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ABSTRACT

Tang, Kai PhD, Purdue University, December 2016. Dynamic Regulation of DNA
Demethylation and RNA-Directed DNA Methylation in Arabidopsis. Major Profes-
sor: Jian-Kang Zhu.

DNA methylation is an important epigenetic mark present in many eukaryotes,

and is involved in many crucial biological processes, such as gene imprinting, regu-

lation of gene expression, and genome stability. Proper genomic DNA methylation

patterns are achieved through the concerted action of DNA methylation and demethy-

lation pathways. In the model plant species Arabidopsis thaliana, ROS1 (REPRES-

SOR OF SILENCING 1) is one of the DNA demethylases and the key component in

the demethylation pathway. Dysfunction of ROS1 leads to increase in DNA methy-

lation level at thousands of genomic loci. However, the features of ROS1 targets are

not well understood.

In the first part of this dissertation, I will describe a study in which we identified

and characterized genome-wide ROS1 target loci in Arabidopsis Col-0 and C24 eco-

types. In this study, we showed that ROS1 targets are associated with an enrichment

of H3K18ac and H3K27me3, and with depletion of H3K27me1 and H3K9me2. Also we

found that ROS1 can prevent the spreading of DNA methylation from highly methy-

lated transposons to their nearby genes. Unexpectedly, we uncovered thousands of

previously unidentified RdDM (RNA-directed DNA methylation) targets by analyz-

ing the DNA methylome of ros1/nrpd1 double mutant plants. In addition, we showed

that ROS1 also antagonizes RdDM-independent DNA methylation at more than one

thousand genomic loci. Our results provide significant insights into the genome-wide

e↵ects of both ROS1-mediated active DNA demethylation and RNA-directed DNA

methylation, as well as their interactions in plants.
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In the second part of this dissertation, I will describe another study in which we

focused on AGO6 and AGO4, two Argonaute proteins involved in RdDM. AGO6 is

generally considered to be redundant with AGO4 in RdDM. However, our genome-

wide DNA methylation profiles and immunofluorescence localization analyses showed

that redundancy between AGO4 and AGO6 is unexpectedly negligible in the genetic

interactions and AGO4 and AGO6 mainly act sequentially in mediating RdDM.
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1. INTRODUCTION

1.1 Transcriptional Gene Silencing

Gene silencing is important for development, stress responses, and suppression

of viruses, transposons or transgenes [1–3] . Several epigenetic phenomena such as

genome imprinting [4] and X chromosome inactivation [5] are caused by transcrip-

tional gene silencing (TGS). The expression of some transgenes as well as developmen-

tally or environmentally regulated endogenous genes can also be a↵ected by TGS [6].

DNA methylation is an important contributor to TGS events. Mutations in DNA

methylation factors have been shown to release TGS of a number of genes [7] . Anal-

ysis of gene silencing often uses Arabidopsis as a model system because mutations

in the relevant components in this plant are not lethal, thus allowing their e↵ects

on development and physiology to be analyzed throughout the entire life cycle of a

multicellular organism [8,9].

1.2 DNA Methylation

In prokaryotes, DNA methylation is important in DNA repair and replication, and

in recognition and protection of self DNA [10]. In eukaryotes, DNA methylation is

essential for gene repression, genome organization and stability, genomic imprinting,

X chromosome inactivation, and other developmental aspects [6]. Aberrant methyla-

tion patterns of tumor suppressor genes and oncogenes are common features of many

cancers [11] . In mammals, methylation occurs almost exclusively at the sites of CG

dinucleotides, although some non-CG methylation was also observed in mammalian

embryonic stem cells, fibroblast cells, and brain tissues [12]. In most vertebrates, 60-

90% of the cytosines at CG dinucleotides are methylated [13] . In contrast, methy-
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lation in plants can occur at all three contexts; i.e., the symmetric CG and CHG

contexts (H = A, T or C) and the asymmetric CHH context.

. In Arabidopsis, DNA methylation is established and maintained by di↵erent

pathways. de novo DNA methylation is carried out by DRM2 (DOMAINS REAR-

RANGED METHYLTRANSFERASE 2) through the RdDM pathway. Four di↵er-

ent DNA methyltransferases maintain DNA methylation after DNA replication, de-

pending on the sequence context: mCG is maintained by MET1 (METHYLTRANS-

FERASE 1) , mCHG is maintained by CMT3 (CHROMOMETHYLASE 3), and

mCHH is maintained by CMT2 or DRM2.

Small interfering RNAs (siRNAs) and sca↵old RNAs (scRNAs) play important

roles in guiding DRM2 to its target loci during the establishment of DNA methylation

by RdDM. The production of siRNA and scRNA depends on plant specific RNA poly-

merase IV and V (Pol IV and Pol V), respectively. Pol IV is presumed to produce tran-

scripts that serve as templates for RDR2 (RNA-DEPENDENT RNA POLYMERASE

2) to synthesize double-stranded RNAs, with the assistance of DTF1/SHH1 (DNA-

BINDING TRANSCRIPTION FACTOR 1/SAWADEE HOMEODOMAIN HOMOLOG

1) and ClSY1 (CLASSY1) . Subsequently, DCL3 (DICER-LIKE 3) cleaves the

double-stranded RNAs to form 24 nt (nucleotide) siRNAs, which are loaded onto

AGO4 (ARGONAUTE 4) and AGO6 [14, 15]. The RdDM scRNAsare produced by

Pol V, recruitment of which is facilitated by SUVH2 (SUPPRESSOR OF VARIEGA-

TION 3-9 HOMOLOG 2) and SUVH9, and a protein complex containing DRD1 (DE-

FECTIVE IN RNA-DIRECTED DNAMETHYLATION 1), DMS3 (DEFECTIVE IN

MERISTEM SILENCING 3) and RDM1 (RNA-DIRECTED DNA METHYLATION

1) [14,16]. The scRNAs recruit their complementary siRNAs in the siRNA-AGO4/6

complex to RdDM target loci and guides DRM2 to catalyze DNA methylation. Re-

cently, it was found that Pol IV-dependent 25-35 nt precursors of the 24 nt siRNAs

can trigger DNA methylation independently of the 24 nt siRNAs [17–20].
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1.3 Active DNA Demethylation

DNA methylation influences diverse biological processes, and its levels are dynam-

ically regulated. DNA methylation can be passively lost if it is not maintained after

DNA replication, or can be actively removed by DNA demethylases [21]. In plants,

active DNA demethylation is initiated by the ROS1 family proteins including ROS1,

DEMETER (DME), DML2, and DML3. In contrast to DME, which is required for

genomic imprinting during reproductive development, ROS1, DML2, and DML3 are

mainly expressed in vegetative tissues and can prevent hypermethylation of specific

genomic regions, thus protecting these regions from transcriptional silencing [21].

ROS1 is the first genetically characterized DNA demethylase in eukaryotes [22].

The bifunctional glycosylase/lyase activities of ROS1 have been well studied in Ara-

bidopsis. Its DNA glycosylase activity removes 5mC base from the DNA backbone,

and then its lyase activity cleaves the backbone by either �- or �, �-elimination, leav-

ing a single nucleotide gap with 3’-phosphor-↵, �-unsaturated aldehyde (3’-PUA) or

3’ phosphate termini, respectively [23,24]. The AP endonuclease-like protein APE1L

(APURINIC/APYRIMIDINIC ENDONUCLEASE 1-LIKE) and the 3’ DNA phos-

phatase ZDP (ZINC FINGER DNA 3’ PHOSPHOESTERASE) convert the 3’-PUA

and 3’ phosphate groups, respectively, to generate a 3’-OH end, which allows a DNA

polymerase and the ligase, AtLIG1 (Arabidopsis thaliana DNA LIGASE 1),to fill the

gap with an unmethylated cytosine [25–27]. An anti-silencing protein complex con-

taining MBD7 (METHYL-CPG-BINDING DOMAIN 7), IDM1 (INCREASED DNA

METHYLATION 1),IDM2, and IDM3, was recently discovered to regulate ROS1 tar-

geting, and in turn DNA demethylation. MBD7 binds highly methylated DNA and

recruits the ↵-crystallin domain containing proteins IDM2 and IDM3 [28, 29], which

then recruit the histone acetyltransferase IDM1. IDM1-mediated acetylation creates a

permissible chromatin environment for ROS1 to initiate DNA demethylation [28,30].

In plants, transposable elements (TEs) and other repetitive sequences are usually

heavily methylated, and their methylation is known to be regulated by DNA methyla-
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tion pathways and can also be regulated by ROS1-mediated DNA demethylation. In

Arabidopsis, some TEs show lower expression levels in ros1 mutants due to increased

DNA methylation [30,31]. Some methylated TEs are located near actively transcribed

genes. For example, a transposable element, AT1TE40605, is located upstream of the

promoter of EPF2 (EPIDERMAL PATTERNING FACTOR 2 ) that encodes a neg-

ative regulator of stomata formation [32]. A recent study showed that ros1 mutation

results in spreading of methylation from AT1TE40605, and consequently silencing

of EPF2 and abnormal epidermal cell patterning [33]. Several other genes are also

silenced in ros1 mutants due to DNA hypermethylation [30, 31]. In addition, ROS1

family demethylases were found to positively regulate many fungal pathogen respon-

sive genes via demethylating TEs located in their promoters. As a result, the DNA

demethylase mutants showed enhanced susceptibility to fungal infection [34]. These

studies suggest that ROS1-mediated demethylation of TEs is important for regulation

of gene expression by preventing nearby genes from being silenced.

Proper genomic DNA methylation patterns are achieved through the concerted

action of DNA methyltransferases and demethylases. Previous studies have sug-

gested interactions between ROS1-mediated DNA demethylation and RdDM. ROS1

can antagonize RdDM at a transgene locus and several endogenous loci [35, 36]. In-

terestingly, ROS1 is silenced in mutant plants defective in MET1 [37] or components

of RdDM [38]. Recent studies revealed that the expression of ROS1 is fine-tuned by

RdDM and DNA demethylation pathways through dynamic regulation of methylation

status of a methylation monitoring sequence (MEMS) in the ROS1 promoter [39,40].

1.4 Argonaute Protein Family

Argonaute (AGO) proteins are core components of small RNA-mediated silencing

pathways, which negatively regulate gene expression in a sequence-specific manner. In

the post-transcriptional gene silencing (PTGS) pathway, AGO proteins bind to small

RNAs such as miRNAs, tasiRNAs, or piRNAs and mediate gene silencing through
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degradation and/or translational suppression of the target mRNAs [41, 42]. In the

TGS pathway, AGO proteins bind to siRNAs or piRNAs and subsequently facilitate

the formation of repressive chromatin at loci that show complementarities to the small

RNAs [41, 42] .

AGO proteins are highly conserved and present in various life forms ranging from

Archaea to humans [43–46]. Each AGO protein is characterized by three conserved

domains: PAZ, MID, and PIWI. The PAZ domain recognizes and binds the 3 end

of small RNAs [47–49]. The MID domain contains a 5’-phosphate-binding pocket

that binds to a guide small RNA at the 5’ phosphate [50–53]. The PIWI domain is

structurally similar to RNase H and, in some AGO proteins, exhibits endonuclease

activity [44,54,55]. While the capacity to bind small RNAs is a common feature for all

AGO proteins, di↵erent eukaryotic AGO proteins often have unique functions, which

can arise from multiple factors such as distinct biochemical activities or di↵erential

association with specific types of small RNAs [56].

1.5 Argonaute function in Arabidopsis

Arabidopsis encodes 10 AGO proteins that are only partially understood. Among

the characterized Arabidopsis AGO proteins, AGO1 is the major AGO protein that

mediates miRNA- and tasiRNA-induced PTGS [41, 57]; AGO2 is required for the

DNA methylation induced by 21 nt siRNAs at a subset of non-canonical RdDM

target loci [58]; AGO2 also binds viral siRNAs and is involved in antiviral defense

response [59,60]. In addition, AGO2 has been implicated in binding small RNAs that

direct DNA double-stranded break repair through a process that also involves Pol IV

and V [61]. AGO7 binds miR390 and controls the production of TAS3 tasiRNAs [52];

AGO10 specifically sequesters miR166/miR165 to regulate shoot apical meristem

development [62]; and AGO4, AGO6, and AGO9 are involved in the RdDM pathway

that requires 24 nt siRNAs.
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RdDM confers transcriptional repression via the formation of heterochromatin,

characterized by DNA methylation and repressive histone modifications [35, 63, 64].

In the canonical RdDM pathway, the complementary pairing of 24 nt siRNAs with

nascent sca↵old RNAs guides the DNA methylation complex to its target loci [15,

65–67].

Production of nearly all the 24 nt siRNAs requires Pol IV, a plant-specific DNA-

dependent RNA polymerase [68]. According to the current paradigm, Pol IV tran-

scription produces single-stranded non-coding RNAs, which serve as substrates for

RDR2 production of double-stranded RNAs that are subsequently cleaved by DCL3

and loaded onto AGO4, AGO6, or AGO9 [65–67,69]. In parallel to siRNA production,

Pol V generates long, non-coding RNAs that, before being released from the chro-

matin, function as sca↵old RNAs for the recruitment of AGO-siRNA complexes [70].

In addition to Pol IV and Pol V, Pol II can also generate 24 nt siRNAs and sca↵old

RNAs at some intergenic, low-copy-number repeat loci [71]. AGO4 can be cross-

linked to sca↵old RNAs, supporting the model of siRNA-sca↵old RNA pairing [72].

Both Pol V and Pol II possess an Argonaute-binding motif and have been shown to

interact with AGO4 [71,73]. In addition, AGO4 co-localizes with Pol V in perinucle-

olar foci [74] and with Pol II in the nucleoplasm [75]. Cytological analyses revealed

co-localization of AGO4 and DRM2, together with other RdDM components in dis-

tinct subnuclear foci [74–77]. A recent study revealed that AGO4 can be co-purified

with DRM2 in co-immunoprecipitation assays [78]. Additionally, AGO4 and DRM2

both co-immunoprecipitate with RDM1 [75]. Therefore, AGO4 has been assigned a

critical role in targeting de novo DNA methylation in the RdDM pathway.

Arabidopsis AGO4, AGO6, and AGO9 are closely related family members [79].

AGO9 specifically silences TEs in the female gametophyte in a non-cell-autonomous

manner [64]. Although the DNA methylation phenotype is unclear in the ago9 mu-

tant, AGO9 has been suggested to function through Pol IV-dependent 24 nt siRNAs

because it preferentially binds 24 nt siRNAs and because a double mutant with dys-

functional Pol IV and Pol V resembles the ago9 mutant in that they both are defective
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in specifying the cell fate in the ovule [64]. Like AGO4, AGO6 has been clearly shown

to regulate DNA methylation through the RdDM pathway [35, 63, 80]. Mutants de-

fective in either AGO4 or AGO6 were both isolated in the same genetic screen for

mutants with defective RdDM [35, 81]. This indicates that AGO4 and AGO6 can

have non-redundant roles in regulating the same RdDM target, although AGO6 is

generally considered to be redundant with AGO4 in regulating RdDM [80, 82]. It

remains unclear, on a whole-genome scale, to what extent AGO4 and AGO6 func-

tion non-redundantly in the RdDM pathway. In fact, although AGO4 and AGO6 are

known to di↵er in preference for siRNAs from di↵erent heterochromatin-associated

loci [83], the genome-wide functional integration and/or diversification of these two

closely related paralogs in regulating DNA methylation has yet to be explored.
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2. THE DNA DEMETHYLASE ROS1 TARGETS

GENOMIC REGIONS WITH DISTINCT CHROMATIN

MODIFICATIONS

2.1 Abstract

Arabidopsis ROS1 is the first genetically characterized DNA demethylase in eu-

karyotes. Dysfunction of ROS1 leads to increase in DNA methylation level at thou-

sands of genomic loci. However, the features of ROS1 targets are not well understood.

In this study, we identified and characterized ROS1 target loci in Arabidopsis Col-0

and C24 ecotypes. Most ROS1 targets are TEs and intergenic regions. Compared

to other TEs, ROS1-targeted TEs are closer to protein coding genes, suggesting a

role for ROS1 in preventing the spreading of DNA methylation from highly methy-

lated TEs to nearby genes. Interestingly, we found that unlike general TEs, ROS1

targets are associated with an enrichment of H3K18ac and H3K27me3, and depletion

of H3K27me1 and H3K9me2. We investigated the antagonism between ROS1 and

RdDM by identifying and characterizing thousands of genomic regions regulated by

both ROS1 and RdDM. Unexpectedly, we uncovered thousands of previously uniden-

tified RdDM targets by analyzing the DNA methylome of ros1/nrpd1 double mutant

plants. In addition, we show that ROS1 also antagonizes RdDM-independent DNA

methylation at more than one thousand genomic loci. Our results provide significant

insights into the genome-wide e↵ects of both ROS1-mediated active DNA demethy-

lation and RNA-directed DNA methylation as well as their interaction in plants.
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2.2 Results

2.2.1 Characterization of ros1 mutant methylomes in Col-0 and C24 eco-

types

ros1-4 is an Arabidopsis mutant of Col-0 ecotype with T-DNA insertion in the

ROS1 gene, causing complete loss of function of ROS1 [36]. ros1-1 is a loss of

function mutant of ROS1 in C24 ecotype and has a single nucleotide substitution in

ROS1 leading a premature stop codon, and is likely a null allele [22]. In this study, we

generated single-base resolution maps of DNA methylomes of two-week-old seedlings

of ros1-4 and ros1-1 mutants. Methylomes of Col-0 and C24 wild types at the same

developmental stage were sequenced and served as controls.

To identify potential genomic targets of ROS1 and compare the targets in di↵erent

ecotypes, we identified di↵erentially methylated regions (DMRs) in ros1-4 and ros1-1

mutants relative to their respective wild type plants. ros1-4 has 6902 hypermethy-

lated DMRs (hyper DMRs) with an average length of 495 bp (base pair), and 1469

hypomethylated DMRs (hypo DMRs) with an average length of 193 bp, while 5011

hyper DMRs and 332 hypo DMRs were identified in ros1-1. The overwhelmingly

higher numbers of hyper DMRs compared to hypo DMRs of ros1 mutants in both

Col-0 and C24 are consistent with the ROS1 function in DNA demethylation. In

ros1-4, 1887 (27%) hyper DMRs are in genic regions, 2878 (42%) in TE regions, 2010

(29%) in intergenic (IG) regions, and 127 (2%) in the category of others (Fig. 2.1).

Compared to the composition of randomly selected control regions that are composed

of 27% TEs, 54% genes, and 18% IG regions (Fig. 2.1), ros1-4 hyper DMRs have

a decreased percentage in genes and increased percentages in TEs and IG regions,

which is also observed in ros1-1 hyper DMRs (Fig. 2.1). This indicates that ROS1

preferentially targets TEs and IG regions. ros1-1 and ros1-4 hyper DMRs are dis-

tributed throughout the five chromosomes of Arabidopsis (Fig. 2.2). For both ros1-1

and ros1-4 hyper DMRs, DNA hypermethylation was detected in all three contexts

(CG, CHG and CHH) (Fig. 2.3). The length distribution of ROS1 targeted TEs
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is similar to that of all TEs (Table 2.1), suggesting that ROS1 has no preference

for short or long TEs. Interestingly, by analyzing the distance between TEs and its

nearest genes, we found that ROS1-targeted TEs in both ros1-1 and ros1-4 tend to

be located closer to genes relative to TEs that are not targeted by ROS1 (Fig. 2.4).

In both ros1-1 and ros1-4, DNA methylation is substantially increased around

the boarders of TEs targeted by ROS1 (Fig. 2.5). As expected, these TEs display

decreased methylation in nrpd1 mutants, which are dysfunctional for RdDM due

to disruption of NRPD1, the largest subunit of RNA polymerase IV (Fig. 2.5).

Interestingly, we noticed that, the hypermethylation in ros1 mutants extends from the

TE borders to neighboring sequences before tempering o↵ (Fig. 2.5). These patterns

support our previous hypothesis that ROS1 may counteract RdDM to prevent the

spreading of methylation from highly methylated regions, such as TEs, to nearby

genes [21].

To investigate the influence of di↵erent genetic backgrounds on ROS1 targeting, we

compared DMRs of ros1-4 and ros1-1, which are mutants in Col-0 and C24 ecotypes

respectively. We found that only 27% hyper DMRs in ros1-4 are also hyper DMRs in

ros1-1, suggesting that ROS1 targeting is greatly influenced by genetic backgrounds.

Interestingly, 35% of TE-type and 28% of IG-type hyper DMRs are shared between

ros1-4 and ros1-1, but only 15% of genic-type hyper DMRs are shared between the

two mutants. Thus, ROS1 targeting seems relatively conserved in TE regions in Col-

0 and C24 ecotypes. Since TEs and genes typically display similar levels of genetic

variation, these findings suggest that chromatin features important for active DNA

demethylation might be more conserved at TEs than genes between the two ecotypes.

Several examples of shared hyper DMRs and non-shared hyper DMRs are displayed

in Fig. 2.6.

In summary, we identified, characterized, and compared targets of ROS1 in Col-0

and C24 genetic backgrounds. ROS1 targets in Col-0 and C24 display a preference for

TEs and intergenic regions and the targeted TEs being located near genes. However,
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the specific genomic regions targeted by ROS1 are largely di↵erent in Col-0 and C24

backgrounds.

2.2.2 Chromatin features associated with ROS1 targets

Histone modifications, such as histone methylation and acetylation, are known

to interact with DNA methylation, therefore we determined which histone marks

associated with ROS1 targets. Compared to control regions, which are randomly

selected genomic regions with the same length distribution as the DMRs, both total

TEs and ROS1 hyper DMRs show a slightly decrease in the level of H3 (Fig. 2.7

and 2.8), indicating a lower nucleosome density in TEs and ROS1 targets. ROS1

targets are negatively associated with most active histone marks compared to control

regions, such as H3K36 di-/tri-methylation (H3K36me2/3), H3K4me2/3 and H3K9

acetylation (H3K9Ac) (Fig. 2.7, 2.8, and 2.9) which was expected since a large

proportion of ROS1 targets are within TEs (Fig. 2.1). However, in contrast with most

TEs, ROS1 targets are positively associated with the active histone mark H3K18Ac

compared to control regions (Fig. 2.10, 2.11, and 2.12). Because 42% of ros1-4 hyper

DMRs are TE regions (Fig. 2.1), it is possible that the remaining 58% of ros1 targets

that are not within TEs account for the enrichment of H3K18Ac. To investigate this

possibility, we compared TE, intergenic and genic types of ros1 DMRs with simulated

TE, intergenic, and genic regions, respectively. Consistently, we found that H3K18Ac

is enriched in all types of ros1 DMRs (Fig. 2.13), suggesting that ros1 targets are

indeed generally characterized by enrichment of H3K18Ac. The association with

H3K18Ac is fully consistent with our previous finding that IDM1, an H3K14/18/23

acetyltransferase, is required for the demethylation of a subset of ROS1 targets [30].

We also identified additional histone marks that distinguish ROS1 target regions.

As shown in Fig. 2.10, 2.11, and 2.12, TEs in general are negatively associated with

H3K27me3, and are positively associated with H3K27me1 and H3K9me2. In contrast,

ros1 DMRs have the opposite features, in that they are associated with enrichment
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of H3K27me3 and depletion of H3K27me1 and H3K9me2 (Fig. 2.10, 2.11, and 2.12).

Similarly, we compared these chromatin features of ros1 targets and corresponding

simulation for each type of region (TE, intergenic and genic regions). All types of ros1

targets are enriched of H3K27me3 compared to their respective simulated regions (Fig.

2.13). We didn’t observed decreased H3K27me1 and H3K9me2 signal for genic and

intergenic ros1 targets, since the levels of these histone marks are already have very

low in simulated genic and intergenic regions (Fig. 2.13). These results support that

ros1 targets are associated with enrichment of H3K27me3 and depletion of H3K27me1

and H3K9me2.

2.2.3 A new class of RdDM targets

De novo DNA methylation, especially in the CHH context, is established through

the RdDM pathway, which requires DNA dependent RNA polymerase IV for small

RNA production [15]. In previous studies, RdDM targets have been identified through

the identification of hypo DMRs in RdDM mutants compared to wild type plants. In

this study, we identified 4580 hypo DMRs and 2348 hyper DMRs in nrpd1 mutant

(RdDM Pol IV mutant) compared to wild type plants; and the large number of hypo

DMRs in the Pol IV mutant is consistent with the role of Pol IV in DNA methylation.

The more than 2000 hyper DMRs in Pol IV may be related to reduced expression

level of ROS1 in Pol IV mutant [39, 40] (see below).

Homeostasis of DNA methylation is regulated by DNA methylation and active

DNA demethylation processes [21,84]. As diagrammed in Fig. 2.14, regions identified

as hypo DMRs in Pol IV mutant must be methylated in the wild type. The presence

of methylation in the wild type implies that RdDM dominates over active DNA

demethylation at these loci or that active DNA demethylation does not occur at

these loci. We refer to the 4580 hypo DMRs in Pol IV mutant as “type I” RdDM

targets.
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We hypothesized that DNA demethylation may be dominant over RdDM at some

loci. These RdDM targets (we denote as “type II” RdDM targets) would not be

methylated in wild type plants due to abundant active DNA demethylation (Fig.

2.14 and 2.15). To uncover type II RdDM targets, we introduced nrpd1 mutation to

ros1-4 mutant, and compared the methylome of ros1/nrpd1 double mutant with that

of ros1-4 mutant (Fig. 2.14 and 2.15). Type II regions would be predicted to gain

cytosine methylation in ros1-4 mutant due to loss of ROS1 function. However, the

gained cytosine methylation would be lost in in ros1/nrpd1 mutant due to dysfunction

in RdDM. In total, we identified 6069 hypo DMRs in in ros1/nrpd1 compared to ros1.

Out of the 6069 hypo DMRs, 3750 display DNA methylation in wild type (mC% >
2%). Interestingly, consistent with our hypothesis, there are 2319 hypo DMRs that

do not display DNA methylation in the wild type (mC% < 2%). These represent the

type II RdDM targets, which have not been identified previously. Similarly, by using

published methylome data of ros1-1/nrpd1 in C24 background, we found 4966 hypo

DMRs in ros1-1/nrpd1 double mutant compared to ros1-1, and 1656 of them are type

II RdDM targets, suggesting that type II RdDM targets exist in both Col-0 and C24

ecotypes. As shown in Fig. 2.15, 2.16, 2.17, and 2.18, methylation of type I loci is

decreased in nrpd1. In contrast, type II loci do not display a change in methylation

level in nrpd1 (Fig. 2.15, 2.16, 2.19, and 2.20). However, introducing the nrpd1

mutation into the ros1-4 mutant revealed the role of RdDM in DNA methylation at

the type II loci (Fig. 2.14, 2.15, 2.16, 2.19, and 2.20).

We evaluated 24 nt siRNA enrichment for each type II locus and found that 39%

of type II loci had 24 nt siRNAs (N > 0 in either WT replicates), while 61% of type

II loci did not have 24 nt siRNA reads (N = 0 in both WT replicates). We cannot

exclude the possibility that siRNA levels at these loci were too low to be detected

by siRNA-seq. Similar with type I targets, the type II targets also have decreased

siRNA level in nrpd1 mutant relative to wild type (Fig. 2.21). This result further

supports that type II loci are targets of RdDM. However, the siRNA level in type II
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loci is much lower than that in type I loci (Fig. 2.21), indicating weak RdDM at type

II loci. This is consistent with a lack of methylation at type II loci in the wild type.

We examined Pol IV occupancy at type I and type II loci using previously pub-

lished Pol IV ChIP-seq data [85]. Consistent with previous study [85], Pol IV was

enriched in type I loci (Fig. 2.22). However, we did not observe a significant enrich-

ment of Pol IV in type II loci. Both low siRNA level and low Pol IV enrichment were

consistent with weak RdDM e↵ect at these type II loci. However, type II loci have

Pol IVdependent increased DNA methylation in ros1 mutant (Fig. 2.16), suggesting

stronger RdDM e↵ect at these loci in ros1 mutant.

We performed small RNA-Seq in ros1-4 and ros1-4/nrpd1 double mutant plants.

We found that type II RdDM targets have significantly elevated 24 nt siRNA level in

ros1 relative to WT plants, and this increase in siRNAs can be suppressed by nrpd1

mutation (Fig. 2.23). In contrast, type I RdDM targets did not display increased 24

nt siRNA level in ros1 mutant compared to WT (Fig. 2.24). The results suggest that

RdDM becomes stronger at type II loci when ROS1 is removed.

DRD1 is a component of the RdDM pathway, and a previous study showed that

DRD1- mediated CHH methylation was positively correlated with euchromatic hi-

stone marks including H3K27me3, H3K4me2, H3K4me3, and H3K36me3, and was

negatively correlated with H3, H3K9me2 and H3K27me1 [86]. Consistent with the

previous study, type I and type II RdDM targets display a slight decrease in H3

enrichment (Fig. 2.25, 2.26, and 2.27), suggesting a reduced nucleosome density in

RdDM target loci than in control regions. Our results showed that both type I and

type II targets are associated with a depletion of euchromatic histone marks, including

H3K4me2, H3K36me2 and H3K36me3 (Fig. 2.25, 2.26, and 2.27).

Type I and type II targets also display distinct chromatin features as shown in

Fig. 2.28, 2.29, and 2.30. Chromatin features of type II RdDM targets are similar

to ROS1 targets, including enrichment of H3K18Ac and H3K27me3 (Fig. 2.10 and

2.28), as expected. In contrast, type I targets display decreased H3K18Ac and slightly

decreased H3K27me3 (Fig. 2.28). These distinct chromatin features are supported
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by examination of type I and type II targets for di↵erent categories of regions (TE,

IG and genic regions) (Fig. 2.31). Consistently, we found enrichment of H3K18Ac

and H3K27me3 in all categories of type II targets compared to the corresponding

categories of type I targets. Also unlike type I targets, type II targets are depleted

of H3K9me2 and H3K27me1. The depletion of H3K9me2 and H3K27me1 was found

only in TE and intergenic regions of type II compared to type I targets, but not in

genic regions of type II targets (Fig. 2.31).

In summary, type I RdDM targets show DNA methylation in the wild type, and

they may or may not be regulated by ROS1. In contrast, the newly discovered type

II RdDM targets are all regulated by ROS1 and are essentially depleted of DNA

methylation in the wild type due to ROS1 activity. The two types of RdDM targets

are also characterized by distinct small RNA profiles and histone modification marks.

2.2.4 Relationship between ROS1-mediated DNA demethylation and RdDM

pathway

ROS1-mediated active DNA demethylation counteracts RdDM pathway to pre-

vent DNA hypermethylation at some specific loci [22, 75, 87]. However, the crosstalk

between these two pathways genome wide has not been studied. To identify genomic

regions targeted by both ROS1 and RdDM, we compared two groups of DMRs: hyper

DMRs in ros1 mutant and hypo DMRs in nrpd1 mutants. We found that there are

1136 shared DMRs between ros1 hyper DMRs and nrpd1 hypo DMRs, suggesting

that 16.5% (1136/6902) of ROS1 targets is antagonized by RdDM in wild type plants.

However, this ratio increased to 60.1% (4146/6902) by using hypo DMRs identified

in ros1/nrpd1 mutant relative to ros1. This result suggests that the antagonistic

e↵ects between ROS1-mediated active DNA demethylation and RdDM have been

underestimated, since type II RdDM targets were previously unappreciated.

It has been reported recently that there is a regulatory link between RdDM and

ROS1-mediated active DNA demethylation. It was found that ROS1 expression is
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dramatically reduced in RdDM mutants, including nrpd1, due to the change of DNA

methylation at the promoter region of ROS1 gene [39, 40]. Thus, we speculated

that the hyper DMRs in nrpd1 might be caused by reduced ROS1 expression. We

found that 1026 of the 2348 hyper DMRs in nrpd1 overlapped with hyper DMRs

in ros1, suggesting that nearly half of the hyper methylated loci in nrpd1 might be

caused by reduction of ROS1 expression in nrpd1. ROS1 expression is reduced in

not only nrpd1, but also other RdDM mutants, such as nrpe1 [39]. As shown in

Fig. 2.32, hyper DMRs of di↵erent RdDM mutants, including nrpd1 and nrpe1,

also have increased DNA methylation in ros1 mutant, suggesting that the decreased

ROS1 expression level contributes to the hyper methylation in the two examined

RdDM mutants. We then determined whether the methylome of the nrpd1 single

mutant, which has a dramatically reduced ROS1 expression level, is similar with

the methylome of ros1/nrpd1 double mutant (where ROS1 was knocked out). After

comparing ros1/nrpd1 with nrpd1, we identified 3411 hyper DMRs in ros1/nrpd1

relative to nrpd1. This finding suggests that the remaining ROS1 expression in nrpd1

still functions at thousands of loci, although other DMLs may also contribute to these

hyper DMRs.

2.2.5 ROS1 antagonizes RdDM-independent DNA methylation

We identified 1026 shared hypermethylated loci in nrpd1 and ros1 (Fig. 2.33),

which are distributed across five chromosomes (Fig. 2.34). Although these loci

have similar chromatin features to ROS1 targets, such as H3K18Ac, H3K4me2, and

H3K4me3 (Fig. 2.35), they display slightly increased levels of H3 compared to general

ROS1 targets. At these loci, ROS1 prevents hypermethylation, and the methylation

must be independent of RdDM since the methylation can occur in nrpd1 mutant. This

indicates that there are RdDM-independent pathways responsible for the methylation

and are antagonistic to ROS1 at these loci. Using previously published methylome

data (Table 2.2), we examined methylation levels of these 1026 loci in wild type,
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nrpd1, ros1, drm2, drm1drm2, cmt2, cmt3, cmt2cmt3, drm1/drm2/cmt2 (ddcmt2 ),

drm1/drm2/cmt3 (ddcmt3 ), drm1/drm2/cmt2/cmt3 (ddcc), andmet1 mutants. The

nrpd1, ros1, and drm2 mutants display increased mCG, mCHG and mCHH levels at

these loci (Fig. 2.36), suggesting that MET1, DRM1, CMT2 and CMT3 may all

contribute to the methylation at these loci. Indeed, we found that the mCG level of

these loci was significantly reduced in met1 (Fig. 2.36), whereas the mCHG levels

were significantly reduced in cmt3. Although CMT2 and CMT3 have been shown to

function redundantly in mCHG methylation [88], it seems that the mCHG methyla-

tion at these loci mainly depends on CMT3 (Fig. 2.36). For mCHH methylation level,

there were no significant changes in cmt2 and cmt2cmt3 double mutants. However,

mCHH was significantly reduced in ddcmt2 and ddcc mutants but was increased in

drm2, drm1drm2 and ddcmt3 (Fig. 2.36). This indicates that DRM1 and CMT2

may function redundantly at these regions.

At these loci, mCHG and mCHH levels were increased in met1 mutant plants (Fig.

2.36). This may be caused by the reduction in ROS1 expression in met1 mutants [37],

such that the mCHG and mCHH methylation by CMT3, CMT2 and DRM1 could

not be removed by ROS1. These results suggested that ROS1 antagonizes CMT3-,

CMT2-, DRM1-, and MET1-mediated DNA methylation, which are independent of

DRM2, the major DNA methyltransferase in the RdDM pathway (Fig. 2.37).

We examined siRNA levels at these 1026 loci in wild type and nrpd1, and found

that 24 nt siRNAs accumulated at the loci in the wild type, but were lost in nrpd1

mutant plants (Fig. 2.38). Since the siRNAs but not DNA methylation at these

loci were dependent on Pol IV, the siRNAs at these loci would not be required for

the methylation. This is consistent with a recent study showing that a reduction of

siRNA levels in RdDM mutants does not substantially reduce CMT2-dependent CHH

methylation [88].

In summary, our study revealed that, besides RdDM, ROS1 can antagonize DNA

methylation mediated by MET1, DRM1 and CMTs in an siRNA-independent man-

ner.
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2.3 Discussion

Among the four proteins in the ROS1 family in Arabidopsis, ROS1 is the major

DNA demethylase in vegetative tissues. In this study, we showed that genome-wide,

ROS1 preferentially targets TEs that are close to protein coding genes (Fig. 2.5).

We also showed that the sequences just outside the boarders of ROS1-targeted TEs

have increased DNA methylation in ros1 mutants (Fig. 2.5), suggesting that ROS1

prevents the spreading of DNA methylation from highly methylated TEs. Consis-

tently, Yamamuro et al. reported that ROS1 is required for the expression of the

EPF2 gene by preventing the spreading of methylation from a TE near the promoter

of EPF2 [33]. In addition, ROS1 family demethylases can positively regulate fungal

pathogen responsive genes via demethylating TEs located in or near their promot-

ers [34]. Together with these previous studies, our data support that ROS1 is involved

in the regulation of gene expression by preventing DNA methylation spreading from

nearby TEs.

H3K18Ac is an active histone mark correlated with transcriptional activation [89].

We found that ROS1 targets are positively associated with H3K18Ac (Fig. 2.10 and

2.11), supporting our previous work showing that IDM1, an H3K18/23 acetyltrans-

ferase, can create a permissive chromatin environment important for ROS1 to access

target loci 20. ROS1 targets were also found to be enriched with H3K27me3 (Fig.

2.10 and 2.11), but depleted of H3K27me1 and H3K9me2, which is opposite to general

TEs. This is consistent with a previous finding that there was a strong correlation

between H3K18Ac and H3K27me3 in Arabidopsis [90], and is also consistent with

findings in mammals that DNA demethylation process is coupled with decreased

H3K27me1 and H3K9me2 [91] .

Previous studies showed that several genomic loci were regulated by both RdDM

and ROS1-mediated DNA demethylation, suggesting an antagonism between RdDM

and ROS1. Consistently, as shown in Fig. 2.5, ROS1-targeted TEs had decreases in

DNA methylation in nrpd1 mutants. At some of these genomic regions, it is possible
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that ROS1-mediated DNA demethylation is so strong that there is no methylation

in the wild type at the regions. Therefore, these potential RdDM targets cannot be

identified through comparison between RdDM mutants and wild type plants. In this

study, we discovered over two thousand of this type of RdDM targets, named type

II RdDM targets, by comparing ros1 and ros1/nrpd1 mutants. These RdDM targets

have eluded previous attempts of RdDM target identification. Our identification

of these type II loci suggested that the number of RdDM targets has been greatly

underestimated.

To compare this newly uncovered group of RdDM targets with previously known

RdDM targets, we examined their siRNA accumulation and Pol IV occupancy. Over-

all siRNA enrichment and Pol IV occupancy were lower at type II targets, consistent

with weaker RdDM at these loci. More than half of the type II loci did not have any

siRNA reads, and we did not observe any significant Pol IV enrichment at type II loci.

However, we cannot exclude the possibility that siRNA level and Pol IV occupancy at

these type loci were too low to be detected through siRNA sequencing and ChIP-seq,

Interestingly, we observed increased siRNA level at type II loci in ros1-4 mutant, in-

dicating stronger RdDM e↵ect in ros1 mutant. It is possible that the demethylation

e↵ect by ROS1 at these loci in wild type can limit RdDM accessibility to these loci

thus leading to weak RdDM e↵ect in wild type, and this suppression of RdDM in

wild type can be removed by ROS1 mutation. ROS1 has been shown to have similar

binding a�nity to both methylated and non-methylated DNA through a Lysine-rich

Domain at the N terminal [92]. Thus, it is possible that ROS1 antagonizes RdDM

not only by removal of DNA methylation, but also by preventing the access of RdDM

machinery to the target loci. In the future, it will be interesting to compare Pol IV

occupancy at these loci in wild type and ros1 mutant plants to further investigate

this possibility.

It is well known that ROS1 expression is dramatically reduced in RdDM mu-

tants [39]. Our results suggested that the reduction in ROS1 expression in nrpd1

mutant plants causes DNA hypermethylation at more than one thousand genomic re-
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gions in the mutant. The DNA hypermethylation in RdDM mutants must be caused

by some RdDM-independent DNA methylation pathways. Our analysis suggested

that four DNA methylases including DRM1, CMT2, CMT3, and MET1 contribute

to the hypermethylation in RdDM mutants. This finding implies that ROS1 can

also antagonize RdDM-independent DNA methylation. Interestingly, we noticed that

the nrpd1 mutant had a slight increase in DNA methylation at type II RdDM loci

compared to the wild type (Fig. 2.16). Actually, we found that 198 out of 2319

type II loci were overlapped with 1026 hyper DMR in nrpd1 mutant, indicating that

at some of these type II loci, RdDM-independent DNA methylation may compen-

sate to methylate DNA when RdDM is lacking. Our findings suggested that the fine

tuning of the plant methylome is complex and involves interactions among RdDM,

RdDM-independent DNA methylation, and ROS1 family demethylase-mediated DNA

demethylation.

2.4 Material and methods

2.4.1 Plant materials

Mutants including ros1-4, nrpd1-3 (SALK 128428), ros1/nrpd1 double mutant

and nrpe1-11 (SALK 029919) are in the Columbia-0 (Col-0) background. ros1-4 and

nrpd1-3 were crossed to generate ros1/nrpd1 double mutant. ros1-1, nrpd1 (C24)

and ros1-1/nrpd1 (C24) are Arabidopsis mutants of C24 ecotype. The wild-type C24

and ros1-1 mutant plants carried a homozygous RD29A promoter-driven luciferase

transgene and a 35S promoter-driven NPTII transgene.

Seeds were stratified for 2-3 d at 4 �C before being sown on 1/2 MS plates con-

taining 2% (wt/vol) sucrose and 0.7% (wt/vol) agar. All of the plants were grown

under long day conditions at 22 �C. DNA was extracted from 14-d-old seedlings.



21

2.4.2 Whole genome bisulfite sequencing and analysis

The genomic DNA was extracted from 1 gram of 14-day-old seedlings using the

Plant DNeasy Maxi Kit from Qiagen. And 5 g of gDNA was used for library construc-

tion using Illumina’s standard DNA methylation analyses protocol and the TruSeq

DNA sample preparation kit. The samples in Col-0 background were sequenced in

the Genomics Core Facilities of the Shanghai Center for Plant Stress Biology, SIBS,

CAS (Shanghai, China) with Illumina HiSeq2500. The samples in C24 background

were sequenced in the Biosciences Core Laboratory of King Abdullah University of

Science & Technology (KAUST) with Illumina HiSeq2000.

For Col-0 background data analysis, low quality sequences (q < 20) were trimmed

using trim in BRAT-BW [93], and clean reads were mapped to the TAIR10 genome

using BRAT-BW and allowing two mismatches. To remove potential PCR dupli-

cates, the remove-dupl command of BRAT-BW was used. DNA hypomethylated

regions were identified according to Ausin et al. [94] with minor modification. In

brief, only cytosines with 4⇥ coverage in all libraries in the same background were

considered. A sliding-window approach with a 200-bp window sliding at 50-bp inter-

vals was used to identify DMRs. Fisher’s exact test was performed for methylated

versus unmethylated cytosines for each context, within each window, with FDRs esti-

mated using a Benjamini-Hochberg adjustment of Fisher’s p-values calculated in the

R environment. Windows with an FDR  0.05 were considered for further analysis,

and windows within 100 bp of each other were merged to larger regions. Regions

were then adjusted to shrink to the first and last di↵erentially methylated cytosines

(DMCs). A cytosine was considered di↵erentially methylated if it showed at least

a two-fold change in methylation percentage in the mutant. The regions were then

filtered to include only those with at least 10 DMCs and with at least a two-fold

change in arithmetic mean of methylation percentage of all cytosine.

For ros1-1 and C24 data, clean reads were mapped to a pseudo-C24 genome using

BRAT-BW allowing two mismatches. We used public data set of ros1-1/nrpd1 (C24)
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double mutant in C24 background [95] to analyze type II RdDM targets. The pseudo-

C24 genome was generated through the replacement of SNPs in the Col-0 genome

(TAIR10) with C24 variants ( 1001genomes.org/data/MPI/MPISchneeberger2011/

releases/current/C24/Marker/C24.SNPs.TAIR9.txt ).

2.4.3 TE border analysis

The analysis was according to previously described method [96]: ros1-4 hyper

DMR associated TE were aligned at the 5’ end or the 3’ end. We discarded from

the analysis 250 bp from the end opposite to the one used for alignment to avoid

averaging the edges of shorter TEs with the middles of longer sequences.

2.4.4 Histone feature analysis

Histone features were analyzed according to a previously described method [17]

with a minor modification: Briefly, the public data used for the analysis were down-

loaded from Gene Expression Omnibus (Accession No: GSE28398) [90]. The color-

space reads were aligned to TAIR10 genome using Bowtie [97] allowing no more than

3 mismatches. Only reads that are uniquely mapped to the genome were retained for

the downstream analysis. To generate the relative histone signal distribution in the

flanking 5-kb region of the mid-point of DMRs, the whole region (10050 bp long) was

divided into 201 bins with a size of 50 bp and the 101st bin aligning at the middle

point of each DMR. The number of depth in each of the 201 bins was summed. The

relative histone modification signal (y axis) in each of the 201 bins was defined as:

n( Histone modification ) ⇥ N( Input ) / [N( Histone modification ) ⇥ n( Input )],

where n is the sum of depth of the corresponding library in each bin and N is the

number of mapped reads of the corresponding library.

For box plots, DMRs were considered as the 1050 bp region from the DMR mid-

point (+/-10 bins plus the mid-bin). In each region, the relative histone modification

signal was calculated as above. The box plots were generated in R using function
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“boxplot” with parameter “range = 1.5, outline = F, notch = T”. The p-values were

calculated in R using function “wilcox.test”.

2.4.5 Small RNA analysis

Small RNA samples were prepared from 14-day-old seedlings. The analysis pipeline

was similar as Zhang et al. [98]: Briefly, after adapter sequences were trimmed, clean

reads with sizes ranging from 18 to 31 nt were mapped to the Arabidopsis genome

(TAIR10) using Bowtie [97] with parameters “-v 0 k 10”. Read counts were normal-

ized to Reads Per Ten Million (RPTM) based on the total abundance of genome-

matched small RNA reads, excluding structural small RNAs originating from an-

notated tRNAs, rRNAs, snRNAs, and snoRNAs. The hits-normalized-abundance

(HNA) values were calculated by dividing the normalized abundance (in RPTM) for

each small RNA hit, where a hit is defined as simply the number of loci at which a

given sequence perfectly matches the genome [99]. The HNA values of 24 nt small

RNAs within DMRs throughout the whole genome were calculated.

2.4.6 Pol IV ChIP-seq analysis

The data sets we used are from published paper [85]. According to this paper, WT

is pure wild-type plants without any transgenes. nrpd1/NRPD1-3⇥FLAG is nrpd1

mutant with NRPD1-3⇥FLAG transgene.

2.5 Figures
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Fig. 2.1. Composition of ros1 hyper DMRs. Composition of the hyper
DMRs in ros1-4, ros1-1 and of the simulated genomic regions. Simulations
are randomly selected regions with the same length distribution as the
DMRs.
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Fig. 2.2. Chromosomal distribution of ros1 hyper DMRs. Each red
horizontal bar represents a DMR in ros1-1 and each blue horizontal bar
represents a DMR in ros1-4. The red dots indicate the centromeres.
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Fig. 2.3. Kernel density plots of methylation changes. Methylation
changes in ros1 mutants relative to wild type at ros1 hyper DMRs are
shown in the kernel density plots. Changes in mCG, mCHG and mCHH
are shown separately.
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Fig. 2.4. Distances between ROS1-targeted TE and their nearest genes.
Box plot showing the distances between ROS1-targeted or non-targeted
TEs and their nearest protein coding genes. For both Col-0 and C24
ecotypes, ROS1-targeted TEs are significantly closer to genes relative to
TEs that are not targeted by ROS1 (* p-value < 2.2e � 16, one-tailed
Wilcoxon rank sum test).
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Fig. 2.5. Increased DNA methylation around the boarders of TEs tar-
geted by ROS1. DNA methylation levels of ros1 hyper DMR-associated
TEs in wild type, ros1 and nrpd1 mutants. The upper panel shows methy-
lation levels in Col-0, and the lower panel shows the levels in C24. TEs
were aligned at the 5’ end or the 3’ end, and average methylation for all
cytosines within each 50 bp interval was plotted.
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Fig. 2.6. Screenshots of ros1 hyper DMR. Levels of DNA methylation at
shared or non-shared hyper DMRs between ros1-1 and ros1-4. Integrated
Genome Browser (IGB) display of whole-genome bisulfite sequencing data
is shown in the screenshots. DNA methylation levels of cytosines were
indicated with the heights of vertical bars on each track. Left three panels
show hyper DMRs in both ros1-4 and ros1-1. Middle three panels show
hyper DMRs in only ros1-4 but not ros1-1. Right three panels show hyper
DMRs in only ros1-1 but not ros1-4.
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Fig. 2.7. Similar chromatin features shared by ROS1 targets and TEs.
Association of di↵erent histone modifications surrounding the mid-point
of ros1-4 hyper DMRs, all TEs and simulated regions. Similar with gen-
eral TEs, ros1-4 hyper DMRs are negatively associated with H3K36me2,
H3K36me3, H3K4me2, H3K4me3 and H3K9Ac.
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Fig. 2.8. Box plots of ChIP signal of similar chromatin features shared
by ROS1 targets and TEs. Box plots display of the results in Fig. 2.7 (*
p-value < 1e� 15, one-tailed Wilcoxon rank sum test).
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Fig. 2.9. Percentile plots of ChIP signal of similar chromatin features
shared by ROS1 targets and TEs. Percentile plots of the same data as
in Fig. 2.8. For each histone mark, simulated regions, TEs and ros1-4
DMRs were ranked based on their histone ChIP signals from low (left)
to high (right) along X-axis. X-axis is ranking percentile, and Y-axis is
ChIP signal.
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Fig. 2.10. Distinct chromatin features associated with ROS1 targets
and TEs. Association of di↵erent histone modifications surrounding ros1-
4 hyper DMRs. Association of histone modifications at total TEs and
simulated regions served as controls. In contrast to total TEs, ros1-4
hyper DMRs are positively associated with H3K18Ac, H3K27me3, and
negatively associated with H3K27me1 and H3K9me2.
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Fig. 2.11. Box plots of ChIP signal of distinct chromatin features associ-
ated with ROS1 targets and TEs. Box plots display of the results in Fig.
2.10 (* p-value < 1e� 15, one-tailed Wilcoxon rank sum test).
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Fig. 2.12. Percentile plots of ChIP signal of distinct chromatin features
associated with ROS1 targets and TEs. Percentile plots of the same data
as in Fig. 2.11. For each histone mark, simulated regions, TEs and ros1-4
DMRs were ranked based on their histone ChIP signals from low (left)
to high (right) along X-axis. X-axis is ranking percentile, and Y-axis is
ChIP signal.
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Fig. 2.13. Box plots of histone ChIP signal in three types of genomic
regions of ros1-4 hyper DMRs. Box plot display of histone modifications
of di↵erent types of ros1-4 hyper DMRs and corresponding simulation
regions (* p-value < 1e� 6, one-tailed Wilcoxon rank sum test).
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Fig. 2.14. Schematic diagram of di↵erent RdDM targets. Schematic
hypothesis that di↵erent RdDM targets may be regulated di↵erently by
ROS1. Some type I RdDM targets are not regulated by ROS1 (Upper
panel) whereas other type I RdDM targets are regulated by ROS1, al-
though RdDM is more dominant at these loci (Middle panel). Type II
RdDM targets are always regulated by ROS1, and ROS1 is more dominant
at these loci (Lower panel).
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Fig. 2.15. Screenshots of type I and type II RdDM targets. Methylation
levels of type I and type II RdDM targets in Col-0, nrpd1, ros1-4, and
ros1/nrpd1. The three regions, from top to the bottom, are representative
regions as diagramed in the upper, middle, and bottom panels of Fig. 2.14
respectively.
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Fig. 2.16. Heat maps of mC methylation in type I and type II targets.
Heat maps showing DNA methylation levels of all type I and type II
RdDM target loci in Col-0, nrpd1, ros1-4, and ros1/nrpd1.
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Fig. 2.17. Representative screenshots of type I target. Methylation
levels of two type I RdDM targets in Col-0, nrpd1, ros1-4, and ros1/nrpd1.
Whole genome bisulfite sequencing data are shown for two type I RdDM
targets. The region on the left is the type of RdDM target shown in the
upper panel of Fig. 2.14, while the region on the right is the type of
RdDM targets shown in the middle panel of Fig. 2.14.
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Fig. 2.18. Heat maps of mCG, mCHG, mCHH methylation in type I
target. Heat maps showing CG, CHG and CHH methylation levels of all
type I RdDM targets in Col-0, nrpd1, ros1-4, and ros1/nrpd1.
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Fig. 2.19. Representative screenshots of type II target. Methylation
levels of type II RdDM targets. Methylation levels of two type II RdDM
targets in Col-0, nrpd1, ros1-4, and ros1/nrpd1 were shown in left panels.
Methylation levels of two type II RdDM targets in C24, nrpd1 (C24),
ros1-1, and ros1-1/nrpd1 (C24) were shown in right panels.
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Fig. 2.20. Heat maps of mCG, mCHG, mCHH methylation in type II
target. Heat maps showing CG, CHG and CHH methylation levels of all
type II RdDM target in Col-0, nrpd1, ros1-4, and ros1/nrpd1, C24, nrpd1
(C24), ros1-1, and ros1-1/nrpd1 (C24).
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Fig. 2.21. Heat maps and box plots of 24 nt siRNA abundance in Col-0
and nrpd1. Heat maps and box plots showing 24 nt siRNA abundance of
type I (left panel) and type II (right panel) RdDM targets in Col-0 and
nrpd1 (* p-value < 1e� 7, paired two sample t-test)
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Fig. 2.22. Pol IV enriched at type I loci but not type II. Box plot showing
Pol IV enrichment at type I and type II RdDM targets. Pol IV signal in
wild type plants served as control. Pol IV is significantly enriched at type
I but not type II RdDM targets. * p-value < 2.2e�16; NS, not significant
(one-tailed Wilcoxon rank sum test).
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Fig. 2.23. Heat maps and box plots of 24 nt siRNA abundance at type
II targets. Box plot and heat map showing 24 nt siRNA abundance
of type II RdDM target loci in Col-0, ros1-4, and ros1/nrpd1 (* p-value
< 2.2e� 16, paired two-sample t-test).
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Fig. 2.24. Heat maps and box plots of 24 nt siRNA abundance at type I
targets. Box plot and heat map showing 24 nt siRNA abundance of type
I RdDM target loci in Col-0, ros1-4, and ros1/nrpd1.
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Fig. 2.25. Similar chromatin features shared by type II and type I targets.
Association of di↵erent histone modifications at regions surrounding the
mid-points of type I and type II targets and simulation regions.
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Fig. 2.26. Box plots of similar chromatin features shared by type II and
type I targets. Box plots showing the same results as in Fig. 2.25. *
p-value < 0.005, significantly lower than that of simulation (one-tailed
Wilcoxon rank sum test).
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Fig. 2.27. Percentile plots of similar chromatin features shared by type II
and type I targets. Percentile plots of the same data as in Fig. 2.26. For
each histone mark, simulated regions, type I and type II RdDM targets
were ranked based on their histone ChIP signals from low (left) to high
(right) along X-axis. X-axis is ranking percentile, and Y-axis is ChIP
signal.
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Fig. 2.28. Distinct chromatin features associated with type II and type
I targets. Association of di↵erent histone modifications at regions sur-
rounding the mid-points of type I and type II targets. Simulation regions
served as control regions.
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Fig. 2.29. Box plots of distinct chromatin features associated with type
II and type I targets. Box plots showing the same results as in Fig. 2.28.
* p-value < 0.005, NS, not significant compared to simulation (one-tailed
Wilcoxon rank sum test).



53

Fig. 2.30. Percentile plots of distinct chromatin features associated with
type II and type I targets. Percentile plots of the same data as in Fig.
2.29. For each histone mark, simulated regions, type I and type II RdDM
targets were ranked based on their histone ChIP signals from low (left)
to high (right) along X-axis. X-axis is ranking percentile, and Y-axis is
ChIP signal.
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Fig. 2.31. Box plots of histone ChIP signal in three types of genomic
regions of type II and type I targets. Box plots showing histone features
of di↵erent categories of type I and type II RdDM targets (* p-value
< 1e� 6, one-tailed Wilcoxon rank sum test; NS, not significant).
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Fig. 2.32. Reduced ROS1 expression contributes to DNA hypermethyla-
tion in RdDM mutants. A: Heat maps showing CG,CHG, CHH, and total
C methylation levels of nrpd1 hyper DMRs in Col-0, nrpd1 and ros1-4.
B: Heat maps showing CG,CHG, CHH, and total C methylation levels of
nrpe1 hyper DMRs in Col-0, nrpe1 and ros1-4.
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Fig. 2.33. Screenshots of shared hyper DMRs between nrpd1 and ros1-
4. Levels of DNA methylation at shared hyper DMRs between nrpd1
and ros1-4. Integrated Genome Browser (IGB) display of whole-genome
bisulfite sequencing data is shown in the screenshots. DNA methylation
levels of cytosines were indicated with the heights of vertical bars on each
track.
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Fig. 2.34. Chromosomal distribution of shared hyper DMRs between
nrpd1 and ros1-4. Each red horizontal bar represents a hyper DMR
shared between nrpd1 and ros1-4. The red dots indicate the centromeres.
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Fig. 2.35. Comparison of di↵erent histone modifications between 1026
shared DMRs and ros1 targets. Box plots display of di↵erent histone
modifications surrounding 1026 shared hyper DMRs, all ros1-4 DMRs
and simulated regions (* p-value < 0.0005, one-tailed Wilcoxon rank sum
test).
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Fig. 2.36. Box plots of methylation changes in 1026 shared DMRs. The
1026 genomic regions with increased DNA methylation levels in both ros1
and nrpd1 mutants were used in this analysis. Box plots of CG, CHG,
and CHH methylation level changes (mutant - WT) of these regions were
shown in di↵erent mutants. ddcmt2 is drm1drm2cmt2 triple mutant,
ddcmt3 is drm1drm2cmt3 triple mutant and ddcc is drm1drm2cmt2cmt3
quadruple mutant. (* p-value < 1e� 10, one sample one-tailed Student’s
t-test).
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Fig. 2.37. Schematic diagram of DNA regulation in 1026 shared DMRs.
Diagram showing that the 1026 shared hyper DMRs are regulated by
ROS1, RdDM, and RdDM-independent DNA methylation pathways in
wild type, and might be also regulated by DMLs-mediated demethylation
pathways.
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Fig. 2.38. Heat map of 24 nt siRNA abundance in 1026 shared DMRs.
Heat map showing 24 nt siRNA abundance of the 1026 shared hyper
DMRs in Col-0 and nrpd1.
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Table 2.1.
The percentiles of the length or ROS1-targeted TEs and all TEs

percentile length of ros1 -TEs (bp) length all-TEs (bp)

0% 20 10

5% 37 31

10% 58 46

15% 87 63

20% 118 80

25% 154 103

30% 192 133

35% 239 165

40% 292 204

45% 351 251

50% 426 309

55% 514 375

60% 598 453

65% 698 549

70% 797 646

75% 918 780

80% 1091 955

85% 1294 1215

90% 1707 1709

95% 3504 3306

100% 22996 31019
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Table 2.2.
Published data used in Chapter 2 study

Data set GEO/GSM number Reference

ros1-1/nrpd1 BS-Seq GSE44417 Huang et al. 2013. PLoS Genetics

histone modifications ChIP data set GSE28398 Luo et al. 2013. Plant J

Pol IV ChIP data set GSE45368 Law et al. 2013. Nature

drm2 BS-Seq GSM1499354 Zhong et al. 2015. PNAS

cmt2 BS-Seq GSM1242405 Stroud et al. 2014. Nat Struct Mol Biol

cmt3 BS-Seq GSM981003 Stroud et al. 2013. Cell

cmt2cmt3 BS-Seq GSM1242402 Stroud et al. 2014. Nat Struct Mol Biol

ddcmt2 BS-Seq GSM1242403 Stroud et al. 2014. Nat Struct Mol Biol

ddcc BS-Seq GSM1242404 Stroud et al. 2014. Nat Struct Mol Biol

met1 BS-Seq GSM981031 Stroud et al. 2013. Cell

drm1drm2 BS-Seq GSM981015 Stroud et al. 2013. Cell

ddcmt3 BS-Seq GSM981016 Stroud et al. 2013. Cell
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3. SPECIFIC BUT INTERDEPENDENT FUNCTIONS

FOR ARABIDOPSIS AGO4 AND AGO6 IN

RNA-DIRECTED DNA METHYLATION

3.1 Abstract

Argonaute family proteins are conserved key components of small RNA-induced

silencing pathways. In the RdDM pathway in Arabidopsis, AGO6 is generally consid-

ered to be redundant with AGO4. In this report, our comprehensive, genome-wide

analyses of AGO4- and AGO6-dependent DNA methylation revealed that redundancy

is unexpectedly negligible in the genetic interactions between AGO4 and AGO6.

Immunofluorescence revealed that AGO4 and AGO6 di↵er in their subnuclear co-

localization with RNA polymerases required for RdDM. Pol II and AGO6 are absent

from perinucleolar foci, where Pol V and AGO4 are co-localized. In the nucleoplasm,

AGO4 displays a strong co-localization with Pol II, whereas AGO6 co-localizes with

Pol V. These patterns suggest that RdDM is mediated by distinct, spatially regulated

combinations of AGO proteins and RNA polymerases. Consistently, Pol II physically

interacts with AGO4 but not AGO6, and the levels of Pol V-dependent sca↵old RNAs

and Pol V chromatin occupancy are strongly correlated with AGO6 but not AGO4.

Our results suggest that AGO4 and AGO6 mainly act sequentially in mediating small

RNA-directed DNA methylation.
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3.2 Results

3.2.1 Genome-wide profiling of AGO4- and AGO6-dependent DNA methy-

lation

To profile the genome-wide methylation regulated by AGO4 and/or AGO6, we per-

formed whole-genome bisulfite sequencing using ago4-6 and ago6-2 mutant plants in

the Col-0 background. Similar to the AGO4 mutation, the AGO6 mutation resulted

in DNA hypomethylation in mature leaves (Fig. 3.1), even though it was primarily

expressed in root and shoot meristems [80,83]. Dysfunction of AGO4 or AGO6 causes

DNA hypomethylation at 3678 or 3731 loci, respectively (Fig. 3.2). Both methylome

results were validated by individual bisulfite sequencing of a group of randomly cho-

sen hypomethylation loci (Fig. 3.3). In both ago4-6 and ago6-2 mutants, DNA

hypomethylation was most obvious in the CHH context (Fig. 3.4 and 3.5), which is

consistent with CHH methylation being the hallmark of RdDM activities and with

these genes functioning in RdDM.

Approximately 80 and 82% of loci with hypomethylated DNA identified in ago4-6

and ago6-2 mutant plants, respectively, overlap with loci where DNA methylation

is Pol IV dependent (Fig. 3.6). Similar patterns were observed when AGO4 and

AGO6 target loci were compared with Pol V target loci (Fig. 3.6). These results

further support the functions of AGO4 and AGO6 in the RdDM pathway. ROS1 gene

expression is reduced in many Arabidopsis mutants defective in RdDM components

[26, 38, 100]. We found that dysfunction of either AGO4 or AGO6 decreases ROS1

expression (Fig. 3.7), further suggesting that both AGO proteins are required for

RdDM. AGO6 dysfunction causes global DNA hypomethylation at loci where DNA

methylation is AGO4 dependent (Fig. 3.2 and 3.4). Similarly, AGO4 dysfunction

causes DNA hypomethylation at loci where DNA methylation is AGO6 dependent

(Fig. 3.2 and 3.5). Even with a stringent filtering criterion (loci that are called

“overlap loci” must show > twofold reduction in methylation levels in both mutants

compared to Col-0), both AGO4 and AGO6 are clearly required for DNA methylation
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at 2537 loci (Fig. 3.2), which accounts for 68 and 69% of DNA hypomethylation loci

identified in ago4-6 and ago6-2, respectively. Therefore, AGO4 and AGO6 mostly

act non-redundantly in regulating DNA methylation in the RdDM pathway.

3.2.2 AGO4 and AGO6 predominantly function non-redundantly in the

RdDM pathway

To dissect the genetic interactions between AGO4 and AGO6, we generated the

ago4-6 ago6-2 double mutant plants and compared its methylome with those of the

single mutants. A total of 4097 loci were identified as hypomethylated in the ago4-6

ago6-2 double mutant compared to wild-type Col-0 (Fig. 3.8). These hypomethylated

loci were categorized into four groups based on DNA methylation patterns: Group

I are loci where DNA hypomethylation is observed in the double mutant but not

in the single mutants, indicating that DNA methylation at these loci is redundantly

regulated by AGO4 and AGO6; Group II are loci where DNA hypomethylation occurs

in one of the two single mutants but not in the other, and DNA methylation is not

further decreased in the double mutant, indicating that DNA methylation at these loci

requires AGO4 or AGO6 specifically; Group III are loci where DNA methylation is

similarly reduced in the two single mutants and the double mutant shows no additive

e↵ects on DNA hypomethylation, indicating that AGO4 and AGO6 are each required

to mediate RdDM at these loci; and Group IV are loci where DNA hypomethylation

is observed in the single mutants while the double mutant shows more severe DNA

hypomethylation, indicating more complex genetic interactions between the two AGO

proteins.

Among the 4097 hypomethylated loci in the ago4-6 ago6-2 double mutant, only

15 (0.4%) were categorized into Group I (Fig. 3.8, 3.9 and 3.10), indicating that

AGO4 and AGO6 function mostly non-redundantly in the RdDM pathway. Group II

consists of 191 loci. The numbers of AGO4- and AGO6-specific loci are 66 (1.6%) and

125 (3.1%), respectively (Fig. 3.8, 3.9 and 3.10). Group III consists of 2174 regions
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that account for the majority (53.1%) of the 4097 hypomethylated regions (Fig. 3.8,

3.9 and 3.10). AGO4 and AGO6 are each required to confer DNA methylation at

Group III loci; thus, AGO4 and AGO6 mainly play distinct but cooperative roles, for

instance, with a sequential relationship, in the RdDM pathway. Group IV consists

of the remaining 1717 (41.9%) loci, where DNA hypomethylation was observed in

ago4-6, ago6-2, and ago4-6 ago6-2, while the double mutant exhibited a further

reduction in DNA methylation levels compared to the single mutants (Fig. 3.8, 3.9

and 3.10). Together, these results indicate that AGO4 and AGO6 are mostly mutually

dependent, instead of being redundant, in their regulation of DNA methylation.

To examine whether the mutual dependence between AGO4 and AGO6 might be

preferentially associated with certain types of genomic loci, we categorized the DNA

hypomethylation loci into transposons (TEs), genic regions (Genes), or intergenic

regions (IGRs). Among the 4097 hypomethylation loci identified in the ago4-6 ago6-

2 double mutant, 33% (1347) are gene loci, 44% are TE loci, and 23% are IGR loci

(Fig. 3.11). Notably, 76% (1002) of the hypomethylated gene loci exhibited the

pattern that is characteristic of Group III loci (Fig. 3.11). Among these 1002 loci,

94% loci are DNA methylation targets of Pol IV and/or Pol V (Fig. 3.12). Thus,

DNA hypomethylation at these loci indicates defects in AGO4/6-mediated RdDM

rather than natural epialleles.

The canonical RdDM pathway involves 24 nt siRNAs that are almost exclusively

Pol IV dependent. The Pol IV mutant nrpd1-3 and the Pol V mutant nrpe1-11

share 83% of their hypomethylated loci (Fig. 3.13), whereas 82% of hypomethylated

loci in the ago4-6 ago6-2 double mutant overlap with those identified in nrpd1-3 or

nrpe1-11 (Fig. 3.13). These patterns suggest that AGO4- and AGO6-mediated DNA

methylation is predominantly dependent on Pol IV and Pol V function in the canonical

RdDM pathway. On the other hand, 62% of hypomethylated loci in nrpd1-3 or nrpe1-

11 overlap with hypomethylation regions in the ago4-6 ago6-2 double mutant (Fig.

3.13). Although this pattern supports the importance of AGO4 and AGO6 in RdDM,

it also indicates that DNA methylation at some RdDM target loci does not require
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AGO4 and AGO6. At loci where DNA methylation is regulated by AGO4 and/or

AGO6, simultaneous dysfunction of AGO4 and AGO6 drastically reduces but does

not abolish DNA methylation in the CHH context (Fig. 3.14 and 3.15). At many

of these loci, nrpd1-3 and nrpe1-11 mutants display a further reduction in DNA

methylation levels compared to the ago4-6 ago6-2 double mutant (Fig. 3.14 and

3.15). These results suggest that, besides AGO4 and AGO6, other AGO proteins

such as AGO9 may contribute to DNA methylation at these loci.

In addition to regulating 24 nt siRNA-dependent canonical RdDM, AGO4 and

AGO6 also mediate a non-canonical RdDM pathway that depends on 21-22 nt tasiR-

NAs [101], which do not require Pol IV for their production. DNA methylation at

the TAS3a locus is tasiRNA dependent and is substantially decreased by mutation of

either AGO4 or AGO6 [101]. We consistently observed that AGO4 and AGO6 muta-

tions both reduce DNA methylation at the TAS3a locus (Fig. 3.16). In addition to

TAS3a, TAS1a and TAS1c are two other loci that are subjected to tasiRNA-dependent

DNA methylation [101]. We observed that AGO6 mutation strongly depletes DNA

methylation at TAS1a and TAS1c, whereas AGO4 mutation causes only a slight de-

crease in DNA methylation at these two loci (Fig. 3.16). Thus, AGO6 has a more

prominent role in mediating tasiRNA-dependent non-canonical RdDM than AGO4.

The non-redundant relationship between AGO4 and AGO6 was also observed at

the level of transcriptional silencing. Dysfunction of either AGO4 or AGO6 relieves

transcriptional silencing at several transposon loci tested, including AtSN1, AtGP1,

IGN5, and LINE1-4 (Fig. 3.17). Derepression occurs to di↵erent degrees at some

loci in ago4-6 and ago6-2 single mutants (Fig. 3.17), but is not additive in the

ago4-6 ago6-2 double mutant (Fig. 3.17). Therefore, AGO4 and AGO6 function

non-redundantly to promote transcriptional silencing of a subset of loci.
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3.2.3 Subnuclear spatial segregation of AGO4 and AGO6 in mediating

RdDM

Co-localization of distinct RdDM components can be observed within nucleoplas-

mic and perinucleolar foci [74–77] . We therefore asked whether AGO4 and AGO6

display similar subnuclear localization patterns in Arabidopsis seedlings. Immunos-

taining of AGO4 and AGO6 in the same nuclei revealed spatial segregation, as indi-

cated by the absence of co-localized signals (n = 105) (Fig. 3.18A). Production of

non-coding RNAs for RdDM involves the RNA polymerases Pol IV, Pol V, and Pol II.

Biogenesis of siRNAs depends predominantly on Pol IV, which does not a↵ect sca↵old

RNA levels [70] . In all cells examined (n � 112), neither AGO4 nor AGO6 exhib-

ited co-localization with NRPD1, the largest subunit of Pol IV (Fig. 3.18B). These

results are consistent with the inference that AGO proteins function downstream of

Pol IV-dependent siRNA production. Pol V not only transcribes sca↵old RNAs that

recruit AGO-siRNA complexes, but also reinforces production of some siRNAs [102]

. AGO6 displays partial co-localization with NRPE1, the largest subunit of Pol V,

in the nucleoplasm but not in the perinucleolar foci (Fig. 3.19A). Consistent with

previous reports [74, 76] , we observed that AGO4 signals overlapped with NRPE1

signals almost exclusively in the perinucleolar foci (Fig. 3.19B), where other key

RdDM components such as RDR2 and DCL3 have also been observed [74–77].

In addition to Pol IV and Pol V, Pol II can produce sca↵old RNAs at some

intergenic low-copy-number repeat loci [71] and can also initiate siRNA production at

inverted repeats [103,104]. Pol II localizes in the nucleoplasm but not at perinucleolar

foci(Fig. 3.20A) [75]. Pol II was previously shown to co-localize with AGO4 in the

nucleoplasm [75]. We also consistently observed a strong co-localization between

AGO4 and Pol II in the nucleoplasm (Fig. 3.20A) . In contrast, Pol II does not co-

localize with AGO6 (Fig. 3.19B), which displays extensive co-localization with Pol V

in the nucleoplasm but not at perinucleolar foci (Fig. 3.19B). To test whether AGO4-

Pol II co-localization is associated with Pol II’s function in mRNA transcription, we
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examined subnuclear localization patterns of TBP, a transcription factor that binds

to the TATA box in gene promoters and is thereby indicative of mRNA transcription

in TBP-dependent Pol II promoters [105] . AGO4 signals did not overlap with signals

of TBP (Fig. 3.20B), but TBP-Pol II overlapped signals were observed (Fig. 3.20C

), suggesting that, at least at those TBP-dependent promoters, the co-localization

between AGO4 and Pol II is not associated with mRNA transcription. Further, the

largest subunit of Pol II, NRPB1, co-immunoprecipitates with AGO4 but not AGO6,

which supports a physical interaction between Pol II and AGO4 and is consistent with

the immunostaining results (Fig. 3.20C ). Together, these data reveal a subnuclear

spatial segregation of AGO4 and AGO6 in mediating RdDM. Because AGO4 and

AGO6 are simultaneously required for DNA methylation at most of the RdDM target

loci, these results further suggest the existence of spatially separated yet cooperative

RdDM steps in the nucleus.

3.2.4 Functional divergence between AGO4 and AGO6 in regulating siR-

NAs and sca↵old RNAs

Pol V physically interacts with AGO proteins and synthesizes sca↵old RNAs that

recruit complementary siRNAs. Thus, it is critical for the recruitment of AGO-siRNA

complexes. To examine the potential e↵ects of AGO proteins on Pol V-mediated

RdDM steps, we quantified sca↵old RNA levels in mutants defective in AGO4 or

AGO6. We evaluated RdDM loci known to produce Pol V-dependent non-coding

RNAs and found that the ago6-2 mutant displayed reduced levels of Pol V transcripts

relative to wild-type plants (Fig. 3.21 and 3.22). In addition, we performed chromatin

immunoprecipitation for Pol V and observed reduced occupancy at these loci in ago6-

2 mutant plants compared to wild-type (Fig. 3.23). In contrast, AGO4 dysfunction

does not reduce Pol V transcript levels at the examined loci except the AtSN1 locus,

where Pol V transcripts were moderately decreased in both ago4-6 and ago6-2 (Fig.

3.21). Meanwhile, AGO4 dysfunction does not a↵ect Pol V occupancy in chromatin
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as examined at the same loci including AtSN1 (Fig. 3.23). These results further

support the functional divergence between AGO4 and AGO6 and the hypothesis that

the two AGO proteins function non-redundantly in the RdDM pathway.

Although most siRNAs are Pol IV dependent, the production of some siRNAs is

reinforced by Pol V [68,102]. We wanted to determine whether AGO4 or AGO6 may

preferentially bind to siRNAs that are Pol V dependent. AGO4- and AGO6-bound

siRNAs have been identified previously [83]. We retrieved these siRNAs and exam-

ined their levels in our nrpd1-3 and nrpe1-11 whole-genome, small RNA sequencing

datasets. As expected, Pol IV dysfunction decreases the levels of almost all AGO4-

and AGO6-bound siRNAs (Fig. 3.24), consistent with the inference that both AGO4

and AGO6 function downstream of Pol IV. In contrast, only about 44% of AGO4- or

AGO6-bound siRNAs showed reduced levels in nrpe1-11 (Fig. 3.25), indicating that

neither AGO4 nor AGO6 preferentially associates with Pol V-dependent siRNAs.

In addition to guiding DNA methylation by pairing siRNAs with sca↵old RNAs,

AGO4 can also contribute to siRNA production through its endonuclease activity

within the PIWI domain [45]. We consistently observed decreased siRNA levels in

ago4-6 at several RdDM loci (Fig. 3.26), where individual 24 nt siRNAs can be

quantitatively detected by RT-PCR [98]. The ago6-2 mutant also showed reduced 24

nt siRNA levels at the examined loci (Fig. 3.26), indicating that AGO6 contributes

to siRNA production as well. The ago4-6 ago6-2 double mutant displayed an ad-

ditive e↵ect on siRNA accumulation at the At1TE40810 locus (Fig. 3.26); such an

additive e↵ect was not observed at other examined RdDM loci (Fig. 3.26). Together,

these observations are consistent with non-redundant roles of AGO4 and AGO6 in

regulating siRNA production at the majority of RdDM target loci.

3.3 Discussion

AGO4 and AGO6 have been considered redundant in regulating RNA-directed

DNA methylation. In this study, we performed genome-wide quantitative analyses of
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DNA methylation in Arabidopsis mutants defective in AGO4, AGO6, or both. Our

results revealed that redundancy is unexpectedly negligible (0.4%) between AGO4 and

AGO6. At most of their target loci, AGO4 and AGO6 are each required to confer

DNA methylation, indicating that the two AGO proteins have distinct yet cooperative

functions. Consistent with these proteins functioning non-redundantly, AGO6 and

AGO4 display di↵erential e↵ects on Pol V-dependent sca↵old RNA levels and Pol

V occupancy. In addition, subnuclear localization patterns of AGO4 and AGO6

provide support for spatially segregated activities in the RdDM pathway. AGO4 and

AGO6 di↵er in their subnuclear co-localization with Pol II and Pol V. In perinucleolar

foci where Pol V and AGO4 show co-localization, Pol II and AGO6 are absent.

In the nucleoplasm where AGO4 co-localizes with Pol II, AGO6 preferentially co-

localizes with Pol V. These patterns suggest spatially segregated RdDM activities,

which appear to be mediated through di↵erent AGO-Pol combinations (Fig. 3.27).

AGO4 and AGO6 have di↵erent expression patterns. A GUS reporter gene un-

der the control of the AGO4 promoter (PAGO4:GUS) showed ubiquitous expression

in the embryo and in mature leaves [83]. In the embryo, PAGO6:GUS expression

was concentrated in the shoot and root apical meristems and the vascular tissues,

whereas PAGO6:GUS expression was not observed in mature leaves [80, 83]. Never-

theless, AGO6 dysfunction resulted in DNA hypomethylation in leaves at transgenic

reporter genes [80] and at endogenous RdDM target loci (Fig. 3.1 and 3.3). AGO4

protein levels are reduced in mutants defective in Pol IV, RDR2, or DCL3, which are

RdDM regulators upstream of AGO proteins [72, 76]. AGO6 dysfunction does not

decrease AGO4 protein level (Fig. 3.28) [83]. Thus, DNA hypomethylation caused

by AGO6 dysfunction is not likely mediated through the down-regulation of AGO4

in leaves. Because meristems are the hubs of AGO6 gene expression, it is possible

that DNA hypomethylation in the mature leaves of ago6 mutant is a consequence of

hypomethylation in the shoot apical meristem, from which aerial portions develop.

Analysis of several commonly studied RdDM loci revealed similar DNA methylation

levels between ago4-5 and ago4-6 (Fig. 3.29), indicating that, at least at the exam-
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ined loci, ago4-6 is not a weaker allele compared to ago4-5. When comparing ago4-5

and ago6-2 e↵ects on RdDM, Stroud [88] examined DRM1/2-dependent loci where

DNA methylation showed dependence on both AGO4 and AGO6; DNA methylation

patterns were examined in the CHH context within 100-bp genomic segments. We

re-analyzed ago4-5 and ago6-2 methylomes [88] by using the same analysis pipeline

described in this study. The re-analysis showed that DNA methylation at 1636 ge-

nomic loci, of varying sizes up to 2065 bp, is dependent on both AGO4 and AGO6.

The majority (62%) of these loci displayed similar cytosine (including CG, CHG,

and CHH) methylation levels between ago4-5 and ago6-2. Loci where AGO4 and

AGO6 are mutually dependent in regulating DNA methylation are characterized by

the following: (1) ago4 and ago6 mutants show similar reduction in DNA methyla-

tion levels, and (2) ago4ago6 double mutant does not show additive e↵ects compared

to the single mutants. Therefore, the results of re-analysis of Stroud et al. [88] are

consistent with our observation of the interdependence between AGO4 and AGO6,

although an ago4-5 ago6-2 double mutant is unavailable for further analysis.

The function of AGO proteins in RdDM may be a↵ected by Pol V in di↵erent

ways, because Pol V controls RdDM in two ways, that is, by contributing to the

transcription of sca↵old RNAs and by reinforcing the production of some siRNAs.

Our bioinformatics analysis revealed that AGO6-bound siRNAs are not preferentially

Pol V dependent. AGO4 interacts with Pol V [72, 83] and co-localizes with Pol V at

perinucleolar foci [76] where the siRNA biogenesis proteins RDR2 and DCL3 were

also observed [74]. However, like AGO6, AGO4 does not preferentially bind Pol

V-dependent siRNAs, as only 43% of AGO4-bound siRNAs were down-regulated

by Pol V dysfunction. Therefore, the dependence of siRNAs on Pol V does not

distinguish the roles of AGO4 and AGO6 in the RdDM pathway. Except at the AtSN1

locus, we also observed that dysfunction of AGO6, but not AGO4, partially decreases

Pol V-dependent transcripts that can serve as sca↵old RNAs to recruit AGO-siRNA

complexes. It thus appears that AGO6 is more tightly connected with Pol V function

than AGO4. Consistent with this notion, dysfunction of Pol V decreases the protein
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level of AGO6 but not of AGO4 (Fig. 3.28) [83], while AGO6 displayed a stronger

physical association with Pol V than AGO4 [83].

AGO4 and AGO6 may act sequentially to mediate siRNA-guided DNA methyla-

tion at the majority of RdDM target loci. Perhaps, when loaded with siRNAs, one

of the two AGOs guides the formation of a heterochromatic histone mark, and then,

the other AGO can guide DNA methylation. It is possible that AGO4-siRNA guides

histone modification through association with Pol II-generated sca↵old RNAs. The

resulting histone mark may allow Pol V to be recruited to generate new sca↵old RNAs

to pair with AGO6-bound siRNAs. Through the combined actions of AGO4-siRNA

and AGO6-siRNA, DRM2 may then be recruited to trigger DNA methylation. These

actions would all take place in the nucleoplasm. At the perinucleolar foci where AGO4

is co-localized with Pol V, AGO4 may also directly guide DNA methylation. Future

experiments to test this and other models should help us understand how siRNAs

promote DNA methylation.

3.4 Material and methods

3.4.1 Plant materials and growth conditions

Arabidopsis was grown at 23�C and with 16-h light/8-h dark. T-DNA insertion

lines salk 071772 (ago4-6 ) and salk 031553 (ago6-2 ) were ordered from the SALK

Institute Genomic Analysis Laboratory. The native promoter-driven FLAG-tagged

AGO4 and AGO6 transgenic plants were obtained from the laboratory of Dr. David

Baulcombe.

3.4.2 Whole-genome bisulfite sequencing and analysis

DNA was extracted from 12-day-old seedlings and sent to BGI (Shenzhen, China)

for bisulfite treatment, library preparation, and sequencing. Bisulfite sequencing li-

braries were prepared using standard Illumina protocols. The brief pipeline of BGI



75

is as follows: (1) fragment genome DNA to 100-300 bp by sonication; (2) DNA-end

repair, 3-dA overhang and ligation of methylated sequencing adapters; (3) bisulfite

treatment by ZYMO EZ DNA Methylation-Gold kit; (4) desalting, size selection,

PCR amplification and size selection again; and (5) qualified library for sequencing.

The bisulfite conversion rate of Col-0 and the five mutants used in this study are

Col-0 99.37%, ago4-6 99.63%, ago-2 99.61%, ago4-6 ago6-2 99.59%, nrpd1-3 99.51%

and nrpe1-11 99.32%.

For data analysis, adapter and low-quality sequences (q < 20) were trimmed, and

clean reads were mapped to the Arabidopsis genome (TAIR10) using BRAT-BW [93]

and allowing two mismatches. DNA hypomethylated regions were identified according

to Ausin [94] with minor modifications. In brief, only cytosines with 4 coverage in all

libraries were considered. A sliding-window approach with a 200-bp window sliding

at 50-bp intervals was used to identify DMRs. Fisher’s exact test was performed

for methylated versus unmethylated cytosines for each context, within each window,

with FDRs estimated using a Benjamini-Hochberg adjustment of Fisher’s P-values

calculated in the R environment. Windows with an FDR 6 0.05 were considered for

further analysis, and windows within 100 bp of each other were condensed to larger

regions. Regions were then adjusted to extend to di↵erentially methylated cytosines

(DMC) at each border. A cytosine was considered di↵erentially methylated if it

showed at least a twofold reduction in methylation percentage in the mutant. The

regions were then filtered to include only those with at least 10 DMCs and with at

least an average of a twofold reduction in methylation percentage per cytosine.

To dissect genetic interactions between AGO4 and AGO6, the 4097 hypomethy-

lated loci in ago4-6 ago6-2 were categorized into four groups based on the DNA

methylation (meC) levels in the wild-type, ago4-6, ago6-2, and ago4-6 ago6-2 follow-

ing these steps: (1) loci in which reduction of meC in both ago4-6 and ago6-2 is <

25% were categorized as Group I loci; (2) the remaining loci were then filtered for

AGO4-specific loci (meC reduction in ago4-6 > 25% while meC reduction in ago6-2

< 25%) and AGO6-specific loci (meC reduction in ago6-2 > 25% while meC reduction
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in ago4-6 < 25%), which are collectively categorized into Group II; (3) then, Group

III loci were defined by “meC reduction in ago4-6 ago6-2 125% meC reduction in

either ago4-6 or ago6-2” and “the ratio of meC reduction in ago4-6 to meC reduc-

tion in ago6-2 is between 75 and 125%”; and (4) the loci remaining from step 3 were

then assigned to Group IV. To compare ago mutants with nrpd1-3 and nrpe1-11, we

re-analyzed methylome data of nrpd1-3 and nrpe1-11 [106]. A DNA hypomethylated

region was categorized as “TE” if it overlapped (> 1 bp) a TE. A DNA hypomethyla-

tion region was categorized as “gene” if it overlapped a gene and did not overlap any

TE. An intergenic region was categorized as “IGR” if it did not fall into the groups

of “TE” or “gene”. For TE annotation, we used both ATxTE and ATxG numbers.

If a region overlapped with ATxTE, it was classified as TE region. If a region did not

overlap with ATxTE but overlapped with ATxG which was annotated as transpos-

able element gene, it also was classified as TE region. Regions having no overlap with

ATxTE or transposable element gene (ATxG) and overlapping with protein coding

genes were classified as gene region.

3.4.3 Individual bisulfite sequencing

Individual bisulfite sequencing was performed as described previously [35].In brief,

2-week-old seedlings were collected for genomic DNA extraction using DNeasy Plant

Mini Kit (Qiagen). Purified DNA was subjected to bisulfite conversion reaction using

BisulFlash DNA Modification Kit (EPIGENTEK) according to manufacturer’s pro-

tocol. Bisulfite-converted DNA was used as template to amplify target loci, and PCR

products were cloned into pGEM-T easy vector (Promega) for DNA sequencing. For

each locus, 15-20 clones were selected for sequencing.

3.4.4 Immunostaining analysis

To prepare nuclei, 4 g of 2-week-old seedings grown on 1/2 MS plates was chopped,

and nuclei were isolated as previously described [74]with minor modification. The
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slides were first fixed in 4% formaldehyde/PBST bu↵er for 30 min at room tempera-

ture and washed three times with PBST. Slides were then blocked in 1% BSA/PBST

at 37C for 30 min. Slides were then exposed to primary antibody in blocking so-

lution overnight at 4C. After they were washed three times with PBST, slides were

incubated with Alexa Fluor fluorescent-labeled secondary antibody. The nuclei were

counterstained by ProLong Gold Antifade Reagent with DAPI (P36931, Invitrogen).

For double immunostaining, slides were repeatedly blotted with primary and sec-

ondary antibodies. Images of nuclear protein localization were captured with a Nikon

A1R MP confocal microscope. Images were analyzed using NIS-Elements Ar Micro-

scope Imaging Software and processed by Adobe Photoshop (Adobe Systems). The

primary antibodies used in this study included monoclonal antibodies of anti-AGO4

(1:200, Agrisera), anti-AGO6 (1:200, Agrisera), anti-H3K9me2 (1:400, Ab1220, Ab-

cam), anti-H3K27me3 (1:400, Abcam), anti-NRPD1 (1:200, rabbit antibody, a gift

from Craig S. Pikaard), and NRPE1 (1:200, rabbit antibody, a gift from Craig S.

Pikaard). The following secondary antibodies were diluted at a ratio of 1:400: Alexa

fluor 488 goat anti-rabbit IgG (A11008, Invitrogen), Alexa fluor 488 goat anti-mouse

IgG (A11001, Invitrogen), Alexa fluor 568 goat anti-mouse IgG (H+L) (A11004, In-

vitrogen), and Alexa fluor 568 donkey anti-rabbit (A10042, Invitrogen).

3.4.5 Co-immunoprecipitation

Total proteins were extracted from 1 g of inflorescence tissues using IP bu↵er (20

mM Tris-HCl pH 8.0, 150 mM NaCl, 1% NP-40, 2 mM EDTA, 1 mM PMSF, and 1

Complete Protease Inhibitor Cocktail Tablets [Roche]). Total proteins were first pre-

cleared with Protein G Dynabeads (Invitrogen) at 4C for 1 h. Anti-FLAG monoclonal

antibody (F1804, Sigma) was equilibrated and prebound to Dynabeads at room tem-

perature according to the manufacturer’s manual. The anti-FLAG-Dynabead com-

plexes were then added to the precleared total protein supernatant, and the prepa-

ration was incubated with rotation at 4�C for 2 h. After the precipitant was washed
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with low/high salt (150/500 mM NaCl, 20 mM Tris-HCl pH 8.0, 0.2% SDS, 0.5%

Triton X-100, and 2 mM EDTA) and TE bu↵ers, SDS sample bu↵er was added to

the precipitant and boiled for 8% SDS-PAGE electrophoresis. NRPB1 protein was

detected using anti-NRPB1 antibody (ab24758, Abcam).

3.4.6 Chromatin immunoprecipitation (ChIP) assay

Chromatin immunoprecipitation was performed as described previously [107] In

brief, 4 g of 2-week-old seedling was harvested and cross-linked using 1% formalde-

hyde. Nuclei were isolated, and lysis nuclei were sonicated using Bioruptor Plus

Sonicator (Diagenode). The sonicated chromatin was precleared using Protein IgG

Dynabeads (Invitrogen), and antibody was added to the precleared supernatant. Af-

ter overnight incubation with rotation at 4�C, the chromatin-antibody-Dynabeads

were sequentially washed with low salt, high salt, LiCl, and TE bu↵er. The chromatin-

antibody was eluted from Dynabeads using elution bu↵er (1% SDS and 0.1 M NaHCO3),

and DNA was recovered using standard procedures. Real-time PCR was performed

using recovered DNA in the CFX96 Touch Real-Time PCR Detection System (185-

5196, Bio-Rad).

3.4.7 Quantification of Pol V-dependent sca↵old RNAs

Total RNA was extracted from 12-day-old seedlings with TRIzol (Invitrogen).

DNase-treated RNAs were reverse-transcribed with random hexameter using Super-

Script III (Invitrogen). Bio-Rad SYBGreen was used for quantitative RT-PCR.

3.4.8 Quantification of individual siRNAs

Small RNAs were extracted by using RNAzol RT (Molecular Research Center).

The abundance of 24 nt siRNAs was quantitatively detected by using TaqMan Small

RNA Assays (Applied Bio-Science) as described previously [98].
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3.4.9 Comparison of DNA methylation levels by Chop-PCR

Genomic DNA was extracted from 12-day-old seedlings with the DNeasy Kit

(Qiagen). A 500-ng quantity of genomic DNA was incubated overnight with the

methylation-sensitive restriction enzyme HaeIII. The digested DNA was used to am-

plify the RdDM targets by semi-quantitative RT-PCR. Non-digested genomic DNA

was simultaneously amplified as controls.

3.5 Figures

Fig. 3.1. Chop PCR results showing DNA hypomethylation in ago4-6
and ago6-2. Dysfunction of AGO6 caused DNA hypomethylation in
mature leaves, as in other RdDM mutants. Chop PCR results are shown.
In a Chop PCR assay, DNA is first digested by methylation-sensitive
restriction enzyme(MSRE) and then amplified by PCR. As MSRE cannot
cleave methylated cytosines, PCR products can be successfully amplified
for methylated DNA. If the methylation is lost, the DNA is digested and
no PCR product will be amplified.
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Fig. 3.2. Overlapping patterns of hypomethylated loci in ago4-6 and
ago6-2. Upper panel, Venn diagram showing the numbers of the following
three types of hypomethylation loci: (1) loci where ago4-6 shows lower
methylation levels than ago6-2 (green alone); (2) loci where ago4-6 and
ago6-2 show equal methylation levels (green and red overlap); and (3)
loci where ago6-2 shows lower methylation levels than ago4-6 (red alone).
Lower panel, box plots showing methylation levels at the three groups of
loci.
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Fig. 3.3. DNA methylation levels at selected loci. The DNA methylation
levels in selected ATSN1, MEA-ISR and 5S rDNA loci calculated from in-
dividual bisulfite sequencing (IBS) and whole genome bisulfite sequencing
(WBS).
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Fig. 3.4. Heat map depiction of the 3731 DNA hypomethylation loci
in ago4-6. Each hypomethylated region corresponds to a colored hori-
zontal bar, and the bars are clustered numerically into a column (y-axis).
Cytosines were examined as CG, CHG, and CHH. The color-scaled methy-
lation levels indicate the ratios of each type of methylated cytosines over
total cytosines of the same type within the examined hypomethylated
regions.
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Fig. 3.5. Heat map depiction of the 3678 DNA hypomethylation loci in
ago6-2.
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Fig. 3.6. Venn diagram showing overlapping patterns between mutants.
Venn diagram showing overlapping patterns between ago4-6 and nrpd1-3 ;
ago4-6 and nrpe1-11 ; ago6-2 and nrpd1-3 ; ago6-2 and nrpe1-11.
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Fig. 3.7. AGO4 or AGO6 dysfunction reduces ROS1 gene expression.
ROS1 gene expression is down-regulated in ago4-6, ago6-2, ago4-6ago6-2
double, nrpd1-3, and nrpe1-11 mutants compared with Col-0. ACTIN2
was used as the control in RT-qPCR. Means ± SD, n=3.



86

Fig. 3.8. Di↵erent groups of hypomethylation loci in the ago4-6ago6-
2 double mutant. Pie chart showing proportions of di↵erent groups of
hypomethylation loci in the ago4-6ago6-2 double mutant. Group I are
loci where DNA hypomethylation is observed in the double mutant but
not in the single mutants, indicating that DNA methylation at these loci
is redundantly regulated by AGO4 and AGO6; Group II are loci where
DNA hypomethylation occurs in one of the two single mutants but not in
the other, and DNA methylation is not further decreased in the double
mutant, indicating that DNA methylation at these loci requires AGO4 or
AGO6 specifically; Group III are loci where DNA methylation is similarly
reduced in the two single mutants, and the double mutant shows no addi-
tive e↵ects on DNA hypomethylation, indicating that AGO4 and AGO6
are each required to mediate RdDM at these loci; and Group IV are loci
where DNA hypomethylation is observed in the single mutants while the
double mutant shows more severe DNA hypomethylation, indicating more
complex genetic interactions between the two AGO proteins.
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Fig. 3.9. Box plots of di↵erent groups of hypomethylation loci in double
mutant. Box plots showing methylation patterns of di↵erent groups of
loci as categorized in Fig. 3.8.
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Fig. 3.10. Examples of di↵erent types of loci. Examples of di↵erent types
of loci (related to Fig. 3.8). Screenshots from whole-genome bisulfite
sequencing results are shown.
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Fig. 3.11. Number of composition in di↵erent groups. Gene regions
targeted by AGO4 and AGO6 are enriched in Group III loci. Y-axis
shows the numbers of DNA hypomethylation loci in ago4-6 ago6-2. TEs:
transposons; Gene: genic regions; IGR: intergenic regions that do not
overlap with TEs
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Fig. 3.12. Characterization of hypo DMRs in Group III gene loci (1002).
The hypo-DMRs were overlapped with that identified in nrpd1-3 and/or
nrpe1-11 mutants. The number of overlapped DMRs were shown here.
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Fig. 3.13. Venn diagram showing the overlapping patterns. Venn dia-
gram showing the overlapping patterns among DNA hypomethylation loci
identified in ago4-6ago6-2, nrpd1-3, and nrpe1-11.
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Fig. 3.14. DNA methylation levels in di↵erent mutants. The 2174 loci
where AGO4 and AGO6 are mutually dependent are numerically clustered
(y-axis). Cytosines were examined as CG, CHG, and CHH.
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Fig. 3.15. DNA methylation levels in di↵erent mutants. The heat maps
depict the 4097 DNA hypomethylation loci identified in ago4-6ago6-2.
Each hypomethylated region corresponds to a colored horizontal bar, and
the bars are clustered numerically into a column (Y-axis). Cytosines were
examined as CG, CHG, and CHH. The color-scaled methylation levels
indicate the ratios of each type of methylated cytosines over total cytosines
of the same type within the examined hypomethylated regions.
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Fig. 3.16. DNA methylation levels at selected loci. DNA methylation
levels at TAS1a, TAS1c, and TAS3a loci. Snapshots from whole-genome
bisulfite sequencing results are shown.
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Fig. 3.17. RT-qPCR measurements of transposon RNA levels. Double:
ago4-6ago6-2 double mutant. ACTIN2 was used as an internal control.
RNA levels in the mutants are relative to those in the wild-type (Col-0).
Means ± SD are shown, n = 3.
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Fig. 3.18. A: AGO4 and AGO6 do not co-localize with each other or
with Pol IV. AGO4 and AGO6 were visualized by immunofluorescence
using their specific antibodies. Yellow signals would be expected in the
merged images if the two proteins co-localize, as a result of the overlap
of red and green channels. DNA (blue) was stained with DAPI. B: The
largest subunit of Pol IV, NRPD1 (red), was visualized by its specific
antibody in cells expressing FLAG-tagged AGO4 or AGO6 (green). Data
information: The perinucleolar part was marked with dashed white lines,
and nucleolar dot was marked with white arrow. The number next to the
images showing the total number of nuclei with the presence of both red
and green fluorescence signals. The percentage shows the proportion of
the nuclei with similar co-localization patterns. Qualitative images are
shown here.
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Fig. 3.19. A: The largest subunit of Pol V, NRPE1 (red), was visual-
ized by immunofluorescence using its specific antibody in cells expressing
FLAG-tagged AGO4 (green). AGO4-NRPE1 co-localized to nucleolar
dot (yellow dot, marked with white arrow, upper panel) but not in nu-
cleoplasmic foci (lower panel). B: NRPE1 (red) was visualized by its
specific antibody in cells expressing FLAG-tagged AGO6 (green). The
yellow signals due to the overlap of red and green channels in merged im-
ages indicate protein co-localization. DNA (blue) was stained with DAPI.
AGO6-NRPE1 co-localized to nucleoplasmic foci (yellow dots, marked
with white arrow). Data information: The perinucleolar part was marked
with dashed white lines. The number next to the images showing the to-
tal number of nuclei with the presence of both red and green fluorescence
signals. The percentage shows the proportion of the nuclei with similar
co-localization patterns. Representative images are shown here.
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Fig. 3.20. Pol II co-localizes and physically interacts with AGO4 but not
with AGO6. A: The largest subunit of Pol II, NRPB1 (red), was visu-
alized by its specific antibody in cells expressing FLAG-tagged AGO4 or
AGO6 (green). AGO4-NRPB1 co-localized to nucleoplasmic foci (yellow
dots, marked with white arrow). B: AGO4 and AGO6 do not co-localize
with TBP, a transcription factor that is indicative of Pol II transcription
of mRNAs. C: TBP-NRPB1 co-localized to some nucleoplasmic foci (yel-
low dots, marked with white arrow). The perinucleolar part was marked
with dashed white lines. The number next to the images showing the to-
tal number of nuclei with the presence of both red and green fluorescence
signals. The percentage shows the proportion of the nuclei with similar
co-localization patterns. Representative images were showed here. D:
AGO4, but not AGO6, co-immunoprecipitates with NRPB1.
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Fig. 3.21. AGO6 dysfunction reduces levels of Pol V-dependent tran-
scripts. RNA levels were measured by RT-qPCR. Means ± SD are shown,
n = 3.
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Fig. 3.22. Screenshots of methylation level at selected loci. DNA methy-
lation patterns in ago mutants at loci where Pol V-dependent sca↵old
RNAs are a↵ected by AGO4 or AGO6. Screenshots from whole-genome
bisulfite sequencing results are shown.
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Fig. 3.23. AGO6 dysfunction decreases Pol V occupancy. AGO6 dys-
function decreases Pol V occupancy at chromatin of loci where Pol V
transcript levels are a↵ected by AGO6. Anti-NRPE1 antibody was used
for ChIP assays. Means ± SD are shown, n = 3.
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Fig. 3.24. Heat map depiction of the dependence of AGO4- and AGO6-
bound siRNAs on Pol IV. Identities of siRNAs were retrieved from
Havecker et al. [83], and siRNAs were grouped into 1210 AGO4-bound
clusters and 1486 AGO6-bound clusters (see Materials and Methods for
details), each of which corresponds to a colored horizontal bar; the bars
are stacked numerically into a column (y-axis).
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Fig. 3.25. Heat map depiction of the dependence of AGO4- and AGO6-
bound siRNAs on Pol V.
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Fig. 3.26. Quantification of individual 24 nt siRNAs. Quantification of
individual 24 nt siRNAs by TaqMan small RNA assays. Double: ago4-
6ago6-2 double mutant. snoR101 was used as an internal control. RNA
levels in the mutants were relative to those of the wild-type (Col-0). Error
bars indicate SD, n � 3.
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Fig. 3.27. A model of spatial segregation of nuclear RdDM activities.
RdDM activities at perinucleolar foci involve AGO4 and Pol V, while
RdDM activities in the nucleoplasm are mediated by AGO6 and Pol V,
and by AGO4 and Pol II. DNA methylation is annotated as mC. DDR,
the DRD1-DMS3-RDM1 complex. For simplicity, not all known RdDM
components are shown.
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Fig. 3.28. Protein level of AGO6 is reduced in nrpe1-11 mutant. Pol V
dysfunction reduces the protein level of AGO6 but not AGO4. Antibodies
specific to AGO4 and AGO6 were used in Western blot analyses.



107

Fig. 3.29. Hypo-methylation phenotype in ago4-6 and ago4-5 mutant
alleles. DNA methylation-sensitive Chop-PCR assay showing hypomethy-
lation phenotype in two selected loci in ago4-6 mutant as well as ago4-5
mutant. HaeIII was the methylation-sensitive restriction enzyme. Non-
digested DNA was amplified in parallel as the loading control.
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