracking error. Composition operators for the response time can be looked up

from the Tables 3.1 and 3.2. Therefore, addition operator is used for the sequence

interaction pattern and the maximum operator is used for the parallel split/join

pattern.

Since the tracking error is not a common property listed in the Tables 3.1 and 3.2,

we have to derive the necessary composition operators from the domain knowledge

of the tracking system. When calculating the absolute position of an object marker

for sa, we add the position coordinates (xpc , y
p
c ) predicted by camera tracking service

(sc) to the position coordinates (xpw, y
p
w) predicted by WiFi tracking service(sw). If

the actual position of the marker relative to the camera is (xac , y
a
c ) and the mobile

phone with the camara is (xaw, x
a
w), then the difference between the predicted absolute

position and the actual absolute position of the object marker is (diffp−a),

diffp−a = (xpc + xpw, y
p
c + ypw)− (xac + xaw, y

a
c + yaw) (4.16)

= (xpc − xac + xpw − xaw, ypc − yac + ypw − yaw) (4.17)

= (xpc − xac , ypc − yac ) + (xpw − xaw, ypw − yaw) (4.18)

ẽa = ẽc + ẽw (4.19)
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Here, the terms ẽa, ẽc, and ẽw terms are error vectors of the services sa, sc, and

sw. Since we keep track of the errors in both ‘x’ direction and ‘y’ direction, we will

be able to calculate the error of the composed system using the equation 4.19.

Similarly, it can be shown that we can use the following operator as the composi-

tion operator of the tracking error for the parallel split/join interaction pattern.

eb =
ẽa1 + ẽa2

2
(4.20)

The summary of the operators used in the case study is indicated in Table 4.4.

Table 4.4.: Operators used in the case study for indoor tracking system

QoS Operators for Se-
quence pattern

Operators for Parallel
Join Pattern

Response Time Addition Maximum
Error (X & Y) Addition Mean

4.3 Phase 3: To Derive Context-QoS Bayesian Networks for Compositions

After building the Bayesian networks for individual services and identifying the

composition operators, we derive the Bayesian network for the composed system

(referred as ‘Composed Bayesian network’) using the following rules:

• Bayesian networks corresponding to the individual services will be part of the

composed Bayesian network as sub-networks.

• If two services share a context, then the composed Bayesian network will have

one vertex representing the shared context.

• There will be a new QoS vertex for each interaction between services (corre-

sponding to the composed QoS property), new edges connecting the new QoS
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vertices to other QoS properties in the networks (that the new QoS depends

on), and dependency functions corresponding to the composition operators.

Formally, if there are services S1, S2, .., Sn; each service Sr (r = 1, 2, ..n) has an

associated Bayesian network Gsr = (Vsr , Esr , Fsr); services interactions are denoted

as (I = i1, i2, ..im); then the Bayesian network for the composed system Sc (which is

denote as Gc = (Vc, Ec, Fc)) can be derived as following:

Vc = Vs1 ∪ Vs2 ∪ ...Vsn ∪ Qi1 ∪Qi2 ∪ ... ∪Qim (4.21)

Ec = Es1 ∪ Es2 ∪ ...Esn ∪ Ei1 ∪ Ei2 ∪ ... ∪ Eim (4.22)

Fc = Fs1 ∪ Fs2 ∪ ...Fsn ∪ Fi1 ∪ Fi2 ∪ ... ∪ Fim (4.23)

Here, the Qix represents the set of composed QoS properties with the interaction of

services ix, the Eix represents the set of edges coming into Qix from the vertices form

the (Vs1 ∪Vs2 ∪ ...Vsn), and the Fi2 represents the composition operator at interaction

ix.

With the proposed approach, both the structure and the parameters of the com-

posed Bayesian network can be derived from the information from the Bayesian net-

works of participating services and the composition operators. Therefore, it is not

required to have data to train the parameters and the structures of the composed

Bayesian network. This is a major advantage of this model, as with the derived

composed Bayesian network, we can simulate the QoS and Trust behaviour of the

network, before even we build the composed system.

4.3.1 Deriving Composed Bayesian Network for the Case Study

The Bayesian network for composition of a WiFi tracking service and a Camera

tracking service with sequence interaction pattern is shown in the Figure 4.7.
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Figure 4.7.: Bayesian network of the composed service of WiFi tracking service and
camera tracking service.

Here, there is one interaction pattern, namely the sequence interaction pattern.

Total response time (tr), and the total error (te), which are the QoS properties as-

sociated with the interaction patterns, have become the vertices of the composed

Bayesian network. New edges are added from QoS vertices of the Bayesian networks

corresponding to individual services to the composed QoS properties. The compo-

sition operators are used as dependency functions (in addition to the dependency
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functions coming from Bayesian networks of individual services) of the composed

Bayesian network.

4.4 Phase 4: Use Inference Techniques to Answer QoS/Trust Queries

After creating the composed Bayesian network, it will be used to carry out in-

ferencing about QoS and trust behaviours of the composed system. The inference

techniques used for the composed Bayesian network are similar to the inference tech-

niques described for Bayesian network of individual services in Sub-section 4.1.2.

Following types of inferencing can be performed on the composed Bayesian network:

• To predict QoS of the composition using the available context information –

(forward inferences).

• To predict the trust of the composed system using the available context infor-

mation – (forward inferences).

• To evaluate the context properties that will provide required QoS for the com-

posed system – (Backward inferences).

• To evaluate QoS and trust of reused participating services using the existing

composed systems – (Backward inferences).

We describe the examples of forward inferencing to predict QoS and trust of

composed system with case studies in Chapter 5 and applications of the model in

selecting optimum subset of services in Section 6.1.1. Similarly, the use of backward

inferencing is described in Section 6.2 and in Section 6.3.

In this chapter, we have presented the ‘ContextTrust’ model, which acts as the

basic prediction model of the context dependent QoS and trust prediction frame-

work. This model is capable of predicting QoS and trust of composed systems using

the information available at design phase of the system development lifecycle. We

divide the evaluation process into four phases. First building the Bayesian network of
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context-QoS dependencies for a single service; second, identifying composition oper-

ators for interaction patterns for each QoS; third, deriving the Bayesian network (of

context-QoS dependencies) for the composed system, and fourth, perform inferenc-

ing about trust and QoS of the composed system using the final Bayesian network.

We presents the effectiveness of the proposed model, by carrying out an empirical

validation using case studies, in Chapter 5.
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5 CASE STUDIES

This chapter provides case studies to validate the ContextTrust model described in

Chapter 4. The content in this chapter is an extension of our previous publications [19,

20]. We use case studies from three different domains as listed below.

1. Indoor tracking system

2. Travel planning system

3. Collaborative bullying classification system

Here, the Indoor tracking system uses services developed by our research group [79]

for internal experimentations. The travel planning system mainly uses publicly avail-

able services from different vendors. Collaborative bullying classification system uses

standard machine learning techniques like Naive Bayes, Logistic Regression, and Sup-

port Vector machines as participating services. Therefore, by selecting the above case

studies, we expect to validate our model with services developed with different devel-

opment practices.

To validate effectiveness of the ContextTrust model, we evaluate the errors associ-

ated with the QoS and trust inferences of these systems using the model and compare

the results with the errors related to the QoS and trust evaluated using the prevalent

technique proposed by Hwang et al. [23] that do not consider context-QoS depen-

dencies. The error values associated with the results of the inferences are calculated

using the relative absolute error metric [86], which is defined in equation 5.1. Each

case study and the corresponding results are described in detail in different sections

of this chapter.
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relative absolute error =

∑
|predicted value − actual value|∑
|actual value mean − actual value|

(5.1)

5.1 Indoor Tracking System

The Indoor tracking system is used to explain the application of ContexTrust

model in Chapter 4. The participating services of the system are listed in Table 4.1.

During the discussion about the model, we develop Bayesian networks for individual

services (Camera Tracking Service and WiFi Tracking Service) and composed system.

Here we present the results of QoS and trust inferences on Bayesian networks of

individual services (Sub-section 5.1.1), and composed system (Sub-section 5.1.2).

5.1.1 Results of Inferencing on a Bayesian Network of a Single Service

The algorithms discussed in section 4.1.2 are applied to the Bayesian network cor-

responding to the camera tracking service (represented in Figure 4.3). The resultant

errors of each of the three algorithms are shown in Table 5.1. The table also shows the

error for the predictions performed using mean values of the training data, which as-

sume that the QoS are independent of the context, therefore no context dependencies

have to be considered in predictions.

The above results show the impact of the context on the QoS attributes of the

camera service. The lesser error values are obtained from the algorithms that con-

sider the dependencies with the context than the techniques that do not consider

the context. The tracking error is sensitive to the context parameters, therefore, the

machine learning techniques provide significantly accurate predictions. Since the re-

sponse time is not significantly dependent on context, its predictions are closer to the

mean response time. From here on, we use Bayesian linear regression with sampling
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Table 5.1.: Relative absolute errors of forward inferencing of single service Bayesian
network

Algorithm Relative
Absolute
Error of
(e|d, a, rw, rh)

Relative
Absolute
Error of
(rt|rw, rh)

Message passing algorithm 0.475 0.819
Regularized least squares regression 0.401 0.901
Bayesian Linear regression with sampling 0.427 0.763
From the means of training data 1.070 1.040

to perform additional inferencing such as trust evaluations on individual services and

composed systems.

After evaluating the QoS, the trust of the service can be evaluated by analyzing

the resultant QoS distribution. However, if the service is used in a context that the

context attributes can take any value used in the training of the above prediction

models, then the QoS distribution would be same as the QoS distribution of the

training data. However, if the context is restricted, then it is possible to use the

above prediction mechanisms to derive the distribution of the QoS under the restricted

context. In our experiments, we restrict the context to the following,

1. Angle of the object (a) is restricted to −0.25 ≤ tan(a) ≤ 0.25 (We trained the

model in the range −0.5 ≤ tan(a) ≤ 0.5).

2. Distance to the object (d) is restricted to 120cm ≤ d ≤ 150cm (We trained the

model in the range 50cm ≤ d ≤ 600cm).

We have selected the ranges mentioned here for the restricted context, due to the

reason that the camera tracking service produces lesser noisy data in these ranges.

With the restricted context, the trust value as a percentage for different tracking error

specification values is listed in the Table 5.2.
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Table 5.2.: Trust evaluation with and without consideration of context for the camera
tracking service

Specification of track-
ing error

3cm 4cm 5cm 6cm 7cm

Predicted Trust (without
considering context)

43.901 63.334 79.724 90.790 96.518

Predicted Trust (with
considering context)

62.909 86.132 95.744 97.866 99.941

Percentage that actually
met the specification

67.293 91.862 99.531 99.844 100

The graph in Figure 5.1 shows the curves for predicted trust values without con-

sidering the context (prevalent approach), predicted trust value with considering the

context (our approach), and the actual percentage that met the specification against

different choice of specification values. From the Figure 5.1 and Table 5.2, it is clear

that if the trust is predicted without considering the context, then the prediction can

be very different from the actual value when the system is run in a restricted con-

text, where as our approach that considers the context gives comparatively accurate

predictions.

Similar inferences are performed with the Bayesian network corresponding to the

WiFi tracking service shown in Figure 4.5. The relative absolute errors of different

approaches are show in the Table 5.3.

To evaluate trust predictions, we used a restricted context (d1 ≥ 100, d2 ≤ 300)

for the WiFi tracking service. In this restricted context, the trust predictions for the

error of the WiFi tracking service (for selected specification values for error) using

different approaches is shown in the Table 5.4. The predictions are shown visually in

the following graph (Figure 5.2) for a wide range of error specification values.

These results confirm that the QoS and trust prediction techniques that consider

the context provides more accurate results than the prediction techniques that does

not consider the context.
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Figure 5.1.: A graph showing the trust of the error using different approaches for
different choice of specification values (for camera tracking service).

Table 5.3.: Relative absolute errors of forward inferencing of single service Bayesian
network

Algorithm Relative Absolute
Error of (e|d1, d2, d3)

Message passing algorithm 0.463
Regularized least squares regression 0.292
Bayesian Linear regression with sampling 0.310
From the means of training data 1.08

5.1.2 Results of Inferencing on a Bayesian Network of a Composition

Table 5.5 shows the relative absolute error of the predictions performed using

the Bayesian network approach (which consider the context) and the prevalent ap-

proach [23] which do not consider context in their predictions.
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Figure 5.2.: A graph showing the trust of the error using different approaches for
different choice of specification values (for WiFi tracking service).

Table 5.4.: Trust evaluation with and without consideration of context for the WiFi
tracking service

Specification of track-
ing error (cm)

80 100 120 140 160

Predicted Trust (without
considering context)

47.438 61.25 73.7 83.416 91.017

Predicted Trust (with
considering context)

72.53 82.33 88.77 92.224 94.889

Percentage that actually
met the specification

79.2 89.66 93.6 96.8 99.2

Table 5.5 shows that considering the context gives more accurate predictions for

the tracking error compared with the prevalent approach. However, the quality of

the predictions for the response time has improved only slightly by considering the
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Table 5.5.: QoS predictions of service composition

Approach Relative abso-
lute error of
predictions of
response time

Relative abso-
lute error of
predictions of
tracking error

Bayesian network based
approach (Considering the
context)

0.939 0.408

Prevalent approach (With-
out considering the context)

1.249 1.142

context. This is because the context does not have a major effect on the response

time, where as it has a considerable effect on the tracking error.

Similarly, the trust predictions can be obtained by forward sampling from the

composed Bayesian network. Similar to the experiments performed on a single service

(Table 5.2), we use the following restrictions for the context.

1. Camera Service 1: Angle of the object (a) is restricted to −0.25 ≤ tan(a) ≤ 0.25

(We trained the model in the range −0.5 ≤ tan(a) ≤ 0.5).

2. Camera Service 1: Distance to the object (d) is restricted to d ≤ 100cm (We

trained the model in the range 20cm ≤ d ≤ 600cm).

With the restricted context, the trust values for different tracking error specifi-

cation values is listed in the Table 5.6 and visualized in the graph Figure 5.3. The

graph shows the proposed approach provides highly accurate QoS & trust predictions

of composed services specially if we know the restrictions of the context of the system.

5.2 Travel Planning System

The service groups and the corresponding candidate services that the travel plan-

ning system is composed of are listed in the Table 3.6. The candidate services include
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Table 5.6.: Trust evaluation with and without consideration of context for composed
tracking system

Specification of the
tracking error (cm)

60 80 100 120 140

Predicted Trust (with-
out considering con-
text)

38.413 60.446 78.374 90.099 96.034

Predicted Trust (with
considering context)

64.085 84.422 94.055 98.038 99.453

Percentage that actu-
ally met the specifica-
tion

62 81.333 90 97.333 98.667

Figure 5.3.: A graph showing the trust of the error using different approaches for
different choice of specification values (for composed tracking system).
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public services as well as custom written services. Some of the custom services are

written to share the same SOAP session [87] with the services in other groups to

emulate associations between them. We have used the same set of services in our pre-

vious work (described in section 3.2.2) to identify the association between publicly

available services.

In this case study we have altered the services to improve its security properties.

Each of the services is wrapped with a Web service that has four endpoints, in which,

each endpoint is bound to a different Web service security policy to enforce security,

as mentioned below.

1. An endpoint with no security enforced.

2. An endpoint with username, password enforced (Usr).

3. An endpoint with signing of the massages enforced (Sign).

4. An endpoint with encrypting of the messages enforced (Enc).

Wrapper services are implemented and deployed using Apache Axis2 Web service

engine [88] with Apache Rampart [89] and Apache Neethi [90] modules to provide the

required security configurations. With these configurations, the Web services have

three security related QoS properties, namely Authentication/ Authorization (Auth),

Authentication/ Non-repudiation (Nrep), and Confidentiality (Conf), along with the

non-security related QoS property, response time (Rst).

For the Direction services and the Traffic services, the response time depends

on the distance between the starting and ending places (Dist) of the input. As the

distance increases, the message sizes also increase approximately in a linear function

(with more directions and traffic information), and the time to encrypt and sign the

messages also increases. Similarly, the response times of the Hotel, Weather and Car

Rental services depend on all the security configurations

Furthermore, the response time also depends on whether the service is sharing the

session with other services in a candidate composition or not. In our studies described
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in Section 3.2.2, we observed that when two services from the same provider (e.g.,

MapQuest Direction Service and the MapQuest Traffic Service) are composed together

sequentially, the aggregated response time is lower than the sum of the independently

executed response times of individual services. Our conclusion is that the first service

authenticates/authorizes the client and keeps the information in a shared session

between services. Hence, the second service does not need to authenticate the client,

thus, saving some computational time. We used the binary context parameter ‘Session

Initiated’ (Sess) for each service to capture whether the corresponding session is

started or not.

With these domain information, we are able to deduce the structure of the Bayesian

network for the Direction Services and the Traffic Services as shown in Figure 5.4.

Figure 5.4.: Bayesian network of the direction/ traffic services

For the other set of services (HO, WE, and CR), the response time depends only

on the security configurations. The structure of the Bayesian networks for the Hotel/

Weather/ Car Rental services is shown in the Figure 5.5. After deducing the structure

of the Bayesian network, the dependency parameters are trained for each individual

candidate services independently using Bayesian linear regression.

As the services are composed sequentially, we would identify the corresponding

composition operators for the interested QoS properties using the Table 3.1. The

operators are separately listed in the Table 5.7.
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Figure 5.5.: Bayesian network of the hotel/ weather/ car rental services

Table 5.7.: Operators used in the travel planning system case study

QoS Operators for
Sequence pat-
tern

Response Time (Rst) Addition
Authentication/ Authorization (Auth) Universal
Authentication/ Non-repudiation Nrep Universal
Confidentiality (Conf) Universal

The Bayesian network corresponding to a candidate composition is derived by

aggregating the Bayesian networks of the participating services as described in Sec-

tion 4.3. Figure 5.6 shows an example of an aggregated Bayesian network. For

simplicity, it shows only the ‘Session Initiated’ (Sess) context parameter and the ‘Re-

sponse Time’ (Rst) QoS property. In this example, the two pairs (Direction service,

Traffic service) and (Hotel service, Weather service) share the same sessions. In each

session, the first service initiates the session, therefore, the ‘Sess’ will be set to true

for the second service. The rest of the context parameters (Usr, Sign, Enc, Dist) are

independently applied to the participating services. Furthermore, as the composition

operator for the response time is a addition, we would arithmetically calculate the

composed response time (by adding means and variance separately) [61], instead of

forward sampling on the composed Bayesian network.
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Figure 5.6.: Bayesian network of a candidate composition

From the set of possible compositions, we use the composition with services DR1,

TR1, HO3, WE2, CR1 to graphically shows the results of the ‘ContextTrust’ model.

When the context is Dist = 200miles, Usr = true, Sign = false, Enc = false

(referred as ‘Travel-Context-A’), the trust of the composition predicted by both the

prevalent approach and our approach and the actual values are listed in Table 5.8

and graph in Figure 5.7.

When the context is Dist = 3000miles, Usr = false, Sign = false, Enc = true

(referred as ‘Travel-Context-B’), the trust of the composition predicted by both the

prevalent approach and our approach and the actual values are listed in Table 5.9

and graph in Figure 5.8.

The reason we choose to show the results of the two contexts ‘Travel-Context-

A’ and ‘Travel-Context-B’ is ‘Travel-Context-A’ causes a significantly lower response

time of the system compared to the response time caused from ‘Travel-Context-B’.

The graphs in Figure 5.8 and Figure 5.7 highlight that the proposed ContextTrust

closely predicts the distributions of the response time for two different contexts sepa-

rately, where as context independent trust model use the same predictive distribution
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Table 5.8.: Trust evaluation with and without consideration of context for travel
planning system with ‘Travel-Context-A’

Specification
of Response
Time (ms)

1200 1600 2000 2400 2800

Predicted Trust
(without consid-
ering context)

2.710 4.805 7.951 12.730 19.064

Predicted Trust
(with consider-
ing context)

20.914 45.352 71.737 89.767 97.498

Percentage that
actually met the
specification

6.5 39.5 83 98.5 100

Table 5.9.: Trust evaluation with and without consideration of context for travel
planning system with ‘Travel-Context-B’

Specification
of Response
Time(ms)

6000 7000 8000 9000 10000

Predicted Trust
(without consid-
ering context)

88.897 96.907 99.370 99.923 99.99

Predicted Trust
(with consider-
ing context)

0.002 1.209 29.892 88.502 99.827

Percentage that
actually met the
specification

0 4.5 31 75 95.5

and it is failed to predict the two special cases of the contexts. Therefore, we can

conclude that the Context-Dependent model is more effective in predicting QoS and

Trust of applications that have high variance of QoS depending on the context.
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Figure 5.7.: A graph showing the trust of the response time using different approaches
for different choice of specification values (for travel planning system with ‘Travel-
Context-A’).

5.3 Collaborative Bullying Classification System

Collaborative bullying classification system [91] classifies tweets in a twitter feed

either as bullying or non-bullying. The system uses three bullying classification ser-

vices based on the following machine learning algorithms.

1. Naive Bayes classifier (NB)

2. Logistic Regression classifier (LR)

3. Support Vector Machine classifier (SVM)

Each of these services have QoS properties of precision (PR), and recall (RC) [92].

They represent the aggregated performance of the classifiers associated with a set of

testing data. These properties are calculated using True Positives(TP), False Posi-
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Figure 5.8.: A graph showing the trust of the response time using different approaches
for different choice of specification values (for travel planning system with ‘Travel-
Context-B’).

tives(FP), True Negatives(TN), and False Negatives (TN) as shown in equations 5.2,

and 5.3.

PR =
TP

TP + FP
(5.2)

RC =
TP

TP + FN
(5.3)
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To represent these values as probability distributions, we use the Beta distribution

as shown in equations 5.5. As the Beta distribution requires non-zero parameters,

when any of TP, FP, or FN is equal to zero, we approximate it with the value 0.1.

PR ≈ β(TP, FP ) (5.4)

RC ≈ β(TP, FN) (5.5)

The precision and recall depend on the biasness of the data. We identified three

different domains that have three different biasness with respect to data as being

bullying or not. These domain are politics, sports, and education. With the above

mentioned domain knowledge, the Bayesian networks of each classifier services can

be built as in Figure 5.9.

Figure 5.9.: Bayesian network for the classifier services

From each of the domain, we have collected tweets by two methods. First search-

ing a keyword related to the domain, and second retrieving tweets from a personal

twitter account related to the domain. The keywords and the account for each do-

main one shown in Table 5.10 along with the short-notation used for later references.

Additionally, aggregated tweets related to politics, sports, and education are referred
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as ‘PL*’, ‘SP*’, and ‘ED*’. Aggregation of all the tweets are referred are referred as

‘ALL’.

Table 5.10.: Twitter data sources for each domain

Domain Keywords Personal Account

Politics

Election (PL1)
Obama (PL2)
Clinton (PL3)
Trump (PL4)

@BarackObama (PL5)
@realDonaldTrump (PL6)
@HillaryClinton (PL7)

Sports
Olympic (SP1)
Bolt (SP2)
Phelps (SP3)

@MichaelPhelps (SP4)
@usainbolt (SP5)

Education
Education (ED1)
coolcatteacher (ED2)
kevin corbettab (ED3)

@coolcatteacher (ED4)
@kevin corbettab (ED5)

The precision and recall values for each twitter feed (and the aggregated feeds

for each domain) is shown it Table 5.11 as mean values and Table 5.12 as beta

distributions. Here the ‘NaN’ represents ‘Not a Number’.

The classifier services are composed with two different collaboration patterns as

following (The generic pattern of the composed system is shown in Figure 5.10).

Figure 5.10.: Generic collaboration pattern of the bullying classification system

1. ‘OR’ Collaboration: The system classifies a data instance as bullying, only if

one of the classifier services classifies the data instance as bullying.



103

Table 5.11.: QoS (PR,RC) of the classifier services for different twitter feeds

Feed SVM (PR, RC) LR (PR, RC) NB (PR, RC)
PL1 (73, 46) (70, 75) (43, 66)
PL2 (99, 81) (98, 88) (97, 90)
PL3 (96, 78) (96, 88) (92, 88)
PL4 (89, 61) (87, 81) (83, 82)
PL5 (100, 75) (58, 69) (50, 81)
PL6 (96, 59) (83, 72) (71, 80)
PL7 (92, 48) (82, 63) (75, 85)
PL* (94, 66) (87, 79) (78, 84)
SP1 (100, 14) (15, 57) (28, 28)
SP2 (NaN, 0) (12, 20) (0, 0)
SP3 (NaN, 0) (11, 50) (0, 0)
SP4 (NaN, 0) (0, 0) (6, 50)
SP5 (NaN, 0) (0, 0) (6, 100)
SP* (100, 5) (8, 35) (8, 25)
ED1 (50, 7) (22, 38) (13, 15)
ED2 (NaN, 0) (20, 100) (0, 0)
ED3 (NaN, NaN) (NaN, NaN) (NaN, NaN)
ED4 (NaN, 0) (0, 0) (0, 0)
ED5 (NaN, 0) (7, 16) (7, 16)
ED* (50, 4) (13, 31) (7, 13)

ALL (93, 63) (74, 77) (70, 80)

2. ‘AND’ Collaboration: the system classifies the data instance as bullying, only

if all the classifier services classify the data instance as bullying.

There do not exist simple exact operators for the QoS aggregation of the composed

system in both patterns. But there are approximate composition operators that we

can use to calculate the TP, FP, and FN for both collaboration patterns. Evaluations

of these values of the composed system allow us to evaluate its precision and recall as

Beta distributions. The operators corresponding to each QoS and the collaboration

pattern are shown in Table 5.13.

We apply these operators to predict the QoS of collaboration pattern. Since the

context values are discrete, we will use a tabular method to infer the QoS and Trust
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Table 5.12.: QoS distributions of the classifier services for different twitter feeds

Feed SVM (PR, RC) LR (PR, RC) NB (PR, RC)
PL1 β(28, 10), β(28, 32) β(45, 19), β(45, 15) β(40, 51), β(40, 20)
PL2 β(131, 1), β(131, 30) β(143, 2), β(143, 18) β(145, 3), β(145, 16)
PL3 β(118, 4), β(118, 32) β(132, 5), β(132, 18) β(133, 11),

β(133, 17)
PL4 β(83, 10), β(83, 51) β(109, 15),

β(109, 25)
β(110, 22),
β(110, 24)

PL5 β(25, 0.1), β(25, 8) β(23, 16), β(23, 10) β(27, 27), β(27, 6)
PL6 β(56, 2), β(56, 38) β(68, 13), β(68, 26) β(76, 31), β(76, 18)
PL7 β(46, 4), β(46, 49) β(60, 13), β(60, 35) β(81, 27), β(81, 14)
PL* β(487, 31),

β(487, 240)
β(580, 83),
β(580, 147)

β(612, 172),
β(612, 115)

SP1 β(1, 0.1), β(1, 6) β(4, 22), β(4, 3) β(2, 5), β(2, 5)
SP2 β(0.1, 0.1), β(0.1, 5) β(1, 7), β(1, 4) β(0.1, 3), β(0.1, 5)
SP3 β(0.1, 0.1), β(0.1, 4) β(2, 16), β(2, 2) β(0.1, 3), β(0.1, 4)
SP4 β(0.1, 0.1), β(0.1, 2) β(0.1, 12), β(0.1, 2) β(1, 15), β(1, 1)
SP5 β(0.1, 0.1), β(0.1, 2) β(0.1, 15), β(0.1, 2) β(2, 27), β(2, 0.1)
SP* β(1, 0.1), β(1, 19) β(7, 72), β(7, 13) β(5, 53), β(5, 15)
ED1 β(1, 1), β(1, 12) β(5, 17), β(5, 8) β(2, 13), β(2, 11)
ED2 β(0.1, 0.1), β(0.1, 1) β(1, 4), β(1, 0.1) β(0.1, 3), β(0.1, 1)
ED3 β(0.1, 0.1),

β(0.1, 0.1)
β(0.1, 0.1),
β(0.1, 0.1)

β(0.1, 0.1),
β(0.1, 0.1)

ED4 β(0.1, 0.1), β(0.1, 2) β(0.1, 11), β(0.1, 2) β(0.1, 8), β(0.1, 2)
ED5 β(0.1, 0.1), β(0.1, 6) β(1, 12), β(1, 5) β(1, 13), β(1, 5)
ED* β(1, 1), β(1, 21) β(7, 44), β(7, 15) β(3, 37), β(3, 19)

ALL β(489, 32),
β(489, 280)

β(594, 199),
β(594, 175)

β(620, 262),
β(620, 149)

Table 5.13.: Approximate composition operators for precision and recall

Collaboration pattern TP FP FN
‘OR’ Collaboration Min Min Max
‘AND’ Collaboration Max Max Min
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of the composed system. The predicted QoS values /distributions compared with the

actual QoS values/ distributions are shown for ‘AND’ collaboration in Table 5.14 and

‘OR’ collaboration in Table 5.15.

Table 5.14.: QoS of the ‘AND’ collaboration

Feed
Predicted (PR, RC) Actual (PR, RC)
Means Distributions Means Distributions

PL1 (75, 37) β(12, 4), β(12, 20) (84, 39) β(11, 2), β(11, 17)
PL2 (98, 81) β(64, 1), β(64, 15) (100, 76) β(63, 0.1), β(63, 19)
PL3 (95, 77) β(60, 3), β(60, 17) (98, 73) β(54, 1), β(54, 19)
PL4 (85, 60) β(40, 7), β(40, 26) (92, 54) β(37, 3), β(37, 31)
PL5 (100, 64) β(11, 0.1), β(11, 6) (100, 68) β(11, 0.1), β(11, 5)
PL6 (100, 63) β(29, 0.1), β(29, 17) (96, 52) β(25, 1), β(25, 23)
PL7 (94, 36) β(17, 1), β(17, 30) (100, 47) β(23, 0.1), β(23, 25)
PL* (93, 64) β(234, 16),

β(234, 130)
(96, 61) β(224, 7),

β(224, 139)
SP1 (NaN, 0) β(0.1, 0.1), β(0.1, 2) (100, 20) β(1, 0.1), β(1, 4)
SP2 (NaN, 0) β(0.1, 0.1), β(0.1, 2) (NaN, 0) β(0.1, 0.1), β(0.1, 3)
SP3 (NaN, 0) β(0.1, 0.1), β(0.1, 2) (NaN, 0) β(0.1, 0.1), β(0.1, 2)
SP4 (NaN, 0) β(0.1, 0.1), β(0.1, 2) (NaN,

NaN)
β(0.1, 0.1),
β(0.1, 0.1)

SP5 (NaN, 0) β(0.1, 0.1), β(0.1, 2) (NaN,
NaN)

β(0.1, 0.1),
β(0.1, 0.1)

SP* (NaN, 0) β(0.1, 0.1),
β(0.1, 10)

(100, 10) β(1, 0.1), β(1, 9)

ED1 (NaN, 0) β(0.1, 0.1), β(0.1, 6) (50, 14) β(1, 1), β(1, 6)
ED2 (NaN,

NaN)
β(0.1, 0.1),
β(0.1, 0.1)

(NaN, 0) β(0.1, 0.1), β(0.1, 1)

ED3 (NaN,
NaN)

β(0.1, 0.1),
β(0.1, 0.1)

(NaN,
NaN)

β(0.1, 0.1),
β(0.1, 0.1)

ED4 (NaN, 0) β(0.1, 0.1), β(0.1, 1) (NaN, 0) β(0.1, 0.1), β(0.1, 1)
ED5 (NaN, 0) β(0.1, 0.1), β(0.1, 3) (NaN, 0) β(0.1, 0.1), β(0.1, 3)
ED* (NaN, 0) β(0.1, 0.1),

β(0.1, 10)
(50, 8) β(1, 1), β(1, 11)

ALL (93, 60) β(234, 16),
β(234, 150)

(96, 58) β(226, 8),
β(226, 159)
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Table 5.15.: QoS of the ‘OR’ collaboration

Feed
Predicted (PR, RC) Actual (PR, RC)
Means Distributions Means Distributions

PL1 (45, 68) β(22, 26), β(22, 10) (44, 89) β(25, 31), β(25, 3)
PL2 (95, 87) β(69, 3), β(69, 10) (100, 98) β(81, 0.1), β(81, 1)
PL3 (93, 88) β(68, 5), β(68, 9) (92, 95) β(70, 6), β(70, 3)
PL4 (81, 89) β(59, 13), β(59, 7) (85, 94) β(64, 11), β(64, 4)
PL5 (53, 82) β(14, 12), β(14, 3) (42, 87) β(14, 19), β(14, 2)
PL6 (71, 82) β(38, 15), β(38, 8) (68, 85) β(41, 19), β(41, 7)
PL7 (78, 82) β(39, 11), β(39, 8) (67, 89) β(43, 21), β(43, 5)
PL* (77, 82) β(299, 85),

β(299, 65)
(75, 93) β(338, 107),

β(338, 25)
SP1 (8, 50) β(1, 11), β(1, 1) (17, 60) β(3, 14), β(3, 2)
SP2 (16, 50) β(1, 5), β(1, 1) (0, 0) β(0.1, 4), β(0.1, 3)
SP3 (8, 50) β(1, 11), β(1, 1) (14, 50) β(1, 6), β(1, 1)
SP4 (12, 50) β(1, 7), β(1, 1) (0, NaN) β(0.1, 11),

β(0.1, 0.1)
SP5 (11, 100) β(2, 16), β(2, 0.1) (0, NaN) β(0.1, 17),

β(0.1, 0.1)
SP* (6, 30) β(3, 43), β(3, 7) (7, 40) β(4, 52), β(4, 6)
ED1 (9, 16) β(1, 10), β(1, 5) (30, 57) β(4, 9), β(4, 3)
ED2 (0, NaN) β(0.1, 2), β(0.1, 0.1) (16, 100) β(1, 5), β(1, 0.1)
ED3 (NaN,

NaN)
β(0.1, 0.1),
β(0.1, 0.1)

(NaN,
NaN)

β(0.1, 0.1),
β(0.1, 0.1)

ED4 (0, 0) β(0.1, 4), β(0.1, 1) (0, 0) β(0.1, 11), β(0.1, 1)
ED5 (0, 0) β(0.1, 8), β(0.1, 3) (10, 33) β(1, 9), β(1, 2)
ED* (4, 10) β(1, 22), β(1, 9) (15, 50) β(6, 34), β(6, 6)

ALL (69, 78) β(303, 134),
β(303, 81)

(64, 90) β(348, 193),
β(348, 37)

In Tables 5.14, and 5.15, the final row (corresponding to ‘ALL’ feed) represents

the predictions and actual QoS values/ distributions, without conisdering the context.

Whereas, the rows ‘PL*’, ‘SP*’, ‘ED*’, represent the context specific predictions and

the corresponding actual values / distributions of QoS.

In Table 5.14, we can observe that after using the ‘AND’ operator, there is not

enough data to predict the QoS for ‘SP*’ and ‘ED*’ feeds. However, even the context-
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independent predictor (corresponding to the ‘ALL’ feed) has failed to predict the QoS

for ‘SP*’ and ‘ED*’ domains as the predictor over-estimate the QoS of these feeds.

We conclude that in this type of applications, the ContextTrust model requires a sig-

nificantly large amount of data from each domain (until adequate number of positives

present), and if the data is not adequate to performs predictions, the predictions will

not be accurate. In contrast, ‘PL*’ feeds has enough data to more accurately predict

the QoS in that domain.

In Table 5.14, we can observe that after using the ‘OR’ operator, the context-

dependent predictors (‘PL*’, ‘SP*’, and ‘ED*’ feeds) have provided accurate pre-

dictions for the corresponding feeds than the context-independent predictors (corre-

sponding to ‘ALL’ feed). The difference between the use of ‘OR’ operator and the

‘AND’ operator is that more positives are predicted by the collaboration of classi-

fiers when interacting with ‘OR’ mode. Therefore, the predictors have enough data

to perform accurate predictions. To demonstrate accuracy of the ‘ContextTrust’

predictions compared to the prevalent method, we have plotted the cumulative dis-

tributions of the precision for the data from political domain (Figure 5.11), sports

Domain (Figure 5.12) and education Domain (Figure 5.13). The figures show that

the ContextTrust approach performs more accurate predictions than the prevalent

approach that do not consider the context in QoS evaluation.

The application of the ContextTrust model can be generalized to domains other

than the three case studies mentioned in this Chapter. Domain experts need to be

involved in identifying the important QoS and context parameters in the first phase

to obtain the structure of the Bayesian networks for each individual service, and

identifying the interaction patterns and the corresponding composition operators for

the second phase. The resulting composed Bayesian network can be used to perform

inferences specific to the domain. As the approximate inferences techniques that we

have used can be applied to large-scale Bayesian networks [93], we expect our model

would perform equally well in complex systems as well.
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Figure 5.11.: A graph showing the trust of the precision for the data from political
domain for different choice of specification values.

We obtained more accurate predictions about the QoS and the trust of systems by

following the four phases enforced in ContextTrust model, which explicitly consider

the context-QoS and the context-context dependencies. This would require additional

cost at the very early phases of the software lifecycle. However, as the predictions

provided by the proposed approach are significantly accurate than the prevalent ap-

proaches, the designers can make early decisions about the QoS and the trust of the

end system, which would ultimately help them to save money, time and effort.
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Figure 5.12.: A graph showing the trust of the precision for the data from sports
domain for different choice of specification values.
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Figure 5.13.: A graph showing the trust of the precision for the data from education
domain for different choice of specification values.
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6 MORE APPLICATIONS OF THE QOS AND TRUST PREDICTION

FRAMEWORK

The ContextTrust model is applied on real life case studies to predict QoS and Trust

of composed systems at the design phase of the system in Chapter 5. The content

in this chapter is an extension of our previous publications [20, 21]. In this Chapter,

we discuss how we can extend the model to cater three other applications as listed

below.

1. Selection of an optimum set of service for a composed system (OptimumTrust

model)

2. Adaptation of the composed system based on QoS and Trust changes (Adapt-

Trust model)

3. QoS and Trust evaluations of individual services that are reused in existing

composed systems (ReuseTrust model)

We present three models that are developed based on the ContextTrust model to

provide solutions to applications listed above. These models are discussed in detail

as separate sections of this chapter along with real life case studies for validation.

6.1 Optimum Service Selection Model – OptimumTrust

An important outcome that we can infer with the help of the ‘ContextTrust’ model

is to select the most optimum set of services for a composed system. When there are

multiple services providing the same functionality, but with different QoS and trust

properties, it is important to select the most optimum set of services that satisfy the

QoS and the trust requirements of the composed system to obtain higher QoS and
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the trust. Naturally, the QoS properties of services compete with each other. For

example, in a camera tracking service, the tracking error can be reduced by increasing

the resolution configuration. However, that would increase the response time of the

service. Therefore, it is important to find an optimization algorithm that would tackle

such competing QoS properties, while satisfying the QoS and the trust constraints.

6.1.1 Optimization Algorithm

First, we formally define the selection problem as an optimization problem as

follows.

Let there be ‘n’ service groups G1, G2, G3, . . . , Gn, in which the services in a same

group provide the same functionality, and for each service group Gi, there are ‘m’

number of service implementations, Si1, Si2, Si3, . . . , Sim. Each service (Sij) has ‘p’

number of QoS parameters, q1ij(C), q2ij(C), q3ij(C), ...., qpij(C). In practice, it is possible

that not all the service groups have the same number of services and the not all the

services have the same number of QoS parameters. We use those assumptions only

for the sake of simplicity and without the loss of generality. Here the QoS parameters

are functions of the context (C). (Here for the sake of simplicity, we have ignored

context-context dependencies and the QoS-QoS dependencies). Our target is to select

services from each group so that the following conditions are satisfied.

• Overall QoS and trust values satisfy the constraints requested by the user (sat-

isfying feasibility constraints).

• QoS values have the optimum values within the user’s constraints (maximizing

the objective function).

The feasibility constraints and the objective function would be determined by the

system developer with the help of a domain expert. This optimization requirement

can be modeled using the following multi-integer programing approach.

The binary variable Xij is used to indicate whether the Sij service is selected or

not.
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Xij =

1− if the service Sij is selected

0− otherwise

 (6.1)

Since we are selecting only one service from each group i, we can write set of

constraints for feasibility as,

m∑
i=1

xij = 1 for all j = 1 . . . n (6.2)

We have used the notation X to represent the set of Xij for all i, j values. Each

instance of the X that satisfies the equation 6.2 represents a candidate composition.

Furthermore, our target composite service should satisfy the constraints enforced

on each quality value. Assuming the user requirement for the kth QoS property is

that its value should exceed Qk(C) with T k(C) trust, feasibility constraints can be

modeled using the following inequality equations.

OP k
i=1...n

m∑
i=1

xijq
k
ij(C) ≥Tk(C) Q

k(C) for all k = 1 . . . p (6.3)

Here the OP k represents the composition operator corresponding to the kth QoS

property and the operator ≥Tk(C) represents the inequality should holds with at least

Tk(C) probability for a given feasible composition. Here, we assume that a higher

QoS value for qkij is desirable. If lower QoS values are desirable, then negative values

should be assigned to qkij to make sure to use the same inequality equation.

The left hand side of the equation 6.3 can be evaluated using ContextTrust model

discussed in Chapter 4. It provides the probability distributions of overall QoS val-

ues for a composition of some selected candidate services. Then we would use the

cumulative probability distributions of QoS values to evaluate whether each QoS
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property has satisfied its required QoS and trust constraints or not. For a particular

candidate composition (X), if the threshold of the ‘k’th QoS value that satisfies the

trust requirement is denoted as Qk
Tk(C)

(X), then the equation 6.3 can be rewritten as

following.

Qk
Tk(C)(X) ≥ Qk(C) for all k = 1 . . . p (6.4)

The objective function ‘F ’ would be the weighted average of the QoS properties.

The weights are assigned by the users according to their preference of the QoS. Our

optimization step is to maximize the following objective function.

F =

p∑
k=1

W kQk
Tk(C)(X) (6.5)

Zeng et al. [55] has shown a special case of the above multi-integer programming

problem, in which the trust is not considered, the QoS does not depend on the context,

and addition is the only composition operator allowed, is NP-complete. Therefore,

the above problem (a more general problem than the problem mentioned in Zeng’s

et al.’s paper) is also NP-complete. Therefore, in order to find an efficient solution to

this problem, we would use a heuristic based optimization algorithm as indicated in

the following sections.

We use the available context information from the deployment environment to

identify the possible restricted QoS ranges of each services. That information will

provide a more personalized optimum set of services for the system developer in addi-

tion to the personalization provided with the choice of the feasibility constraints and

the objective function. After identifying the distribution of the context, we would

use forward sampling on the context-QoS dependencies network to derive the corre-

sponding QoS distributions. If no context information is available, then the expected

values of the default QoS distributions are used in the optimization algorithm.



115

When evaluating the association context of services, we can identify the positive

and negative associations between services in two different groups. For example,

services that shares the same session information, and use the same protocols and

technologies can have positive associations in terms of improving the response time,

where as services with different protocols and technologies can have negative associa-

tions and worsen the response time. In situations where we want to find the optimum

set of services that improve the response time, we should favor the set of services that

have positive associations that the set that has negative associations.

6.1.2 Cross Entropy (CE) Algorithm

We have used an optimization algorithm based on the cross-entropy method [16,94]

with some improvements to include the proposed heuristic that captures the associ-

ations between services to identify the globally optimum set of services for a com-

position. The algorithm initially takes feasible samples of candidates compositions

according to an initial probability distribution. Here, a sample contains a service

from each service group. In each iteration, the probability values are adjusted by re-

calculating the objective function of the samples. Then, in the subsequent iterations,

it produces more optimized samples with higher probability. The CE algorithm [16]

is summarized in the following steps. The parameters ρ, d, α mentioned in the below

algorithm should be tuned to get to optimum solutions with higher objective values.

1. Assign uniform probabilities to all the services of each group. Say Pij is the

probability associated with the service Sij, then Pij = 1/m for all i and j.

2. In the tth iteration (initially t = 1), pick N feasible samples, X1, X2, . . . , XN .

Each sample will have one service from each service groups. The probability of

picking a service Sij from the ith group is Pij.

3. Sort Xi samples in the ascending order of the Objective Functions (Fi). Then,

pick a value for the parameter ρ between 0 and 1, where last ρN samples are
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considered relatively optimum samples. In the next steps, we would adjusts the

Pij values favoring these ρN samples.

4. Calculate Cij values for each service Sij s.t.

Cij =

∑N
r=1 IFR>γxij∑N
r=1 IFR>γ

(6.6)

Where, γ = F(1−ρ)N and

IFr>γ =

1− if Fr > γ for sample ‘r′

0− otherwise

 (6.7)

5. Update the Pij values for the next iteration for each service Sij.

Pij = αCij + (1− α)Pij (6.8)

6. If the γ values corresponding to the last d number of iterations are equal, then

we can decide the solution is converged and the γ value can be used as the

optimum objective function value. Otherwise repeat the step 2 for the t + 1th

iteration.

With the above mentioned heuristics, in capturing the associations between ser-

vices, we expect to improve the optimality of the algorithm by directing the algorithm

to find a global optimum solution rather than a sub-optimum local solution.

We can improve the sampling process of services for candidate compositions in step

2 of the above algorithm by altering the sample probabilities to favor the candidate

compositions that have more associations between services. For a particular sample,

if we have already chosen services up to group ‘i − 1’, then when we are selecting

the service from the group i (i > 0), we can evaluate the associations of the services

in group i with the selected set of i − 1 services. We calculate the likelihood of the
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service Sij being selected from the service group i, when the services up to i − 1

(s1, . . . , si−1)is already selected (L(Sij|s1, . . . , si−1)) using the following expression.

L(Sij|s1, . . . , si−1) ∝ 1 +
∆Fij|s1,...,si−1∣∣∆Fij|s1,...,si−1

∣∣+ |Fij|
(6.9)

Here, Fij is the contribution of the service Sij to the objective function (obtained

by computing the weighted average of the QoS of the service using the same weights

as the objective function), when the associations between the services are omitted.

∆Fij|s1,...,si−1
is the difference of the objective function from the service Sij made due

to the associations with the services s1, . . . , si−1. In this equation, if there are no

associations between the already selected services and the service Sij, ∆F becomes 0

and the likelihood would be proportional to 1. If there is a positive association, then

the ∆F would become a positive fraction, and the likelihood would be proportional

to L, 1 < L < 2. If there is a negative association, then the ∆F would become a

negative fraction, and the likelihood would be proportional to L, 0 < L < 1. This

encourages the selection of a service with positive associations and discourage the

selection of a service with negative associations. With this information, the posterior

probability of selecting service Sij (denoted as P (Sij|s1, . . . , si−1)) can be evaluated

using Bayes theorem, in which Pij is the prior probability.

P (Sij|s1, . . . , si−1) ∝ L(Sij|s1, . . . , si−1)Pij (6.10)

This expression has to be evaluated only for the services with associations as oth-

erwise, the likelihood would be 1 and the posterior probability will be equal to the

prior (Pij). However, the posterior probabilities have to be normalized if any service

is need to be updated due to the existence of associations. After that, the probability

of the services (Pij) of the service group i is temporary updated to P ′ij for the purpose

of the sampling from that service group.

P ′ij = βtP (Sij|s1, . . . , si−1) + (1− βt)Pij (6.11)
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Here the βt is a parameter that would diminish as the iteration number(t) reaches

higher values. In our experiments, we have used βt = β
t

for t < k where k is a

tuning parameter and βt = 0 when t ≥ k. That way, our heuristic will be effective

at the early iterations to speed up the convergence and direct the solution to the

desired global optimum value. After many iterations (t ≥ k), the probabilities of the

services will be trained towards the optimum solution, therefore, it is not required to

be altered by the proposed heuristic method and save additional computational time.

After finishing the sampling process with altered probabilities, we continue with

the steps of the algorithm up to step 4 (calculation of equation 6.6). Then, after we

select the prominent ρN number of samples, we would re-evaluate the P ′ij only for

the services in the selected samples and set the Pij values to P ′ij. This encourages the

selection of associated services in future samples.

6.1.3 Ant Colony Optimization (ACO) Algorithm

ACO algorithm is based on the behaviour of ants, when finding the optimum

path from their colony to a food source [95]. When ants travel from source to the

destination through several nodes, they lay down pheromone in the trail. Subsequent

ants tend to follow the highest concentration of pheromone in deciding the next node

of the path. As the pheromone evaporate with time, shorter paths tend to have high

concentration of pheromone. With time, this leads the ants to find the optimum path.

ACO simulate this behavior by evaluating probabilities of tendency to travel between

pair of nodes. These probabilities are re-evaluated based on the cost of the selected

path. As in our application, the optimum solution tend to have positively associated

services, we can use the ACO algorithm to capture such associations in solving the

optimization problem. The steps of the algorithm that is applied in optimum service

selection problem are listed below.
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1. If the service j is selected (in the service group i), then the probability (Pijk)

that the service k is getting selected (in the service group i + 1) is evaluated

using the following equation.

Pijk =
(ταijk)(η

β
ijk)∑k=m

k=0 (ταijk)(η
β
ijk)

(6.12)

Here α, and β are tuning parameters. τijk is an evolving probability value

(corresponding to the pheromone concentration) that is initialized uniformly.

ηijk is the prior knowledge of the associations. For benchmark purposes, when

we do not consider associations between services, we initialize the ηijk values

uniformly. When the associations are considered (refer as ACO + Heuristics in

the graphs in Sub-section 6.1.4), we initialize ηijk as following equation.

ηijk ∝ 1 +
∆F(i+1)k|s1j∣∣∆F(i+1)k|sij

∣∣+
∣∣F(i+1)k

∣∣ (6.13)

Similar to Equation 6.9, this equation provides a ηijk value greater than 1, if

the services are positively correlated, less than 1, if the services are negatively

correlated, and equal to 1, if there are no association between services.

2. In the tth iteration (initially t = 1), pick N feasible samples, X1, X2, . . . , XN .

Each sample will have one service from each service groups. In each sample,

if the service j is selected in the group i, we follow Pijk to select the service k

from the i+ 1 group.

3. For each sample r (from the N samples), evaluate the objective function Obr.

4. After the samples are drawn, the Pijk values are updated as in following equa-

tion.

τijk = (1− ρ)τijk +
N∑
r=1

∆τ rijk (6.14)
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Here ∆τ rijk is evaluated for each sample r as in following equation.

∆τijk =

Obr
Q
− If the sample r contain j and k services

0− otherwise


(6.15)

5. Continue the Step 2 for the iteration t + 1 unless the in the last d number of

iterations, κ portions of the samples have the same highest objective function.

6.1.4 Simulation Study of the Optimization Algorithm

In order to test the validity of the algorithm with the proposed heuristic that

capture the association between services, we applied the algorithms to a simulated

data set. Simulations have been used in previous works [14–16] to validate the results

of optimum service selection algorithms that do not consider associations between

services. With the use of simulations, we can vary different parameters and identify

the corresponding behavior of the algorithm. In simulation, we generated data for

‘n’ number of service groups and ‘m’ number of services for each groups. Each

service has q number of qualities (Q) and they depend on c number of contexts(C).

Q can be represented as a linear combination of C and its weights are generated

randomly(wC). The selected set of contexts in c are association contexts (AC,AC ⊂

C) and enables only when some other related services (service relations randomly

are defined uniformly) are available in the same composition. These relations and

the weights of the associations (both positive and negative) wC are generated from a

uniform random distribution.

The values for the simulation parameters are chosen to validate the scalability

of the approaches in different practical scenarios. The parameters used for tuning

the algorithms are chosen by experimenting with multiple runs containing different

parameter values for a selected validation data set (obtained by simulations) and se-

lecting the set of parameters that achieves better objective functions in less number
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of iterations. Objective function parameters, which are expected to be a users choice

based on their requirements, are set to common values (giving all QoS parameters

equal weights). The default values for these parameters as shown in the Table 6.1.

Here the U(X,Y) stands for random numbers that are sampled from uniform distri-

bution between X and Y.

For the first experiment, we varied the wAC from U(0,10) to U(100,110) and

studied the effectiveness of the proposed heuristic as shown in the Figure 6.1.

Figure 6.1.: Objective function vs the association context dependency weight

From Figure 6.1, It is clear that the CE algorithm outperforms the ACO algo-

rithm for all the different association context dependency weights. It also shows that

when the associativity context is prominent, our heuristic methods are effective in

getting a comparatively higher objective values for both CE and ACO algorithms.

Figure 6.2 shows that ACO algorithm takes only fewer iterations than the CE algo-

rithm. Additionally, the algorithms have converged to an optimum value in lesser

number of iterations, when the heuristic about the associations are used. However,
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Table 6.1.: Default values for the simulation and algorithm tuning parameters

Simulation Parameters Value / Random Value Dis-
tribution

n 1000
m 20
c 5
q 5
|AC| 1
C U(0, 1)
wC U(10, 20)
wAC ±U(10, 20)
CE Algorithm Tunning
Parameters

Value

N 20
ρ 0.2
d 10
α 0.1
β 0.4
k 30
ACO Algorithm Tun-
ning Parameters

Value

N 20
ρ 0.1
d 10
α 1
β 5
κ 0.9
Q 150000
Objective function/Fea-
sibility Constraints Pa-
rameters

Value

W 1, . . . ,W q 15× n× c× q
Q1, . . . , Qq 1
T 1, . . . , T q 100%

since sample probabilities are calculated in each samples, the runtime of the algo-

rithm is improved only slightly with the use of the proposed heuristics as shown in

Figure 6.3. Even with lesser number of iterations, ACO algorithm have taken signif-
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icantly more time, as it requires calculation of probabilities for each pair of services

in adjacent groups in each iterations. If the requirement is to evaluate the compo-

sitions off-line at the start of software development lifecycle, we prefer algorithms

that provides optimum solutions than the runtime efficiency of the algorithm. If the

requirement is to evaluate the compositions at runtime, we would need the algorithm

to be fast while providing the optimum solution. The graph in Figure 6.4 highlights

that the CE + Heuristic algorithm performs equally fast compared with the CE al-

gorithm. Therefore, CE algorithm with proposed heuristics is capable of providing

comparatively higher optimum solutions for systems with high association context

dependencies taking comparatively lesser time.

Figure 6.2.: Algorithm iteration vs the association context dependency weight

Similarly, we have performed experiments by changing the number of service

groups (Figure 6.5) and number of services for a service group (Figure 6.6) with

the same association context dependencies that is generated at U(100, 110) and eval-
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Figure 6.3.: Algorithm runtime vs the association context dependency weight

uated the effectiveness of the algorithm. The graphs in Figure 6.5, and Figure 6.6

show that the both the heuristic-based algorithms find optimum solutions than the

non-heuristic algorithms consistently.

In Figure 6.5, the value of the objective function has increased with the increase

of service groups (n). That is the expected behavior, as in that situation the number

of services per composition increases and each service contributes to provide higher

QoS values for the composition. Furthermore, when the number of services per com-

position increases, the impact of the associations between services onto the composed

QoS also increases. The results shows that the proposed heuristics for both CE and

ACO algorithms have captured this associations more effectively and provide a higher

value for the objective function than the traditional algorithm.

When the number of services per a service group (m) increases, the algorithm

will have more choices to select the optimum set of candidate services for a partic-

ular composition. With the availability of more choices, there will be many feasible



125

Figure 6.4.: Runtime vs the association context dependency weight for CE,
CE+Heuristics algorithms

compositions with optimum QoS and trust values although the services within the

composition do not necessarily be associated with each other. Figure 6.6 shows that

the proposed heuristic-based algorithms performed better than the traditional algo-

rithms. However, with the increase of the number of services per group, the traditional

algorithms come closer to heuristic-based algorithms. After analyzing optimum solu-

tions from each of these algorithms, we conclude as the number of services increases,

optimum compositions tends to happen with and without associations between the

services. The heuristics-based algorithms tend to capture the compositions with as-

sociations between services, and traditional algorithms tend to capture compositions

without associations between services. Therefore, with the increase of the services in

a service group, traditional algorithms come closer to the optimality of the heuristic

based algorithms.
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Figure 6.5.: Objective function vs number of service groups

6.1.5 Case Study – A Travel Planning System

We have applied our optimum service selection algorithms to a travel planning

system that we used as a case study in Section 5.2. The dataset of the system (that is

the service groups and the corresponding candidate services) is listed in the Table 3.6.

In our experiments, we applied our algorithm for different contexts to find the

optimum set of services and the corresponding overall QoS values for the travel plan-

ning system. We compared these results with: 1. an optimum set of services and the

corresponding overall QoS values found using algorithm that does not consider con-

text dependencies, 2. an actual optimum set of services and the corresponding overall

QoS values found by executing all the possible combinations of candidate services.

The user security requirements decide the choice of the policy endpoint context

and the feasibility constraints of the security QoS proprieties. For example, if the

security requirement for the system is that it should support authentication/ autho-
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Figure 6.6.: Objective function vs the number of services in a service group

rization, then the ‘Usr’ context parameter is set to true, and the ‘Auth’ is constrained

to be true. Feasibility constraints for trust of the response time is set to 50% to work

with mean of the probability distributions. As the feasibility constraints make sure

the security QoS properties have desired values, the objective function is used to

minimize the response time by assigning negative weight to the response time.

All the algorithms (CE, CE+Heuristics, ACO, and ACO+Heuristics) provided

the same optimum solution for each different contexts in the dataset. As the number

of service groups and services per groups are low in this situation, we could verify

that they are the global optimum solutions by validating the solution with brute-

force technique. Table 6.2 shows the overall QoS values for the optimum composition

for two contexts using both the proposed algorithms and the actual executions of

compositions. (In Table 6.2, only the ‘Rst’ is mentioned as the ‘Auth’, ‘Nrep’, and

‘Conf’ Qos properties can be implied from the context.)
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Table 6.2.: The overall QoS values for optimum composition for different contexts

Context Predicted Rst Actual Rst
Usr = true, Dist ≈
200miles

1666ms (DR1, TR1,
HO3, WE2, CR1)

1837ms (DR1, TR1,
HO3, WE2, CR1)

Usr = true, Dist ≈
3000miles

4106ms (DR2, TR1,
HO3, WE2, CR1)

4025ms (DR2, TR1,
HO3, WE2, CR1)

Sign = true, Dist ≈
200miles

2478ms (DR1, TR1,
HO3, WE2, CR1)

2713ms (DR1, TR1,
HO3, WE2, CR1)

Sign = true, Dist ≈
3000miles

6504ms (DR2, TR1,
HO3, WE2, CR1)

6990ms (DR2, TR1,
HO3, WE2, CR1)

Enc = true, Dist ≈
200miles

2797ms (DR1, TR1,
HO3, WE2, CR1)

3013ms (DR1, TR1,
HO3, WE2, CR1)

Enc = true, Dist ≈
3000miles

6537ms (DR2, TR1,
HO3, WE2, CR1)

7069ms (DR2, TR1,
HO3, WE2, CR1)

From the results shown in Table 6.2, it can be observed that although the re-

sponse time changes with the change in the ‘Usr’, ‘Sign’ and ‘Enc’ contexts, the

optimum composition remain unchanged. That is because, we have implemented the

additional security layer as a wrapper to the existing services and the associated over-

head is consistent among all the compositions. However, when the ‘Dist’ is changed

from 200 miles to 3000 miles, the optimum composition also changes along with a

rapid increase in the response time. We concluded the reason for this change is that

when the distance is high, the Google Direction Service (DR1) sends a large output

with more details where as MapQuest Direction Service (DR2) sends a comparatively

smaller output. For example, the messages sizes for the direction between Indianapo-

lis and Chicago (around 200miles distance) are 32kb (DR1), and 14kb (DR2), where

as the message sizes for the direction between New York and San Francisco (around

3000miles distance) are 245kb (DR1), and 31kb (DR2). The reason for this is ‘DR1’

provides more alternative routes as distance increases, and ‘DR2’ only provides few

optimum routs. As the the services are wrapped with a security layer, the processing
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of the large output takes more time giving ‘DR1’ a higher response time compared

to ‘DR2’.

If we use prevalent approach to predict overall QoS of the composition (without

considering the context-QoS dependencies), the predictions for the two candidate

optimum compositions are listed in Table 6.3. Therefore, if we had followed the

prevalent approach, we would always select the composition that contains services

DR2, TR1, HO3, WE2, and CR1 as the optimum composition regardless of the

context it is being used. Whereas, if we used the proposed approach, we would

use DR2, TR1, HO3, WE2, and CR1 services for compositions that deal with high

distance travellings, and DR1, TR1, HO3, WE2, and CR1 services for compositions

that deal with low distance travellings. Furthermore, the relative absolute errors of the

prevalent approach and the proposed approach in predicting ‘Rst’ for the optimum

compositions is compared in Table 6.4. As the ’Rst’ strongly depends on all the

context parameters, it is clear the consideration of such dependencies significantly

improve the prediction error.

Table 6.3.: QoS predictions of optimum compositions without considering the context

Candidate Composition Predictions of ‘Rst’
without considering the
context

DR1, TR1, HO3, WE2, CR1 4133.3ms
DR2, TR1, HO3, WE2, CR1 4036.8ms

6.2 QoS and Trust Based Adaptation Model – AdaptTrust

The ContextTrust model proposed in Chapter 4 helps the developers to evaluate

QoS and Trust values of composed systems during the early phases of the system

development life-cycle. However, in IoT and CPS domains, the context changes

frequently and hence, it is a more difficult challenge to develop self-adaptive sys-
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Table 6.4.: QoS predictions of the optimum service composition

Approach Relative absolute error
of predictions of ’Rst’

Bayesian network based ap-
proach (Considering the con-
text)

0.204

Prevalent approach (With-
out considering the context)

0.949

tems to continuously operate while satisfying user QoS and Trust requirements. In

this section, we address these issues by proposing an adaptation model (named as

AdaptTrust) that developers can rely on to develop self-adaptive, trustworthy, and

distributed systems found in the IoT and CPS domains. The AdaptTrust model

extends the ContextTrust model to operate at runtime with heuristic-based fast in-

ferences techniques.

The AdaptTrust model is capable of feeding data to adaptation services about

changes on QoS, Trust, and Context. Additionally, the model notifies adaptation

services with the necessary information about when the adaptation has to trigger to

keep the QoS and Trust values of the system within a user satisfactory level.

In the AdaptTrust model, we expect the developers to complete the four stages

of the ContextTrust model at the design time of the system. The reason is that the

structure of the context-QoS dependencies of services are expected to be fixed over

time, therefore, the Bayesian networks corresponding to the participating services do

not drastically change. After the Bayesian networks are ready at the design time,

inferences are made at runtime with the changing contexts.

The following subsections discuss the components of the AdaptTrust model and

the improvements done to the ContextTrust model to make it adaptation ready at

runtime. We use the indoor tracking system (introduced in Section 5.1) with adap-

tation capabilities as the case study to validate the proposed model.
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6.2.1 Application of the ContextTrust Model at Runtime

We use the ContextTrust model at runtime to capture the changes in QoS and

trust values starting from individual services to composed systems. Furthermore, we

discuss the types of causes for such changes, which we refer as ‘triggers’.

Context Triggers: Triggers that cause the changes in the context properties

of the Context-QoS dependency Bayesian networks are referred as the ‘Context Trig-

gers’. When Context Triggers occur, the Context-QoS dependency Bayesian networks

of corresponding individual services and composed systems can be used to evaluate

the corresponding change in QoS and Trust values. For example, in the Camera

Tracking Service (Figure 4.3), the changes in the position of either the tracking ob-

ject or the camera will change the distance and angle, which are context properties.

The AdaptTrust model can capture such changes and calculate the corresponding

tracking error and response time.

Replacement Triggers: Triggers that replace the components (correspond-

ing to individual services) of the composed Context-QoS dependency Bayesian net-

works are referred as the ‘Replacement Triggers’. When such triggers occur, the QoS

and Trust values are re-evaluated for the newly composed Context-QoS dependency

Bayesian network. Replacement Triggers can happen due to the availability of new

services, malfunctioning of existing services, or as a result of ‘Context Triggers’. An

example of a Replacement Trigger caused by a Context Trigger is, in the Camera

Tracking Service (Figure 4.3), when the objects move out of the sight of a camera

(due to movements of either the object or camera, which is a change in its Context),

the camera may be replaced with another camera that has the object in its sight

causing a Replacement Trigger.

Interaction Triggers: Triggers that replace the interaction patterns between

the components (corresponding to individual services) of the composed Context-QoS

dependency Bayesian networks are referred as the ‘Interaction Triggers’. Such changes

are due to the changes in branching, aggregating, and looping conditions of the com-

position. These conditions may also depend upon changes in the system context
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(‘Context Triggers’). For example, an elastic load balancer service will increase or

decrease the number of active servers according to the increase or decrease of the

request load. As only the context triggers and the replacement triggers are applicable

in our case study, we do not discuss further the adaptation process for interaction

triggers.

6.2.2 Detection and Adaptation Services

Our AdaptTrust model keeps track of such triggers and reacts when QoS and

Trust values are dropped below the user requirements. The high level architecture of

the proposed AdaptTrust model (when applied to a composed system) is illustrated

in Figure 6.7.

Figure 6.7.: The high level architecture of the AdaptTrust model

The model requires two types of services (listed below) to help its adaptation

operations on the composed system.

1. Detection Services: These services detect the triggers and feed the data about

the triggers to the model. An example of such a detection service is the Camera



133

Tracking Service (Figure 4.3) that can detect the position of the tracked object,

which can be used to assess the changes in its own context (distance and angles).

2. Adaptation Services: These services trigger reactions (which we refer as

‘adaptation triggers’) and attempt to neutralize the effects of the triggers. An

example of such a adaptation service is the camera Adaptation Service (which

triggers pan and tilt operations on the camera to recover its context to obtain

a high tracking accuracy). It is represented in the Bayesian network shown in

Figure 6.8.

Figure 6.8.: Bayesian network of the camera adaptation service.

The operations of the Detection and Adaptation Services depend on the type of

triggers incident on the system. The model uses these services to invoke the QoS

and Trust Adaptation algorithms and maintain the QoS and Trust values of the

system in the required range. These algorithms include the Context Adaptation

Algorithm, which adapts the system due to Context Triggers, and the Replacement

Adaptation Algorithm, which adapts the system due to Replacement Triggers. The

Replacement Adaptation Algorithm listens for the Replacement Triggers, and when

needed, invokes the appropriate Replacement Adaptation Services. For example,

Replacement Adaptation service could implement OptimumTrust model discussed in

Sub-section 6.1 to re-evaluate the optimum subset of services for a composed system at
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runtime. In contrast, the Context Adaptation Algorithm has several steps discussed

in detail below.

6.2.3 Context Adaptation Algorithm

The Context Adaptation Algorithm recovers the QoS and Trust values of a service

caused by the context triggers. The context adaptation is done with the help of

the Context Detection Services, Context, and Replacement Adaptation Services. In

AdaptTrust, we follow the following steps:

1. Achieve a continuous evaluation of the context by:

(a) Measuring the context triggers that cause the context change.

(b) Measuring the context directly using Detection Services.

2. Evaluate the deviation of QoS and Trust values from the required values by

forward inferencing the Bayesian networks [96].

3. Evaluate the adjustments to the context that needs to achieve the required QoS

and Trust values of the service by backward referencing [96].

4. Recover the desired context using the Adaptation Services.

6.2.3.1 Continuous evaluation of the context

For the context adaptation process, it is important to continuously monitor the

context and detect its changes. The required frequency of the measurements will

depend on the duration of the failure to satisfy QoS and Trust values that can be

tolerated by the system users. In the case study, we have used 100ms to be the

measurement interval, as it is adequately higher than the average request processing

time (35ms).
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If there is a context change, due to a known context triggering action, we mea-

sure the triggering action and assess the context change based on that measurement.

Specially, when the AdaptTrust model generates adaptation triggers to recover the

context, it knows the amount of context change it triggered. For example, in a Cam-

era Tracking Service (Figure 4.3), an adaptation trigger can be achieved by executing

the pan and tilt operations on the camera (using the Camera Adaptation Service

in Figure 6.8). As the model executes the pan and tilt commands, it will be able to

calculate the updated context parameters (such as distance and angles) using the trig-

gered pan and tilt measurements without the need of measuring the context directly

using a Context Detection Service.

Similarly, if there are Context Detection Services that directly measure the context

changes (such as the Camera Tracking Service that track an object’s position), we

can use these services to continuously evaluate the context.

When both types of the measurements (triggering action measurement and the

context change measurement) are available for a particular system, we can use them

for a better assessment of the context using the Kalman filter [97] predictions. Here,

we make the markov assumption [98] that the state of the context depends only on

the immediate preceding context, in addition to the Gaussian assumption made about

the distribution of the context values. With these assumptions, we map the context

trigger to be the state-transition model [97] and the context detectors to be the

observation model and evaluate the posterior distribution of the context iteratively.

The noise distribution corresponding to both the state-transition model [97] and the

observation model can be evaluated using QoS of the Bayesian network. For example,

when evaluating the pan/tilt of the camera, the noise of the observation model can be

evaluated using the Bayesian network of the Camera Tracking Service (Figure 4.3) the

noise of the state-transition model using the Bayesian network of Camera Adaptation

Service (Figure 6.8). The process of evaluation of the context and its relation to

the Bayesian network that represents the context-QoS dependencies is illustrated in

Figure 6.9.
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Figure 6.9.: Evolution of the context with time with the Markov assumption.

6.2.3.2 Evaluating the deviation of QoS and trust

After we evaluate the context using the Step 1, we use the Bayesian networks to infer

the QoS and Trust values of the service. Such inferences can be done using forward

sampling [58]. We generate samples from the Gaussian distributions with the mean

and variations evaluated in Step 1 for contexts (which are independent variables), and

generate the samples for QoS features (which are dependent variables). The resultant

distribution of the samples corresponding to QoS are used to evaluate the Trust (as

Trust equals to the percentile that satisfy the user requirements). If the QoS and the

Trust values do not satisfy the user specified thresholds, we would continue to the

next step of the algorithm described below.

6.2.3.3 Evaluating the adjustment of context

When the QoS and Trust values drop below the preferred thresholds, and if there

are context Adaptation Services available, we evaluate the necessary adjustments that

can be made to the context to recover the QoS and Trust. For example, in the Camera

Tracking Service (Figure 4.3), if the response time(rt) and tracked error(e) observed

have user preferred values when tracking an object on distance (d), we can predict the
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corresponding context values for the angle(a) using backward inference techniques.

For that, we use rejection sampling [58]. However, rejection samples are very ineffi-

cient specially for large Bayesian networks with low probability of occurrences. By

using Gibbs sampling combined with rejection sampling [99], we can speed up the

inferences on high dimensional Bayesian networks by sampling one dimension at a

time. However, since these types of inferences have to be run more frequently and

are expected to provide results within real time constraints, we use two additional

heuristics to speed up the inferences. These are:

1. Cache the set of contexts: Store a set of context values that provide the

user preferred QoS and Trust values. Such context values can be found using

experimental off-line execution of the system. This will be useful in situations

where we can control all the context values using the context adaptation triggers

or when context values have limited number of discreet values. For example in

Camera Tracking Service (Figure 4.3), the resolution width and height can only

take limited number of values. Therefore, we can cache resolution width and

height values that provide the user preferred tracked errors and response time.

This heuristic saves the overhead of having to sample each time we want to infer

contexts. However, if there are some context values that we do not have the

control of or that can have many continuous values, it is not practical to cache

large amount of context values. In such cases, we are using the next heuristic

to make fast inferences.

2. Cache the samples: Store the samples of the Bayesian network in a cache

when the service operations satisfy the user QoS and Trust requirements. In

a situation where context changed in a way that the QoS and Trust values no

longer satisfy the user requirements, we can retrieve these samples from the most

recent cache entries, and use them as initializations of the Gibbs sampling. The

assumption used in this heuristic is that when the context is changed to deviate

the QoS and Trust values from the preferred thresholds, the context does not
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change drastically and only a few context parameters changes at a given time.

For example, in a Camera Tracking Service (Figure 4.3), the angle (a) to the

tracked object that provides the least tracking error, will only depend on the

distance to the object regardless of the pan and tilt of the camera. Therefore,

if we have cached the samples for different distance (d) values, we will be able

to use the same set of samples when we need to infer for closer distances.

6.2.3.4 Recovering the context

After the preferred context values are calculated, the AdaptTrust model delegates

the task of recovering the context to the Context Adaptation Service with the neces-

sary data about the required changes of the context values. If the Context Adaptation

Service cannot restore the context (as the required amount of change is out of their

capability bounds), then the model initiate a replacement trigger and delegates the

task to Replacement Adaptation Algorithm, discussed earlier.

6.2.4 Case Study – Adaptive Tracking System

We have used an indoor tracking system [100] as a case study to validate the

proposed AdaptTrust model. This is an alteration of the case study we have used to

validate the ContextTrust model in section 5.1. The altered version of the tracking

System contains adaptation services and is referred as the adaptive Tracking System.

This system is composed of four camera tracking services, two camera adaptation

services, a fusion service and a fusion adaptation service. The physical setup of the

adaptive tracking system is shown in Figure 6.10. A video of a sample experiment is

available at [101]. The interaction patterns between the services for the system are

shown in Figure 6.11.
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Figure 6.10.: Physical setup of the adaptive tracking system.

Figure 6.11.: Services and their interactions in adaptive tracking system.
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1. Camera Tracking Services track the position of marker objects based on the

camera image sensor. The QoS attributes associated with these services are

tracked error and response time. The corresponding Bayesian network for the

service is shown in the Figure 4.3. We have used four Camera Tracking Services;

two of them have pan and tilt capability (Wansview NCM625GA cameras), and

the others are stationary webcams.

2. Camera Adaptation Service would tilt and pan the corresponding camera

to get accurate tracking. The QoS attributes of the service are tilt error, pan

error, and the response time. The Bayesian network for the service is shown in

the Figure 6.8.

3. Fusion Service fuses the tracked positions from each camera using Kalman

filtering [97] and provides an average tracked position of the marker.

4. Fusion Adaptation Service is a Replacement Adaptation Service (as dis-

cussed in section 6.2.2) that selects Camera Tracking Services that have the

sight of the tracking object, and feed the output of the selected services along

with their QoS to the Fusion Service.

The Adaptive Tracking System needs to modify its behavior with the movement

of the marker, so that it can continuously deliver the required QoS and Trust values.

We apply the proposed AdaptTrust model to this system in following ways:

First, we followed the four stages of the QoS and Trust prediction model (presented

in Chapter 4) at the design time of the system. This process is equivalent to the case

study mentioned in the section 5.1. After this step, each service has a trained Bayesian

network, and the composed tracking system has a derived Bayesian network. Next,

at the runtime of the system, we run the context adaptation algorithm described in

Section 6.2.3.
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6.2.4.1 Experiment 1: Tracking single marker

We have tracked a moving object in the (x, z) plane using the Adaptive Tracking

System and recorded the actual versus average tracked positions of the object. This

motion is plotted in Figure 6.12. Here, the difference between the actual position and

the tracked position indicates the tracking error along the ‘x’ axis (for vertical lines)

or ‘z’ axis (for horizontal lines). Additionally, the figure indicates the points of the

context and replacement triggers, while the object is moving.

Figure 6.12.: Actual vs tracked positions and points of triggers.

From Figure 6.12, it can be seen that the triggers and the corresponding adapta-

tions have a positive effect of the tracked position and they keep the tracking error

around the threshold of the user requirements. Here, the points of context triggers

represent positions where the predicted error (from the QoS and Trust prediction

model) violates of the threshold and the adaptable cameras adjust its pan and tilt;
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therefore, such adaptations have mostly resulted in better QoS values. Whereas the

replacement triggers occur when the objects go out of the sight or appear back in

the sight of the cameras; therefore, replacement adaptations have resulted in either

better QoS (if the object appears in a camera) or worse QoS ( if the object goes out

of the sight of camera) values.

The average response times of the Adaptive Tracking System for different trigger

situations at the steady state is shown in the Table 6.5. Note that the context trigger

measurements exclude the time taken to physically pan and tilt the cameras, which

takes 2-4 seconds, to focus on measuring the overhead associated with the AdaptTrust

model.

Table 6.5.: Average response times of the system at triggers

No Triggers Replacement
Triggers

Context Triggers
(without heuristics)

Context Triggers
(with heuristics)

35.76ms 35.96ms 65.58ms 36.36ms

In Table 6.5, the response time of the Adaptive Tracking System with no triggers

indicates the performance of the Tracking System and the adaptation algorithm up

to step 2. Compared to that, the replacement triggers do not cause any overhead,

as the response time of the Kalman fusion does not significantly change with the

change of number of camera readings. In contrast, the context triggers cause the

need to execute the backward inferencing algorithm and if no heuristics are used, it

significantly increases the overall response time. However, with the use of sample

caching heuristics, our model was able to minimize the overhead of the adaptation.

6.2.4.2 Experiment 2: Tracking two markers

In the second experiment, we have used the Adaptive Tracking System to track two

markers moving at opposite directions. The Camera Adaptation Services are designed
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in a way that each camera follows the movement of one marker. Their movements

and the tracked positions are shown in Figure 6.13.

Figure 6.13.: Actual vs tracked positions for two markers.

Compared to the first experiment (Figure 6.12), in the second experiment (Fig-

ure 6.13), more replacement triggers occur. This is because only one adaptable cam-

era is following a marker, and the other adaptable camera can track the same marker

only when both markers are close to each other. Therefore, additional replacement

triggers occur when two markers approach each other and separate from each other.

Additionally, The figure 6.13 shows higher error values in the movements close to the

left and right ends, as the markers are tracked by a lesser number of cameras at sides

compared to the experiment 1. The response time of the Adaptive Tracking System,

while tracking two objects is only slightly higher than tracking a single object. When

there are no triggers, the response time is 35.79ms. This is because, the processing
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of the two markers take place in two parallel services, and the context, replacement

triggers happened independently with each other, therefore the overhead of having

two markers in our Adaptive Tracking System is negligible. These experiments show

that the Adaptive Tracking System is continuously able to provide the QoS and Trust

values within the user requirement thresholds using the proposed AdaptTrust model

with a less overhead.

6.3 QoS and Trust Evaluation Model for Reused Services – ReuseTrust

The ContextTrust model proposed in Chapter 4 requires the system developers

to identify the context-QoS dependencies of each participating services quantitatively

at the initial phase. For that, developers need to use trace logs of the execution of

the services. In practice, there are situations that developers do not have access to

context-QoS dependency information about all individual services. However, they

may have access to the trace logs of composed systems that use these services as part

of the composition. Since the same set of services can be reused to develop multiple

composed systems, we will be able to use the QoS and trust knowledge of these com-

posed systems to derive the QoS and trust information about the individual services.

We develop ‘ReuseTrust’ model to evaluate Bayesian networks of individual services

from the Bayesian networks of the existing composed systems. These evaluations can

also be used to identify bottleneck services that causes degradation of QoS and trust

of existing systems, and replace them with services that improve QoS and trust of

those systems. In this model, we assume that we know the Bayesian networks of some

of the participating services. As the results below show, when all the participating

services are unknown, the ReuseTrust model does not performs accurately.

6.3.1 ReuseTrust Algorithm

Let there be ‘n’ number of composed systems (C1, C2, . . . , Cn) with the known

context-QoS dependency information. These systems are composed of ‘m’ number
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of services (S0
1 , S0

2 , . . . , S0
m), which are referred as unknown services, and ‘l’ number

of services (S1
1 , S1

2 , . . . , S1
l ), which are referred as known services. We assume that

we know the structures of the Bayesian networks of all the services and composed

systems. Only the quantitative information about the dependencies is missing for the

unknown services.

We refer all the dependent vertices of the unknown services (V 0
1 , V 0

2 , . . . , V 0
p ) as

‘unknown vertices’, and all the dependent vertices of the known services as ‘known

vertices’ (V 1
1 , V 1

2 , . . . , V 1
q ). The rest of the vertices, which are all the independent

vertices of the services (U0, U1, . . . , Ur) are referred as context vertices. This set of

systems is visualized in Figure 6.14.

Figure 6.14.: An application of ‘ReuseTrust’ algorithm

We use the context values that composed systems are executed as inputs to the

algorithm. We arrange the input data as a map from the context values to the mean

and variance of QoS of each composed system. With this arrangement, an input

instance looks like the expression 6.16:
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(Ct1, Ct2, . . . , Ctr)→ (MC1 , V ARC1 ,MC2 , V ARC2 , . . . , . . . ,MCn , VCn) (6.16)

Here the left side of the arrow contains the values for ‘r’ context vertices. The

right side of the arrow contains the mean (MCi
), and variance (V ARCi

) of the QoS

for each of the n composed system. For simplicity, we assume each composed system

has one QoS property. However, the algorithm can be generalized for multiple QoS

properties by re-iterating the algorithm for each QoS attribute.

We assigned the context values of an input (i.e, Cti) to the corresponding context

vertex (Ui). The algorithm described below should be run for each input instance

iteratively.

We follow the Metropolis algorithm [58] to generate the required samples as de-

scribed in following steps to infer the quantitative information about the dependencies

of unknown vertices.

1. Initialize the mean (MVi) and variance (V ARVi) values for the proposal Gaussian

distribution of each unknown vertex (V 0
i ). Although, this can be initialized with

random values, it will make the convergence slow. Therefore, for the mean(MVi),

we assume each service contributes equally to the composed systems and divides

the mean of the QoS of the composed systems equally among the participating

services. For the variance (V ARVi), we use the variance of composed systems

as upper bounds for the variance of the services.

2. Initialize the accepted samples as an empty set.

3. For iteration n, generate a sample for each unknown vertex (V 0
i ) using the

proposal Gaussian distribution with mean MVi , and variance V ARVi .

4. Infer each known vertex (V 1
i ) from the context vertices (Ui) using the Bayesian

networks of the individual known services (S1) (i.e., forward sample within

individual Bayesian networks).
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5. Use Bayesian network of each composition (Cj), and the samples from the un-

known vertices (V 0
i ) and known vertices (V 1

i ) to derive the samples for QoS of

each composition. (i.e., forward sample in composed Bayesian network). There

will a sample value VCj
for the QoS of each composition Cj.

6. Calculate the expression En using Equation 6.17 from the QoS samples from

each composition.

En =
∑
i

lnPN(MCj
,V ARCj

)(VCj
) (6.17)

Note that we keep the probability values as logs to avoid the precision losses

with very low probability values.

7. For iteration n = 0, we accept the sample without any condition. For iterations

n > 0, we use the acceptance ratio (α) to decide whether to accept/ reject the

sample.

α = min(1, eEn−En−1) (6.18)

Note that since the variance (V ARVi) associated with an unknown vertex does

not change with iterations, the proposal distribution is a symmetric probability

distribution. Therefore, we can use the above acceptance ratio (α) to reject/ac-

cept the samples following the Metropolis algorithm.

8. Generate a random value (r) from uniform distribution U(0, 1), and if r < α,

we accept the sample. Otherwise, a duplicate of the last (r − 1) set of samples

is used as the set of samples of the current iteration (r). Then for unknown

vertices, we assign the values V 0
i to the MVi and repeat the steps 3-8 with

iteration n+ 1.
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Here, we repeat the above steps for N number of iterations to obtain an adequate

set of samples for each unknown vertices. We ignore the first M number of samples as

the first set of samples may not converge to the expected distribution. Additionally,

we skip R number of iterations to collect a valid samples to avoid some duplicate

samples. The use of these parameter values generates N−M
R

number of samples. These

parameters are tuned to get more efficient, and accurate predictions.

6.3.2 Results of the ReuseTrust Algorithm

To empirically validate the ReuseTrust algorithm, we use the Travel Planning Sys-

tem introduced in Section 5.2. The system contains 25 individual services as shown in

Table 3.6. Each service has four endpoints with different associated security policies,

similar to the case study used in Section 6.1.5. We use the tunning parameters shown

in Table 6.6 to run the following experiments. With these parameters, simulation

generates 1× 105 number of samples that we can used to infer the QoS distributions

of unknown services.

Table 6.6.: Tuning parameters of ReuseTrust algorithm

Parameters Value
N 1.1× 106

M 1× 105

R 10

In the first experiment, we vary the number of unknown services from 1 to 25 and

use 100 systems that are composed of these services. The selected set of compositions

for the training set covers all the 25 services (i.e., Each of the 25 service is included in

at least one composition of the training set). We apply the ReuseTrust algorithm to

the training sets to evaluate the distributions of response times of unknown services

under different context. Then, we calculate the mean absolute error of the means
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(µrt) using the actual and predicted distributions of the response time of unknown

services.

Figure 6.15.: The mean absolute error of the µrt with the number of unknown services

The Figure 6.15 shows that even up to 11 unknown services, the mean absolute

error of the µrt stays less than 100. The error seems largely increase when the number

of unknown services go up from 12 to 25. This shows that the algorithm is capable

of predicting QoS of unknown services, in compositions, when around nearly half of

the participating services have unknown QoS. The algorithm provides less accurate

predictions when more unknown services are available. The reason for that is the

algorithm can have multiple convergence values. Therefore, when performing random

sampling the convergence can result in a different value than the actual value. As the

number of known services increase, possible convergence values become close to the

expected value as shown by the above experimental results.



150

Figure 6.16.: The mean absolute error of the µrt with varying number of compositions

In the second experiment, we focus on the impact of the number of training sets

to the accuracy of the predictions. There, we vary the training sets from 5 to 100,

and mark different percentages (from 20% to 100%) of the participating services

are unknowns. Then, we evaluate the mean absolute error of the µrt similar to the

experiment 1. The results of the experiment are shown in Figure 6.16. It is clear that

when the number of unknown services are at most 40% of total participating services,

the proposed algorithm have given consistently good results. When the number of

unknown services are more than half of the total participating services, there is more

possibility the algorithm converges to a local optimum point, providing higher error

values.

In this chapter, we have discussed another three applications of the ContexTrust

model in addition to the predictions of QoS and trust that are discussed in earlier

chapters. We have developed an extension to the ContexTrust model to select the
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optimum subset of services for a composed system using OptimumTrust model, build

self-adaptive trustworthy system using AdaptTrust model, and evaluate the context-

QoS dependencies of individual services that has been reused in existing composed

systems using ReuseTrust model. We have also validated each of these models using

case studies and demonstrated their effectiveness in real-life applications.



152

7 CONCLUSION

In this dissertation, we have developed basic models to predict QoS and trust of com-

posed systems at the early phases of the system development lifecycle, and extended

these basic models that suit requirements of different practical applications with QoS

and trust concerns. Additionally, we have empirically validated the effectiveness of

these models compared to prevalent models using real life case studies. The proposed

models are developed under two frameworks: 1. Context independent QoS and trust

prediction framework, 2. Context dependent QoS and trust prediction framework.

The later framework is being developed from bottom up to address the drawbacks

of the former framework as discussed in Section 3.3. The summary of the proposed

models under each framework is listed below.

1. Context independent QoS and trust framework

(a) BDUTrust model – To predict trust (as (B,D,U) measurements) of com-

posed systems at the design phase of the system without considering the

context.

(b) RegressionTrust model – To predict QoS and Trust (B, D, U) values of

future composed systems using existing composed systems that reuse the

same set of participating services.

2. Context dependent QoS and trust framework

(a) ContextTrust model – To predict QoS and trust values of composed system

associated with certain context at the design phase of the system.

(b) OptimumTrust model – To infer the subset of services that provide the

optimum QoS and trust values of a composed system.
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(c) AdaptTrust model – To adapt composed systems with the changes in con-

text to maintain the required QoS and trust of the system.

(d) ReuseTrust model – To infer context to QoS and trust dependencies of

individual services using existing systems that reuse the services.

We discuss the conclusions of each of the models in following sections.

7.1 BDUTrust Model

The BDUTrust model uses arithmetic and subjective logic operators chosen by

domain experts to predict QoS and trust of composed systems at the design phase of

the system development life-cycle. The main advantage of the model is that it does

not require any training data to perform predictions. We use indoor tracking system

case study to empirically validate the model. The results show that the predictions

performed by the model have high uncertainty for individual services and composed

systems, and as the complexity (number of services and interactions) of the composed

systems grows, the uncertainty grows significantly. The main reasons for this issue

are: no consideration of the context in the trust predictions, and use of subjective

logic based trust representation, which does not provide a good representation of trust

related to non-binary QoS properties (such as response time, and tracking error). We

have discussed the lessons learned from the BDUTrust model in Section 3.3. Our

solution is to build a new model named ContextTrust that considers the context

in trust evaluations, and uses probability distributions to represent QoS and trust of

non-binary QoS properties. We published our work on BDUTrust model at IEEE 15th

International Conference on Computational Science and Engineering (CSE 2012) [17].

7.2 RegressionTrust Model

The RegressionTrust model uses linear regression techniques to predict the QoS

and trust of composed systems. The model is trained using existing systems that reuse
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the same set of individual services as the future systems. The model is empirically

validated using the travel planning system case study. The main assumptions of the

model are: 1. The feature matrix of the model is left-invertible, which requires train-

ing data from many existing systems with different number of participating services.

2. The composition operator of the QoS properties is limited addition. The advan-

tages of the model are: 1. The QoS properties and the associated trust values (B, D,

U) of composition systems can be predicted with a high degree of accuracy using the

evidences from other related compositions. 2. The model also provides information

about how the association between two services impact on the system properties and

the corresponding trust values. The model uses the knowledge of the association

context to improve the performance of the predictions. However, it has the same

drawbacks as BDUTrust model as it does not consider the other forms of context in-

formation, and uses the subjective logic based trust representation over probabilistic

trust representation. We propose an improved model (named ReuseTrust) for similar

applications with limited assumptions and addressing the drawbacks of the Regres-

sionTrust model. We published our work on RegressionTrust model at International

Conference on Network Infrastructure Management Systems (Interface 2013) [18].

7.3 ContexTrust Model

The ContexTrust model predicts the QoS and the trust values of a composed sys-

tem using the information available (such as context-QoS and context-context depen-

dencies) at the design phase of the development lifecycle. We divide the evaluation

process into four main phases: first building the Bayesian network of context-QoS

dependencies for a single service; second, identifying composition operators for inter-

action patterns for each QoS; third, deriving the Bayesian network (of context-QoS

dependencies) for the composed system, and the final phase, perform inferencing

about the trust and the QoS of the composed system using the Bayesian network.

The main advantage of the model is that we do not need training data from the com-
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posed system to obtain the corresponding composed Bayesian network. Therefore,

we can simulate the QoS and trust behavior of the composed system before it is being

built and make design decision in early phases of the system development life-cycle.

We have presented the effectiveness of the proposed framework by model validations

using three case studies: 1. indoor tracking system, 2. travel planning system, and

3. Collaborative bullying classification system. We were able to predict the QoS and

trust values of the systems in case studies more accurately than the prevalent meth-

ods using the information available at the design time of the system. We published

our work on ContextTrust model at IEEE International Conference on Web Services

(ICWS 2015) [19].

7.4 OptimumTrust Model

The OptimumTrust model tackles the optimum service selection problem based

on optimization algorithms and the ContextTrust model. The model selects the set

of services to compose a system while optimizing the composed QoS and Trust of the

system for an intended context. We propose heuristics to improve two prevalent op-

timization algorithms (Cross Entropy and Ant Colony Optimization) to consider the

associations between services when solving the optimum service selection problem.

We have validated the performance and the scalability of the proposed heuristics in

solving the optimum service selection problem using simulation studies. Additionally,

we use a case study, a travel planning system, to show the importance of considera-

tion of context in solving the optimum service selection problem. We published our

work on OptimumTrust model at International Journal of Services Computing (IJSC

2016) [20].

7.5 AdaptTrust Model

AdaptTrust model enhances the capabilities of the ContexTrust model to carry

out inferences in real-time that will help the developers to make distributed systems
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trustworthy and self-adaptive. The model uses sensor services to detect the context

changes, monitors whether the QoS and trust values deviate from the user specified

levels, evaluates the necessary reactions using the context adaptation algorithm, and

triggers adaptation services with necessary parameters to recover the system to satisfy

the user QoS and trust requirements. The context adaptation algorithm uses heuristic

methods to perform fast inferencing about adaptations triggers to be effective in

situations where real-time adaptation is required. The process that continuously

monitors the context uses the Kalman filter-based techniques to estimate the changing

context with a higher accuracy over time. We have used an indoor tracking system

as a case study to show the effectiveness of the model. We published our work on

AdaptTrust model at IEEE International Conference on Service Computing (SCC

2016) [21].

7.6 ReuseTrust Model

The ReuseTrust model uses data from existing systems to infer QoS and trust

properties of participating services. This model help identifying the context-QoS re-

lationships of individual services, when the execution traces of the individual services

are not available. We propose a sampling based algorithm that uses existing com-

positions as training set to derive the QoS distributions of unknown services under

different contexts. The proposed model can also be used to automate the develop-

ment of Bayesian networks corresponding to individual services that has been reused

widely in existing systems. We use case studies to validate the algorithm empirically,

and show that it provides accurate predictions of QoS of services, even when there

are around 60% of the services used in the composed systems are unknown.

7.7 Lessons Learned

Prevalent approaches have proposed models that predict QoS of composed sys-

tems based on QoS of participating services and their interaction patterns. We have
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learned from our work, that it is also important to consider context information (along

with the information used in prevalent approaches) to build more accurate prediction

models for QoS and trust of composed systems. The proposed models require us to

identify the context-QoS dependencies of participating services that make the com-

posed system. This requires additional cost, time and effort up-front at the design

phase of the system life-cycle. However, the model provides more accurate predic-

tions about the QoS and trust behavior of the future systems than the prevalent

alternatives. Such accurate predictions help the developers to make important design

decisions at the early phase of the system life-cycle. As fixing issues at later phases,

requires higher cost, time and effort that grows exponentially with time. We also

learned that the context-QoS dependency information can be used to track the QoS

and trust changes at the runtime and trigger reactions to keep the QoS and trust

values at satisfactory levels.

7.8 Future Work

• Validate the models with more case studies: We have empirically vali-

dated the proposed models using three different application domains (i.e, indoor

tracking, travel planning, and cyber-bullying detection). However, it is impor-

tant to validate the models with other case studies from more domains in the

future. Some example domains that can be used to validate the models are: the

V2V communication domain, and the high performance computing domain.

• Build models to work with partial knowledge of the context-QoS de-

pendency information: We have, in this dissertation, assumed that we have

complete details about the context-QoS dependency information of the partici-

pating services and their interaction patterns up-front. It is important to study,

in future, how well our models perform when no such information is available,

or only partial information is available. Some of the information that we can

use are subjective evidences such as user ratings and comments. Additionally,
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we can improve the accuracy of the predictions in real-time as new information

is available using online machine learning techniques [102].

• Study the dependencies from the context to the functional and syn-

chronization behavior: In this work, we have studied only the QoS behavior

and trust associated with QoS values of the services and systems. In the fu-

ture, the proposed models can be extended to study more aspects such as the

functional and synchronization behaviors of the services and systems.

• Improve the convenience of operating the models: A drawback of the

proposed models is that system developer requires more time at the design phase

to collect evidences and capture the domain knowledge to perform necessary

inferences. Therefore, there is a need to create collaborative and interactive

tools to capture the domain knowledge of experts and developers. Additionally,

such tools will be helpful for developers to generate code templates with the

necessary QoS and trust-aware assertions that they can use as the basis for the

composed system.
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