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ABSTRACT 

Traverso, Luis M. Ph.D., Purdue University, December 2016. Optical Sub-Diffraction 
Limited Focusing for Confined Heating and Lithography. Major Professor: Xianfan Xu, 
School of Mechanical Engineering. 
 

Electronics and nanotechnology is constantly demanding a decrease in size of fabricated 

nanoscale features.  This decrease in size has become much more difficult recently due to 

the limited resolution of optical systems that are fundamental to many nanofabrication 

methods.  A lot of effort has been made to fabricate devices smaller than the diffraction 

limit of light.  Creating devices that are capable of confining fields by means of 

interference patterns of propagating wave modes and surface plasmon, has proven 

successful to confine light into smaller spot sizes.   

Zone plate diffraction lenses generate spots with dimensions very close to the diffraction 

limit.  We report the fabrication of zone plates to be used in laser direct writing of silicon 

nanowires.  We show experimentally and with numerical models that a silicon substrate 

subjected to a focused spot is capable of reaching the necessary temperature for the 

synthesis of silicon nanowires with widths of 60 nm, which is considerably smaller than 

the diffraction limit of the processing laser.   

Nanoscale ridge apertures are devices with a great potential to confine light energy.  Such 

apertures have been experimentally proven to create very small lithography features.  We 

believe that these apertures can be further modified in order to achieve a practical smaller 

confinement in the near field region.  In this thesis we discuss several attempts to design 

and fabricate apertures with sharp edges and implement them in a previously reported 

parallel lithography setup.  In an attempt to use apertures for parallel fabrication of 

patterns, we developed a system to control the position of the near-field region with 



 

 

x 

respect to a lithography substrate.  To do this we use a method of interferometric-spatial-

phase-imaging (ISPI).  With the implementation of this method we were able to produce 

an array of 32X32 lines with confined widths as small as 22 nm.  Nanoscale ridge 

apertures were also studied to be used as near field transducers for heat-assisted magnetic 

recording.  They have the capability of transmitting and confining enough energy to 

increase the temperature of a recording medium without reaching detrimental 

temperatures themselves.  Numerical methods are presented to prove theoretically that a 

well-designed aperture performs well as a near field transducer.  The size of the spot 

region focused by the aperture could allow us to record data with higher area density than 

current conventional methods.    
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CHAPTER 1. INTRODUCTION

 Pattern generation and transfer lie at the core of nanotechnology fabrication and 

data recording.  Numerous fabrication methods have been designed in nanotechnology in 

order to keep decreasing the size of the patterns to be generated and transferred.  

Decreasing the size is very important because it allows creating more compact 

technology, faster and more powerful integrated circuits, and denser memory devices.  

Decreasing pattern size is relevant not only when fabricating new devices but also when 

recording data into a medium.  Optical energy has been one of the most widely used tools 

to generate patterns because of its ability to change material properties in relatively small 

volumes.  For this reason it has always been of interest to focus light into smaller spots.  

This thesis is mainly about finding methods for fabricating devices that can efficiently 

achieve light confinement and thus can be used in further pattern generation processes 

involving heating and lithography. 

1.1   Optical Energy for Pattern Generation and Transfer 

 Pattern generation or transfer can be seen as the writing of geometrical patterns 

into a layer.  Light can be use in different ways such as exposing a photosensitive 

material or by heating a material that can absorb it.  Patterns can be generated or 

transferred by selectively exposing parts of a material to a light source.  Their generation 

can be achieved by scanning a focused beam or selectively flashing light regions over a 

material using a computer aided design or a mathematical transformation of it as a guide.  

Alternatively, an already generated pattern can be transferred by using it as a mask 

positioned between a light source and a photosensitive material.  The main drawback for 

optically based pattern generation and transfer is that it is diffraction limited and hence is 

impossible to propagate spot sizes smaller than a fraction of the wavelength. 
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1.2   The Diffraction Limit of Light 

 It is very well known that due to its wave behavior, light is subjected to the 

diffraction limit.  When considering a small propagating field we have to take into 

consideration that there are constructive and destructive interference that do not allow for 

the spot to be resolved in the far field.  The diffraction limit of light can be 

mathematically described as: 

 (1.1)

Where Δx is the smallest spot size that can propagate into the far field, κ describes the 

optical system, λ is the wavelength of the incident light and NA is the numerical aperture 

of the lens and optical system.   

 This does not mean that electromagnetic fields or their effect on matter can’t be 

confined in smaller distances than Δx.  Even when light cannot propagate in such small 

spots, it can still interact with features that are smaller than the diffraction limit.  When 

light interacts with these features, they respond by creating “near field” variations around 

them that have similar dimensions.  An enhancement or a suppression of the incident 

field can occur in the near field by means of interference of evanescent waves or 

resonance of plasmon polaritons.  We can consider an enhanced near field around a 

nanoscale feature to be a confinement of a field, which under the right circumstances can 

easily be smaller than the diffraction limit.   

 Since light can be manipulated to chemically modify matter in specific patterns, 

another way of confinement can be mentioned when considering the volume of a 

chemical altering interaction with the material.  We shouldn’t only think how small an 

electromagnetic field volume could be but also how small is the volume of the material 

that we intend to alter.  For several processes involving light material interaction there 

might be a certain parameter threshold for which there is not a permanent alteration of the 

material.  We can say that the confinement for a certain process lies within the volume in 

which the field surpasses such threshold.  Several thresholds can be mentioned.  The 

solubility of a given photoresist zone submerged in a certain developer depends on an 
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energy threshold. The delivered energy depends on the intensity of an incident electric 

field and the time of the field exposure upon the material.  By controlling both the 

intensity and time of exposure we can control the volume that will be developed.  For a 

nonlinear process like two photon absorption lithography, the intensity threshold is very 

significant.  If the intensity is not high enough there won’t be two-photon absorption, 

even when you allow enough time to deliver as much energy as possible.  A process like 

the silicon nanowire growth using zone plates (described in more detailed in chapter 3), 

has a threshold of temperature necessary for silane decomposition to happen.  By 

controlling the intensity and other parameters that influence the temperature rise of a gas, 

we can control the volume of the created nanowire.  Related to all of these mentioned 

thresholds there is a volume of material interaction that can be further confined by 

changing certain parameters related to the delivered power, the time of energy delivery 

and the capability of the material to absorb this energy for a given process.  This is 

important because the diffraction limit is not a limit anymore. Even for propagating small 

spots that are very close to the diffraction limit, we can create certain effects within 

smaller dimensions.  Further in this thesis we will discuss the previously mentioned use 

of zone plates with which we can create far field propagation of spots with sizes close to 

the diffraction limit and then be used to fabricate sub-diffraction features due to a 

confined material interaction.    

1.3   Plasmonic Devices for Confinement of Light 

 Recently, the use of the surface plasmon polaritons (SPPs) is one of the most 

studied ways of overcoming the diffraction limit (Maier, 2007, Hayasi and Okamoto, 

2012). The collective oscillations of electrons at the boundary of a metal and a dielectric 

called surface plasmons can be generated with an incident wave on such a boundary.  

While oscillating at the same frequencies as the incident wave, plasmonic waves can have 

much shorter wavelengths.  This provides a great means to concentrate electromagnetic 

energy to dimensions that are much smaller than the diffraction limit of light.  Plasmonic 

devices are nanoscale structures with dimension comparable to the wavelength of the 

plasmonic oscillations.  There have been studies on plasmonic devices for light focusing 
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with different types of geometries including 1 -dimensional boundaries between 2 

dimensional metal-dielectric crystals (Mason et al., 2014), nanoparticles, slits, rods, 

wedges, rings, V-shaped grooves (Zhang and Zhang, 2012), and nano-diabolo (Kim et al., 

2015), among others.  Light focusing plamonic devices have been widely used for many 

different applications including near-field scanning optical microscopy NSOM (Wang et 

al., 2015, Bharadwaj et al., 2009), photovoltaics, light emission (Bharadwaj et al., 2009), 

and nano-lithography (Xie et al., 2011).   

 One of the most promising applications for plasmonic devices that has been 

investigated recently is the development of plasmonic near field transducers (NFT) (Zhou 

et al., 2014) for Heat Assisted Magnetic Recording (HAMR)(Kryder et al., 2008).  

Because of the inherent magnetic instability of small volumes when the bit size of a 

recording media reduces (Sharrock, 1990), conventional magnetic recording has reached 

the limit of miniaturization of about 1TB/in2.  For HAMR, media with higher stability is 

used, and an NFT creates a very localized intense electromagnetic field that heats up the 

medium and thus decreases its coercivity.  Among previously reported NFTs, there were 

structures with different shapes including lollipops (Challener et al., 2009), E-shape 

structures (Stipe et al., 2010), bowtie apertures (Zhou et al., 2016), and nano beaks 

(Matsumoto et al., 2008). A special family of nanoscale confinement devices is the 

antennas and apertures, which we review in the next section. 

1.4   Nanoscale Apertures 

 Nanoscale apertures can be considered as antennas that can couple energy 

between an incident far field into a localized near field and vice versa.  Apertures usually 

are placed in thin films that without their presence would be optically opaque.  It is very 

interesting to observe that even when these apertures are smaller than the diffraction 

limit, there are certain designs in which they can achieve outstanding transmission.  

Using a classical electromagnetic framework by means of the Maxwell equations, it has 

been calculated that the power transmission for a single circular aperture decays as the 4th 

power of its diameter decreases (Bethe, 1944, Leviatan, 1986).  Because of this effect of 
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the diffraction limit, the problem of field confinement for a single aperture goes hand in 

hand with the problem of maximizing transmitted power through an aperture.   

 There are several different explanations for the mechanism of transmission.  An 

array of holes shown in Figure 1.1 can show an exceptional transmission, which is 

claimed to happen due to the resonant excitation of surface plasmons (Ghaemi et al., 

1998).  Later it was observed experimentally that similar behavior could happen in films 

that do not support plasmon propagation (Lezec and Thio, 2004).  In their paper they 

proposed that the enhanced transmission is due to a composite diffracted evanescent 

wave.  Even when these experiments give us an insight of the enhancement and 

transmission of the field, there is no measurement of the near field of the apertures so 

their confinement properties are not very clear.  In order to discuss their potential 

focusing capability, is better to look at studies of single apertures.   

Triple tapered apertures like the one shown in Figure 1.1(b) have shown to 

increase throughput over 103 times (Yatsui et al., 1998).  This enhancement is attributed 

to a reduction of a propagation loss and an effective excitation of an HE11 mode.   
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Figure 1.1: Examples of nano-scale apertures in the literature.  a) Array of holes that 
showed resonant excitation (Reprinted with permission from [Ghaemi et al., 1998] © 

(1998) APS). b) Tripled tapered aperture (Reprinted from [Yatsui et al., 1998] with the 
permission of AIP publishing).  c) Model for the perfect conductor C aperture studied by 

Seagate Technology (Reprinted from [Sendur et al., 2004] with the permission of AIP 
publishing).  d) Square aperture with the minute scatterer presented by Tanaka et al., 

(2001). 

 It has been shown by using numerical Finite Difference Time Domain (FDTD) 

simulation, that a C aperture has a power throughput 1000 times more than a square 

aperture with 100 nm side that would produce the same spot size (Shi & Hesselink, 

2002).  Finding this throughput requires identifying the best propagation mode, which is 

TE10 mode and optimizing to find a resonant thickness.  This study is made under the 

assumption that the aperture metal is a perfect conductor, which does not allow for 

surface plasma resonance behavior.  Another C aperture shown in Figure 1.1(c) has been 

studied at Seagate Technology (Şendur et al., 2004).  Şendur et al. calculated that the 

power dissipation in the recording medium is greatly enhanced when choosing 

waveguide dimensions, materials, and incident wavelength that will allow a certain 

excitation of surface plasmon resonance.  A scatterer element like the one shown in 
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Figure 1.1(d) has been calculated (Tanaka et al., 2001) to increase the surface plasmon 

excitation.  This scatterer element is a volume of 80 nm X 80 nm with a thickness of 30 

nm, which lies inside of a 200 nm X 200 nm aperture of 100 nm thickness.  The 

calculations were made with the aperture positioned in top of a recorded medium and 

without the recorded medium.  The presence of a recorded medium allowed (for a certain 

polarization) a coupling that would increase the transmitted energy and would decrease 

the size of the spot.  It was also presented in this study that there was more transmitted 

energy for silver scatterer, which had the highest relationship of |ε’|/ε” where ε’ and ε” 

are the real and complex coefficients of the complex dielectric constant ε = ε’ + iε”.  An 

aperture with an I shape was modeled by solving the volume integral equation using 

Lippman-Shwinger equation of quantum physics (Tanaka & Tanaka, 2003).  They also 

use a complex permittivity and establish that surface plasmon polaritons propagate 

through the sidewalls of the aperture creating a maximum intensity that is 4 times the 

intensity of the incident field.  A thorough study on H ridge aperture and a comparison 

study of H, C, and bowtie aperture was made by Jin & Xu (2004).  For the H aperture it is 

discussed that even for a perfect conductor the transmission efficiency of the case in 

which the incident light is polarized across the ridge is 2,800 times the efficiency when 

the light is polarized parallel to the walls that confine the gap.  For all of these perfect 

conductor models a waveguide behavior reveals that there is a cutoff frequency for 

which, when the wavelength of the incident light is longer than the cutoff it will only 

propagate a faint evanescent wave but when is slightly shorter than the cutoff there will 

be a TE10 mode that concentrates light inside the gap.  When the incident wavelength of 

the light is much shorter than the cut-off, there might be a 2nd propagating mode TE20 that 

will generate 2 spots on the open areas of the H aperture.  This is unwanted because these 

two spots will decrease the resolution of the aperture focusing.  Propagation modes and 

maximum intensities for these cases are shown in Figure 1.2.  Polarization of all shown 

models is constant across the ridge.  It is established in this paper that when using a real 

metal with complex permittivity there is an excitation around edges of the metal that 

decreases the localization of the spot, which is unwanted.   
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Figure 1.2: Electric intensity fields for perfect conductor ridge aperture models.  The 1st 
row shows the field at the middle of a film and 2nd shows it at 50 nm behind the aperture.  

Each column represents a different wavelength.  Each maximum field number is 
normalized to an incident field of 1 (Jin and Xu, 2004). 

1.5   Study of Nanoscale Apertures for Practical Purposes 

 Confinement of optical energy has already been demonstrated to be useful for 

practical purposes.  The fabrication of an efficient ridge aperture suited for these purposes 

has posed a set of problems common to all of the previous researchers that have taken 

upon this task.  Control of the aperture geometry defines a control of the dimensions of 

the confined spot.  Sharpness of the structure could define confinement together with 

enhancement.  Control of the gap between the aperture and the substrate is important 

because most of the useful confined energy is within the near field.  Here we review past 

attempts of fabricating aperture devices useful for different applications.   

Plasmonic devices have been proven experimentally to have a lot of potentials for 

nanolithography (Xie et al., 2011).  A bowtie aperture array was milled using Focused 

Ion Beam (FIB) on top of a set of islands that would be approached to a substrate coated 

with photo resist (Uppuluri et al., 2010). To obtain a consistent gap through out the array 

of apertures, Uppuluri designed an interferometer device that would control the 

parallelism between two surfaces.  Even though good parallelism could be obtained, there 
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was not a direct measurement of the gap between the island surface and the photo resist. 

The approach between the two surfaces would be made in a “blind” manner until an 

image showing interference fringes would indicate that there was indeed contact.  Bowtie 

apertures using FIB have been fabricated on top of flexible holders (Kim et al., 2009).  

These holders (Figure 1.3(a)) are meant to mechanically press an aperture against a 

coated substrate and create a uniform and constant gap during a scanning process.  They 

cut a half ball lens into a conical shape in order to create a Solid Immersion Lens (SIL) 

with a 3µm diameter contact area region and then they polished it using low energy FIB 

to have a root-mean-square roughness of approximately 1 nm.  At the tip of the cone they 

coated a layer of 120 nm of Al on top of which they milled bowtie apertures with FIB.  

They coated a good quality PECVD oxide layer of 300 nm that was milled down to 10 

nm using FIB.  In order to reduce friction they coated a Self Assembled monolayer of 1H, 

1H, 2H, 2H-perfluorooctyltrichlorosilane which makes the difference between having 10 

nm scratches or not.  The whole SIL-aperture arrangement was mounted in a sheet metal 

spring that was positioned below an objective lens.  For this experiment they focused on 

to the apertures a 405 nm wavelength laser into a spot of approximately 340 nm.  

Patterning speed was as high as 10 mm/s for which they obtained lines of 50 nm Full 

Width Half Maximum.  In order to control the gap between a plasmonic aperture and a 

coated photo resist substrate, Srituravanich et al., (2008) designed an aerodynamic air 

bearing system for a flying head above a rotating substrate.   
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Figure 1.3: Designs for gap control of apertures.  a) Device with flexible mount (Kim et 
al., 2009) and b) flying plasmonic head in with plasmonic apertures. Reprinted by 

permission from Macmillan Publishers Ltd: [Letters] (Srituravanich et al., 2008) © 2008. 

 The rotating substrate like the one shown on Figure 1.3(b) would create an airflow 

which would generate a lift force on the head that according to simulations would 

maintain a height of ~20 nm for a range of speeds of 4 to 12 m/s. There would be an 

array of 4X4 plasmonic lenses consisting each of an aperture surrounded by rings.  At a 

linear speed of 10 m/s they were able to obtain an 80 nm line width.  Later a different 

plasmonic lens in the flying head (Pan et al., 2010) was designed for the same system for 

which they were able to obtain lines of 50 nm at the same speed.   
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Figure 1.4: a) Direct Metal Milling (DMM) vs b) Through-the-Membrane Milling 
(TMM) fabrication (Leen et al., 2008).  c) Fabrication procedure for the aperture island 
for the d) optical data C aperture NSOM; Reprinted from [Leen et al., 2010] with the 

permission of AIP Publishing. 

 All the previously mentioned apertures have been made with FIB milling.  This 

method so far has provided the most flexible way of fabricating apertures with relatively 

well control gaps of the ridges.  A problem with this method is that when we try to 

increase the resolution of the milling, there is an inherent round in edges of the aperture.  

This can lead to an effective ridge gap that is larger than the one intended.  Sharper edges 

could provide better control of the gap and thus the confinement and enhancement of the 

output near field.  

 Reversing the milling direction through a membrane can result in a sharper edge 

as demonstrated by (Leen et al., 2008) and shown on Figure 1.4 (a) and (b).  They mill a 

C type aperture through a 75 nm LPCVD silicon nitride membrane masking a 100 nm 
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gold layer.  They call this kind of milling through-the-membrane milling (TMM) as 

opposed to direct metal milling (DMM).  They reported that the spot size is 2.2 times 

smaller for the TMM than for the DMM and also 63 times more intense.  The same group 

later reported the use of this idea for a setup shown in Figure 1.4 (d) for optical data 

heating storage with bits of λ/20 which could yield a density of 223 Gbit/in2 (Leen et al., 

2010).    

 All of these nanoscale apertures presented are capable of sub-diffraction limit 

focusing and thus field confinement.  In this thesis we consider also the confinement of 

the material interaction volume for devices like zone plates that propagate field spots 

close to the limit but are not capable of sub-diffraction limit focusing.  Next section we 

review the technology of zone plates and consider them for sub-diffraction confinement 

of the material interaction volume.  

1.6   Fabrication of Fresnel Zone Plates for Confinement of Light 

 Fresnel Zone Plates (ZPs) can be seen as lens that has an effective high numerical 

aperture.  They consist of a determined amount of diffractive focusing rings named zones 

and are capable of reducing the spot size when compared to regular lenses.  Via Fresnel 

diffraction they are able to create a very tight confinement in their focal spot. By 

changing the grating period of their rings is possible change their focal distance.  Since 

they are based on propagation optics, the dimensions of their focal spots are subjected to 

the diffraction limit. 

The fabrication of ZPs is relatively easy compared to nanoscale ridge aperture whose 

smaller dimensions can be in the order of tens of nanometers.  They have been fabricated 

in many different ways and for different reasons.  A gold ZP lens was lifted-off after e-

beam patterning and used as an optical tweezers for beads in water (Schonbrun et al., 

2008).  Figure 1.5 (a) shows a bead with diameter of 2 micron being trapped by the focal 

point of a ZP, which can also be seen in the picture.  
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Figure 1.5: a) ZP used as an optical tweezers for beads in water on the left; Reprinted 
from [Schonbrun et al., 2008] with the permission of AIP Publishing.  b) Scheme for 
using shot focal length ZP for scanning microscopy (Schonbrun et al., 2009). 

 A lens was etched (later by the same group) in silicon after an e-beam lithography 

patterning, immersed in a coating of SU8 medium (as shown in Figure 1.5(b)) and then 

used as short length lens that was capable of scanning fluorescent particles of 500 

nanometers with a precision of +- 38 nm (Schonbrun et al., 2009).   

 An advantage of ZPs is that they occupy a relatively small area, which makes it 

possible to place an array of them in a vicinity.  An array of zone plate was fabricated in 

order to be used for lithography (Chao et al., 2005).  As shown in Figure 1.6 on the left 

side, these ZPs were etched in silicon dioxide using nickel and silicon nitride as an etch 

mask.  The nickel mask was patterned using a lifted off PMMA patterned with e-beam 

lithography.  In order to use them for array lithography they had to be isolated by coating 

the whole surface with chrome and then performing a process named Fulton-Dolan 

process (Fulton & Dolan, 1983), in which the electrical isolation of features due to the 

zones allows them to etch selectively the chrome deposited inside the ZP.  This isolation 

is very useful also to avoid background light.  There were modulated beams incident on 

each of the ZP to aid the array lithography process.  The fabricated zone plates had a 

numerical aperture of NA = 0.85, which after immersion in water increase to NA = 1.14. 

For an incident wavelength of 400 nm they were able to obtain lines with periods of 115 

nm half period.  Later the same array was fabricated using patterning with the nano-

imprint lithography process shown in the right of Figure 1.6 (Galus et al., 2006).   
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Figure 1.6: Process flow to fabricate immersion ZP for array lithography on the left; 
Reprinted with permission from [Chao et al., 2005] © [2005] American Vacuum Society.  

The fabrication of a similar ZP for array made with photo curable nano-imprint 
lithography on the right; Reprinted with permission from [Galus et al., 2006] © [2006] 

American Vacuum Society. 

 The array lithography setup similar to the aperture array has a very clear 

advantage for parallel processing.  If independent beam were to be shined to each 

focusing devise, the combinations for large patterns could increase dramatically.  Figure 

1.7 (a) shows a diagram of a parallel processing lithography using ZPs presented by Chao 

(2005).  After several reports on this same system, the research group presented the ZP 

array lithography as a low cost complement or competitor for e-beam lithography (Smith 

et al., 2006).  Figure 1.7(b) shows results for lithography that have dimensions very close 

to the diffraction limit, which shows excellent confinement.  There is one additional 

advantage of having such a small spot.  A confinement that is smaller than the diffraction 

limit can be achieved.  We can use spots to create lithographic or heating effects in 

materials that are actually much smaller than the diffraction limit.  Figure 1.7 (b) shows a 
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theoretical simulation in which lithography achieves periodic structures of 20 nm lines by 

means of nonlinear recording.  By taking advantage on nonlinear effects such as 2 photon 

absorption, the size of the lithography results could decrease significantly much lower to 

the diffraction limit.  

 We discuss a similar idea in a future chapter.  In order to achieve this extra 

confinement we need to make sure that their efficiencies are high enough to create an 

intense field in the focal spot. 

 

Figure 1.7: a) Array of ZPs used for nanolithography Reprinted with permission from 
[Chao et al., 2005] © [2005] American Vacuum Society.  b) Result and simulations for 
lithography using ZP array; Reprinted from (Smith et al., 2006) with permission from 

Elsevier. 
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1.7   Thesis Outline 

 This work presents a practical experimental frame for design, fabrication, and 

testing of sub diffraction focusing devices that also includes a heat transfer analysis to 

study how doable is to use some of the discussed devices.  

 Chapter 2 presents work related to near field confinement using optical antenna.  

It presents a discussion on some applications as well as several attempts to improve the 

quality of the near field spot generated by the aperture.  It goes into more details in 

Interferometric Spatial Phase Imaging (ISPI) used to control the position of a substrate 

with respect of the near field of the aperture.  Then it discusses how this ISPI together 

with an interference alignment method has been used to obtain gap control for array 

aperture lithography.  

 Chapter 3 presents work related to the fabrication of Zone Plates using the e-beam 

resist hydrogen silsesquioxane (HSQ).  A study of the thickness control to improve 

efficiency of the lens is presented together with a study on how to improve the adhesion 

of the HSQ coated on top of a transparent conducting layer of indium tin oxide.  A 

numerical simulation for the thermal profile of a focused beam in a substrate gives us 

information of how likely these ZPs are used for silicon nanowire thermal growth.  

 Chapter 4 presents an attempt to create a relationship between electromagnetic 

fields and thermal profile for bowtie ridge aperture.  Results of numerical models for 

electromagnetic distribution are taken and converted into volumetric heat generation 

input for thermal models in Ansys.  Then the temperature rise of a heated substrate is 

compared to establish an efficiency of a near field transducer for Heated Assisted 

Magnetic Recording.   

 Chapter 5 discusses the development of a new type of ridge aperture based on a 

layer-by-layer planar lithography.  The aperture fabrication flow leading to a final 

product is presented.  A finite element method numerical model is constructed and solved 

to obtain the electric field distribution of several apertures with different dimensions. 

Results are compared with experimental measurements made with scattering near field 

optical microscope at the exit of an aperture.   
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 Chapter 6 concludes the thesis and shows recommendations for future work 

related to the projects worked on the previous chapters.  These recommendations are for 

improving the methods for thin membrane transfer and sacrificial layer aperture 

sharpening.  Also suggestions regarding the use of 2-photon absorption are presented. 
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CHAPTER 2. LIGHT CONFINEMENT USING APERTURE ANTENNA

 Optical antennas are structures with the potential to focus an incident EM field 

into spots smaller than a fraction of the wavelength of the field.  They are capable of 

confining the light and enhance the intensity of the incoming field (Jin & Xu, 2006).  The 

effect of waveguides, evanescent waves or surface plasmons permits the propagation of 

an EM field from the entrance, through the aperture, to a spot at the exit of the apertures.  

The presence of localized surface plasmons can enhance this field.  Antennas can be 

stand-alone metal features or apertures within a metal surface.  Several different shapes 

of antennas have been studied in the past.  Some of the most discussed simple shapes 

have been H shape (Jin & Xu, 2004), C shapes (Leen et al., 2008), and simple hole arrays 

(Ghaemi et al., 1998).  The work presented in this document is mainly relevant to Bowtie 

shape aperture antennas.   

2.1   Applications of Near-Field Aperture Antennas 

 The confined small spot generated by an aperture can be used for many 

applications.  This spot light can be absorbed by a material and converted into heat or 

change its chemical properties.  The use of apertures has already been considered greatly 

for applications involving recording, lithography or heating.   

 In the last few years Heat Assisted Magnetic Recording (HAMR) has been 

considered to increase the data density recording in magnetic materials (Kryder et al., 

2008).  The magnetic recorded medium is a collection of magnetically isolated grains.  

To obtain a higher recording density, these magnetic elements need to be smaller.  As 

they become smaller they become magnetically unstable.  HAMR pose a solution to this 

problem by allowing us to use a more stable media for which its coercivity can be change 

by changing its temperature.  A localized small spot heating allows us to control the 
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recording of small magnetic elements.  When the temperature of a grain is raised, it is 

easier to induce a change of its magnetization state.  The threshold at which this occurs is 

called the Curie temperature.  In HAMR a localized spot will heat the magnetic element 

above the Curie temperature and a large magnetic dipole will switch its magnetization 

state.  Using a material with high coercivity at ambient temperature would ensure that 

there is no magnetization of unintended grains.   

 Aperture optical antennas have since long been proposed to confine optical 

energy on such localized spots on lossy metallic recording medium (Challener et al., 

2006).  They have studied coupling efficiency, spot size, and spot shape.  Spot shape has 

been pointed to also be important to obtain correspondence with grain recording bits 

since they are not necessarily circular.  Near field confinement using bowtie apertures for 

HAMR application have been studied by adding the whole media stack of recording 

substrate into EM models (Zhou et al., 2016).  It was found earlier  (Zhou et al., 2011), 

that the ratio of spot size could be controlled by changing the sizes of the bow tie aperture 

gap region.  This allows us to design particular apertures for different magnetic elements.  

 A localized spot of an aperture antenna can be used for optical lithography to 

produce patterns of subwavelength size.  Different spot sizes have been compared for 

different types of aperture in the same lithography step (Wang et al., 2006).  Antennas 

have also been positioned in NSOM tips in order to create scanned lithography lines of 

60 nm using 2 photon absorption (Murphy-DuBay et al., 2008).  Parallel lithography has 

been done using an array of apertures exposed with a single laser source to create many 

patterned lines (Uppuluri et al., 2010).  

2.2   Fabrication of Bowtie Apertures 

 The fabrication of a bowtie aperture can be done using several approaches.  The 

distance of the gap and the edge radius around the exit side of the aperture are of critical 

importance to improve its performance.  It has been shown that the size of the gap is 

directly related to the size of the light spot (Murphy-DuBay et al., 2008).  Focused Ion 

Beam (FIB) milling is one of the most used tools to fabricate apertures because it does 
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not require many steps.  A problem with FIB is that it can produce apertures with corners 

that do not have straight edge due to the resolution limit of the Gaussian-profiled beam.  

Because of this, the effective gap is larger and hence the size of the focused spot.   

 

Figure 2.1: Schematic of a real bowtie showing the increase in gap distance on top 
(Kinzel, 2010).  SEM images of a real bowtie on top different rotations viewed at a stage 

tilt angle of 52˚. 

 Figure 2.1 shows schematics and SEM images of the bowtie apertures that show 

the round edges that are caused by the conventional FIB milling process.  The pattern 

used to define the bowties was called from an external file called a stream file.  More 

detail about stream files is presented in section 2.2.1.  The beam current used to mill the 

shown aperture was of 10 pA.  Similar bowties were fabricated for experiments made for 

parallel nanolithography (Uppuluri, 2010).  The schematics shown at the top of Figure 

2.1 were used for EM models of these apertures (Kinzel, 2010).  It has been proven using 

EM simulations that straight edges and sharp features can improve the near field 

enhancement of an aperture (Kinzel, 2010).  Figure 2.2 shows how the electric field for a 

real tapered aperture compares to an ideal aperture with straight edges.  For an aperture 

with straight edges, the field is more intense and localized.  Having an effective larger 
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gap can affect the resolution of a lithography pattern by widening its smallest dimension 

by almost twice and in some cases even creating two separate spots.  Strategies to 

improve the geometry of the bowtie have been tried, including using FIB and electron 

beam lithography.  In this section we discus these strategies.   

  

Figure 2.2: Ideal sharp VS real curved edge bowtie aperture (Kinzel, 2010). 

2.2.1   Focused Ion Beam Milling 

 Focus Ion beam (FIB) is a great nanofabrication tool for the creation of bowtie 

aperture.  Using FIB for ridge apertures requires only few steps like depositing a metal 

film and then milling it.  Gallium ions bombard the surface and transfer their momentum, 

which can result in an ion implantation or in the displacement of atoms to the outside of 

the substrate.   
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 A good sharp image is important to fabricate a good bowtie aperture with FIB.  A 

specific focusing area in the sample can be delimited.  A sharp image is indicative of a 

well-focused beam and will yield a sharp milling.  A large particle is a great place to 

obtain a good initial image.  Several apertures can be milled close to the focused particle.  

Both focus and stigmation should be corrected to obtain a sharp image.  Milling and 

image sharpening can be repeated until good apertures are created.  A problem that 

occurs during this iteration is that taking snap shots to access the sharpness of the milling 

can be detrimental to the top layer.  Care should be taken and important or extensive 

areas of the sample should be avoided for beam focusing.   

 The FIB milling tool can be programmed to create a large array of apertures, 

which can be used for applications like parallel lithography.  The programming is created 

with a proprietary language called AutoScriptTM that automates functions in FEI® 

workstations.  An array code consists of repeating the milling of a pattern in different 

positions by either moving the stage of the sample or deflecting the beam to different 

coordinates.  Moving the stage is beneficial because large distances can be covered but 

the precise position of each aperture can’t be well controlled due to a large hysteresis.  

Deflecting the beam can be very precise and produce very regular arrays but the beam 

can’t be deflected more than 50 µm from the center.  The largest square array that we can 

fit inside a 100 µm circle is one with approximately 70 µm side.  An array larger than this 

would require the use of the stage motion.  To delimit the geometry of the pattern within 

the code we have two options.  We can either use a series of vectorial basic polygon 

definitions (circle, box, line, and 4 point polygon) or use a stream file.  A stream file is a 

text file with a list of coordinates on which the beam will stand stationary for a certain 

specified dwelling times.  A stream file can be generated from an image in bitmap 

format, which is convenient because of the variety of possible geometries that can be 

designed.  The drawback is that processing so many coordinates can slow down the 

automatization.  Using a vectorial command to define the pattern geometry does not 

require calling an external file and runs much faster, especially if the pattern consists of a 

simple combination of simple polygons.  Creating a large array of 1000 bowties would 

require a lot of file processing.  To fabricate an array of 32 X 32 apertures in an area of 
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70 µm X 70 µm we used vectorial commands to define the geometry of the apertures and 

beam deflection commands to fabricate apertures in each position of the array (Wen et 

al., 2015).    

2.2.2   Sacrificial Layer 

 We have made attempts using sacrificial layers together with FIB milling to 

improve the sharpness of the bowtie.  A sacrificial layer is one that is coated on top of the 

aperture metal layer before the aperture is created and then removed after the bowtie is 

milled.  As shown in Figure 2.3 most of the unwanted curvature should be inside the 

sacrificial layer.     

 

Figure 2.3: Schematic showing the use of a sacrificial layer to eliminate rounded edges of 
the aperture caused by FIB milling. 

 Figure 2.4 shows an attempt to use a 140 nm sacrificial layer of silicon nitride 

deposited using plasma enhanced chemical vapor deposition (PECVD).  For this 

fabrication the FIB current used was of 10 pA.  Milling times shown in Figure 2.4(a) 

influence the depth of the mill.  The standard time used by our group for milling bowties 

at 10 pA without sacrificial layer is around 1 second.  To mill through the sacrificial layer 

we need to mill for longer times.  Milling times ranged from 3 s to 36 s.  Buffered oxide 

etch (BOE) was used as shown in the Figure 2.4 (c)-(f) without seeing considerable 

change in the etch residue around the bowties.  The sample was etched for 1 minute, 

imaged with SEM, etched for an additional 14 minutes, and then imaged again.  It can be 
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seen that some bowties have some unwanted etch resistant deposition around them.  This 

debris around the apertures could not be etched away selectively.  The etch rate of the 

silicon nitride is very fast and it seems that 1 minute is enough to etch the complete layer.  

The sharpest result was obtained with the lowest milling time of 3 seconds.  We could 

observe that the presence of the sacrificial layer did not extend the milling time 

significantly.  We also studied the effect of the thickness of the sacrificial layer on the 

gap and the straightness of the edge.  On different samples we used a thicker sacrificial 

layer and fabricated apertures using the same milling times as shown before.  
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Figure 2.4: Using 140 nm of PECVD silicon nitride as sacrificial layer.  Milling time for 
bowties ranges from 3 s to 36 s.  Inserts a) and b) are the top and tilted respectively SEM 
images immediately after milling the silicon nitride layer.  Inserts c) and d) respectively 
are top and tilted view after 1 minute of buffered oxide etching (BOE).  Inserts e) and f) 

are 30 KX and 60 KX top views respectively of the same array after 15 minutes on BOE. 
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Figure 2.5: Using 270 nm of PECVD silicon nitride as sacrificial layer.  Insert a) is tilted 
33 degrees and b) is an image of the same region tilted and rotated 90 degrees. 

 Figure 2.5 shows a set of apertures milled using 270 nm of silicon nitride as 

sacrificial layer after of the substrate was etched with BOE for 15 minutes.  These are the 

same conditions as the same process as inserts e) and f) of Figure 2.4 except that with a 

thicker nitride layer.  The outcome is similar to the one presented in Figure 2.4.  A bowtie 

aperture with straight edges seems to be the product.  Similarly a lot of unknown material 

around the apertures makes them useless for near field applications.  Another problem 

with this method is that the poor conductivity of the silicon nitride prevents a good focus 

and thus the creation of small gaps.  This problem led us to try using metals as sacrificial 

layer.  
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Figure 2.6: Array of bowties using 200 nm of gold sacrificial layer.  Insert a) shows the 
array right after FIB milling, b) same region after using gold etchant, and c) is a zoom in 

view of b). 

 Figure 2.6 shows the results after the same procedure was made using a 200 nm of 

sacrificial Au layer.  The sacrificial layer was etched using a commercial Au etchant that 

would not affect the Cr.  As shown in the image it can be seen that gold does not serve 

very well as a sacrificial layer.  Inserts b) and c) show a curvature around the bowtie.  

This is probably because gold is a much softer material and has a higher yield to ion 

bombardment.   We can also see the presence of a thin layer on a section of the area that 

was exposed to the ion beam.  We suspect that the etching rate of the sacrificial layer in 

this region can be impacted by the implantation of Ga ions.   

 Considering that chrome has a lower yield than gold and that gold did not work 

well as a sacrificial layer, we decided to invert the layers.  A layer of 120 nm of Cr was 

coated on top of gold.  Figure 2.7 shows the results after etching the Cr with a 

commercially Cr etchant.  It seems that the edges of the aperture are straighter but there is 

a lot of unwanted material that was not etched.  The current used was of 10 pA and the 
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milling times are shown in the figure.  The bottom insert shows particular bowties that 

had a layer of an unwanted material surrounding the aperture.   

 

Figure 2.7: Bowtie apertures using sacrificial layer of 120 nm of Cr on top of Au layer.  
For the insert showing a milling time of 4.5 seconds there is an unwanted layer around 

the aperture that could not be etched away. 

 Figure 2.8 shows an attempt using 100 nm of silicon as a sacrificial layer.  For 

this fabrication the FIB current used was of 1 pA.  Milling times ranged from 0.5 s to 5.0 

s.  A solution of potassium hydroxide (KOH) was heated to 120˚C and used to etch the 

sacrificial layer by submerging the sample for 10 seconds after the milling was done.  

This was supposed to etch all the silicon away.  Instead there seemed to be a zone that 

was resistant to etch.   
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Figure 2.8: Milling of a bowtie in a silicon chrome layer arrangement and images after 
removal of Si sacrificial layer.  1st column is the SEM image of the milled silicon layer, 
2nd column is a top view after the silicon was removed, and 3rd column is the tilted view 

of the 2nd column. 

 After trying many different types of sacrificial layers we were unable to obtain 

clean apertures without residue material that could not be etched.  One explanation for 

this problem is that gallium ion implantation changed the etch rate around the bowtie.  

Another explanation for this problem could be the redeposition of aperture material in the 

surfaces next to the milled bowtie.  It was observed in some cases that when the milling 

time was longer there was more resistance to etching around the apertures.  This can be 

an indication that longer times of exposure lead to more ion implantation.  Is very 

important to obtain clean areas around the apertures that allow for an uninterrupted 
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approach between the apertures and other substrates.  The sacrificial layer method needs 

to be improved.  It has been demonstrated here that if the method is improved, it would 

produce straight and sharp apertures that could be used for better light confinement.  

2.2.3   E-beam Lithography 

 We also tried e-beam lithography to pattern the aperture bowties into a substrate.  

Different process flows using positive and negative resist are reported here.  One option 

when using a positive resist like PMMA would require exposing and developing the area 

of the aperture.  The positive photoresist should be thin in order to offer good resolution.  

The unexposed area could serve as a mask to etch a metal layer.  We did not try this 

approach because PMMA is a soft material for which a thin layer would etch away 

quickly.  Another option when using PMMA would require exposing the area 

surrounding the aperture. A layer of metal can be coated after developing and a lift-off 

process would produce an aperture.   

 If a negative resist like Hydrogen silsesquioxane (HSQ) is used then the aperture 

geometry could be patterned into the resist.  After developing away the area surrounding 

the aperture, a metal layer could be deposited and a lift-off process would produce an 

aperture.  For the negative HSQ resist, we could alternatively pattern the area 

surrounding the aperture in order to create an HSQ aperture to etch through.  A problem 

with the option is that exposing around the bowtie will take considerably much longer 

time because is a far larger area.  Lift-off process using PMMA and HSQ were tried.  The 

etching of Cr layer was not tried due to the difficulties of obtaining a good gap control 

during the exposure and developing of HSQ.  

 The first attempt to make bowtie apertures with e-beam lithography was done 

using HSQ resist.  HSQ Fox 15 resist was coated on top of a Cr layer at 4000 RPM for 45 

sec. A soft bake was made for 3 minutes at 120˚C.  The pattern was exposed around the 

area of the apertures with a current of 750 pA.  The actual outcome of the geometry is 

difficult to predict because of lithography bias and proximity effects.  As it should be 

done usually we tried several cases to help us predict a better outcome.  We draw an array 
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of bowties, each constructed by placing two triangles together.  Figure 2.9 shows an 

arrangement in which these triangles were placed at different distances away from each 

other and also at different distances merging into each other.  The same arrangement for 

gap separation was used for 4 different cases: one bowtie with dimension of 170 X 170 

nm, one with 170 X 170 nm with a gap designed within the triangle, one with 200 X 200 

nm, and one with 200 X 200 with the same gap.  Exposing a large area around a small-

intended aperture creates the risk of over exposing.  After exposure, the sample is 

submerged in tetramethylammonium hydroxide (TMAH) 25% base solution in water and 

developed for 45 seconds.  Figure 2.9 shows the minimal dose for which we experienced 

overdose, which was of 750 µC/cm2.  The bright spots in the image are exposed chrome.  

The other spots are apertures that were not properly developed.  Figure 2.10 shows the 

results after developing for a sample exposed to a dose of 650 µC/cm2, which is just 

below the overexposing threshold.  The definition of the aperture geometry does not yield 

the expected ridge apertures.   

 

Figure 2.9: HSQ (200 nm thick) aperture array exposed with 750 µC/cm2dose on the 
region outside the aperture.  The top diagram shows how for each section the gaps 

between the triangles are changed for dose and proximity effect test.   
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Figure 2.10: HSQ (200 nm thick) aperture array exposed with 650 µC/cm2dose on the 
region outside the aperture. 

 In order to improve the resolution of HSQ e-beam lithography, it has been 

suggested in the literature that no pre-bake should be done to avoid thermally induced 

cross-linking (Duan et al., 2011).  In order to test this we coated 100 nm of a more diluted 

HSQ photo resist (HSQ XR-1541-004 ) at a speed of 4000 RPM.  Without prebaking we 

exposed the substrate to doses starting from 500 µC/cm2.  Figure 2.11 shows the results 

after developing a pattern exposed to a dose of 900 µC/cm2.  This is a higher dose than 

the case showing over developing in Figure 2.9.  It is worth to note that there was no over 

developing here.  Figure 2.11 shows no overdeveloping.  These bowties have much better 

shape than the previous cases but no control of the bowtie gap was achieved.   
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Figure 2.11: Bowtie patterning using HSQ XR-1541 photo resist and no prebake to 
minimize thermally induced cross-linking. 

 We attempted to make bowtie antennas by lifting-off gold deposited on exposed 

and developed PMMA.  On top of a commercially available quartz substrate coated with 

indium tin oxide (ITO) we coated PMMA at 2500 RPM for 45 seconds yielding a 

thickness of 200 nm.  The PMMA was exposed with the same array shown for the 

previous method with doses ranging from 600-1350 µC/cm2.  Development was made 

with 1:3 MIBK to IPA solution developer for 50 seconds.  We deposited a layer of 60 nm 

of gold using an e-beam evaporation tool and then lifted-off soaking the sample in 

acetone for 5 minutes and agitating for 10s with ultrasonic vibrations.  Figure 2.12 shows 

the result of this fabrication exposing with a dose of 1350 µC/cm2.  For a bowtie with 

designed sizes of 200 nm X 200 nm we obtained a 300 nm X 300 nm antenna with a gap 

of 21.8 nm.  For the ones with designed size of 170 nm X 170 nm we obtained 257 nm 

with gap size of 38.6 nm.  This is a large bias that prevents us from achieving good gap 

size control when using a 200 nm thick PMMA photoresist.   
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Figure 2.12: Bowtie antennas after lift-off of gold metal on PMMA.  The dose used to 
fabricate the patterns in this image was 1350 µC/cm2. 

 Using PMMA as photo resist we also created apertures in a different way.  We 

exposed the area around the bowtie to ultimately lift-off gold.  The PMMA was coated on 

top of an ITO coated substrate with a thickness of 200 nm using the same recipe as in the 

previous method.  The pattern was exposed using doses ranging from 400 µC/cm2 to 850 

µC/cm2.  Due to the proximity effect there can be too much over exposure when exposing 

very large areas around the bowties.   We had to do expose an area as small as 5 µm X 7 

µm around the apertures to minimize over exposure and obtain apertures.  Figure 2.13 

shows the result after a lift-off.  The size of apertures shown in b) and c) are of 193 nm 

and 201 nm which is close to the expected dimension of 200 nm.  The problem with this 

method is that it yields very large gaps and very poor gap control.   
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Figure 2.13: Apertures exposing PMMA on the region outside the aperture.  (dose of 550 
µC/cm2).  Inset a) shows the total area exposed showing the 2 bowties for which zooms 

are shown in b), c) (top view), and d), and e) (tilted rotated views). 

 We also attempted creating apertures with a lift-off process of a gold layer coated 

on top of a pattern developed in HSQ resist.  Figure 2.14 shows the result after exposing 

and developing the bowtie area as well as the results after the lift-off.  Initially, HSQ was 

coated at 4500 RPM reaching this angular speed in 0.2 sec and then baked at 130˚C for 3 

minutes.  A test was performed starting with at dose of 600 µC/cm2 and increasing the 

dose 50 times by a factor of 1.1.  Gap separations between the triangles that form the 

bowties were constrained to 0 nm, 10 nm, 20 nm, and 30 nm.  A layer of 70 nm of gold 

was deposited and lifted-off by submerging the sample for a duration of 3 minutes in a 

buffered oxide etch (BOE) solution.  We agitated with ultrasonic vibrations for the 3 

minutes duration.  The use of ultrasonic is very important to reduce the amount of debris 

left on the sample.   

 Figure 2.14(a) shows a designed 170 nm X 170 nm bowtie made with a dose of 

4400 µC/cm2 and a gap triangle separation of 20 nm.  For this aperture the result size was 

of 204 nm before lift-off and 210 nm after lift-off and the gap was of 23.8 nm before lift-

off and 41.7 nm after lift-off.  Figure 2.14(b) shows a designed 250 nm X 250 nm bowtie 

made with a dose of 2756 µC/cm2 and an intended triangle separation of 0 nm.  For this 

aperture the result size was of 214 nm before lift-off and 240 nm after lift-off and the gap 

was of 23.8 nm before lift-off and 45.6 nm after lift-off.  Figure 2.14(c) shows a designed 
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200 nm X 200 nm bowtie made with a dose of 4440 µC/cm2 and an intended triangle 

separation of 20 nm.  For this aperture the result size was of 220 nm before lift-off and 

246 nm after lift-off and the gap was of 11.9 nm before lift-off and 41.7 nm after lift-off.  

Figure 2.14(d) shows a designed 300 nm X 300 nm bowtie made with a dose of 2506 

µC/cm2and an intended triangle separation of 0 nm. For this aperture the result size was 

of 258 nm before lift-off and 281 nm after lift-off and the gap was of 27.8 nm before lift-

off and 41.6 nm after lift-off. 

 Most of the apertures studied show that gap dimensions are more consistent 

before lift-off.  It also seems like this method is more consistent than the others reported.  

The gap dimensions increases by twice consistently after the lift-off.  There was no 

specific relationship between the dose and the quality of the bowtie.  The images shown 

in Figure 2.14 show the best results but generally al of the results were not clean and 

consistent.  We suspect that a better gap control can be obtained by using a thinner HSQ 

layer.  After having studied or considered all of the possible methods involving e-beam 

lithography we were not able to obtain sharper ridge aperture.    

 

Figure 2.14: Bowtie aperture made after exposing HSQ inside the bowtie area and then 
making a gold lift-off with BOE.  (a)Design of 170 nmX170 nm bowtie with triangle gap 
separation of 20 nm.  (b)Design of 250 nm X 250 nm bowtie with triangle gap separation 
of 0 nm.  (c) Design of 200 nm X 200 nm bowtie with triangle gap separation of 20 nm. 

(d)Design of 300 nm X 300 nm bowtie with triangle gap separation of 0 nm. 
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2.2.4 Transfer of Reverse Aperture Thin Membrane 

 Milling a ridge apertures in a thin film and inverting the film allows us to have 

access to a sharp region of the ridge that could potentially give us a more confined near 

field.  Chen et al. (2015) created a suspended membrane on which they deposited a metal 

layer.  A bowtie aperture was milled on one side of the membrane using FIB.  The result 

was an aperture that had an inverted sharp taper at the exit.  Using numerical simulations 

and s-NSOM measurements, they proved that they could produce optical spots with 

lateral sizes below 20 nm.  Leen et al. (2010) did similar work.  They milled a C aperture 

in a suspended membrane and proved that reverse milling could be useful for optical data 

storage.   

 Our group was interested in making a design for a parallel lithography setup using 

reverse milled apertures on thin films.  We suspected that combining the parallel 

lithography setup presented in section 2.4 together with the reverse film we would obtain 

massive lithography pattern with resolutions below our best reported (Wen et al., 2015).  

The main setup is mostly exactly the same as the one reported in 2.4.  The only difference 

is the metal coated that surrounds the island where the apertures are located.  Instead of 

milling the bowtie apertures on top of the island, we intended to mill the apertures in a 

thin membrane and try to transfer the membrane on top of the island.   

 Before performing the thin transfer procedure we tested reverse milling on a 

membrane to make bowtie apertures. Similar to regular milling of aperture bowties, the 

inverse bowtie requires a dose test that depends on the thickness of the metal layer.  

Figure 2.15 shows a milling dose test that corresponds to a thickness of 50 nm of silicon 

nitride and 90 nm of gold.  The milling was done through the nitride side and the images 

shown are through the gold side.  The doses are shown as depth of milled silicon, which 

is a parameter specified in the software.  The 1st, 2nd, and 3rd, column show a top, tilted 

(52˚), and tilted-rotated (52˚-90˚) views respectively.  We can clearly see a taper that 

could favor the confinement of light. 
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Figure 2.15: Dose test milling bowtie apertures on Au through a silicon nitride 
membrane.  Thickness shows are based on silicon milling.   

 The transfer of an inverted aperture to the top of an island requires the preparation 

of the substrate with the island as well as the wafer with the thin membrane.  To prepare 

the substrate with the island we first need to do the steps that require submerging the 

substrate into solvent or developing chemicals. The transfer of the thin membrane is the 

last part of the fabrication.  Table 2-1 shows the process flow of fabricating the island 

substrate and making it ready for aperture transfer.  The island for this experiment is 

created using the same procedure used to build the island for our conventional parallel 

lithography.  Section 2.4 describes in more detail this process.  Steps 1 and 2 of Table 2-1 

correspond to the same step 1 and 2 presented in Table 2-3.  In the process presented here 

we leave the island-etching mask attached to the substrate as opposed to our conventional 

method.  We wanted to uncover the island immediately before the transfer process to 



 39 

protect the top from contamination during intermediate steps.  After creating the island 

we coated the metal that would serve to stop the background light around the substrate.  

We created a mask made of gel strips to lift-off the coated metal.  We manually cut two 

strips of adhesive gel and placed them on top of the substrate as shown in step 3 of Table 

2-1.  It is best if the windows are placed in such a way allowing the centers of the ISPI 

gratings to be 5 mm apart.  At this point we coated the metal and manually lifted-off the 

coated gel strips.  During lifting-off the metal, we uncovered the windows that will have 

the ISPI grating as shown in step 4 of Table 2-1.  To fabricate the ISPI grating we coated 

fox 15 HSQ at 2000 RPM reaching this speed in 3 seconds and then spun for a duration 

of 45 seconds.  The HSQ was soft-baked at 120˚C for 3 minutes. Section 2.3 contains the 

details as to how this ISPI grating works and how is fabricated using e-beam lithography.  

Once the island substrate was finished we attached it to the assembly used for the thin 

membrane transfer.  The island substrate was attached together with 2 other quartz 

substrates to a standard glass slide using baked photoresist AZ1518 as a glue.  A drop of 

photoresist was placed in between the substrates and the glass slide.  Then, the entire 

arrangement (shown in step 6 of Table 2-1) was baked in a hot plate at a temperature of 

125˚C for 10 minutes.  

Table 2-1: Process for preparing the island substrate for thin membrane transfer.   

# NAME DESCRIPTION SCHEMATIC 

1 Patterning 
island mask 

After cleaning prebaking and 
coating adhesion promoter, coat PR 
AZ1518 at 2500 RPM for 45 
seconds, soft bake at 100˚C for 5 
minutes.  Expose for 17 seconds at 
10 W/cm2.  Develop in AZ 
developer for 9 seconds and then 
hard bake at 120 for 5 minutes.  

 

 

 

 

 

 

AZ 1518 
patterned 

island mask 

Quartz 
Substrate 
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Table 2-1: Continued. 

# NAME DESCRIPTION SCHEMATIC 

2 Island etch 
and thin 
conductive 
layer 
coating  

BOE etch for 114 minutes to obtain 
a 10 µm height island.  Without 
removing the island mask coat a 
thin layer of 3 nm of Cr.    

 

 

 

3 Covering 
the windows 
with soft gel 
layer.  

Cut two strips of gel and place them 
where the ISPI windows will be.  
The center of the ISPI window 
patterns should be 5mm apart.  

 

 

 

4 Coat Au and 
lift-off by 
stripping 
gel.   

Coat Au using e-beam evaporation 
tool and remove the gel strips to 
uncover the windows where the 
ISPI patterns will be fabricated.  

 

 

 

5 ISPI phase 
grating 

Coat of Fox 15 HSQ at 2000 RPM 
reaching that speed in 3 seconds.  
Exposed with a dose of 1100 
µC/cm2. Developed in TMAH for 
45 seconds.  Island mask will 
dissolve in TMAH.   

 

 

 

 

 

 

10 µm height 
island 3 nm Cr  

Gel strips 

Windows for 
ISPI 

Au 

ISPI 
gratings 

Uncovered 
island 
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Table 2-1: Continued. 

# NAME DESCRIPTION SCHEMATIC 

6 Island 
substrate 
assembly 

Attach the island substrate to a 
standard 75 mm X 25 mm X 1 mm 
(3 ” X 1 ” X 1 mm) glass slide.  At 
the same time stick 2 reusable 
quartz substrates to the sides of the 
island substrate.  Attach by placing 
drops of PR AZ1518 between the 
glass and the quartz and bake at 
125˚C for 10 minutes.  

 

 

 

  

 Besides preparing the island we need to prepare the thin wafer and then make it 

part of a different assembly.  The 3 mm diameter wafer is a commercially available 

membrane from TED Pella.  The membrane is made of silicon nitride, which is 

suspended in a window of 500 µm X 500 µm with a thickness of 50 nm.  The schematic 

of step 1 in Table 2-2 summarizes the milling fabrication done to the thin membrane 

wafer.  It shows the top and side view of the wafer.  We started by coating 5 nm of 

titanium followed by 90 nm of gold on the back side.  Windows with dimensions of 25 

µm X 25 µm were milled to allow for better alignment by increasing the visibility of the 

island during the thin membrane transfer.  The aperture array is fabricated in the middle 

of all the milled windows.  The transfer process is made in a mask aligner that allows us 

to position the aperture array on top of the island.  In order to use the mask aligner we 

need to attach the thin membrane wafer to a mask aligner glass.  We attached first a 

standard 3 ” X 1 ” glass slide to a 4 ” X 4 ”mask aligner glass using PR AZ1518 as a 

glue.  Two small drops were trapped between the two glasses and baked in a hot plate at 

125 ˚C for 10 minutes.  The thin membrane wafer was attached to the mentioned glass 

slide by using adhesive gel.  The adhesive gel was cut with a razor blade to a dimension 

slightly larger than the wafer so the wafer would completely lie inside the gel.  This 

adhesive gel gave the thin membrane wafer the flexibility to move around and to conform 

to the alignment of the island substrate.  As it was seen in other methods, if the thin 

membrane wafer is rigidly attached to its assembly and the wafer is not parallel to the 

island substrate, the approach might not be possible.  We need to take into consideration 

PR AZ1518 

Top view 
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that the island is only 10 µm tall with sides of around 120 µm, while the wafer is 3 mm 

wide.  A small misalignment between the wafer and the island substrate is enough to 

prevent the thin membrane from ever contacting the island.  Instead, the edges of the thin 

wafer would contact first and small silicon pieces would yield to the pressure created by 

the approach.  This would release a lot of broken particles to the area and the whole 

process would need to be redone.   

Table 2-2: Process for preparing thin membrane wafer for transfer.  

# NAME DESCRIPTION SCHEMATIC 
1 Gold coating 

and aperture 
FIB milling. 

Coat the thin membrane wafer with 
e-beam evaporated 5 nm Ti and 90 
nm Au on the tapered window side.  
Mill the apertures from the silicon 
nitride side.  Mill windows with 
sides 25 µm X 25 µm for visibility 
while transferring the membrane.  

 

 

 

 

2 Attaching 
glass slide to 
mask aligner 
glass 

Attach a standard 
75mmX25mmX1mm 
(3”X1”X1mm) glass slide to the 
mask aligner glass using 
PRAZ1518.  Attach by placing 
drops of PR AZ1518 between the 
glasses and bake at 125˚C for 10 
minutes. 

 

 

 

3 Attaching 
thin 
membrane 
wafer to 
glass slide 

Cut a layer of gel membrane and 
attach the thin membrane wafer to 
the glass slide attached in step 2.   

 

 

 

Au coated 
Si3N4 

membrane 
FIB  

milled 
windows 

aperture 
array 

4”X4” mask aligner 
glass 

glass slide 
PR AZ1518 

glass slide adhesive gel 

thin membrane wafer 
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 Once the mask aligner assembly was ready we proceeded to prepare for final 

alignment and approach of the thin membrane to the island substrate.  Two different 

adhesives were actively used during the approach.  One was a commercial cyanoacrylate 

adhesive (Krazy glue©) used to coat the top of the island where the membrane will land 

after approach.  It was used because it could be coated thinner than other adhesives, 

which helped us avoid unwanted deposition of residue on top of the aperture film.  The 

other adhesive used was a commercial UV curable Norland optical adhesive (NOA81 

Thorlabs).  It was dropped on top of the two quartz substrates that were contacting the 

glass slide to which the thin membrane wafer was attached.  We used this adhesive to 

make an approach and alignment with special freedom and once the aperture array is in 

position on top of the island we can cure the adhesive.  Both assemblies remained in 

place after curing the adhesive.  Table 2-3 shows the approach and release steps of the 

thin membrane transfer process.  It starts with applying the adhesives discussed 

previously and mounting the assemblies into the mask aligner.  The 4 ” X 4 ” glass was 

placed into the mask aligner by activating the vacuum suction.  During alignment, the 

milled windows shown the schematic of step 1 in Table 2-2 were used to look through the 

gold membrane and see the island.  Approach was made and noticed when the thin 

membrane would deform and conform to the shape of the island.  If there is a hard 

particle close to the island, the thin membrane will brake during approach, so we need to 

make sure that there are no particles in this region.  After the approach we exposed both 

assemblies to the UV light of the mask aligner (dose of 10 mW/cm2 for 15 minutes).  The 

curable adhesive got hardened and both assemblies got attached.  The whole assembly 

was taken out of the mask aligner by deactivating the vacuum suction.  We let the super 

glue dry overnight to make sure that good adhesion between the thin membrane and the 

island was achieved.  Acetone was dropped carefully on the edges of the glass slide that 

was attached to the mask glass aligner to release the rest of the assembly.  Then acetone 

was dropped carefully on the edges of the quartz substrates that were attached to the glass 

slide.  During release we needed to make sure that the island and the thin membrane did 

not come into contact with acetone since cyanoacrylate is very soluble in it.  This means 

that we needed to find a more permanent way of attaching the membrane because the 
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island substrate is periodically cleaned between lithography experiments with solvents.  

Steps 4 to 6 of Table 2-3 shows a procedure that we developed to ensure the permanent 

attachment of the thin membrane to the top of the island.  We started by milling channels 

around the island (step 4 of Table 2-3).  Is important to ensure that all of the gold’s 

thickness is milled.  We followed by a platinum deposition around the island that will 

isolate and attach the membrane to the substrate.  Finally with a regular acetone cleaning 

we got rid of all the membrane that surrounds the attachment.   

Table 2-3: Approaching and attaching the membrane.   

# NAME SCHEMATIC 
1 Place 

adhesive 
and 
assemblies 
in place.  

 

 
 

2 Align, 
approach, 
cure, and 
allow 
adhesive to 
dry.   

 
3 Detach thin 

membrane 
wafer and 
island.  

 

 

 

optical adhesive 

cyanoacrylate adhesive 

Thin membrane wafer assembly (Table 2-2) 

Island substrate assembly Table 2-1 

Quartz substrate 
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Table 2-3: Continued. 

# NAME SCHEMATIC 
4 Mill for 

membrane 
attachment 

 
5 Deposit 

platinum 
for 
membrane 
attachment 

 
6  Clean with 

acetone for 
membrane 
attachment 

 

 Figure 2.16 shows the island after stitching a part of the membrane (left) and then 

the same island after being cleaned with acetone (right).  We can see the parts of the 

membrane that remained and the parts that were washed away.   

 

Figure 2.16: Attaching a membrane using platinum deposition.  Left shows after Pt 
deposition and right shows after washing away using acetone.   

 Even though a lot of these steps were proven to work properly, we could not 

finish the entire procedure and obtain a transfer with an array of apertures that could be 
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used for parallel lithography.  This procedure contained a lot of steps, which increases the 

chances of having many particles.  In order to optimize this process we would need to 

find ways of maintaining all of the components clean at all times.  There were many other 

similar methods that were unsuccessful as well.  This section presented the method with 

more chances to obtain a repeatable process for thin membrane transfer.  

2.3   Interferometric Spatial Phase Imaging for Gap Control 

 Near field lithography requires the precise control of the position between a mask 

and a substrate.  The confinement in the near field region around the bowtie aperture 

diverges quickly and is only useful up to around tens of nanometers away from the 

surface.  To help have better control of this position and to understand better this near 

field phenomenon we use an Interferometric Spatial Phase Imaging (ISPI) technology. 

 ISPI is based on a set of gratings that can create different fringe patterns that 

depend on the gap between 2 surfaces (Moon et al., 1999).  This tool has the potential of 

getting gap measurements with a resolution of under 1 nm.  It can be used for mask and 

substrate alignment and gap control.  A laser shines on a grating structure, diffracts 

towards a 2nd surface which reflects back to the grating and refracts a pattern back to the 

camera.  The camera is position very close to the laser source and does not have to be 

perpendicular to both surfaces.  This allows for a measurement control that does not get 

in the way of a processing source such as a laser or a lamp.  In our setup, the laser and the 

camera are both mounted in the same holder at ±2˚ away from the Littrow angle of 

approximately 20˚.  There are different types of gratings that are useful for different 

ranges and resolutions.  There is a coarse ISPI grating that has a resolution of 

approximately 1 µm and works on gaps of about 30 µm to 100 µm.  The top half of 

Figure 2.17 shows the grating, the beam path diffraction diagram and the camera image 

for the coarse gap setup.  The period of the grating is of 1 µm, which is the necessary 

period required to send the 1st order of refraction back to the camera for both back-

diffracted and diffracted-reflected beam.   
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Figure 2.17: Gratings used for ISPI gap measurement.  Beam diagrams show how the 
incident light travels from the laser to the grating, gets diffracted, gets reflected and then 

refracted back to the camera.   The right side shows how both patterns look on the 
camera. 

 There is also a fine ISPI grating shown on the lower half of Figure 2.17 that can 

be designed for different ranges and different resolutions.  The period of the checkered 

grating in the Y direction is of 2 micron.  The 1st order diffraction in the YZ plane 

corresponding to this period goes straight down to the substrate and reflects back up to 

the same grating.  The reflection of the substrate hits the same grating again, is it 

diffracted again towards the camera.  The interference fringes formed at the plane of the 

camera have different periodicity and phases depending on the distance between the 

substrate and the mask.  An example of this fine ISPI periodical pattern at the camera is 

shown in the lower right side of Figure 2.17.  The special frequency tells us the gap 

between the surfaces in a greater range but with a poor resolution.  When the gap is 

larger, there are more fringes in the interference image and the frequency calculation 
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yields a higher number.  For fine ISPI there are two sets of fringes formed in the camera. 

The relative phase of these fringes also changes when the gap changes.  This phase gives 

us a much finer gap measurement resolution.  The phase is a number between a 0 and 2π 

that corresponds to a gap of 120 nm.  With the phase information of the fringes we are 

able to obtain a resolution of less than 1 nm in the gap measurement but it does not 

contain information about the absolute gap.  All different types of measurement are used 

together to approach both surfaces and then make finer adjustments when we get closer to 

the near field.  The general purpose of using fine ISPI is to try to achieve slight contact 

between surfaces and from there establish the desired gap between surfaces.  

 

Figure 2.18: ISPI gratings in a lithography mask.  The top right shows the difference in 
surface roughness between creating the phase gratings on top of indium tin oxide and 

chrome. 

 Gratings were made with negative resist HSQ.  Our HSQ gratings are considered 

binary phase gratings.  It is important that the thickness of the binary phase grating yields 

a phase difference of half the wavelength.  The thickness for a medium with an index of 

refraction very close to the index of silicon dioxide (n=1.5) must be the wavelength of the 

laser (t = λ = 633 nm).  This is obtained coating the mask at 2000 RPM reaching this 

speed at 3 seconds and spinning for 45 seconds. The substrate is baked at 120˚C for 3 

minutes.  The sample is exposed with a dose of 1100 µC/cm2 and then developed in 

TMAH for 45 seconds.   
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 Several sets of grating are used to measure the gap in different locations of the 

substrate.  With a certain grating arrangement we can have control of the gap and the 

angle between both surfaces.  For parallel lithography is important that both surfaces are 

as parallel as possible.  To accommodate for all of the gratings we need to fabricate large 

windows as shown in Figure 2.18.  There has been a maximum of 8 sets of grating but a 

minimum of 3 is necessary to obtain the angle between both surfaces.  Gaps at different 

locations are measured sequentially since only one gap can be read at a time.  The details 

of this fabrication are described in section 2.4.  Originally to have good conductivity for 

the e-beam lithography and also transparency of the substrate for light propagation we 

used a layer of ITO.  Using the layer of ITO was inconvenient because it required an 

additional annealing step that was done at a temperature of 550 ˚C.  It was also a very 

rough layer and had poor adhesion with HSQ resulting in a low yield of good gratings.  

Eventually a Cr layer of 3 nm was coated. This layer is transparent because its thickness 

is less than the skin depth of the Cr.  The actual thickness of this layer is uncertain 

because the control of coating 3 nm during an e-beam evaporation process is difficult.  It 

is also not certain how conformal this thin layer is.  Very thin coatings are believed to 

initially take the form of localized islands before they become conformal layers because 

of grain formation.  Nevertheless the coating of this layer provides the adhesion 

necessary to obtain an almost 100% yield in the grating structures, the conductivity 

necessary to perform e-beam lithography without localized charging and the transparency 

necessary to allow for the propagation of the ISPI laser beam.  

 The shape of the fringes is decoded by comparing them with simulation results 

base on diffraction optics.  In the simulation, a set of fringes is calculated based on 

adding up the effect of different 1st order diffraction.  This calculation represents a 

relationship between the gap and the shape of the fringes.  Both the simulated and the 

experimentally measured fringes are subjected to a frequency and phase calculation 

algorithm.  Frequency and phase calculation results for the numerical model and for 

actual experiments are shown in Figure 2.19 (Wen et al., 2013).  It is important to note 

that the frequency theoretically should increase linearly as the gap increase but it 

increases experimentally with an oscillatory behavior.  We believe that this oscillation is 
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an effect of a fabry-Perot interference on the brightness of the fringes.  This change in 

brightness might affect the reading of the position of the fringe peaks.  Still with this 

oscillatory behavior the system can be calibrated to obtain gap measurements.  The 

calibration of the fine ISPI measurement is made by comparing the phase reading to the 

feedback reading from the piezo stage.  We take note of what is the piezo height distance 

that it takes to obtain 1 phase shift.  Once calibrated it can be used to obtain the distance 

above contact between the two surfaces.  

 

Figure 2.19: Left graph shows the simulated frequency and phase measurements as a 
function of the gap.  Right graph shows the actual measurements as a function of a range 
in the piezo stage height; Reprinted with permission from [Wen et al., 2013] © [2013], 

American Vacuum Society. 

2.4   Parallel Nanolithography Using a Large Array of Bowtie Apertures 

 Parallel nanolithography can be achieved by shining the same beam to an array of 

bowtie apertures.  All of the apertures will produce their own confine near field spot at 

their exits.  It has been proven that each spot is capable of producing lithographic lines of 

widths as small as 50 nm (Uppuluri et al., 2010).  We were interested in performing 

parallel lithography implementing ISPI gap control to obtain more lines.  Like described 

in section 2.2.1 we milled an array of 32 X 32 bowtie apertures on top of a chrome-

coated island.  This array was made with a current of 1 pA in an effort to make aperture 

ridge gaps smaller and produce smaller lines during the lithography.  As described in 

section 2.2.1 our array was milled using a code with vectorial commands to define the 

pattern geometry and beam deflection commands that would control the position of the 
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milled apertures.  The presence of the island minimizes the amount of particles that will 

get in between the mask and substrate surfaces.  The procedure to fabricate the mask with 

the ISPI gratings is described in Table 2-4.  The substrate used to fabricate the mask is 

made of quartz and has a surface that is polished to an optically flat standard.  A substrate 

is considered optically flat when the variation in height of the entire surface is 

approximately 1/20 of optical wavelengths.  This substrate was cleaned with a piranha 

mixture consisting of a 1:1 volume ratio of sulfuric acid and hydrogen peroxide solution.  

After cleaning, the substrate was prebaked dry for 1 hour at 1100˚C.  To create the island 

we first patterned a square (step 1 of Table 2-4) using optical lithography on a AZ1518 

photo resist layer.  For this lithography process we first coated a thin layer of the 

adhesion promoter hexamethyldisilzane (HMDS) for 45 seconds at 4500 RPM.  The 

adhesion promoter was coated to minimize lateral etch in one of the following steps.  

After coating the promoter we coated the layer of AZ1518 for 45 seconds at 2500 RPM.  

A soft bake was done at 100˚C for 5 minutes.   

Table 2-4: Steps of mask fabrication process.  

# NAME DESCRIPTION SCHEMATIC 

1 Patterning 
island mask 

After cleaning prebaking and 
coating adhesion promoter, coat 
PR AZ1518 at 2500 RPM for 45 
seconds, soft bake at 100˚C for 5 
minutes.  Expose for 17 seconds 
at 10 W/cm2.  Develop in AZ 
developer for 9 seconds and then 
hard bake at 120 for 5 minutes.  

 

 

 

2 Island Etch 
and thin 
conductive 
layer 
coating  

BOE etch for 114 minutes to 
obtain a 10 µm height island.  
Strip the photo resist with 
solvent and piranha cleaning and 
then coat a thin layer of 3 nm of 
Cr.    

 

 

 

 

AZ 1518 
patterned 

island mask 

Quartz 
Substrate 

3 nm Cr  

10µm height 
island 

Quartz 
Substrate 



 52 

Table 2-4: Continued. 

# NAME DESCRIPTION SCHEMATIC 

3 Windows 
patterning  

S1805 coated at 4500 RPM for 
45 seconds, baked for 3 mins at 
90˚C, and exposed for 5 sec at 
10m W/cm2.  Developed with 
AZ developer to water mix at 1:2 
for 20 seconds.  A drop is 
applied to the island to make 
sure that all the resist is 
developed away.  A line is 
applied on the edges.  Rinse with 
DI water.  

 

 

 

4 Cr mask 
coating  

Coat 70 nm of e-beam 
evaporated Cr.  Lift-off with 
acetone for 10 minutes and 
ultrasonic agitation for 10 
seconds.  

 

 

5 ISPI phase 
grating 

Coat of Fox 15 HSQ at 2000 
RPM reaching that speed in 3 
seconds.  Exposed with a dose of 
1100 µC/cm2. Developed in 
TMAH for 45 seconds.   

 

 

6 Milling of 
the bowtie 
apertures 

Focused Ion beam milling.  
Marks are made using large 2 nA 
or 5 nA current and apertures are 
made with small 1 pA or 10 pA. 

 

 

 

 

The island mask square pattern was developed after submerging the sample in a 1:3 

solution of AZ developer and water for 9 seconds.  The mask was hardened with a post 

bake done at 120˚C.  After the island square mask was made, the substrate was etched 10 

µm deep in a BOE solution.  The quartz etch rate of this solution of 0.088 µm/min.  The 

whole etch time is approximately 114 minutes.  We used a magnetic stirrer to help 

obtaining a uniform etch.  We interrupted the etching every 15 minutes to change the 

Drop of developer 

Line of developer 

70 nm Cr 

2 nm Cr window 

HSQ ISPI 
grating 

FIB milled 
apertures 

Patterned 
window mask 

70 nm Cr 

2 nm Cr window 

HSQ ISPI 
grating 

70 nm Cr 

2 nm Cr window 
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direction of the flow with respect to the substrate to promote uniformity.  The substrate 

was checked under a microscope every 30 minutes to ensure that the lateral-etch rate was 

not too high.  After etching we striped the remaining photo resist with a simple acetone 

cleaning for minutes.  To address quality control, we measure the island height and 

checked the top of the island to make sure there were no undesired particles stuck to it.  

After having a clear island substrate we proceeded to coat a 3 nm layer of Cr for the 

reasons discussed in section 2.3.  Even when is not expected to produce a continuous 

layer, this Cr layer helps promoting adhesion between the HSQ layer and the quartz 

substrate and also offers good substrate conductivity for the e-beam lithography process.  

The adhesion promoting capability of Cr will be discussed with further detail in section 

3.1.3.  The next main step was to produce windows for the ISPI grating pattern.  This 

involves the patterning of two large rectangles of 10mm by 1 mm separated by 5 mm 

with the island in the middle of them.  To start we must coat a photo resist layer around 

the entire substrate.   

When coating a substrate there will always be a thicker layer at the edges of the substrate.  

Base on the same principle we can expect the small island patterned in the center of the 

substrate to have a thicker layer.  These areas with thicker layer will require higher 

exposure doses or longer developing times to be completely developed away.  For this 

reason we opted to use a thinner photoresist.  S1805 photo resist was coated for 45 

seconds at 4500 RPM and soft baked for 3 minutes at 90˚C.  We developed the windows 

using AZ developer and water solution at a volume ratio of 1:3 for 20 seconds.  To 

develop the thicker areas mentioned before we applied a drop of developer on top of the 

island and a line of developer on the edges of the substrate.  It is important to not have 

undeveloped photo resist regions on the edge of the island because a good electrical 

grounding connection will be needed during the FIB milling of the apertures.  A layer of 

70 nm of Cr was coated using e-beam evaporation followed by a lift-off made by soaking 

the sample in acetone for 5 minutes and agitating with ultrasonic vibration for 5 seconds.  

This lift-off revealed the pattern of the windows where the ISPI grating would be 

fabricated.  HSQ resist was coated for 45 seconds at 3000 RPM with a ramp time of 3 

seconds.  This coating recipe yielded approximately a 633 nm thick layer of HSQ.  The 
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resist was soft baked at 120˚C for 3 minutes.  The gratings were patterned as specified in 

section 2.3.  Developing of the HSQ was done in Tetramethylammonium hydroxide for 

45 seconds. At this point the mask was ready for FIB milling as described in section 

2.2.1.    

 To use the finished mask for parallel lithography we mounted it in a piezo electric 

stage like it is shown in Figure 2.20.  This piezo stage can be rotated with respect to x and 

y-axis which allows controlling the angle between the mask and the substrate.  We coated 

another optically flat substrate with S1805 at 4500 RPM for 45 seconds.  On this 

substrate is where we intend to perform the near field parallel lithography.  This substrate 

was positioned on top of a different piezo stage used for gap control (Z direction) and 

scanning (X and Y direction).  Figure 2.20 shows the diagram of the lithography station.  

Besides the ISPI laser and the exposure UV laser (355 nm DSSP) there is a He-NE laser 

that shines the substrate and mask from below the setup.  The He-Ne laser is use for 

coarse alignment between the photoresist coated and mask substrates.  The coarse 

alignment laser reflects from the photo resist and aperture mask surfaces.  The reflection 

from both surfaces is joined and sent to a camera creating an interference image from 

which we can see the angle between the surfaces.  The amount of fringes in the image is 

proportional to the angle between them.  During coarse alignment we intend to obtain an 

image without fringes.  The inset in Figure 2.20 shows an example of images that were 

taken using the coarse alignment laser and corresponding numerical simulations that 

relate the amount of fringes and the angle between substrate.  This coarse alignment was 

the 1st step in our parallel lithography process.  After coarse alignment we measured the 

height at the different location of the ISPI marks and made sure that the height difference 

between them was around 6 nm.  A height difference of 6 nm corresponds to an angle 

0.03 mRad.   
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Figure 2.20: Diagram of the bowtie aperture lithography station; Reprinted with 
permission from [Wen et al., 2013] © [2013], American Vacuum Society.  Inset shows 

simulated and photographed interference patterns that gives us the measurement of coarse 
alignment to obtain parallel surfaces (Uppuluri et al., 2010). 

 After performing fine alignment we brought the 2 surfaces into contact.  Coarse 

ISPI helped us to indentify when there was a large distance between the mask and the 

photo resist substrate.  Figure 2.21 shows a graph of the gap measurement taken with the 

ISPI grating VS the stage motion.  As expected as the piezo height increases the gap 

between the surfaces decreases at a constant rate until a certain point.  At this point even 

when the piezo feedback is showing that the height of the stage is increasing, the ISPI 

grating aren’t showing as much gap change.  We can be certain that this happens because 

both surfaces have come into contact.  When we study the graph with more detail, we are 

able to identify when does this contact occurs with nanometer resolution. 

 With a good adjustment of power of the processing lithography beam and gap 

control we are able to obtain lines as small as ~22 ± 5 nm (Wen et al., 2014).  This is 1/15 
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of the 355 nm wavelength.  Figure 2.21 shows an array of 5X5 patterns that contain the 

letters “bnc” as well as a zoom in afm image of one of them.  The inset at the lower left 

shows a line scan of the section shown in the lower right inset.  It shows a full width at 

half maximum of 22 nm, which seems to be consistent around the array.   

 

Figure 2.21: Using ISPI for gap control and results of nano-scale aperture lithography.  
Top left shows the ISPI gap measurement VS the motion of the piezo stage.  Top right 

shows a scan of 5 X 5 bowties. Bottom right shows a zoom in at one “bnc” pattern, which 
is then zoomed in at the red square, which is shown with a line profile at the left bottom 

graph (Wen et al., 2014) With permission from Springer. 
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2.5   Summary 

 We have shown that bowtie apertures are capable of creating sub diffraction limit 

spots that can be used in applications such as parallel lithography and HAMR.  The 

current method that our group uses to fabricate these apertures (FIB) allows us to obtain 

very small aperture but it creates a curvature in the edges around the aperture due to the 

limit of the ion beam resolution.  Simulations have been made showing that this curvature 

increases the effective gap and limits the confinement wanted.  Different fabrication 

techniques have been attempted in order to eliminate this edge curvature.   

 Etching a sacrificial layer could help us eliminate the part of the milling that 

contains the unwanted curvature leaving a straighter edge.  The problem with using 

sacrificial layers is that their etch rate is affected by gallium ion implantation and they 

become difficult to remove leaving behind unwanted material around the aperture.  

Milling an aperture in a membrane and reversing the membrane allows us to obtain 

apertures that have sharper features and potentially better confinement.  We attempted to 

transfer thin films on top of substrates to perform parallel lithography using these sharper 

inverted bowtie apertures.  The process was one with many steps and we could never 

obtain a clean process that could allow us to achieve good results.  We have also 

attempted to create better apertures by using e-beam lithography.  We tried different 

schemes based on etching or lift-off with different types of resist layers.  Using e-beam 

lithography was not effective because we were not able to control the shape and 

dimension of the gaps for these small patterns.   

 We did however optimized aperture masks to create smaller lithography lines.  

We implemented the use of ISPI gratings to obtain a better gap control between the mask 

and a substrate to fine tune (with nanometer resolution) the position of the photoresist 

with respect to the nearfield around the aperture.  By controlling the gap in several 

locations of the mask we were able to make both surfaces as parallel as possible.  This 

allowed us to position large arrays of bowties to certain consistent and determined gaps.  

Using ISPI we were able to perform parallel lithography using an array of 32 X 32 

apertures to pattern lines with ~22 nm widths.  
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CHAPTER 3. ZONE PLATES FOR FABRICATION OF SILICON NANOWIRES 

 Zone Plates (ZP) can provide an excellent source of concentrated light for heating 

purposes.  A confined heated spot could be used as a fabrication tool for applications 

such as the synthesis of silicon nanowires.  When we increase the temperature of silane 

gas to a decomposition temperature of its hydrogen bonds we can obtain a solid form of 

silicon.  When doping molecules are present in the gas mixture we can also obtain a solid 

form of doped silicon.  This thesis chapter discusses how we take advantage of Fresnel 

diffraction ZP to increase the temperature and fabricate silicon nanowires.  

3.1   Definition of Zone Plate 

 A ZP is a collection of concentric rings that is capable of focusing light by means 

of diffraction.  The concentric rings of a basic ZP allow the pass of light in certain areas 

called zones.  The small periodicity of these rings acts similar to a grating and is capable 

of achieving large diffractive angles when the size of the grating is very small.  Because 

of their large diffractive angle, they are capable of focusing light into dimensions very 

close to the diffraction limit.  Constructive interference of the diffracted rays coming 

from different zones makes possible the concentration of light at the focal point.  The 

zones in the ZP can be considered as amplitude gratings or phase gratings.  In amplitude 

gratings, zones are either transparent or dark and hence they modulate the amplitude of 

the transmitted light.  In a phase grating, the zones rather than blocking the light, provide 

for a medium of a finite index of refraction that creates a shift in the phase of the waves 

relative to zone regions with different indexes of refraction.  If designed and fabricated 

properly, a phase grating can input almost twice the amount of light energy into the same 

spot when compared to an amplitude grating.  One of the main advantages of zone plates 

over lenses based on refraction or reflection is that they can be fabricated much easier in 
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a nanotechnology fabrication environment.  Applications of ZP structures can include any 

application that requires the use of focused light to heat or expose lithographically a 

material.        

3.2   Experimental Setup for Nanowire Fabrication 

 Our group has previously used ZP for fabricating and optimizing silicon 

nanowires (Nam et al. 2013).  Some of these nanowires have been doped and used as 

field effect transistor sensors with high sensitivity to pH.  By controlling certain 

parameters in the experimental setup we can change the roughness of the surface, 

increase the surface area, and as a consequence increase their pH sensitivity.   

 In this section we describe the laser setup and sample substrate used for the 

synthesis of nanowires using ZP.  We particularly concentrate the light into a scanned 

substrate that is capable of absorbing the light and producing an intense small spot of 

heat.  It is always considered that the spot size of the ZP focused light will be 

proportional to the wavelength.  Hence it is convenient to use the smallest possible 

wavelength to fabricate a smaller nanowire.  The available wavelength is of 800 nm but it 

would be desirable to convert this wavelength into its half by using special optics.  For 

this purpose, light is focused through a lens onto a barium borate crystal.  When the 

crystal receives light intense enough, it induces a 2nd harmonic generation, which doubles 

the frequency.  The beam comes out with a certain polarization determined by the 

orientation of the crystal.  

 Several laser parameters were studied in order to optimize the heating process.  

Previously tested lasers were continuous wave laser, nanosecond/microseconds pulsed 

laser, and femtosecond laser.  It was observed that continuous laser could deliver the 

power necessary to obtain high enough temperatures but the continuous heat generation 

would allow for a spread of a high temperature profile that would subsequently increase 

the size of the deposited nanowire.  Something similar would happen to the nanosecond 

lasers.  The advantage of the femtosecond laser is that it would allow for a high 

temperature enough to obtain nanowire growth, but in between pulses it would allow for 
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enough time to dissipate the heat.  The combination of obtaining localized high 

temperature followed by heat dissipation time, allowed for the confinement of 

synthesized silicon volume.  High temperatures would not be achieved if heat dissipation 

would occur too rapidly.  This is why the substrate material properties are very important 

variables in the nanowire growth problem.   

 Several different substrates were tried by our group in order to obtain the smallest 

possible nanowires.  The different substrates were made of different combinations of 

layer arrangements using silicon and silicon dioxide.  The material properties of thermal 

diffusivity and light absorption were very important in our design.  High light-absorption 

is desired to concentrate the heat in a small location as close to the surface as possible.  

Silicon is our absorptive material of choice, while SiO2 will be used as the isolation 

material to help with heat confinement.  The dependence on absorption to the wavelength 

of the incident light is a very important factor to take into consideration.  At 780 nm 

wavelength, silicon has a penetration depth of 5.2 μm while at 390 nm it has a depth of 

26 nm (Bauerle, 1996).  Another important reason for doubling the frequency of the 

incident light is to maintain the maximum amount of absorption close to the surface of 

the substrate.  We noted after trying several different combinations of materials that the 

narrowest lines occurred in 1 mm quartz substrates with a layer of 200 nm of polysilicon 

under a layer of 200 of silicon dioxide.  In order to fabricate this arrangement we 

deposited 350 nm of low pressure chemical vapor deposition (LPCVD) silicon with an 

amorphous crystal structure.  This coated quartz would be subjected to a temperature of 

1100˚C for 130 minutes to grow an oxide layer of 200 nm.  This process would also 

anneal the rest 150 nm of amorphous silicon into 200 nm of polysilicon.  Figure 3.1 

shows the substrate layer arrangement that was considered the most optimal.   
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Figure 3.1:  Setup up for ZP assisted silicon nanowire growth. 

 Figure 3.1 also shows a schematic for the nanowire growth.  Silane gas is input 

from one side of the chamber into a region where there are zone plates focusing light into 

the substrate.  The focal point of the zone plate must coincide as well as possible with the 

absorbing layer of silicon to concentrate heat at the gas and solid boundary.  The 

hydrogen bonds of the silane break in the regions where the temperature of the gas 

reaches a decomposition threshold.  This decomposition yields silicon solidification in 

the heated areas.  If the substrate is scanned, we obtain a nanowire in the direction of the 

scanning as shown in Figure 3.1.  When a dopant gas is flown at the same time as the 

silane, we obtain a doped form of the silicon.  Diborane B2H6 is introduced to provide 

boron doping or p-type doping while phosphine PH3 is introduced to provide 

phosphorous doping or n-type doping.  To have higher intensity at the substrate surface, 

light is focused into a size close to the 300 μm diameter of the ZP and shined on top of 

the ZP.  To obtain an efficient focusing, the detractive design of the ZP must be taken 

into consideration.  
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3.3   Designing a Zone Plate 

 There are certain parameters that contribute to the efficiency of a ZP.  The most 

important ones are the width and position of the zones.  The width of a zone will 

determine the grating period and thus the diffraction angle, while the radius of the zone 

will determine for a given periodicity where the maximum field spots along the axis of 

the lens are.  A basic amplitude ZP should have the radius of the zones such that the exit 

of these is at a distance that creates constructive interference in the focal point.  For this 

to happen we make sure that the radius of the zones are fixed with the relationships 

shown in Figure 3.2.  By looking at the geometrical relationship of the optical paths and 

considering that the focus f is much larger than the wavelength we arrive at the 

relationship rn=√(nλf).  Where n is the number of the zone, λ the wavelength of the light 

source, and f is the focal length of the lens.   

 

Figure 3.2: Optical path of zones inside a ZP. 

 A ZP is called an amplitude ZP when it contains opaque zones.  Such a ZP has a 

maximum efficiency of approximately 10%.  If these opaque zones are replaced by phase 

shifting material with an index of refraction, we obtain a level 2 or binary ZP.  Level 2 

indicates that there are 2 different phases coming out of the exit plane of the ZP.  Having 
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a region with no thickness and a region with a certain thickness of the phase-shifting 

material creates the 2 different phases.  The phase shift can be between 0 to π depending 

on the thickness of this material.  The maximum efficiency of such a ZP is approximately 

40%.  Higher levels could be obtained if the opaque zones are replaced with a material 

that has more than 1 thickness.  We would need a fabrication method that would yield 

different thickness in certain specified areas.  Level 3 or higher ZPs could obtain higher 

theoretical efficiencies all the way up to 100% but fabricating them would constitute a 

very difficult problem.  Our group did not consider fabricating level 3 or higher ZP and 

thus will not be discussed here.   

 To design a phase ZP we need to compare the optical paths of two mediums with 

same thickness and different index of refraction.  For a given index of refraction and 

incident wavelength we need to obtain a thickness given by the Equation (3.1) that will 

yield a phase change of half the wavelength between the two mediums (air and phase 

retarding medium).  In a level 2 ZP, this thickness yields the highest efficiency.  When 

the index of refraction is exactly 1.5, which is very close to glass, the optimal thickness is 

exactly the wavelength itself.   

  
(3.1) 

Hydrogen silsesquioxane (HSQ) is an excellent transparent photo resist that will allow us 

to pattern the thin zones in the outer regions of the ZP.  After developing and hard 

baking, HSQ is very similar to silicon dioxide that has an index of refraction of 

approximately 1.5.  Our ZPs had a thickness of 400 nm because they were designed for 

400 nm wavelength incident light and are made with HSQ. 

3.4   Fabricating a Zone Plate 

 Fabrication of a ZP includes a small number of steps that needs to be fined tuned 

in order to make them more efficient.  The 1st step is to increase the conductivity of the 

substrate so we are able to perform e-beam lithography on top of a transparent quartz 
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substrate.  Originally we tried coating indium tin oxide (ITO) on top of quartz substrate.  

The coated ITO layer needs to be baked at 550 ˚C for 2 hours in order to convert it from 

an opaque into a transparent layer.  This whole process results in an ITO layer with a very 

high roughness.  Ultimately we opted to buy commercially available ITO coated quartz 

substrates from Prazisions Glas & Optik (a German glass optics manufacturing 

company).  The substrate is a piece of quartz of 12.6 mm X 12.6 mm X 1 mm.  These 

were used because they had smoother surfaces than the ones fabricated in our facilities.  

We used an ITO film that was specified to have a sheet resistance of 20 ±5 Ohm/sq.  

Assuming a resistivity of 7.5X10-4 Ohms-cm (Farhan et al. 2013), we can estimate that 

the thickness of the ITO layer is approximately 375 nm.   

 The 2nd step is made to increase the adhesion between the HSQ resist and the ITO 

layer.  The fabrication yield of ZP structures is highly dependent on this adhesion.  This 

lack of adhesion is evident when developing the sample after e-beam exposure.  Without 

aid of any kind, only about 25% of the structures would still be standing even when using 

a gentle flow of water to rinse the developer.  Wi et al. from the Seoul national University 

have reported the used of a thin amorphous silicon layer to improve the adhesion between 

HSQ and a multilayer of cobalt and palladium (Wi	
   et	
   al.	
   2006).  We added a thin 

adhesion layer of 3 nm of amorphous silicon to our ITO coated substrate using e-beam 

evaporation.  We experienced that the adhesion improved drastically even when it is 

believed that for a nominal layer of 3 nm there might not be a conformal layer.  It was 

important to make sure that the silicon thin layer was as thin as possible so there is 

minimal absorption of laser light into it.  Because of this Si layer, the yield improved to 

100% except for instances in which there was contamination.  By performing cleaning of 

the substrate with ultrasonic agitation after the adhesion layer was coated, we obtained a 

fabricated region with almost no contamination.  We are not sure which adhesion 

mechanism came into play in this high yield and why the adhesion improved. 

 The 3rd step is to coat and bake the HSQ layer.  The thickness of the ZP structure 

is determined by the thickness of the HSQ coating in the center of the substrate.  This can 

depend on a lot of variables including the size of the substrate, the coating acceleration 
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and speed, the type of HSQ, and the post baking process.  The size of the substrate is 

fixed to the design of the nanowire growth silicon substrate holder.  The type of HSQ 

used for the fabrication is FOX-15 manufactured by Dow Corning.  This particular type 

of resist is dissolved into Methyl Isobutyl Ketone (MIBK) with a certain dilution ratio 

that when coated will yield a thickness within the desired range.  The manufacturer does 

not disclose the specific dilution ratio but a range.  It states that the solvent is between 70 

to 90 %w/w MIBK.  After several coating iterations we found that coating with a speed 

of 3000 RPM, accelerated from rest in 3 seconds, spun for 45 s, and post baked at 180˚C 

for 3 minutes yields the required thickness of 400 nm.   

 The 4th step is to expose, develop, and bake the sample.  The designed ZP for our 

process has a diameter of 300 μm and a number of 548 zones which means that there are 

approximately 274 rings exposed.  The smallest dimension for the exposure is the width 

of the outer rings (~200 nm).  The entire ZP was fabricated using a dose of 900 μC/cm2.  

On earlier test, this dose seemed to be adequate to achieve the dimensions of most of the 

zone except for the outer zones.  The inner rings have a higher effective dose because of 

the proximity effect caused by exposing the surrounding areas.  The outer zones seemed 

to be under exposed and hence they would be over developed.  It would be difficult for 

the inner rings to obtain the necessary dose to achieve the proper width by merely 

adjusting the dose.  In order to fix this we created an additional outer 10 μm wide ring 

(Figure 3.3(a)).  This width is large and close enough to increase the effective dose on the 

region of the outer rings of the zone plates.  This outer ring starts at a radius that is 2.5 

μm away form the outer radius of the last ring exposed as shown in Figure 3.3(d).  The 

dose used for the exposure of this outer ring is also 900 μC/cm2.  After this modification, 

all of the rings were successfully fabricated with the designed width.  Figure 3.3(c) shows 

an example in which there was overdose resulting in under development.  The under 

developed region will appear to have a darker shade than the well developed.  We 

developed the patterns by submerging the substrate in tetramethylammonium hydroxide 

(TMAH) for 45 seconds.  After development, the sample was post baked at 550˚ for 2 

hours.  Results of the critical dimension region are shown in Figure 3.3 (b).   
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Figure 3.3: Images of fabricated ZPs.  a) Microscope view of the entire ZP showing the 
outer rings used to compensate for proximity effect correction.  b) Scanning electron 

microscope tilted image of the outer zones of the ZP.  c) Image of an overdosed zoneplate 
that resulted in partial underdevelopment.  d) Zoom in of the outer ring used to even out 

the proximity effects. 

3.5   Thermal Decomposition of Silane 

 A brief description of the thermal decomposition of silane follows in order to 

complement the numerical studies.  A 1st order homogeneous reaction was studied to 

obtain decompositions between temperatures ranging from 380˚C to 490˚C for a 

significant pressure range (Hogness,	
  1936).  Our group made a rough estimation of this 

decomposition extrapolating temperatures based on the laser power required to achieve 

ablation of the oxide layer.  This ablation was considered to be an indication of melting 

which occurs for oxide at a temperature of 1610˚C.  The minimum power for ablation of 

oxide in a setup was of 30mW.  In the same setup the decomposition of silane occurred at 

a power ranging from 5mW to 12 mW.  Assuming a linear relationship between power 
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and temperature we can roughly estimate that the decomposition is achieved when the 

substrate surface achieves a temperature ranging from 291 K to 660 K.   

3.6   Thermal Simulation of Heated Substrate Using ZP for Nanowire Growth  

 We built a finite element model in Ansys to analyze the temperature of a spot in 

the substrate when it is shined with a small focused laser.  The entire model was 

constructed inside a larger reservoir of 1mm3.  This volume is large enough to simulate 

an infinite reservoir for which the temperatures far from a heat generation source will not 

change from the initial values. The materials selected for our model were the ones that 

yielded the best experimental results, as discussed in a previous section of this chapter.  

The material stack was a substrate of SiO2 with a layer of 200 nm of silicon on top and a 

200 nm SiO2 at the top of the model.  Symmetry allows us to cut the number of elements 

by half.  These models simulate the scan of a heat generation spot by reassigning the heat 

generation terms to new nodes on every single time step.  The axis delimited by scan 

would be used as the symmetry axis.  Constraining the heat transfer in the direction 

normal to the symmetric surface to 0 is used to ensure symmetry.  To model the heat 

generation input, we calculated the intensity distribution of a Gaussian beam on the XY 

surface of the model and then exponentially attenuate it based on the absorptiveness of 

the material.  A peak Intensity I0 is defined based on the laser parameters and then its 

value is input in the Equation (3.2).  

   q
i

=α I0e
−α ze

−2 x−x0( )2−2 y− y0( )2
w0  

(3.2) 

In this equation, z is the depth coordinate, w0 is the beam spot size created by the ZP, x 

and y are the lateral coordinates, x0 and y0 are the center coordinates of the beam, and 

alpha is the absorption coefficient based on the material.  The center coordinates of the 

beam are updated for each time step to simulate the scanning of the beam.  We have 

assumed for several cases that the top oxide layer actually is capable of absorbing some 

of the light.  We have defined both layers of SiO2 and Si to absorb with different 

absorption coefficients.  By performing an energy balance we can see that the output 
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intensity of the top oxide layer becomes the input intensity for the silicon layer.  The 

input intensity was calculated based on an average power measurement of the laser 

source of 5 mW.  This power was the experimental lowest power that would obtain 

nanowire growth.  The intensity corresponds to one of a pulsed laser compressed to 50 

femtoseconds.  For the laser used, when the spot size w0 was of 230 μm, the intensity is 

estimated to be 3.8X1010 W/m2.   

 The simulations were run with different values of absortivity α.  Silicon 

absortivity was the highest which was 1.213*107 m-1.  This material property was kept 

constant throughout the entire set of simulations.  For silicon dioxide we started with a 

given literature value of 2.594X103 m-1 but this value did not make us obtain the high 

temperature we expected at the top surface of the substrate.  Taking into consideration the 

potential nonlinearity of the dielectric constant under intense fields, we tried increasing 

the αoxide value to obtain the expected temperature.  Figure 3.4 shows the temperature 

results corresponding to several chosen αoxide presented in each row.  All plot contours are 

normalized to the maximum temperature of each model.  Each column in the figure 

corresponds to a certain time within a single pulse.  The 1st column shows the results at 

50 fs, which is the time in which the heat generation condition is active.  Right after the 

50 fs the heat generation terms are equal to zero to allow for heat dissipation to take 

place.  2nd and 3rd column shows how much of the heat have dissipated after 200 ps and 

13 ns respectively.   

 We are interested in studying the temperature of the substrate at the area in 

contact with the flowing silane.  Figure 3.5 shows the time history of the maximum 

temperature at the top of the substrate using the same absorption values shown in Figure 

3.4.  Even when there might be a maximum temperature at the top of the absorbing 

silicon layer, it is at the top of the substrate that the silane decomposition takes place.   

 The processing laser has a pulse repetition rate of 80MHz.  This frequency 

corresponds to a time of 13 ns between pulses.  Every 13 ns we activated the heating for 

another time step that lasted 50 fs.  The entire time of the model consist of 5 pulses, time 

at which the maximum temperatures are close to reaching equilibrium.  Within 5 pulses 
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there was already a tendency for the values to reach a plateau.  When we used an αoxide 

value of 2.594X106 m-1 is when we obtained the temperatures closer to the value we 

expected.   

 

Figure 3.4: Heat transfer simulation of nanowire growth substrate under the influence of 
ZP generated focused hot spots.  Columns show different times: a) t = 50 fs, b) t = 200 
ps, and c) t = 13 ns.  Rows show results for different absorption coefficients: i) αoxide = 

2.594X103 m-1, ii) αoxide = 2.594X105 m-1, iii) αoxide = 2.594X106 m-1, iv)αoxide = 1.038X107 
m-1. 
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Figure 3.5:  Time history of the maximum temperature node at the surface of the 
substrate. 

3.7   Fabrication of Nanowires Using ZPs 

 A brief summary of the experimental results obtained in the growth of silicon 

nanowire is presented here.  Nanowire fabrications were carried out by James Mitchell 

(Mitchell et al., 2014). The decomposition of silane after reaching a temperature 

threshold yields nanowires of roughly the same size as the heated spot.  If the gas 

chamber is also filled with diborane or phosphine the nanowires will be doped.  The 

doping concentration depends on the concentration of the gas mixture.  After performing 

a lot of experiment it was seen that the most important parameters that affected the shape 

of the wire were: the quality of the fabrication of the ZP, the scanning speed, the 

delivered laser power, and the laser polarization.  Lower scan speeds would yield 

continuous wires while faster speeds could create non-continuous ones.  It was 

established experimentally that a scan speed of 0.5 μm/s was the most optimal one and 

hence it was used for all subsequent experiments.  It was observed that although changing 

the scan speed would influence in the continuity of the wire it did not influence 

significantly on the width of the nanowire.  A very interesting observation was that the 

direction of the polarization of the incident light would greatly influence the continuity of 
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the nanowires.  The polarization could be controlled strategically in our favor to yield 

nanowires much smaller than the diffraction limit (Mitchell et al., 2014).  Is believed that 

the superposition between the incident light and the surface scattered radiation would 

yield interference patterns in the formation of the nanowires.  The shapes of the 

interference patterns are polarization dependent.  Figure 3.6 shows how the polarization 

of the incident beam influences the direction of the ripples.  The polarization is shown as 

the arrows in the lower right corner of each inset.  The top row shows 3 wires constructed 

using a horizontal polarization. The bottom 3 insets show diagonal, vertical, and circular 

polarization.  We can see that horizontal polarization yields continuous wires.  

 

Figure 3.6: Effect of power a) 11 mW, b) 13 mW and c) 20mW; and polarization on the 
shape of the nanowires formation: d) diagonal polarization, e) vertical polarization, f) 

circular polarization.  Scale bars on the lower left corner of each inset show a distance of 
1 μm (Mitchell et al., 2014). 

 We studied how the power affected the shape of the wires made by using 

horizontal polarization.  By changing the delivered power we were able to control the 

width and amount of wires.  The top row shows from left to right a delivered total power 

of 11 mW (1 nanowire), 13 mW (2 nanowire), and 20 mW (3 nanowires) respectively.  
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We also show that 60 nm wires could be fabricated taking advantage of this ripple 

formation.   

3.8   Summary 

 In this chapter we discussed the use of ZPs to make silicon nanowires.  A 

description of ZPs was presented together with how we used them to create nanowires in 

an experimental setup.  Parameters like the location of the zones, materials and thickness 

of the structure is critical to the efficiency of the ZP.  We presented a fabrication 

procedure of our design that would ensure maximum efficiency for a level 2 phase ZP 

and a high yield of ZP structures.  Thermal simulations of a surface shined by a small 

spot, allow us to understand the heat transfer mechanism dependency on the absorption 

coefficients and thermal properties of the material stack.  Finally we present experimental 

results that show the dependency on nanowire fabrication on speed, polarization, and 

delivered power.  Using all this knowledge the CVD process have been tuned to obtain 

silicon nanowires as small as 60 nm wide.   
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CHAPTER 4. THERMAL CALCULATIONS FOR NEAR FIELD FOCUSING

 Several applications of bowtie apertures include the generation of a small hot spot 

at the exit of the aperture due to the presence of an incident laser.  In this thesis chapter 

we analyze the heat transfer generation and dissipation of a bowtie aperture inside a stack 

of materials that is receiving an input of laser light.  Because of light-material interaction 

there will be a conversion of electric field energy into thermal energy.  This conversion of 

energy can be seen as an absorption that can be related to the imaginary part of the index 

of refraction of the material interacting with the light.  A temperature gradient profile 

shows us the absorbed energy is diffused into the medium as molecular kinetic energy.  

This analysis presented here starts with a calculation of the electromagnetic near field 

surrounding a bowtie aperture.  

4.1   Electromagnetic Model 

 We need an electromagnetic model to understand how light interacts with 

apertures and how is converted into dissipated energy.  All electromagnetic models used 

in this report are made with the software High Frequency Structural Simulator (HFSS).  

The software is based on the Finite Element Method (FEM) for solving partial 

differential equations.  In this method a volume is discretized into a mesh composed of 

tetrahedral elements.  The geometry of this mesh is optimized during several iterations of 

the solution.  The size of elements is modified on each iteration accordingly to how fast 

the electric field changes with respect to space.  Zones with higher gradients of electric 

field will contain smaller elements.  During the solution, the differential equations are 

turned into frequency dependent equations instead of time dependent.  This makes the 

solution a steady state kind.  The electromagnetic calculations were done by Nan Zhou 

(Zhou et al., 2015).  
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 Calculations are made for two major cases that could be considered to have 

different applications. The 1st case consists of a laser source shining on an aperture with 

no other components around.  For this case we are interested in applications in which the 

confined spot at the exit of the aperture is on top of dielectric-like surfaces. An example 

of this kind of surface would be a layer of photoresist used in lithography.   

 The 2nd case consists of a source shining on an aperture used for Heated Assisted 

Magnetic Recording (HAMR).  A brief description of the HAMR technology is presented 

in Section 2.1.  The case for which we considered HAMR included the effect of coupled 

light into a stack of material. We will refer to this stack of materials as the recording 

medium.  We assume that the presence of the recording medium has much more impact 

in the field distribution on the bowtie than the presence of a photoresist, which would be 

the 1st case.   We need to differentiate between these two models because the 

electromagnetic simulations have shown that the presence of the recording medium yield 

significantly different electric field results.  

Table 4-1: Optical properties used in the electromagnetic model. 

Material Thickness (nm) n k 

Au 50 0.154 4.908 
CrRu 15 3.15 5.68 
MgO 5 1.76 0 
FePt 8 3.30 4.3 

Diamond Like 
Carbon 

1 1.53 0 

Air 2 1 0 
Diamond Like 

Carbon 
1 1.53 0 

Ag/Au t 0.036/0.154 5.566/4.908 
SiO2 ∞ 1.453 0 

 The model of the recording medium of the 2nd case consists of a stack of layers 

with different index of refractions (Zhou et al., 2011).  Table 4-1 shows the thickness and 

real and imaginary parts of the refraction index ñ=n+ki for all the materials of the stacked 

layers.  Figure 4.1(a) shows the stack of materials together with the metal layer where the 

bowtie is positioned.  Figure 4.1(b) shows the dimensions of the bowties.  The 
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dimensions are outlined as a, b, d, and r, where a and b are the sides of the bowtie, d is 

the gap and r is the radius created by the focused ion beam milling process.  The 

wavelength of the input light of the electromagnetic model was fixed to 800 nm and the 

incoming field was modeled as a Gaussian beam with a waist of radius of 0.3 microns.  

The peak incident field was fixed at 1 V/m for all models.      

 We studied the transmission efficiency as a figure of merit to choose which one is 

the most effective EM model. Transmission efficiency is defined as the ratio of the power 

at the exit of the aperture divided by the spatial maximum power at the input of the 

aperture.  We obtained solutions iterating on different dimension of the bowtie and chose 

the most optimal results.  For an incident wavelength of 800 nm, the dimensions that 

yielded the highest transmission efficiency were a = b = 400 nm and t = 90 nm.  The 

variable t represents the thickness of the aperture layer.  Solutions were calculated using 

different gaps sizes.  The gap size shown as the variable d in Figure 4.1 (b) was analyzed 

for 5 nm and 20 nm.  In the EM models, stronger coupling was seen for the 5 nm gap but 

20 nm was used in the thermal models because it corresponds to a more manufacturable 

size.   

 

Figure 4.1: a) Stack of materials used for the electromagnetic simulation.  Light is 
incident from the quartz layer.  b) Outline of the dimensions of the bowtie. (Zhou et al., 

2011). 
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 After choosing a set of dimensions that maximized the coupling efficiency, we 

needed to analyze how much temperature increase would occur based on the heat 

absorption.  We want for the recording FePT layer to increase its temperature as much as 

possible without heating too much the aperture layer.  Since the aperture layer is the first 

layer to absorb some of the incoming light, we expect that there will be localized high 

temperatures at the aperture.  We also expect a high temperature rise in the recording 

medium due to the effect of good insulation surrounding the layer and an approximate 

power efficiency of 1 of the aperture.  

4.2   Thermal Models 

4.2.1   Construction of Thermal Model 

 Each case mentioned is divided into two different models that simulate the effect 

of heat absorption and conduction dissipation.  One model is the aperture and the other 

model is the material stack of the recording medium.  All simulations are made using the 

same aperture and recording medium models but having different thermal loads.  The Z 

axis is the same as the direction of the incident light and is also the coordinate to delimit 

the boundaries for the stack of materials.  The model with the aperture lies inside the Z < 

0 region and the stack of materials for the recording medium lies inside the Z > 0.  The 

coordinate Z = 0 lies exactly at the exit of the aperture.  Both models are basically 

independent heat transfer problems that have inputs from the same electromagnetic 

model.  In order to make this analysis, we must make the assumption that there is not 

considerable conduction, convection, or radiation within the DLC / Air / DLC layer.   

 The thermal simulation package consists in a series of codes for preprocessing 

and solving the model.  All codes are written in APDL language, which is an Ansys 

proprietary language.  The code is made in a parametric manner, meaning that if 

dimensions change, one must just adjust the dimensions in the code and then rerun the 

code over a clear new environment.  Ansys generates the most appropriate mesh using 

element size commands as guide but care must be taken to ensure that there are no errors 

during the meshing procedure.   
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 The entire model is build into a large thermal reservoir.  With this we ensure that 

the conditions will eventually reach steady state without over heating the active area.  

This is a good assumption considering that the heat generation profile is very small 

compared the aperture.  An image of both large thermal reservoirs is shown in Figure 4.2.  

When zooming into the large model we are able to see either the bowtie structure or the 

stack of materials.  Most of the volume of both thermal reservoirs is modeled as silicon 

dioxide.  

 The grid size varies across the model.  In order to create the large reservoir for 

such a small model we need to adjust the mesh size according to the region of detail.  

Different volumes were created surrounding the bowtie aperture’s volume in order to 

define different material properties and element sizes for them.  We have the smallest 

defined volumes and elements right at the gap of the bowtie and at the recording medium 

zone in which we apply the heat generation terms.  We surround the volumes of the 

bowtie and heated zone with volumes that contain elements that sequentially increase in 

size.  The elements around the gap of the bowtie and around the heated spot in the 

recording medium are 6 nm in the X, Y, and Z direction and their size grows to 230 nm 

in the X and Y direction but kept at 6 nm in the Z direction as they reach the next 

volume.  On the next volumes the average sizes in all X, Y, and Z directions are of 1 µm, 

4 µm, and ultimately 50 µm on the outer reservoir.  After having these dimensions 

specified by the user, Ansys tries to create an optimum match between volumes with 

different element size definition.   
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Figure 4.2:  View of the large reservoirs for a) aperture model and b) recording medium 
model in which zoom in of the thermal models for the c) bowtie aperture and for the d) 

recording medium are shown.  

Table 4-2: Thermal properties for materials used in thermal models.  

Material Density (kg/m3) Specific Heat 
(J/kg-K) 

Conductivity (W/mK) 

Au 18300 129 318 

Ag 10490 230 400 

SiO2 2200 1000 2.0  

FePt 14660 340 35 

MgO 3560 955 45 

CrRu 10632 313 109 

  

 Material properties for the thermal model are assumed constant with respect to 

temperature.  The material properties necessary for a heat transfer simulation are density, 
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specific heat and thermal conductivity.  Table 4-2 shows these properties for all different 

materials inside the model.   

 In order to minimize the necessary amount of elements and nodes we take 

advantage of the symmetry of the problem and model only one quarter of the aperture 

and recording medium.  Planes of symmetry are the XZ and YZ and they pass through 

the center of the aperture.  The model becomes automatically symmetric when we impose 

the condition of no heat transfer perpendicular through the XZ and YZ walls.  Figure 4.3 

shows the model and the symmetry walls.  The entire model is subjected to an initial 

ambient temperature condition of 300 K.   

 

Figure 4.3:  Models of bowtie aperture [a) isometric view, c) top view, e) front view] and 
recording medium [b) isometric view, d) top view, f) front view] showing walls of 
symmetry used to diminish the number of elements and nodes in the calculations. 
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 After defining the geometry of the thermal model we need to introduce the heat 

generation data.  Volumetric loss density is a term used in HSFF with units of W/m3 that 

corresponds to an amount of power absorbed (or lost) in the material.  HFSS can use 

arbitrary spatial coordinates and use them to interpolate values for volumetric loss density 

at specific locations.  As mentioned before, the EM model is normalized to have a spatial 

peak electric field of 1 V/m.  For a peak electric field of 1V/m the peak intensity is 

I0=0.5(E0)2/ηq=9.136*10-4 W/m2, where ηq=η0/n is the impedance of the wave in the 

quartz medium.  The value of η0 is the impedance of free space and n=1.453 is the index 

of refraction of the quartz.  For a Gaussian beam we can calculate the total power as 

Ptot=I0πr2/2.  Using a radius of 0.3 µm, the total power is of 1.2916*10-16 Watts.  This is a 

very small value compared to a practical value used for HAMR.  To relate the normalized 

electric field obtained in the electromagnetic simulations to a real increase in temperature 

in our thermal models we need to apply a scale factor to the volumetric loss density on all 

interpolated nodes.  We need to make the assumption that the electromagnetic profile 

does not change with respect to the incident maximum power, or that the material optical 

properties do not change too much with respect with the temperatures.  We have scaled 

the values to simulate a laser with a power of 50 mW.  This adjustment means 

multiplying the mentioned heat generation values of the interpolated node’s by 

6.255X1014.  

 In order to obtain the heat generation data from the electromagnetic model we 

must select a group of nodes in the thermal model and extract their coordinates.  The 

selected nodes were the nodes within the coordinates 0 µm≤ X ≤ 1.4 µm, 0 µm≤ Y ≤ 1.4 

µm, and -270 nm ≤ Z ≤ 0 nm.  The nodes outside of this selected region have negligible 

values of heat generation.  These coordinates are imported into the HFSS software and 

used for an interpolation of the heat generation data.  Then the data is scaled and coded 

into heat generation commands for Ansys.  Figure 4.4 shows the profile for the heat 

generation shown for both aperture and recording medium models.   
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Figure 4.4:  Heat generation profile presented in W/m3 on a logarithmic scale for a) the 
bowtie aperture and b) the recording medium. 

4.2.2   Results and Analysis 

 We are interested in comparing the increase in temperature of a bowtie aperture 

for gold and silver.  For each material we are also interested in comparing the effect of 

having a recording medium vs. not having the medium.  Figure 4.5 shows the silver 

aperture maximum temperatures ranging from 0 to 1 ns.  We can immediately see that the 

coupling of the energy on the recording medium augments the field intensity profile in 

the aperture.  Figure 4.6 shows the same result for a gold aperture.  When comparing gold 

and silver we can see that gold absorbs less heat.  The coupling that arises when the 

medium is present seems to increase the amount of energy that is absorbed and converted 

into heat inside the aperture.   

 We want to investigate the relationship of the thermal profile of the aperture VS 

the one for the recording medium for both aperture materials.  This will help us identify if 

gold or silver is better suited for HAMR application.  Figure 4.7 shows the temperature 

time history result on the node of maximum temperature in the recording medium.  We 

have defined a figure of merit called the thermal efficiency as η=ΔTRM/ΔTap, which can 

be described by the ratio of the maximum temperatures changes in the recording medium 

(ΔTRM) and the aperture model (ΔTap).  This efficiency helps us determine the thermal 

performance of using a gold aperture vs. a silver aperture.  The thermal efficiency for a 
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silver aperture was calculated to be ηAg=58.4 and for a gold one it was ηAu=7.29.   While 

a silver aperture does not increase its temperature as much it also couples more energy 

into the recording medium making it the most suitable material of our design. 

 

Figure 4.5: Temperature vs. time solutions for a silver aperture with and without the 
influence of the of the HAMR recording medium. 
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Figure 4.6:  Temperature vs. time solutions for a gold aperture with and without the 
influence of the of the HAMR recording medium. 

 

Figure 4.7: Temperature vs. time solutions for a recording medium maximum 
temperature using silver and gold apertures. 
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 In order to validate our results we have made further calculations that can support 

the temperature profiles obtained.  The thermal dissipation length is a characteristic 

distance that can give us a qualitative idea about how much the results are within an 

expected range of values.  A thermal dissipation length µt can be described by equation 

µt=2√(αt) (Marín, 2010).  The value of µt is approximately defined as the radius of a heat 

outspreaded sphere inside a material of thermal diffusivity α after a time t has elapsed.  Is 

can be seen as the length in which the change in temperature is 1/e fraction of the 

maximum temperature change on the model.  We compared the dissipation lengths inside 

the mediums in which heat was applied and also we would measure how far away the hot 

spot have dissipated in the model.  We can see that after a certain time, the energy still 

lies within a volume for which the enclosing temperature is still the initial temperature of 

300 K.  Figure 4.8 shows some profiles of heat dissipation for which a length has been 

measured and calculated.  The black line presented in insets b) and d) shows 

approximately the isothermal line in which the temperature is 1/e fraction of the 

maximum temperature change.  The measured length should be similar to the thermal 

dissipation length.  For a medium made of gold after a heating lasting 50 ps, the thermal 

dissipation length is 164 nm.  For the recording medium after a heating lasting the same 

amount of time, the thermal dissipation length is 37 nm.  Since the thermal dissipation 

length describes the radius of a much simpler single nodal heat profile inside a 

homogeneous medium, we can’t exactly expect to obtain the exact same length.  

However this test is good enough to check that our results are within a proper order of 

magnitude.  A more rigorous check of the models would be to make a direct calculation 

of the energy conservation inside the model.   
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Figure 4.8: a) Heat generation profile in a recording medium using a gold aperture and b) 
its resulting temperature after 50 ps.  c) Heat generation profile in a gold aperture and d) 

its resulting temperature after 50 ps. 

 We can check energy conservation by comparing the integration of a volumetric 

heat generation to the increase in thermal energy over a given volume.  In order to 

integrate the applied heat generation we write a code that multiplies the volume of each 

element by the average of the volumetric heat generation input of the element.  Since the 

value is assigned to nodes rather than elements we calculate the nodal average volumetric 

heat generation input for each element.  For our tetrahedral 8 nodes elements we simply 

average this value for the 8 nodes.  We also calculate the increase in thermal energy of 

the volume.  We read the solution for a certain time step and find the average temperature 

of each element.  The increase in temperature from the initial 300 K value of each 

element is used to calculate the rise in the internal energy of the element.  Table 4-3 
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shows the comparisons of the input heat generation summation and the rise in thermal 

energy for all models.  We can see that values are in agreement with energy conservation.   

Table 4-3: Energy conservation calculations for verification of the thermal models. 

Model Heat generation 
summation (pJ) 

Summation of 
thermal energy 
increase (pJ) 

Gold aperture with recording medium.  0.528 0.581 

Silver aperture with recording medium.  9.51X10-2 8.58X10-2 

Gold aperture no recording medium.  0.2907 0.343 

Silver aperture no recording medium.  5.25X10-2 4.98X10-2 

Recording medium using gold aperture.  1.62 1.65 

Recording medium using silver aperture.  1.96 2.00 

4.3   Summary 

 In this chapter we have presented thermal models describing the temperature rise 

in an aperture used for confined heating applications.  We have presented models for a 

bowtie aperture meant for lithography and for HAMR and we have compared the use of 

gold and silver for these applications.  An electromagnetic model can gives us results of 

how much heat is absorbed in a medium and a thermal model can tell us how this 

absorbed heat will result in a temperature rise.  For the application of HAMR, a figure of 

merit compares the efficiency of potential materials by comparing the unwanted rise in 

temperature in the bowtie aperture to the wanted temperature rise in the recording 

medium.  Based on this figure of merit we determine that an aperture made of silver is 

more efficient than an aperture made of gold.  Finally a verification of the results can be 

made by comparing thermal diffusion length in the models and by performing an energy 

conservation analysis.    
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CHAPTER 5. SUB-DIFFRACTION LIGHT FOCUSING USING A CROSS 
SECTIONAL RIDGE WAVEGUIDE NANOSCALE APERTURE

 In the past, most of the ridge apertures were made using sequential fabrication 

methods such as focused ion beam (FIB) milling. These methods are relative simple 

because they require no more than two steps, for example, metal deposition and ion beam 

milling for FIB.  One of the disadvantages of using FIB for fabrication is the proximity 

effect that produces rounded features and reduces the localization of light.  Schemes to 

overcome this problem include milling in such a way that the input side of light is the one 

with the FIB milled rounded feature and the exit side has a minimum rounded shape for 

light focusing (Chen et al., 2015, Leen et al., 2010).   

 This thesis chapter presents a method for fabricating ridge apertures using planar 

layer-by-layer lithography process. The apertures are constructed in the cross section of a 

dielectric layer surrounded by metal layers from top and bottom.  This method can 

potentially overcome the proximity effect in the FIB process, and also be suitable for 

mass production of aperture arrays. Numerical computations are used for the design of 

these apertures. The fabricated apertures are characterized using scattering near field 

optical microscopy (s-NSOM).    

5.1   Layer-by-Layer Fabrication of Ridge Apertures 

 Table 5-1 shows the procedure to fabricate the ridge aperture in a layer-by-layer 

manner.  A cleaned silicon substrate is coated with layers of titanium, gold, and chrome.  

A 5 nm titanium layer serves as an adhesion layer between the 150 nm of gold and the 

silicon substrate, while a 3 nm chrome layer serves as an adhesion layer between the gold 

layer and a photo resist layer of hydrogen silsesquioxane (HSQ).  The 3 layers deposited 

shown on step 1 of the Table 5-1 can be coated in one single vacuum pump down a the 
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Kurt J. Lesker® e-beam evaporation chamber.  We spin-coated HSQ XR-1541 4 % e-

beam resist at 4000 RPM for 45 seconds and soft baked the substrate at 120˚C for 3 

minutes. We exposed the substrate using electron beam at a current of 0.3 nA with a dose 

of 2000 µC/cm2. The exposure pattern of lines is shown in the second step of Table 5-1. 

The exposed HSQ is further developed in tetramethylammonium hydroxide for 45 

seconds. This process is intended to generate pairs of lines of HSQ with thickness of 

about 85 nm and a width of 220 nm, which can vary according to the design.  The 

spacing between the lines in each pair is about 25 nm.  After developing the HSQ layer, 

we coated a 5 nm layer of titanium and a 200 nm layer of gold in a chamber capable of 

rotating the substrate.  These last 2 layers were also coated using the same e-beam 

evaporation system mentioned before.  The substrate rotation was used to get as much 

gold into the gap between the two lines of HSQ as possible.  The final structure is 

illustrated in Figure 5.1. It forms a previously studied c-aperture (Leen et al., 2010).  The 

recipe mentioned above lets us fabricate apertures with a particular set of dimensions that 

will be analyzed using numerical methods and tested using s-NSOM and shown in 

sections 5.2 and 5.3.  The gap for this recipe is determined to be about 40 nm using 

scanning electron microscopy (SEM) imaging.  The dimension of the gap is determined 

by the amount of gold deposited into the gap between the two HSQ lines and becomes 

smaller when two lines are positioned further.  For similar doses there was a consistency 

in the gap of the ridge with respect to the separation of the lines.  A potential reason for 

this gap consistency is the small under developed area created by the over exposure of the 

proximity effect.  At this step of the fabrication the lines are enclosed by gold and the 

apertures need to be sliced in such that their cross section is exposed.   
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Table 5-1: Process flow for the layer-by-layer fabrication of ridge apertures.   

# NAME DESCRIPTION SCHEMATIC 

1 Coat of Ti – 
Au – Cr layer.   

E-beam evaporation 
deposition of 5 nm of Ti 
followed by 150 nm of Au 
followed by 3 nm of Cr.  

 

 

2 Aperture lines Coating of XR-1541 4% at 
4000 RPM for 45 seconds.  
Soft baked at 120˚C for 3 
minutes. Exposed with a 
dose of 2000 µC/cm2.  

Developed in TMAH for 45 
seconds.   

 

 

3 Aperture cover E-beam evaporation 
deposition of 5 nm of Ti 
followed by 200 nm of Au.  

 

 

 

 
Figure 5.1: Schematic of the final ridge aperture.  
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Table 5-2: Process flow for the characterization of the layer-by-layer ridge aperture.   

# NAME DESCRIPTION SCHEMATIC 

1 Top view of 
step 3 from 
Table 5-1   

The image to the right 
shows the top view after 
having finished the step 3 
from Table 5-1 

 

 

 

2 Laser cut Use a focused laser to 
make cuts in the substrates 
without making cuts to the 
HSQ lines.  The cuts 
should be made by 
opening a shutter at the 
proper places within the 
same scan direction and 
should be perpendicular to 
the HSQ lines.   

 

 

3 Crystal guided 
mechanical 
cut. 

Use a thin sharp blade to 
make a force in the laser 
cuts of step 2.  A crystal 
guided cut should follow 
the laser cut lines and 
slice the HSQ lines 
exposing their cross 
section.  

 

 

 

4 Platinum 
deposition 

Electron beam assisted 
deposition of platinum is 
made.  Then FIB assisted 
platinum is deposited with 
a current of 0.3 nA.  The 
depth of the deposition 
should be higher than 5 
µm.   
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Table 5-2:  Continued. 

# NAME DESCRIPTION SCHEMATIC 

5 FIB cuts Perform a large cut, which 
will serve as the entrance 
side of the aperture and a 
small cut close to the edge 
of the substrate that will 
serve as the exit side of 
the aperture.   

 

 

 

6 s-NSOM The sample is taken into 
an s-NSOM for 
characterization where 
light is incident from the 
side with the large FIB cut 
and the electric field 
measurements of the 
aperture is from the side 
with the small FIB cut.   

 

 

 

 Great efforts have been made in order to access the structure for NSOM 

measurement, as illustrated in Table 5-2 and described below. First a laser cut was made 

using an amplified femtosecond laser cutting system as shown in the schematic for step 2 

in Table 5-2.  The cut is made along the silicon crystal lattice direction. The electron 

beam exposed lines are intentionally made perpendicular to the crystal lattice orientation.   

The laser does not directly cut the exposed lines to avoid damage to the fabricated 

aperture. The substrate is then broken apart by mechanical force as shown in the 

schematic for step 3 in Table 5-2.  In order to access the aperture using an NSOM tip, a 

cross section wall is made using FIB milling.  Similar to a conventional cross-section FIB 

milling a Pt deposition is required.  This process starts with an electron-beam assisted 

platinum deposition of 200 nm, which is made in order to protect the sample from the ion 

beam used in the localization of the platinum wall.  A 5 µm or taller wall is fabricated 

close to the edge of the crystal-guided cut using a tool for FIB assisted platinum 

FIB	
  edge	
  small	
  cut	
  

FIB	
  large	
  cut	
  

Pt	
  deposition	
  

s-­‐NSOM	
  light	
  

FIB	
  
large	
  
cut	
  

FIB	
  
small	
  
cut	
  

Si	
  substrate	
  

30	
  μm	
  



	
   92	
  

deposition (step 4 schematic of Table 5-2).  The height of the wall is chosen as 5 µm or 

more to avoid background light during the s-NSOM measurements as well as to protect 

the apertures during the FIB milling.  Is possible that the height of the wall does not 

match the height specified by the deposition command.  The actual fabricated height 

might depend on what beam current is used and it needs to be measured after deposition.  

After the wall has been deposited and its height confirmed, the sample is ready for 

milling.  Step 5 of Table 5-2 shows the FIB milling used to reveal the aperture cross 

section.  There are 2 main cut regions on both the entrance and exit side of the wall.  A 

relatively large (about 30 µm away from the wall) FIB milling allows light to reach the 

aperture. A smaller cut is made close to the edge mechanical cut of the substrate.  This 

smaller cut reveals the exit side of the aperture.  The exit side needs to be relatively close 

to the edge (around 1 µm) because the s-NSOM tip needs to have access to the aperture.  

The direction of the s-NSOM light as well as both cuts described above are shown in a 

side view of the aperture on the schematic of step 6 of Table 5-2.    

 Figure 5.2 shows SEM images of intermediate steps including the exposure and 

development of the HSQ lines shown in Figure 5.2(a) and the edge of the substrate after 

the laser cut shown in Figure 5.2(b).  Figure 5.2(c) shows a tilted view of the deposited 

wall for several groups of lithography lines.  The figure also shows large cuts that are 

used to allow the s-NSOM light to reach the apertures.  Figure 5.2(d) shows a front view 

of 2 apertures after the entire sample preparation process for the s-NSOM measurement is 

finished.  Figure 5.2(e) shows a tilted rotated view of the entrance side of an aperture wall 

that has been thinned down.   
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Figure 5.2: SEM images of the ridge aperture structure during intermediate steps.  (a) 
Exposed and developed HSQ lines (scale bar is 200 nm).  (b) Aperture lines on edge of 

the substrate after crystal guided cut (scale bar is 1 µm). (c) Image of the large cuts made 
behind the Pt walls (Inset scale bar is 10 µm).  (d) Zoomed cross-section picture of 2 

apertures (Inset scale bar is 200 nm).  (e) Tilted and rotated image of the a thinned down 
Pt wall (Inset scale bar is 10 µm). 
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5.2   Electromagnetic Simulation 

 Electromagnetic simulations were made using ANSYS high frequency structural 

simulator (HFSS), which is a commercial FEM solver.  Tetrahedral elements divide the 

aperture by using nodes for which all the Maxwell equations are satisfied.  Results of the 

same FEM solver have been validated (Şendur et al., 2004) for problems related to 

metallic spheres in a dielectric medium (Mie, 1908). The geometry of the model is shown 

in Figure 5.3 (a).  It consists of two lines made of HSQ with width of 220 nm and height 

of 85 nm.  A ridge with width of 25 nm separates them.  The length of the ridge is of 50 

nm, which leaves a gap of 35 nm filled with HSQ.  2 fillets with radius of 20 nm were 

modeled at the two sides of the ridge leading towards the gap.  These shapes and 

dimensions were taken from the SEM images of the final produced aperture.  The 

electromagnetic modeling was carried out by Anurup Datta.     

 The modeling software automatically generates the mesh.  The size of the mesh is 

adaptively changed after each solution iteration. The element size becomes finer where 

the field magnitude has a higher gradient.  Ultimately at the final solution the elements 

sizes range from 2 nm close to the tip of the ridge to 100 nm at other places.  To save 

time, we take advantage of the symmetry of the aperture by modeling half of the aperture 

and forcing a perfect magnetic conductor boundary condition at the symmetry plane.  At 

all other surfaces of the model that are facing towards the exterior of the model, we 

impose boundary conditions for absorption, which means that there will not be any field 

reflection back into the model.  An incident radiation with wavelength of 633 nm is 

applied corresponding to a Gaussian beam with a radius of 500 nm and with the 

polarization shown in Figure 5.3(a). The optical properties of gold were taken from a 

paper written by Johnson and Christy (1972). 
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Figure 5.3: (a) Electromagnetic simulation model for the cross sectional ridge 

waveguide apertures. (b) Electric field distribution for the model depicted in (a). 

 Figure 5.3(b) shows the electric field distribution corresponding to the dimensions 

shown in Figure 5.3(a) at a distance of 5 nm away from the exit plane of the aperture. The 

tip of the penetrated portion of the top layer of gold acts as a lightning rod and helps the 

confinement of electric field giving rise to an intense hot spot.  When compared with the 

incident light, the electric field is enhanced by several times at the tip with the help of the 

effect of the localized surface plasmons.   

 It is known that for ridge apertures, the dimensions of the aperture relative to the 

wavelength play an important role in determining the performance of the apertures and 

their ability to concentrate light into a hotspot (Jin, 2004). After a series of simulations, it 

has been noted that the two most significant parameters that affect the focusing of the 

ridge apertures presented in this chapter are the penetration depth and the width of the 

line, which are the dimensions d and w respectively in Figure 5.3(a).  Figures 5.4 and 5.5 

present electric field distributions for variations of the parameters d and w. 

 Figure 5.4 show the electric field distribution at a plane 5 nm from the exit plane 

when the penetration depth, d is varied as 35 nm, 55 nm, and 75 nm (Figure 5.4 (a), (b), 

and (c) respectively). For these simulations, except the penetration depth d, all the other 

dimensions are kept constant as in Figure 5.3(a). We find that there is an optimum 
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penetration depth where the field concentration at the tip is maximum.  For a particular 

wavelength, the change in the penetration depth causes a change in the resonance 

condition for the surface charge accumulation at the tip and it maximizes at a particular 

length, which in our case is 55 nm. 

     

Figure 5.4: Electric field distribution of an aperture with 3 different penetration 
depths.  (a) d = 35 nm, (b) d = 55 nm, (c) d = 75 nm.  Other dimensions are fixed to the 

values presented in Figure 5.3(a). 

 Next, we study the effect of the change in the aperture size by altering the HSQ 

line widths. In Figure 5.5, the line width, w is 120 nm, 220 nm, and 440 nm (Figure 5.5 

(a), (b), and (c) respectively) and all the other dimensions are fixed as in Figure 5.3(a). 

From the results of the electric field, we find that changing the aperture width changes the 

charge accumulation due to surface plasmon at the edge of the gold-HSQ interface. In 

Figure 5.5(a), when the line width is 120 nm, the field concentration at the tip is higher.  

At the same time there is a high field concentration at the interface between the bottom 

gold layer and HSQ lines.  This high field concentration will prevent us from obtaining 

an isolated hot spot. When the line width is increased to 220 nm as in Figure 5.5(b), the 

field concentration at the interface spreads out and becomes weaker and an isolated hot 

spot is obtained. Increasing the line width even more as shown in Figure 5.5(c) would 

make the apertures wider and allow propagating modes of the ridge waveguide. From 
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these simulations and considerations of fabrication processes, we focus on the 

demonstration of apertures with w = 220 nm and d = 45 nm. 

   

Figure 5.5: Electric field distribution of an aperture with 3 different widths  (a) w = 
120 nm, (b) w = 220 nm, (c) w = 440 nm.  Other dimensions are fixed to the values 

presented in Figure 5.3(a). 

5.3  NSOM Characterization 

 The fabricated apertures were positioned in the s-NSOM system where far field 

images were taken through an objective lens. Figure 5.6(a) shows a far field image of the 

exit of the apertures while there is incident light on them.  Figure 5.6(b) shows an 

illustration of the top view of the far field measurement including the necessary FIB cuts 

to thin down the wall to allow the incident light.  In order to help locate the apertures 

during characterization we made some marks.  Marks were milled below the apertures 

row and deposited above the aperture row as shown in Figure 5.6(c).  The milling of the 

mark was made with an FIB. The deposition of the above marks was FIB assisted 

platinum deposition.  Deposition marks were made instead of milling to avoid creating 

through-windows in the wall that would allow light to interfere with the measurements.   
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Figure 5.6: Far-field image of apertures.  a) Front view of a far field image.  b) Top view 
of the schematic.  (c) Marks made to locate easier the apertures during s-NSOM imaging.   

 A home built s-NSOM based on a commercial AFM system was used to 

characterize the optical near field of the fabricated apertures.  The s-NSOM was operated 

in transmission mode where a beam of light of wavelength 633 nm was focused on the 

sample with the help of an objective lens. At the same time, an AFM tip was engaged 

with the sample in the tapping mode and the sample was raster scanned. The scattered 

light from the AFM tip was then collected by a separate objective lens and was directed 

to a photodetector. The scattered light signal was demodulated with a lock-in amplifier at 

the tip oscillating frequency and its higher harmonics.  This demodulated signal was used 

to extract the near field information, which had reduced background noise. Zhou (2014) 

developed detailed description of this experimental setup. The NSOM measurements 

were carried out with the help of Anurup Datta.   

 The design of the aperture can yield different results depending of their 

dimensions.  Some will not be capable of yielding localized spots in the tip of the ridges.  

Figure 5.7 shows different apertures that created light spots that seem to have the same 

size as the apertures.  Interestingly the spots appear to be on top of the gold layers instead 

of being inside the gaps.  The image shows SEM, AFM, s-NSOM 2nd harmonics, and s-

NSOM 3rd harmonics images for these apertures.   
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Figure 5.7: Experimental characterization of the apertures without localized spots.  The 
1st column corresponds to apertures with sizes s = 30 nm and w = 27.5 nm.  The 2nd 

column corresponds to apertures sizes s = 20 nm and w = 50 nm.  The rows are different 
images.  From top to bottom SEM, AFM, s-NSOM 2nd harmonic, and s-NSOM 3rd 

harmonic.   
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Figure 5.8: Experimental characterization of the apertures with localized spot. (a) SEM 
image of the aperture, (b) AFM topography of the aperture, (c) s-NSOM signal collected 

at the 2nd harmonic of the tip oscillation frequency from the aperture of (a) and (d) s-
NSOM signal collected at the 3rd harmonic of the tip oscillation frequency from the 

aperture of (a). The scale bars in these figures are 250 nm long. 

 Figure 5.8 shows the s-NSOM results as well as the SEM image and the AFM 

topography for an aperture that successfully confines light in a spot at the gap below the 

ridge.  Figure 5.8(a) shows the SEM image of an aperture fabricated according to 

dimension discussed in the previous section. Figure 5.8(b) shows the corresponding AFM 

topography image. It can be seen from the AFM topography image that the exposed 

surface of the cross section, unlike normal ridge apertures fabricated by methods such as 

FIB milling, is fairly planar. Figure 5.8(c) shows the s-NSOM signal collected at the 2nd 

harmonic of the tip oscillation frequency and Figure 5.8(d) shows s-NSOM signal 

collected at the 3rd harmonic of the tip oscillation frequency. Both Figure 5.8(c) and 

5.8(d) show the enhancement of the field intensity at the tip of the gold protrusion. 

However, it is seen that the high intensity spot from the third harmonic measurement is 

closer to what is predicted by the simulation shown in Figure 5.3(b), where as the image 

obtained from the second harmonic contains unwanted background fringes. Therefore, 

3rd harmonic signals provide a better background suppression and reduction of the 

peripheral fringes and helps in better visualization of the near field spot as seen in Figure 

5.8(d).  With these images we can demonstrate that our aperture is capable of focusing 

light into sub-diffraction limit spot sizes.   

 

 



	
   101	
  

5.4  Summary 

 We demonstrated a concept of using a layer-by-layer fabrication process to 

produce ridge apertures in the cross section of layered thin films.  Numerical calculations 

of the electric field distribution were used to evaluate the apertures. The s-NSOM 

measurements showed the localization of the exit field.  Further development and 

refinement of the fabrication and characterization methods will allow fabrication of 

apertures in large quantities for many applications.  
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

6.1   Conclusions 

 Devices for sub-diffraction limit confinement have the potential of performing 

fabrication of small patterns for many applications.  The devices we discussed in this 

thesis were zone plates and ridge apertures.  Zone plates were successfully proven to be 

capable of heating small surfaces on which we fabricated nanowires with widths much 

smaller than the diffraction limit.  Ridge apertures were successfully proven as great tools 

for optical nanolithography in an array of patterns. They were also being proven to have a 

great potential for heated assisted magnetic recording, which is believed to be part of the 

technology for next generation hard drives.  Different fabrication methods were studied 

to improve the yield of all these devices and to decrease the dimension of the generated 

optical spots.  A lot of the successful procedures presented in this thesis led us to the 

conclusion that electromagnetic field can be confined to dimensions much smaller than 

the diffraction limit.  This work also led us to believe that we can further increase the 

resolution of the nanofabrication methods with some additional work.  The next section 

presents a few ideas that can help us make better devices.  

6.2   Recommendations 

 Most of the recommendations presented in this section are meant to improve the 

resolution of the lines made in our lithography setup.  Our group has been working 

extensively using ridge apertures for lithography.  Starting from the work of contact 

lithography using C apertures (Wang et al., 2006) and bowtie apertures (Wang et al., 

2006) to scanning lithography using apertures milled in AFM probes (Murphy-Dubay, 

2008) to a series of parallel lithography; our group has been trying to find ways to 

produce advance nanofabrication.  There was a moment in which the research focus 
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shifted from single aperture lithography to the use of an array of apertures by the creation 

of a parallel lithography system (Uppuluri et al., 2010).  Following that work we 

developed a system for high precision dynamic control of gap between mask and 

substrate that would improve the resolution of our scanning aperture lithography (Wen et 

al., 2015).  We considered improving this system by sharpening the aperture edges or 

using 2-photon absorption to help confine light even further. To aid with the sharpening 

of the aperture edges we present ideas to keep improving the methods of inverted 

apertures on thin membranes and sacrificial layers.   

6.2.1   Improving Thin Membrane Transfer 

 Section 2.2.4 discusses a scheme made for the transfer of an inverted thin 

membrane to the top of an island.  This island lies inside a substrate that is used for 

parallel lithography using bowtie apertures that are milled at the top of the island.  We 

were not able to make a thin membrane transfer clean enough to obtain a mask suitable 

for parallel scanning nanolithography.  Our goal is to find a combination of requisites of 

the fabrication steps that will make the device useful.   

 One requisite is that the process should ensure permanent attachment of the thin 

membrane.  The substrate will need to be cleaned in between lithography experiments to 

minimize contamination.  We will clean the substrates by submerging them in strong 

solvents such as acetone and isopropyl alcohol.  The thin membrane can be well attached 

by stitching it as shown in Table 2-3 or by finding an adhesive strong enough to 

withstand solvent cleaning.  Another requisite is that the ISPI grating (described in detail 

in section 2.3) must survive the presence of any chemical that will be used to aid in the 

attachment of the membrane.  The last requisite to mention here is that contamination and 

flatness variation of the top of the island should be keep at a minimum.  In the process 

presented, the top of the island is kept covered with an etching mask until the 

development of the ISPI grating.  This helps avoiding the deposition of unwanted 

material at the top of the island.  The presence of the adhesive can create thick layers 

around the island during coating or during the approach of the membrane.  If a thick layer 
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were formed during approaching we would need to clean it and repeat the approach with 

a new thin membrane wafer.   

 After seeing all of these requisites we notice that the selection of the adhesion 

layer is key to the success of the transfer.  The method presented in section 2.2.4 was the 

closest to success that we obtain but there might be other combination of process that 

could work better.  There were previous test made using a thin layer of HSQ as an 

adhesive.  The thin membrane would be approached and the HSQ would be hardened by 

electron beam exposure.  One problem with this process is that the interface between the 

thin membrane and the island needed to be accessible to an e-beam.  Another problem is 

that the thickness of the HSQ might need to be chosen carefully.  If the layer is too thin 

there might not be a good enough adhesion but if it is too thick there could be 

contamination or a loss in flatness at the top of the island.  In order to have access to the 

HSQ adhesion interface we can drill a hole in the glass substrate that holds the thin wafer 

membrane.  If a soft gel adhesive is used as shown in step 3 of Table 2-2, we need to 

make a hole in it as well.  We might need to use some form of alignment scheme to make 

sure that both holes are aligned with the center of the membrane.  Figure 6.1 shows a 

schematic of a variation of the membrane transfer process previously shown in Table 2-1, 

2-2, and 2-3 in which we use HSQ as an adhesion.  The holes in the glass slide and in the 

soft gel are shown in the figure.  To harden the HSQ it would be necessary to remove the 

mask aligner glass by dissolving the acetone in the points shown in the figure and bring 

the rest of the assembly into a chamber with an electron beam.  Once the HSQ is 

hardened we should release the bottom glass slide in order to release the substrate with 

the island.   
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Figure 6.1:  Schematic showing a variation for thin-membrane transfer process using 
HSQ as an adhesion layer.   

 A process using an HSQ adhesion layer was tried in the past but was unsuccessful 

due to alignment and contamination problems.  Some of our problems were fixed after 

choosing a super glue because it was a thinner adhesive material.  With this thinner layer 

we avoided contamination.  We solve the problem of misalignment using adhesive gel to 

permit for surfaces to self align during approach of substrates.  Using a combination of 

thinner HSQ with the self-alignment adhesive gel, could give us a permanent adhesion 

and we would not need to use the stitching method presented in Table 2-3.  This process 

as shown in Figure 6.1 is could be tried in the future.   

6.2.2   Thin Membrane Island 

 One possible alternative to use reverse membrane milling would be to find a way 

to not have to transfer the membrane.  Instead we could find a way of building an island 

around the membrane.  As shown in Figure 6.2(b), a thin wafer membrane could be 

etched in order to create an island that will raise the membrane above the rest of the 

substrate.  We could insert a hardening substance inside the window as shown in Figure 

6.2. The hardening substance would make the membrane more likely to survive a 

scanning parallel lithography.  This hardening substance could be a cured layer of optical 

adhesive, HSQ, SU-8 (negative optical photo resist), or some soft polymer.  This layer 

should have some transparency to 355 nm UV light in order to perform the lithography 

process.  If we use this arrangement to perform 2 photon absorption lithography the layer 

should have transparency to 800 nm.  PELCO ® substrates sold by TED Pella offers thin 
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membrane wafers with windows of 100 µm. These substrates could serve to fabricate an 

island with dimensions close to the ones used in our latest parallel lithography 

publications (Wen et al, 2014; Wen et al., 2015).  A picture of the mentioned thin wafer 

membrane is shown in Figure 6.2 (a).  To etch this mask we need to design a method to 

protect the fragile thin membrane from a relatively deep etch.  It seems that it would be 

necessary to insert the hardening substance before the etching procedure.  It also seem 

like a very strong etching mask is necessary.  In order to integrate the use of this 

arrangement with our lithography design we could adapt a mask substrate with ISPI by 

drilling a hole as shown in Figure 6.2 (c) in the middle of the substrate.  A focused femto 

second laser could be used to make this milling.  A proper milling would include the use 

of a consistent dose and set of laser cutting CNC commands that would yield always the 

same cut depth.  To compensate for the potential variations of the thin membrane wafer 

thickness we can design ISPI gratings that will give gap measurements for a broader 

range than usual.  Maybe we can fabricate several grating designs that are optimal for 

different gap ranges.   

 

Figure 6.2: Fabricating an island on a thin membrane wafer.  (a) Thin membrane wafer of 
100 µm windows (Source from Ted Pella website) (b) Creating an island around a thin 

membrane window.  (c) Adapting a thin membrane island to a substrate with ISPI 
lithography marks.   

 Our final goal is to scan a thin membrane that is milled from the reverse direction 

in order to prove that we can perform scanning parallel lithography and produce lines 



	
   107	
  

smaller than the ones presented in the past.  The lines would be smaller due to a sharper 

bowtie design that would improve the confinement of the EM field.   

6.2.3   Improving the Sacrificial Layer Method 

 In order to improve the system we also considered the use of sacrificial layers on 

aperture metal layers.  The use of sacrificial layers to obtain sharper apertures was 

mentioned in section 2.2.2.  The conclusion of this section indicated that there were 

regions near the aperture that were resistant to the sacrificial layer etching.  This was seen 

for all layer combinations that we tried.  It was established that a potential cause for this 

to happen was the presence of gallium ion implantation and its effect on the etching rate 

of the material.  We now suggest that if our previously mentioned potential cause is 

correct, we can try to find a way to selectively etch the ion implantation.  It was 

mentioned in literature that the addition of hydrogen peroxide into a potassium hydroxide 

could help selectively etch areas of silicon that has been implanted with gallium ions 

(Han et al., 2015).  If we use silicon as a sacrificial layer coated on top of any given metal 

we could use a KOH solution to etch the sacrificial layer and then add H2O2 to selectively 

etch the sacrificial layer that has been affected by the ion implantation.  Perhaps there 

might be other combinations of chemicals that can create similar effects to gallium ion 

implantation in sacrificial layers made of other materials. 

6.2.4   Two-photon Absorption Lithography 

 Two-photon absorption (TPA) lithography could provide for a method to further 

decrease the size of the exposed and developed region.  In regular absorption lithography, 

the photoresist absorbs all of the light that is incident on it.  In the lithography 

experiments that we have presented in chapter 2, we use photoresist S1805 which is 

formulated to be optimized to g-line (436 nm) exposure.  This photoresist has very 

minimal absorption in wavelengths above 500 nm.  This means that laser light of 800 nm 

should not expose the photoresist easily.  This is not necessarily true if the light is very 

intense.  Under intense light there will be the simultaneous absorption of 2 photons for 

the photoresist molecules.  On the regions where the field is more intense, there will be 
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more molecules that will undergo TPA.  When there is TPA, there is an equivalent 

absorption of a higher energy photon with half the wavelength, which for our particular 

photoresist lies inside the spectrum region that will change its developer solubility.  The 

advantage of this process is that the area of exposure will depend not only on the time but 

will also be relatively sensitive to the intensity of the field. 

 Using the bowtie electromagnetic field confinement, we could obtain further 

control of the dimension of the lithography spot created and try to make it smaller.  A 

different design of the bowtie should be made in order to obtain the necessary 

propagation mode for an incident laser of 800 nm.  Focusing of the beam might be done 

to obtain the necessary field but care should be taken that the field is not intense enough 

as to damage the metal close to the gap of the aperture.  The same fabrication procedure 

to create the parallel bowtie lithography mask can be used in order to obtain parallel TPA 

lithography. 

 TPA can also be used to investigate the field distribution for the apertures.  The 

comparison of TPA and one-photon absorption lithography can give more information of 

the near fields.   
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