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ABSTRACT 

Svaldi, Diana O. PhD, Purdue University, December 2016. Characterizing the Effects of 
Repetitive Head Trauma in Female Soccer Athletes for the Prevention of Mild Traumatic 
Brain Injury. Major Professor: Thomas Talavage. 
 
 
As participation in women’s soccer continues to grow and the longevity of female 

athletes’ careers continues to increase, prevention of mTBI in women’s soccer has 

become a major concern for female athletes as the long-term risks associated with a 

history of mTBI are well documented.  Among women’s sports, soccer exhibits the 

highest concussion rates, on par with those of men’s football at the collegiate level. Head 

impact monitoring technology has revealed that “concussive hits” occurring directly 

before symptomatic injury are not predictive of mTBI, suggesting that the cumulative 

effect of repetitive head impacts experienced by collision sport athletes should be 

assessed. Neuroimaging biomarkers have proven to be valuable in detecting brain 

changes that occur before neurocognitive symptoms in collision sport athletes. 

Quantifying the relationship between changes in these biomarkers and the cumulative 

mechanical load experienced by female soccer athletes may prove valuable in developing 

measures to prevent mTBI. 
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This work pairs functional magnetic resonance imaging with head impact monitoring to 

assess changes in cerebrovascular reactivity and resting state functional connectivity in 

female soccer athletes and to test whether the observed changes can be attributed to the 

cumulative mechanical load experienced by female athletes participating in high school 

soccer both transiently over a season and chronically over several years of play.  Marked 

cerebrovascular reactivity changes over a season of play were observed in female soccer 

athletes, relative both to non-collision sport control measures and pre-season measures. 

These changes persisted 4-5 months after the season ended and recovered by 8 months 

after the season. Segregation of the total soccer cohort into cumulative loading groups 

revealed that population-level cerebrovascular reactivity changes were driven by athletes 

experiencing high cumulative loads in short periods of time and that focusing on impacts 

50g or higher helped increase identification of individuals with cerebrovascular reactivity 

decreases using head impact data.  Resting state functional connectivity assessments 

revealed hypoconnectivity in soccer athletes as compared to non-collision sport control 

athletes.  This hypoconnectivity was more pronounced in between network connections 

as opposed to within network connections. However, resting state functional connectivity 

was not altered over a season of play in soccer athletes, suggesting that the observed 

differences between soccer athletes and control athletes were due to long term exposure 

to chronic exposure to mild repetitive head trauma over several years of play. 

.
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CHAPTER 1. INTRODUCTION 

1.1 Specific Aims 

As participation in women’s soccer continues to grow and the longevity of female 

athletes’ careers continues to increase, prevention and care for mTBI in women’s soccer 

has become a major concern for female athletes as the long-term risks associated with a 

history of mTBI, including Alzheimer’s disease and dementia, Parkinsonian syndromes, 

and depression (Guskiewicz et al., 2005; Guskiewicz, Marshall, et al., 2007; Jordan & 

Bailes, 2000) are well documented. Among women’s sports, soccer reports the largest 

numbers of mTBI annually (Zuckerman et al., 2015) and has among the highest mTBI 

rates (Gessel, Fields, Collins, Dick, & Comstock, 2007), with rates slightly exceeding 

men’s football at the collegiate level (Gessel et al., 2007).  Head impact monitoring 

technology has revealed that “concussive hits” occurring directly before symptomatic 

injury are not predictive of mTBI, suggesting that the cumulative effect of repetitive head 

impacts experienced by collision sport athletes should be assessed. Neuroimaging 

biomarkers have additionally detected brain changes in collision sport athletes not 

exhibiting symptoms associated with concussion (Abbas et al., 2015; Bailes, Petraglia, 

Omalu, Nauman, & Talavage, 2013; Bazarian, Zhu, Blyth, Borrino, & Zhong, 2012; 

Marchi et al., 2013; McAllister et al., 2014; Poole et al., 2014; Poole et al., 2015; 

Robinson et al., 2015; Shenk et al., 2015; Svaldi et al., 2015; Talavage et al., 2014). 

These studies strongly suggest that the 
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effects of repetitive head trauma begin before the presence of overt neurocognitive 

symptoms and may accumulate to cause symptomatic injury. 

 

If symptomatic mTBI is an injury caused by cumulative exposure to repetitive head 

trauma, then understanding the timescale of brain changes related to repetitive head 

trauma is key in developing measures to prevent both mTBI and long term sequelae 

associated with mTBI. However, no studies to date have conducted comprehensive 

longitudinal assessments, both acute and chronic, of changes in key neuroimaging 

biomarkers of mTBI and their relationship to cumulative exposure in asymptomatic 

collision sport athletes. Identification of biomarkers exhibiting acute changes in mTBI 

will prove useful in creating guidelines for moderating loading in games and practices 

over a season.  Identification of biomarkers exhibiting more chronic changes will prove 

useful in assessing how repetitive head trauma affects the brain over a career of play and 

making recommendations related to appropriate lengths of collision sport careers. 

 

One neuroimaging biomarker of particular interest in mTBI is cerebrovascular reactivity 

(CVR) to CO2.  CVR is a compensatory mechanism, wherein blood vessels 

dilate/constrict in response to hypercapnia/hypocapnia to act as a crucial regulator of 

cerebral blood flow (CBF).  CVR is known to be impaired acutely following both severe 

TBI (Lewis, Czosnyka, & J.D., 2014) and mTBI (Becelewski & Perzchala, 2003; Chan, 

Evans, Rosen, Song, & Kwong, 2015; Len et al., 2013; Mutch et al., 2014) and has 

previously been shown to be a robust, independent predictor of injury outcome following 

TBI (Lewis et al., 2014).  Additionally, CVR impairment following mTBI has been found 
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to be a major contributor to acute post-injury decreases in CBF (Len & Neary, 2011), 

believed to be the cause both of neurocognitive symptoms (Giza & Hovda, 2001) and the 

increased risk for further injury, observed following mTBI (Golding, Steenberg, et al., 

1999).  As such, CVR changes likely precede neurocognitive symptoms observed 

following brain injury, and may serve as an ideal biomarker for identifying early trauma-

related brain changes associated with mild repetitive head trauma—both in an acute and 

chronic sense.  

 

Another biomarker of interest in the assessment of repetitive head trauma is resting state 

(RS) functional connectivity, or the brain’s functional organization when the brain is not 

performing a specific task. Using various RS functional connectivity approaches, several 

stable resting state subnetworks (RSN) have been identified  (Yeo, Krienen, Chee, & 

Buckner, 2014). Whole brain studies have reported global decreases in connectivity, in 

terms of either number or strength of connections (Bharath et al., 2015; Nakamura, 

Hillary, & Biswal, 2009; Stevens et al., 2012), both acutely (36h <) and subacutely (3 

months) post symptomatic mTBI with recovery to control levels at 6 months post injury 

(Bharath et al., 2015; Messe et al., 2013) when mTBI patients are compared to healthy 

controls. Subnetwork specific studies have shown more varied results; however, this 

could be influenced by differences in the scale in which networks are defined. Several 

studies have reported an overall decrease in connections within the default mode network 

(DMN), but an increase in connections between the DMN and other networks (Bharath et 

al., 2015; B. D. Johnson, Neuberger, Gay, Hallett, & Slobounov, 2014; Mayer et al., 

2015; Messe et al., 2013; Nakamura et al., 2009; Stevens et al., 2012).   In contrast to 
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these studies, Nathan et al. and Bharath et al reported increased connectivity within the 

DMN. Abbas et al.  found decreases in DMN connectivity in asymptomatic football 

athletes over a season of play but increased DMN connectivity when these athletes were 

compared to non-collision sport controls (Abbas et al., 2015). Both increases and 

decreases in connectivity in other RSNs (Bharath et al., 2015; Slobounov et al., 2011; 

Stevens et al., 2012) have also been observed.  However, due to a lack of standardization 

in the regions and the scale that define of other networks (Yeo et al., 2014), it is hard to 

compare and contrast results. Despite this, it is clear that mTBI is, at least acutely and 

sub-acutely, associated with global decreases RS functional connectivity, though the 

effects on specific networks is unclear and may be heterogeneous.  

 

Because neuronal activity, as indirectly measured using FMRI, is fundamentally 

modulated by local vascular physiology (Davis, Kwong, Weisskoff, & Rosen, 1998; 

Hoge et al., 1999), it is important to discuss functional connectivity changes observed 

using FMRI following mTBI in the context of any observed neurovascular changes. 

BOLD signal measured by FMRI is an indirect measure of neuronal activity and depends 

inherently on the coupling between increased neuronal metabolism in response to 

increased neuronal activity and CBF physiology (Davis et al., 1998; Hoge et al., 1999),.  

Though not believed to have direct neuronal effects, CVR has been shown to play a 

significant role in determining the extent of CBF changes in response to CMRO2 changes 

which in part govern the BOLD response (Maggio, Salinet, Robinson, & Panerai, 2014).  

In fact, CVR has been shown to substantially modulate BOLD signal measures obtained 
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using task based FMRI (Liu et al., 2013) and functional connectivity measures obtained 

using RS-FMRI (Golestani, Kwinta, Strother, Khatamian, & Chen, 2016). 

 

In this work, we seek to assess the relationship of CVR changes and RS functional 

connectivity changes with repetitive head trauma in women’s soccer.  We will 

accomplish this objective through the following aims:  

Aim 1: Test for alterations in CVR and RS functional connectivity in female 

soccer athletes, both acutely and chronically. Additionally, compare timescale of changes 

in CVR to timescale of changes in RS functional connectivity to assess whether CVR 

alterations affect RS functional connectivity measures. 

Aim 2: Assess whether any changes exhibited in either biomarker are related to 

metrics of cumulative exposure to head trauma from soccer in the appropriate timescale 

for that biomarker. 

If Aims 1 and 2 are completed satisfactorily, we will know whether CVR and RS 

functional connectivity changes are present prior to symptomatic injury and associated 

with repetitive head trauma. Furthermore, we will have an understanding of the 

timescales in which these changes occur.  This will allow us to assess whether CVR 

changes present in female soccer athletes affect RS functional connectivity measures. 

This will also allow us to assess the relationship of changes in these biomarkers to 

metrics of cumulative exposure in the appropriate timescale. Using this knowledge, we 

will be able to propose uses of these biomarkers in the development of guidelines aimed 

at preventing mTBI and associated long-term sequelae.
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CHAPTER 2. BACKGROUND AND SIGNIFICANCE 

Likely because of repetitive head trauma in the sport (Lipton et al., 2013), women’s 

sports, soccer reports the largest numbers of mTBI annually (Zuckerman et al., 2015) and 

has among the highest mTBI rates (Gessel et al., 2007) among women’s sports. Though 

research is now showing that the repetitive nature of head trauma in collision sports has 

detrimental effects on the brain (Bazarian et al., 2012; Lipton et al., 2013; Poole et al., 

2014), the relationship between cumulative head impact exposure and detrimental brain 

changes is still not well understood.   

 

2.1 mTBI Definition and Mechanisms of Injury 

The most commonly used definition of mTBI was established at the first International 

Conference on MTBI in Sport as “a complex pathophysiological process affecting the 

brain, induced by traumatic biomechical forces” where “clinical symptoms largely reflect 

a functional disturbance rather than structural injury” resulting in a “set of clinical 

symptoms that may or may not involve loss of consciousness” (Aubry et al., 2002; 

McCrory et al., 2005). mTBI is the result of diffuse micro-injury to the brain due to linear 

and rotational acceleration of the brain following trauma (impact) to the head.  Linear 

acceleration from an impact creates a pressure gradient between the coup and contra coup 

sites of injury leading to dynamic stresses in the brain that can induce shearing (Gurdjian, 

Lissner, & Lattimer, 1953; Ommaya & Gennarelli, 1974). Additionally, rotational 
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acceleration has been shown to cause diffuse injury at zones where tissue properties 

change (Gennarelli, 1983). Studies have shown that longer and lower magnitude 

rotational accelerations produce diffuse injury, while shorter, higher magnitude 

accelerations produce subdural hematomas (Gennarelli, 1983; Gurdjian et al., 1953). This 

is in agreement with higher rates of diffuse injury (such as mTBI) as opposed to focal 

injury reported in collision sports.  

 

2.2 Mechanisms of injury in mTBI 

Various processes contribute to the pathophysiological cascade of injury following 

mTBI. Animal models suggest widespread microshearing of neuronal and axonal 

membranes as the primary initiator for the cascade of injury following mTBI (Spain et 

al., 2010).  Axonal and neuronal membranes are compromised resulting in unregulated 

flux of ions disrupting the cerebral microenvironment and causing impairments in 

neuronal signaling (Barkhoudarian, Hovda, & Giza, 2011).  This triggers a chain of 

events including the release of excitatory neurotransmitters such as glutamate which 

binds to N-methyl-D-aspartate receptors resulting in further membrane depolarization 

(Nilsson, Hillered, Ponten, & Ungerstedt, 1990), a subsequent efflux of potassium and 

influx of calcium, and finally neuronal suppression (Barkhoudarian et al., 2011; Giza & 

Hovda, 2001).  In an effort to restore ionic balance, membrane pumps increase glucose 

consumption depleting energy stores and resulting in an energy crisis where glucose 

driven cerebral blood flow (CBF) becomes uncoupled with neuronal activity 

(Barkhoudarian et al., 2011; Blennow, Hardy, & Zetterberg, 2012; Giza & Hovda, 2001).  

This decoupling, occurring during a period of increased neurometabolic demand, is 
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believed to be a major contributor to the neurocognitive symptoms of mTBI as well as 

increased risk for subsequent mTBI following initial injury (Giza & Hovda, 2001; 

Golding, Robertson, & Bryan, 1999; Len & Neary, 2011).  

 

2.3 Long Term Risks Associated with mTBI 

Research has established a clear link between a history of mTBI and chronic 

neurocognitive deficits, neurodegenerative diseases, and psychiatric illness making it 

clear that mTBI prevention is of major importance. In a study on retired high school, 

college, and professional football players, players with history of mTBI reported a higher 

frequency of headaches, movement disorders, hearing or balance disorders, and 

complaints of memory changes and speech difficulties (Jordan & Bailes, 2000).  In a 

study of retired professional football players, revealed significant association between 

recurrent mTBI and self-reported memory loss, clinically diagnosed Mild Cognitive 

Impairment, and Alzheimer’s disease (Guskiewicz et al., 2005).  The study also reported 

a higher incidence of Alzheimer’s Disease in retired professional football players below 

the age of 70, relative to the general population, suggesting that people with repetitive 

exposure to mild head trauma are at higher risk for early onset of this disease 

(Guskiewicz et al., 2005).  A follow up study by the same group revealed a significant 

correlation between mTBI diagnosis and depression revealing that players with a history 

of mTBI were three times more likely to be diagnosed with depression (Guskiewicz, 

Marshall, et al., 2007).  A history of mTBI has also been identified as an environmental 

risk factor in the sporadic (no genetic risk factors) form of fronto-temporal dementia 
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(Rosso et al., 2003), which accounts for 20% of dementias in individuals under the age of 

65 (Snowden, Neary, & Mann, 2002).  

 

More alarmingly, autopsy studies have revealed neuropathology, now termed chronic 

traumatic encephalopathy (CTE), in the brains of collision sport athletes. This pathology 

was first described in boxers as “Punch Drunk” in 1928 as slight gait abnormalities 

and/or slight slurring of speech both progressing to become serious dementia and 

parkinsonian syndrome (Martland, 1928).  In 1973, Corsellis et al. termed the pathology 

“Dementia Pugilistica” after finding severe atrophy, lesions (typically perivascular), 

depigmentation of the substantia nigra, loss of nerve cells, neurofibrillary tangles in the 

absence of senile plaques, and in some cases cavum septum pellucidi in the brains of 15 

boxers known to be “Punch Drunk” (Corsellis, Bruton, & Freeman-Browne, 1973). 

Omalu et al. coined the term CTE after finding neurodegeneration similar to Dementia 

Pugilistica in an autopsy study performed on a retired professional, a lineman known to 

have severe neurocognitive deficits. Many cases of CTE have now been reported 

including cases of CTE in football players, boxers, hockey players, soccer players, a 

professional wrestler, abuse victims, chronic head bangers, and a circus clown involved 

in “dwarf throwing” (Geddes, Vowels, Nicoll, & Revesz, 1999; McKee et al., 2013). 

Though many cases have been identified, it is difficult to estimate the prevalence of CTE 

among the general collision sport athlete population as majority of brains diagnosed with 

CTE were donated to science because of known neurologic or psychiatric problems prior 

to death.   
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2.4 Relationship between mTBI and Head Impacts in Collision Sports 

While prevention of mTBI requires an understanding of the associated contribution of 

head impacts experienced by collision sport athletes, the focus of research in this area has 

traditionally been on characterization of the “concussive” impact(s) directly preceding 

diagnosis of mTBI. This finding is in contrast to head impact telemetry evidence arguing 

against the expectation that exposure to a specific level of impact will directly produce 

mTBI (Broglio et al., 2011; Guskiewicz, Mihalik, et al., 2007). In fact, injuries are 

identified following fewer than half of the blows exceeding commonly-espoused 

“threshold” levels (McCaffrey, Mihalik, Crowell, Shields, & Guskiewicz, 2007; Mihalik, 

Bell, Marshall, & Guskiewicz, 2007; Schnebel, Gwin, Anderson, & Gatlin, 2007).  

Further, changes observed in post-mTBI clinical measures have not exhibited correlation 

with the linear or rotational acceleration of the “concussive impact” (Guskiewicz, 

Mihalik, et al., 2007).  Rather, studies conducted across a range of competition levels, 

from high school to professional, have demonstrated that a broad range of impact 

magnitudes are proximally associated with initial observation of mTBI (Broglio et al., 

2011; Guskiewicz, Mihalik, et al., 2007).  Ultimately, this past research demonstrates that 

the simple classification of “concussive” (i.e., symptom-inducing) and “subconcussive” 

(i.e., not producing symptoms) blows is inadequate and possibly misguided.  Instead, 

mTBI research should focus more on the cumulative effects of the mild, repetitive head 

trauma experienced on a regular basis by the majority of collision sport athletes. 
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2.5 The Role of Neuroimaging in mTBI Research 

Neuroimaging biomarkers offer significant potential to elucidate the relationship between 

experienced head impacts and mTBI.  Such biomarkers can be used to detect changes in 

neurophysiology that are attributable to repetitive head trauma in collision sports, even in 

the absence of symptoms.  Several studies using different modes of MRI, including MR 

spectroscopy (Poole et al., 2014; Poole et al., 2015), functional MRI (FMRI) (Abbas et 

al., 2015; E. L. Breedlove et al., 2012; Breedlove Morigaki et al., 2014; Robinson et al., 

2015; Shenk et al., 2015; Svaldi et al., 2015; Talavage et al., 2014), and diffusion-

weighted imaging (DWI) (Bazarian et al., 2012; Lipton et al., 2013; Marchi et al., 2013; 

McAllister et al., 2014) have quantified structural and neurophysiologic changes in the 

brains of asymptomatic collision sport athletes.  Findings from these studies suggest that 

neurocognitive symptoms are a downstream effect of accumulated microstructural and 

metabolic injury to the brain, beginning prior to the presence of overt neurocognitive 

symptoms.  

 

Neuroimaing studies have additionally found correlations between neurophysiologic and 

structural changes in the brain and various cumulative measures of head impact exposure.   

Several studies have found number of impacts sustained to be associated with functional 

(E. L. Breedlove et al., 2012; Robinson et al., 2015; Talavage et al., 2014), metabolic 

(Poole et al., 2015), and micro-structural (Lipton et al., 2013; McAllister et al., 2014) 

changes in the brains of asymptomatic collision sport athletes.  High magnitude impacts 

(60g +), and accumulation there of, have also been found to be predictive of both 

neurometabolic (Poole et al., 2015) and micro-structural changes (McAllister et al., 2014) 
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in the brain. Finally, location and distribution of head impacts has been found to be 

predictive of neurohysiologic changes in the brain (E. L. Breedlove et al., 2012; 

Robinson et al., 2015).  These studies support the hypothesis that regulations 

implemented to reduce sports related mTBI need to be geared towards reducing the 

cumulative loads that athletes receive both over a season and a career, suggesting that 

assessing the relationship between changes neuroimaging biomarkers of mTBI and head 

impact exposure could prove useful in developing such regulations.  

 

2.6 mTBI in Women’s Soccer  

Several studies have shown more adverse effects as a result of mTBI in women as 

compared to men. Studies consistently report that female collision sport athletes report 

significantly higher rates of mTBI in sports where both men and women participate 

(Delaney, Lacroix, Leclerc, & Jonston, 2002; Fuller, Junge, & Dvorak, 2005; Gessel et 

al., 2007; Marar, McIlvain, Fields, & Comstock, 2012; Zuckerman et al., 2015).  In 

addition to this, studies report that women experience more severe symptoms (Broshek et 

al., 2005) and take longer to recover (Fuller et al., 2005) than males. As such, women 

may be more at risk for long-term effects associated with a history of mTBI.   

 

Among women’s sports, soccer has among the highest reported rates for mTBI (Gessel et 

al., 2007; Marar et al., 2012; Zuckerman et al., 2015), with rates slightly exceeding men’s 

football at the collegiate level (Gessel et al., 2007), and accounts for the greatest number 

of mTBIs in women per year and second greatest number of mTBIs per year across 

genders (Zuckerman et al., 2015). As participation in women’s soccer continues to grow 
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at all age levels and as opportunities for continuation of participation expand (e.g., 

increasing numbers of women’s professional leagues) (Morris, 2015), it is clear that the 

development of enhanced approaches to mTBI prevention and care in women’s soccer is 

increasingly important. 
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CHAPTER 3. GAPS AND PROPOSED WORK  

3.1 Gaps Addressed 

The work that will be proposed below addresses three major gaps in the field of mTBI.  

First, no studies have been performed assessing the relationship between head impacts in 

women’s soccer and neuroimaging biomarkers of mTBI, despite numerous studies 

showing mTBI rates on women’s soccer to be on par with those of other sports known to 

lead linked with long-term neurocognitive deficits.  Second, though studies suggest that 

mTBI and associated sequalae may be an accumulated injury, few thorough longitudinal 

assessments of brain changes due to repetitive head trauma have been conducted on 

asymptomatic collision sport athlete populations.  Finally, few studies have directly 

related metrics of cumulative head exposure to changes observed in the brains of 

asymptomatic collision sport populations.  

 

3.2 Proposed Work 

Neuroimaging, though useful in identifying subtle brain changes associated with mTBI, 

is not a viable tool for continuous monitoring of individuals to screen for risk of mTBI 

due to large costs associated with neuroimaging. Because of this, it is necessary to 

identify how cumulative exposure metrics are related to brain changes in athletes both 
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acutely and chronically. Identifying metrics that are predictive of brain changes, will 

allow for more informed development of regulations that can make collision sports safer.  

 

The Purdue Neurotrauma Group is dedicated to predictive modeling of the relationship 

between mild, repetitive head trauma and mTBI.  The group pairs multi-modal MRI with 

head impact monitoring to assess the effects of head impacts in collision sports over 

seasons of play. Athletes are monitored over several seasons of play in order to assess 

both acute and longitudinal changes associated with repetitive head trauma. 

 

For this work, we paired serial monitoring of CVR and RS functional connectivity in 

asymptomatic female soccer athletes and female non-collision sport controls along with 

head impact monitoring over multiple seasons of play to test for the presence of brain 

changes in these biomarkers, identify the timescale of any changes present, and assess 

relationship of these changes to cumulative exposure in the appropriate timescale. CVR 

and RS connectivity are selected as the biomarkers of choice because both impaired 

following symptomatic mTBI and because of the possible effect of CVR alterations on 

accurate assessment of brain connectivity using the BOLD response.  

 

We first established the stability of these biomarkers in controls and subsequently tested 

for changes in asymptomatic female soccer athletes relative to baseline measurements 

and to Control measures to assess the timescale on which changes in these biomarkers 

occur (Aim1). Finally, we tested whether any changes in these biomarkers were related to 

metrics of cumulative head impact exposure in the appropriate time scale (Aim2). 
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CHAPTER 4. AIM 1 – TEST FOR CVR ALTERATIONS IN FEMALE 
HIGHSCHOOL SOCCER PLAYERS  

4.1 Aim1 – Imaging Data Collection  

In the PNG study, all athletes underwent imaging using MRI during the course of a single 

competition season, including pre-season conditioning/training.  Soccer athletes were 

imaged sessions before starting contact practices (Pre), within the first half 

(approximately 5 weeks) of the contact season (In1), within the second half of the contact 

season (In2), 1-2 months after the end of the contact season (Post1), and 3-4 months after 

the end of the contact season (Post2).  A subset of the soccer athletes were also scanned 8 

months after the end of the season (Post3) during physical activity periods equivalent to 

the Pre scan, but now associated with preparation for the following year’s high-school 

soccer season.  Since aerobic exercise has been linked with increased CVR (Ainslie et al., 

2008; Murrell et al., 2013), Pre scans were conducted such that soccer athletes were 

already physically active and the transition to In1 was marked by an onset of contact 

practices.  Comparable to the Pre to In1 or In1 to In2 intervals, control athletes 

underwent two MRI scanning sessions (Test, Re-Test), 4 to 6 weeks apart within their 

training/competition seasons, maintaining comparable levels of physical activity at both 

sessions.  
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Imaging was performed at the Purdue University MRI Facility (West Lafayette, IN), 

using a 3-T General Electric Signa HDx (Waukesha, WI) with a 16-channel brain array 

(Nova Medical; Wilmington, MA).  CVR was measured using a hypercapnic breath hold 

challenge known to produce good repeatability in the human brain (Bright & Murphy, 

2013; Kastrup, Gunnar, Neumann-Haefelin, & Moseley, 2001; Lipp, Murphy, Caseras, & 

Wise, 2015). For each imaging session, a single blocked breath-hold FMRI run (4 breath 

holds, 20s duration, separated by paced breathing, hold on the exhale) was acquired in 

each session using a gradient-echo echo planar sequence (TR/TE = 1500/26 msec; 20cm 

FOV; 64 × 64 matrix; 34 slices; 3.8mm thickness; 117 volumes). PsychoPy (Peirce, 

2007) was used to cue the task with instructions presented via a NordicNeuroLab fiber 

optic visual system. A respiration belt was used to monitor task compliance.  For 

registration purposes across sessions and subjects, a T1-weighted anatomical scan was 

acquired using a 3D spoiled gradient echo sequence (TR/TE 5.758ms/2.032ms, flip 

angle=73°, 1mm isotropic resolution). 

 

4.2 CVR Data Processing 

The pipeline used to obtain a measure for CVR from the FMRI data is detailed in 

Figure4.1.  A standard regression analyses was performed using AFNI (Cox, 1996). A 

processing stream adapted from afni_proc.py, including slice timing correction, motion 

correction, spatial smoothing, alignment to the structural scan, normalization to Talairach 

space, and conversion to percent signal change, was be used. Additionally, the FAST 

automated segmentation tool in FSL (Jenkinson et al., 2012; Smith, 2002) was be used to 

create a gray matter (GM) mask for each subject. FMRI analyses were conducted at both 
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the whole brain level (GM only) and at the gyrus level (GM only) in order to test for 

localization of changes present in the brain. For gyrus level analyses, the brain was 

parcellated into 70 regions of interest (ROI, 35 in each of the left and right hemispheres) 

obtained from probability maps in the DKD Desai Atlas in AFNI (Desikan et al., 2006).  

 

For each subject-session, the mean FMRI time series across all voxels in a given region 

of interest was calculated. This series was regressed against a task time series calculated 

from the session-specific respiratory belt time series. To calculate the task time series, the 

onset time and duration of each hold were calculated from the respiration belt time series 

after low pass filtering to remove noise. The β-weight of the breath hold regressor was 

used as the CVR metric. Due to imperfect task compliance, hold durations often varied 

by several seconds (11s – 21s soccer athletes, 11s – 19s control athletes) within a given 

session.  Because of this, the breath hold regressor was duration modulated.  

 

Given that hemodynamic latency in respiratory challenges is known to vary across 

subjects and also across the brain (Birn, Smith, Jones, & Bandettini, 2008; Bright, Bulte, 

Jezzard, & Duyn, 2009), latency optimization was performed to obtain the best fit of the 

breath-hold regressor with the FMRI time-series. Breath-hold regressors were shifted 

with respect to the FMRI data over one hold/respiration cycle (0-40s), in 1.5s increments 

(27 total steps). The optimal latency calculated for each athlete/ROI at the Pre/Test scan 

was used for all follow-up sessions after initial confirmation that latency did not vary 

significantly between Pre/Test and follow-up scans.  For control athletes and soccer 

athletes studied thus far, optimal latencies ranged from 6–12 seconds in the whole brain 
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regression.  No statistical difference was found in latencies between control athletes and 

soccer athletes (Control Average: 10.4s ± 2s, Soccer Average: 10.3s ± 1.9s). 

 

Figure 4.1 Processing Pipeline used to obtain the final β-weight as a measure of CVR 
from the FMRI and respiratory belt data for each subject-session. 
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4.3 Initial CVR Analysis  

To identify population-level changes from Pre/Test in CVR due to measurement noise 

and/or exposure to repetitive head acceleration events, distributions of fractional change 

from Pre/Test in both athlete populations (soccer and control) were compared at each 

session to zero, using a Wilcoxon signed rank test followed by false discovery rate (FDR) 

correction. For the whole brain analyses, the FDR correction were performed across 

sessions to test for an overall effect of session. Gyrus-level analyses were conducted 

under the assumption that CVR changes could still be locally significant even when not 

effecting globally detectable change.  Therefore, for the ROI analyses, FDR correction 

was performed across ROIs and we present below only those findings that survive a 

correction for multiple comparisons at the p < 0.05 level. 

 

In control athletes, fractional change from Test was not found to be significantly different 

from zero at the Re-Test session for either the whole brain analysis or in any of the gyrus-

level ROIs. Therefore, β-weights for the control Test and Re-Test sessions were averaged, 

on a within-subject basis, to reduce noise in the estimate of the population distribution 

(Figure4.2).   

 

To test for potential group differences in CVR due to exposure to repetitive head 

acceleration events, the b-weights in soccer athletes were compared directly with those 

in control athletes at each session. Pairwise comparisons were conducted between the 

averaged control athlete β-weight distribution and the soccer athlete (all groups) β-weight 
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distribution at each session using a Wilcoxon rank sum test followed by FDR correction, 

as above.  

 

Additionally, to assess whether soccer athletes exhibit a meaningfully different 

distribution of CVR measures (b-weights), the number of soccer athlete measures below 

the 50th (median) and 25th percentiles of the control athlete population were computed 

and compared to the corresponding chance distributions.  Chance distributions were 

modeled based on a Bernoulli trial design, assuming the null hypothesis that soccer and 

control athletes belong to a common underlying distribution. A Binomial test (α = 0.05) 

was used to accept or reject the null hypothesis.  

 

4.4 Initial CVR Results  

Participant Demographics: Initially twenty-six female high school athletes participated in 

this study.  Soccer athletes: 14 athletes (ages 15-17; mean 15.9) were members of high 

school junior varsity or varsity soccer teams, representing two high schools (7 per team).  

All fourteen athletes were scanned according to the study paradigm above (Pre, In1, In2, 

Post1, Post2). Additionally, seven of the 14 soccer athletes were also scanned 8 months 

after the end of the season (Post3). Control athletes: 12 athletes (ages 15-18; mean 15.9) 

participated only in non-collision high school sport junior varsity or varsity teams (6 

basketball; 3 track & field; 2 cross-country; 1 each softball, gymnastics and swimming).  

 

Participants were not excluded from the study due to a history of mTBI. Four control 

subjects reported a prior history of mTBI (#mTBI = 1: n = 3; #mTBI = 3: n = 1) and three 



 
 

 

22 

soccer subjects reported a prior history of mTBI (#mTBI = 1: n = 1; #mTBI = 2: n = 1; 

#mTBI = 3: n = 1).  No included participant was diagnosed with mTBI during the course 

of the study and no included participant’s symptom score was flagged relative to 

baseline, as assessed using ImPACT—see   K. M. Breedlove et al. (2014) for assessment 

protocols.  

 

Soccer Athlete vs. Control Analysis: No between-group effect was found in whole brain 

β-weight distributions, between soccer athletes and controls at any session, for any 

loading group (Figure 4.2A Total Group).  Likewise, after correction for multiple 

comparisons, no ROI exhibited significant group differences in β-weight between soccer 

athletes and controls at any session. 

 

However, while no between-group effect was observed in the Wilcoxon Rank Sum Test, 

the distribution of whole brain β-weights of the soccer athlete group, did exhibit 

statistically significant shifts over the course of the season and post-season periods 

relative to the control group. The number of soccer athletes with CVR measures below 

the control median increased from 1 of 14 athletes at Pre to 7 of 14 athletes at In1 and 

continued to increase through Post2 (Table 4.1 Total Group). At each in-season and post-

season session, the majority of soccer athletes exhibiting CVR measures below the 

median of the control athletes were also below the 25th percentile.  The distribution of 

CVR measures in the soccer athlete cohort was significantly different from the chance 

distribution of controls at Pre, In1, Post1, and Post2.  At Pre, the soccer athlete cohort 

skewed high relative to the median of the control population. At the In1, Post1, and Post2 
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time points, the soccer athlete cohort skewed low relative to the 25th percentile of the 

control population, with a significant deviation observed below the median at Post2, as 

well.   

Table 4.1 Number of soccer athletes (Soccer Total: n=14; Soccer HighLoad: n=7; Soccer 
LowLoad: n=7) at each session, with CVR measures below the 50th and 25th percentiles 

of the control distribution (n=12: within-subject average Test and Re-Test) 

Session Count of Soccer Athletes Below Control CVR Distribution Percentiles 

 Pre In1 In2 Post1 Post2 Post3† 

Soccer 

Athlete 

Group 50
th

 %
ile

 

25
th

 %
ile

 

50
th

 %
ile

 

25
th

 %
ile

 

50
th

 %
ile

 

25
th

 %
ile

 

50
th

 %
ile

 

25
th

 %
ile

 

50
th

 %
ile

 

25
th

 %
ile

 

50
th

 %
ile

 

25
th

 %
ile

 

Total 

(n=14) 
1** 1 7 7** 9 6 8 8** 11** 9** 2 2 

HighLoad 

(n=7) 
0** 0 4 4 6 4 5 5** 6 5** N/A N/A 

LowLoad  

(n=7) 
1 1 3 3 3 2 3 3 5 4 N/A N/A 

**Observed soccer athlete distribution is statistically significantly different (p < 0.05; 

Binomial Test) from noncollision-sport control athletes 

 

Within-Soccer Athlete Analysis:  Significant differences were observed within the soccer 

athletes when comparing CVR measures observed at within-season (In1, In2) or after-

season (Post1, Post2, Post3) sessions against the pre-contact practices (Pre) assessment, 

both for the whole-brain and ROI-specific analyses.  Soccer athletes, in the aggregate, 
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exhibited within-group changes in whole brain CVR measures (Figure 4.2B) that were 

significantly different from zero, relative to Pre, at In2 (pfdr < 0.01), Post1 (pfdr < 0.05), 

and Post2 (pfdr < 0.01).  Of note, CVR appears to have returned to Pre levels in the seven 

soccer athletes evaluated at Post3. 

 

Figure 4.2 Distributions of b-weights and changes thereof for soccer athletes and non-
collision-sport control athlete peers.  (A) β-weight distributions for controls (n = 12, 
within-subject averages of Test and Re-Test) and soccer athletes at each assessment 

session. Note that at no session are raw CVR measures significantly different between 
soccer and control athletes.  (B) Percent change in β-weight from Pre/Test for controls (n 

= 12) and soccer athletes at each follow-up assessment session. Session-specific 
distributions of fractional change from Pre/Test found to deviate significantly (pfdr < 0.05, 
Wilcoxon Signed Rank Test) from zero (the null hypothesis) are indicated by an asterisk 

above the distribution and bolding around the box.  
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In the gyrus-level analysis, the number of ROIs in the Total soccer group exhibiting 

statistically significant deviations (relative to Pre/Test) at each session corroborated well 

with whole brain results.  Deviant ROIs were observed for the Total soccer athlete group 

at all sessions excluding Post3. There does not appear to have been any lateralization of 

these effects (Table 4.2 Total Group). Conversely, control athletes did not exhibit any 

significantly changed ROIs, at any session (Table 4.2 Total Group). 

 

The numbers of sessions in which each of the 70 ROIs were deviant from Pre/Test are 

presented for both the Total soccer cohort (Figure 4.3, Total Group). While the majority 

of the cortical surface was deviant relative to Pre in at least one session, perhaps 

reflecting heterogeneity in mTBI across subjects, frontotemporal surfaces of the brain 

were persistently affected (Total: In1-Post2). 
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Table 4.2 Number of regions of interest (out of 70) at each session exhibiting fractional 
change from Pre/Test significantly different from zero (pfdr < 0.05, Wilcoxon Signed 

Rank Test) for each athlete grouping (see Table 1 for details). Note that the HighLoad 
and LowLoad groups are session specific—i.e., an athlete need not remain in the 

High/LowLoad group for all three groupings. 
 

 Number of Deviant ROIs in Left 

Hemisphere 

Number of Deviant ROIs in Right 

Hemisphere  Soccer Control Soccer Control 

Session Total High 
Load 

Low 
Load 

 Total High 
Load 

Low 
Load 

 

In1 / 

Re-Test 

9 0 0 0 7 0 0 0 

In2 24 25 0 N/A 21 21 0 N/A 

Post1 13 17 0 N/A 16 17 0 N/A 

Post2 26 21 0 N/A 28 26 0 N/A 

Post3 0 N/A N/A N/A 0 N/A N/A N/A 
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Figure 4.3 Graphical depiction on a rendered brain surface (four views) of the cumulative 
number of sessions (out of 5 possible—In1, In2, Post1, Post2, Post3) during which each 
of 70 regions of interest (Desikan et al., 2006) in the Total cohort of soccer athletes (n = 
14) exhibited a percentage change in β-weight from Pre significantly different from zero 

(pfdr < 0.05, Wilcoxon Signed Rank Test). 
 

4.5 Impact CVR Results 

Interpretation of CVR Changes as Evidence of Brain Injury: Findings suggest that CVR 

decreases observed in this study are indicative of developing injury to the brain, 

preceding neurocognitive symptoms. Decreases in CVR and CBF (not directly assessed 

here) have also previously been reported sub-acutely (Becelewski & Perzchala, 2003; 

Golding, Steenberg, et al., 1999; Len et al., 2013; Maugans, Farley, Altaye, Leach, & 

Cecil, 2012) and chronically following sports- and recreation-related mTBI (Chan et al., 

2015; Maugans et al., 2012; Mutch et al., 2014; Wang et al., 2015).  Therefore, the CVR 
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changes seen in this study are both associated with the cumulative exposure to head 

collision events in soccer, and consistent with previous outcomes of symptomatic mTBI.   

 

Regional deviations from Pre, observed most persistently in frontotemporal regions 

(Figures 3 and 4 and Online Resources 3 and 4), are also consistent with regional 

alterations in CVR (Chan et al., 2015) and CBF (Wang et al., 2015) reported following 

symptomatic mTBI.  Brain regions exhibiting the most persistent CVR changes closely 

matched dorsolateral frontal regions found to be decreased in a case study of CVR in a 

woman assessed 2 months and 1 year after mTBI (Chan et al., 2015) and further 

encompassed frontotemporal regions found in a pediatric population to exhibit decreases 

in CBF subsequent to mTBI (Wang et al., 2015).  These areas are expected to experience 

the most directed acceleration-related forces during heading events, and are known to be 

especially susceptible to head trauma (De Kruijk, Twijnstra, & Leffers, 2001).   

 

Regional findings are of additional importance because the frontal cortex has been 

implicated in dementia.  CVR decreases in the forebrain cortex have been reported in 

patients with Alzheimer’s Disease (Gao et al., 2013; Yezhuvath et al., 2012).  

Additionally, head trauma has been identified as an environmental risk factor in the 

sporadic (i.e., no genetic risk factors) form of frontotemporal dementia (Rosso et al., 

2003), which accounts for 20% of dementias in individuals under the age of 65 (Snowden 

et al., 2002).  
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The finding of reduced CVR in asymptomatic female soccer athletes exposed to 

significant head acceleration events is also consistent with previous work suggesting mild 

repetitive head trauma can produce neurophysiologic changes even in the absence of 

neurocognitive symptoms (Marchi et al., 2013; McAllister et al., 2014; Poole et al., 2014; 

Poole et al., 2015; Svaldi et al., 2015; Talavage et al., 2014). Further, CVR decreases 

from Pre found here in asymptomatic soccer athletes are consistent with findings in 

asymptomatic high school football athletes, in whom decreased CVR was observed 

during the first six weeks of the competition season (Svaldi et al., 2015).   

 

CVR Changes Support Prolonged Recovery Period: The temporal behavior of deviations 

observed in this study is consistent with that observed in other studies of asymptomatic 

and symptomatic mTBI populations, suggesting that the brain requires an extended 

period to recover from repetitive head trauma.  Specifically, the temporal behavior of 

CVR deviations observed in this study is similar to the temporal behavior associated with 

deviations of neurometabolism (as measured by magnetic resonance spectroscopy, MRS) 

and functional connectivity (as measured with rs-FMRI) in studies of asymptomatic 

football athletes.  In a study quantifying neurometabolic changes during the football 

season, Poole et al. (2014) observed decreases in metabolic concentrations of total 

creatine (precentral gyrus, rostral middle frontal gyrus), glutamate (precentral gyrus), and 

inositol (rostral middle frontal gyrus). These deviations relative to Pre began during the 

first half of the contact season and persisted through the end of the season. The present 

study also observed CVR deviations from Pre in both of these regions, beginning in the 

second half of the contact season and persisting at least 3-4 months after the end of the 
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season. Changes in brain connectivity during the contact season have also been observed 

in asymptomatic football athletes by Abbas et al. (2015), who reported decreases in 

connectivity relative to Pre, during months of increased head acceleration event 

exposure, that were still present five months after the contact season—a finding directly 

comparable to those in the present work. 

 

Despite resolution of neurocognitive symptoms in adolescents occurring on average 10-

14 days subsequent to the diagnosis of mTBI (Lovell et al., 2003; Sim, Terryberry-Spohr, 

& Wilson, 2008), neurophysiologic changes present several months after symptomatic 

mTBI have also been reported.  Maugans et al. (2012) reported significant decreases in 

CBF of adolescents, relative to matched healthy controls, that persisted as long as 30 days 

after mTBI. Wang et al. (2015), also studying adolescents relative to matched controls, 

reported decreased CBF in bilateral frontotemporal regions for 3-12 months after 

participants suffered mTBI. Though long term CVR studies have not been conducted on 

adolescents, CVR decreases, relative to matched controls have also been observed 2-12 

months post injury in adult populations (Chan et al., 2015; Mutch et al., 2014).  

Additionally, in a study of working memory in controls and mTBI subjects, McAllister et 

al. (1999) observed continued activation differences one month after injury in 

dorsofrontal and lateral parietal regions. Therefore, consistent timelines of 

neurophysiologic changes due to exposure to repetitive head accelerations across 

different biomarkers of mTBI—even if obtained from different sports—continue to 

support the argument that the changes observed in this study are indicative of injury, 

from which it that takes several months to recover.
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CHAPTER 5. AIM2 - RELATING CVR CHANGES TO CUMULATIVE EXPOSURE 
METRICS 

5.1 Head Acceleration Event Monitoring 

Head acceleration events experienced by soccer athletes will be monitored using an 

xPatch (X2 Biosystems; Seattle, WA) throughout the entire contact season including 

games and practices—cf. McCuen et al. (2015). Sensors will be placed on the head with 

an adhesive patch behind the right ear. The sensors monitor (1 kHz sampling rate) three 

axes of translational acceleration and three axes of angular velocity. Acceleration events 

are recorded when translational accelerations exceeded a 10 g threshold. Following each 

practice and game, the data will be downloaded using the Head Impact Monitoring 

System software (X2 Biosystems). Features within the software will provide peak 

translational acceleration (PTA) and peak angular acceleration (PAA) measurements for 

each detected event. To focus the analysis on head accelerations likely resulting from 

direct impacts to the head or the body, and not from accelerations due to hard stops or 

cuts (10-20 g), only acceleration events surpassing a 20 g threshold will be included 

(McCuen et al., 2015). Note that non-collision sport athletes will not be monitored for 

head acceleration events during the period between Test and Re-Test scan
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5.2 Head Acceleration Event Evaluation 

For each soccer athlete, three metrics will be computed at each imaging session: (1) the 

(to-date) cumulative number of head acceleration events; (2) the (to-date) cumulative 

PTA, cPTA; and (3) the (to-date) cumulative PAA, cPAA. The cPTA and cPAA 

measures for a given athlete at a given session will thus represent weighted versions of 

the count of impacts, to-date. Specifically, for the i-th soccer athlete, athlete-specific 

cPTA (Eqn 5.1) and cPAA (Eqn 5.2) measures will be calculated for the j-th session (In1-

2, Post1-3) by summing the PTA or PAA of each of the Nj head acceleration events 

experienced by the corresponding athlete from the beginning of the season until either the 

day of the assessment (In1, In2) or through the end of the season (Post1, Post2, Post3).    

 

 𝑐𝑃𝑇𝐴(&'(()*+	-)
(/012'0'	)) = 𝑃𝑇𝐴4)
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478   (5.1) 

 

 𝑐𝑃𝐴𝐴(&'(()*+	-)
(/012'0'	)) = 𝑃𝐴𝐴4)

56
478   (5.2)	

 

To incorporate cPTA, and cPAA into a single measure, representative of the i-th soccer 

athlete’s cumulative exposure at the j-th session, relative to the cumulative exposure of 

the ensemble of soccer athletes at the j-th session, a unitless measure of relative 

cumulative exposure (RCE, Eqn 5.3) will be calculated for each athlete at each imaging 

session.  
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Due to large variance in RCE among the high school cohort studied thus far, soccer 

athletes will be divided into two equal-sized groups, reflecting the upper (HighLoad) and 

lower (LowLoad) halves of distribution of RCE. The grouping process described above 

will be repeated at each follow-up session to best capture effects of RCE throughout the 

season. Statistical analyses for each group were conducted as explained in CHAPTER 4.  

 

5.3 Cumulative Load Grouping Results 

Participant Grouping: Of the 14 soccer athletes studied thus far, 4 remained in the 

HighLoad group at every follow-up session and 4 remained in the LowLoad group at 

every follow-up session. The remaining 6 athletes fluctuated between the two groups as 

the season progressed. Because the HighLoad groups and LowLoad groups differed at 

each session, they are hereafter referred to by a Session-Group label (e.g. In1-

HighLoad,). The lack of competition-related exposure after the end of the season permits 

a single Post designation for the Post1-Post2 groupings (i.e., Post-HighLoad and Post-

LowLoad). Note that, because of the small sample size, athletes who returned for the 

Post3 session were not divided into upper- and lower-half groupings. However, of the 

seven athletes who returned for the Post3 session, 3 were from the Post-HighLoad and 4 

Acceleration Events 

 

Head Acceleration Events: After division of the soccer athletes into loading groups based 

on RCE at each session, athletes in the HighLoad groups exhibited a significantly higher 

number of hits, and associated cPTA and cPAA, than did athletes in the LowLoad groups 

(Figure5.1).  Soccer athletes, as a whole, experienced 1991 total events throughout the 
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season. Athletes comprising the Post-HighLoad group accounted for 1402 events (70.4%) 

and athletes comprising the Post-LowLoad group accounted for 589 events (29.6%).  

 

 Figure 5.1 Box and whisker plots of cumulative peak translational acceleration (cPTA) 
and cumulative peak angular acceleration (cPAA) distributions for soccer athletes at each 
assessment session. Boundaries of boxes represent the 25th and 75th percentiles and the 
line inside the boxes indicates the median of the distribution. Assessment sessions In1 
and In2 comprise measurements during first and second half of the competition season; 
and Post represents groupings based on end of season cumulative totals. Athletes are 
grouped by individual rank above (HighLoad; n = 7) or below (LowLoad; n = 7) the 
median Relative Cumulative Exposure (RCE; see text).  Athletes in the HighLoad group 
were observed to have experienced significantly greater cPTA and cPAA than athletes in 
the LowLoad group at each session (pfdr < 0.05, unpaired t-test). Note that the HighLoad 
and LowLoad groups are session specific—i.e., an athlete need not remain in the 
HighLoad or LowLoad group for all three assessment periods. 

 

 

5.4 CVR Changes in Cumulative Loading Groups over a Season 

Soccer Athlete vs. Control Analysis:  Like the Total soccer cohort, no between-group 

effect was observed in the Wilcoxon Rank Sum Test (Figure4.2 A) but the distribution of 

whole brain β-weights of the HighLoad soccer athlete groups, did exhibit statistically 
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significant shifts over the course of the season and post-season periods relative to the 

control group (Table4.1).  Notably, most soccer athletes exhibiting CVR measures below 

the control athlete population median at each session were in the HighLoad group. The 

distribution of CVR measures in the HighLoad soccer athlete groups was significantly 

different from the chance distribution of controls at Post1, and Post2 again skewing 

markedly below the 25th percentile of the control athlete cohort. 

 

Within-Soccer Athlete Analysis:  Athletes in the HighLoad groups exhibit similar 

changes to the Total soccer group (Figure3B), with In2-HighLoad (pfdr < 0.04), and Post-

HighLoad (at Post1: pfdr < 0.05; at Post2: pfdr < 0.04) presenting with significant CVR 

decreases relative to Pre.  Athletes in the LowLoad groups did not deviate significantly 

from Pre at any follow-up session (Figure4.2 B). 

 

In the gyrus-level analysis (Figure5), only the HighLoad soccer groups had ROIs 

exhibiting statistically significant deviations relative to Pre/Test (Figure 5 and 

Supplementary Table2).  Similarly to the Total soccer cohort, frontotemporal surfaces of 

the brain were most persistently affected (HighLoad: In2-Post2 ).     
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Figure 5.2 Graphical depiction on a rendered brain surface (four views) of the cumulative 
number of sessions (out of 5 possible—In1, In2, Post1, Post2, Post3) during which each 
of 70 regions of interest (Desikan et al., 2006) in the HighLoad cohorts of soccer athletes 
(n =  7) exhibited a percentage change in β-weight from Pre significantly different from 
zero (pfdr < 0.05, Wilcoxon Signed Rank Test) 

 
5.5 Impact of CVR Grouping Results 

Stability of CVR measurements in the control population facilitates interpretation of 

significant CVR differences from Pre in the soccer athlete population within the context 

of exposure to head acceleration events.  Observation of no significant changes from Test 

in global or regional CVR for control athletes supports the a priori expected stability of 

the measurement (Birn et al., 2008; Bright & Murphy, 2013; Kastrup et al., 2001; Lipp et 

al., 2015). 
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Changes observed in the Total soccer cohort proved to be associated with cumulative 

exposure, supporting the hypothesis that CVR changes in collision sport athletes are a 

function of cumulative loading.  CVR measures for both the Total and HighLoad soccer 

athlete groups exhibited significant whole brain and regional CVR decreases, relative to 

Pre, that persisted at least 3-4 months after exposure ceased, and recovered by 8 months 

after the end of the contact season. In contrast, soccer athletes in the LowLoad groups did 

not experience significant CVR changes, relative to Pre, at any follow-up session, in any 

ROI, further supporting the stated hypothesis.   

 

The results of this study support the prior hypothesis that accumulation of head 

acceleration events continually increments neurophysiologic alterations, which may 

ultimately exceed a minimum threshold beyond which statistically-detectable changes 

will be observed for modest to small sample sizes of athletes.  The relationship between 

cumulative exposure and cerebrovascular alterations is not binary as evidenced by the 

contribution of athletes in LowLoad groups to CVR alterations observed in the Total 

soccer group, despite the lack of observation of significant changes in the LowLoad 

groups.  Specifically, CVR changes observed in the Total soccer groups were always 

more significant than in the HighLoad soccer group, suggesting that the contribution of 

the LowLoad athletes was something other than neutral or noise.  Additionally, though no 

significant whole brain changes were seen at In1—at which point athletes had received 

the least cumulative loading—significant ROI-level deviations were persistently observed 

in the Total soccer group from In1 through Post2, implying that “sub-threshold” changes 

in CVR may have begun during the first half of the competition season. One 
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interpretation of these findings is that a nonlinear relationship exists between cumulative 

exposure and the associated neurophysiologic alterations with a threshold of these 

alterations above which risk for injury increases.  

 

Results from CVR comparisons of control athletes and soccer athletes are consistent with 

the asymptomatic nature of the studied soccer population. While higher levels of 

mechanical loading were significantly coupled to CVR changes, the CVR distribution for 

the aggregate population of soccer athletes did not significantly differ from controls at 

any session.  As such, this population would not—solely on the basis of CVR 

assessment—be expected to exhibit sufficiently deviant brain function as to readily be 

diagnosed with a symptomatic mTBI. 

 

While there were no significant group differences in β-weight distributions between 

controls and soccer athletes, the ensemble of CVR measurements for soccer athletes 

primarily in HighLoad groups did progress from being more elevated at Pre than 

expected by chance relative to the control median, to being increasingly lower at each 

follow-up session than expected by chance relative to the control median. Given that the 

within-season changes associated with this drop are comparable to those observed in 

symptomatic mTBI, athletes who reached the lowest quartile of the “normal” CVR 

measurement spectrum may be at greater risk for developing symptomatic injury.  

Additionally, elevated CVR measures at Pre relative to controls—a trend that visually 

emerges again at Post3—may be indicative of a neuroprotective or compensatory effect, 
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likely mediated by the nitric oxide pathway (Zhang et al., 2002), occurring in response to 

repetitive head trauma.  

 

The current results suggest that limiting the cumulative mechanical loading athletes 

sustain throughout a season and allowing for adequate rest time after the season may be 

beneficial in maintaining brain health. Such actions may contribute to reducing the 

incidence of mTBI in female soccer athletes.  Quantification of a threshold related to 

cumulative loading above which, risk for injury increases will be pivotal in instituting 

general head impact regulations that are best suited to protect female soccer athletes from 

the long-term risks associated with repetitive head impacts. 
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CHAPTER 6. AIM2 - EFFECT OF MINIMUM PTA THRESHOLD ON PREDICTING 
CVR CHANGES IN LOADING GROUPS 

Extending the findings detailed in CHAPTER 5 (Svaldi et al., 2016), we add data from an 

additional season of play and assess the effect of varying the minimum peak translational 

acceleration (PTA) threshold used to calculate cumulative load on identifying individuals 

with CVR decreases. We hypothesize that increasing the minimum PTA threshold in 

calculation of cumulative loading will better identify individuals exhibiting CVR 

decreases.  

6.1 Methods for Evaluation of Effect of Minimum PTA Threshold 

High School Participants: Female participants included 22 soccer athletes (ages 15-17; 

mean 15.9) and 12 non-collision sport control athletes (ages 15-18; mean 15.9). Control 

athlete data were collected over one season of play. Soccer athlete data were collected 

over two seasons of play, with 7 of the 22 athletes participating in both seasons.  As our 

previous work showed that CVR in these 7 athletes returned to baseline levels, data from 

consecutive seasons were treated as separate observations yielding a total of 29 athlete-

season observations. No included participant was diagnosed with mTBI during the course 

of the study. 
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Imaging Protocol Schedule: Athletes were imaged as described in CHAPTER 4.  

However, as survey data revealed that most athletes were participating in club soccer 

during the period of the Post2 scan, data from this session will not be included in this 

analysis.  The Post1 scan will be referenced as the Post scan for this section.  

 

Head Acceleration Event Analysis:  Because cPTA and cPAA measurements were found 

to be highly correlated,  we focus only on cPTA as this is the more accurate of the two 

measurements (McCuen et al., 2015).  For each soccer athlete, the (to-date) cumulative 

PTA (CPTA) (Eqn. 5.1) was calculated at each imaging session. To test the contribution 

of various levels of acceleration events to changes in CVR, the CPTA was calculated 

using four minimum PTA thresholds: 20g, 30g, 50g, and 70g (approximately 

corresponding to the 25th, 50th, 75th, and 90th percentile for all impacts recorded over the 

two seasons).  Because imaging sessions (In1, In2, Post) were conducted over periods of 

six weeks and several athletes experienced comparable CPTA despite their scans being 

several weeks apart (Figure6.1), CPTA was normalized by the number of days over 

which the impacts were accrued for each subject-session to give a final measure of 

normalized CPTA (nCPTA).  For in-season imaging sessions (In1-2) this normalizing 

factor was the number of days from the start of the season until the scan date.  For the 

Post session the normalizing factor was the number of days over which the contact 

season extended (start to end). At each imaging session, Soccer athletes were divided into 

three groups, reflecting the upper (High, n = 10), middle (Mid, n = 9), and lower (Low, n 

= 10) thirds of the nCPTA distribution.  
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Figure 6.1 Scatter plot of cumulative peak translational acceleration (CPTA) versus the 
number of days since start of the season for loading groupsat each session, for a 
minimum PTA threshold of 20g. Normalized CPTA groups—calculated using CPTA 
normalized by number of days since the start of the season (nCPTA)— groups are coded 
using colors while measurements belonging to different sessions are coded using 
different marker types, as explained in the legend.  Circled pairs of observations are 
examples of athletes experiencing comparable cumulative loads (<= 100g apart) at their 
imaging sessions, despite imaging sessions being over 10 days apart.   

 

Analysis of Cerebrovascular Reactivity: Groups evaluated at each session for changes in 

CVR as a function of exposure included: (1) the Total cohort of soccer athletes; (2) High, 

Mid, and Low loading subgroups of soccer athletes for each minimum PTA threshold, 

and the (3) control athlete cohort. To assess whether distributions of GM fractional 

change in β-weight from Pre/Test differed significantly from zero for any group, 10,000 

bootstrapped random samples of size n = 9, corresponding to the sample size of the 

smallest loading group, were generated for each group in order to estimate a 95% 

confidence interval on the median of each group (Figure6.2).  This bootstrapping scheme 

was repeated 20 times. Distributions were deemed significantly different from zero if 
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zero was outside of the 95% confidence interval for 6 of the 20 trials as this is more than 

can be expected by chance (Binomial Test, a= 0.05).  

 

Figure 6.2 Histograms of the medians calculated from 10,000 bootstrapped random 
samples for all loading groups for each minimum PTA threshold at each assessment 

session.  

 

Because grouping based on nCPTA at the In2 session consistently identified soccer 

athletes exhibiting the greatest CVR decreases from Pre across thresholds, a linear fit 

(Eqn. 6.1) was used to model the relationship between nCPTA and fractional change in b-

Weight from Pre at In2 (∆𝛽=F') for each threshold.    

∆𝛽=F' = 	𝑥H + 𝑥8 ∗ 𝑛𝐶𝑃𝑇𝐴   (6.3) 

To robustly assess the fits, a sensitivity analysis was conducted whereby each data point 

(nCPTA, ∆𝛽=F')was iteratively removed from the sample and the regression was 

repeated.  For each iteration, the R2 was calculated and an F-test (a = 0.05) was 

conducted to compare the resulting model to a constant model.  To assess the model for 
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each threshold, the mean of each coefficient (x0, x1), the mean R2, and mean p-value of all 

iterations was calculated for each threshold.  To assess whether the fit for any given for 

each threshold significantly explained more variance, a repeated measures ANOVA (a = 

0.05), followed by pairwise t-tests (a = 0.05), was conducted on the distribution of R2 

values for each threshold.  

 

6.2 Results of Evaluating Minimum PTA Threshold 

Control athletes did not exhibit a significant difference in fractional change in β-weight 

from Test at their follow-up session (Figure6.3).  The Total cohort of soccer athletes also 

did not exhibit significant decreases in β-weight from Pre at In1-2 (Figure2), although 

there is a visible negative trend below zero at these follow-up sessions.  The Total cohort 

did exhibit significant CVR decreases from pre at the Post session.  

 

In the first half of the season, grouping the athletes by nCPTA and raising the minimum 

PTA threshold did not consistently attribute CVR decreases to any given loading group 

(Figure6.3). Despite only the Mid and High loading groups exhibiting significant 

differences from Pre, each of these groups only exhibited significant decreases from Pre 

for one of the four minimum PTA thresholds. The High loading group exhibited a 

significant difference from Pre only when the minimum impact threshold was 50g while 

the Mid loading group evidenced a significant decrease in CVR from Pre only for the 20g 

minimum impact threshold. The Low loading group never exhibited a significant decrease 

from Pre, despite the distributions of fractional CVR change from baseline appearing to 

skew below zero at the In1 imaging session.  
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Consistent with the original hypothesis, grouping athletes by nCPTA in the second half of 

the season showed led to only the Mid and High loading groups exhibiting significant 

decreases in CVR from Pre (Figure6.3).   Significant CVR decreases were concentrated 

in the Mid groups for minimum thresholds of 20g and 30g. When the minimum impact 

threshold was raised to 50g, significant CVR decreases were concentrated in the High 

loading group, a result which still held at 70g.  

 

At the Post session, all loading groups exhibited significant decreases from Pre for at 

least one of the four minimum impact thresholds (Figure6.3).  The High loading group 

exhibited significant decreases from Pre for the 30g minimum impact threshold while the 

Mid loading group exhibited significant decreases from Pre for the 70g minimum impact 

threshold.  The Low group exhibited significant decreases from Pre for all impact 

thresholds.  
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Figure 6.3 Box and whisker plots of Fractional Change in β-weight from Pre/Test for 
loading groups (Total n = 29, High n = 10, Mid and Low n = 9) assessed using nCPTA.  
Distributions exhibiting significant deviations from zero (95% CI on median generated 

using 10,000 bootstrap random samples, binomial test p < 0.05 ) are designated by 
asterisks. The midline of the box represents the median of the distribution and the top and 

bottom edges represent the first and second quartiles, respectively; outliers are denoted 
with plus signs. 

 

Regardless of threshold value, all linear fits showed a significant negative relationship 

between nCPTA and In2 fractional change in β-weight from Pre. ANOVA and pair-wise 

tests revealed that there was a significant effect of threshold on the variance explained by 

each fit.  The variance explained by each fit was significantly different from the variance 

explained by every other fit, with the 50g threshold explaining the most variance of the 

four thresholds (21.9%).    
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Figure 6.4 Linear fits between nCPTA and In2 fractional change in β-weight from Pre.  
Each data point was iteratively removed and the model was re-fit, producing a total of 29 
fits for each threshold.  The mean R2 and mean p-values (F-Test against constant model, 
a = 0.05) were calculated for each threshold.  Variance explained was significantly 

different between all fits (repeated measures ANOVA, paired t-test a = 0.05).  Variance 
explained was maximized for a threshold of 50g.  

 

6.3 Impact of Evaluating Minimum PTA Threshold 

Addition of a second season of data continued to reveal subacute CVR decreases in 

soccer athletes as a result of participation in soccer.  This decrease became more 

pronounced as cumulative loading increased over the season, and was most pronounced 

in soccer athletes receiving the greatest cumulative loads.  Increasing the minimum PTA 

threshold used to calculate groupings based on nCPTA led to robust concentration of 

individuals with CVR decreases within the High loading groups in the second half of the 

season. Furthermore, in the second half of the season linear fits used to model the 

relationship between cerebrovascular reactivity and cumulative load over a season 

showed a significant negative relationship. The variance explained by the model was 
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maximized at 50g, suggesting that limiting accumulation of impacts exceeding a PTA 

threshold around 50g may help reduce neurovascular changes associated with mTBI in a 

female high school soccer demographic. Finally, CVR decreases at the Post imaging 

session—conducted after one to two months of recovery from the contact season—

support the notion that appreciable recovery time is necessary for the brain to return to 

normal following a season of contact-sport participation.
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CHAPTER 7. AIM 1 – TEST FOR RS FUNCTIONAL CONNECTIVITY 
ALTERATIONS IN FEMALE HIGHSCHOOL SOCCER PLAYERS  

For this work, RS functional connectivity over a season of play in female soccer athletes 

as well as non-collision sport control athletes was assessed. Functional connectivity and 

organization were assessed using a graph theoretical paradigm (Bullmore & Sporns, 

2009).  This paradigm models the brain’s functional organization as a complex network, 

referred to as a connectome, of regions that are functionally coupled.  Edges in this 

network are measures of functional coupling between regions, typically measures of 

statistical dependence between the FMRI time series between two regions such 

correlations, coherence, or mutual information. This paradigm was chosen because it 

allows for both whole brain characterization of the brain’s functional organization in 

terms of graph organizational properties such as integration and segregation and also 

allows for data driven identification of important subnetworks.  

 

High School Participants:  Data from thirty athletes was used in this portion of the study.  

Soccer athletes: 17 athletes (ages 15-17; mean 15.9) were members of high school junior 

varsity or varsity soccer teams, representing two high schools (8 team 1, 9 team 2).  All 

seventeen athletes were scanned according to the study paradigm above (Pre, In1, In2, 

Post1, Post2). Additionally, 8 of the 17 soccer athletes were also scanned 8 months after 

the end of the season (Post3). Control athletes: 13 athletes (ages 15-18; mean 15.9) 
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participated only in non-collision high school sport junior varsity or varsity teams (7 

basketball; 3 track & field; 2 cross-country; 1 each softball, gymnastics and swimming).  

 

7.1 RS Imaging Protocol  

Scans were conducted as per the imaging schedule described in CHAPTER 4. For each 

subject-session, RS data was acquired on the same day as CVR data also at the Purdue 

University MRI Facility (West Lafayette, IN), using a 3-T General Electric Signa HDx 

(Waukesha, WI) with a 16-channel brain array (Nova Medical; Wilmington, MA).  A 

single resting state functional FMRI run was acquired using gradient-echo echo-planar 

sequence (length 9 min 48 sec; TR/TE = 2000/26 msec; 20cm FOV; 64x64 matrix; 34 

slices; 3.8 mm thickness; 117 volumes. This run was acquired immediately following two 

functional working memory scans. The same T1-weighted anatomical scan acquired 

using a 3D spoiled gradient echo sequence (TR/TE 5.758ms/2.032ms, flip angle=73°, 

1mm isotropic resolution) was used for registration purposes.  

 

7.2 RS Functional Connectivity Processing  

Preprocessing: Data processing was performed using FSL using standard fMRI 

processing guidelines (Amico et al., 2016) including slice timing correction, motion 

correction, intensity normalization to mode 1000, demeaning and linear detrending.  

Motion was regressed out using 12 regressors consisting of translations [x y z] and 

rotations [roll pitch yaw] and their corresponding derivatives.  Tissue noise was regressed 

out using 3 regressors (mean whole brain time series, mean WM time series, mean CSF 

time series). A procedure to censor high motion volumes from the regression was 
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implemented based on frame displacement, changes in signal intensity between volumes, 

and the standard deviation of the BOLD signal of within brain voxels at each TR, as 

detailed in (Amico et al., 2016).  Athletes with more than 50% of volumes censored were 

discarded from the study. Subsequently, a first-order Butterworth bandpass filter [0.001 

Hz 0.8 Hz] was applied to the resulting RS functional volumes in the forward and reverse 

directions. Finally, the first five principal components of the WM and CSF masks were 

regressed out of the GM mask.  To extract tissue masks for tissue related regressors, T1 

anatomicals were denoised, bias field corrected, and then segmented using the FAST 

algorithm in FSL.  These segmentations were then warped into the functional space using 

the FLIRT algorithm in FSL (6dof). 

 

Graph Theoretical Methods:  The pipeline used to construct connectomes from the 

processed RS FMRI data can be seen in Figure7.2.  Connectomes were constructed in the 

functional space of each subject-session using a parcellation of 278 functional regions 

(Shen, Tokoglu, Papademetris, & Constable, 2013) in the MNI 152 space. This 

parcellation was chosen because it is a functional parcellation specifically designed for 

graph theoretical analyses of brain organization and was created with eighty healthy 

subjects.  The parcellation was firt warped from the MNI space into the subject-session 

specific T1 space using both linear and non-linear transformations in FSL. (FLIRT, 

FNIRT) and then into the FMRI space using the previously calculated transform. FSL 

boundary-based-registration was additionally applied.  Functional connectivity matrices 

were derived by calculating the Pearson correlation coefficient (Eqn. 7.1) between mean 

time-series of all regions creating connectomes of size 278 x 278.  
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𝑟)- = 	
	 (>?LM>N)(>6LM>O)P
LQR

(>?LM>N)SP
LQR (>6LM>O)SP

LQR

                             (7.1) 

In 7.1, 𝑇) and 𝑇- are the mean time-series for ROIs i and j respectively, 𝑛 is the total 

number of time-points in the time-series for ROIs i or j, 𝑟)- is the Pearson correlation 

coefficient between ROIs i and j, and finally, 𝑇T and  𝑇U are the sample means for the i-th, 

and j-th ROI time-series.   

 

A Fisher’s transform was then applied to all rij  (7.2) to give final transformed correlation 

coefficients zij.  

𝑧)- =
1
2 ln	(

1 + 𝑟)-
1 −	𝑟)-

) 

Self-connections were subsequently removed from the resulting connectomes by setting 

the diagonal of the connectome matrix to zero. Anti-correlations were removed by setting 

all negative elements of the connectome to zero. Finally, connectomes were ordered 

according to 7 resting state subnetworks, visual (VIS), somato-motor (SM), dorsal 

attention (DA), ventral attention (VA), limbic (L), fronto-parietal (FP), and default mode 

network (DMN),  described in (Yeo et al., 2014) with the additional two, subcortical 

(SBU) and cerebellar (CER), described in (Amico et al., 2016) (Figure7.1). These 

subnetworks were chosen because they were created using a data driven ICA approach 

and were shown to be consistent across 1000 healthy subjects. The final resulting 

connectomes are weighted, undirected networks representing the functional organization 

at a given subject-session (Figure 7.1).  
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Figure 7.1 Pipeline for construction of connectomes from RS FMRI data for each subject-
session. Pairwise pearson correlation coefficients were computed between mean time 
series of all ROIs (Shen et al., 2013) resulting in connectomes of size 278x278.  Self 

connections and negative connections were removed. Finally connectomes were 
rearranged according to 9 RSNs (Amico et al., 2016; Yeo et al., 2014).  Final bolded 

connectomes contain weights wij associated with all edges in the network. 

 

These networks are comprised of n = 278 nodes corresponding to the regions in the Shen 

parcellation which comprise N the set of all nodes in the network.  The connections 

between each of these regions comprise L the set of all edges in the network, where each 

element wij in the final connectome represents the connectome weight associated with 

edge (i,j) in the connectome.  

 

7.3 Graph Theoretical Analysis  

Soccer athlete and control athlete connectomes were assessed for differences in three 

categories: (1) measures of basic global network connectivity, (2) measures of global 

network integration, (3) measures of network segregation.  
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Measures of Basic Network Connectivity: To assess global changes in RS functional 

connectivity in both soccer athletes and controls two basic network measures, degree and 

strength, were calculated for connectomes at each subject-session (Bullmore & Sporns, 

2009). Degree of a network is defined as the mean degree per node, where degree per 

node, ki (Eqn. 7.3), is the number of edges connected to a given node.   

𝑘) 	= 	 𝑎)-),-∈5                                                (7.3) 

𝑎)- = 1	𝑤ℎ𝑒𝑛	𝑤)-	𝑖𝑠	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑎𝑛𝑑	𝑧𝑒𝑟𝑜	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Strength of a network is defined as the mean strength per node, where strength per node, 

si  (Eqn. 7.4), is defined as the sum of all weights associated with edges connected to the  

node.  

𝑠) 	= 	 𝑤)-	),-∈5                                             (7.4) 

 

Measures of Global Integration: Additionally, to assess global network efficiency, 

measures of network integration were calculated for connectomes at each subject-session 

(Bullmore & Sporns, 2009). Measures of network integration assessed included shortest 

path length and mean first passage time.  Shortest path length, SPL (Eqn. 7.5), is defined 

as the average distance along the shortest paths,	𝑑),-@)+ (Eqn. 7.6), between all possible 

node pairs (i,j). The length of a given path, di,j (Eqn. 7.7), between nodes (i,j) is defined 

as the sum of all the inverse of all weights associated with edges in the path.  

𝑆𝑃𝐿 = 	
A?,6
l?P

?,6∈m,?n6
R
S+(+M8)

                                           (7.5) 

𝑑),-@)+ = min 𝑑)-                                                     (7.6) 

𝑑),- = 	
8

qr,st,u∈v?→6                                                  (7.7) 
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𝑤ℎ𝑒𝑟𝑒	𝑔)→-	𝑖𝑠	𝑎	𝑔𝑖𝑣𝑒𝑛	𝑠𝑒𝑡	𝑜𝑓𝑒𝑑𝑔𝑒𝑠	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑖	𝑎𝑛𝑑	𝑗 

Mean first passage time (MFPT) of a network is defined as the mean of MFPT’s between 

each node pair (i,j) in the network. MFPT (Eqn. 7.8) between a given node pair, (i,j), is 

defined as the expected value of the passage time in a random path between the two 

nodes.  Passage time, 𝑡v?→6 (Eqn. 7.9), for a given path between two nodes is defined as 

the sum of all weights along the path between any two nodes (i,j). MFPT for a given node 

is simulated using 100 random walks between each node pair (i,j) and calculating the 

average passage time in these 100 random paths. 

𝑀𝐹𝑃𝑇),- = 𝐸 𝑇~?→6                                              (7.8) 

𝑇~?→6	𝑖𝑠	𝑡ℎ𝑒	𝑠𝑒𝑡	𝑜𝑓	𝑡𝑖𝑚𝑒𝑠	𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝑡ℎ𝑒	𝑠𝑒𝑡	𝐺)→-	𝑜𝑓	𝑝𝑎𝑡ℎ𝑠	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	(𝑖, 𝑗)  

𝑡v?→6 = 	 𝑤t,ut,u∈v?→6                                             (7.9) 

𝑤ℎ𝑒𝑟𝑒	𝑔)→-	𝑖𝑠	𝑎	𝑔𝑖𝑣𝑒𝑛	𝑠𝑒𝑡	𝑜𝑓	𝑒𝑑𝑔𝑒𝑠	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑖	𝑎𝑛𝑑	𝑗 

 

Measures of Network Segregation: Finally, measures of network segregation were 

calculated for connectomes at each subject-session (Bullmore & Sporns, 2009).  

Measures of segregation calculated included clustering coefficient, transitivity, and 

modularity. Clustering coefficient is defined as the mean of the clustering coefficients of 

each node. The weighted clustering coefficient (Barrat, Barthelemy, Pastor-Satorras, 

Vespignani, & Parisi, 2004), ci (Eqn. 7.10), quantifies weights of connections that exist 

between the nearest neighbors of a node normalized by the weights of all possible 

connections of a given node. 

𝑐) = 	
�?,6��?,�

S6,�∈m ∗B?,6∗B?,�∗B6,�
(?∗(4?M8)

                                     (7.10) 
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Transitivity of a network, T (Eqn. 7.11), is very similar to clustering coefficient, however 

normalization is performed over all possible connections in the network.  

𝑇 = 	
�?,6��6,�

S6,�∈m ∗B?,6∗B?,�∗B6,�?∈m

(?∗(4?M8)?∈m
                                 (7.11) 

Finally, computation of a modularity scores seek to assess the strength of the division of a 

network into modules.  Modularity algorithms iteratively partition the network such that 

the number of edges within modules is optimized (Blondel, Guillaume, Lambiotte, & 

Lefebvre, 2008), thereby optimizing the modularity score Q (Newman, 2004) (Eqn 7.12) .  

𝑄 = 8
2�

𝑤)- −
(?∗(6
2�

𝛿@?,@6),-∈5                                    (7.12) 

𝑤ℎ𝑒𝑟𝑒	𝑚)		𝑖𝑠	𝑡ℎ𝑒	𝑚𝑜𝑑𝑢𝑙𝑒	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔	𝑛𝑜𝑑𝑒	𝑖, 𝛿@?,@6 = 1	𝑖𝑓	𝑚)

= 	𝑚-	𝑎𝑛𝑑	𝑧𝑒𝑟𝑜	𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒	 

𝑙q = 𝑤)-
),-∈5

 

For this work, the Louvain (Blondel et al., 2008) algorithm was used to calculate the 

optimized partition and associated modularity score, QLouvain, for the connectome.  A 

modularity score, QYeo, was also calculated for the Yeo and SUB, CER partition, which 

represents “average” human, functional brain network organization.  Finally, the ratio 

(Eqn. 7.13) of Qyeo to QLouvain was computed to assess how the Yeo partition related to the 

“ideal” partition of the connectome.  

𝑄�'* = 	
����

���rs�?P
    (7.13) 

 

To assess changes in the network measurements delineated above, within group 

comparisons and between group comparisons were performed on all network 

measurements for soccer athletes and control athletes at an a= 0.05 significance level.  
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Because these network measurements have shown to follow a normal distribution across 

people, t-tests were used to conduct all statistical comparisons.  Pairwise paired t-tests 

relative to test in Controls and Pre in soccer athletes were used for within group 

comparisons.  Pairwise unpaired t-tests, relative to both the test control athlete session, 

were used to conduct between group comparisons, after confirming no significant 

difference in measurement between the Test and Re-test control sessions. Pairwise tests 

conducted across multiple sessions were corrected for multiple comparisons across 

sessions using FDR correction.    

 

Subnetwork Measures: To assess whether global changes in basic network connectivity 

were localized to a specific subnetwork and to help interpret modularity results, within 

sub-network strength and between sub-network strength were also calculated.  Within 

network strength was defined as the mean of the within network strengths of each node in 

a given network.  Within network strength for a given node is defined as the sum of the 

weights of all connections with nodes also within the given network (Eqn. 7.14).   

𝑠)/q)01)+ = 	 𝑤),--∈/ 		                                (7.14) 

Between network strength for a given node was defined as the mean of the between 

network strengths of each node. Between network strength for a given node is defined as 

the sum of the weights of all edges between node i in the given network and all nodes not 

within the given network (Eqn. 7.15).  

𝑠)/�'0q''+ = 	 𝑤),--∉/                                      (7.15) 

Statistical comparisons on sub-network strength and within sub-network strength were 

conducted in the same manner as those conducted on global network properties. 
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After verifying that there were no within group effects in within or between subnetwork 

connectivity, one mean connectome was calculated for each group (Figures7.1-3).  This 

was done by taking averaging connectomes across all subjects and sessions (excluding 

Post3 for soccer athletes) for each group (Soccer, Controls).  Mean connectivity (wij) for 

within subnetwork connections and between subnetwork connections was computed for 

each RSN from these connectomes. Control strength measures were subtracted from 

soccer strength measures and the corresponding difference for each RSN was displayed 

on the MNI152 template to provide a visual representation of within network and 

between network connectivity differences in each RSN.     

 

7.4 Graph Theoretical Results 

Within group results: Controls showed no significant changes between the Test and Re-

test sessions for any of the global measures of connectivity, global measures of 

integration, or global measures of segregation (Figure 7.2).  There were also no 

significant differences in between or within subnetwork strengths between Test and Re-

test sessions (Figure 7.3).  This confirms the stability of functional organization in 

“healthy” population.  Similarly, soccer athletes did not exhibit significant changes from 

the Pre session in any category of global network measures (Figure 7.2) at any follow-up 

session, either before or after multiple comparisons correction.  

 No within group differences in subnetwork measures (Figures 7.3 & 7.4) were found for 

soccer athletes at any follow-up session, either before or after multiple comparisons 

correction.  
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Figure 7.2 Distributions showing global network measures of basic connectivity (degree, 
strength), integration (SPL, MFP), and segregation (C, T, QLouvain, QYeo, QRatio) for 13 
non-collision sport control athletes (Test, Re-test) and 17 soccer athletes (Pre, In1-2, 

Post1-3).  Note that only 8 of the 17 athletes underwent a Post3 imaging session. Bold 
blue boxes indicate soccer athlete distributions significantly differing (unpaired t-test, pfdr 

< 0.05) from Control Test session distributions.  Neither control athletes nor soccer 
athletes exhibited significant deviations (paired t-test, pfdr < 0.05) from corresponding 

baseline sessions (Controls Test, Soccer Pre) at any follow-up imaging session (Controls 
Re-test, Soccer In1-2 & Post1-3). 

 

Between group results: Though soccer athletes did not exhibit significant changes in RS 

functional connectivity over the season, soccer athletes did exhibit stark differences, at all 

imaging sessions including Post3, in basic network measures, measures of network 

integration, and measures of network segregation as compared to controls (Figure 7.2).  

Comparisons of basic network measures revealed that soccer athlete brains exhibited 

significantly fewer connections (degree) as well as significantly weaker connections 

(strength) than control athlete brains.  In terms of measures of integration, soccer athlete 

connectomes exhibited longer SPL and longer MFPT as compared to control athletes.  
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Comparisons of network segregation also revealed differences between soccer athlete 

brains and control athlete brains.  Both clustering coefficient and transitivity were 

significantly lower in soccer athletes as compared to control athletes.  However, soccer 

athlete connectomes exhibited significantly higher modularity scores, both for the ideal 

partition and the Yeo partition, as compared to soccer athletes.  The modularity ratio, 

QRatio, was significantly higher in soccer athletes as compared to control athletes.  

 

Subnetwork comparisons showed that both between subnetwork connections and within 

subnetwork connections accounted for global differences in network strength between 

soccer athletes and control athletes, though between network connections were most 

affected. All nine soccer athlete subnetworks exhibited significantly weaker between 

network connections (Figure 7.3) as compared to control athlete brain subnetworks.  In 

contrast, only five of nine soccer athlete brain subnetworks (VIS, DA, L, FP, and DMN; 

Figure 7.4) exhibited significantly weaker within network connections, at all imaging 

sessions, as compared to control brain subnetworks (Figure 7.3). As seen in Figure 7.5, 

the differences between control subnetwork connectivity and soccer subnetwork 

connectivity are more pronounced for between network connections than they are for 

within network connections.   
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Figure 7.3 Distributions of within-network strength for 13 non-collision sport control 
athletes (Test, Re-test) and 17 soccer athletes (Pre, In1-2, Post1-3).  Note that only 8 of 
the 17 athletes underwent a Post3 imaging session. Bold blue boxes indicate soccer 
athlete distributions significantly differing (unpaired t-test, pfdr < 0.05) from Control Test 
session distributions.  Neither control athletes nor soccer athletes exhibited significant 
deviations (paired t-test, pfdr < 0.05) from corresponding baseline sessions (Controls Test, 
Soccer Pre) at any follow-up imaging session (Controls Re-test, Soccer In1-2 & Post1-3).  
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Figure 7.4 Distributions of between-network strength for 13 non-collision sport control 
athletes (Test, Re-test) and 17 soccer athletes (Pre, In1-2, Post1-3).  Only 8 of the 17 
athletes underwent a Post3 imaging session. Bold blue boxes indicate soccer athlete 
distributions significantly differing (unpaired t-test, pfdr < 0.05) from Control Test session 
distributions.  Neither control athletes nor soccer athletes exhibited significant deviations 
(paired t-test, pfdr < 0.05) from corresponding baseline sessions (Controls Test, Soccer 
Pre) at any follow-up imaging session (Controls Re-test, Soccer In1-2 & Post1-3).  
 

 

 
 

Figure 7.5 Difference between soccer athletes and control athletes in mean subnetwork 
connectivity (wij).  (left) Difference in mean within subnetwork connectivity.  (right) 
Difference in mean between network connectivity. Differences were quantified from 

mean connectomes for each group. Mean connectomes were calculated by averaging all 
connectomes, for each group, across athletes and sessions. 
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7.5 Impact RS Functional Connectivity Results 

Evidence of Chronic Hypoconnectivity Between Networks in Soccer athletes: Lack of 

changes in any network measures across sessions in control athletes attests to the stability 

of FMRI measurement of resting state functional brain organization in  

healthy subjects.  Overall, the findings in soccer athletes show reduced connectivity in 

comparison to control athletes which is already present before the start of the contact 

season and is sustained throughout the contact season.  This reduced connectivity is more 

pronounced in between network connections causing soccer athlete brains to be less 

globally connected and more modular, despite decreased clustering.   All three measures 

modularity measures (QLouvain, QYeo, and QRatio) were higher for soccer athletes than for 

control athletes.  Since the Yeo subnetwork partition represents a typical brain 

organization in healthy individuals, increases in both QYeo and QLouvain in soccer athletes 

as compared to control athletes show that soccer athlete connetomes maintain typical 

network organization but reduce communication between networks.  
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Comparison of Results with Other Graph Theory Studies of mTBI: Our findings both 

agree with and differ from other studies of similar properties in mTBI populations.  

Findings of reduced global strength and degree in female soccer athlete brains as 

compared to controls are consistent with studies showing global decreases in connectivity 

in patients with mTBI as compared to healthy controls (Messe et al., 2013; Nakamura et 

al., 2009; Stevens et al., 2012).  Furthermore, findings of reduced connectivity in the 

DMN is also consistent with several studies of RSFC in mTBI populations (B. Johnson et 

al., 2012; Messe et al., 2013; Stevens et al., 2012), although also conflicting with others 

(Abbas et al., 2015; B. D. Johnson et al., 2014).  Only three other studies to date have 

assessed RS functional connectivity using graph theoretical methods.  Two of these 

studies were conducted on mTBI populations 3 to 6 months post injury (Messe et al., 

2013; Nakamura et al., 2009) and the third one was conducted on football athletes 

experiencing repetitive head trauma (Abbas Manuscript Submitted).  In agreement with 

our study, one study reported reduced global strength and increased shortest path length 

in mTBI patients examined 3months post injury (Nakamura et al., 2009).  In contrast to 

our study, the second study of mTBI patients failed to find significant differences in 

global connectivity at any time point (Messe et al., 2013) and the third study (Abbas, 

manuscript submitted) hyperconnectivity in football athletes relative to non-collision 

sport controls. Assessments of network segregation from these three studies all conflicted 

with our findings of decreased clustering and increased modularity.  Both studies 

assessing clustering either failed to find significant differences in clustering coefficient in 

mTBI patients as compared to healthy controls (Nakamura et al., 2009) or found a 

significant increase in clustering coefficient in football athletes with a history of 
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concussion as compared to controls (Abbas, manuscript submitted). Both studies 

assessing modularity reported decreased modularity in mTBI patients 6 months post 

injury (Messe et al., 2013) and in asymptomatic football athletes as compared to healthy 

controls (Abbas, manuscript submitted). The variability in changes found in mTBI 

populations attests to the variability of mTBI injuries, themselves.  

 

Conclusions: In conclusion, this work has demonstrated pronounced differences in 

functional connectivity, present prior to the start of the contact season and sustained 

throughout the contact season, in asymptomatic soccer athletes as compared to control 

athletes that both agree and contrast with similar studies conducted on other mTBI 

populations. This hyppoconnectivity is most pronounced in between network connections 

causing soccer athlete brains to be less integrated than control athlete brains. Alterations 

observed can presumably be attributed to participation in soccer as the two populations of 

athletes studied are otherwise comparable.  However, the changes do not appear to be 

modulated by subacute exposure to repetitive head trauma over one season of play, 

suggesting these to be chronic changes attributable to multiple years of play without 

adequate recovery.  
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CHAPTER 8. AIM2 - RELATING DIFFERENCES IN RS FUNCTIONAL 
CONNECTIVITY TO LENGTH OF CAREER 

8.1 Grouping RS Functional Connectivity by Years of Experience 

Here we seek to test whether group differences in RS functional connectivity exhibited 

between soccer athletes and non-collision sport control athletes in CHAPTER 7 are 

related to the years of exposure to repetitive head impacts in soccer athletes. Because 

group differences were already present at the Pre scan, and were sustained throughout the 

season, only data from the Pre imaging session was used for this assessment.  This 

allowed for inclusion of more athletes, as athletes needed only have participated in the 

Pre imaging session to be included in this portion of the study.  

 

High School Participant Grouping:  Data from 37 athletes was used in this portion of the 

study.  Soccer athletes: 24 athletes (ages 15-17; mean 15.9) were members of high school 

junior varsity or varsity soccer teams, representing two high schools (8 team 1, 9 team 2).  

All soccer athletes underwent imaging during the Pre session as described in CHAPTER 

4. Control athletes: 13 athletes (ages 15-18; mean 15.9) participated only in non-collision 

high school sport junior varsity or varsity teams (7 basketball; 3 track & field; 2 cross-

country; 1 each softball, gymnastics and swimming). Soccer athletes were grouped 

according to number of years of High School soccer experience. Athletes with 3-4 years 

of experience (n = 12) were separated from athletes with 1-2 years of experience (n = 12).



 
 

 

67 

 Graph Theoretical Analysis: Following grouping, distributions of whole brain measures 

of basic network connectivity, network integration, and network segregation were 

generated for each soccer subgroup in the same manner as described in CHAPTER 7.  

Corresponding soccer subgroup (3-4 years, 1-2 years) distributions were compared to 

each other using unpaired ttests.   Each soccer subgroup distribution was also compared 

to the corresponding Test control distribution again using an unpaired ttest.  For this 

section, multiple comparisons correction was performed across measures for each 

subgroup using FDR correction.  

 

8.2 RS Functional Connectivity Grouping Results 

 As seen in Figure 8.1, there were no differences in basic network measures, measures of 

integration, or measures of segregation between soccer athletes with 3-4 years of high 

school experience versus soccer athletes with 2-3 years of high school experience.   

 

Adding soccer athletes to the Pre cohort of soccer athletes and dividing soccer athletes 

into subgroups based on years of experience did not change the relationship between 

soccer athlete connectivity measures and control athlete connectivity measures seen in 

CHAPTER 7.  Both subgroups of soccer athletes (3-4 years, 2-3 years) showed 

significant differences in comparison to control athletes in all categories of network 

comparable to those observed in CHAPTER 7. Both groups continued to show global 

decreases in degree and strength causing decreased global integration as evidenced by 

increased SPL as well as increased MFPT.  Both subgroups of soccer athletes showed 

decreased clustering and transitivity as compared to control athletes, but increased 
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modularity scores for the Yeo partition, the optimized Louvain partitions, and for the 

ratio of the modularity scores for the two partitions.  Regardless of years of experience, 

soccer athlete brains were less globally integrated than non-collision sport control brains.  

 

Figure 8.1 Distributions showing global network measures of basic connectivity (degree, 
strength), integration (SPL, MFPT), and segregation (C, T, QLouvain, QYeo, QRatio) for 13 

non-collision sport control athletes (Test, Re-test) and 24 soccer athletes. Soccer athletes 
are grouped into two groups (2-3 yrs, 3-4yrs) based on years of experience at the high 

school level. Bold blue boxes indicate soccer athlete distributions significantly differing 
(unpaired t-test, pfdr < 0.05) from Control Test session distributions. Soccer subgroups 

did not differ significantly from each other (unpaired t-test, pfdr < 0.05) for any network 
measure. 
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8.3 Impact of RS Functional Connectivity Grouping Results 

The results suggest that to comprehensively characterize the effects of repetitive head 

trauma and sports related mTBI, athletes should be assessed over several years of play, 

starting in early childhood.   Grouping athletes by years of experience at the high school 

level did not shed light on the shift in network connectivity measures between soccer 

athletes and control athletes.  There were no significant differences in any network 

measures between athletes with 1-2 years of high school experience versus athletes with 

3-4 years of soccer experience.  Furthermore, independent of years of experience, both 

subgroups of soccer athletes continued to show sustained significant differences from 

control athletes in all network measures that were comparable to those exhibited by the 

total cohort of soccer athletes in CHAPTER 7.



 
 

 

70 

CHAPTER 9. OVERALL IMPACT 

Prevention of mTBI in soccer has come to the forefront of the soccer community as the 

long term risks associated with mTBI are well established (Guskiewicz et al., 2005; 

Guskiewicz, Marshall, et al., 2007); studies report high rates of mTBI in soccer (Gessel et 

al., 2007; Marar et al., 2012; Zuckerman et al., 2015); and research reports that the 

repetitive nature of head trauma in collision sports has detrimental effects on the brain 

(Bazarian et al., 2012; Poole et al., 2015; Talavage et al., 2014). In response to a recent 

law suit (Strauss, 2015), USA Soccer Association has begun to regulate head impacts 

during training at youth levels.  However, the effect of cumulative repetitive acceleration 

exposure on the brain is not well understood. 
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9.1 Evidence for Injury as a Result of a Cumulative Loading Over a Season  

We present the first comprehensive evidence of subacute changes in the brains of 

asymptomatic athletes attributable to participation in a season of soccer.  This evidence 

strongly suggests that mTBI should be viewed as an injury on a spectrum starting with 

subtle subconcussive brain changes and finally resulting in manifestation of 

neurocognitive symptoms associated with diagnosed mTBI.  While assessments focusing 

on the relationship between “concussive” impacts and symptoms associated with mTBI 

have failed to find an explanation for the effects of head trauma on mTBI (McCaffrey et 

al., 2007; Mihalik et al., 2007; Schnebel et al., 2007), we have shown a significant 

negative relationship between cerebrovascular changes associated with mTBI and 

cumulative loading over a season.  

 

Our results provide strong evidence that a comprehensive approach, rather than one that 

focuses on “concussive” impacts, must be taken to reduce the detrimental effects of 

repetitive head trauma.  We have shown it is important to both limit the accumulation of 

high magnitude head acceleration events over a season and limit accumulation of these 

impacts in short periods of time.    Specifically, for the sport of soccer, this could be 

implemented in the form of limiting the number of practices a week during which athletes 

can practice heading and by imposing a minimum on the number of days between 

sessions (games/practice) where heading is performed. 

 

 

 



 
 

 

72 

9.2 Evidence for Prolonged Recovery from Season of Play  

In addition to showing detrimental changes in asymptomatic soccer athletes during the 

season, our results also highlight the importance of allowing for sufficient recovery time 

following a season of play.  Consistent with symptomatic cases of mTBI, where 

cerebrovascular deficits have been reported several months to a year after resolution of 

mTBI symptoms (Chan et al., 2015; Maugans et al., 2012; Mutch et al., 2014; Wang et 

al., 2015),  asymptomatic soccer athletes studied here also exhibited prolonged recovery 

to Pre-season CVR measures following a season of play. Cerebrovascular changes, 

beginning in the latter half of the season, were still present 1-2 months post-season and 

were more pronounced 4-5 months post-season when the majority of athletes were 

participating again in spring soccer suggesting that athletes may not have had enough 

time to recover from the fall season when they began spring soccer.  If athletes are not 

allowed sufficient recovery time, they may perpetually at elevated risk for symptomatic 

mTBI.    

 

9.3 Evidence for Chronic Changes as Result of Repetitive Head Trauma  

Finally, consistent with reports of collision sport populations exhibiting increased risk for 

neurologic disorder relative to the general population (Baugh et al., 2012; Gavett, Stern, 

& McKee, 2011; Guskiewicz, Marshall, et al., 2007), we are the first to provide evidence 

of chronic shifts in functional brain connectivity in the brains of asymptomatic soccer 

athletes relative to non-collision sport control athletes. Soccer athletes exhibited global 

functional connectivity changes relative to control athletes that were already present at 

the Pre imaging session and were sustained one year following the initial Pre scan.   
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These results highlight the importance of longitudinally assessing the effects of chronic 

exposure to repetitive head trauma, suggesting that the effects of repetitive head trauma 

may begin early on in athlete’s careers and may chronically compound over a career of 

play.  This provides further support for the importance of instituting policies for 

monitoring and limiting athlete exposure to head impacts starting from a young age. 

 

9.4 Overall Conclusions  

In conclusion, we have provided evidence of both subacute and chronic changes in the 

brains of female high school soccer athletes attributable to participation in soccer.  These 

results strongly advocate for the need to institute policies aimed at limiting cumulative 

exposure over a season in order to reduce rates of mTBI.  To implement such policies, we 

believe it will be necessary to conduct a large scale comprehensive study to fully 

characterize the effects of repetitive head trauma across age groups.  Though conducted 

on a small cohort of female soccer athletes, the study paradigm and methods presented 

here provide a scalable model for implementation of such a study. 
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