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ABSTRACT

Shashaani, Sara PhD, Purdue University, December 2016. Adaptive Sampling Trust-Region
Methods for Derivative-Based and Derivative-Free Simulation Optimization Problems. Ma-
jor Professors: Raghu Pasupathy, Susan Hunter.

We consider unconstrained optimization problems where only “stochastic” estimates

of the objective function are observable as replicates from a Monte Carlo simulation ora-

cle. In the first study we assume that the function gradients are directly observable through

the Monte Carlo simulation. We propose ASTRO, which is an adaptive sampling based

trust-region optimization method where a stochastic local model is constructed, optimized,

and updated iteratively. ASTRO is a derivative-based algorithm and provides almost sure

convergence to a first-order critical point with good practical performance. In the sec-

ond study the Monte Carlo simulation is assumed to provide no direct observations of the

function gradient. We present ASTRO-DF, which is a class of derivative-free trust-region

algorithms, where the stochastic local model is obtained through interpolation. Function

estimation (as well as gradient estimation) and model construction within ASTRO and

ASTRO-DF are adaptive in the sense that the extent of Monte Carlo sampling is deter-

mined by continuously monitoring and balancing metrics of sampling and structural errors

within ASTRO and ASTRO-DF. Such error balancing is designed to ensure that the Monte

Carlo effort within ASTRO and ASTRO-DF is sensitive to algorithm trajectory, sampling

more whenever an iterate is inferred to be close to a critical point and less when far away.

We demonstrate the almost-sure convergence of ASTRO-DF’s iterates to a first-order crit-

ical point when using quadratic stochastic interpolation models. The question of using

more complicated models, e.g., regression or stochastic kriging, in combination with adap-

tive sampling is worth further investigation and will benefit from the methods of proof we

present. We investigate the implementation of ASTRO and ASTRO-DF along with the
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heuristics that enhance the implementation of ASTRO-DF, and report their finite-time per-

formance on a series of low-to-moderate dimensional problems in the CUTEr framework.

We speculate that the iterates of both ASTRO and ASTRO-DF achieve the canonical Monte

Carlo convergence rate, although a proof remains elusive.



1

1. INTRODUCTION

We consider unconstrained continuous simulation optimization (SO) problems, that is, op-

timization problems in continuous space where the objective function can only be expressed

implicitly via a Monte Carlo oracle. We formally state the problem as follows.

Problem P :

minimize f (xxx)

subject to x ∈ X,

where f : IRd → IR is a differentiable function that is bounded from below. For each xxx ∈

X ⊆ IRd , the function f (xxx) is estimated using the consistent estimator f (xxx,n) satisfying

f (xxx,n)
wp1−−→ f (xxx) as n→ ∞, where n is a measure of Monte Carlo effort.

Often the estimator f (xxx,n) is a simple sample mean, in which case we use the notation

F̄ (xxx,n) = n−1
∑

n
j=1 Fj (xxx), where Fj (xxx) , j = 1,2, . . . ,n are n independent and identically

distributed (iid) replicates obtained by “executing” a Monte Carlo simulation at the point

xxx. The estimated standard error for the function estimator F̄ is σ̂F (xxx,n)/
√

n where

σ̂
2
F (xxx,n) = n−1

n

∑
j=1

(
Fj (xxx)− F̄ (xxx,n)

)2
.

An algorithm for solving Problem P will be evaluated based on its ability to return a

(random) sequence of iterates {XXXk} converging in some rigorously defined probabilistic

metric to a solution of Problem P. SO algorithms that return iterates {XXXk} guaranteed to

converge with probability one to a critical point will be called consistent. Furthermore, un-

like deterministic contexts where the convergence rate of a converging sequence of iterates

is measured as a function of the number of iterations, the convergence rate of the random

sequence of iterates {XXXk} will be measured with respect to total simulation effort Wk ex-

tended after k iterations. In this regard, the phrase “canonical rate” is used throughout this

document to refer to the fastest achievable convergence rate (for the iterates of an algorithm)
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under generic Monte Carlo sampling. Specifically, we will say that the random sequence of

iterates {XXXk} achieves the canonical Monte Carlo rate if
√

Wk ‖∇ f (XXXk)‖ = Op(1), where

Wk is the total simulation effort at the end of the k-th iteration. (See Section 1.5 for a formal

definition of the notion of probabilistic complexity Op(·) and related concepts.)

1.1 Motivation

SO has recently gathered attention due to its versatile formulation, allowing the user to

specify functions involved in an optimization problem implicitly, e.g., through a stochastic

simulation. As a result, virtually any level of problem complexity can be embedded within

the problem, leading to wide adoption.

A specific example from epidemic modeling serves to illustrate the versatility of SO

particularly well. The question of how best to control an epidemic, e.g., influenza, has

recently gained attention as a crucial part of the national response to health crises. In this

regard, contact network modeling (CNM) has shown particular promise [1] as an analytic

technique that is effective in modeling disease propagation within large populations. In

CNM, each person (or each group of people) in a city is modeled as a node in a graph;

and contacts among nodes are modeled as edges, often giving rise to graphs having several

million nodes and edges [2,3]. The edges emanating from a node constitute channels along

which parasitic transmission might occur, and their structure dictates the manner in which

epidemic spreading is modeled. Given such a setup, and understanding that government

policy can explicitly affect contact network structure, important modeling and optimiza-

tion questions can be posed. For example, what disease parameters, e.g., transmissibility,

incubation period, infectious period, best represent an ongoing epidemic in a population?

How should a limited stockpile of vaccines aimed at thwarting a spreading virus be dis-

tributed across nodes and across time so as to minimize the expected peak disease exposure

within the graph? The decision variables implicit in the former question are the disease

parameters; the decision variables implicit in the latter question are the vaccine allocation

proportions across the nodes in the contact network. For both questions, the simulation out-
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put may be a function of the epidemic curve representing the number of infected individuals

per day within the given population.

It is easy to find further examples of SO formulations in widespread applications such

as telecommunication networks [4], traffic control [5] and health care [6]. So much so

that recent editions of the Winter Simulation Conference (www.informs-sim.org) have

dedicated an entire track to the SO problem and its various flavors. For a library of SO

problems, see www.simopt.org and [7, 8].

1.2 Key Complications

A crucial element characterizing SO problems is the presence of a Monte Carlo oracle.

The incorporation of a Monte Carlo oracle lends flexibility to the SO problem formula-

tion, but it also brings with it a simply-stated complication having far-reaching effects on

solution development: Monte Carlo oracles within SO, unlike their deterministic counter-

parts, provide only stochastic observations of the involved functions, and in some cases

gradients. Thus, estimates of the objective function (and gradient) values can provide only

probabilistic precision guarantees that depend on the amount of Monte Carlo effort ex-

pended. Specifically, suppose f (xxx,n) is the Monte Carlo estimate of the unknown but

desired function value f (xxx) at the point xxx, and n represents the Monte Carlo effort (or the

sample size). Then, simple probability arguments reveal that deterministic guarantees of

the sort ‖ f (xxx,n)− f (xxx)‖ ≤ ε,ε > 0 do not hold irrespective of the size of n; instead, in

SO problems, we have to be satisfied with probabilistic precision guarantees of the form

P{‖ f (xxx,n)− f (xxx)‖> ε} ≤ α for n≥ N(α), or limn→∞P{‖ f (xxx,n)− f (xxx)‖> ε}= 0.

The lack of deterministic guarantees on function estimates in the SO context presents

some unique challenges when constructing and analyzing numerical algorithms. The first

complication arises from the standpoint of analyzing SO algorithms. Deterministic nonlin-

ear programming algorithms are constructed so that during each defined iteration, at most

a few function oracle calls are expended. Such constancy of oracle effort across iterations,

along with the fact that function calls are usually computationally inexpensive, justifies
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analyzing algorithm behavior as a function of the number of iterations. By contrast, in

the SO context, Monte Carlo oracle calls can be computationally burdensome compared

with basic mathematical operations on a computer; and, depending on the nature of the

SO algorithm, different number of Monte Carlo calls may be expended across iterations,

e.g., constant as in Stochastic Approximation (SA) [9], varying but predetermined as in

Retrospective Approximation (RA) [10], or random as in Sampling Controlled Stochastic

Recursion (SCSR) [11]. This means that the elemental measure of effort in SO — the

number of Monte Carlo oracle calls — may not have a simple relationship with the notion

of “iterations” defined within the specific SO algorithm, forcing a need for more careful

book-keeping. This is why iterative SO algorithms measure convergence and convergence

rates not in terms of the number of iterations as deterministic iterative structures do, but

rather in terms of the total number of Monte Carlo calls. A more subtle issue is that the

stochastic element within SO imposes a certain upper bound on the maximum achievable

convergence rate (also known as canonical rate [12]) of SO algorithms. As we will see in

greater detail, the correct way to measure (asymptotic) SO algorithm performance is with

respect to their ability to achieve the canonical convergence rate.

The second complication is specific to the case where no derivative information is avail-

able directly from the Monte Carlo oracle. In such cases search mechanisms such as deriva-

tive approximations that are routine in the deterministic nonlinear programming context of-

ten become unreliable. If the derivative estimate ∇̂ f (xxx) := (∇̂1 f (xxx), ∇̂2 f (xxx), . . . , ∇̂q f (xxx))

is constructed using a central-difference approximation as

∇̂i f (xxx) = 2c−1
n ( f (xxx+ cneeei,n)− f (xxx− cneeei,n)), i = 1,2, . . . ,q,

then, as in the function estimation context, no uniform guarantees on the accuracy of ∇̂ f (xxx)

are available in general. Furthermore, the rate at which ∇̂ f (xxx) converges to ∇ f (xxx) depends

crucially on the delicate choice of the step-size for finite-differencing {cn} in the pres-

ence of stochastic error, with the best possible rate O(n−1/3) under generic Monte Carlo

sampling being much slower than the corresponding O(n−1/2) rate for function estima-

tion (See [13] for this and related results.) Most importantly, implementing such finite-

difference derivative estimates within an SO algorithm is well recognized to be a delicate
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issue, easily causing instabilities. Moreover, the lack of uniform deterministic guarantees in

the SO context can results in accumulation of estimation error across iterations and threaten

algorithm convergence. As we will detail further, algorithms for SO usually contend with

this issue by either introducing a carefully tuned sequence of parameters, e.g., stochastic

approximation (SA) [9], or perform adequate Monte Carlo replications [11, 14] at each

visited point.

Remark 1. Throughout this document, we use the term “sampling” to refer to the act of

obtaining replicates using multiple runs of the Monte Carlo oracle at a fixed point. This is

not to be confused with sampling design points in the search region. So, when we say that

the sample size is n, we mean that n amount of Monte Carlo effort was expended to obtain

the function estimate at a fixed point.

Another complication within SO, but one that it shares with black-box deterministic

optimization contexts, is the lack of information about function structure. Properties such

as convexity, uni-modality, and differentiability, if known to be present, can be exploited

when designing algorithms. Such properties are usually assumed (and not inferred) within

the deterministic context, and an appropriate solution algorithm devised. In SO, however,

structural assumptions about the underlying true objective and constraint function, even if

correct, may not provide as much leverage during algorithm development. This is because,

due to the presence of stochastic error, the true objective and constraint functions are never

directly observed; and, making structural assumptions about their (observed) sample-paths

is far more suspect.

1.3 Related Work

Much progress has been made in recent years on solving various flavors of the SO

problem. The predominant solution methods in the literature fall into two broad categories

called Stochastic Approximation (SA) and Sample-Average Approximation (SAA). SA and

SAA date back approximately six decades and two decades respectively; accordingly, the

literature on SA and SAA algorithmic variations and their properties is enormous. More
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recently, newer classes of algorithms that can be described as “stochastic versions” of iter-

ative structures in the deterministic context have emerged.

In what follows, we provide a very brief description of SA and SAA and provide entry

points into the literature. We also discuss some of the more recent work that is directly

related to what we propose here, called adaptive sampling.

1.3.1 SA and SAA

The rudimentary Stochastic Approximation (SA) type methods have the following generic

form.

XXXk+1 = ΠD (XXXk−akGGGk) , (1.1)

where ΠD(xxx) is the projection of the point xxx onto the set D, {ak} is a user-chosen positive-

valued scalar sequence, and GGGk is an estimator of the gradient ∇ f (XXXk) of the function f

at the point XXXk. When direct Monte Carlo observations of the objective function f are

available, the most common expression for GGGk =
(
G1

k ,G
2
k , · · · ,Gd

k

)
is either the central-

difference approximation Gi
k =(2ck)

−1(F(XXXk+ckeeei)−F(XXXk−ckeeei)) or the forward-difference

approximation Gi
k = c−1

k (F(XXXk + ckeeei)−F(XXXk)) of the gradient ∇ f (XXXk), where {ck} is a

positive-valued sequence and F : IRd→ IR is the observable estimator of the objective func-

tion f : IRd → IR. The resulting recursion is the famous Kiefer-Wolfowitz process [15, 16].

More recent recursions include an estimated Hessian Hk(·) of the function f at the point

XXXk:

XXXk+1 = ΠD
(
XXXk−akH

−1
k GGGk

)
, (1.2)

making the resulting recursion in (1.1) look closer to the classical Newton’s iteration in

the deterministic context. The Hessian estimator Hk(·) has d2 entries, and hence, most

methods that use (1.2) estimate Hk(·) either using a parsimonious design (e.g., [17, 18]),

or construct it from the history of observed points.

As can be seen in (1.1), the SA recursion is very simply stated and implemented, and

little has changed in its basic structure since 1951, when it was first introduced by Robbins
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and Monro [19] for the context of finding a zero of a “noisy” vector function. Instead, much

of the research over the ensuing decades has focused on questions such as convergence and

convergence rates of SA type algorithms, the effect of averaging on the consistency and

convergence rates of the iterates, and efforts to choose the sequence {ak} in an adaptive

fashion. Some good entry points into various aspects of the SA literature include [20–24].

An alternative to SA for solving local continuous SO problems is Sample Average Ap-

proximation (SAA), an algorithmic framework independently introduced by Rubinstein

and Shapiro [25] and by Healy and Schruben [26]. (We call SAA a framework because it

is not an algorithm per se, and all steps to solving a problem are not well defined.) SAA

is easily stated: (i) explicitly or implicitly “generate” an approximation to the objective

function f (xxx) through sampling, thereby obtaining what is called the sample-path problem;

and (ii) using any mathematical programming technique, “solve” the generated approxi-

mate problem as a deterministic optimization problem to within a desired tolerance. More

rigorously, the SAA method substitutes the original problem

minimize f (xxx) = E[F(xxx,ξ )]

h(xxx)≤ 0,

xxx ∈D; (1.3)

with the sample-path problem

minimize Fm(xxx) = m−1

(
m

∑
i=1

F(xxx,ξi)

)
h(xxx)≤ 0,

xxx ∈D. (1.4)

The sample-path problem in (1.4) is realized by constructing an estimator of the ob-

jective function f using a user-specified sample size m, and solved using a user-specified

algorithmic procedure. (See [14] and references therein for examples of SAA application.)

SAA has been the subject of a tremendous amount of theoretical and empirical research

over the last two decades. For example, the conditions that allow the transfer of structural
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properties from the sample-path F(xxx,ξ ) to the limit function f (xxx) [14, Propositions 1,3,4];

the sufficient conditions for the consistency of the optimal value and solution of (1.4) as-

suming the numerical procedure in use within SAA can produce global optima [27, Theo-

rem 5.3]; consistency of the set of stationary points of (1.4) [27, 28]; convergence rates for

the optimal value [27, Theorem 5.7] and optimal solution [14, Theorem 12]; expressions

for the minimum sample size m that provides probabilistic guarantees on the optimality

gap of the sample-path solution [29, Theorem 5.18]; methods for estimating the accuracy

of an obtained solution [30–32]; and quantifications of the trade-off between searching and

sampling [33], have all been thoroughly studied.

There appears to be general consensus that SAA as a method can be useful but only

when there is known or discernible structure in the sample-path problems. When such

structure is present, the power of deterministic nonlinear programming techniques can be

brought to bear, leading to efficiencies. (See [14] for more on when the SAA method might

be appropriate.) There also appears to be general consensus that SAA methods can pose

implementation difficulties arising from the choice of sample size m in (1.4). Specifically,

it has been observed [34] that results on the minimum sample size m needed to guarantee

a solution of specified quality tends to be so high as to render the resulting procedure not

viable.

1.3.2 Adaptive Sampling

While SA and SAA solution methods are reasonable, they face complications when im-

plemented. Specifically, since all observations of the function and gradient, if available, are

based on Monte Carlo oracle, the question of how much sampling to perform (how many

times to run the oracle at a given design point) arises. Too little Monte Carlo effort threatens

convergence due to accumulated stochastic and deterministic errors; and too much Monte

Carlo sampling means reduced overall efficiency. Adaptive sampling is a way to ensure

that “just adequate” Monte Carlo sampling is performed. A simple adaptive sampling rule

that balances sampling error with structural error, for use whenever function estimates are
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needed within the algorithm is desired. For example Monte Carlo sampling is adaptive in

the sense that it continues until a certain continuously monitored metric of structural error

exceeds a metric of sampling variability. We believe that such adaptive sampling paves the

way for efficiency because it reacts to the observed algorithm trajectory and, as we shall

see, keeps the different sources of error within the algorithm in lock-step. The resulting

algorithm remains practical because of the simplicity of the sampling rule. Adaptive sam-

pling as an idea is not new and has been used with great success in other areas such as

sequential confidence interval construction [35, 36] and SO on finite spaces [37].

Despite its intuitive concept and simplistic implementation, adaptive sampling intro-

duces substantial complications when analyzing algorithm behavior. Akin to what happens

during sequential sampling in the context of confidence interval construction [35, 38, 39],

the explicit dependence of the extent of Monte Carlo sampling on algorithm trajectory

causes systematic early stopping and consequent bias in the function and/or gradient es-

timates obtained within the algorithm. In other words, when using adaptive sampling,

E[ f (xxx,n)] 6= f (xxx) in general since the sample size n is a stopping time that will depend on

f (xxx,n). Demonstrating with probability one convergence of an adaptive sampling based

algorithm then entails demonstrating that the bias effects of adaptive sampling, wear away

asymptotically. The latter is specifically non-trivial when used within the derivative-free

context. In the proposed algorithms in this dissertation we accomplish this by first (gener-

ically) characterizing a relationship between the moments of the adaptive sample size and

the function and gradient estimates at stopping, and then showing that the errors induced

in model construction, function estimation, and algorithm recursion remain in lock-step

throughout the algorithm’s evolution.

One of the preliminary studies on stopping rules is the fixed-width confidence interval

estimation of the mean in [35] with pre-assigned confidence coefficient. We include this

result in Theorem 1 for review. A nonparametric approach in [38] establishes a relationship

between the moments of the sample size and stopping threshold, and as a result approx-

imates the E[X̄2
N ]. Relying on the latter’s arguments reviewed in Theorem 2 rooted on a

weak sample-size lower bound, we can demonstrate that the proposed algorithm is indeed
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consistent, i.e. its iterates converge to a first-order (or second-order) critical point of the

objective function.

Theorem 1 (Chow and Robbins, 1965). Suppose random variables Xi, i = 1,2, . . . are iid

with variance σ < ∞, X̄n = n−1
∑

n
i=1 Xi, σ̂2

n = n−1
∑

n
i=1 (Xi− X̄n)

2, and {an} a sequence of

positive constants such that an→ a as n→ ∞. If

N = inf
{

n≥ 1 :
σ̂√

n
≤ d

an

}
,

then d2N/
(
a2σ2) wp1−−→ 1 and σ̂N/σ

wp1−−→ 1 as d→ 0.

Theorem 2. Suppose random variables Xi, i= 1,2, . . . are iid with E[X1] = 0,E[X2
1 ] =σ2 >

0, and E[|X1|4v]< ∞ for some v≥ 2. Let σ̂2
n = n−1

∑
n
i=1 (Xi− X̄n)

2, where X̄n = n−1
∑

n
i=1 Xi.

If

N = inf
{

n≥ λ
γ :

σ̂n√
n
≤ κ√

λ

}
,γ ∈ (0,1]

then the following hold.

(i) As λ → ∞,

P{N < ∞}= 1 and N
wp1−−→ ∞.

(ii) As λ → ∞,
Nκ2

σ2λ

wp1−−→ 1.

(iii) As λ → ∞ and for every s < v,

E[Ns]∼ σ
2s

κ
−2s

λ
s.

(iv) For every ε ∈ (0,1),

P{N ≤ σ
2
κ
−2

λ (1− ε)}= θλ
−(v−1)γ ,

where θ is a constant that might depend only on v and moments of X1.

(v) As λ → ∞,

E[X̄2
N ]∼ κ

2
λ
−1.
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1.4 Methodological Overview

Our particular focus in this research is that of developing a class of algorithms for solv-

ing low to moderate dimensional SO problems that have no readily discernible structure,

when direct observations of both the sample-path function and derivatives are available,

e.g., through infinitesimal perturbation analysis [12,40,41], and when direct derivative ob-

servations are unavailable. The model-based methods we propose eschew the direct com-

putation and use of derivatives for searching, and instead rely on constructed models of

guaranteed quality to find the search step for the next iteration.

We are inspired by analogous problems in the deterministic context that have spurred

the development of a special and arguably very useful class of globally converging op-

timization methods called trust-region methods. The classic deterministic trust-region

(DTRO) algorithms [42, 43] evolve by repeatedly constructing and optimizing a local and

analytically convenient model based on the Taylor-series expansion of the objective func-

tion around the latest iterate within a dynamic trust-region, implicitly restricting the dis-

tance between the successive iterates returned by the algorithm. In the deterministic model-

based trust-region derivative-free (DTRO-DF) algorithms [44–47] models constructed dur-

ing past iterations can be re-used with some updating, and no effort is expended for explicit

estimation of derivatives. (In Chapter 2 we review both DTRO and DTRO-DF along with

their convergence analyses.)

We propose stochastic versions of DTRO and DTRO-DF called ASTRO and ASTRO-

DF, where the basic deterministic trust-region machinery is combined with a crucial sam-

pling idea called adaptive sampling. ASTRO and ASTRO-DF work as follows. During

each iteration k, construct a local (and analytically convenient) stochastic model of the ob-

jective function within a trust-region around the current iterate. Optimize the constructed

model to identify a candidate solution that is accepted if passing a certain threshold of qual-

ity. If the candidate solution is accepted, the trust-region is expanded by a factor as a signal

of confidence in the constructed model. Otherwise, that is, if the candidate solution does

not pass the test of quality, the incumbent solution is retained and the trust-region is shrunk
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by a factor. Efficiency within ASTRO and ASTRO-DF is facilitated by adaptive sampling

which strives to keep the algorithmic, model, and sampling errors in lock-step.

ASTRO and ASTRO-DF while easily explained, are difficult to analze primarily due to

the introduction of adaptive sampling ideas. Our central thesis, however, is that adaptive

sampling is crucial for efficiency of algorithms in the SO context; through the combined

and careful use of derivative-based or derivative-free trust-region machinery with adaptive

sampling, low to moderate dimensional continuous and unconstrained SO problems can be

solved to local optimality starting from any initial solution and with probability one, while

ensuring canonical Monte Carlo convergence rates.

1.5 Notation and Convention

We will adopt the following notation throughout the dissertation.

1. We use bold font for vectors, script font for sets, and calligraphic fonts for matrices;

lower case letters for real numbers and upper case letters for random variables. Com-

ponents of a vector are denoted by the same regular font but with superscripts that

denote the label of the component. Hence:

+ If xxx∈ IRd is a vector, then its components are denoted through xxx=
(
x1,x2, . . . ,xd).

+ X =
[
xxxT

1 ,xxx
T
2 , · · · ,xxxT

p
]

is a matrix of p vectors xxxi.

+ {XXXk} denotes a sequence of random vectors in IRd .

+ X :=
{

XXX1,XXX2, . . . ,XXX p
}

denotes a set of p random vectors.

2. For a sequence of random vectors {XXXk}, we say XXXk
D−→ XXX if {XXXk} converges to XXX

weakly or in distribution, XXXk
p−→ XXX if {XXXk} converges to XXX in probability, and XXXk

wp1−−→

XXX if {XXXk} converges to XXX with probability 1 or almost surely.

3. B (xxx;r) =
{

yyy ∈ IRd : ‖yyy− xxx‖ ≤ r
}

denotes a closed ball of radius r > 0 with center

xxx. Throughout the document by the norm ‖.‖ we mean the standard Euclidean norm.



13

4. For a sequence of real numbers {ak}, we say ak =O (1) if limk→∞ ak = 0, and ak =

O (1) if {ak} is bounded, that is, there is a constant M > 0 with |ak| < M for large

enough k.

5. For a sequence of random vectors {XXXk}, we say XXXk = op (1) if XXXk
p−→ 0, and XXXk =

Op (1) if {XXXk} is stochastically bounded, that is, for given ε > 0 there exists δ (ε) ∈

(0,∞) with P{|XXXk|< δ (ε)}> 1− ε .

6. For sequences of real numbers {ak}, {bk}, we say that ak ∼ bk if limk→∞ ak/bk = 1.

1.6 Organization of the Document

The dissertation is organized into chapters. The next chapter provides background on

detrministic trust region optimization methods in the derivate-based and derivative-free

contexts. Chapters 3 and 4 detail the ASTRO and ASTRO-DF algorithms respectively, and

form the primary contributions of this dissertation. In Chapter 5, we discuss a long list of

heuristics that have proven effective in implementing our proposed algorithms, particularly

for the derivative-free context. Finally in Chapter 6 we summarize the thesis and conclude

with suggestions for future research.
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2. DETERMINISTIC TRUST-REGION OPTIMIZATION

In this chapter, we provide a brief overview of trust-region methods for the deterministic

context, or DTRO, to facilitate exposition in the SO context. DTRO methods have re-

cently become very popular as stable numerical optimization methods that guarantee the

(global) attainment of a first-order or second-order stationary point. We will first review the

derivative-based DTRO framework in Section 2.1. Our presentation and notation closely

follow that of Nocedal and Wright [48]. In Section 2.2 we discuss derivative-free DTRO,

or DTRO-DF, along with steps to prove convergence of its iterates.

2.1 The General DTRO Framework

In the basic derivative-based DTRO, a sequence of models are constructed at each iter-

ation to approximate the objective function in some “trustable neighborhood” around the

incumbent solution xxxk. Such models are usually simpler functions that can be minimized

with reasonably low effort. Minimization of the constructed model yields a candidate point

x̃xxk+1 lying within the trustable neighborhood. Such identification is followed by a crucial

step involving the evaluation of x̃xxk+1 using the predicted and actual reductions in the ob-

jective function value. Depending on the outcome of such evaluation, the candidate point

is either accepted or rejected and the incumbent trust region shrunk or expanded. The

process continues and can be shown to generate a sequence of iterates that converge to a

statinary point under reasonable structural assumptions on the objective function. In what

follows, we provide more details on this procedure along with key ideas and steps involved

in demonstrating the consistency of iterates generated by DTRO.
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2.1.1 Definitions

The following are the frequently used terms in the DTRO framework. Recall that we

use ggg and B for function gradient and approximation of the Hessian.

Definition 1. (Cauchy Point) sssc
k is called the Cauchy point if

sssc
k =−τk

∆k

‖gggk‖
gggk

where

τk =


1 if gggT

k Bkgggk ≤ 0,

min
{
‖gggk‖

3

gggT
k Bkgggk

,1
}

otherwise.

In other words the Cauchy point is in the direction of the steepest descent if the model is

not convex, and the unconstrained minimizer or the boundary value if the model is convex.

Later we will show a result about the reduction obtained in the model by taking sssc
k, known

as the Cauchy reduction.

Definition 2. (Level Sets) Define the level set

S = {xxx| f (xxx)≤ f (xxx0)}

and

S(R0) = {xxx|‖xxx− yyy‖ ≤ R0 for some yyy ∈ S}

as well-defined sets.

Definition 3. (Lipschitz Continuous Gradients) The function f has Lipschitz continuous

gradients on a set S(R0) if ‖ggg(xxx)−ggg(yyy)‖ ≤ νgL ‖xxx− yyy‖ for all xxx,yyy ∈ S (R0), where ggg is

the function gradient. νgL is called the Lipschitz constant of the gradient.

2.1.2 Algorithm Listing

We list the steps of the derivative-based DTRO in Algorithm 1. Assuming the model

function and gradient are available at every point, in the trust-region framework one uses a

local model of the form

mk(sss) = fk +gggT
k sss+

1
2

sssT Bksss, (2.1)
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where fk = f (xxxk) ,gggk = ∇ f (xxxk) and Bk is a symmetric matrix. If f is twice differentiable

and the Hessian information is also available, Bk can be replaced with the Hessian matrix.

This model is optimized inside a closed ball B (xxxk;∆k) =
{

xxx ∈ Rd| ‖xxx− xxxk‖ ≤ ∆k
}

, where

‖·‖ is the `2-norm, known as the trust-region with radius ∆k (Steps 2–3).. The global

convergence of the DTRO methods demands that the constrained minimization of the local

model provides sufficient reduction in the model at sssk. The reduction in the model by

moving from the current iterate to the candidate point must be at least a fraction of the

reduction that is obtained by moving to the Cauchy point (Definition 1), in order for DTRO

to converge. Then we evaluate the function at this candidate point and calculate the ratio

of the actual reduction to the predicted reduction and call it success ratio

ρk =
fk− f (xxxk + sssk)

mk (0)−mk (sssk)

that indicated the goodness of the model (Step 4). Next we adjust the trust-region radius

based on the ratio of the actual objective value “reduction” to the objective value reduction

predicted by the model (Steps 5–11). If the model is not “good enough,” we shrink the

trust-region radius. If the model is “good enough” and the new candidate point lies on

the boundary of the trust-region, we expand the trust-region radius to obtain larger steps.

If the model is “good enough” but the candidate point is not on the boundary, the trust-

region radius remains the same. Finally we determine whether to accept the candidate

point (Steps 12–16). If the actual objective value reduces sufficiently at the candidate

point, iteration k is deemed successful and we accept the point as the new iterate, that is

xxxk+1 = x̃xxk+1. Otherwise, iteration k is deemed unsuccessful and we remain at xxxk with a

reduced trust-region radius.

Figure 2.1 illustrates an example of this procedure. Panel (a) depicts the beginning

of iteration k with the incumbent solution xxxk and trust-region radius ∆k. A model is con-

structed and optimized within B (xxxk;∆k) to obtain the model minimizer. In panel (b), the

function is evaluated at the model minimizer and is accepted as the new incumbent solution

for iteration k+1, and the trust-region radius is expanded for the following iteration. Then

similar to the previous iteration, a new model is constructed at xxxk+1 and optimized within

B (xxxk+1;∆k+1) to obtain the model minimizer. This time, since a sufficient decrease was
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Algorithm 1 Deterministic Trust-Region Optimization (DTRO) Algorithm
Require: Initial guess xxx0 ∈ IRd , initial trust-region radius ∆0 > 0 and maximum radius ∆max > 0,

model “fitness” thresholds 0 < η3 < η2 < 0.5 < η1, trust-region expansion constant γ1 > 1 and

contraction constant γ2 ∈ (0,1).

1: for k = 0,1,2, . . . do

Construct, optimize, and evaluate the model in the trust-region:

2: Construct the quadratic model mk(ppp) = f (xxxk)+gggT (xxxk)ppp+ 1
2 pppT Bk ppp at the current point xxxk.

3: Obtain the kth step by minimizing the model over the trust-region radius ∆k, pppk =

argmin‖ppp‖≤∆k
mk(ppp).

4: Evaluate success ratio

ρk =
f (xxxk)− f (xxxk + pppk)

mk(000)−mk(pppk)
.
← actual objective value “reduction;” could be positive or negative
← objective value reduction predicted by quadratic model; always positive

Adjust the trust-region radius ∆k based on the success ratio ρk:

5: if ρk < η2 < 0.5 then {If the actual objective value reduction is much less than the model predicted,}

6: ∆k+1 = γ2∆k. {the model is not “good enough;” reduce ∆k by a factor γ2 ∈ (0,1).}

7: else if ρk > η1 ≥ 0.5, ‖pppk‖= ∆k then {If the model is “good enough” and the step size equals ∆k ,}

8: ∆k+1 = min{γ1∆k,∆max}. {increase ∆k by a factor γ1 > 1, ensuring the new radius is not larger than ∆max.}

9: else {If the model is “good enough” but the step size was less than ∆k ,}

10: ∆k+1 = ∆k. {keep the trust-region radius the same.}

11: end if

Determine whether to accept the step determined by optimizing the model in the trust-region:

12: if ρk > η3 then {If the actual objective value reduces “enough” relative to the model (0 < η3 < η2 < 0.5), }

13: xxxk+1 = xxxk + pppk. {accept the step specified by pppk .}

14: else {If the actual objective value does not reduce or if the reduction is too small relative to the model,}

15: xxxk+1 = xxxk. {remain at xxxk; since ρk < η3 < η2, then ∆k was reduced in Step 6.}

16: end if

17: end for

not observed, he next iterate xxxk+2 (depicted in panel (c)) will remain the current incum-

bent solution and the trust region radius for the proceeding iteration ∆k+2 shrinks. Then

a new model is constructed at the new iterate and optimized within B (xxxk+2;∆k+2). Panel
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a.

xxxk

∆k

xxxk : Incumbent solution at iter. k.
∆k : Trust-region radius at iter. k.

b.

xxxk+1

∆k+1

k is successful.

c.

xxxk+2

k+1 is unsuccessful.

d.

xxxk+3

∆k+3

k+2 is successful.

Figure 2.1. Deterministic Trust-Region Illustration.

(d) shows that the new model’s minimizer is a new incumbent solution for the function and

hence the trust-region moves to the new center point xxxk+3 and expands for iteration k+3.

2.1.3 Convergence Results

The key minimum requirement for global convergence is sufficient reduction during the

optimization step, as we explain soon. Assuming Cauchy reduction, a natural “lock step”

between the trust-region radius ∆k and the function gradient is maintained. In addition,

the efficiency of the deterministic DTRO algorithms is dependent on the trust-region sub-

problem, particularly in high dimensions. Numerical methods such as dogleg method and

two-dimensional subspace minimization have been suggested to decrease the computation
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under certain settings [48]. It has been shown in [43] that further assumptions on the

second-order derivatives of the model and function keep ∆k bounded away from zero and

the iterations eventually expanding. Therefore the rate of convergence solely depends on

the method used for model step computation. For example in the case of Bk being the

Hessian and ‖sssk‖< ∆k the DTRO converges quadratically.

Throughout the search we make the following assumptions:

Assumption 1. There exists a uniform bound κbhm such that ‖Bk‖ ≤ κbhm for all k.

Assumption 2. In Step 1 of Algorithm 1, the solution to the model step problem for some

c1 ∈ (0,1) satisfies

mk (0)−mk (sssk)≥ c1 ‖gggk‖min
{

∆k,
‖gggk‖
‖Bk‖

}
. (2.2)

In the case of using Cauchy point c1 = 1/2 (known as Cauchy reduction), shown in the next

Lemma.

Lemma 1. The Cauchy point sssc
k satisfies (2.2) with c1 = 1/2.

Proof. In this proof we remove the subscript k for readability. When gggT Bggg≤ 0 we have

m(sssc)−m(0) =−∆‖ggg‖+ 1
2

∆2

‖ggg‖
gggT Bggg≤−∆‖ggg‖ .

When gggT Bggg > 0 and ‖ggg‖3

gggT Bggg ≤ 1, then

m(sssc)−m(0) =− ‖g
gg‖4

gggT Bggg
+

1
2

gggT Bggg‖ggg‖4

(gggT Bggg)2 ≤−
1
2
‖ggg‖2

‖B‖
.

Finally when gggT Bggg > 0 and ‖ggg‖3

gggT Bggg > 1 we have

m(sssc)−m(0) =−∆‖ggg‖+ 1
2

∆2

‖ggg‖2 gggT Bggg <−1
2

∆‖ggg‖ ,

since gggT Bggg < ‖ggg‖3

∆
. �

Note that when ∆k <
‖gggk‖
‖Bk‖

then the Cauchy reduction looks like Armijo condition in the

line search methods where the reduction is proportional to the gradient and the step size.

The following results from [48] show the lim-inf type convergence of the DTRO under

the assumption of sufficient decrease and uniformly bounded Bk.
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Theorem 3. Let η3 = 0 in Algorithm 1 and Assumptions 1 and 2 hold for every iteration k.

Suppose f is bounded from below on the level set S , and has Lipschitz continuous gradients

on S(R0) for some R0 > 0. Then liminfk→∞ ‖gggk‖= 0.

Proof. Using Taylor’s theorem we can write

|ρk−1|=
∣∣∣∣mk (sssk)− f (xxxk + sssk)

mk (0)−mk (sssk)

∣∣∣∣≤ 1
2∆2

k (κbhm +νgL)

c1 ‖gggk‖min
{

∆k,
‖gggk‖
κbhm

}
where νgL is the Lipschitz constant of the gradient on S(R0). Suppose there exists ε > 0,K

such that ‖gggk‖ ≥ ε for k ≥ K. Then

|ρk−1| ≤
1
2∆2

k (κbhm +νgL)

c1ε min
{

∆k,
ε

κbhm

} .
Let ∆̄ = min

{
R0,

c1ε

(κbhm+νgL)

}
. If ∆k < ∆̄, then ∆k < ε/κbhm since c1 < 1 and hence

|ρk−1| ≤ 1/2. As a result we must have that ρk > η2 which implies that ∆k+1 ≥ ∆k.

In fact we can write

∆k ≥min
{

∆K, ∆̄γ2
}

(2.3)

for all k ≥ K.

Now let’s suppose that there is a subsequence K such that ρk > η2 for all k ∈ K. It

follows from

fk− fk+1 ≥ η2c1ε min{∆k,ε/κbhm}

that since fk is bounded from below and decreasing, ∆k → 0 as k→ ∞ which contradicts

(2.3). Therefore such a subsequence cannot exist. Now suppose ρk < η2 and hence ∆k+1 <

∆k for sufficiently large k which also contradicts (2.3). This proves the statement of the

theorem. �

Finally the lim-type convergence result is as follows:

Theorem 4. Let η2 > η3 > 0 in Algorithm 1 Assumptions 1 and 2 hold for every iteration

k. Suppose f is bounded from below on the level set S , and has Lipschitz continuous

gradients on S(R0) for some R0 > 0. Then limk→∞ ‖gggk‖= 0.
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Proof. Let m be such that ‖gggm‖ 6= 0. Then define ε = ‖gggm‖/2 and R = min
{

R0,ε/νgL
}

where νgL is the Lipschitz constant of ggg on S(R0). We know if xxx ∈ B (xxxm,R) then

‖ggg(xxx)‖ ≥ ‖gggm‖−‖ggg(xxx)−gggm‖ ≥ 2ε−νgLR≥ ε.

Due to Theorem 3 we cannot have xxxk ∈ B (xxxm,R) for all k≥m. So {xxxk}k≥m eventually

leaves B (xxxm,R). Letting `≥m be such that xxx`+1 is the first iteration after xxxm that is outside

B (xxxm,R) we have ‖gggk‖ ≥ ε for k = m,m+1, · · · , ` and therefore

f (xxxm)− f (xxx`+1) =
`

∑
k=m

f (xxxk)− f (xxxk+1)

≥
`

∑
k=m

xxxk 6=xxxk+1

η3c1ε min
{

∆k,
ε

κbhm

}
.

If ∆k ≤ ε

κbhm
for all k = m,m+ 1, · · · , ` then f (xxxm)− f (xxx`+1) ≥ η3c1εR. If ∆k >

ε

κbhm

for some k = m,m+1, · · · , ` then f (xxxm)− f (xxx`+1)≥ η3c1ε
ε

κbhm
.

On the other hand since f (xxxk) is decreasing and bounded below we know f (xxxk)↘ f ∗

for some f ∗ >−∞. We conclude that

f (xxxm)− f ∗ ≥ f (xxxm)− f (xxx`+1)

≥ η3c1ε min
{

ε

νgL
,

ε

κbhm
,R0

}
= η3c1

‖gggm‖
2

min
{
‖gggm‖
2νgL

,
‖gggm‖
2κbhm

,R0

}
which implies that ‖gggm‖→ 0 as m→ ∞. �

2.2 DTRO — Derivarive-Free

The model-based DTRO derivative-free algorithms, which we call DTRO-DF for short,

have received notable attention as methods for solving optimization problems in low to

moderate dimensions. They are “derivative-free” in the sense that function derivatives

are not directly observed, even though they are inferred through the constructed local

model. (“Derivative-free” optimization is often confused with “derivative-less” or non-

differentiable optimization, where the objective function is not differentiable.)
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Popularity of DTRO-DF algorithms stems primarily from their stability derived through

the use of a trust-region and the consequent eschewing of large steps near the solution. Such

a conservative approach hurts convergence rates but has come to be favored in optimization

settings where the objective function is poorly behaved and explicit derivative estimation

is expensive. While their predecessors, DTRO algorithms, have existed for several decades

and represent a mature class of algorithms, DTRO-DF methods are still undergoing de-

velopment on a number of subtle unresolved issues (e.g., convergence rates, nature of the

trust-region model and subproblem optimization). Their utility is, nevertheless, unques-

tionable particularly as measured by their use in “real-world” settings [5, 45, 46].

2.2.1 Definitions

For DTRO-DF we follow the same framework as in [44] where the model is defined to

have the same origin as the function as shown in the following.

Definition 4. (Lagrange Polynomials) Let Pd
d be the space of polynomials of degree≤ d in

Rd and p be the dimension of this space. Given a set Y = {yyyi ∈ B (xxx;∆) , i = 1, . . . , p}, a

basis of p polynomials ` j (xxx), j = 1, . . . , p in Pd
d , is called a basis of Lagrange polynomials

if

` j (yyyi) = δi j =

1 i f i = j

0 i f i 6= j
.

Definition 5. (Poised and Λ-Poised Sets) Let Y = {yyyi ∈ B (xxx;∆) , i = 1, . . . , p} be a finite

set of points given xxx ∈ X and ∆ > 0, and Φ(zzz) =
(
φ 1 (zzz) ,φ 2 (zzz) , . . . ,φ q (zzz)

)
of Pd

d be a

polynomial basis on X⊆ IRd . Then define

P (Φ,Y) =


φ 1 (yyy1) φ 2 (yyy1) . . . φ q (yyy1)

φ 1 (yyy2) φ 2 (yyy2) . . . φ q (yyy2)
...

...
...

...

φ 1 (yyyp
)

φ 2 (yyyp
)

. . . φ q (yyyp
)

 .

Y is said to be a “poised set” in B (xxx;∆) if the matrix P (Φ,Y) is nonsingular. If Y is

poised then Lagrange polynomials exist, are unique, and have a number of useful proper-
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ties. A poised set Y is said to be “Λ-poised” in B (xxx;∆) if and only if given Λ > 0, for the

basis of Lagrange polynomials associated with Y ,

Λ≥ max
j=1,··· ,p

max
zzz∈B(xxx;∆)

∣∣` j (zzz)
∣∣ .

Remark 2. Given the matrix P (Φ,Y), the value of the Lagrange polynomials can be

calculated by

|`i (zzz)|=
|det(P (Φ,Yi (zzz)))|
|det(P (Φ,Y))| =

vol(Φ(Yi (zzz)))
vol(Φ(Y)) ,

where Yi (zzz) = Y\{yyyi}∪ zzz. In other words the absolute value of the ith Lagrange polyno-

mial at a given point zzz is the change in the volume of the simplex of vertices in Φ(Y) when

zzz replaces yyyi [44, p. 41].

Definition 6. (Polynomial Interpolation Models) Let f : X ⊆ IRd → IR be a real-valued

function and let Y and Φ be as defined in Definition 5 with p = q. We can find a set

of scalars ααα =
(
α1, . . . ,α p) such that P (Φ,Y)ααα =

(
f (yyy1) , . . . , f

(
yyyp
))T . Such an ααα

is guaranteed to exist if Y is poised. Then a function m(zzz) : B (xxx;∆)→ IR with m(zzz) =

∑
p
j=1 α jφ j (zzz) is said to be a polynomial interpolation model of f on B (xxx;∆). The following

special cases are of particular importance:

(i) m(zzz) is said to be a linear interpolation model of f on B (xxx;∆), if p = d+1 and Φ(zzz)

is the linear basis on X ⊆ IRd , that is, Φ(zzz) =
(
1,z1,z2, . . . ,zd). For simplicity we

denote P (Φ,Y) as L (Y), and we have

L (Y) =


1 y1

1 y2
1 . . . yd

1

1 y1
2 y2

2 . . . yd
2

...
...

...
...

...

1 y1
d+1 y2

d+1 . . . yd
d+1

 .

We find
(
α1, . . . ,αd+1)T by solving L (Y)

(
α1, · · · ,αd+1)T

=( f (yyy1) , · · · , f (yyyd+1))
T .

For all zzz ∈ B (xxx;∆),

m(zzz) = α
1 + zzzT ggg
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where ggg=
(
α2, . . . ,αd+1)T . The gradient of the linear interpolation model is ∇m(zzz)=

ggg and the Hessian of the linear interpolation model is ∇2m(zzz) = 0. Therefore using

Taylor expansion we can write

m(xxx+ sss) = m(xxx)+ sssT ggg

for all sss ∈ B (0;∆). In the context of Lagrange polynomials we say that if m(zzz) inter-

polates f (zzz) at points of Y , then

m(zzz) =
p

∑
j=1

` j (zzz) f
(
yyy j
)
,

for all zzz ∈ X.

(ii) m(zzz) is said to be a quadratic interpolation model of f on B (xxx;∆) if p = (d+1)(d+

2)/2 and Φ(zzz) is a quadratic basis on X ⊆ IRd . The monomial quadratic basis is

Φ(zzz) =
(
1,z1, . . . ,zd, 1

2(z
1)2,z1z2, . . . , 1

2(z
d)2) . For simplicity we denote P (Φ,Y) as

Q (Y), and we have

Q (Y) =


1 y1

1 . . . yd
1

1
2

(
y1

1
)2 y1

1y2
1 . . . 1

2

(
yd

1
)2

1 y1
2 . . . yd

2
1
2

(
y1

2
)2 y1

2y2
2 . . . 1

2

(
yd

2
)2

...
... . . .

...
...

... . . .
...

1 y1
p . . . yd

p
1
2

(
y1

p
)2 y1

py2
p . . . 1

2

(
yd

p
)2

 .

For example when d = 2 and p = 6, we have

Q (Y) =



1 y1
1 y2

1
1
2

(
y1

1
)2 y1

1y2
1

1
2

(
y2

1
)2

1 y1
2 y2

2
1
2

(
y2

1
)2 y1

2y2
2

1
2

(
y2

2
)2

1 y1
3 y2

3
1
2

(
y3

1
)2 y1

3y2
3

1
2

(
y2

3
)2

1 y1
4 y2

4
1
2

(
y4

1
)2 y1

4y2
4

1
2

(
y2

4
)2

1 y1
5 y2

5
1
2

(
y5

1
)2 y1

5y2
5

1
2

(
y2

5
)2

1 y1
6 y2

6
1
2

(
y6

1
)2 y1

6y2
6

1
2

(
y2

6
)2


.

We find
(
α1, . . . ,α p)T by solving Q (Y)

(
α1, . . . ,α p)T

=
(

f (yyy1) , . . . , f
(
yyyp
))T .

For all zzz ∈ B (xxx;∆),

m(zzz) = α
1 + zzzT ggg+

1
2

zzzT Bzzz,
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where ggg =
(
α2, . . . ,αd+1)T and B is a symmetric positive-definite matrix. The gra-

dient of the quadratic interpolation model is ∇m(zzz) = ggg+Bzzz and the Hessian of the

quadratic interpolation model is ∇2m(zzz) = B. Therefore using Taylor expansion we

can write

m(xxx+ sss) = m(xxx)+ sssT (ggg+Bsss)+
1
2

sssT Bsss, (2.4)

for all sss ∈ B (0;∆).

(iii) For higher order polynomial interpolation models see [44, p. 35].

When referring to the model m(zzz) : B (xxx;∆)→ IR of the function f (xxx), we will often drop

the phrase “of the function f (xxx)” unless the context is unclear.

In the derivative-free context we often use the model defined in (2.4). Notice that this

definition of the model is different from that for the derivative-based context defined in

(2.1). The reason we use different definitions for the model in the derivative-based and

derivative-free contexts is to maintain our notation similar to that of the corresponding

framework used for each context.

Remark 3. When p 6= q one option is to use regression models to compute the coefficients

of the polynomial model. When p > q the regression model is overdetermined and when

p < q the regression model is under-determined.

Definition 7. (Fully-linear and Fully-quadratic Models) Given xxx∈X, m(zzz) :B (xxx;∆)→ IR,

m ∈ C1 is said to be a
(
κe f ,κeg

)
-fully-linear model of f on B (xxx;∆) if it has Lipschitz

continuous gradient with Lipschitz constant νm
gL, and there exists set of constants κe f and

κeg such that the error bounds between the model and the function, and the gradient of the

model and the gradient of the function, respectively, satisfy

| f (zzz)−m(zzz)| ≤ κe f ∆
2;

‖∇ f (zzz)−∇m(zzz)‖ ≤ κeg∆,
(2.5)

with κe f and κeg independent of xxx and ∆.
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Similarly m(zzz) : B (xxx;∆)→ IR, m ∈ C2 is said to be a
(
κe f ,κeg,κeh

)
-fully-quadratic

model of f on B (xxx;∆) if it has Lipschitz continuous Hessian with Lipschitz constant νm
HL,

and there exist κe f , κeg and κeH independent of xxx and ∆ such that

| f (zzz)−m(zzz)| ≤ κe f ∆
3;

‖∇ f (zzz)−∇m(zzz)‖ ≤ κeg∆
2;∥∥∇

2 f (zzz)−∇
2m(zzz)

∥∥≤ κeH∆.

(2.6)

A set of model functionsM f l =
{

m : IRd → IR, m ∈ C1} is called a fully-linear class of

models andM f q =
{

m : IRd → IR, m ∈ C2} is called a fully-quadratic class of models if in

addition to the conditions above there exists an algorithm that in finite uniformly bounded

(with respect to xxx and ∆) number of steps either

- certifies that m is a
(
κe f ,κeg

)
-fully-linear or

(
κe f ,κeg,κeH

)
-fully-quadratic model

on B (xxx;∆)→ IR, or

- from m finds a
(
κe f ,κeg

)
-fully-linear or

(
κe f ,κeg,κeH

)
-fully-quadratic model m̄ on

B (xxx;∆)→ IR.

This algorithm will be referred to as a ”Model Improvement Algorithm,” as in [44, p. 89].

Remark 4. In interpolation models, if the set of points on which the model is constructed is

poised as in Definition 5, then the model is
(
κe f ,κeg

)
-fully-linear, and if second derivatives

exist and Y is Λ-poised with Λ given,
(
κe f ,κeg,κeh

)
-fully-quadratic.

Definition 8. (Cauchy Reduction) Step sss is said to achieve κ f ed fraction of Cauchy reduc-

tion for m(·) on B (xxx;∆) with some ∆ > 0, if

m(xxx)−m(xxx+ sss)≥
κ f cd

2
‖∇m(xxx)‖min

{
‖∇m(xxx)‖
‖∇2m(xxx)‖

,∆

}
, (2.7)

where ∇m(xxx) and ∇2m(xxx) are the model gradient and the model Hessian at point xxx. We

assume ‖∇m(xxx)‖/
∥∥∇2m(xxx)

∥∥ = +∞ when ∇2m(xxx) = 0. Cauchy step with κ f cd = 1 will

be obtained if the model is minimized along the steepest descent direction within B (xxx;∆).

The details are shown in Lemma 1.
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Definition 9. (Set of all Possible Points) We define S ′ = ⋃
xxx∈S B (xxx;∆max) to be a set that

contains every possible point that could be generated in the DTRO-DF algorithm. Later

we will assume the function having Lipschitz continuous gradients over an open domain

containing this set.

2.2.2 Algorithm Listing

In the DTRO-DF context, the function can be approximated via polynomial interpola-

tion or regression using an appropriate set of neighboring points. The main difficulty is

ensuring sufficient model quality, that is, sufficiently good bounds on the error between

the model and the true function. It turns out the error bounds can be characterized purely

based on the geometry of the selected neighboring points. Powell designed a heuristic al-

gorithm called UOBYQA in [45] that involves constructing Lagrange polynomials over

what he called an adequate set, to ensure sufficient model quality. Conn, et. al. [46]

show that the necessary condition for convergence of the DTRO-DF algorithm to a local

solution is that the model satisfies Taylor-like error bounds, defined through the notions

of
(
κe f ,κeg

)
-fully-linear models and

(
κe f ,κeg,κeH

)
-fully-quadratic models, as detailed in

Definition 7. The constants depend on the geometry of the sample points (see Definition

5) as well as assumptions (or knowledge) on the curvature of the function, specifically

function gradient’s Lipschitz constant νgL, or if twice-differentiable, function Hessian’s

Lipschitz constant νHL. Sufficient conditions for convergence stipulate that in addition to

the model quality, a lock step between the trust-region radius ∆k and the model gradient

∇mk (xxxk) is maintained. To summarize the main difference between DTRO and DTRO-DF

the two points below are noteworthy:

(i) In DTRO the model quality becomes better when ∆ becomes smaller due to Taylor

expansion, whereas in DTRO-DF this is not necessarily true. We require to reduce ∆

only when failing in the comparison test between the model reduction and the func-

tion reduction at the candidate point is caused by large step size and not poor model

quality. Then we can say that reduction in ∆ indicates improvement in the model
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Algorithm 2 Deterministic DTRO-DF Algorithm
Require: Initial set (xxx0 ∈ IRd , ∆0 > 0 and mk(xxx0 + sss)), maximum radius ∆max > 0, model “fitness”

thresholds 0 < η0 ≤ η1 < 1, trust-region expansion constant γ1 > 1, contraction constant γ2 ∈

(0,1), criticality threshold ε ∈ (0,1), model improvement algorithm from [44, ch. 6], lock-step

coefficients 0 < β < µ , and model sufficiency contraction constant w ∈ (0,1).

1: for k = 0,1,2, . . . do

2: if ‖gggk‖ ≤ ε and either model has insufficient quality or ∆k > µ ‖gggk‖, then

3: Go to Algorithm 3 to find a sufficient quality model m̃k with ∆̃k ≤ µ ‖g̃ggk‖.

4: Let mk = m̃k and ∆k = min
{

max
{

∆̃k,β ‖g̃ggk‖
}
,∆k
}

.

5: end if

6: Obtain the kth step sssk = argmin
‖sss‖≤∆k

mk (xxxk + sss), and let x̃xxk+1 = xxxk + sssk.

7: Evaluate f (x̃xxk+1). Then compute

ρk =
f (xxxk)− f (x̃xxk+1)

mk (xxxk)−mk (x̃xxk+1)
.

8: if ρk ≥ η1, then

9: ∆k+1 = min{γ1∆k,∆max},

10: else

11: apply the model improvement algorithm to make one or more improvement steps.

12: if mk(·) has sufficient quality, then

13: ∆k+1 = γ2∆k.

14: else

15: ∆k+1 = ∆k.

16: end if

17: end if

18: if ρk ≥ η1 or ρk ≥ η0 and mk(·) has sufficient quality, then

19: xxxk+1 = x̃xxk+1. Update the model to include the candidate point and call it mk+1.

20: else

21: xxxk+1 = xxxk.

22: end if

23: end for
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Algorithm 3 Criticality Step

Require: Current model mk (call it m(0)
k ), trust region radius ∆k, and counter i= 0. Parameters from

DTRO-DF: µ,w and the selected model improvement algorithm.

1: repeat

2: Set i = i+1.

3: Improve m(i−1)
k until it is (κe f ,κeg)-fully-linear on B

(
xxxk;wi−1∆k

)
and call it m(i)

k .

4: until wi−1∆k ≤ µ

∥∥∥ggg(i)k

∥∥∥.

5: return ∆̃k = wi−1∆k and m̃k = m(i)
k .

predictability. The quality of the model is codified by Taylor like error bounds as

defined in Definition 7 that can be certified or obtained using a “model improvement”

algorithm; see [44, ch. 3 & 6].

(ii) Unlike DTRO that keeps the trust-region radius bounded away from zero unless the

iterates reach the local minimizer, in DTRO-DF the trust-region radius goes to zero

when the algorithm converges to a local solution. This is due to the dual role of the

trust-region radius in DTRO-DF, for it both restricts the minimizing step size in the

sub-problem and specifies the region in which the points are sampled for the con-

struction of the model. The lock step between ∆k and ∇mk (xxxk) provides a guarantee

that close to the local solution the model is more accurate. Conn et. al. embody

a so-called “criticality step” in [46] to reduce the trust-region radius until sufficient

accuracy (predictability) in the model quality is achieved. This condition eventually

forces ∆k to zero.

All of the steps in DTRO-DF are listed in Algorithm 2, in which we label a model that

is
(
κe f ,κeg

)
-fully-linear or

(
κe f ,κeg,κeH

)
-fully-quadratic (under the assumption of twice-

differentiability of f ) as a “sufficient quality model.”

Step 2 in Algorithm 2 is known as the “criticality step” that invokes Algorithm 3 with

small norm of the model gradient - representing a measure of stationarity - to find a poised

interpolation set and consequently a sufficient quality model while keeping the trust-region

radius and the model gradient in lock-step. It is notable that the model does not need to
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have sufficient quality in every iteration. Specifically when gggk (the model gradient at sss = 0)

is not small, it is possible that the algorithm proceeds with a model that does not have

sufficient quality. However in the case of a small gggk, the additional effort spent on model

construction before the new candidate point is computed in Step 6 accelerates the overall

optimization.

Adjustments to the trust-region radius ∆k are made based on the success ratio evaluated

in Step 7. Steps 8 – 17 determine that the trust-region expands whenever the reduction in

the actual function is significant compared to that in the model, even if the model does not

have certifiably sufficient quality. On the other hand the trust-region contracts when the

true versus predicted reduction is not significant but the model has sufficient quality. In

all other cases, the trust-region radius does not change. Figure 2.2 depicts the trust-region

radius adjustment under different scenarios.

Acceptance of the new candidate point in the trust-region is decided upon through Steps

18 – 22, where despite failing to certify a sufficient quality model new step is accepted so

long as the reduction in the function value is significant. When the new step is accepted,

where we say that the iteration was successful, it replaces another point in the interpolation

set and with the inclusion of the new point the model is updated. Otherwise the iteration

is unsuccessful, but the model might still change due to model improvement algorithm

invoked in Step 11.

In presence of noise, we combine the criticality step with the model improvement and

adaptive sampling rules in a new algorithm which we will discuss in Chapter 4.

2.2.3 Convergence Results

As mentioned earlier the sufficient quality model (when close to a first-order critical

point) and lock step between ∆k and gggk is required for convergence in the results presented

by [46]. In the following we brief the steps to convergence of DTRO-DF. Note that depend-

ing on the success ratio ρk and the quality of the model an iteration can be one of the four

types shown in Figure 2.2. When the decrease in the function is not large enough and the
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iteration k

ρk ≥ η1 ρk < η1

successful
(move+expand) ρk ≥ η0 ρk < η0

sqm not sqm not

acceptable
(move+contract)

model
improvement

(stay)

unsuccessful
(stay+contract)

model
improvement

(stay)

Figure 2.2. Iteration types in the deterministic DTRO-DF Algorithm. sqm
stands for sufficient quality model. stay refers to xxxk+1 = xxxk and move means
xxxk+1 6= xxxk, while expand refers to ∆k+1 > ∆k and contract refers to ∆k+1 <
∆k. When neither expand nor contract, it refers to the trust-region remaining
unchanged.

model has poor quality, then no changes are made except improving the model for the next

iteration (“model improvement”). But when the model quality is sufficient then failing to

show enough decrease in the function implies that step size is large and hence contraction

of the trust-region is enforced while the iterate remain unchanged (“unsuccessful”). Sim-

ilarly sufficient model quality and enough function decrease results in updating the iterate

and either expanding if the decrease is significant (“successful”), and contracting otherwise

(“acceptable”). Note that when η1 = η0 there will be no acceptable iterations.

Lemma 2. Step 1 of Algorithm 2 is terminated in finite number of steps when ∇ f (xxxk) 6= 0.
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Proof. If Algorithm 3 runs infinite times it means that wi−1∆k > µ2

∥∥∥ggg(i)k

∥∥∥ for all i ≥ 1.

This implies that
∥∥∥ggg(i)k

∥∥∥→ 0 as i→ ∞. Since in each round of Algorithm 3 model m(i) has

sufficient quality we have

‖∇ f (xxxk)‖ ≤
∥∥∥∇ f (xxxk)−ggg(i)k

∥∥∥+∥∥∥ggg(i)k

∥∥∥
≤
(

κeg +
1
µ2

)
wi−1

∆k,

for all i≥ 1. Therefore we must have ∇ f (xxxk) = 0. �

In the following results suppose Assumption 1 holds and a fraction of the Cauchy de-

crease (Definition 8) is achieved in Step 2 of Algorithm 2.

Lemma 3. If mk has sufficient quality and

∆k ≤min
{
‖gggk‖
κbhm

,
κ f cd ‖gggk‖(1−η1)

2κe f

}
then the iteration k becomes successful.

Proof. First we note that mk (xxxk)−mk (xxxk + sssk)∆k ≥ 2−1κ f cd ‖gggk‖∆k since ∆k ≤ κ
−1
bhm ‖gggk‖.

Next since f (xxxk) = mk (xxxk) and mk has sufficient quality we observe the following:

|ρk−1|=
∣∣∣∣ f (xxxk + sssk)−mk (xxxk + sssk)

mk (xxxk)−mk (xxxk + sssk)

∣∣∣∣
≤

2κe f ∆2
k

κ f cd ‖gggk‖∆k
≤ 1−η1.

�

Lemma 4. If ‖gggk‖ is bounded away from 0, then so is ∆k.

Proof. Suppose there is a constant c1 > 0 such that ‖gggk‖ ≥ c1 for all k. We know that at

the end of Step 1 of every iteration, ∆k ≥ µ1 ‖gggk‖. But we also know that if ∆k < c2 where

c2 = min
{

c1

κbhm
,
κ f cdc1 (1−η1)

2κe f

}
,

then either iteration k is successful and ∆k+1 expands (when mk has sufficient quality) or

∆k+1 =∆k (when mk does not have sufficient quality). So we can say ∆k≥min{∆0,µ1c1,γ1c2}.

�
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Lemma 5. Suppose that f has Lipschitz continuous gradients with Lipschitz constant κbhm

in an open domain containing S ′, defined in Definition 9. If there are only finitely many

successful iterations, then limk→∞ ‖∇ f (xxxk)‖= 0.

Proof. Consider all the iterations after the last successful iteration. Suppose that there are

at most N iterations until the model is fully linear (finite and uniformly bounded number

of steps to full-linearity as in Definition 7). So there are finitely many acceptable or un-

successful iteration until the next model-improving iteration (see Figure 2.2) after both of

which the trust-region contracts. So we conclude that ∆k → 0 as k→ ∞. Now for some

iteration j let i j be the first iteration after j that gives a sufficient quality model. First note

that
∥∥xxx j− xxxi j

∥∥≤ N∆ j→ ∞. Next we observe that∥∥∇ f
(
xxx j
)∥∥≤ ∥∥∇ f

(
xxx j
)
−∇ f

(
xxxi j

)∥∥+∥∥∥∇ f
(
xxxi j

)
−gggi j

∥∥∥+∥∥∥gggi j

∥∥∥
converges to zero since all the right hand side terms converge to zero by Lipschitz continu-

ity of the gradient, model sufficient quality (fully-linearity) and Lemma 3 (since otherwise

would lead to a successful iteration that is a contradiction) respectively. �

Lemma 6. In Algorithm 2 limk→∞ ∆k = 0.

Proof. Let K be the set of all the successful iterations. When K is finite the statement is

proven in Lemma 5. Suppose K is infinite. Using Assumption 1 and knowing from Step 1

of Algorithm 2 that ‖gggk‖ ≥min
{

µ
−1
2 ∆k,ε

}
we get

f (xxxk)− f (xxxk+1)≥ η1 (mk (xxxk)−mk (xxxk+1))

≥ η1
κ f cd

2
min

{
µ
−1
2 ∆k,ε

}
min

{
min

{
µ
−1
2 ∆k,ε

}
κbhm

,∆k

}
.

We know f is bounded below, implying that limk→∞
k∈K

∆k = 0. We also know that the trust-

region radius only expands during successful iterations. So the statement of the Lemma is

proven. �

Lemma 7. In Algorithm 2 liminfk→∞ ‖gggk‖= 0.

Proof. If there is a constant c1 > 0 such that ‖gggk‖ > c1 for all k, then Lemma 6 will be

contradicted. �
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Lemma 8. A subsequence
{

k j
}

with lim j→∞

∥∥∥gggk j

∥∥∥= 0 also has lim j→∞

∥∥∇ f
(
xxxk j

)∥∥= 0.

Proof. First we know that for j large enough
∥∥∥gggk j

∥∥∥ < ε and therefore by Step 1 of Algo-

rithm 2 and criticality step in Algorithm 3 mk j has sufficient quality on B
(
xxxk j ;∆k j

)
with

∆k j ≤ µ2

∥∥∥gggk j

∥∥∥. Se we have

∥∥∇ f
(
xxxk j

)∥∥≤ ∥∥∥∇ f
(
xxxk j

)
−gggk j

∥∥∥+∥∥∥gggk j

∥∥∥
≤ κeg∆k j +

∥∥∥gggk j

∥∥∥
≤ (κegµ2 +1)

∥∥∥gggk j

∥∥∥ .
�

Theorem 5. In Algorithm 2 liminfk→∞ ‖∇ f (xxxk)‖= 0.

Proof. This is the immediate result of Lemma 7 and Lemma 8. �

Theorem 6. Suppose that f has Lipschitz continuous gradients with Lipschitz constant κeg

in an open domain containing S ′, defined in Definition 9. Then limk→∞ ‖∇ f (xxxk)‖= 0.

Proof. When the successful iterations are finite the statement of the Theorem is proven

in Lemma 5. Suppose now that there are infinite successful iterations all contained in

the set K. To establish a contrapositive suppose there exists a subsequence
{

k j
}

with∥∥∇ f
(
xxxk j

)∥∥≥ ε0 for some ε0 > 0. Then Lemma 8 implies that
∥∥∥gggk j

∥∥∥≥ ε1 choosing ε1 ≤

min
{

ε, ε0
2(2+κegµ2)

}
where ε is the input parameter in Algorithm 2 used in Step 1. To

justify the choice of ε notice that

- either
∥∥∥gggk j

∥∥∥≥ ε ,

- or mk j is of sufficient quality and
∥∥∥gggk j

∥∥∥µ2 ≥ ∆k j in which case∥∥∥gggk j

∥∥∥≥ ∥∥∇ f
(
xxxk j

)∥∥−∥∥∥∇ f
(
xxxk j

)
−gggk j

∥∥∥
≥ ε0−κeg∆k j ≥ ε0−κegµ2

∥∥∥gggk j

∥∥∥
⇒
∥∥∥gggk j

∥∥∥≥ ε0

(1+κegµ2)
≥ 1

2
ε0

(2+κegµ2)
.
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Lemma 7 guarantees that there exists another subsequence
{
` j
}

such that ‖gggk‖ ≥ ε1 for

k j ≤ k < ` j and ‖gggk‖< ε1 for large enough j. DefineK′=⋃ j
{

k : k j ≤ k < ` j
}

. Lemma 6

shows that ∆k→ 0 as k→∞; therefore we conclude that by Lemma 3 large k are successful

if the model has sufficient quality, and are model improving otherwise (see Figure 2.2).

Now using Lemma 6 again we observe that for large enough k ∈K∩K′, ∆k <
ε1

κbhm
and

thus

f (xxxk)− f (xxxk+1)≥ η1
κ f cd

2
ε1∆k.

Next we write for large enough j

∥∥xxxk j − xxx` j

∥∥≤ ` j−1

∑
k=k j

k∈K∩K′

∆k ≤
2

η1κ f cdε1

[
f
(
xxxk j

)
− f

(
xxx` j

)]

implying that
∥∥xxxk j − xxx` j

∥∥→ 0 as j→∞ since the right hand side of the above must converge

to zero due to the fact that f is lower bounded. Finally using Lipschitz continuity of the

gradient and knowing that the criticality step ensures that m` j has sufficient quality on

B
(

xxx` j ; µ2

∥∥∥ggg` j

∥∥∥) we conclude that for large enough j

∥∥∇ f
(
xxxk j

)∥∥≤ ∥∥∇ f
(
xxxk j

)
−∇ f

(
xxx` j

)∥∥+∥∥∥∇ f
(
xxx` j

)
−ggg` j

∥∥∥+∥∥∥ggg` j

∥∥∥
≤ νgL

∥∥xxxk j − xxx` j

∥∥+κegµ2ε1 + ε1

≤ (2+κegµ2)ε1 ≤
1
2

ε0.

But this contradicts the definition of
{

k j
}

falsifying its existence. This completes the proof.

�
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3. ASTRO: ADAPTIVE SAMPLING TRUST-REGION

OPTIMIZATION

The primary contribution of this dissertation is developing algorithmic frameworks for un-

constrained continuous simulation optimization both in the presence and absence of unbi-

ased (Monte Carlo) estimates of the gradient of the objective function. (Unbiased estimates

of the objective function are always assumed to be available.) In this chapter, we present an

algorithm for the former context, that is, unconstrained continuous simulation optimization

where unbiased estimates of both the function and its gradient are assumed to be available

through a Monte Carlo oracle.

The family of algorithms (ASTRO) we propose in this chapter follows logic that is

analogous to corresponding DTRO algorithms where the direct gradient information is as-

sumed to be available. ASTRO is an iterative algorithm where, during each iteration k, a

local (and analytically convenient) model of the objective function is constructed within a

trust-region around the current iterate XXXk, by obtaining Monte Carlo estimates of the objec-

tive function and gradient at XXXk. After such model construction, the constructed model is

used within an optimization step to identify the next candidate solution X̃XXk+1. The candi-

date solution X̃XXk+1 is not immediately accepted. Instead, if the model-predicted and Monte

Carlo-estimated function decrease values from the current iterate XXXk to the candidate point

X̃XXk+1 are comparable in a certain sense, then X̃XXk+1 is accepted as the next iterate XXXk+1 and

the trust-region expanded; otherwise, X̃XXk+1 is rejected and the trust-region is shrunk and the

estimators updated with new observations, in an attempt to improve the quality of the local

model around XXXk. As we shall see, the number of Monte Carlo calls at each design point is

adaptive — just enough to ensure that the sampling variability of function observations at

the point is commensurate with the estimated model error.
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The salient feature of ASTRO is its adaptability, sampling more when the incumbent

solution is inferred to be close to a stationary point and less otherwise. While this ensures

practical efficiency, the resulting asymptotic behavior and its analysis is becomes nontrivial.

We show that ASTRO globally converges to a first-order critical point almost surely. We

also provide evidence that it functions as intended in low to moderate dimensional SO

problems.

In the remainder of this chapter, we restate the problem along with notation in sections

3.1 and 3.2. In Section 3.3 we summarize the related research in the area of stochastic TRO

in presence of the sample path derivatives. The ASTRO algorithm is discussed in Section

3.4 and the theoretical convergence results are presented in Section 3.5. Finally Section 3.6

provides implementation remarks and results from numerical experiments.

3.1 Problem Statement and Notations

Recall the SO problem:

Problem P : minimize f (xxx) := E[F(xxx)]

s.t. xxx ∈ IRd,

where f (·) is known only through a Monte Carlo simulation capable of generating copies

of the random variable F(xxx) for each xxx ∈ IRd . The corresponding estimator is denoted as

fn(xxx), where the label n represents some measure of simulation effort, and is used in place

of f (xxx). Typically, fn(xxx) is constructed as the sample mean of i.i.d observations.

We use the sample mean estimators for the function value and gradient. In what follows

we give the notations used for these estimators.

- Let

F̄ (xxx,n) = n−1
n

∑
i=1

Fi (xxx) (3.1)
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be the Monte Carlo estimate of the unknown function value f (xxx) at point xxx ∈ Rd ,

where Fi (xxx) are i.i.d and n represents the replication size (number of observations

obtained at xxx). The estimate of the standard error of F̄ (xxx,n) is n−1/2σ̂ f (xxx,n) where

σ̂ f (xxx,n) =

√
1

n−1

n

∑
i=1

(Fi (xxx)− F̄ (xxx,n))2
. (3.2)

- Let

ḠGG(xxx,n) = n−1
n

∑
i=1

GGGi (xxx) (3.3)

be the Monte Carlo estimate of the unknown function gradient ggg :Rd→Rd at point xxx,

where GGGi (xxx) are i.i.d. The estimate of the standard error of ḠGG(xxx,n) is n−1/2σ̂g (xxx,n)

where σ̂g (xxx,n) is the element-wise square root of σ̂2
g (xxx,n) which is a d-dimensional

vector consisting of the diagonal values of the sample covariance matrix

Σ̂g =
1

n−1

n

∑
i=1

(
GGGi (xxx)− ḠGG(xxx,n)

)(
GGGi (xxx)− ḠGG(xxx,n)

)T
.

Particularly one can write

σ̂
2
g (xxx,n) =


1

n−1 ∑
n
i=1
(
G1

i (xxx)− Ḡ1 (xxx,n)
)2

1
n−1 ∑

n
i=1
(
G2

i (xxx)− Ḡ2 (xxx,n)
)2

...
1

n−1 ∑
n
i=1
(
Gd

i (xxx)− Ḡd (xxx,n)
)2

 (3.4)

G j
i (xxx) being the j-th element of GGGi (xxx) and Ḡ j (xxx,n) being the j-th element of ḠGG(xxx,n),

is derived using the sample covariance matrix.

Note that from this chapter on we use upper case for the estimators, model, iterates and

candidate points as they are no longer deterministic values but random variables.

3.2 Useful Results

The two following lemmas are frequently used in the majority of our theoretical analy-

sis.
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Lemma 9. (Boole’s Inequality) For a countable set of events A1,A2, · · · , we have

P

(⋃
i

Ai

)
≤∑

i
P(Ai) .

Specifically if X ≤ X1 + X2 + · · ·+ Xq for some integer q and random variables X and

Xi, i = 1,2, · · · ,q, then

(X > c)⊆
(
X1 +X2 + · · ·Xq > c

)
⊆
(

X1 >
c
q

)
∪
(

X2 >
c
q

)
∪·· ·∪

(
Xq >

c
q

)
;

⇒ P{X > c} ≤ P

{
q⋃

i=1

(
Xi >

c
q

)}

≤
q

∑
i=1

P
{

Xi >
c
q

}
.

Lemma 10. (Borel-Cantelli’s First Lemma) For a countable set of events A1,A2, · · · ,

if ∑
∞
n=1P{An} < ∞, then P{An i.o.} = P{limsupn→∞ An} = 0, where limsupn→∞ An =

limm→∞

⋃
∞
n=m An = {ω ∈Ω that are in infinitely many An}.

3.3 Related Work

A number of recently proposed algorithms are noteworthy in their relationship to what

we investigate here. STRONG or Stochastic Trust-Region Response-Surface Method [49],

for instance, is an adaptive sampling trust-region algorithm for solving SO problems that is

in the spirit of what we propose here. Like ASTRO, STRONG adapts a trust-region frame-

work where a local model of the objective function is constructed and updated through

Monte Carlo sampling. A key feature of STRONG is local model construction through a

design of experiments combined with a hypothesis testing procedure. STRONG assumes

that the error in the derivative observations are additive and have a Gaussian distribution.

Amos et. al. [50] and Bastin et. al. [51] treat a similar setting where unbiased observations

of the gradient assumed to be available. (The former, in fact, assumes that unbiased esti-

mates of the Hessian of the objective function are available.) Bastin et. al. [51] is specific

to the problem of estimation within mixed-logit models. In the context of multi-objective
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functions a relatively recent study by Kim and Ryu [52] adopts trust-region framework with

SAA that uses fixed sample size at every point.

3.4 Algorithm Listing

Algorithm 4 lists the steps of ASTRO, in which the general operations during each

iteration are encapsulated within four repeating stages that are modified versions of their

DTRO counterpart: (i) local (stochastic) model construction through adaptive sampling;

(ii) constrained optimization of the constructed model (within the trust-region) for identi-

fying the next candidate solution; (iii) re-estimation of the objective function at the can-

didate solution through adaptive sampling and evaluation of the candidate solution; and

(iv) (stochastic) sufficient decrease check by comparing predicted and estimated function

decrease, and iterate and trust-region update. Note that the main two additions to ASTRO

algorithm are the sampling rules prescribed in Step 2 and Step 5.

We now describe each step of Algorithm 4. Before model construction ASTRO obtains

a Monte Carlo estimate of the function value and gradient at XXXk in Step 2; the amount of

sampling is lower bounded by some function of the trust-region radius and a pre-defined

deterministic sequence λk. Th deterministic sequence λk is chosen as a multiple of k3(1+ε)

for some small ε > 0, that inflates the sample size by some amount at every iteration. Such

inflating component is common in the SO context, whose primary role is to ensure that the

sampling errors diminish fast enough as the algorithm evolves through the search space.

The sample size also adapts to the estimates of the function value and function gradient

as well as the trust-region radius, that is sample until both the estimated function standard

error and the L∞ norm of the estimated gradient standard error fall below some threshold

as a function of the trust-region size. The threshold for the estimated function standard

error is the deflated square of the trust-region radius while the threshold for the L∞ norm

of the estimated gradient standard error is the deflated trust-region radius itself, as shown

in (3.5). The deflation factor is 1/
√

λk. The obtained function estimate and gradient esti-

mate are then used to construct the model in Step 3, where B̂k is a symmetric matrix that
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Algorithm 4 Adaptive Sampling Trust-Region Optimization (ASTRO) Algorithm
Require: Parameters from DTRO: Initial point XXX0, model “fitness” parameters 0<η3 <η2 < 0.5<

η1, trust-region radius increasing factor γ2 > 1 and decreasing factor 0 < γ1 < 1, the initial

trust-region radius ∆0 > 0, and the maximum radius ∆max > 0; ASTRO-specific parameters:

γ ∈ (.4,1), k3(1+ε) = O(λk), and adaptive sampling constants for the function and gradient

κ f ,κg ≥ 1.

1: for k = 0,1,2, . . . do

Construct, optimize, and evaluate the model in the trust-region:

2: Sample to obtain objective function and gradient estimators F̄(XXXk, Ñk) and ḠGG(XXXk, Ñk), re-

spectively, where

Ñk = inf

{
n≥max

{
2,

(
λk

min
(
∆2

k ,∆
4
k

))γ}
: n≥max

{
σ̂2

f (XXXk,n)

κ2
f ∆4

k
,

∥∥σ̂2
g (XXXk,n)

∥∥
∞

κ2
g ∆2

k

}
λk

}
,

(3.5)

and ‖σ̂2
g (XXXk,n)‖∞ is the maximum diagonal value of the sample covariance matrix.

3: Construct the quadratic model Mk(ppp) = F̄(XXXk, Ñk)+ ḠGGT
(XXXk, Ñk)ppp+ 1

2 pppT B̂k ppp.

4: Obtain the kth step as PPPk = argmin‖ppp‖≤∆k
Mk(ppp), and set the candidate point X̃XXk+1 = XXXk+PPPk.

5: Sample at X̃XXk+1 to obtain F̄(X̃XXk+1, Ñk+1), where

Ñk+1 = inf

{
n≥max

{
2,
(

λk

∆4
k

)γ}
:

σ̂ f
(
X̃XXk+1,n

)
√

n
≤

κ f ∆
2
k√

λk

}
. (3.6)

6: Evaluate the success ratio

ρ̂k =
F̄(XXXk, Ñk)− F̄(XXXk+1, Ñk+1)

Mk(000)−Mk(PPPk)
.
← estimated actual objective value “reduction;” could be positive or negative

← estimated objective value reduction predicted by quadratic model; always positive.

Adjust the trust-region radius ∆k based on the estimated success ratio ρ̂k:

7: if ρ̂k < η2 < 0.5, then ∆k+1 = γ1∆k. {Using the same criteria as DTRO.}

8: else if ρ̂k > η1 ≥ 0.5, ‖PPPk‖= ∆k, then ∆k+1 = min{γ2∆k,∆max}.

9: else, ∆k+1 = ∆k.

10: end if

Determine whether to accept the step specified by optimizing the model in the trust-region:

11: if ρ̂k > η3, then XXXk+1 = X̃XXk+1, and Nk+1 = Ñk+1. {Using the same criteria as DTRO.}

12: else XXXk+1 = XXXk, and Nk+1 = Ñk.

13: end if

14: end for
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0 1η3 η2 η1

xxxk+1 = xxxk xxxk+1 6= xxxk (successful)
∆k+1 < ∆k ∆k+1 ≥ ∆k (non-contracting)

Figure 3.1. Illustration of the ρ̂k possibilities. If η2 = η3 then the successful
and non-contracting iterations overlap.

approximates the Hessian. In Step 4, that is also known as the sub-problem step, a con-

strained minimization of the constructed model within the trust-region B (XXXk;∆k) yields

the new candidate point X̃XXk+1. Again, the estimated function value at the candidate point is

obtained following the sampling rule specified in Step 5. As (3.6) stipulates enough sam-

pling is performed so that the estimated function standard error falls below the threshold

discussed above. Note that the restriction on the `∞ norm of the estimated gradient stan-

dard error is removed at this Step. The success of the model is evaluated in Step 6 by the

estimated success ratio ρ̂k, that compares the reduction in the estimated function values

with the reduction predicted by the model. Depending on the value of this ratio the iter-

ate and trust-region management for the next iteration is performed. The adjustments are

made to the trust-region radius in Steps 7 – 10 based on the estimated success ratio and the

norm of the new step calculated in the sub-problem. In Steps 11 – 13 the candidate point

X̃XXk+1 is either accepted as the new iterate if ρ̂k exceeds the specified threshold, or rejected

otherwise.

Note that an iteration might be successful, meaning the new candidate point accepted,

but the trust-region radius contracting as shown in Figure 3.1. This is because the trust-

region update has a more stringent requirement, that is sufficiently large value of the ratio

ρ̂k are required to allow for larger step size in the next iteration, while accepting a candidate

point as the new iterate can occur more easily and for lower values of the ratio ρ̂k. This dis-

tinction is useful in the implementation but makes the analysis slightly more complicated.

In the following sections we will describe the necessary assumptions for the consistency

of ASTRO in some probabilistic sense. We present the crucial theorems that justify the
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sampling rule used in ASTRO and provide the convergence theorems corresponding to

those in the deterministic counterpart of the algorithm (see Theorems 5 and 6). Lastly we

implement ASTRO on a suite of problems to gauge its finite-time performance.

3.5 Convergence Results

Throughout the optimization we make the following assumptions:

Assumption 3. (Simulation Error) The Monte Carlo oracle, when executed at XXXk, gener-

ates independent and identically distributed (i.i.d) random variates

Fj (XXXk) = f (XXXk)+ξ j|Fk,

where ξ1,ξ2, · · · is a martingale-difference sequence adapted to Fk such that E
[
ξ 2

j |Fk

]
=

σ2 < ∞ and supkE
[∣∣ξ j

∣∣4v |Fk

]
< ∞ for some v ≥ 2. Similarly the Monte Carlo oracle

generates i.i.d observations

GGG j (XXXk) = ggg(XXXk)+
[
ζ

1
j |Fk,ζ

2
j |Fk, · · · ,ζ d

j |Fk

]T
,

where ζ i
j are martingale-difference sequences adapted toFk such that E

[(
ζ i

j

)2
|Fk

]
=σ2

and supkE
[∣∣∣ζ i

j

∣∣∣4v
|Fk

]
< ∞.

Assumption 4. (Cauchy Reduction) In Step 3, the solution to the model step problem for

some c1 ∈ (0,1) satisfies

Mk(0)−Mk (SSSk)≥ c1
∥∥ḠGG
(
XXXk, Ñk

)∥∥min

∆k,

∥∥ḠGG
(
XXXk, Ñk

)∥∥∥∥∥B̂k

∥∥∥
 . (3.7)

Assumption 5. (B̂k uniform bound) There exists κbhm > 0 such that P
{∥∥∥B̂k

∥∥∥≤ κbhm

}
= 1

for all k.

We first include the main results that are adopted from Lemma 2 and Theorem 1 in [38]

that we explicitly use in our analysis.
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Theorem 7. Suppose Xi, i= 1,2, . . . are iid random variables with E[X1] = 0,E[X2
1 ] =σ2 >

0, and E[|X1|4v]< ∞ for some v≥ 2. Let σ̂2
n = n−1

∑
n
i=1 (Xi− X̄n)

2, where X̄n = n−1
∑

n
i=1 Xi

and κ > 0 be some constant. If

N = inf
{

n≥
(

λ

κ2

)γ

:
σ̂n√

n
≤ κ√

λ

}
,γ ∈

(
2

(v+3)
,1
)

then the following hold.

(i) P{N < ∞}= 1 and as λ → ∞, N
wp1−−→ ∞.

(ii) As λ → ∞,
Nκ2

σ2λ

wp1−−→ 1.

(iii) As λ → ∞ and for every m < v,

E[Nm]∼
(
σ

2
λκ
−2)m

.

(iv) For every ε ∈ (0,1),

P{N ≤ λκ
−2

σ
2(1− ε)}=O

(
λ

γ(1−v)
)
.

(v) As λ → ∞,

E[X̄2
N ]∼ κ

2
λ
−1.

Proof. Let us define b = λκ−2 and n∗ = bσ2. Recall that

σ̂
2
n = n−1

n

∑
i=1

(XXX i− X̄XX)2 = n−1
n

∑
i=1

XXX2
i − (n−1

n

∑
i=1

XXX i)
2 wp1−−→ σ

2,

since (n−1
∑

n
i=1 XXX i)

2 wp1−−→ µ2 by continuous mapping property and n−1
∑

n
i=1 XXX2

i
wp1−−→ σ2 +

µ2 since XXX2
i are i.i.d with mean σ2 +µ2. Then proof of (i) follows since

P{N = ∞}= P
{

σ̂
2
n ≥

n
b
, ∀n

}
= 0,

and further observing that b→ ∞ and hence N
wp1−−→ ∞ as λ → ∞.

In (ii) we can write

bσ̂
2
N ≤ N ≤ 1+bσ̂

2
N−1
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and dividing by n∗ we will get

σ̂2
N

σ2 ≤
N
n∗
≤ 1

σ2b
+

σ̂2
N−1

σ2 .

Since σ̂2
N

wp1−−→ σ2 and σ̂2
N−1

wp1−−→ σ2 as λ → ∞, we observe that N/n∗
wp1−−→ 1.

In (iii) we want to prove that

lim
λ→∞

E
[(

N
n∗

)m]
= 1.

First we choose λ large enough such that bγ ≤ u where u = [n∗ (1+ ε)]. Then we can write

E
[(

N
n∗

)m]
≤ (1+ ε)mP(N ≤ u)+

∞

∑
n=u+1

( n
n∗

)m
P(N = n)

≤ (1+ ε)mP(N ≤ u)+
(

1
n∗

)m ∞

∑
n=u+1

nmP(N = n)

and further we can write
∞

∑
n=u+1

nmP(N = n) = (u+1)mP(N = u+1)+(u+2)mP(N = u+2)+ · · ·

= (u+1)mP(N > u)+
∞

∑
n=u+1

((n+1)m−nm)
∞

∑
i=n+1

P(N = i)

≤ (u+1)mP(N > u)+
∞

∑
n=u+1

2mnm−1P(N > n) ,

where using binomial expansion we get (n+ 1)m− nm = ∑
m
k=1
(m

k

)
nm−k ≤ nm−1(1+ 1)m.

So we have that

E
[(

N
n∗

)m]
≤ (1+ ε)mP(N ≤ u) (3.8)

+

(
1
n∗

)m
(
(u+1)mP(N > u)+2m

∞

∑
n=u+1

nm−1P(N > n)

)
.

We use E
[(

σ̂2
n −σ2)2v

]
≤Kn−v from [53,54], where K depends on v and moments of Xi’s

to say that for n≥ u+1

P(N > n)≤ P
(

σ̂2
n

n
>

κ2

λ

)
= P

(
σ̂

2
n >

n
n∗

σ
2
)

≤ P
(
σ̂

2
n > (1+ ε)σ

2)= P
(
σ̂

2
n −σ

2 > εσ
2)

≤ E
[(

σ̂
2
n −σ

2)2v
](

εσ
2)2v ≤ K′n−v,
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where K′ = K
(
εσ2)2v. Hence

∞

∑
n=u+1

nm−1P(N > n)≤ K′
∞

∑
n=u+1

nm−1−v ≤ K′um−v

since m < v and therefore the second term of the right hand side in (3.8) tends to zero as

λ → 0 since K′um−v (2/n∗)m ≤ 2mK′ (n∗)v → 0 as λ → 0 and P(N > u)→ 0 as u→ ∞

since from (i) P(N < ∞) = 1. As a result the second term on (3.8) tends to zero as λ → 0

and therefore for an arbitrary ε, ε̃ > 0 we can write

limsup
λ→∞

E
[(

N
n∗

)m]
≤ (1+ ε)m + ε̃

and hence

limsup
λ→∞

E
[(

N
n∗

)m]
≤ 1.

We also use Fatou’s Lemma to achieve liminf
λ→∞

E
[( N

n∗
)m
]
≥ E

[
liminf

λ→∞

( N
n∗
)m
]
= 1 which

completes the proof of (iii).

In (iv) we use our rule N ≥ bγ . Let w = [n∗ (1− ε)] and h = [bγ ] + 1 with λ chosen

large enough such that h≤ w. Then

P(N ≤ n∗ (1− ε)) =
w

∑
n=h

P(N = n) =
w

∑
n=h

P
(

σ̂2
n

n
≤ 1

b

)
=

w

∑
n=h

P
(

σ̂
2
n ≤

n
n∗

σ
2
)
≤

w

∑
n=h

P
(
σ̂

2
n ≤ (1− ε)σ

2)
=

w

∑
n=h

P
(
σ̂

2
n −σ

2 ≤−εσ
2)= w

∑
n=h

P
(
σ

2− σ̂
2
n ≥ εσ

2)
≤

w

∑
n=h

E
[(

σ
2− σ̂

2
n
)2v
](

εσ
2)2v ≤ K′

w

∑
n=h

n−v

≤ K′
w

∑
n=h

(bγ)−v ≤ K′bγ(1−v).

In (v) we want to show that limλ→∞E
[
X̄2

Nb
]
= 1. We first write the following

E
[
X̄2

Nb
]
= bE

N−2

(
N

∑
i=1

Xi

)2


=
n∗

σ2

E

[(
∑

N
i=1 Xi

)2

(n∗)2

]
+E

( N

∑
i=1

Xi

)2(
1

N2 −
1

(n∗)2

) .
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From (iii) we observe that E [N] < ∞. So we can use Wald’s second Lemma (Theorem 2

in [55]):

E

( N

∑
i=1

Xi

)2
= σ

2E [N] .

It follows that
n∗

σ2E

[(
∑

N
i=1 Xi

)2

(n∗)2

]
=

E [N]

n∗
→ 1

as λ → ∞. Therefore it suffices to show that

n∗E

( N

∑
i=1

Xi

)2(
1

N2 −
1

(n∗)2

)= E

[(
∑

N
i=1 Xi

)2

n∗

((
n∗

N

)2

−1

)]
→ 0.

We show this in the following three cases given any ε ∈ (0,1) and using the fact that

(n∗)−1 (
∑

N
i=1 Xi

)2 is uniformly integrable in λ since E
[∣∣∣(n∗)−1 (

∑
N
i=1 Xi

)2
∣∣∣]<∞ or in other

words (n∗)−1 (
∑

N
i=1 Xi

)2 ∈ L1:

CASE 1 |N−n∗| ≤ εn∗: Here (1− ε)n∗ ≤ N ≤ (1+ ε)n∗ and therefore∣∣∣∣∣
(

n∗

N

)2

−1

∣∣∣∣∣I|N−n∗|≤εn∗ =
(n∗−N)(n∗+N)

N2 I|N−n∗|≤εn∗

≤ ε (2+ ε)

(1− ε)2 .

This along with uniform integrability of (n∗)−1 (
∑

N
i=1 Xi

)2 in λ implies that

E

(n∗)−1

(
N

∑
i=1

Xi

)2 ∣∣∣∣∣
(

n∗

N

)2

−1

∣∣∣∣∣I|N−n∗|≤εn∗

≤ ε (2+ ε)

(1− ε)2 E

(n∗)−1

(
N

∑
i=1

Xi

)2
→ 0

as λ → ∞.

CASE 2 N−n∗ > εn∗: We observe that∣∣∣∣∣
(

n∗

N

)2

−1

∣∣∣∣∣IN−n∗>εn∗ ≤ IN−n∗>εn∗ ,
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and E [IN−n∗>εn∗] = P(N−n∗ > εn∗) → 0 as λ → 0 from (ii). Moreover, using

E
[(

∑
N
i=1 Xi

)4
]
< ∞ by Theorem 3 of [55] and Cauchy-Schwarz inequality we get

E

(n∗)−1

(
N

∑
i=1

Xi

)2 ∣∣∣∣∣
(

n∗

N

)2

−1

∣∣∣∣∣IN−n∗>εn∗


≤ E

(n∗)−1

(
N

∑
i=1

Xi

)2

IN−n∗>εn∗

≤
√√√√√E

(n∗)−2

(
N

∑
i=1

Xi

)4
E [IN−n∗>εn∗]→ 0.

as λ → ∞.

CASE 3 N−n∗ <−εn∗: First knowing that N ≥ bγ =
(
σ−2n∗

)γ we have

1
n∗

∣∣∣∣∣
(

n∗

N

)2

−1

∣∣∣∣∣=
∣∣∣∣ n∗

N2 −
1
n∗

∣∣∣∣≤ σ
4γ (n∗)1−2γ .

Now we use Cauchy-Schwarz to write the following:

E

( N

∑
i=1

Xi

)2

IN−n∗<−εn∗

≤ E

( Nr

∑
i=1

Xi

)2

IN≤r


≤

√√√√√E

( Nr

∑
i=1

Xi

)4
P(N ≤ r)

where r = [n∗(1− ε] and Nr = min{N,r}. Letting µ3 = E
[
X3

1
]

and µ4 = E
[
X4

1
]

and

the fact that E
[
N2

r
]
≤ E

[
r2]< ∞,by Theorem 7 of [55] we get

E

( Nr

∑
i=1

Xi

)4
≤ 6σ

2E

Nr

(
Nr

∑
i=1

Xi

)2
+4µ3E

[
Nr

Nr

∑
i=1

Xi

]
+µ4E [Nr]

≤ 6σ
2r

Nr

∑
i=1

E
[
X2

i
]
+4µ3

√√√√√E

( Nr

∑
i=1

Xi

)2
+µ4r

≤ 6σ
4r2 +4µ

3/2
3 σ +µ4r.
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Therefore we conclude from (iv) that

E

[(
∑

N
i=1 Xi

)2

n∗

∣∣∣∣∣
(

n∗

N

)2

−1

∣∣∣∣∣IN−n∗<−εn∗

]
≤ σ4γ

√
(6σ4 +4µ3σ +µ4)K′bγ(1−v)

(n∗)2γ−1

(3.9)

≤ K
′′
(n∗)2−2γ+

γ(1−v)
2 . (3.10)

where K
′′
=
√

K′ ((6σ4 +4µ3σ +µ4))σ
γ(3+v). Since v > 2 and γ ∈ (2/(3+ v),1),

the right hand side of (3.9) tends to zero as λ → ∞ that completes the proof.

�

We now show a similar result for multivariate random variables:

Corollary 1. If XXX i are i.i.d observations on the probability space
(
Ω,Rd,P

)
with E [XXX i] =

µ , µ being a d-dimensional zero vector, and covariance matrix Σ the diagonal values of

which being σ2, then

N = inf

{
n≥max

{
2,
(

κ2

λ

)γ
}
,γ < 1 :

∥∥σ̂2
n
∥∥

∞

n
≤ κ2

λ

}
, (3.11)

where σ̂2
n are the diagonal elements of the sample covariance matrix, implies that

E
[∥∥X̄XXn

∥∥2
]
∼ dκ

2
λ
−1

as λ → ∞.

Proof. Let X̄ i
n be the i-th element of the X̄XXn vector. We observe that

E
[∥∥X̄XXn

∥∥2
2

]
= E

[(
X̄1

n
)2

+
(
X̄2

n
)2

+ · · ·+
(

X̄d
n

)2
]

= dE
[(

X̄1
n
)2
]
∼ dκ

2
λ
−1

where the last step follows from the sampling rule in (3.11) since for every X̄ i
n the conditions

of the Theorem 7 hold. �

Using the above results we show that the simulation errors associated with the function

value and function gradient are bounded almost surely.
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Lemma 11. Let Assumption 3 hold and {XXXk} be a sequence generated by Algorithm 4.

Then for any c f > 0 and cg > 0 the following hold:

(a) P
{
|F̄ (XXXk,Nk)− f (XXXk)|> c f ∆α

k i.o.
}
= 0 for α = 0,1,2.

(b) P
{∥∥ḠGG

(
XXXk, Ñk

)
−ggg(XXXk)

∥∥> cg∆α
k i.o.

}
= 0 for α = 0,1.

Proof of (a). We note that the sampling rule in (3.5) ensures that Ñk is larger of the two

values

Ñ1
k = inf

{
n≥

(
λk

∆4
k

)γ

:
σ̂ f (XXXk,n)√

n
≤

κ f ∆2
k√

λk

}

Ñ2
k = inf

{
n≥

(
λk

∆2
k

)γ

:

∥∥σ̂g (XXXk,n)
∥∥

∞√
n

≤
κg∆k√

λk

}
.

Using Chebyshev’s inequality we can write

P
{
|F̄ (XXXk,Nk)− f (XXXk)|> c f

}
= E

[
P
{
|F̄ (XXXk,Nk)− f (XXXk)|> c f | Fk

}]
≤ E

[
c−2

f E
[
|F̄ (XXXk,Nk)− f (XXXk)|2 | Fk

]]
= E

c−2
f E

( 1
Nk

Nk

∑
j=1

ξ j

)2

| Fk

 .
.

From part (v) in Theorem 7 we know that E
[(

1
Nk

∑
Nk
j=1 ξ j

)2
| Fk

]
∼ κ2

f ∆4
kλ
−1
k . Knowing

that ∆k ≤ ∆max, for a sufficiently large k and some δ > 0 we can then write

E

( 1
Nk

Nk

∑
j=1

ξ j

)2

| Fk

≤ (1+δ )κ
2
f ∆

4
maxλ

−1
k ,

and since k3(1+ε) =O (λk), it follows that

P
{
|F̄ (XXXk,Nk)− f (XXXk)|> c f

}
≤ c−2

f (1+δ )κ
2
f ∆

4
maxλ

−1
k (3.12)

is summable. So we can apply Borel-Cantelli’s first Lemma (Lemma 10) to arrive at

P
{
|F̄ (XXXk,Nk)− f (XXXk)|> c f i.o.

}
= 0.

Next, we note that

P
{
|F̄ (XXXk,Nk)− f (XXXk)|> c f ∆k

}
≤ E

[
c−2

f ∆
−2
k E

[
|F̄ (XXXk,Nk)− f (XXXk)|2 | Fk

]]
≤ c−2

f (1+δ )κ
2
f ∆

2
maxλ

−1
k ,
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and

P
{
|F̄ (XXXk,Nk)− f (XXXk)|> c f ∆

2
k
}
≤ E

[
c−2

f ∆
−4
k E

[
|F̄ (XXXk,Nk)− f (XXXk)|2 | Fk

]]
≤ c−2

f (1+δ )κ
2
f λ
−1
k

for large enough k. Following the same application of Borel-Cantelli’s Lemma (Lemma

10) the statement of (a) is proven. �

Proof of (b). Similar to part (a) and using Corollary 1 we observe that for large k

P
{∥∥ḠGG

(
XXXk, Ñk

)
−ggg(XXXk)

∥∥> cg
}
≤ E

[
c−2

g E
[∥∥ḠGG

(
XXXk, Ñk

)
−ggg(XXXk)

∥∥2 | Fk

]]
≤ c−2

g (1+δ )dκ
2
g ∆

2
maxλ

−1
k ,

and

P
{∥∥ḠGG

(
XXXk, Ñk

)
−ggg(XXXk)

∥∥> cg∆k
}
≤ E

[
c−2

g ∆
−2
k E

[∥∥ḠGG
(
XXXk, Ñk

)
−ggg(XXXk)

∥∥2 | Fk

]]
≤ c−2

g (1+δ )dκ
2
g λ
−1
k .

Both of these bounds on the right hand side are summable, leading to application of Borel-

Cantelli to obtain the statement of part (b). �

Lemma 12. A direct result of Part (a) implies that P{F̄ (XXXk,Nk)→−∞}= 0.

Proof. The proof follows from

P{F̄k (XXXk,Nk)→−∞} ≤ P{|F̄k (XXXk,Nk)− f (XXXk)|> c, i.o.}

for any c > 0. �

For the purpose of proving the lim-inf type convergence recall the sets defined in Def-

inition 2. As shown in Chapter 2 these sets are used to specify a space where we can

assume Lipschitz continuous gradients for the underlying function, since making such

assumption over the whole domain of f excludes a large range of functions, such as

f (xxx) = xxx3. However making an assumption that f has Lipschitz continuous gradients

on S(R0) represents functions that have locally Lipschitz continuous gradients; this also

includes f (xxx) = xxx3. In the deterministic context we know that f (xxxk) is monotonically
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decreasing and hence {xxxk} lives in S . However in the stochastic context f (XXXk) may

not be monotonically decreasing. To see this more clearly think about a situation where

F̄
(
X̃XXk+1, Ñk+1

)
< F̄

(
XXXk, Ñk

)
−η3 (Mk (0)−Mk (SSSk)) that means ρ̂k > η3 and hence X̃XXk+1

will be accepted as the new iterate; but we also have F̄
(
X̃XXk+1, Ñk+1

)
> F̄ (XXXk,Nk) due to

new random observations in Step 1 of Algorithm 4 that obtain a larger estimate F̄
(
XXXk, Ñk

)
.

In this example F̄ (XXXk+1,Nk+1) > F̄ (XXXk,Nk). As a result and using Lemma 11 one can

say that {XXXk} leaves the set S with positive probability. We are interested in a larger set

S ′′ ⊇ S that contains {XXXk} with probability one. Then we make the Lipschitz continuous

gradients assumption on that set.

It is clear that when the function is bounded from above, finding such a set is trivial

(S ′′ =
{

xxx : f (xxx)≤ supzzz∈Rd f (zzz)
}

). The next Lemma provides similar results when the

function is not bounded from above.

Lemma 13. Suppose f : Rd → R is continuously differentiable. Then

P
{

limsup
k→∞

f (XXXk)<+∞

}
= 1

where {XXXk} is generated by Algorithm 4.
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Proof. By similar arguments in the proof of Lemma 11, we observe that for some δ > 0

and sufficiently large k,

P
{

F̄ (XXXk,Nk)− F̄ (XXXk−1,Nk−1)>
1

k1+ε

}
≤ P

{
F̄ (XXXk,Nk)− F̄ (XXXk−1,Nk−1)>

1
k1+ε

| ρ̂k−1 > η3

}
+P

{
F̄ (XXXk,Nk)− F̄ (XXXk−1,Nk−1)>

1
k1+ε

| ρ̂k−1 ≤ η3

}
≤ P

{
F̄ (XXXk,Nk)− F̄

(
XXXk−1, Ñk−1

)
>

1
2k1+ε

| ρ̂k−1 > η3

}
+P

{
F̄
(
XXXk−1, Ñk−1

)
− F̄ (XXXk−1,Nk−1)>

1
2k1+ε

| ρ̂k−1 > η3

}
+P

{
F̄ (XXXk,Nk)− f (XXXk)>

1
2k1+ε

| ρ̂k−1 ≤ η3

}
+P

{
f (XXXk)− F̄ (XXXk−1,Nk−1)>

1
2k1+ε

| ρ̂k−1 ≤ η3

}
≤ P

{
F̄
(
XXXk−1, Ñk−1

)
− f (XXXk−1)>

1
4k1+ε

}
+P

{
f (XXXk−1)− F̄ (XXXk−1,Nk−1)>

1
4k1+ε

}
+P

{
F̄ (XXXk−1,Nk)− f (XXXk−1)>

1
2k1+ε

}
+P

{
f (XXXk−1)− F̄ (XXXk−1,Nk−1)>

1
2k1+ε

}
≤ 4(1+δ )

(
4k1+ε

)2
κ

2
f ∆

4
maxλ

−1
k ≤ 64(1+δ )κ

2
f ∆

4
maxk−(1+ε). (3.13)

Note that in the second and third inequality of (3.13) we have used the Boole’s inequality

(see Definition 9). Furthermore, notice that in all the terms but the first term in the second

inequality, differences of the estimated function value at the same point are considered; and

for the first term we can write P
{

F̄ (XXXk,Nk)− F̄
(
XXXk−1, Ñk−1

)
> 2−1k−(1+ε) | ρ̂k−1 > η3

}
=

0 from observing that when an iteration is successful it must be true that estimated function

value decreases moving from the current iterate to the candidate solution. In the third and

fourth terms of the third inequality we have also replaced XXXk with XXXk−1 since the iteration

is unsuccessful.

As a result of (3.13), Borel-Cantelli (Lemma 10) implies that

P
{

F̄ (XXXk,Nk)− F̄ (XXXk−1,Nk−1)> k−(1+ε) i.o.
}
= 0. (3.14)
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Next we re-write f (XXXk)− f (XXXk−1) and arrive at the following:

P
{

f (XXXk)− f (XXXk−1)> k−(1+ε)
}
= P

{
f (XXXk)− F̄ (XXXk,Nk)> 3−1k−(1+ε)

}
+P

{
F̄ (XXXk,Nk)− F̄ (XXXk−1,Nk−1)> 3−1k−(1+ε)

}
+P

{
F̄ (XXXk−1,Nk−1)− f (XXXk−1)> 3−1k−(1+ε)

}
,

and hence conclude that P
{

f (XXXk)− f (XXXk−1)> k−(1+ε) i.o.
}
= 0 by (3.14) and part (i) of

Lemma 11. Therefore for a given ω ∈Ω there exists K (ω) with f (XXXk (ω))− f (XXXk−1 (ω))≤

k−(1+ε) for all k ≥ K (ω). It follows that

limsup
k→∞

f (XXXk (ω)) = f (xxx0)+ ∑
k<K(ω)

f (XXXk (ω))− f (XXXk−1 (ω))

+ ∑
k≥K(ω)

k−(1+ε) <+∞.

In the above ∑k<K(ω) f (XXXk (ω))− f (XXXk−1 (ω))< ∞ since by mean value theorem we have

for some t ∈ [0,1]

f (XXXk (ω))− f (XXXk−1 (ω))≤ ‖∇ f (tXXXk (ω)+(1− t)XXXk−1 (ω))‖∆k−1 (ω) ,

and ‖∇ f (·)‖<+∞ in a compact neighborhood by the continuous differentiability of f . �

A direct implication of Lemma 13 is that for every ω ∈Ω there exists L′′ (ω)< ∞ such

that for all k, XXXk (ω) ∈ S ′′ (ω) where S ′′ (ω) = {xxx| f (xxx)≤ L′′ (ω)}. Then we assume f

to be continuously differentiable with Lipschitz gradients on such a set with νgL (ω) being

the Lipschitz constant of the gradient over that set. We are now ready for the lim-inf type

proof.

With the results above, the almost sure lim-inf type convergence to a first-order critical

point are now available, presented as follows:

Theorem 8. Suppose f is continuously differentiable and bounded from below on the level

set S . Let a sequence {XXXk} be generated by Algorithm 4 and Assumptions 3, 4 and 5 hold

for every iteration k. Suppose further that f has Lipschitz continuous gradients on a set

that contains all {XXXk}. Then liminfk→∞ ‖ggg(XXXk)‖= 0 with probability one.
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Proof. From the definition of ρ̂k we can write

|ρ̂k−1|=

∣∣∣∣∣Mk (SSSk)− F̄
(
X̃k+1, Ñk+1

)
Mk (0)−Mk (SSSk)

∣∣∣∣∣ .
To bound |ρ̂k−1| first we rewrite

F̄
(
X̃XXk+1, Ñk+1

)
− F̄

(
X̃XXk, Ñk

)
= F̄

(
X̃XXk+1, Ñk+1

)
− f

(
X̃XXk+1

)
+ f

(
X̃XXk+1

)
− f (XXXk)+ f (XXXk)− F̄

(
XXXk, Ñk

)
.

Then we have that

F̄
(
X̃XXk+1, Ñk+1

)
= F̄

(
XXXk, Ñk

)
+ggg(XXXk)

T SSSk

+
∫ 1

0
(ggg(XXXk + tSSSk)−ggg(XXXk))

T SSSkdt

+ F̄
(
X̃XXk+1, Ñk+1

)
− f

(
X̃XXk+1

)
+ f (XXXk)− F̄

(
XXXk, Ñk

)
.

And therefore

Mk (SSSk)− F̄
(
X̃XXk+1, Ñk+1

)
=
(
ḠGG
(
XXXk, Ñk

)
−ggg(XXXk)

)T SSSk

+
1
2

SSST
k B̂kSSSk

−
∫ 1

0
(ggg(XXXk + tSSSk)−ggg(XXXk))

T SSSkdt

+ f
(
X̃XXk+1

)
− F̄

(
X̃XXk+1, Ñk+1

)
+ F̄

(
XXXk, Ñk

)
− f (XXXk) .

We now bound each of the expressions on the right hand side. Let ω ∈Ω be any sample

path and c f ,cg > 0 be fixed. Lemma 11 (a) implies that except for a set of measure 0 the

difference between the function estimate and true function value is bounded above for large

k. So we say that there exists K f (ω) such that

∣∣F̄ (X̃XXk+1 (ω) , Ñk+1 (ω)
)
− f

(
X̃XXk+1 (ω)

)∣∣≤ 2−1c f ∆
2
k (ω)

and

|F̄ (XXXk (ω) ,Nk (ω))− f (XXXk (ω))| ≤ 2−1c f ∆
2
k (ω)
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for all k ≥ K f (ω). Similarly Lemma 11 (b) implies that there exists Kg (ω) such that

∥∥ḠGG
(
XXXk (ω) , Ñk (ω)

)
−ggg(XXXk (ω))

∥∥≤ cg∆k (ω)

for k ≥ Kg (ω). We also let νgL (ω) be the Lipschitz constant for ggg on the set S ′′ (ω), with

P{XXXk ∈ S ′′ (ω)}= 1 which exists according to Lemma 13. Hence

∣∣Mk (SSSk (ω))− F̄
(
X̃XXk+1 (ω) , Ñk+1 (ω)

)∣∣≤ ∆
2
k (ω)

(
cg +

κbhm

2
+νgL (ω)+ c f

)
if k ≥max

{
K f (ω) ,Kg (ω)

}
.

Moreover for the purpose of contrapositive define

E = {ω : there exists ε (ω)> 0,K1 (ω) s.t. k ≥ K1 (ω)⇒‖ggg(XXXk (ω))‖ ≥ 2ε (ω)} .

For ω0 ∈ E , we can also find ε (ω0) and K′ (ω0) such that

∥∥ḠGG
(
XXXk (ω0) , Ñk (ω0)

)
−ggg(XXXk (ω0))

∥∥≤ ε (ω0)

if k ≥ K′ (ω0). Then for k ≥max{K1 (ω0) ,K′ (ω0)} we have

∥∥ḠGG
(
XXXk (ω0) , Ñk (ω0)

)∥∥≥ ‖ggg(XXXk (ω0))‖−
∥∥ggg(XXXk (ω0))− ḠGG

(
XXXk (ω0) , Ñk (ω0)

)∥∥≥ ε (ω0)

and hence |Mk (0)−Mk (XXXk (ω0))| ≥ c1ε (ω0)min
{

∆k (ω0) ,
ε(ω0)
κbhm

}
.

We can also find the gradient Lipschitz constant νgL (ω0) on the set S ′′ (ω0) that con-

tains all XXXk (ω0). Now, let K (ω0)=max
{

K1 (ω0) ,K′ (ω0) ,K f (ω0) ,Kg (ω0)
}

where K f (ω0)

and Kg (ω0) are also chosen as explained above. Note that for k ≥ K (ω0),

|ρ̂k (ω0)−1|=

∣∣∣∣∣Mk (SSSk (ω0))− F̄
(
X̃XXk+1 (ω0) , Ñk+1 (ω0)

)
Mk (0)−Mk (SSSk (ω0))

∣∣∣∣∣
≤

∆2
k (ω0)

(
cg +

κbhm
2 +νgL (ω0)+ c f

)
c1ε (ω0)min

{
∆k (ω0) ,

ε(ω0)
κbhm

} . (3.15)

Define

∆̄(ω0) =
c1ε (ω0)

2
(
cg +

κbhm
2 +νgL (ω0)+ c f

) . (3.16)
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Note that since c1 < 1, ∆̄(ω0) ≤ κ
−1
bhmε (ω0). It follows that if ∆k (ω0) ≤ ∆̄(ω0) then

∆k (ω0)≤ κ
−1
bhmε (ω0) and hence min

{
∆k (ω0) ,

ε(ω0)
κbhm

}
= ∆k (ω0) in the denominator of the

right hand side in (3.15). Consequently using (3.16) we get

|ρ̂k (ω0)−1| ≤ ∆k (ω0)
cg +

κbhm
2 +νgL (ω0)+ c f

c1ε (ω0)

≤ 1
2
,

for all ∆k (ω0)≤ ∆̄(ω0). In other words the iterations are eventually with ρ̂k (ω0)≥ η2 and

as a result ∆k+1 (ω0)≥ ∆k (ω0) whenever ∆k (ω0)≤ ∆̄(ω0). We conclude that

∆k (ω0)≥min
{

γ1∆̄(ω0) ,∆K (ω0)
}

(3.17)

for all k ≥ K (ω0).

Next, we can write

F̄ (XXXm+1,Nm+1)− F̄ (XXX1,N1) =
m

∑
i=1

F̄ (XXX i+1,Ni+1)− F̄ (XXX i,Ni)

=
m

∑
i=1

(Ai +Bi) ,

where Ai = F̄ (XXX i+1,Ni+1)− F̄
(
XXX i, Ñi

)
is the change in the estimated function value at the

incumbent solution at the beginning and at the end of iteration i and Bi = F̄
(
XXX i, Ñi

)
−

F̄ (XXX i,Ni) is the change in the estimated function value at XXX i with possibly different sample

sizes at the end of iteration i−1 and the at the beginning of iteration i.

Now Define

D = {ω ∈ E : there exists a subsequence K (ω) with ρ̂k (ω)> η2} ,

and let ω1 ∈D with ε (ω1) and K1 (ω1) chosen accordingly. If we further suppose that there

exists δ (ω1) > 0, Kd (ω1) such that k ≥ Kd (ω1)⇒ ∆k (ω1) ≥ δ (ω1), then the following

will hold:

(i) Ak (ω1) = 0 whenever ρ̂k (ω1) ≤ η3 since by Step 7 of Algorithm 4, XXXk+1 (ω1) =

XXXk (ω1) and Nk+1 (ω1) = Ñk (ω1).
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(ii) Ak (ω1) ≤ −η3c1ε (ω1)min
{

δ (ω1) ,
ε(ω1)
κbhm

}
by Cauchy reduction in Assumption 4

whenever ρ̂k (ω1)≥ η3 and k ≥max(K1 (ω1) ,Kd (ω1)).

(iii) For a set of consecutive iterations i = k1,k1 + 1, · · · ,k2 for which ρ̂k (ω1) < η3 and

hence XXXk1 (ω1) = XXXk1+1 (ω1) = · · · = XXXk2 (ω1), the summation of Bi (ω1)’s can be

written as

k2

∑
i=k1

Bi (ω1) =
k2

∑
i=k1

F̄
(
XXX i (ω1) , Ñi (ω1)

)
− F̄ (XXX i (ω1) ,Ni (ω1))

= F̄
(
XXXk2 (ω1) , Ñk2 (ω1)

)
− F̄ (XXXk2 (ω1) ,Nk1 (ω1))

⇒

∣∣∣∣∣ k2

∑
i=k1

Bi (ω1)

∣∣∣∣∣≤ ∣∣F̄ (XXXk2 (ω1) , Ñk2 (ω1)
)
− f (XXXk2 (ω1))

∣∣
+
∣∣ f (XXXk2 (ω1))− F̄ (XXXk2 (ω1) ,Nk1 (ω1))

∣∣
≤ 2

3
η3c1ε (ω1)min

{
δ (ω1) ,

ε (ω1)

κbhm

}
,

when k1 larger than max(K1 (ω1) ,Kd (ω1)) and K f (ω1) chosen for

c f =
1
3

η3c1ε (ω1)min
{

δ (ω1) ,
ε (ω1)

κbhm

}
in Lemma 11 (a).

Suppose Qm is the subset of iterations in the first m iterations with ρ̂k j ≥ η2 for k j ∈

Qm, j = 1,2, · · · ,Qm (letting Q(m) = |Qm|); we refer to these iterations as non-contracting

iterations as the trust-region size for them either expands or does not change (see Figure

3.1). Between every two non-contracting iteration k j and k j+1 there may be several suc-

cessful and unsuccessful iterations since η2 > η3. Define Wj to be the number of successful

iterations between k j and k j+1. Then define t i
j for i = 0,1,2, · · · ,Wj +1 as follows:

- t0
0 = 1.

- t0
j = k j.

- t i
j is the i-th successful iteration between k j and k j+1 for i = 1,2, · · · ,Wj.

- tW j+1
j = k j+1.
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ρ̂k

η3

η2

1 2 3 4 5 6 7 8 9 10
k

Qm
t i
0

t i
1

t i
2

t i
3

k1 k2 k3

Figure 3.2. An example of the set-up used in the proof of Theorem 8.

- t
WQ(m)+1
Qm

= m+1.

This set up is presented in an example in Figure 3.2. In this figure, we have m= 10,Q(m) =

3 and the number of successes between every two non-contracting iterations is W0 = 0,W1 =

2,W2 = 1,W3 = 0. As explained above we also have

t0
0 = 1, t1

0 = 2;

t0
1 = 2, t1

1 = 4, t2
1 = 6, t3

1 = 7;

t0
2 = 7, t1

2 = 8, t2
2 = 9;

t0
3 = 9, t1

3 = 11.
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It is now clear that for K′′ = max
{

K1,Kd,K f
}

and Q(K′′) being the number of non-

contracting iterations in the first K′′ one can write

m

∑
k=1

(Ak +Bk) =
Q(m)

∑
j=1

W j

∑
i=0

t i+1
j −1

∑
k=t i

j

(Ak +Bk)

=

t0
Q(K′′)

∑
k=1

(Ak +Bk)+
Q(m)

∑
j=Q(K′′)+1

W j

∑
i=0

t i+1
j −1

∑
k=t i

j

(Ak +Bk)

≤
t0
Q(K′′)

∑
k=1

(Ak +Bk)+
Q(m)

∑
j=Q(K′′)+1

W j

∑
i=0

−η3c1ε min
{

δ , ε

κbhm

}
3


≤

t0
Q(K′′)

∑
k=1

(Ak +Bk)−
(
Q(m)−Q

(
K′′
)) η3c1ε min

{
δ , ε

κbhm

}
3

.

Note that although we still live in the set D we have dropped ω1 for readability. In the

second step we have used (i), (ii) and (iii) to say that the difference of the function estimates

between (t i
j)-th and (t i+1

j − 1)-th iteration, with only the first being a success, is at most

−1
3η3c1ε min

{
δ , ε

κbhm

}
. We also use Wj ≥ 0 to remove the second summation. Now we

conclude that since for ω1 ∈ D there is an entire subsequence K (ω1) of non-contracting

iterations, then Q(m)→ ∞ as m→ ∞ which implies F̄ (XXXm+1 (ω1) ,Nm+1 (ω1))→−∞ as

m→∞. By Lemma 12 though the set of such ω1 is a set of measure zero. This implies that

∆k (ω1)→ 0 but this also contradicts inequality (3.17). So P{D}= 0.

So we must have that for every ω ∈ E , ρ̂k (ω) < η2 for k sufficiently large. But this

implies that the trust-region radius eventually keeps contracting and hence ∆k (ω) → 0

which again contradicts inequality (3.17). The conclusion is that P{E} = 0. In other

words P{liminfk→∞ ‖ggg(XXXk)‖= 0}= 1. �

Finally we prove the almost sure convergence of the ASTRO algorithm to a first-order

critical point.

Theorem 9. Suppose f is continuously differentiable and bounded from below on the level

set S . Let a sequence {XXXk} be generated by Algorithm 4 and Assumptions 3, 4 and 5 hold

for every iteration k. Suppose further that f has Lipschitz continuous gradients on a set

that contains all {XXXk}. Then limk→∞ ‖ggg(XXXk)‖= 0 with probability one.
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Proof. We consider two cases: In the first case we assume that there are only finitely

many successful iterations (ρ̂k > η3) and in the second case we assume that the successful

iterations are infinite.

CASE 1 (finitely many successful iterations): We have shown in Theorem 8 that for

any given sample path ω ∈ Ω if there exists a lower bound for the norm of the function

gradient ‖ggg(XXXk (ω))‖, then there exists a lower bound for the trust-region radius. This

lower bound is derived in inequality (3.17). But if the successful iterations are finite, then

for sure ∆k+1 (ω) < ∆k (ω) for large k which implies that limk→∞ ∆k (ω) = 0. This then

proves that there is no lower bound for the norm of the function gradient.

CASE 2 (infinite successful iterations): The following results hold for any given sample

path ω ∈ Ω, but for the sake of readability we remove ω . Suppose there is a subsequence

of successful iterations {ti} such that ‖ggg(XXX ti)‖ ≥ 3ε for some ε > 0. By Theorem 8 we can

find another subsequence {`i} where `i = `(ti) is the first successful iteration after ti such

that ‖ggg(XXX `i)‖< 2ε . Let

K = {k : ρ̂k > η3, ti ≤ k < `i} .

We know that ‖ggg(XXXk)‖ ≥ 2ε for all k ∈ K and further
∥∥ḠGG
(
XXXk, Ñk

)∥∥ ≥ ε for sufficiently

large k ∈ K by Lemma 11. If ∆k > δ for some δ > 0 when k is large, we have seen in

the proof of Theorem 8 that the function estimate reduces between the two consecutive

successful iterations at least by a fixed amount, leading to a contradiction with Lemma 12

that states the function estimates remain bounded almost surely. This implies that we must

have ∆k→ 0 as k→ ∞. Hence for sufficiently large k ∈K we have ∆k <
ε

κbhm
leading to

F̄ (XXXk+1,Nk+1)− F̄ (XXXk,Nk) = F̄ (XXXk+1,Nk+1)− F̄
(
XXXk, Ñk

)
+ F̄

(
XXXk, Ñk

)
− F̄ (XXXk,Nk)

≤−η3c1ε min
{

∆k,
ε

κbhm

}
+

η3c1ε

2
∆k

≤−η3c1ε

2
∆k

⇒ ∆k ≤
−2

η3c1ε
(F̄ (XXXk+1,Nk+1)− F̄ (XXXk,Nk)) .
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The second step of the above uses c f =
η3c1ε

4 in part (a) of Lemma 11 suggesting that we

eventually have

F̄
(
XXXk, Ñk

)
− F̄ (XXXk,Nk)≤

∣∣F̄ (XXXk, Ñk
)
− f (XXXk)

∣∣+ | f (XXXk)− F̄ (XXXk,Nk)|

≤ 2
(

η3c1ε

4
∆k

)
with probability one. Now we deduce for a large enough i

‖XXX `i−XXX ti‖ ≤
`i−1

∑
j=ti
j∈K

∥∥XXX j+1−XXX j
∥∥≤ `i−1

∑
j=ti
j∈K

∆ j

≤ −2
η3c1ε

`i−1

∑
j=ti
j∈K

F̄
(
XXX j+1,N j+1

)
− F̄

(
XXX j,N j

)

=
−2

η3c1ε

F̄ (XXX `i,N`i)− F̄ (XXX ti,Nti)−
`i−1

∑
j=ti
j/∈K

(
F̄
(
XXX j+1,N j+1

)
− F̄

(
XXX j,N j

))
≤ −2

η3c1ε

F̄ (XXX `i,N`i)− F̄ (XXX ti,Nti)+θc f max
ti≤ j<`i

j∈K

∆ j

 ,

where θ is the number of unsuccessful iterations between ti and `i and c f > 0 is some

positive constant. We observe that the right hand side of the above expression tends to

zero since maxti≤ j<`i, j∈K∆ j→ 0, and in addition F̄ (XXX `i,N`i)− F̄ (XXX ti,Nti)→ 0 due to the

following

F̄ (XXX `i,N`i)− F̄ (XXX ti,Nti)≤
`i−1

∑
k j=ti
k j∈K

k j+1−1

∑
s=k j

F̄ (XXX s+1,Ns+1)− F̄ (XXX s,Ns)

=
`i−1

∑
k j=ti
k j∈K

(
F̄
(
XXXk j+1,Nk j+1

)
− F̄

(
XXXk j , Ñk j

)
+

k j+1−1

∑
s=k j

F̄
(
XXX s, Ñs

)
− F̄ (XXX s,Ns)

)

≤
`i−1

∑
k j=ti
k j∈K

(
−η3c1ε∆k j +

k j+1−1

∑
s=k j

2c f ∆s

)

≤
(
−η3c1ε |K|+2c f |ti− `i|

)
max

k j≤s<k j+1
k j∈K

∆s, (3.18)
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in which again maxk j≤s<k j+1,k j∈K∆s→ 0. In the second line of (3.18) we have used the fact

that

F̄ (XXXk+1,Nk+1)− F̄ (XXXk,Nk) = F̄ (XXXk+1,Nk+1)− F̄
(
XXXk, Ñk

)
+ F̄

(
XXXk, Ñk

)
− F̄ (XXX s,Ns)

= F̄
(
XXXk, Ñk

)
− F̄ (XXX s,Ns)

for all unsuccessful k; while the only nonzero F̄ (XXXk+1,Nk+1)− F̄
(
XXXk, Ñk

)
belongs to the

successful k’s that remain outside the inner summation.

We conclude that ‖XXX `i−XXX ti‖
wp1−−→ 0. We also observe from Lemma 11 that

| f (XXX `i)− f (XXX ti)| ≤ |F̄ (XXX `i,N`i)− F̄ (XXX ti,Nti)|

+ | f (XXX `i)− F̄ (XXX `i,N`i)|

+ | f (XXX ti)− F̄ (XXX ti,Nti)|
wp1−−→ 0. (3.19)

Therefore by the continuity of the gradient we must have ‖ggg(XXX `i)−ggg(XXX ti)‖
wp1−−→ 0 but this

indicates ‖ggg(XXX `i)−ggg(XXX ti)‖< ε for large i, contradicting the definition of ti and `i. �

3.6 Implementation and Numerical Experiments

Implementation of the ASTRO is straight forward as listed in Algorithm 4, due to the

fact that the sample size for estimating the function and gradient values are quite explicitly

determined. The remaining question in the implementation is the symmetric matrix B̂k

that has the role of approximating the Hessian. We use quasi-Newton techniques to obtain

this approximation. Quasi-Newton methods obtain some measure of the function curvature

by using only gradient information. They are very practical since the second derivative

information is not required and have been shown to provide super-linear convergence with

sss =−B−1ggg, that is much faster than using just steepest descent methods. The two famous

quasi-Newton approaches are BFGS and SR1.

Let us define YYY k = ḠGG
(
XXXk+1, Ñk+1

)
− ḠGG

(
XXXk, Ñk

)
that indicates the change in the es-

timated gradient when moving from XXXk to XXXk+1, where ḠGG
(
XXXk+1, Ñk+1

)
is the estimated

gradient at the end of Step 1 of iteration k + 1 and ḠGG
(
XXXk, Ñk

)
is the estimated gradient



64

value at the end of Step 1 of iteration k, when iteration k is successful that is XXXk+1 6= XXXk.

Then by the secant formula we must have B̂k+1SSSk =YYY k before constructing the new model

in Step 2.

In BFGS method the update formula

B̂k+1 = B̂k−
B̂kSSSkSSST

k B̂k

SSST
k B̂kSSSk

+
YYY kYYY T

k

YYY T
k SSSk

(3.20)

is used which guarantees a rank-2 approximation by providing a positive definite matrix

only under the curvature condition that states SSST
k YYY k > 0. Curvature condition is part of

the Wolfe conditions in the line search methods. However it is not necessarily ensured in

our sub-problem optimization scheme in Step 3 of Algorithm 4. In practice we choose to

skip the update formula (3.20) when the curvature condition is not satisfied or SSST
k YYY k is very

small, say less than 10−3. For the initial value of the Hessian approximation we use

B̂0 =

(
YYY T

0 SSS0

YYY T
0 YYY 0

I

)−1

.

The next method we use is SR1 or the symmetric-rank-1 method that unlike BFGS does

not maintain positive definiteness of the approximated hessian in the process. SR1 is useful

in trust-region methodology in general and often performs better than skipping the update

when the curvature condition is damaged, as is suggested in the BFGS method. The SR1

update formula is

B̂k+1 = B̂k +

(
YYY k− B̂kSSSk

)(
YYY k− B̂kSSSk

)T

(
YYY k− B̂kSSSk

)T
SSSk

. (3.21)

However SR1 also suggests skipping the update when YYY k− B̂kSSSk = 0 since B̂k already

satisfies the secant formula. Moreover, when SSST
k

(
YYY k− B̂kSSSk

)
= 0 but YYY k 6= B̂kSSSk then a

rank-2 update such as BFGS is more useful. In practice it has been recommended in [42]

that one only applies (3.21) when∣∣∣SSST
k

(
YYY k− B̂kSSSk

)∣∣∣≥ r‖SSSk‖
∥∥∥YYY k− B̂kSSSk

∥∥∥ ,
for some small r such as r = 10−6.
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When iteration k is unsuccessful, that is XXXk+1 = XXXk one can recompute B̂k+1 with

the B̂k j , ḠGG
(
XXXk j , Ñk j

)
and SSSk j from most recent successful iteration k j, wherein the latest

estimate of the gradient in the current iteration is used. Albeit it is recommended in the

deterministic context that the update formula (3.20) or (3.21) is performed for the failed SSSk

and YYY k in the unsuccessful iterations for faster convergence because the failure indicates

that the approximated hessian needs improvement that is most affected by observing the

change in the gradient in a direction different from the one used for the current approxi-

mated value.

In addition to choosing the Hessian approximation methods, we frugally reuse the pre-

vious observations of the function and gradient at an already visited point. At any visited

point we first access all the previous Monte Carlo observations, and add to them the new

incoming observations. We then update the mean and variance of the new estimate as fol-

lowing. Suppose that at xxx the function is estimated with m replications of the oracle to

obtain the mean F̄ (xxx,m) and variance σ̂2
f (xxx,m). As the new observations are collected to

reach the total of n replications, the measure are updated accordingly:

F̄ (xxx,n) = n−1

(
mF̄ (xxx,m)+

n

∑
j=m+1

Fj (xxx)

)
,

σ̂
2
f (xxx,n) = (n−1)−1

(
(m−1) σ̂

2
f (xxx,m)+mF̄2 (xxx,m)+

n

∑
j=m+1

F2
j (xxx)−nF̄2 (xxx,n)

)
.

(3.22)

Similarly we update the gradient estimate and standard error estimates of the gradient esti-

mates with the new incoming observations at visited points:

ḠGG(xxx,n) = n−1

(
mḠGG(xxx,m)+

n

∑
j=m+1

GGG j (xxx)

)
,

σ̂
2
g (xxx,n) = (n−1)−1

(
(m−1) σ̂

2
g (xxx,m)+mḠGG2

(xxx,m)+
n

∑
j=m+1

GGG2
j (xxx)−nḠGG2

(xxx,n)

)
.

(3.23)

In (3.23) the notation ḠGG2
(xxx,n) means element-wise product of the vector ḠGG(xxx,n) as

defined in (3.3) to itself; and the notation GGG2
j (xxx) means element-wise product of the vector

GGG j (xxx) to itself.
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Table 3.1.
Input parameters of the numerical experiment with ASTRO.

Parameter Value

σ2 1

η1 0.2

η2 0.1

η3 0.01

γ1 0.9

γ2 1.1

κ f ,κg 1

∆max 1E+4

γ 0.5

ε 1E-3

3.6.1 Numerical Results

We experiment ASTRO in a suite of low to moderate dimensional sum of squares prob-

lems from the CUTEst problem set in [56]. Table 3.2 lists the 24 problems we use in the

experiment, with their dimension and the global optimal values.

The objective function for all problems in the set takes the form

f (xxx) =
m

∑
i=1

f 2
i (xxx) , (3.24)

where each fi : IRd → IR is smooth, and most of the functions fi are non-convex. The

“noisy” observations are obtained by adding a normal random variable ξi ∼ N
(
0,σ2) to

the sum, that is, Fi(xxx) = f (xxx)+ξi.

ASTRO was executed until a specified simulation budget is exhausted. Suppose the

specified simulation budget for ASTRO is ntotal and let XXX i
kmax

denotes the solution returned

by the i-th execution of ASTRO on a specific problem. If ASTRO is executed m times,

resulting in the m returned solutions XXX i
kmax

, i = 1,2, . . . ,m, the estimated expectation and
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Table 3.2.
Selected problems and their global solutions from the CUTEst problem set
with dimensions varying from 2 to 8.

function name dimension f (xxx∗)

BEALE 3 0

BIGGS6 6 0.0057

BOX3 3 0

BROWNDEN 4 85822.2

CUBE 2 0

DENSCHNB 2 0

DENSCHNC 2 3.646

DENSCHND 3 0.0002

DENSCHNE 3 0

DENSCHNF 2 0

ENGVAL2 3 0

HATFLDD 3 0

HATFLDE 3 0

HELIX 4 0

HIMMELBF 4 318.57

KOWOSB 4 0.0003

PALMER5C 6 2.128

PALMER6C 8 0.0164

PALMER7C 8 0.602

PALMER8C 8 0.1598

ROSENBR 2 0

S308 2 0

SINEVAL 2 0

YFITU 3 0



68

estimated square-root variance of the true optimality gap of ASTRO’s returned solution are

given by

Ê[ f (XXX i
kmax

)− f (xxx∗)] := m−1
m

∑
j=1

f (XXX j
kmax

)− f (xxx∗);

√
V̂( f (XXX j

kmax
)− f (xxx∗)) :=

√
(m−1)−1

m

∑
j=1

( f (XXX j
kmax

)− f (xxx∗))2, (3.25)

where f (xxx∗) is the known minimum value attained by the function f . Each row in Ta-

ble 3.3 corresponds to a specific problem in CUTEst and reports Ê[ f (XXX i
kmax

)− f (xxx∗)] and√
V̂( f (XXX j

kmax
)− f (xxx∗)) (in parenthesis) for m = 20 independent executions of ASTRO. A

calculation similar to (3.25) for true gradient norms is

Ê[‖∇ f (XXX i
kmax

)‖] := m−1
m

∑
j=1
‖∇ f (XXX i

kmax
)‖;

√
V̂(‖∇ f (XXX i

kmax
)‖) :=

√
(m−1)−1

m

∑
j=1
‖∇ f (XXX i

kmax
)‖2. (3.26)

It is important to note that since the convergence theory for ASTRO only guarantees con-

vergence to a stationary point, nothing can be said about the behavior of the true optimality

gap even as the budget tends to infinity.

We use several random initial sets (xxx0,∆0) in the pre-processing of ASTRO and termi-

nate ASTRO after 100 oracle calls. Then we choose the initial set that obtains the smallest

estimated gradient norm. We also use the expansion and contraction coefficients as the

reverse of each other. Since for some problems and some starting points more significant

contraction and expansion accelerates the progress and convergence rate we also test sev-

eral values for γ1 including 0.9 and 0.99 in the pre-processing step. The rest of the input

parameters are chosen according to Table 3.1 for the purpose of this chapter. Once the

initial values are selected in the pre-processing, we run ASTRO with the selected initial set

until the simulation budget of 20,000 oracle calls is exhausted. The estimated expectation

and square-root variance of the optimality gap and true gradient norm, as explained above,

are recorded at checkpoints of 500,1K,5K,10K and 20K simulation budget.

Tables 3.3 and 3.4 provide the results after executing ASTRO to termination 20 times

for each problem. As observed in the results the decline in the optimality gap is quite
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Table 3.3.
The estimated mean and standard deviation of the true optimality gap at a

(random) returned solution of ASTRO, as a function of the total simulation
budget. The statistics were computed based on 20 independent runs of ASTRO
on each problem.

d Problem Name Initial Function Value
Simulation Budget

500 1000 5000 10000 20000

2

CUBE 1,664,640,225.00 2.32 (0.00) 2.32 (0.00) 2.32 (0.00) 2.32 (0.00) 2.32 (0.00)

DENSCHNB 50,661.00 0.11 (0.35) 0.01 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DENSCHNC 10,713,258,316,706.26 3.59 (0.02) 3.60 (0.02) 3.61 (0.02) 3.62 (0.02) 3.62 (0.02)

DENSCHNF 6,825,024.00 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

ROSENBR 7,398,689.00 0.11 (0.21) 0.11 (0.21) 0.10 (0.19) 0.10 (0.19) 0.10 (0.17)

S308 589,825.00 0.94 (0.09) 0.93 (0.09) 0.84 (0.09) 0.81 (0.08) 0.79 (0.05)

SINEVAL 265,359.79 29.46 (0.49) 29.31 (0.57) 29.11 (0.69) 28.97 (0.80) 28.80 (1.00)

3

BEALE 4,309,937,474.20 0.31 (0.00) 0.31 (0.00) 0.31 (0.00) 0.31 (0.00) 0.31 (0.00)

DENSCHND 4,880,138,240.00 0.16 (0.04) 0.14 (0.04) 0.10 (0.04) 0.09 (0.04) 0.08 (0.04)

DENSCHNE 57,857.00 1.03 (0.02) 1.02 (0.02) 1.01 (0.02) 1.01 (0.02) 1.01 (0.01)

ENGVAL2 83,047,445.00 22.28 (12.54) 18.76 (9.36) 12.55 (4.90) 10.42 (3.57) 8.56 (2.61)

YFITU 7,532.36 548.51 (224.99) 517.9 (193.6) 403.02 (25.46) 391.43 (3.90) 389.44 (1.11)

4

BROWNDEN 1,109,286,386.27 360.29 (16.76) 274.88 (11.68) 119.59 (4.69) 77.09 (3.26) 45.03 (1.88)

HELIX 62,036.77 0.89 (0.04) 0.87 (0.05) 0.83 (0.07) 0.81 (0.07) 0.79 (0.08)

HIMMELBF 18,223,594.79 17,856.9 (23.97) 17,637.33 (2.37) 16,975.15 (13.72) 16,645.96 (3.82) 16,268.06 (3.96)

KOWOSB 373.13 0.35 (0.15) 0.30 (0.16) 0.16 (0.11) 0.11 (0.05) 0.09 (0.03)

6
BIGGS6 11.40 8.29 (0.39) 8.08 (0.47) 7.07 (1.81) 6.07 (2.09) 4.04 (2.43)

PALMER5C 17,604.47 0.14 (0.07) 0.07 (0.04) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

8

PALMER6C 32,357,294.58 612.58 (70.12) 611.44 (71.32) 608.52 (73.46) 607.63 (73.18) 606.61 (72.85)

PALMER7C 130,070,963.92 945.57 (24.51) 936.92 (25.11) 913.53 (25.7) 903.01 (25.69) 890.27 (25.34)

PALMER8C 37,881,644.22 665.94 (27.51) 659.92 (28.30) 642.23 (29.48) 633.66 (29.75) 623.06 (29.65)

remarkable. Table 3.3 shows how fast the optimality gap declines in the first few hundred

oracle calls. In the later checkpoints closer to the ultimate simulation budget (20K) the

decline becomes slower as the iteration size has increased and the trust-region radius has

decreased leading to large sample size for the later iterations. In Figures B.1-B.8 we show

the values after the completion of 200 oracle calls, as the first few values are pretty large and

make visibility of the plots less convenient. In almost all problems the iterates approach the

optimal solution within 20K simulation calls, though in some instances the iterates reach a

local minima that is different from the global minima reported in Table 3.2 and hence the
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Table 3.4.
The estimated mean and standard deviation of the true gradient norm at a

(random) returned solution of ASTRO, as a function of the total simulation
budget. The statistics were computed based on 20 independent runs of ASTRO
on each problem.

d Problem Name Initial Gradient Norm
Simulation Budget

500 1000 5000 10000 20000

2

CUBE 626,688,560.79 2.23 (2.65) 1.23 (1.98) 1.02 (1.64) 0.94 (1.65) 0.66 (1.21)

DENSCHNB 9,568.07 0.48 (0.87) 0.21 (0.20) 0.07 (0.06) 0.06 (0.05) 0.05 (0.06)

DENSCHNC 21,399,716,500,504.68 0.82 (0.59) 0.67 (0.41) 0.51 (0.32) 0.46 (0.29) 0.40 (0.18)

DENSCHNF 1,228,253.22 0.72 (0.67) 0.64 (0.93) 0.27 (0.27) 0.24 (0.28) 0.19 (0.26)

ROSENBR 1,741,683.78 0.66 (0.77) 0.61 (0.79) 0.51 9(0.67) 0.52 (0.56) 0.51 (0.59)

S308 104,267.14 0.28 (0.10) 0.25 (0.11) 0.20 (0.14) 0.14 (0.15) 0.13 (0.18)

SINEVAL 45,109.93 10.63 (4.66) 9.48 (4.66) 8.04 (2.51) 7.56 (2.40) 8.33 (2.96)

3

BEALE 1,701,980,751.18 0.14 (0.08) 0.15 (0.14) 0.10 (0.15) 0.07 (0.09) 0.07 (0.09)

DENSCHND 2,284,598,497.73 0.98 (0.46) 0.89 (0.32) 0.58 (0.27) 0.57 (0.26) 0.54 (0.24)

DENSCHNE 14,880.03 0.22 (0.08) 0.17 (0.06) 0.12 (0.06) 0.10 (0.07) 0.05 (0.06)

ENGVAL2 16,721,054.23 66.10 (25.99) 56.72 (21.90) 41.89 (12.51) 36.26 (9.34) 31.42 (7.35)

YFITU 6,698.93 962.7 (691.7) 706.01 (642.19) 551.29 (910.24) 152.10 (144.00) 97.89 (31.40)

4

BROWNDEN 144,497,890.99 1,354.0 (252.43) 1,110.67 (35.31) 804.76 (17.65) 638.7 (13.44) 484.0 (10.15)

HELIX 4,989.97 3.23 (1.80) 3.41 (1.93) 2.77 (0.79) 2.83 (1.17) 2.30 (0.56)

HIMMELBF 1,207,473.61 1305.43 (162.35) 1,101.21 (2.64) 1291.13 (70.88) 1,078.23 (166.04) 1,035.68 (3.32)

KOWOSB 80.65 0.13 (0.07) 0.11 (0.04) 0.07 (0.03) 0.05 (0.02) 0.04 (0.01)

6
BIGGS6 2.25 0.28 (0.09) 0.27 (0.08) 0.39 (0.25) 0.55 (0.48) 0.67 (0.43)

PALMER5C 839.76 1.4 (0.48) 0.95 (0.28) 0.44 (0.18) 0.35 (0.15) 0.28 (0.15)

8

PALMER6C 7,070,831.09 476.08 (955.39) 380.75 (248.45) 335.89 (204.67) 246.96 (158.28) 319.27 (176.14)

PALMER7C 29,768,118.46 1,506.94 (65.19) 2,027.34 (914.05) 1,649.61 (479.29) 1,925.19 (650.81) 2,496.61 (503.7)

PALMER8C 8,275,792.01 897.48 (164.43) 1,011.43 (273.6) 900.44 (171.73) 1.035.14 (223.91) 1,138.63 (161.72)

optimality gap converges to a non-zero value. The true gradient norm results reported in

Table 3.4 also show consistency as in most cases they drop to zero quite fast in the search.

However in some problem instances despite the decrease in the optimality gap the gradient

norm increases. These situations occur near the cliff-like regions of the objective functions.

Furthermore, the 25%,50%,75% and 90% quantiles of the standard deviation of the true

gradient norm in 20 independent runs are illustrated in the Appendix (Figures B.1-B.8).
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4. ASTRO-DF: ADAPTIVE SAMPLING TRUST-REGION

OPTIMIZATION — DERIVATIVE-FREE

Recall again that the primary contribution of this dissertation is developing algorithmic

frameworks for unconstrained continuous simulation optimization both in the presence and

absence of unbiased (Monte Carlo) estimates of the gradient of the objective function. The

previous chapter outlined a family of algorithms for the derivative-based context. In this

chapter, we present a family of algorithms for the derivative-free context, where no unbi-

ased estimates of the objective function’s gradient are assumed to be available. Accord-

ingly, the family of algorithms we propose (ASTRO-DF) relies on constructed stochastic

interpolation models of the objective function to generate iterates that globally converge to

a critical point with probability one.

In what follows we first describe related work on stochastic TRO in the area of derivative-

free optimization and the definitions used in the derivative-free stochastic framework. We

then describe ASTRO-DF and its behavior in detail.

4.1 Preliminaries

We will look at the relevant state-of-the-art in the derivative-free trust region methods

in the stochastic context. We also list the common definitions used throughout this chapter.

4.1.1 Related Work

The algorithm proposed in Deng and Ferris [57, 58], called VNSP, is a competitor to

what we present here and has several aspects in common. For example, Deng and Fer-

ris [57, 58] use a quadratic interpolation model within a trust-region optimization frame-

work. The model is derivative-free in the sense that only function estimates are assumed
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to be available. Model construction, inference, and improvement, along with sample size

updates happen through a Bayesian framework with an assumed Gaussian conjugate prior.

Convergence theory for VNSP is accordingly within a Bayesian setting.

The other two algorithms that are particularly noteworthy competitors to what we pro-

pose here are STORM [59] and the recently proposed algorithm by Larson and Billups [60]

(henceforth LB2014). While the underlying logic in both of these algorithms are very sim-

ilar to that in ASTRO-DF, key differences arise in terms of what has been assumed about

the quality of the constructed models and how such quality can be achieved in practice. A

key postulate that guarantees consistency in STORM, for example, is that the constructed

models are of a certain specified quality (characterized through the notion of probabilistic

full linearity) with a probability exceeding a fixed threshold. The authors provide a way to

construct such models using function estimates constructed as sample means. Crucially, the

prescribed sample means in STORM use a sample size that is derived using the Chebyshev

inequality with an assumed upper bound on the variance. By contrast, the sample sizes in

ASTRO-DF are determined adaptively by balancing squared bias and variance estimates

for the function estimator. While this makes the sample size in ASTRO-DF a stopping

time [61] thereby complicating proofs, such adaptive sampling enables ASTRO-DF to dif-

ferentially sample across the search space, leading to efficiency.

LB2014, like STORM, uses random models. Unlike STORM, however, the sequence

of models constructed in LB2014 are assumed to be accurate (as measured by a certain

rigorous notion) with a probability sequence that converges to one. A related version [62]

of LB2014 address the issue of differing levels of (spatial) stochastic error through the use

of weighted regression schemes, where the weights are chosen heuristically. An impor-

tant assumption that facilitates convergence guarantees in [62] is that the stochastic func-

tion error can be bounded deterministically. In other words, if fn(xxx) represents the Monte

Carlo function estimate of f (xxx) at the point xxx, then Monte Carlo sampling guarantees that

‖ fn(xxx)− f (xxx)‖ ≤ ε for any given ε . As noted earlier, we make no such assumptions on the

ability to bound the stochastic error in such a deterministic fashion.
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4.1.2 Definitions

In this section we provide definitions of stochastic interpolation models that will be

used throughout this chapter.

Definition 10. (Stochastic Linear Interpolation Models) M (zzz) is said to be a stochastic

linear interpolation model of f on B (xxx;∆), if p = d +1 and Φ(zzz) =
(
1,z1,z2, . . . ,zd) is a

linear basis on X⊆ IRd . We set
1 y1

1 y2
1 . . . yd

1

1 y1
2 y2

2 . . . yd
2

...
...

...
...

...

1 y1
d+1 y2

d+1 . . . yd
d+1




α̂1

α̂2

...

α̂d+1

=


F̄ (yyy1,n(yyy1))

F̄ (yyy2,n(yyy2))
...

F̄ (yyyd+1,n(yyyd+1))

 .

For all sss∈B (0;∆), M (xxx+ sss)= α̂1+(xxx+ sss)T GGG=M (xxx)+sssT GGG where GGG=
(
α̂2, . . . , α̂d+1)T .

The gradient ∇M (xxx) of the stochastic linear interpolation model is ∇M (xxx+ sss) = GGG. The

Hessian ∇2M (xxx+ sss) of the stochastic linear interpolation model is 0.

Definition 11. (Stochastic Quadratic Interpolation Models) M (zzz) is said to be a stochas-

tic quadratic interpolation model of f on B (xxx;∆), if p = (d + 1)(d + 2)/2 and Φ(zzz) =(
1,z1,z2, . . . ,zd, 1

2(z
1)2,z1z2, . . . , 1

2(z
d)2) is a quadratic basis on X⊆ IRd . We set

1 y1
1 . . . yd

1
1
2

(
y1

1
)2 y1

1y2
1 . . . 1

2

(
yd

1
)2

1 y1
2 . . . yd

2
1
2

(
y1

2
)2 y1

2y2
2 . . . 1

2

(
yd

2
)2

...
... . . .

...
...

... . . .
...

1 y1
p . . . yd

p
1
2

(
y1

p
)2 y1

py2
p . . . 1

2

(
yd

p
)2




α̂1

α̂2

...

α̂ p

=


F̄ (yyy1,n(yyy1))

F̄ (yyy2,n(yyy2))
...

F̄
(
yyyp,n

(
yyyp
))

 .

Then for all sss ∈ B (0;∆),

M (xxx+ sss) = M (xxx)+ sssT GGG+
1
2

sssT B̂sss,

where GGG =
(
α̂2, . . . , α̂d+1) and B̂ is a symmetric (positive-definite) matrix. The gradi-

ent ∇M (xxx+ sss) of the quadratic interpolation model is ∇M (xxx+ sss) = GGG+ sssT B̂ and hence

∇M (xxx)=GGG. The Hessian ∇2M (xxx+ sss) of the quadratic interpolation model is ∇2M (xxx+ sss)=

B̂.
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4.2 Algorithm Listing

ASTRO-DF is an adaptive sampling trust-region derivative-free algorithm whose essence

is encapsulated within four repeating steps: (i) local stochastic model construction and cer-

tification through adaptive sampling; (ii) constrained optimization of the constructed model

for identifying the next candidate solution; (iii) re-estimation of the next candidate solution

through adaptive sampling; and (iv) iterate and trust-region update based on a (stochas-

tic) sufficient decrease check. These stages appear as Steps 1-4 in Algorithm 5. In what

follows, we describe each of these steps in further detail.

In Step 2 of Algorithm 5, a stochastic model of the function f (·) in the trust-region

B(XXXk;∆k) is constructed using Algorithm 6. The aim of Algorithm 6 is to construct a model

of a specified quality within a trust-region having radius smaller than a fixed multiple of

the model gradient norm. During the jkth iteration of Algorithm 6, a poised set Y ( jk)
k ,

{YYY ( jk)
1 ,YYY ( jk)

2 , . . . ,YYY ( jk)
p } in the “candidate” trust region having radius ∆̃kw jk−1 and center

YYY ( jk)
1 = XXXk is chosen (Step 3); Monte Carlo function estimates are then obtained at each of

the points in Y ( jk)
k with N

(
YYY ( jk)

i

)
being the sample size at point YYY ( jk)

i after the jkth iteration

of the contraction loop. Sampling at each point in Y ( jk)
k is adaptive and continues (Steps

4–6) until the estimated standard errors σ̂F

(
YYY ( jk)

i ,N
(

YYY ( jk)
i

))
/

√
N
(

YYY ( jk)
i

)
of the function

estimates F̄
(

YYY ( jk)
i ,N

(
YYY ( jk)

i

))
drop below a slightly inflated square of the candidate trust-

region radius. A linear (or quadratic) interpolation model is then constructed using the

obtained function estimates in Step 5. (If a linear interpolation model is constructed, p =

d + 1, and if a quadratic interpolation model is constructed, p = (d + 1)(d + 2)/2.) If

the resulting model M( jk)
k (zzz),zzz ∈ B(XXXk; ∆̃kw jk−1) is such that the candidate trust-region

radius ∆̃kw jk−1 is too large compared to the norm of the model gradient
∥∥∥∇M( jk)

k (XXXk)
∥∥∥,

that is, if ∆̃kw jk−1 > µ

∥∥∥∇M( jk)
k (XXXk)

∥∥∥, then the candidate trust region radius is shrunk by

a factor w and control is returned back to Step 3. On the other hand, if the candidate trust

region radius is smaller than the product of µ and the norm of the model gradient, then the

resulting stochastic model is accepted but over an updated incumbent trust-region radius
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Algorithm 5 ASTRO-DF Main Algorithm
Require: Initial guess xxx0 ∈ IRd , initial trust-region radius ∆̃0 > 0 and maximum radius ∆max > 0, model

“fitness” threshold η1 > 0, trust-region expansion constant γ1 > 1 and contraction constant γ2 ∈ (0,1),

initial sample size n0, sample size lower bound sequence {λk} such that k(1+ε) = O(λk), initial sample

set Ỹ0 = {xxx0}, and outer adaptive sampling constant κoas.

1: for k = 0,1,2, . . . do

2: Model Construction: Construct the model at XXXk by calling Algorithm 6 with the can-

didate trust-region radius ∆̃k and candidate set of sample points Ỹk, [Mk(XXXk + sss),∆k,Yk] =

AdaptiveModelConstruction(∆̃k, Ỹk). Set Ñk = N (XXXk).

3: TR Subproblem: Approximate the kth step by minimizing the model in the trust-region, SSSk =

argmin‖sss‖≤∆k
Mk(XXXk + sss), and set the new candidate point X̃XXk+1 = XXXk +SSSk.

4: Evaluate: Estimate the function at the candidate point using adaptive sampling to obtain

F̄(X̃XXk+1, Ñk+1), where

Ñk+1 = max
{

λk,min
{

n :
σ̂F
(
X̃XXk+1,n

)
√

n
≤

κoas∆
2
k√

λk

}}
, (4.1)

Update:

5: Compute the success ratio ρ̂k as

ρ̂k =
F̄
(

XXXk, Ñk

)
− F̄

(
X̃XXk+1, Ñk+1

)
Mk(XXXk)−Mk(X̃XXk+1)

.

6: if ρ̂k > η1 then

7: XXXk+1 = X̃XXk+1, ∆̃k+1 = min{γ1∆k,∆max}, Nk+1 = Ñk+1. Set ỸYY max := argmaxYYY i∈Yk

{∥∥X̃XXk+1−YYY i
∥∥} .

Update the sample set Ỹk+1 = Yk\
{

ỸYY max
}
∪{XXXk+1}.

8: else

9: XXXk+1 = XXXk, ∆̃k+1 = γ2∆k, Nk+1 = Ñk. Set YYY max := argmaxYYY i∈Yk {‖XXXk−YYY i‖}. If X̃XXk+1 6= YYY max,

update Ỹk+1 = Yk\{YYY max}∪
{

X̃XXk+1
}

.

10: end if

11: end for

given by Step 11. (Step 11 of Algorithm 6, akin to [46], updates the incumbent trust-region

radius to the point in the interval [∆̃kw jk−1, ∆̃k] that is closest to β

∥∥∥∇M( jk)
k (XXXk)

∥∥∥).

We emphasize the following three issues pertaining to the model resulting from the

application of Algorithm 6.
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Algorithm 6 [Mk(XXXk + sss),∆k,Yk]=AdaptiveModelConstruction(∆̃k, Ỹk)
Require: Parameters from ASTRO-DF: candidate trust-region radius ∆̃k and candidate sample set Ỹk (pos-

sibly with cardinality < p).

Parameters specific to AdaptiveModelConstruction: trust-region contraction factor w ∈ (0,1), trust-

region and gradient balance constant µ , gradient inflation constant β with 0 < β < µ , and inner adaptive

sampling constant κias.

1: Initialize jk = 1, set Y ( jk)
k = Ỹk, and set YYY 1 = XXXk where XXXk is the first element of Ỹk.

Contraction loop:

2: repeat

3: Improve Y ( jk)
k =

{
YYY ( jk)

1 ,YYY ( jk)
2 , . . . ,YYY ( jk)

p

}
by appropriately choosing YYY ( jk)

i , i = 2,3, · · · , p

to make it a poised set in B(XXXk; ∆̃kw jk−1).

4: for i = 1 to p do

5: Estimate F̄
(

YYY ( jk)
i ,N

(
YYY ( jk)

i

))
, where

N
(

YYY ( jk)
i

)
= max

{
λk,min

{
n :

σ̂F (YYY i,n)√
n

≤ κias(∆̃kw jk−1)2√
λk

}}
. (4.2)

6: end for

7: Construct a quadratic model M( jk)
k (XXXk + sss) via interpolation.

8: Set jk = jk +1.

9: until ∆̃kw jk−1 ≤ µ‖∇M( jk)
k (XXXk)‖.

10: Set Mk(XXXk + sss) = M( jk)
k (XXXk + sss), ∇Mk(XXXk) = ∇M( jk)

k (XXXk), and ∇2Mk(XXXk) = ∇2M( jk)
k (XXXk).

11: return Mk(XXXk + sss), ∆k = min
{

∆̃k,max
{

β ‖∇Mk(XXXk)‖ , ∆̃kw jk−1
}}

, and Yk = Y ( jk)
k .

(i) Due to the nature of the chosen poised set Yk, the (hypothetical) limiting model

mk(XXXk) constructed from true function observations on Yk will be
(
κe f ,κeg

)
-fully-

linear (or
(
κe f ,κeg,κeh

)
-fully-quadratic) on the updated trust region B(XXXk;∆k). Of

course, the model mk(XXXk) is unavailable since true function evaluations are unavail-

able; and it makes no sense to talk about whether the constructed model Mk(XXXk)

is
(
κe f ,κeg

)
-fully-linear (or fully quadratic) since it is constructed from stochastic

function estimates.

(ii) By construction, the trust region resulting from the application of Algorithm 6 has a

radius that is at most β times the model gradient norm ‖∇Mk(XXXk)‖.
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(iii) The structure of adaptive sampling in Step 5 of Algorithm 6 is identical to that ap-

pearing for estimation in Step 4 of Algorithm 5. The adaptive sampling step simply

involves sampling until the estimated standard error of the function estimate comes

within a factor of the deflated square of the incumbent trust-region radius. As our

convergence proofs will reveal, balancing the estimated standard error to any lower

power of the incumbent trust-region radius will threaten consistency of ASTRO-DF’s

iterates.

Let us now resume our discussion of Algorithm 5. In Step 2, Algorithm 5 executes

AdaptiveModelConstruction to obtain a model Mk (zzz) ,zzz ∈ B (XXXk;∆k) whose limiting

approximation is
(
κe f ,κeg

)
-fully-linear (or

(
κe f ,κeg,κeh

)
-fully-quadratic) as observed in

(i). Step 3 in Algorithm 5 then approximately solves the constrained optimization problem

SSSk = argmin‖sss‖≤∆k
Mk (XXXk + sss) to obtain a candidate point X̃XXk+1 = XXXk + SSSk satisfying the

κ f cd-Cauchy decrease as defined in Assumption 6.

In preparation for checking if the candidate solution X̃XXk+1 provides sufficient decrease,

Step 4 of Algorithm 5 obtains Monte Carlo samples of the objective function at X̃XXk+1, until

the estimated standard error σ̂F

(
X̃XXk+1, Ñk+1

)
/

√
Ñk+1 of F̄

(
X̃XXk+1, Ñk+1

)
is smaller than

a slightly deflated square of the trust-region radius λ
−1/2
k κoas∆

2
k , subject to the sample size

being at least as big as λk (see Remark 5).

In Step 5 of Algorithm 5, the obtained function estimate is used to check if the ratio

ρ̂k of the predicted to the observed function decrease at the point X̃XXk+1 exceeds a fixed

threshold η1. If ρ̂k exceeds the threshold η1, the candidate X̃XXk+1 is accepted as the new

iterate XXXk+1, the iteration is deemed successful, and the trust-region is expanded (Step

6). If ρ̂k falls below the specified threshold η1, the candidate X̃XXk+1 is rejected (though it

may remain in the sample set), the iteration is deemed unsuccessful, and the trust-region

is shrunk (Step 9). In either case, ∆̃k+1 is set as the incumbent trust-region radius, Nk+1 is

set as the current sample size of XXXk+1, and Yk is set as the interpolation set for the next

iteration. Note that in the next iteration the sample size of XXXk+1 is subject to change through

Step 2 again.
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Remark 5. The sequence {λk} appearing as the first argument of the “max” function

in the expression for the adaptive sample size (in Step 4 of Algorithm 5 and Step 5 of

Algorithm 6) is standard for all adaptive sampling contexts, e.g., [35, 36], and intended to

nullify the effects of mischance without explicitly participating in the limit. It will become

evident through our proofs that the probability of the first argument in the expression for

the adaptive sample size being binding will decay to zero as k becomes large.

Lastly and similar to the analysis in Chapter 3, an important observation from the Al-

gorithms 5 and 6 is that the difference between the function estimates of two consecu-

tive iterates can be increasing. When iteration k is unsuccessful, that is XXXk = XXXk+1, it

is possible that F̄ (XXXk,Nk) < F̄ (XXXk+1,Nk+1). When iteration k is successful, we know

from Step 6 that F̄
(
XXXk, Ñk

)
> F̄ (XXXk+1,Nk+1) must be true but it is still possible that

F̄ (XXXk,Nk) < F̄ (XXXk+1,Nk+1) since F̄ (XXXk,Nk) 6= F̄
(
XXXk, Ñk

)
. This observation will later

be used in the convergence analysis.

4.3 Convergence Results

The convergence behavior of ASTRO-DF depends crucially on the behavior of three

error terms: (i) stochastic sampling error arising due to the fact that function evaluations

are through Monte Carlo simulation; (ii) model bias arising due to the choice of local

model; and (iii) stochastic interpolation error arising due to the fact that model prediction

at unobserved points is a combination of the model bias and the error in (i). (The analysis

in the deterministic context involves only the error in (ii).) Accordingly, driving the errors

in (i) and (ii) to zero sufficiently fast, while ensuring the fully linear or quadratic sufficiency

of the expected model, guarantees almost sure convergence.

Driving the errors in (i) and (ii) to zero sufficiently fast is accomplished by forcing

the sample sizes to increase across iterations at a sufficiently fast rate, something that we

ensure by keeping the estimated standard error of all function estimates in lock step with

the square of the trust-region radius. The trust-region radius is in turn also kept in lock-step

with the model gradient through the model construction Algorithm 6. Such a deliberate



79

lock-step between the model error, trust-region radius, and the model gradient is aimed at

efficiency without sacrificing consistency.

In what follows, we provide a formal proof of the with probability one convergence

of ASTRO-DF’s iterates. Recall that we assume that the models being constructed within

Step 2 of Algorithm 5 are either linear or quadratic interpolation models. Furthermore, we

focus only on convergence to a first-order critical point of the function f .

Throughout the following sections Assumption 5 holds for the ensuing theoretical proofs.

Assumption 5 enforces a uniform bound on the model Hessian over the whole feasible re-

gion and can be ensured by a check that is executed each time the model is constructed or

updated. The next assumption is the equivalent of Definition 8 for the SO context.

Assumption 6. (Cauchy Reduction) The minimizer obtained in the trust-region sub-problem

(Step 3 of Algorithm 5) satisfies a κ f cd-Cauchy decrease with κ f cd > 0, that is,

Mk (XXXk)−Mk (XXXk +SSSk)≥
κ f cd

2
‖∇Mk (XXXk)‖min

{
‖∇Mk (XXXk)‖
‖∇2Mk (XXXk)‖

,∆k

}
.

Similar to Definition 8 in the deterministic TRO-DF framework, some fraction of Cauchy

decrease establishes the link between trust-region radius ∆k and [stochastic] model gradi-

ent norm ‖∇M (XXXk)‖, as specified in Assumptions 6, which is crucial for the convergence

guarantee.

We now make a general assumption about the behavior of the function.

Assumption 7. (Lipschitz Continuous Gradients) The function f has Lipschitz continuous

gradients, that is, there exists νgL such that ‖∇ f (xxx)−∇ f (yyy)‖ ≤ νgL ‖xxx− yyy‖ for all xxx,yyy ∈

X⊆ IRd .

Similar analysis to the one in Chapter 3 can also be performed to enforce the bound-

edness of the function estimates and hence the Lipschitz continuous gradients assumption

can be restricted to a region instead of the entire domain but that requires changing {λk} to

k3(1+ε) =O(λk).
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Assumption 8. (Simulation Error) The Monte Carlo oracle, when executed at XXXk, gen-

erates independent and identically distributed random variates Fj(XXXk) = f (XXXk)+ ξi |Fk,

where ξ1,ξ2, . . . is a martingale-difference sequence adopted to Fk such that

sup
k
E[|ξi|4v |Fk]< ∞

for some v≥ 2.

Assumption 8 is arguably a mild assumption relating to the simulation oracle. The

convergence analysis is also based on the standing assumptions listed in Chapter 1. So

while these assumptions hold, we refuse to state them in the statement of the following

lemmas and theorems. Also we specifically use the results of Lemma 11 and Lemma 12

from Chapter 3.

Remark 6. It is our view that the minimum rate of increase on the lower bound sequence

{λk} can be reduced to a logarithmic increase instead of what has been specified in the in-

puts of Algorithm 5. In the notation of Theorem 7, where X̄n = n−1
∑

n
k=1 Xi for i.i.d random

variables Xi, i = 1,2, · · · ,n and N being the stopping time defined in the Theorem, this will

require a large-deviation type bound on the tail probability P{|X̄N |> t} after assuming the

existence of the moment-generating function of Xi’s. To the best of our knowledge there

currently exist no such results for fixed-width confidence interval stopping, which is the

context of Theorem 7.

4.4 Stochastic Interpolation Model Gradient Error Bounds

Before we present the main convergence results, we derive bounds on the stochastic

interpolation error incurred in Step 2 of Algorithm 5 between the model gradient and the

function gradient.

Lemma 14. Let Y =
{

XXX ,YYY 2, . . . ,YYY p
}

be a Λ-poised set on B (XXX ;∆). Let m(zzz) be an

interpolation model of f on B (XXX ;∆); let M (zzz) be the corresponding stochastic interpo-

lation model of f on B (XXX ;∆) constructed using observations F̄
(
XXX , Ñ (XXX)

)
= f (XXX)+E1,

F̄
(
YYY i, Ñ (YYY i)

)
= f (YYY i)+Ei for i = 2, . . . , p.
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(i) For all zzz ∈ B (YYY ;∆),

|M (zzz)−m(zzz)| ≤ κme (d) max
YYY i∈Y , i=1,...,p

∣∣F̄ (YYY i, Ñ (YYY i)
)
− f (YYY i)

∣∣ ,
where κme (d)> 0 is a dimension dependent constant.

(ii) If M (·) and m(·) are linear, there exist positive constants κegL1,κegL2 such that

‖∇M (XXX)−∇ f (XXX)‖ ≤ κegL1∆+κegL2

√
∑

d+1
i=2 (Ei−E1)

2

∆
.

If M (·) and m(·) are quadratic, there exist positive constants κegQ1,κegQ2 such that

‖∇M (XXX)−∇ f (XXX)‖ ≤ κegQ1∆
2 +κegQ2

√
∑
(d+1)(d+2)/2
i=2 (Ei−E1)

2

∆
.

For readability we drop the subscript k and superscript jk representing the outer loop

iteration number and the inner loop iteration number in the proof of Lemma 14.

Proof of (i). We know that for all zzz ∈ B (YYY 1;∆)

m(zzz) =
p

∑
i=1

`i (zzz) f (YYY i) ; M (zzz) =
p

∑
i=1

`i (zzz) F̄
(
YYY i, Ñ (YYY i)

)
,

with Lagrange polynomials ` j (zzz) defined in Definition 4. Notice that for univariate inter-

polation i.e. d = 1, one has

` j (z) = ∏
i6= j

1≤i≤p

(z−Yi)(
Yj−Yi

) .
Recall |`i (zzz)| = |det(P (Φ,Y))|−1 |det(P (Φ,Yi (zzz)))|, with Yi (zzz) = Y\{YYY i}∪ zzz. From

Definition 5 we know P (Φ,Y) is nonsingular and therefore |det(P (Φ,Y))|> 0. For all

zzz ∈ B (XXX ;∆) one has that |det(P (Φ,Yi (zzz)))|< ∞ (think about the volume of the simplex

of vertices of Φ after the replacement, noted in Remark 2) and hence |`i (zzz)| < ∞. Let Λ`

be defined as

Λ` = max
i=1,··· ,p

max
zzz∈B(YYY 1;∆)

|`i (zzz)| .
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It turns out Λ` is closely related to Lebesgue constant, defined as maxzzz∈B(YYY 1;∆)∑
p
i=1 |`i (zzz)|.

Hence

|M (zzz)−m(zzz)|=

∣∣∣∣∣ p

∑
i=1

`i (zzz)
(
F̄
(
YYY i, Ñ (YYY i)

)
− f (YYY i)

)∣∣∣∣∣
≤ Λl

p

∑
i=1

∣∣F̄ (YYY i, Ñ (YYY i)
)
− f (YYY i)

∣∣
≤ pΛl max

i∈{1,··· ,p}

∣∣F̄ (YYY i, Ñ (YYY i)
)
− f (YYY i)

∣∣ .
In Theorem 3.14 of [44, p. 51] it has been shown that Λ` is connected to the condition

number of the matrix P
(

Φ, Ŷ
)

where Ŷ is scaled by ∆ and shifted with respect to YYY 1

version of Y , i.e. Ŷ =
{

0,(YYY 2−YYY 1)/∆, · · · ,(YYY p−YYY 1)/∆
}
⊂ B (0;1). Specifically it is

shown that if
∥∥∥∥P (

Φ, Ŷ
)−1

∥∥∥∥≤ Λ, then Ŷ is
√

pΛ-poised in the unit ball B (0;1). �

Proof of (ii). We first derive the error bound expression for the stochastic linear interpola-

tion model, and then extend that to the quadratic interpolation model.

Let ML (XXX + sss) = ML (XXX)+ sssT ∇ML (XXX) be a stochastic linear interpolation model of f

on B (XXX ;∆) as in Definition 10. Next let Lk := L (Y) as in Definition 6 be nonsingular,

and by interpolation ML (XXX) = F̄
(
XXX , Ñ (XXX)

)
and ML (YYY i) = F̄

(
YYY i, Ñ (YYY i)

)
for i = 2, . . . , p.

After subtracting the first row from all other rows of Lk, we can write

(YYY i−XXX)T
∇ML (XXX) = ML (YYY i)−ML (XXX) = ( f (YYY i)− f (XXX))+(Ei−E1)

for i = 2, . . . , p. By Mean Value Theorem

f (YYY i)− f (XXX) =

1∫
0

(YYY i−XXX)T
∇ f (XXX + t (YYY i−XXX))dt,

hence by Lipschitz continuity of ∇ f assumed in Assumption 7, for all i = 2, . . . ,d +1

(YYY i−XXX)T (∇ f (XXX)−∇ML (XXX))≤
νgL

2
‖YYY i−XXX‖2 +(Ei−E1) .

Recall L (Y) from Definition 6. Now let us define

L̃ (Y) = ∆
−1


y1

2− y1
1 y2

2− y2
1 . . . yd

2− yd
1

...
...

...
...

y1
d+1− y1

1 y2
d+1− y2

1 . . . yd
d+1− yd

1

 .
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Then from all the inequalities we obtain

∆L̃ (Y)(∇ML (XXX)−∇ f (XXX))≤
νgL

2


‖YYY 2−XXX‖2

...

‖YYY d+1−XXX‖2

+


E2−E1
...

Ed+1−E1

 .
By taking the norm of the above inequality, and knowing that L̃(Y) is nonsingular from

Definition 5 we arrive at

‖∇ML (XXX)−∇ f (XXX)‖ ≤
∥∥L̃−1 (Y)

∥∥
∆

νgL

2

√
d∆

2 +

√√√√d+1

∑
i=2

(Ei−E1)
2

 .

Hence κegL1 =
∥∥L̃−1

k (Y)
∥∥ νgL

2

√
d and κegL2 =

∥∥L̃−1
k (Y)

∥∥.

Now we consider a stochastic quadratic interpolation model of f on B (XXX ;∆) as in

Definition 11

MQ (YYY i)−MQ (XXX) = (YYY i−XXX)T
∇MQ (XXX)+2−1 (YYY i−XXX)T

∇
2MQ (XXXk)(YYY i−XXX)

= ( f (YYY i)− f (XXX))+(Ei−E1) ,

where ∇MQ (XXXk) = GGGk + B̂kXXXk and ∇2MQ (XXXk) = B̂, assuming that f has Lipschitz con-

tinuous Hessian with the Lipschitz constant νHL. Using Taylor expansion we can write

(YYY i−XXX)T (∇MQ (XXXk)−∇ f (XXXk))+
1
2
(YYY i−XXX)T (

∇
2MQ (XXX)−∇

2 f (XXX)
)
(YYY i−XXX)

≤ ∆3

6
+Ei−E1

for i = 2, . . . , p. Recall Q (Y) from Definition 6. Similar to L̃ (Y) we define Q̃ (Y) as

Q̃ (Y) =


D∆−1 0

0 D∆−2




(y1
2−y1

1)
2

2

(
y1

2− y1
1
)(

y2
2− y2

1
)

. . .
(yd

2−yd
1)

2

2

∆L̃ (Y) ...
...

...
...

(y1
p−y1

1)
2

2

(
y1

p− y1
1
)(

y2
p− y2

1
)

. . .
(yd

p−yd
1)

2

2


where D∆−1 is a diagonal matrix of dimension d with ∆−1 diagonal entries and D∆−2 is

a diagonal matrix of dimension
√

d (d +1)/2 with ∆−2 diagonal entries. With all the
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above adjustments and defending the vector W with the elements of the matrix ∇2MQ (XXX)−

∇2 f (XXX) correctly ordered we get∥∥∥∥∥∥
 D∆ 0

0 D∆2

Q̃ (Y)

 ∇MQ (XXXk)−∇ f (XXXk)

W

∥∥∥∥∥∥
≤ νHL

6

√
d (d +1)+d

2
∆

3 +

√√√√(d+1)(d+2)/2

∑
i=2

(Ei−E1)
2.

Each vector in the left hand side is less than or equal to the quantity on the right. Knowing

that the scaled matrix Q̃(Y) is nonsingular from Definition 5 we arrive at

‖D∆ (∇MQ (XXXk)−∇ f (XXXk))‖≤
∥∥Q̃−1 (Y)

∥∥(νHL

6

√
d (d +1)+d

2
∆

3 +

√
p

∑
i=2

(Ei−E1)
2

)
.

Hence κegQ1 =
∥∥Q̃−1 (Y)

∥∥ νHL
6

√
d(d+1)+d

2 and κegQ2 =
∥∥Q̃−1 (Y)

∥∥. �

Note that for Ei defined in the lemma above since the sample average estimators are

unbiased, E [Ei] = 0 and in addition by Assumption 8, Var(E1) = σ2 (XXXk)/Ñ (XXXk), and

Var(Ei) = σ2 (YYY i)/Ñ (YYY i) for i = 2, . . . , p.

This result is crucial for almost sure convergence of the stochastic model gradient to

the true gradient, that is a key to the overall algorithm convergence results.

Next, we demonstrate through the following result that the model construction algo-

rithm (Algorithm 6) terminates with probability one, whenever the incumbent solution XXXk

is not a first-order critical point.

Lemma 15. Suppose the incumbent solution XXXk ∈ X during the kth iteration is not first-

order critical, that is, ∇ f (XXXk) 6= 0. Then Algorithm 6 terminates in a finite number of steps

with probability one.

Proof. Set ‖∇ f (XXXk)‖ = c′ > 0. We will prove the assertion through a contradiction argu-

ment.

First, we notice that the contraction loop (Steps 3-9 in Algorithm 6 is not entered if

µ ‖∇Mk (XXXk)‖ ≥ ∆̃k, in which case which case Algorithm 6 terminates trivially.
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Next, suppose µ ‖∇Mk (XXXk)‖ < ∆̃k and that the contraction loop in Steps 3-9 of Algo-

rithm 6 is infinite. Let ∇M( jk)
k (XXXk) denote the model gradient during the jk-th iteration of

the contraction loop. Then µ

∥∥∥∇M( jk)
k (XXXk)

∥∥∥< ∆̃kw jk−1, ∀ j ≥ 1. This means, since w < 1,

that ∆̃kw jk−1→ 0 and therefore
∥∥∥∇M( jk)

k (XXXk)
∥∥∥ wp1−−→ 0 as j→ ∞. Furthermore, due to the

sampling rule in (4.2) and by Theorem 1, we have that Ñ
(

YYY ( jk)
i

)
→ ∞ as jk → ∞, where

Ñ
(

YYY ( jk)
i

)
is the sample size at point YYY ( jk)

i after the jk-th iteration of the contraction loop.

Now, if E( jk)
k,i denotes the error due to sampling at point YYY ( jk)

i after the jk-th iteration of the

contraction loop, that is, E( jk)
k,i = F̄

(
YYY ( jk)

i , Ñ
(

YYY ( jk)
i

))
− f

(
YYY ( jk)

i

)
, we can write for large

enough k and some δ > 0,

P

∑
p
i=2

∣∣∣E( jk)
k,i −E( jk)

k,1

∣∣∣
∆̃kw jk−1

≥ c

≤ p

∑
i=2

E
[
P
{∣∣∣E( jk)

k,i −E( jk)
k,1

∣∣∣≥ c∆̃kw jk−1

(p−1)
|Fk

}]
≤ 2(p−1)34

(
c∆̃kw jk−1)−2

(1+δ )κ2
ias∆

4
kλ
−1
k

≤ 8(p−1)3c−2(1+δ )κ2
ias∆

2
kλ
−1
k , (4.3)

where the penultimate inequality above follows from arguments identical to those leading

to (3.12) in the proof of Lemma 11 after using the adaptive sample size expression in

(4.2). Since the right-hand side of (4.3) is summable, we conclude by Borel-Cantelli’s first

lemma [61] that (
∆̃kw jk−1)−1

p

∑
i=2

∣∣∣E( jk)
k,i −E( jk)

k,1

∣∣∣ wp1−−→ 0.

This implies, from Lemma 14 and since Algorithm 2 maintains models that are of sufficient

quality, that∥∥∥∇ f (XXXk)−∇M( jk)
k (XXXk)

∥∥∥≤ κ1
(
∆̃kw jk−1)θ

+κ2
(
∆̃kw jk−1)−1

p

∑
i=1

∣∣∣E( jk)
k,i −E( jk)

k,1

∣∣∣ wp1−−→ 0

as jk→ ∞, where θ , κ1, and κ2 are according to part (ii) of Lemma 14. We have arrived at

a contradiction since we argued that
∥∥∥∇M( jk)

k (XXXk)
∥∥∥ wp1−−→ 0 but then ‖∇ f (XXXk)‖= c > 0 by

the contrapositive assumption.

�

The next lemma shows that if a model has sufficient quality in a ball, it remains with

sufficient quality in any larger concentric ball. The proof is repeated from [44, p. 200]
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for completion. This result is needed to justify that the resulting model from Step 2 of

Algorithm 5 has sufficient quality in B (XXXk;∆k), given that ∆k can be larger than ∆̃kw jk−1

from Step 11 of Algorithm 6.

Lemma 16. Suppose Mk (·) is a stochastic interpolation model constructed on B
(
XXXk; ∆̃k

)
such that E [Mk (zzz)] is

(
κe f ,κeg

)
-fully linear onB

(
XXXk; ∆̃k

)
. Then E [Mk (zzz)] is also

(
κe f ,κeg

)
-

fully linear on B (XXXk;∆k) for ∆k ∈
[
∆̃k,∆max

]
.

Proof. Let sss be such that ‖sss‖∈
[
∆̃k,∆k

]
and let θ = ∆̃k/‖sss‖. Then mk (XXXk +θsss)=E [Mk (XXXk +θsss)]

is
(
κe f ,κeg

)
-fully linear on B

(
XXXk; ∆̃k

)
:

‖∇mk (XXXk +θsss)−∇ f (XXXk +θsss)‖ ≤ κeg∆̃k.

Since we know ∇ f and ∇mk are Lipschitz continuous with Lipschitz constants νgL and

νm
gL and assuming that without loss of generality κeg > νgL +νm

gL,

‖∇ f (XXXk + sss)−∇ f (XXXk +θsss)−∇mk (XXXk +θsss)+∇mk (XXXk + sss)‖

≤ ‖∇ f (XXXk + sss)−∇ f (XXXk +θsss)‖+‖∇mk (XXXk + sss)−∇mk (XXXk +θsss)‖

≤ νgL ‖sss‖(1−θ)+ν
m
gL ‖sss‖(1−θ)

=
(
νgL +ν

m
gL
)(
‖sss‖− ∆̃k

)
≤ κeg

(
‖sss‖− ∆̃k

)
.

.

Combining the above inequalities we reach ‖∇ f (XXXk + sss)−∇mk (XXXk + sss)‖ ≤ κeg ‖sss‖ ≤

κeg∆k.

Now we define φ (α) = f (XXXk +αsss) + mk (XXXk +αsss) for α ∈ [0,1]. We know that

|φ (θ)| ≤ κe f ∆̃2
k since the model is

(
κe f ,κeg

)
-fully linear on B

(
XXXk; ∆̃k

)
. We need to bound

|φ (1)|. Assuming withouth loss of generality that κe f ≥ 2−1κeg we write

|φ (1)−φ (θ)|=
∣∣∣∣∫ 1

θ

φ
′ (α)dα

∣∣∣∣
≤
∫ 1

θ

‖sss‖‖ f (XXXk +αsss)−mk (XXXk +αsss)‖dα

≤
∫ 1

θ

κeg ‖sss‖2
αdα =

1
2

κeg

(
‖sss‖2− ∆̃

2
k

)
.

.
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Hence we finally arrive at

| f (XXXk + sss)−mk (XXXk + sss)| ≤ |φ (1)−φ (θ)|+ |φ (θ)|

≤ κe f ‖sss‖2 ≤ κe f ∆̃
2
k .

which implies the model is
(
κe f ,κeg

)
-fully linear on B (XXXk;∆k).

�

4.5 Main Results

We are now ready to present the main convergence results. We crucially use the result

in Lemma 11 stating that when Assumption 8 holds, the sequence of function estimates

observed across the iterates is almost surely bounded from below, that is, mischance cannot

lead ASTRO-DF’s iterates to wander in an unbounded fashion.

Next, we state a theorem that plays a crucial role in proving the overall convergence

of ASTRO-DF iterates. Recall that even in deterministic TRO-DF algorithms, unlike trust-

region algorithms where derivative observations are available, the trust-region radius nec-

essarily needs to converge to zero for successful convergence. Theorem 10 states that this

is indeed the case for ASTRO-DF. The proof rests on Lemma 11 and the assumed sufficient

Cauchy decrease guarantee during Step 11 of Algorithm 6.

Theorem 10. Suppose f is continuously differentiable and bounded from below. Let As-

sumptions 5 , 6, and 8 hold. Then ∆k
wp1−−→ 0 as k→ ∞.

Proof. Note that F̄ (XXX i,Ni) denotes the function estimate at the point XXX i before entering the

model construction step during the i-th iteration (or the function estimate at the candidate

point at the end of the (i−1)-th iteration), and F̄
(
XXX i, Ñi

)
the function estimate upon exiting

the model construction step during the i-th iteration. We can then write

F̄ (XXXk,Nk) = F̄ (XXX1,N1)+
k−1

∑
i=1

(Ai +Bi) (4.4)

where the summands Ai = F̄ (XXX i+1,Ni+1)− F̄
(
XXX i, Ñi

)
and Bi = F̄

(
XXX i, Ñi

)
− F̄ (XXX i,Ni). In

words Ai represents the reduction in the function estimates during the ith iteration and Bi
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represents the difference between the two estimates of the function at the point XXX i at the

end of iteration i−1 and i. We now make the following observations about Ai and Bi.

(a) If i is an unsuccessful iteration, then Ai = 0 since XXX i = XXX i+1.

(b) If i is a successful iteration, we know by definition that ρ̂i ≥ η1. If we denote

κe f d = (2µ)−1η1κ f cd min
{
(µκbhm)

−1 ,1
}

, then by Assumptions 5 and 6 , and by

the assurance in Algorithm 6 that ∆k ≤ µ ‖∇Mk (XXXk)‖, we have

Ai ≤ η1 (Mi (XXX i+1)−Mi (XXX i))

≤−η1

2
κ f cd ‖∇Mi (XXX i)‖min

{
‖∇Mi (XXX i)‖
‖∇2Mi (XXX i)‖

,∆i

}
≤−κe f d∆

2
i .

(4.5)

(c) For any given c> 0, (3.12) in the proof of Lemma 11 ensures that P{|Bi|> c, i.o.}=

0 since

P
{∣∣F̄ (XXX i, Ñi

)
− F̄ (XXX i,Ni)

∣∣> c
}
≤ P

{∣∣F̄ (XXX i, Ñi
)
− f (XXX i)

∣∣> c
2

}
+P

{
| f (XXX i)− F̄ (XXX i,Ni)|>

c
2

}
using the Boole’s inequality (see Definition 9). This implies that except for a set of

measure zero, |Bi| ≤ c for large enough i.

Now suppose D := {ω : limk→∞ ∆k (ω) 6= 0} denotes the set of sample-paths for which

the trust-region radius does not decay to zero. For contraposition, suppose D has positive

measure. Consider a sample-path ω0 ∈ D. Since unsuccessful iterations are necessarily

contracting iterations, we can find δ (ω0) > 0 and a sub-sequence of successful iterations

{k j} in the sample-path ω0 such that ∆k j (ω0)≥ δ (ω0). This implies from observation (b)

above that

Ak j (ω0)≤−κe f dδ
2(ω0). (4.6)

Now the iterations k j +1, . . . ,k j+1−1 are all unsuccessful iterations, implying from obser-

vation (a) above that

Ak j+` = 0, `= 1,2, . . . ,k j+1− k j−1. (4.7)



89

Also, by the observation (c) above, and choosing c = 1
3κe f dδ 2(ω0), we see that for large-

enough i, ∣∣F̄ (XXX i (ω0) , Ñi (ω0)
)
− F̄ (XXX i (ω0) ,Ni (ω0))

∣∣≤ 2
3

κe f dδ
2(ω0). (4.8)

We then write for large-enough j,

k j+1−1

∑
`=k j

(A` (ω0)+B` (ω0)) = Ak j (ω0)+
k j+1−1

∑
`=k j

B` (ω0)

= Ak j (ω0)

+ F̄
(

XXXk j+1−1 (ω0) , Ñk j+1−1 (ω0)
)
− F̄

(
XXXk j+1 (ω0) ,Nk j+1 (ω0)

)
≤−1

3
κe f dδ

2(ω0),

(4.9)

where the first equality follows from observation (a) above, the second equality follows

from the definition of B`, and the third inequality follows from (4.6) and (4.8). The in-

equality in (4.9) (and the fact that there is an entire sequence {k j} of successful iterations)

means that limk→∞ F̄ (XXXk (ω0) ,Nk (ω0)) =−∞ thus contradicting Lemma 11. The assertion

of the theorem thus holds. �

Relying on Theorem 10, we now show that the model gradient converges to the true

gradient almost surely. This, of course, does not imply that the true gradient itself converges

to zero — a fact that will be established subsequently.

Lemma 17. Suppose f is continuously differentiable and bounded from below. Let As-

sumptions 5, 6, and 8 hold. Then ‖∇Mk (XXXk)−∇ f (XXXk)‖
wp1−−→ 0 as k→ ∞.

Proof. From Lemma 15 the stochastic model Mk constructed via Algorithm 6 terminates in

finite time. In Step 2 of Algorithm 6 let ∆̃kw jk−1 denote the trust-region radius over which

the model is constructed. (Note that due to Step 11 of Algorithm 6, ∆̃kw jk−1 may or may

not equal the exiting trust-region radius ∆k upon completion of k iterations of ASTRO-DF.)

Then, we know from part (ii) of Lemma 14 that

‖∇Mk (XXXk)−∇ f (XXXk)‖ ≤ κ1
(
∆̃kw jk−1)θ

+κ2

√
∑

p
i=2

(
E( jk)

k,i −E( jk)
k,1

)2

(
∆̃kw jk−1

) ,
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where E( jk)
k,1 = F̄

(
XXXk, Ñ (XXXk)

)
− f (XXXk) is the error of the sampled function estimate at the

center point of the trust-region, and E( jk)
k,i = F̄

(
YYY ( jk)

i , Ñ
(

YYY ( jk)
i

))
− f
(

YYY ( jk)
i

)
for i= 2, . . . , p

are the errors of the sampled function estimates at the interpolation points. (Note that

p = d + 1 and θ = 1 in the linear interpolation models, and p = (d + 1)(d + 2)/2 and

θ = 2 in the quadratic interpolation models. For the quantities κ1 and κ2 refer to part (ii)

of Lemma 14.) For readability we let XXXk = YYY ( jk)
1 .

We know from Theorem 10 that ∆k
wp1−−→ 0 as k→ ∞, and hence, ∆̃kw jk−1 wp1−−→ 0 as

k→ ∞. Also,√
p

∑
i=2

(
E( jk)

k,i −E( jk)
k,1

)2
≤

p

∑
i=2

√(
E( jk)

k,i −E( jk)
k,1

)2
=

p

∑
i=2

∣∣∣E( jk)
k,i −E( jk)

k,1

∣∣∣ .
Considering these two observations, it suffices to show that as k→ ∞,(

∆̃kw jk−1)−1
p

∑
i=2

∣∣∣E( jk)
k,i −E( jk)

k,1

∣∣∣ wp1−−→ 0. (4.10)

Towards this, we write for c > 0 and large enough k and some δ > 0,

P

∑
p
i=2

∣∣∣E( jk)
k,i −E( jk)

k,1

∣∣∣(
∆̃kw jk−1

) ≥ c

≤ p

∑
i=2

E

[
P

{∣∣∣E( jk)
k,i −E( jk)

k,1

∣∣∣≥ c
(
∆̃kw jk−1)
p−1

|Fk

}]

≤
p

∑
i=2

(
E

[
P

{∣∣∣E( jk)
k,i

∣∣∣≥ c
(
∆̃kw jk−1)

2(p−1)

}
|Fk

]

+E

[
P

{∣∣∣E( jk)
k,1

∣∣∣≥ c
(
∆̃kw jk−1)

2(p−1)

}
|Fk

])
≤ 2(p−1)34

(
c∆̃kw jk−1)−2

(1+δ )κ2
ias(∆̃kw jk−1)4

λ
−1
k

≤ 8(p−1)3c−2(1+δ )κ2
ias∆

2
kλ
−1
k , (4.11)

where the penultimate inequality above follows from arguments identical to those leading

to (3.12) in the proof of Lemma 11 after using the adaptive sample size expression in (4.2).

Since the right-hand side of (4.11) is summable, we can invoke the first Borel-Cantelli

lemma [61] to conclude that (4.10) holds.

�

We now show that for large enough iteration k, the steps within ASTRO-DF are always

successful with probability one. This result is important in that it implies that the model
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gradient and the trust-region radius will remain in lock-step for large k, almost surely. The

proof proceeds by dividing the model error into three components, each of which is shown

to be controlled with probability one.

Theorem 11. Suppose f is continuously differentiable and bounded from below. Let As-

sumptions 5, 6, and 8 hold. Then P{|ρ̂k−1| ≥ 1−η1, i.o.}= 0 for any η1 ∈ (0,1).

Proof. At the end of Step 2 of Algorithm 6, let m( jk)
k (zzz) be the interpolation model of f

constructed on the poised set Yk. (Of course, we cannot construct mk(·) explicitly because

the true function values are unknown.) Then m( jk)
k (zzz) is a

(
κe f ,κeg

)
-fully-linear model

of f on B
(
XXXk; ∆̃kw jk−1) and since ∆k ≥ ∆̃kw jk−1, by Lemma 16 we have that mk (·) is

a
(
κe f ,κeg

)
-fully-linear model of f on B (XXXk;∆k). In addition, Algorithm 6 ensures that

∆k ≤ µ ‖∇Mk (XXXk)‖.

Assumption 6 on the Cauchy decrease in the minimization problem implies that

Mk (XXXk)−Mk (XXXk +SSSk)≥
κ f cd

2
‖∇Mk (XXXk)‖min

{
‖∇Mk (XXXk)‖
‖∇2Mk (XXXk)‖

,∆k

}
≥

κ f cd

2
‖∇Mk (XXXk)‖min

{
∆k

µκbhm
,∆k

}
≥ κmd∆

2
k . (4.12)

where

κmd = (2µκbhm)
−1min(µκ

−1
bhm,1)κ f cd .

Recall that

ρ̂k :=
F̄
(
XXXk, Ñk

)
− F̄

(
X̃XXk+1, Ñk+1

)
Mk(XXXk)−Mk(X̃XXk+1)

and that F̄
(
XXXk, Ñk

)
=Mk (XXXk). Now using Boole’s inequality (see Definition 9) and (4.12),

we can write

P{ρ̂k < η1}= P{|1− ρ̂k| ≥ 1−η1}

≤ P

{∣∣F̄ (X̃XXk+1, Ñk+1
)
−Mk

(
X̃XXk+1

)∣∣+ ∣∣F̄ (XXXk, Ñk
)
−Mk (XXXk)

∣∣∣∣Mk (XXXk)−Mk
(
X̃XXk+1

)∣∣ ≥ 1−η1

}
≤ P

{∣∣F̄ (X̃XXk+1, Ñk+1
)
−Mk

(
X̃XXk+1

)∣∣≥ (1−η1)κmd∆
2
k
}

≤ P
{

Err1 ≥ η
′
∆

2
k
}
+P

{
Err2 ≥ η

′
∆

2
k
}
+P

{
Err3 ≥ η

′
∆

2
k
}
, (4.13)



92

where
Err1 :=

∣∣Mk
(
X̃XXk+1

)
−mk

(
X̃XXk+1

)∣∣ ,
Err2 :=

∣∣mk
(
X̃XXk+1

)
− f

(
X̃XXk+1

)∣∣ ,
Err3 :=

∣∣ f (X̃XXk+1
)
− F̄

(
X̃XXk+1, Ñk+1

)∣∣ ,
and η ′ = 3−1 (1−η1)κmd . (It is useful to interpret three errors Err1, Err2 and Err3

on the right-hand side of (4.13) as the stochastic interpolation error, the deterministic

model error, and the stochastic sampling error respectively.) In what follows, we establish

P{ρ̂k < η1 i.o.}= 0 by demonstrating that each of the errors Err1,Err2 and Err3 exceed-

ing η ′∆2
k infinitely often has probability zero.

We first analyze the stochastic interpolation error probability P
{

Err1 ≥ η ′∆2
k

}
appear-

ing on the right-hand side of (4.13). Recall p = d + 1 for linear interpolation. Using part

(i) of Lemma 14 and relabeling XXXk to YYY 1 for readability, we write

P
{

Err1 > η
′
∆

2
k
}
≤ P

 max
YYY i∈Yk,

i=1,2,...,p

∣∣F̄ (YYY i, Ñ (YYY i)
)
− f (YYY i)

∣∣> η
′
∆

2
k


≤

p

∑
i=1

P
{∣∣F̄ (YYY i, Ñ (YYY i)

)
− f (YYY i)

∣∣> η
′∆

2
k

p

}
=

p

∑
i=1

E
[
P
{∣∣F̄ (YYY i, Ñ (YYY i)

)
− f (YYY i)

∣∣> η
′∆

2
k

p
|Fk

}]
. (4.14)

Now using (4.14) and arguments identical to those leading to (3.12) in the proof of Lemma

11 (and the sample size expression in Step 2 (b) of Algorithm 6), we can then say for large

enough k and some δ > 0 that

P
{

Err1 > η
′
∆

2
k
}
≤ p3(η ′∆2

k)
−2(1+δ )κ2

ias∆
4
kλ
−1
k

≤ p3
η
′−2(1+δ )κ2

iasλ
−1
k . (4.15)

Since λk is chosen so that k1+ε = O(λk) for some ε > 0, we see that (4.15) implies that

P
{(

F̄
(
YYY i, Ñ (YYY i)

)
− f (YYY i)

)
> η ′∆2

k i.o.
}
= 0 by Borel-Cantelli. This in turn implies from

(4.14) that

P
{∣∣Mk

(
X̃XXk+1

)
−mk

(
X̃XXk+1

)∣∣≥ η
′
∆

2
k i.o.

}
= 0. (4.16)

Next we analyze the deterministic model error probability P
{

Err2 ≥ η ′∆2
k

}
appearing

on the right-hand side of (4.13). Since we know from the postulates of the theorem that
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mk (zzz) is a
(
κe f ,κeg

)
-fully-linear model of f on B (XXXk;∆k), implying that if η1 is chosen so

that η ′ = 1
3(1−η1)κmd > κe f , we have

P
{∣∣mk

(
X̃XXk+1

)
− f

(
X̃XXk+1

)∣∣≥ η
′
∆

2
k i.o.

}
= 0. (4.17)

Finally, we analyze the stochastic sampling error probability P
{

Err3 ≥ η ′∆2
k

}
appear-

ing on the right-hand side of (4.13). Using arguments identical to those leading to (3.12) in

the proof of Lemma 11, it is seen that

P
{∣∣ f (X̃XXk+1

)
− F̄

(
X̃XXk+1, Ñk+1

)∣∣≥ η
′
∆

2
k i.o.

}
= 0. (4.18)

Conclude from (4.16), (4.17), and (4.18) that each of errors Err1,Err2 and Err3 exceed-

ing η ′∆2
k infinitely often has probability zero and the assertion of Theorem 11 holds. �

Lemma 18. For any sample path ω ∈ Ω if there exists a constant κlbg (ω)> 0, such that

‖∇Mk (XXXk (ω))‖ ≥ κlbg (ω) for large enough k, then there exists a constant κlbd (ω) > 0

such that ∆k (ω)≥ κlbd (ω) for large enough k.

Proof. Let Kg (ω) > 0 be such that ‖∇Mk (XXXk (ω))‖ ≥ κlbg if k > Kg (ω). From Theorem

11, we let Ks (ω) > 0 be such that Ks (ω)− 1 is the last unsuccessful iteration, that is, k

is a successful iteration if k ≥ Ks (ω). Then ∆̃k (ω) > ∆k−1 (ω) for all k ≥ Ks (ω). For

k ≥max
{

Kg (ω) ,Ks (ω)
}
+1, consider the two cases below when Algorithm 6 starts.

CASE 1 (∆̃k (ω) ≥ µ ‖∇Mk (XXXk (ω))‖): Since ∆̃k (ω) ≥ µ ‖∇Mk (XXXk (ω))‖, the inner loop of

Algorithm 6 is executed, implying that

∆k (ω)≥ β‖∇Mk (XXXk (ω))‖ ≥ βκlbg (ω) .

CASE 2 (∆̃k (ω) < µ ‖∇Mk (XXXk (ω))‖): In this scenario, the inner loop of Algorithm 6 is not

executed, implying that ∆k (ω) = ∆̃k (ω) = γ1∆k−1 (ω) meaning that the trust-region

radius expands from the previous iteration.

CASE 1 and CASE 2 iterations are mutually exclusive and collectively exhaustive.

CASE 1 iterations imply, under the assumed postulates, that ∆k (ω) ≥ βκlbg (ω); CASE

2 iterations result in an expanded trust-region radius. Conclude from these assertions that

∆k (ω)≥min
{

βκlbg (ω) ,∆max{Kg(ω),Ks(ω)}
}

. �
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We are now fully setup to demonstrate that ASTRO-DF’s iterates converge to a first-

order critical point with probability one.

Theorem 12. Suppose f is continuously differentiable and bounded from below. Let As-

sumptions 5, 6 hold. Then ‖∇ f (XXXk)‖
wp1−−→ 0 as k→ ∞.

Proof. Lemma 18 and Theorem 10 together imply that liminfk→∞ ‖∇Mk (XXXk)‖= 0 almost

surely. This, along with Lemma 17, implies that liminfk→∞ ‖∇ f (XXXk)‖= 0 almost surely.

We now use the lim-inf convergence just established to prove the assertion of Theorem

12 through a contrapositive argument. Note that the following results hold for any given

sample path ω ∈Ω, but for the sake of readability we remove ω .

Suppose we have a subsequence of iterations {ti} such that ‖∇ f (XXX ti)‖ > 3ε for some

ε > 0. Due to the lim-inf type convergence just established, for every ti there exists `i = `(ti)

that is the first iteration after ti with {`i} such that ‖∇ f (XXX `i)‖ < 2ε . Therefore if we let

Ki = {k : ti ≤ k ≤ `i}, then ‖∇ f (XXXk)‖ ≥ 2ε for all k ∈ Ki. Choose i large enough so that

for all k ∈Ki

(i) ρ̂k ≥ η1 (only successful iterations),

(ii) ‖∇Mk (XXXk)‖ ≥ 2ε (model gradient close to the function gradient),

(iii) ∆k ≤ κ
−1
bhmε (trust-region radius small), and

(iv) |F̄ (XXXk,Nk)− f (XXXk)| ≤ 8−1η1εκ f cd∆k (simulation error small).

where we use Theorem 11, Lemma 17, Theorem 10, and Lemma 11 (in which we choose

c f = 8−1η1εκ f cd∆k) respectively.

Then we have

F̄ (XXXk+1,Nk+1)− F̄ (XXXk,Nk)≤ F̄ (XXXk+1,Nk+1)− F̄
(
XXXk, Ñk

)
+
∣∣F̄ (XXXk, Ñk

)
− f (XXXk)

∣∣+ | f (XXXk)− F̄ (XXXk,Nk)|

≤ −η1
κ f cd

2
ε∆k +η1

κ f cd

4
ε∆k

=−η1
κ f cd

4
ε∆k, (4.19)
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and as a result

∆k ≤
−4

η1κ f cdε
(F̄ (XXXk+1,Nk+1)− F̄ (XXXk,Nk)) ,

for all k ∈Ki. It follows that

‖XXX `i−XXX ti‖ ≤ ∑
j∈Ki

∥∥XXX j+1−XXX j
∥∥≤ ∑

j∈Ki

∆ j

≤ −4
η1κ f cdε

∑
j∈Ki

F̄
(
XXX j+1,N j+1

)
− F̄

(
XXX j,N j

)

≤ −4
η1κ f cdε

(F̄ (XXX `i,N`i)− F̄ (XXX ti,Nti)) ,

and hence deduce that ‖XXX `i−XXX ti‖
wp1−−→ 0 since using (4.19)

F̄ (XXX `i,N`i)− F̄ (XXX ti,Nti) = ∑
j∈Ki

F̄
(
XXX j+1,N j+1

)
− F̄

(
XXX j,N j

)
≤−η1

κ f cd

4
ε (`i− ti)max

j∈Ki
∆ j,

in which max j∈Ki ∆ j
wp1−−→ 0 as i→ ∞ by Theorem 10. We also observe similar to the

argument in (3.19) that | f (XXX `i)− f (XXX ti)|
wp1−−→ 0.

Knowing the function gradient ∇ f (xxx) is Lipschitz continuous, we conclude as i→∞ we

must have ‖∇ f (XXX `i)−∇ f (XXX ti)‖
wp1−−→ 0; but this indicates that ‖∇ f (XXX `i)−∇ f (XXX ti)‖< ε

almost surely for large enough i, contradicting the definition of ti and `i, hence proving the

assertion of the Theorem. �
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5. IMPLEMENTATION HEURISTICS AND NUMERICAL

EXPERIENCE WITH ASTRO-DF

ASTRO and ASTRO-DF are adaptive sampling algorithms that globally converge to a crit-

ical point with probability one. Such consistency results provide only a minimum level of

guarantee in that they, unfortunately, do not assure finite-time efficiency of the proposed

algorithms. Our extensive numerical experience shows that certain heuristics, particularly

within ASTRO-DF, are especially important to ensure stable performance. This chapter

describes such heuristics in an organized way. We also report numerical results from the

implementation of ASTRO-DF on low to moderate dimensional problems. For numerical

illustration, we use suite of problems similar to that used in experiments with ASTRO in

Chapter 3.

5.1 Key Implementation Heuristics

As noted, notwithstanding the global convergence proofs, certain implementation heuris-

tics appear to be important to ensure ASTRO-DF’s good finite-time performance. For

example, the choice of interpolation points in the model construction step, trust-region

management details, the manner in which historical iterates are re-used in the model con-

struction step, and the specific methods used for updating iterates, all affect ASTRO-DF’s

functioning. In what follows we detail five such aspects listed here in order of importance.

1. Choosing the set of design points Y ( jk)
k for model construction in Algorithm 6 (Sec-

tion 5.1.1).

2. Choosing the algorithm parameters to enhance practical efficiency (Section 5.1.2).
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3. Pre-processing to identify the initial point XXX0 and the initial trust-region radius ∆0

(Section 5.1.3).

4. Solving the trust-region sub-problem (Section 5.1.4).

5. Choosing an iterate subsequent to a successful iteration (Section 5.1.5).

The almost sure convergence results of ASTRO-DF are not affected by the choices sug-

gested in subsections 5.1.2, 5.1.3, and 5.1.4; they are, however, affected by our proposals

in subsections 5.1.1 and 5.1.5. Specifically, the convergence proofs for ASTRO-DF in [63]

require the interpolation set Yk to remain certifiably fully poised in every iteration. The

implementation of ASTRO-DF that we discuss here relaxes this stipulation, thereby threat-

ening convergence. We speculate that the convergence proofs in [63] could be generalized

to subsume the relaxation we propose, by stipulating full linearity only on a subsequence

of iterations.

5.1.1 Choosing Design Points for the Model Construction Step

The quality of models constructed within ASTRO-DF crucially affects ASTRO-DF’s

performance. There is, however, a natural tension between constructing accurate models

and the fast convergence of ASTRO-DF. Constructing accurate models entails identifying a

“well dispersed” set of design points and then sampling adequately at each of these identi-

fied points. And, the need to identify a well-dispersed set of points means that past iterates,

which are usually highly correlated, can only be used sparingly, if at all. In what follows,

we detail a proposal that balances the competing need for well dispersed points and the

inclusion of past algorithm iterates into the design set. (What we detail here applies toward

executing Step 3 in Algorithm 6.)

Our proposal to identify the p = (d + 1)(d + 2)/2 design points needed to construct a

full set Yk involves the following two steps.

(i) Identify a well dispersed subset, defined in a certain rigorous sense, from amongst

the already observed points for inclusion into Y ( jk)
k ; and
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(ii) if the cardinality of the set identified in (i) is less than p, identify additional well

dispersed points to complete the full set Y ( jk)
k .

The steps for choosing design points towards constructing a model are listed in Algo-

rithm 7, requiring the TR radius and model gradient norm in the latest iteration of the

model construction loop of Algorithm 6, as well as the history of all visited points.

For (i) (Steps 1–11), a convenient method for the identification of “poised” points, de-

noted as Yinit is through the maximization of Lagrange functions, as detailed in Algorithm

6.2 in [44, p. 95] , where the Lagrange functions are first reset to the normal basis of a

quadratic interpolation model, that is,

Φ(z) := (φ1,φ2, . . . ,φp) =

(
1,z1,z2, . . . ,zd,

1
2
(z1)2,z1z2, . . . ,

1
2
(z2)2, . . . ,

1
2
(zd)2

)
,

and then updated according to the new design points added to the set. We use the COBYLA

(Constrained Optimization BY Linear Approximation) procedure [64] for this purpose.

Moreover we identify, from amongst all points visited by ASTRO-DF and lying within

the current trust-region, a subset of points such that the distance between any two points

included within the subset is at least θ ∆̃kw jk−1, θ ∈ (0,1). We call this subset Ypool . Then,

for re-using purposes, the equivalent points in Ypool to those in Yinit are considered for

inclusion in the sample set. An equivalent of a point is defined as the closest one of Ypool

with the distance of at most θ ′∆̃kw jk−1, θ ′ < θ , to the point.

The current iterate (and centre of the trust-region) is always included within the sample

set. In the unlikely event that the cardinality of the subset identified in (i) is equal to p,

we have successfully identified the complete set Y ( jk)
k . Otherwise, as part of (ii) (Step 12–

22), we search for additional points that would complete the set Y ( jk)
k while satisfying the

minimum separation θ ∆̃kw jk−1 between all pairs of points. The criticality alert, triggered if

the most recent model gradient norm is small, enforces high quality models by choosing the

remainder of the sample set from new points in Yinit . Albeit with no evidence of criticality,

the additional points are selected from old points in Ypool .
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Algorithm 7 [Y ( jk)
k ]=SampleSelection(∆̃kw jk−1,XXXk,

∥∥∥∇M( jk)
k (XXXk)

∥∥∥ ,⋃k−1
`=0

⋃ j`
t=1Y

(t)
` )

Require: Parameters from AdaptiveModelConstruction: TR radius ∆̃kw jk−1, current iterate XXXk, current

model gradient norm
∥∥∥∇M( jk)

k (XXXk)
∥∥∥, and previous sample sets

⋃k−1
`=0

⋃ j`
t=1Y

(t)
` .

Parameters specific to SampleSelection: minimum separation constant 0 < θ < 1 , equivalence con-

stant 0 < θ ′ < θ and criticality constant εg.

1: Find a new poised set Yinit =
{

XXXk,YYY 2,YYY 3, · · · ,YYY p
}

using Lagrange polynomials. Let Y ( jk)
k = {XXXk},

J =∅ and Ypool =∅.

2: for all yyy ∈
⋃ jk−i

t=1 Y
(t)
k−i∩B

(
XXXk; ∆̃kw jk−1

)
, i = 1,2, · · · ,k do {Check the visited points, starting from the

most recent.}

3: if yyy /∈
⋃

z∈Ypool
B
(
z;θ ∆̃kw jk−1

)
then {If not within minimum separation with other points, add to the

pool.}

4: Set Ypool = Ypool ∪{yyy}.

5: end if

6: end for

7: for all YYY i ∈ Yinit , i = 2,3, · · · , p do

8: if YYY ′i := argmin
z∈Ypool∩B(YYY i;θ ′∆̃kw jk−1)

‖z−YYY i‖2 exists, then {Select those points of Yinit that have

equivalents in Ypool .}

9: Set Y ( jk)
k = Y ( jk)

k ∪
{

YYY ′i
}

and J = J ∪{i}. {Place their closest equivalent in Y ( jk)
k .}

10: end if

11: end for

12: if
∣∣∣Y ( jk)

k

∣∣∣< p, then {If the sample set does not have p points in it choose the rest based on criticality.}

13: if
∥∥∥∇M( jk)

k (XXXk)
∥∥∥< εg, then {Alert if the current TR is in critical region, implying poised-ness must

be maintained.}

14: for all i = 2 to p and i /∈ J do {Choose the remainder of the points from the new points in the

poised set Yinit .}

15: Y ( jk)
k = Y ( jk)

k ∩{YYY i}.

16: end for

17: else

18: while
∣∣∣Y ( jk)

k

∣∣∣ 6= p do {Choose the remainder of the points from the points in Ypool .}

19: Set YYY best := argmax
z∈Y pool

∑
yyy∈Y ( jk)

k
‖z− yyy‖2. {Choose the point with largest cumulative distance to all

members of Y ( jk)
k .}

Set Ypool = Ypool\{YYY best} and Y ( jk)
k = Y ( jk)

k ∪{YYY best}

20: end while

21: end if

22: end if
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5.1.2 Choosing Algorithm Parameters

The parameters in ASTRO-DF fall into two categories: general trust-region parameters

and adaptive sampling parameters. We now discuss the choice and effect of these parame-

ters in broad terms. It must be understood that, just as in much of algorithm design, there is

a certain subjectivity in the choice of algorithm parameters. Convergence theory frequently

leaves open a wide range of possibilities for algorithm parameter choice, which must then

be narrowed through empirical experience. In accordance with the philosophy that a well

designed algorithm implementation should not expect a user to choose algorithm parame-

ters, we suggest default values for all parameters we discuss here. All results reported in

the section on numerical results were obtained using default parameter settings.

General Trust-Region Parameters

The general parameters in the trust-region framework include η1,γ1,γ2,β ,µ and w. For

all experiments that we report in section 5.2 we have used the following default parameter

settings: γ1 = 1.2,γ2 = 0.9,β = 0.5,µ = 2.0, and w = 0.9. In what follows, we provide

some intuition on each of these parameters.

The parameter η1 is a threshold for sufficient reduction in the function estimated value

when moving from the current iterate XXXk to the candidate solution X̃XXk+1. Large values of

η1 make the sufficient reduction condition more stringent, stipulating higher model accu-

racies; small values of η1 make the sufficient reduction condition more lax, allowing for

explorative moves. It is worth noting that the ASTRO-DF algorithm as listed in this paper

includes only a sufficient decrease condition. By contrast, the deterministic TRO-DF algo-

rithm proposed by [46] includes an additional constant η0 that is meant to allow a simple

decrease condition in addition to the sufficient decrease condition.

ASTRO-DF accepts the candidate point as the next iterate when the reduction predicted

by the model exceeds the estimated reduction by a factor η1; such acceptance then amounts

to a tacit acknowledgement that the newly constructed model can perhaps adequately rep-

resent the objective function in a region with a radius that is larger than the incumbent



101

trust-region radius. The parameter γ1 controls the extent of such increase in the trust-region

radius post candidate acceptance. Conversely, when a candidate point is not accepted due

to the predicted decrease being too small a fraction of the estimated decrease, ASTRO-DF

reposes less faith in the model, leading to contraction of the trust-region radius. The extent

to which such reduction happens is controlled by the parameter γ2. The other contraction

factor is w in the inner loop of Algorithm 6. Small values for both of these contraction

factors can result in changes in the model as a result of changes in the sample set, and a

corresponding faster consumption of the simulation budget.

The parameter β , along with the parameter µ , enforces the model gradient to be in

lock-step with the trust-region radius. Algorithm 6 continues to be executed until a model

of specified quality is constructed in a trust-region whose radius does not exceed the product

of µ and the model gradient. A large value of µ thus allows for greater lenience, resulting

in a poorer model. On the other hand, the parameter β is used to prevent the trust-region

radius resulting from the execution of Algorithm 6 from becoming too small. Towards

satisfying the stipulated lock-step, Algorithm 6 repeatedly shrinks the trust-region radius

using the constant factor w, thereby introducing the possibility of a final trust-region with

a radius that is very small. The parameter β prevents this possibility. As an example, if the

parameter µ is set equal to β , the size of the trust-region that exits Algorithm 6 is strictly

in lock-step with the product of β and the model gradient norm.

Furthermore the default parameter settings in the sample selection heuristic in our ex-

periments are θ = 0.2,θ ′ = 0.05, and εg = 10, chosen in an ad-hoc manner.

Adaptive Sampling Parameters

Whenever the objective function needs to be estimated at a specified design point,

ASTRO-DF has to make a decision on how much sampling effort needs to be exerted

for estimation. One of the salient features of ASTRO-DF is that decisions on the extent

of sampling are, at least to a certain degree, adaptive. Specifically, the sampling rules in

expressions (4.1) and (4.2) control ASTRO-DF’s sampling rate with the two parameters
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κoas and κias corresponding to the adaptive sampling constants for the outer-loop and the

inner loops respectively. Small values of κoas and κias make ASTRO-DF trajectories appear

deterministic due to increased sampling leading to reduced sampling error. On the other

hand, large values of κoas and κias imply less sampling and increased variability in sample

paths. The parameters κoas and κias far more affect the convergence rate of ASTRO-DF

than whether or not ASTRO-DF converges.

The other important adaptive sampling parameter is the inflation factor λk. This param-

eter implicitly sets a lower bound for the sample size during each iteration. As specified

in the inputs of Algorithm 5, the sequence {λk} should satisfy k(1+ε) = O(λk), that is, λk

is roughly of the same order as the iteration number. (we use ε = 10E − 4). Our exten-

sive numerical experience indicates that the lower bound sample size imposed through the

sequence {λk} is rarely binding, especially as ASTRO-DF’s iterates approach a stationary

point. This is consistent with what has been predicted by theory in other contexts.

In all experiments described in section 5.2 we impose a large number for the inner and

outer loop sampling constants (κoas = κias = 103) to enable more exploration throughout

the search.

5.1.3 Pre-processing

Like any non-linear optimization algorithm, the choice of initial values, specifically,

the initial guess XXX0 and the initial trust-region radius ∆0, affect ASTRO-DF’s performance.

Accordingly, we have found it expedient to undertake a certain pre-processing step aimed

at identifying good values for the initial guess x0 and the starting trust-region radius ∆0.

With a fixed small budget we run ASTRO-DF with a vector of random initial points and

a vector of random initial trust-region radii, giving each combination of the initial point

and initial trust-region radius the same share of the pre-processing simulation budget. The

best combination of the initial point and trust-region radius are then selected based on the

resulting relative reduction in the model gradient norm.
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5.1.4 Solving the TR Subproblem

The candidate point X̃XXk+1 = XXXk +SSSk that is the potential next incumbent solution in the

search process comes from a constrained optimization problem in Step 3 of Algorithm 5. To

find a good candidate solution SSSk, one can use the Cauchy step, which is the minimizer of

the one-dimensional constrained optimization problem obtained by projecting the objective

function along the negative gradient and constrained to the trust-region. The resulting step

satisfies the Cauchy reduction in expression (2.2) that is required for the convergence of

ASTRO-DF, with κ f ed = 2 for linear models and κ f ed = 1 for quadratic models. In such a

case SSSk is chosen as SSSk = tC∇Mk(XXXk), where

tC = argmin
α∈[0,∆k]

Mk(XXXk−α∇Mk(XXXk)),

to satisfy a 1
2 -Cauchy decrease. (See Section 10.1 in [44] for additional details.)

Any routine to solve the TR subproblem that provides a candidate point with a higher

reduction than that obtained through the Cauchy step is obviously preferred, although the

resulting computational effort needs to be weighed against the reduction in objective func-

tion value. In the experiments reported in this paper we apply the constrained optimization

method COBYLA [64].

5.1.5 Updating the Next Iterate

Given that several design points (along with their function estimates) are observed dur-

ing the model construction and the TR subproblem stages, an important question is which

amongst these should be chosen as the subsequent iterate in the event that the the suffi-

cient reduction step is satisfied leading to a successful iteration. An obvious choice is the

candidate point X̃XXk+1 in Algorithm 5 that led to a successful sufficient reduction step. An

alternative, and one that we propose, is to instead choose the best from amongst all points

in the design set Yk that were observed during model construction. No such step needs to

be performed after unsuccessful iterations. The following steps formally list the heuristic

we propose for updating an iterate after a successful step.
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(a) When the iteration is successful,

- if the candidate point does not yield the best function estimate, that is,

min
YYY∈Yk

F̄ (YYY ,N (YYY ))≤ F̄
(
X̃XXk+1,N

(
X̃XXk+1

))
accept YYY min := argmin

YYY∈Yk

F̄ (YYY ,N (YYY )) as the new iterate, and replace an existing

point in Yk (one located farthest from the new iterate) with the candidate point;

- else, that is, if the candidate point provides the best (lowest) estimated function

value, update the next iterate to the candidate point.

Keep XXXk in the set Yk+1 if it does not provide the worst (largest) estimated function

value.

(b) When the iteration in unsuccessful: choose the current iterate as the iterate that starts

the next iteration.

5.2 Numerical Experience and Discussion

In this section, we report ASTRO-DF’s performance on 21 nonlinear sum of squares

problems included in CUTEst [56] library of problems, that are the same problems we

chose to experiment with ASTRO in Chapter 3. The dimensionality of the chosen prob-

lems varies from 2 to 8. The objective function for all problems in the set takes the form

described in (3.24). The “noisy” observations are obtained by adding a normal random

variable ξi ∼ N
(
0,σ2) to the sum, that is, Fi(xxx) = f (xxx)+ξi.

Similar to ASTRO, ASTRO-DF was executed until a specified simulation budget is

exhausted. Suppose the specified simulation budget for ASTRO-DF is ntotal and let XXX i
kmax

denotes the solution returned by the i-th execution of ASTRO-DF on a specific problem. If

ASTRO-DF is executed m times, resulting in the m returned solutions XXX i
kmax

, i = 1,2, . . . ,m,

the estimated expectation and estimated square-root variance of the true optimality gap

and true gradient norms are given in (3.25) and (3.26). It is important to note that since

the convergence theory for ASTRO-DF only guarantees convergence to a stationary point,
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nothing can be said about the behavior of the true optimality gap even as the budget tends

to infinity.

Table 5.1 and Table 5.2 suggest that ASTRO-DF exhibits consistent and steady progress

toward a stationary point across different problems. As is evident from the reported values

for small budgets, ASTRO-DF’s iterates rapidly approach a stationary point during the ini-

tial iterations, with the transient phase being longer for higher dimensional problems. The

progress then seems to slow down in the later iterations, when the O(1/
√

n) Monte Carlo

rate appears to become effective. Also, unlike optimality gaps expressed using function

values, the optimality gaps measured in terms of the gradient norm (reported in Table 5.2)

sometimes exhibit jumps. This could be due to the existence of “cliffs” in the objective

function terrain that cause ASTRO-DF to suddenly encounter new stationary regions. Con-

sistent with what is generally known to be characteristic of derivative-free trust-region al-

gorithms in the deterministic context, the behavior of ASTRO-DF is generally stable but

somewhat slow.

Given all of the parameter settings and heuristics described above we experiment ASTRO-

DF on 20 sample paths for several problems in each dimension (d=2,3,4,6,8). The optimal-

ity gap results (mean and standard deviation) for σ = 1 and nmax = 25,000 are summarized

in Table 5.1. The optimality gap is the difference between the true function value after the

last performed iteration, f (XXXkmax) and the true global optimal value of the function f (xxx∗).

Note that the optimality gap is not necessarily expected to drop to zero as ASTRO-DF can

converge to a local solution. In the table each column on the right represents the respective

results when the simulation budget listed in the header of the column is consumed. We

record the progress of the algorithm after 500, 1K, 5K, 10K, and 20K number of oracle

calls. Also, the standard deviation values are shown in the parenthesis. The reductions in

the optimality gap can be compared to the initial true function value, evaluated at the initial

point obtained following the pre-processing steps (see subsection 5.1.3).

In all of the instances listed in the table a clear and fast drop in the early stages and

slower drop in the later stages are evident, mostly in the mean optimality gaps and some-

times in their standard deviations. Sometimes at the early iterations (within the first 5000
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simulation calls) the standard deviation is 0, that is possible when all the 20 sample paths of

a problem are stuck in a point. Note that the design points are generated deterministically

so in the first iterations they are very similar for all sample paths. But as the search evolves

the sample paths are more likely to deviate from each other across problems, though this

deviation is decreasing. This is due to the fact that in the later iterations the algorithm

searches for reductions in the estimated function values that are much smaller in magni-

tude and the sampling error can be more misleading there. Besides that, higher dimension

slows the reduction of the optimality gap due to rapid consumption of the simulation bud-

get for a large number of design points required in the model construction. Nevertheless,

the route to convergence is irrefutable.

Furthermore we look at ‖∇ f (XXXkmax)‖, the true gradient after the last iteration is per-

formed for each specified simulation budget, in the same 20 problems. The results are

shown in Table 5.2. In this table we do not see a clean decreasing trend in the values as we

did in Table 5.1. This implies that though the function is consistently decreasing, the func-

tion gradient norms undergo occasional jumps that can describe a cliff like region in the

function. Note that this behavior is seen more often in the higher dimension test problems.

Figure 5.1 shows the optimality gap within one standard deviation interval, for the two-

dimensional Rosenbrock function, which has one global and local minimum at (1,1). The

quick drop in the optimality gap during the first several 1000’s of simulation calls is dis-

cernible here as well. When the optimality gap becomes small, the sufficient reduction

required to update the iterate becomes small and more precision in the estimated function

value is instructed to capture a correct successful iteration. This enhances the sampling

rate more quickly and therefore the number of simulation calls per iteration becomes large.

As a result there are not many iterations and hence movements between 10,000 and 25,000

budget. This also explains why the one standard deviation interval width stays almost un-

changed after 10,000 simulation budget (mean stays at 0.16 and standard deviation roughly

stays at 0.14).

The quantile graphs of the true gradient and optimality gap for a number of the sum of

squares problems are shown in Figures B.9-B.16. In these figures all the plots with solid
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Table 5.1.
The estimated mean and standard deviation of the true optimality gap at a
(random) returned solution of ASTRO-DF, as a function of the total simula-
tion budget. The statistics were computed based on 20 independent runs of
ASTRO-DF on each problem.

d Problem Name Initial Function Value
Simulation Budget (ntotal)

500 1000 5000 10000 20000

2

CUBE 1,664,640,225.00 166.8 (12.01) 115.85 (71.15) 2.75 (0.06) 2.73 (0.07) 2.73 (0.07)

DENSCHNB* 83,493.00 223.26 (0.04) 83.19 (34.97) 0.22 (0.18) 0.08 (0.09) 0.06 (0.05)

DENSCHNC* 17,053,704.00 82.03 (159.96) 3.57 (3.59) 3.54 (0.09) 3.55 (0.08) 3.55 (0.09)

DENSCHNF 6,825,024.00 63.91 (0.00) 5.53 (0.39) 0.05 (0.06) 0.03 (0.03) 0.03 (0.02)

ROSENBR 7,398,689.00 3,228.74 (4,072.37) 14.47 (13.28) 1.52 (1.54) 0.80 (1.02) 0.54 (0.79)

S308 589,825.00 1.2 (0.00) 0.97 (0.13) 0.87 (0.07) 0.85 (0.06) 0.85 (0.07)

SINEVAL 265,359.79 62.54 (0.05) 62.54 (0.05) 37.78 (4.73) 33.86 (6.34) 29.53 (9.21)

3

BEALE* 4,314,111,706.20 2,689.17 (0.00) 0.60 (0.00) 0.60 (0.00) 0.60 (0.05) 0.58 (0.02)

DENSCHND 4,880,138,240.00 965,257.37 (215,883.46) 90,575.16 (28,683.84) 5,767.2 (8,664.57) 392.77 (502.34) 54.36 (107.3)

DENSCHNE 57,857.00 127.92 (17.80) 74.80 (49.51) 5.60 (9.46) 1.41 (1.44) 1.05 (0.04)

ENGVAL2* 1,654,165.00 285,405.96 (98,770.26) 142,720.6 (93,007.83) 6,278.57 (7,539.4) 531.84 (850.6) 59.99 (93.88)

YFITU 7,532.36 7,532.36 (224.99) 7,532.36 (0.00) 7,532.36 (0.00) 2,980.49 (0.00) 644.23 (251.59)

4

BROWNDEN 1,109,286,386.27 4,273,984.56 (7,396,258.7) 875,723.70 (697,421.05) 135,392.29 (159,624.17) 14,707.83 (16,466.96) 1,404.82 (1,487.65)

HELIX 62,036.77 21.20 (1.99) 5.75 (1.04) 4.47 (2.23) 1.89 (1.68) 0.79 (0.08)

HIMMELBF 18,223,594.79 24,919.7 (116.5) 24,919.7 (116.5) 24,919.7 (116.5) 24,768.81 (402.6) 22,230.95 (969.11)

KOWOSB 373.13 1.95 (0.00) 1.95 (0.00) 1.95 (0.00) 1.95 (0.00) 1.83 (0.28)

6
BIGGS6 11.40 11.40 (0.00) 11.12 (0.82) 10.14 (1.39) 8.99 (0.83) 8.84 (0.62)

PALMER5C 17,604.47 7.98 (0.31) 7.98 (0.31) 4.03 (3.45) 0.46 (0.72) 0.19 (0.26)

8

PALMER6C* 234,351,624.62 16,079.32 (1,700.96) 6,896.38 (507.6) 6,137.43 (1,530.45) 5,802.91 (1,825.29) 5,660.21 (1,925.74)

PALMER7C* 955,015,340.28 235,849.61 (46,021.58) 58,102.21 (30,039.18) 7,730.56 (10,391.39) 6,571.74 (9,003.0) 5,434.76 (7,314.98)

PALMER8C* 276,298,016.54 13,460.1 (2,040.14) 6,359.53 (500.1) 5,573.64 (1,526.22) 5,242.04 (1,770.13) 5,047.68 (1,975.12)

lines on the left are the optimality gaps and all the plots with dashed lines on the right are

the true gradient norms of the 25%, 50%, 75%, and 90% quantiles. One remark of all these

plots is that the true gradient norms ‖∇ f (XXXkmax)‖ converges to zero within the budget of

25,000 oracle calls.

In addition to its reasonable route to convergence, we are interested in the performance

of ASTRO-DF under different levels of simulation error. This comparison is illustrated in

Table 5.3 that lists the performance for the two-dimensional Rosenbrock function, with all

of them starting at the same initial point and initial trust-region radius. In every level of

noise, ASTRO-DF is run until the budget is exhausted, with the exception of the determin-

istic case (noise=0) in which the algorithm stops due to smaller than allowed trust-region.

As expected the higher the variability in the simulation the more sampling at every point,



108

Table 5.2.
The estimated mean and standard deviation of the true gradient norm at a
(random) returned solution of ASTRO-DF, as a function of the total simula-
tion budget. The statistics were computed based on 20 independent runs of
ASTRO-DF on each problem.

d Problem Name Initial Gradient Norm
Simulation Budget (ntotal)

500 1000 5000 10000 20000

2

CUBE 626,688,560.79 5,641.58 (215.93) 4,148.01 (2,133.23) 55.23 (38.39) 26.35 (18.69) 23.19 (24.82)

DENSCHNB* 13,918.26 115.42 (0.63) 25.31 (14.66) 1.0 (0.32) 0.59 (0.41) 0.51 (0.21)

DENSCHNC* 6,327,252.19 99.51 (180.17) 9.83 (20.25) 1.13 (1.08) 1.04 (0.75) 0.97 (0.75)

DENSCHNF 1,228,253.22 1.91 (0.05) 42.89 (1.77) 4.43 (2.82) 3.04 (1.56) 2.77 (0.27)

ROSENBR 1,741,683.78 2,215.21 (2,450.05) 95.27 (69.98) 11.19 (10.03) 3.67 (2.65) 2.9 (2.18)

S308 104,267.14 1.07 (0.01) 0.74 (0.23) 0.57 (0.17) 0.56 (0.19) 0.52 (0.2)

SINEVAL 45,109.93 418.43 (0.43) 418.43 (0.43) 23.04 (16.16) 15.12 (11.84) 14.22 (12.6)

3

BEALE* 1,702,889,243.95 6154.35 (0.00) 22.34 (0.00) 22.34 (0.00) 20.13 (12.26) 11.01 (8.69)

DENSCHND 2,284,598,497.73 671,367.94 (102,757.39) 87,701.12 (35,407.02) 3,257.27 (3,186.4) 665.65 (676.33) 90.61 (159.8)

DENSCHNE 14,880.03 29.08 (4.72) 22.55 (12.75) 3.10 (3.48) 0.76 (1.22) 0.36 (0.23)

ENGVAL2* 1,328,958.48 157,877.43 (86,706.09) 91,714.81 (81,874.81) 7,955.82 (12,353.36) 1,018.2 (1,486.14) 138.61 (87.25)

YFITU 6,698.93 6,698.93 (0.00) 6,698.93 (0.00) 6,698.93 (0.00) 4,761.87 (0.00) 4,116.24 (3,901.99)

4

BROWNDEN 144,497,890.99 985,280.87 (1,489,452.47) 294,066.81 (163,202.27) 79,602.49 (85,104.94) 22,860.1 (16,104.3) 4,640.47 (3,901.12)

HELIX 4,989.97 185.34 (10.03) 45.38 (0.90) 38.23 (13.02) 27.41 (15.79 5.14 (2.42)

HIMMELBF 1,207,473.61 4,465.48 (1,045.14) 4,465.48 (1,045.14) 4,465.48 (1,045.14) 4,003.38 (1,391.08) 1,773.33 (965.71)

KOWOSB 80.65 1.24 (0.00) 1.24 (0.00) 1.24 (0.00) 1.24 (0.00) 1.12 (0.29)

6
BIGGS6 2.25 2.25 (0.00) 2.08 (0.50) 1.48 (0.86) 0.74 (0.53) 0.64 (0.41)

PALMER5C 839.76 10.16 (0.19) 10.16 (0.19) 6.87 (3.82) 2.34 (2.33) 1.61 (1.27)

8

PALMER6C* 19,027,217.80 4,362.42 (986.26) 2,968.97 (2,881.55) 3,183.22 (4,001.57) 1,165.50 (1,508.67) 2,143.23 (1,720.74)

PALMER7C* 80,645,963.34 146,744.86 (218,010.63) 177,031.03 (135,919.20) 8,473.06 (12,862.42) 7,679.50 (11,881.42) 4,241.71 (6,463.97)

PALMER8C* 22,347,391.94 4,049.45 (928.6) 2,314.43 (5,186.12) 2,169.98 (3,082.67) 2,721.50 (2,709.13) 1,702.07 (2076.70)

and hence the less iterations and points visited. Nevertheless the optimality gap and model

gradient norm for all cases seem promising.

Recall that the adaptive sampling ensures less sampling in the early iterations and more

sampling in the later iterations. Due to increasing sampling rate the standard deviation of

the resulting optimality gaps become smaller for the later iterations systematically. Figure

5.1 obtained for Rosenbrock problem illustrates this result.

We now would like to see if ASTRO-DF delivers the progress in the search that would

be obtained in the absence of noise in the problem, whereby we can make conclusions about

its efficiency. The efficiency of ASTRO-DF can be depicted by comparing the optimality

gaps after certain number of design points are observed for a problem that entails several
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Figure 5.1. The one standard deviation interval from the mean of the optimality
gap for the Rosenbrock function with σ = 1 at different levels of simulation
budget. Reduction in the first 1500 simulation calls is from 7,398,689 to 2.37
by average. After 13000 simulation calls the mean stays unchanged at 0.16.

levels of uncertainty. Note that instead of number of simulation oracle calls, here we record

the progress based on the number of design points so that we can have a sound comparison

with the deterministic problem. Figure 5.3 illustrates the results of this experiment. the

optimality gap after certain number of points are observed. Since in the SO context much of

the simulation budget is spent estimating the objective function value at each point, we will

do the comparison based on the number of unique points that are used in the optimization

procedure. The results are shown in Figure 5.3, that indicate high efficiency of ASTRO-DF

for difference levels of noise.

With the reported numerical experience, the following discussions are noteworthy:

• In ASTRO-DF we do not define acceptable iteration as in the old deterministic TRO-

DF [46], that is iterations in which the candidate point in accepted after simple de-

crease (typically known as η0 = 10−6). The reason is that with the simple decrease
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Figure 5.2. The one standard deviation interval from the mean of the opti-
mality gap (on the left) and true function gradient norm (on the right) for the
Rosenbrock function with σ = 1 at different levels of simulation budget. The
variability in the function gradient is evidently more than the variability in the
optimality gap.

Figure 5.3. The log(| f (XXXkmax)− f (xxx∗)|) after visiting several points, with the
maximum simulation budget of 25,000.

the likelihood of false acceptance of a candidate point due to sampling error is much

more that that in a sufficient decrease.
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Table 5.3.
The number of iterations, number of points visited, final true function gradient
and final optimality gap with 25,000 simulation budget, on different levels of
simulation noise.

noise iterations points visited ‖∇ f (XXXkmax)‖ | f (XXXkmax)− f (xxx∗)|

0 127 502 0.0131 0.000*

0.01 102 388 0.7057 0.0003

0.1 92 371 2.8821 0.1677

1 93 338 3.6573 0.1782

10 79 246 5.2054 0.0691

• ASTRO-DF suggests that the sampling rate at each point is roughly of O
(
∆
−4
k

)
. In

practice the adaptive sampling parameters can regularize this rate particularly when

∆k is small. However we realize that when adaptive sampling parameters κias and

κoas are smaller, it results in larger replication size for each point, reduction in the

stochastic error, and increase in the model accuracy. In short, with smaller adaptive

sampling parameters the model gradient traces the true gradient with higher accuracy.

However simulation budget is exhausted faster with fewer unique points observed. So

in summary when the available simulation budget is relatively limited, the progress

in the algorithm with lower κias and κoas is not as good as when they are larger.

• Since in the theoretical convergence results of ASTRO-DF ∆k→ 0 wp1 the sampling

rate starts low at the beginning of the history run and it grows larger towards the end.

This is in essence what we regard as efficiency in the algorithm.

• Unlike the deterministic TRO-DF algorithm [46] we enter a model construction step

in every iteration instead of optional iterations. The model gradient in the SO context

is a random variable and hence we do not rely on it to the extent of neglecting the

sampling requirement by optionally choosing to enter Algorithm 6. In other words
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the sampling requirement must be fulfilled for each point that is going to contribute

to the model construction.

• Despite the previous point, we are interested in practical aspect of so called criti-

cality steps in the deterministic TRO-DF. In our model construction algorithm we

choose poised points, collect “just enough ” observations for every point, and inter-

polate so long as the tandem between ∆k and ‖∇Mk (XXXkmax)‖ is ensured. But in the

deterministic algorithm only when there is suspicion that we are near criticality, all

the guarantees (full-linearity and lock-step) are required. We definitely relax full-

linearity guarantees in the implemented version of ASTRO-DF by only using the

fresh poised design set when the model gradient norm is alarmingly small. The gen-

eral hope is that we rebuild a model that is based on history rather than new points.

We might just require new observations at some of the old points to fulfill the their

sampling requirement.

• In the event that the simulation budget is not limited or is not dominating the termina-

tion criteria (this almost means that the budget is unlimited), we suggest that at every

iteration all fresh poised sets in Yinit be used, i.e. q = 1, as opposed to only using

them when close to stationarity. In this case full-linearity of the model is maintained

across iterations and the model accuracy is enhanced.

• The inflator λk that plays the role of the lower bound on the replication size namely is

chosen to grow infinitesimally faster than the iteration number, i.e. k(1+ε) =O(λk).

This might seem to be a computationally burdensome requirement, but since as k→

∞, λk becomes non-binding in the stopping rule expressions (4.1) and (4.2) it is not

interfering with the efficiency. On the contrary setting λk = 1 can be harmful as it

may lead to poorer function estimates in the later iterations and hence waste of effort

by having false successful iterations.

• Often in the SO context, the simulation evaluations computationally overwhelm the

standard numerical operations, such as those performed for model interpolation, con-

strained optimization and design set selection. So by using large adaptive sampling
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parameters and also re-using the old points when forming the design set, we make

substantial saving in the computation.
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6. CONCLUDING REMARKS

Simulation optimization is widely used to solve many real-world problems, owing to the

resilience and capacity to include details when using simulation models as opposed to sim-

plified mathematical representations. As a result, devising SO algorithms with guarantees

of global convergence to a local solution without requiring tremendous simulation budget

are sought by many. The presence of sampling error in the SO context in addition to all

common sources of error that exist in the deterministic context, can significantly mislead

the search process. Controlling the sampling error becomes vital for the convergence and

efficiency of the SO algorithms. However, in reality a major concern for an SO algorithm is

the budget it consumes to reach a near optimal solution for a problem. Increased sampling,

while providing accurate estimates of the objective function (and constraints), leads to in-

creased computational burden. By contrast, reduced sampling is computationally efficient,

but may harm the convergence of the SO algorithm. Therefore one intuitive proposition for

SO algorithms is to adapt the Monte Carlo sample size at each iterate to the trajectory of

the algorithm in that iteration. In other words larger sample size when there is evidence that

the iteration is near a critical region is beneficial as making decisions about taking or reject-

ing a search step in such near-criticality iterations needs more care. Frugal (just enough)

simulation expense for an iteration that is farther from a critical region increases the effi-

ciency of the algorithm. Such techniques that adjust the simulation effort in an iteration to

its distance from the solution are known as adaptive sampling techniques. The contribution

of this thesis is to combine the adaptive sampling with one popular deterministic global

optimization method called trust-region optimization that we refer to as DTRO.

Over the last decade or so, DTRO algorithms have enjoyed great attention and success

in the deterministic context. They generate a sequence of iterates that converge to a first

order critical point by strategically using a local model in a carefully managed neighbor-
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hood of the incumbent solution and show promising performance in theory and practice.

They also have advanced well into DTRO-DF in the area of derivative-free optimization,

in which only function values are used to direct the search and no explicit gradient estima-

tion is involved in the process. The common application of derivative-free optimization in

the deterministic context is when the derivatives are either not available or expensive to ac-

quire. We believe that developing analogous algorithms for the SO context, particularly due

to the Monte Carlo settings for which derivative-free methods seem predominant, is quite

relevant yet relatively unstudied. Therefore DTRO and DTRO-DF are worthy of further

inquiry, particularly because the settings for which derivative-free trust-region methods are

devised seem predominant within Monte Carlo contexts. Accordingly, we investigate the-

ory and algorithms in which adaptive sampling rules are devised to systematically allocate

the simulation budget to the iterates generated through derivative-based and derivative-free

trust-region optimization for solving a range of multi-dimensional simulation optimization

problems.

Consequently in this research we propose algorithms – adaptive sampling trust-region

optimization algorithms (called ASTRO) and adaptive sampling trust-region optimization

derivative-free algorithms (called ASTRO-DF) – that not only are convergent to a first-order

critical point in rigorous probabilistic sense, but more importantly, gain practical efficiency

through certain key steps related to adaptive sampling, model certification, and the careful

balancing of sampling and model errors.

ASTRO, closely following the general framework of the DTRO, is provided for the

settings with direct gradient observations. ASTRO involves determining the sample size

with respect to the function and gradient information that is collectively observed via the

Monte Carlo oracle. The almost sure convergence result follows from guaranteed Cauchy

reduction in the optimization step and the sample sizes by which the likelihood of iterates

wandering in an unbounded fashion due to mischance is forced to vanish. Implementation

and numerical experiments of ASTRO show promising finite-time performance for a range

of multi-dimensional unconstrained problems. Future research on the constrained opti-

mization problems seems worthy. Also it is useful to explore whether ASTRO achieve the
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Monte Carlo canonical convergence rate. ASTRO’s theory and numerical results obtained

and presented here are being prepared for publication.

ASTRO-DF, with the assumption of no readily discernible gradients, builds stochastic

linear or stochastic quadratic interpolation models during the model-construction step while

enforcing the model gradient, the true gradient and the trust-region radius to remain in tan-

dem. Then the almost sure convergence follows as the sequence of the trust-region radii are

ensured to converge to zero with probability one. The theoretical results of ASTRO-DF as

presented here are accepted for publication in SIAM journal of Optimization (SIOPT). An

online version of this paper is available at [63]. Future research focuses on a number of

theoretical and practical issues within ASTRO-DF. For example other possibly more pow-

erful model construction techniques such as regression or stochastic kriging [65] should be

considered in place of interpolation models, especially alongside adaptive sampling. Ongo-

ing research investigates this question, and it is our belief that the proof techniques that we

currently present will carry over, albeit with some changes. Another interesting question

involves the rate of convergence of ASTRO-DF. Convergence theory for ASTRO-DF dic-

tates the asymptotic sampling rate to be O
(
∆
−4
k

)
, where ∆k is the incumbent trust-region

radius. A similar requirement has been prescribed by two other recent prominent investi-

gations [59, 66]. Is this sampling rate fundamental in any sense? Does the O
(
∆
−4
k

)
rate

translate to the O(1/
√

n) Monte Carlo canonical rate?

Though the adaptive sampling scheme determines stopping time for the sample sizes,

questions arise regarding the interpolation model construction, initialization, updating and

other details during the implementation of ASTRO-DF. We propose instructive heuristics

that address these questions. This work is also accepted for publication in the proceedings

of Winter Simulation Conference 2016. Having addressed ASTRO-DF’s implementation

and practicality, two crucial issues come to the surface:

(i) Unlike the DTRO-DF algorithm (see Algorithm 2), ASTRO-DF includes a model

construction step in every iteration. It seems that such a stringent requirement can

be relaxed without sacrificing convergence guarantees. In fact, the implementation

of ASTRO-DF that we have used in Chapter 5 does just that by adding a critical-
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ity step which stipulates that the model construction step be invoked only when the

model gradient is sufficiently small. Such a simple rule improves practical efficiency;

whether it preserves convergence is an open question.

(ii) Another unresolved question that is somewhat related to the remark in (i) relates to

the manner of model construction. Specifically, how should the model construction

step balance re-using already visited points with carefully placed new points within

the trust-region? While using already visited points enhance efficiency by preserving

simulation budget, they invariably result in poorer models because iterates visited by

ASTRO-DF tend to be highly spatially correlated.

Finally we mention another open research question that focuses on a theoretical issue

within ASTRO and ASTRO-DF. The slowly increasing sequence {λk} ensures that the

sample sizes within ASTRO-DF are forced to infinity asymptotically, and that the effects of

infrequent spurious observations are limited. Our numerical experience strongly suggests

that {λk} is only rarely binding, and almost never so asymptotically. Can it be established

that the probability of the lower bound sequence {λk} being binding infinitely often is zero

with probability one?
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APPENDIX A

PYTHON CODE FOR ASTRO AND ASTRO-DF

The ASTRO main code is copied in the following:

from math import sqrt, ceil

import matplotlib.pyplot as plt

from numpy import asarray, outer, transpose, linalg, dot, identity, zeros, floor

from scipy.stats import norm

import ast

import julia

import os

import sys

def u16807d():

global iseed

u = 0.

while round(u,6) <= 0 or u >= 1:

iseed = (int(iseed)*16807) % 2147483647

u = iseed / 2147483648.

return u

def CUTEObjEval(jl, x, noise):

global iseed, show_error

f_dim = len(x)

string = ’[’

for i in range(f_dim):

string += str(x[i])

if i < f_dim-1:

string += ’;’

else:

string += ’]’

noise_added = 0

if noise > 0:

u = u16807d()

noise_added = norm.ppf(u, loc=0, scale=sqrt(noise))
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obj = noise_added

else:

obj = 0

jl.call(’f = ufn(nlp,’+string+’)’)

obj += jl.eval(’f’)

return obj

def CUTEGradEval(jl, x, noise):

f_dim = len(x)

string = ’[’

for i in range(f_dim):

string += str(x[i])

if i < f_dim-1:

string += ’;’

else:

string += ’]’

noise_added = []

if noise > 0:

for i in range(f_dim):

u = u16807d()

noise_added += [norm.ppf(u, loc=0, scale=sqrt(noise))]

grad = noise_added

else:

grad = [0]*f_dim

jl.call(’g = ugr(nlp,’+string+’)’)

grad = asarray(grad)+asarray(jl.eval(’g’))

return grad.tolist()

def AdaptiveSampling(jl, x, inflator, Delta, kappaf, kappag, gamma, noise, n_max, total_reps_maxes,

candidate):

global All_Y, All_Values, stop, total_reps, total_samples, iseed, total_reps_max, \

points_rec, record_res_count, x_inc, optimum, record_res, grad_res

current_reps_max = total_reps_maxes[record_res_count]

if noise > 0:

if candidate:

n = pow(inflator/min(pow(Delta,2),pow(Delta,4)),gamma)

else:

n = pow(inflator/min(pow(Delta,2),pow(Delta,4)),gamma)

n = max(2, ceil(n))

threshold1, threshold2 = 2*[n_max - 1]

while n <= max(threshold1, threshold2) and n <= n_max and not stop:

ValuesUpdate(jl, x, n, noise, total_reps_maxes)
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value_index = list.index(All_Y,x)

[f_hat, sigma2f_hat, g_hat, sigma2g_hat] = Stats(All_Values[value_index])

threshold1 = inflator*sigma2f_hat/(pow(kappaf,2)*pow(Delta,4))

if candidate:

""" in practice use the same sapling rule is set 1 and 4"""

threshold2 = inflator*sigma2g_hat/(pow(kappag,2)*pow(Delta,2))

else:

threshold2 = inflator*sigma2g_hat/(pow(kappag,2)*pow(Delta,2))

if total_reps >= total_reps_max: stop = 1;

n += 1

if n > n_max: stop = 1;

n -= 1

else:

n = 1

""" if problem is deterministic do not use adaptive sampling, just evaluate once """

if x not in All_Y:

All_Y += [x]

total_samples += 1

All_Values += [[0., 0., 0., [0.]*len(x), [0.]*len(x)]]

fobs_new = CUTEObjEval(jl, x, noise)

gobs_new = CUTEGradEval(jl, x, noise)

total_reps += 1

if total_reps >= current_reps_max:

if record_res_count < len(total_reps_maxes):

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc, 0)

record_res[record_res_count] = round(abs(obj_determ - optimum),4)

grad_res[record_res_count] = round(linalg.norm(asarray(grad_determ)),4)

record_res_count += 1

if record_res_count >= len(total_reps_maxes):

stop = 1

else:

current_reps_max = total_reps_maxes[record_res_count]

All_Values[len(All_Y)-1][0] += 1

All_Values[len(All_Y)-1][1] += fobs_new

All_Values[len(All_Y)-1][2] += pow(fobs_new, 2)

for j in range(len(x)):

All_Values[len(All_Y)-1][3][j] += gobs_new[j]

All_Values[len(All_Y)-1][4][j] += pow(gobs_new[j], 2)

f_hat = All_Values[len(All_Y)-1][1]

g_hat = All_Values[len(All_Y)-1][3]

else:
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f_hat = All_Values[list.index(All_Y, x)][1]

g_hat = All_Values[list.index(All_Y, x)][3]

return [n, f_hat, g_hat]

""" All_Y and All_Values are only updated here """

def ValuesUpdate(jl, x, n_new, noise, total_reps_maxes):

global All_Y, All_Values, total_samples, total_reps, iseed, show_error, \

points_rec, record_res_count, x_inc, optimum, stop, record_res, grad_res

current_reps_max = total_reps_maxes[record_res_count]

if x in All_Y:

value_index = list.index(All_Y,x)

n_old = All_Values[value_index][0]

else:

total_samples += 1

value_index = len(All_Y)

All_Y += [x]

All_Values += [[0., 0., 0., [0.]*len(x), [0.]*len(x)]]

n_old = 0

if n_new > n_old:

for i in range(int(n_old), int(n_new)):

fobs_new = CUTEObjEval(jl, x, noise)

gobs_new = CUTEGradEval(jl, x, noise)

total_reps += 1

if total_reps >= current_reps_max:

if record_res_count < len(total_reps_maxes):

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc, 0)

record_res[record_res_count] = round(abs(obj_determ - optimum),4)

grad_res[record_res_count] = round(linalg.norm(asarray(grad_determ)),4)

record_res_count += 1

if record_res_count >= len(total_reps_maxes):

stop = 1

else:

current_reps_max = total_reps_maxes[record_res_count]

All_Values[value_index][0] += 1

All_Values[value_index][1] += fobs_new

All_Values[value_index][2] += pow(fobs_new, 2)

for j in range(len(x)):

All_Values[value_index][3][j] += gobs_new[j]

All_Values[value_index][4][j] += pow(gobs_new[j], 2)
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def Stats(all_values):

[n, sum1_f, sum2_f, sum1_g, sum2_g] = all_values

f_dim = len(sum1_g)

f_hat = sum1_f/n

sigma2f_hat = sum2_f/(n-1)-pow(f_hat,2)*n/(n-1)

g_hat = []

g_sigma2 = []

for i in range(f_dim):

gi_hat = sum1_g[i]/n

g_hat += [gi_hat]

g_sigma2 += [sum2_g[i]/(n-1)-pow(gi_hat,2)*n/(n-1)]

sigma2g_hat = max(g_sigma2)#sum(g_sigma)

return [f_hat, sigma2f_hat, g_hat, sigma2g_hat]

def BConstruction(p, g_hat, g_hat_old, B_old):

y = asarray(g_hat) - asarray(g_hat_old)

s = asarray(p)

b = asarray(B_old)

B_new = b[:]

secant = y - dot(b,s)

r1 = 1e-6

r2 = 1e-3

""" first SR1, then BFGS """

if abs(dot(s,secant)) >= r1*linalg.norm(s)*linalg.norm(secant):

B_new += outer(secant,secant)/dot(secant,s)

elif linalg.norm(secant) > r2 and abs(dot(y,s)) > r2:

B_new += -dot(dot(b,outer(s,s)),b)/dot(dot(s,b),s) + outer(y,y)/dot(y,s)

return B_new

def SubProblem(x, g_hat, B, Delta):

""" Nocedal’s book page 72"""

g_hat_norm = linalg.norm(g_hat)

tau = 1

val = dot(dot(transpose(g_hat),B),g_hat)

if val > 0:

tau = min(pow(g_hat_norm,3)/(Delta*val),1)

p = (-tau*Delta/g_hat_norm)*asarray(g_hat)

model_reduction = dot(g_hat,p)+0.5*dot(dot(p,B),p)

return [p, model_reduction]

def ASTRO(jl, x_0, Delta_0, noise, iseeds, total_reps_maxes, show_factor, res_file, prob_name,

test_set, gamma_1):

global f_dim, p, m_o, All_Y, All_Values, \
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total_samples, total_reps, iseed, stop, re_used, \

total_reps_max, show_error, points_rec, record_res_count, \

x_inc, optimum, record_res, grad_res

"""INPUT PARAMETERS"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

f_dim = len(x_0)

if noise == 0:

eta_1 = .5

eta_2 = .25

eta_3 = .2

gamma_1 = .5

gamma_2 = 2

else:

eta_1 = .2

eta_2 = .1

eta_3 = .001

# gamma_1 = .9

gamma_2 = 1./gamma_1

kappaf = 1; kappag = 1

Delta_max = 10000

Delta_min = 1e-3

iteration_max = 1000

g_norm_tolerance = 1e-2

n_max = 1e6

epsilon = 1e-3

gamma = .5

"""COUNT VARIABLES """

stop = 0; re_used = 0; total_samples = 0; total_reps = 0

"""OTHER SETTINGS """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

total_reps_max = total_reps_maxes[-1] #assuming it is sorted

if os.path.exists(str(prob_name)+’.4plot.txt’): os.remove(str(prob_name)+’.4plot.txt’);

if os.path.exists(str(prob_name)+’.4plot.grad.txt’): os.remove(str(prob_name)+’.4plot.grad.txt’);

record_file = open(str(prob_name)+’.4plot.txt’, ’a+’)

grad_file = open(str(prob_name)+’.4plot.grad.txt’, ’a+’)

record_res = [0]*len(total_reps_maxes)

grad_res = [0]*len(total_reps_maxes)

total_record_res =[]

total_grad_res = []

if test_set:
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print ’seed\t iter\t Delta\t\t f_hat\t\t f\t\t ||g_hat||\t ||g||\t\t max_error\t total_samples

\t total_work’

res_file.write(’\nseed\t iter\t Delta\t\t f_hat\t\t f\t\t |g_hat|\t |g|\t\t max_error\t

total_samples\t total_work’)

final_gnorm = []; final_f = []

g_norm_sum = 0

for seed_init in iseeds:

"""RESET"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

stop = 0; re_used = 0; total_samples = 0; total_reps = 0; record_res_count = 0

iseed = seed_init

x_init = x_0

Delta = Delta_0

iteration = 1

All_Y = []

All_Values = []

points_rec = 0

x_inc = x_init

[n, f_inc, g_hat] = AdaptiveSampling(jl, x_inc, 1, Delta, kappaf, kappag, gamma, noise, n_max,

total_reps_maxes, 0)

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc, 0)

g_hat_norm = linalg.norm(g_hat)

B = identity(f_dim)

if stop: break;

if test_set:

print ’%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \t\t%8d’ \

% (seed_init, iteration, round(Delta,4), round(f_inc,4), round(obj_determ,4), round(

g_hat_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

abs(f_inc - obj_determ), total_samples, total_reps)

res_file.write(’\n%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \t\t%8d’

\

% (seed_init, iteration, round(Delta,4), round(f_inc,4), round(obj_determ,4), round(

g_hat_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

abs(f_inc - obj_determ), total_samples, total_reps))

while iteration <= iteration_max and Delta < Delta_max and Delta > Delta_min and total_reps <

total_reps_max and g_hat_norm > g_norm_tolerance:
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if noise == 0:

inflator = 1; """ deterministic case """

else:

inflator = pow(iteration, 3+epsilon)

[n, f_hat, g_hat] = AdaptiveSampling(jl, x_inc, inflator, Delta, kappaf, kappag, gamma,

noise, n_max, total_reps_maxes, 0)

[p, model_reduction] = SubProblem(x_inc, g_hat, B, Delta)

x_candidate = (asarray(x_inc)+asarray(p)).tolist()

f_hat_old = f_hat

g_hat_old = g_hat[:]

if stop:

f_inc = f_hat_old

g_inc_norm = linalg.norm(g_hat_old)

break

[n, f_hat, g_hat] = AdaptiveSampling(jl, x_candidate, inflator, Delta, kappaf, kappag,

gamma, noise, n_max, total_reps_maxes, 1)

if stop:

f_inc = f_hat_old

g_inc_norm = linalg.norm(g_hat_old)

break

rho_hat = (f_hat-f_hat_old)/model_reduction

""" UPDATE Delta """

if rho_hat < eta_2:

Delta = Delta*gamma_1

elif rho_hat > eta_1 and linalg.norm(p) > .8*Delta:

Delta = min(Delta*gamma_2,Delta_max)

""" UPDATE Iterate """

if rho_hat > eta_3:

x_inc = x_candidate

f_inc = f_hat

g_inc_norm = linalg.norm(g_hat)

else:

f_inc = f_hat_old

g_inc_norm = linalg.norm(g_hat_old)

""" UPDATE Hessian Approximation """

if iteration == 1:

y = (asarray(g_hat)-asarray(g_hat_old))
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B = linalg.inv(dot(y,p)/dot(y,y)*identity(f_dim))

else:

B = BConstruction(p, g_hat, g_hat_old, B)

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc, 0)

if test_set:

if iteration % show_factor == 0:

print ’%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \t\t%8d’ \

% (seed_init, iteration, round(Delta,4), round(f_inc,4), round(obj_determ,4), round(

g_inc_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

abs(f_inc - obj_determ), total_samples, total_reps)

res_file.write(’\n%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \t\t

%8d’ \

% (seed_init, iteration, round(Delta,4), round(f_inc,4), round(obj_determ,4), round(

g_inc_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

abs(f_inc - obj_determ), total_samples, total_reps))

iteration += 1

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc, 0)

if iteration < iteration_max:

if test_set:

print ’%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \t\t%8d’ \

% (seed_init, iteration-1, round(Delta,4), round(f_inc,4), round(obj_determ,4), round(

g_inc_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

abs(f_inc - obj_determ), total_samples, total_reps)

res_file.write(’\n%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \t\t

%8d’ \

% (seed_init, iteration, round(Delta,4), round(f_inc,4), round(obj_determ,4), round(

g_inc_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

abs(f_inc - obj_determ), total_samples, total_reps))

res_file.write(’\n\n x_inc ’+str(x_inc)+’\n f_hat ’+str(round(f_inc,4))+\

’\n f ’+str(round(obj_determ,4))+’\n g_hat ’+str(round(g_inc_norm,4))+\

’\n g ’+str(round(linalg.norm(asarray(grad_determ)),4))+’\n Delta ’+str(round(Delta,4)))

if iteration > iteration_max:

if test_set:

print ’iterations maxed.’
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res_file.write(’\niterations maxed.’)

elif Delta >= Delta_max:

if test_set:

print ’Delta maxed.’

res_file.write(’\nDelta maxed.’)

elif Delta <= Delta_min:

if test_set:

print ’Delta mined.’

res_file.write(’\nDelta mined.’)

elif total_reps >= total_reps_max:

if test_set:

print ’replications maxed.’

res_file.write(’\nreplications maxed.’)

elif g_inc_norm <= g_norm_tolerance:

if test_set:

print ’g_norm mined.’

res_file.write(’\ng_norm mined.’)

""" at the end of each sample path save the true G Vector """

final_gnorm += [round(linalg.norm(asarray(grad_determ)),4)]

""" at the end of each sample path save the true f Value """

final_f += [abs(round(linalg.norm(asarray(obj_determ)),4)-optimum)]

g_norm_sum += g_inc_norm

total_record_res += [record_res[:]]

total_grad_res += [grad_res[:]]

""" not the pre-processing but the actual processing """

if test_set:

record_file.write(str(total_record_res)+’\n’)

grad_file.write(str(total_grad_res)+’\n’)

B = asarray(total_record_res)

G = asarray(total_grad_res)

""" initiate """

col1 = []

col2 = []

B_new = zeros((len(iseeds),len(total_reps_maxes)))

G_new = zeros((len(iseeds),len(total_reps_maxes)))

for i in range(len(total_reps_maxes)):

col1 = B[:,i].tolist()

col2 = G[:,i].tolist()

col1.sort()

col2.sort()
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B_new[:,i] = asarray(col1)

G_new[:,i] = asarray(col2)

if len(iseeds) >= 10:

rows = [int(floor(len(iseeds)*.25)),int(floor(len(iseeds)*.5)),int(floor(len(iseeds)*.75)),

int(floor(len(iseeds)*.9))]

plt.figure()

plt.plot(total_reps_maxes, B_new[rows[0],:].tolist(), ’r’, total_reps_maxes, B_new[rows

[1],:].tolist(), \

’g’,total_reps_maxes, B_new[rows[2],:].tolist(), ’b’,total_reps_maxes, B_new[rows[3],:].

tolist(), ’k’)

plt.xlabel(’Simulation Budget’)

plt.ylabel(’Optimality Gap’)

plt.savefig(str(prob_name)+’_og_plot_.jpg’)

plt.figure()

plt.plot(total_reps_maxes, G_new[rows[0],:].tolist(), ’r--’, total_reps_maxes, G_new[rows

[1],:].tolist(), ’g--’,\

total_reps_maxes, G_new[rows[2],:].tolist(), ’b--’,total_reps_maxes, G_new[rows[3],:].

tolist(), ’k--’)

plt.xlabel(’Simulation Budget’)

plt.ylabel(’Gradient Norm’)

plt.savefig(str(prob_name)+’_grad_plot_.jpg’)

record_file.close()

grad_file.close()

return g_norm_sum/len(iseeds)

def main(prob_name, noises, iseeds, total_reps_maxes, show_factor):

global f_dim, p, m_o, All_Y, All_Values, freshpoised_per, show_error

All_Y = []; All_Values = [];

iseeds_list = ast.literal_eval(iseeds)

total_reps_maxes_list = ast.literal_eval(total_reps_maxes)

if os.path.exists(str(prob_name)+’.log.txt’):

os.remove(str(prob_name)+’.log.txt’)

res_file = open(str(prob_name)+’.log.txt’, ’a+’)

jl = julia.Julia()

jl.call(’using CUTEst’)

jl.call(’nlp = CUTEstModel("’+str(prob_name)+’")’)

f_dim = jl.eval(’nlp.meta.nvar’)

res_file.write(’\nProblem: ’+str(prob_name)+’\ntotal_reps_max: ’+str(total_reps_maxes_list[0]))

res_file.write(’\npre-processing\n-----------------’)



134

print ’pre-processing\n-----------------’

""" pre-processing

Class that will first do some training to choose the best starting point and

starting trust region radius by running several times at first

(2 starting points each with 2 starting trust-region radius:

x_0 = [16]*f_dim

x_0 = [-16]*f_dim

Delta_0 = 10

Delta_0 = 5

run each for 100 iterations and pick the one combo with smallest f_hat) """

for noise in noises:

All_Y = []; All_Values = [];

x_0_vals = [10.0,-10.0]

Delta_0s = [5,15]

gamma_1s = [.9,.99]

g_norms = []

g_min = 1e20

for x_0_val in x_0_vals:

for Delta_0 in Delta_0s:

for gamma_1 in gamma_1s:

g_new = ASTRO(jl, [x_0_val]*f_dim, Delta_0, noise, [10], [100], show_factor,

res_file, prob_name, 0, gamma_1)

g_norms += [g_new]

if g_new < g_min:

g_min = g_new

x_0_val_best = x_0_val

Delta_0_best = Delta_0

gamma_1_best = gamma_1

print ’\ng_norms ’+str(g_norms)

print ’g_min ’ + str(min(g_norms))

res_file.write(’\n\ng_norms ’+str(g_norms))

res_file.write(’\ng_min ’ + str(min(g_norms)))

res_file.write(’\nx_0_val_best ’+str(x_0_val_best))

res_file.write(’\nDelta_0_best ’+str(Delta_0_best))

""""""""""""""""""""""""

print ’\nfinal results for ’+prob_name+’\n-----------------’

print ’x_0_val_best ’+str(x_0_val_best)+’, Delta_0_best ’+str(Delta_0_best)+’, gamma_1_best ’+

str(gamma_1_best)
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res_file.write(’\nfinal results \n-----------------’)

ASTRO(jl, [x_0_val_best]*f_dim, Delta_0_best, noise, iseeds_list, total_reps_maxes_list,

show_factor, res_file, prob_name, 1, gamma_1_best)

jl.call(’cutest_finalize(nlp)’)

os.remove(’AUTOMAT.d’)

os.remove(’OUTSDIF.d’)

os.remove(’lib’+str(prob_name)+’.dylib’)

res_file.close()

global f_dim, p, m_o, All_Y, All_Values, kappa_ias, kappa_oas, \

total_samples, total_reps, iseed, stop, re_used, total_reps_max, \

previous_success, x_candidate, l, model_order, p, iseed, show_error,\

record_res_count, x_inc, optimum, record_res, grad_res

All_Y = []; All_Values = [];

l = []

x_inc = []

record_res = []

grad_res = []

optimum = 0

model_order = 0; p = 0

re_used = 0

total_samples = 0; total_reps = 0

iseed = 0

stop = 0

total_reps_max = 0

record_res_count = 0

if __name__ == "__main__":

noises = [1]

show_factor = 10

prob_name = sys.argv[1]#"DENSCHNC"#

total_reps_maxes = sys.argv[2]#"[20000]"#

iseeds = sys.argv[3]#"[30]"#

main(prob_name, noises, iseeds, total_reps_maxes, show_factor)
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The ASTRO-DF main code is copied in the following:

from math import sqrt, ceil, floor, isnan, isinf

import matplotlib.pyplot as plt

from numpy import asarray, transpose, linalg, dot, subtract, zeros, nan_to_num, matrix, add, append,

eye, mean, log

from scipy.stats import norm

from scipy.optimize import minimize

import ast

import julia

import os

import sys

"""

Function definitions

ValuesUpdate calculates updates f_hat, and sigma_hat with the new adaptive n

and returns (n, f_hat, sigma_hat)

PoisedSet finds an equi-distance poise d set from x

AdaptiveSampling adds replications based on the sampling rule

ModelConstruction the P matrix and FY for all the points in the interpolation set

are used to calculate alpha in P.alpha = FY. The alpha consists of

c, g, and A in

m(x) = c+transpose(x)*g+0.5*transpose(x)*A*x.

Note g and A will be at the origin. Then g(x) = g+transpose(x)*A and then

m(x+s) = m(x)+transpose(s)*g(x)+0.5*transpose(s)*A*s.

Returns g(x), and A.

SubProblem solves the linear or quadratic minimization problem

"""

"""

All_Y is a (inf*d) matrix, coordinates of each point

All_Values is a (inf*3) matrix, [n, f_hat, sigma_hat] with the same index points in the All_Y

sigm_hat is used to add more reps to the visited points in the future

"""

def u16807d():

global iseed

u = 0.

while round(u,6) <= 0 or u >= 1:

iseed = (int(iseed)*16807) % 2147483647

u = iseed / 2147483648.

return u

def CUTEObjEval(jl, x, noise):



137

global iseed, show_error

f_dim = len(x)

string = ’[’

for i in range(f_dim):

string += str(x[i])

if i < f_dim-1:

string += ’;’

else:

string += ’]’

noise_added = 0

if noise > 0:

u = u16807d()

noise_added = norm.ppf(u, loc=0, scale=sqrt(noise))

if noise_added > 10:

if show_error: print ’OK the problem noise is larger than 10’

obj = noise_added

else:

obj = 0

jl.call(’f = ufn(nlp,’+string+’)’)

obj += jl.eval(’f’)

if isnan(obj):

return obj

def CUTEGradEval(jl, x):

f_dim = len(x)

string = ’[’

for i in range(f_dim):

string += str(x[i])

if i < f_dim-1:

string += ’;’

else:

string += ’]’

jl.call(’g = ugr(nlp,’+string+’)’)

grad = jl.eval(’g’)

return grad

def AdaptiveSampling(jl, x, inflator, Delta, kappa, noise, n_max, total_reps_maxes):

global All_Y, All_Values, stop, total_reps, total_samples, iseed, total_reps_max, \

points_rec, record_res_count, x_inc, optimum, record_res, grad_res

if noise > 0: n = int(max(2, ceil(inflator)));

else: n = 1;

f_hat = 0
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current_reps_max = total_reps_maxes[record_res_count]

if noise > 0:

threshold = n_max - 1

while n <= threshold and n <= n_max and not stop:

[n, f_hat, sigma_hat] = ValuesUpdate(jl, x, n, noise, total_reps_maxes)

if total_reps >= total_reps_max: stop = 1;

n += 1

if n > n_max: stop = 1;

n -= 1

else:

""" if problem is deterministic do not use adaptive sampling, just evaluate once """

if x not in All_Y:

All_Y += [x]

total_samples += 1

if total_samples % 30 == 0:

points_rec = 1

[n, f_hat, sigma_hat] = [1, CUTEObjEval(jl, x, noise), 0]

total_reps += 1

if total_reps >= current_reps_max:

if record_res_count < len(total_reps_maxes):

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc)

record_res[record_res_count] = round(abs(obj_determ - optimum),4)

grad_res[record_res_count] = round(linalg.norm(asarray(grad_determ)),4)

record_res_count += 1

if record_res_count >= len(total_reps_maxes):

stop = 1

else:

current_reps_max = total_reps_maxes[record_res_count]

All_Values += [[n, f_hat, sigma_hat]]

else:

f_hat = All_Values[list.index(All_Y, x)][1]

return [n, f_hat]

""" All_Y and All_Values are only updated here """

def ValuesUpdate(jl, x, n_new, noise, total_reps_maxes):

global All_Y, All_Values, total_samples, total_reps, iseed, show_error, \

points_rec, record_res_count, x_inc, optimum, stop, record_res, grad_res

[n_old, f_hat_old, sigma_hat_old] = [0, 0.0, 0.0]

current_reps_max = total_reps_maxes[record_res_count]

revisit_index = -1

x_exists = 0
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if x in All_Y:

revisit_index = list.index(All_Y,x)

[n_old, f_hat_old, sigma_hat_old] = All_Values[revisit_index]

x_exists = 1

else:

total_samples += 1

if total_samples % 30 == 0:

points_rec = 1

All_Y += [x]

[sum1, sum2] = [0.0, 0.0]

sum1 = f_hat_old*(float(n_old)/float(n_new))

sum2 = (pow(sigma_hat_old,2)+pow(f_hat_old,2))*(float(n_old)/float(n_new))

[temp1, temp2] = [0.0, 0.0]

if n_new > n_old:

for i in range(int(n_old), int(n_new)):

obs_new = CUTEObjEval(jl, x, noise)

total_reps += 1

if total_reps >= current_reps_max:

if record_res_count < len(total_reps_maxes):

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc)

record_res[record_res_count] = round(abs(obj_determ - optimum),4)

grad_res[record_res_count] = round(linalg.norm(asarray(grad_determ)),4)

record_res_count += 1

if record_res_count >= len(total_reps_maxes):

stop = 1

else:

current_reps_max = total_reps_maxes[record_res_count]

temp1 +=obs_new/float(n_new)

temp2 += pow(obs_new,2)/float(n_new)

f_hat = sum1 + temp1

sigma_hat = sqrt(max((sum2 + temp2) - pow(f_hat,2),0))

else:

[n_new, f_hat, sigma_hat] = [n_old, f_hat_old, sigma_hat_old]

if x_exists:

All_Values[revisit_index] = [n_new, f_hat, sigma_hat]

else:

All_Values += [[n_new, f_hat, sigma_hat]]
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return [n_new, f_hat, sigma_hat]

def PoisedSet(Delta, func, x_inc, freshpoised_per):

global All_Y, All_Values, re_used, show_factor, l, p, show_error

min_away = Delta*0.2 # min factor of Delta distannce from each other

Y_pool = [x_inc]

""" Put everything in the current TR that is observed before in Y_pool"""

for i in range(1,len(All_Y)+1):

if All_Y[-i] not in Y_pool:

dist = linalg.norm(subtract(asarray(All_Y[-i]),asarray(x_inc)))

if dist <= Delta:# and dist >= Delta/2.0:

Y_pool += [All_Y[-i]]

""" points must be at least more than 5%Delta distance apart from each other

Note: can start from the beginning or the end of Y_pool

CHECK THIS !!"""

for i in range(1,len(Y_pool)):

for j in range(i):

if Y_pool[j] != []:

dist = linalg.norm(subtract(asarray(Y_pool[i]),asarray(Y_pool[j])))

if dist <= min_away:

Y_pool[i] = []

break

Y_pool = list(filter(None, Y_pool))

Y_pool.remove(x_inc)

""" Y_init finds a full-poised set from scratch """

Y_init = [x_inc]

""" reset lagrange functions to the nominal basis l_i(x) = phi_i(x)"""

L = [[0.]*p]; L[0][0] = 1;

for i in range(1, p):

L += [[0.]*p]

L[i][i] = 1

l = L[0]

""" find a poised set around the center point and update the Lagrange functions """

""" make sure that all the points are at least 20%Delta distance away from each other """

for i in range(1, p):

""" 1. point selection """

l = L[i]

x_ini = x_inc[:]

x_ini[-1] += Delta/1.01; """ STARTING POINT FOR THE OPT """

good_point = 0

[y_next, res] = LagrangeMax(Delta, func, x_ini, x_inc)

while not good_point:
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for j in range(len(Y_init)):

y_next_dist = linalg.norm(subtract(y_next.tolist(), Y_init[j]))

if y_next_dist < min_away:

""" push the point slightly to the opposite direction of the closest point """

move_to = (min_away)*subtract(asarray(Y_init[j]), y_next)/y_next_dist

y_next = subtract(y_next, move_to)

good_point = 0

break

else:

good_point = 1

Y_init += [y_next.tolist()]

""" 2. normalization """

l = L[i][:]

factor = func(Y_init[i], 1)

L[i] = [round(li/factor, 3) for li in L[i]]

""" 3. orthagonalization """

for j in range(p):

if j != i:

l = L[j]

factor = func(Y_init[i], 1)

L[j] = [round(lj-factor*li, 3) for lj, li in zip(L[j], L[i])]

""" Now choose the closest observed points within 5%Delta to the selected \

points (if any), and rank them """

Y_closest = [[]]

Y_closest_dists = []; """ just the closest points """

Y_all_dists = [0]; """ For all the points, regardless if they have closest or no closest found (0)

.

if you don’t find a point within 5%Delta, set to 0"""

for i in range(1, p):

min_dist = Delta*.05

y_closest = []

for j in range(len(Y_pool)):

dist = linalg.norm(subtract(asarray(Y_pool[j]), asarray(Y_init[i])))

if dist <= min_dist:

min_dist = dist

y_closest = Y_pool[j]

Y_closest += [y_closest]

if not y_closest == []:

Y_pool.remove(y_closest)

Y_closest_dists += [min_dist]
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Y_all_dists += [min_dist]

else:

Y_all_dists += [0]

Y_final = [x_inc]

Y_init[0] = []

""" Now based on the freshpoised_per, choose from Y_init or points with \

the least distance to the original points

if freshpoised = 1, then use all the points from Y_init or the closest to them

if freshpoised = 0, just use points from Y_all that are farthest away from the points \

already in the Y_final and at least 5%Delta distance away from them """

freshpoised_num = int(floor(freshpoised_per*(p-1)))

""" for the freshpoised_num of the total points first choose from Y_closest \

(the closest observed points to the ones in Y_init) and remove the associated points in Y_init, \

then choose the rest from the remaining points in Y_init that are farthest \

from all the points already in Y_final but also at least 5%Delta distance away from each of them

"""

for i in range(freshpoised_num):

if not Y_closest_dists == []:

freshpoised_index = list.index(Y_all_dists, min(Y_closest_dists))

Y_final += [Y_closest[freshpoised_index][:]]

Y_closest_dists.remove(min(Y_closest_dists))

Y_init[freshpoised_index] = []

else:

Y_farthest_dists = [0]*len(Y_init)

for j in range(1, len(Y_init)):

total_dist = 0

too_close = 0

for y_final in Y_final:

if not Y_init[j] == []:

dist = linalg.norm(subtract(asarray(y_final), asarray(Y_init[j])))

if dist < min_away:

too_close = 1

break

else:

dist = 0

total_dist += dist

if not too_close:

Y_farthest_dists[j] = total_dist

""" this situation happens when the new poised set (Y_init) gives too close points """

if max(Y_farthest_dists) == 0:

if show_error: print "Y_farthest_dists is 0"

for j in range(1,len(Y_init)):
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if not Y_init[j] == []:

Y_farthest_dists[j] = min_away

break

farthest_index = list.index(Y_farthest_dists, max(Y_farthest_dists))

Y_final += [Y_init[farthest_index]]

Y_init[farthest_index] = []

Y_init = list(filter(None, Y_init))

""" for the remaining p - freshpoised_num of the points, reuse old points that

are farthest from all the other points already selected """

for i in range(freshpoised_num+1, p):

if len(Y_pool) > 0 and not max(Y_pool) == []:

Y_farthest_dists = [0]*len(Y_pool)

for j in range(1, len(Y_pool)):

total_dist = 0

too_close = 0

for y_final in Y_final:

if not Y_pool[j] == []:

dist = linalg.norm(subtract(asarray(y_final), asarray(Y_pool[j])))

if dist < min_away:

too_close = 1

break

else:

dist = 0

total_dist += dist

if not too_close:

Y_farthest_dists[j] = total_dist

if max(Y_farthest_dists) == 0:

for j in range(1,len(Y_pool)):

if not Y_pool[j] == []:

Y_farthest_dists[j] = min_away

break

farthest_index = list.index(Y_farthest_dists, max(Y_farthest_dists))

Y_final += [Y_pool[farthest_index]]

Y_pool[farthest_index] = []

else:

Y_farthest_dists = [0]*len(Y_init)

for j in range(1, len(Y_init)):

total_dist = 0

too_close = 0

for y_final in Y_final:

if not Y_init[j] == []:



144

dist = linalg.norm(subtract(asarray(y_final), asarray(Y_init[j])))

if dist < min_away:

too_close = 1

break

else:

dist = 0

total_dist += dist

if not too_close:

Y_farthest_dists[j] = total_dist

""" this situation happens when the new poised set (Y_init) gives too close points """

if max(Y_farthest_dists) == 0:

if show_error: print "Y_farthest_dists is 0"

for j in range(1,len(Y_init)):

if not Y_init[j] == []:

Y_farthest_dists[j] = min_away

break

farthest_index = list.index(Y_farthest_dists, max(Y_farthest_dists))

Y_final += [Y_init[farthest_index]]

Y_init[farthest_index] = []

Y_pool = list(filter(None, Y_pool))

return Y_final

def ModelConstruction(Y, FY, model_order, p):

f_dim = len(Y[0])

P = [[1.0]+Y[i] for i in range(p)]

if model_order == 2:

for i in range(p):

for j in range(f_dim):

P[i] += [pow(Y[i][j],2)/2]

for jj in range(j+1, f_dim):

P[i] += [Y[i][j]*Y[i][jj]]

alpha = linalg.solve(P,FY)

alpha = alpha.tolist()

c = alpha[0]

""" g at origin """

g = alpha[1:f_dim+1]

""" reading A from alpha """

A = zeros(shape = (f_dim, f_dim), dtype = float)

if model_order == 2:

q_index = f_dim

for j in range(f_dim):

for jj in range(j, f_dim):
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q_index += 1

A[j,jj] = alpha[q_index]

A[jj,j] = alpha[q_index]

""" g at x """

g = dot(A,asarray(Y[0]))+asarray(g)

return c, g, A

def SubProblem(x, c, g, A, Delta):

global All_Y, All_Values

""" METHOD 1 """

""" M(x) = c + g’x + .5x’Ax

dM(x) = g + Ax

d2M(x) = A

M(x+s) = M(x) + dM’s + .5s’d2Ms

M(x+s) - M(x) = dM’s + .5s’d2Ms

NOTE: what we call g in the code is in fact dM(x)

To calculate M(x) we transform dM(x) to g by subtracting Ax from it"""

g_orig = subtract(g, dot(A,asarray(x)))

current_value = ModelEval(x, c, g_orig, A)

x_init = x[:]

x_init[-1] += Delta/1.01; """ starting point is chosen """

cons = ({’type’: ’ineq’,\

’fun’ : lambda z: Delta/1.01 - linalg.norm(subtract(asarray(x),asarray(z))),\

’jac’ : None})

""" constraint in the form of g_i >= 0"""

res = minimize(ModelEval, x_init, args=(c, g_orig, A), jac=None,\

constraints = cons, method=’COBYLA’, options={’disp’: False})

s = subtract(res.x, x)

model_reduction = ModelEval(res.x, c, g_orig, A) - current_value

""" METHOD 2 """

if model_reduction > 0:

g_norm = linalg.norm(g)

if model_order == 2:

val = pow(g_norm,3)/(dot(dot(transpose(g),A),g))

""" convex? """

if val > 0:

s = -val*g/g_norm

if linalg.norm(s) > Delta:

x_star = [xi+ si for xi, si in zip(x, s)]

x_gap = [xstari-xoldi for xstari, xoldi in zip(x_star, x)]

s = Delta*asarray(x_gap)/linalg.norm(asarray(x_gap))

else:

s = -Delta*g/g_norm
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else:

s = -Delta*g/g_norm

model_reduction = dot(transpose(g),s)+0.5*dot(dot(transpose(s),A),s)

return [s, model_reduction]

""" the derivative can be derived: Grad(i,0)=i+1;

Grad(i,i+1)=(i+1)+id+ (for iter in range (1,i-1): -= iteration);

for iteration=i+1..d: Grad(i,iteration)=Grad(iteration,i+1)=Grad(i,i+1)+(iteration-i)

"""

def ModelEval(x, c, g, A):

return c + dot(transpose(g),x) + 0.5*dot(dot(transpose(x),A),x)

def LagrangeEval(x, sign):

global l

k = 0

f_dim = len(x)

f = l[k]

for i in range(f_dim):

k += 1

f += l[k]*x[i]

for i in range(f_dim):

k += 1

f += float(l[k]*pow(x[i],2))/2

for j in range(i+1,f_dim):

k += 1

f += l[k]*x[i]*x[j]

return sign*(f)

def LagrangeMax(r, func, x_init, x_inc):

global l, show_error

cons = ({’type’: ’ineq’,\

’fun’ : lambda x: r/1.01 - linalg.norm(subtract(asarray(x_inc),asarray(x))),\

’jac’ : None})

""" constraint in the form of g_i >= 0"""

res = minimize(func, x_init, args=(-1.0), jac=None,\

constraints = cons, method=’COBYLA’, options={’disp’: False,’catol’:1e-5})

""" other solvers: for bounds(L-BFGS-B, TNC), COBYLA SLSQP"""

new_x = res.x

if not res.success and show_error:

print ’!!!! Optimization didnt succeed !!!! ’

return [new_x, res]
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def ASTRO(jl, x_0, Delta_0, noise, iseeds, total_reps_maxes, show_factor, res_file, prob_name,

test_set):

global f_dim, p, m_o, All_Y, All_Values, kappa_ias, kappa_oas, \

total_samples, total_reps, iseed, stop, re_used, \

l, model_order, p, total_reps_max, show_error, points_rec, record_res_count, x_inc, optimum,

record_res, grad_res

"""INPUT PARAMETERS"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

f_dim = len(x_0); model_order = 2;

eta_1 = 0.1; epsilon = 0.005; w = 0.99; mu = 1.1; beta = 1/mu;

gamma_1 = pow(1.1,2./float(f_dim)); gamma_2 = 1/gamma_1; Delta_max = 10000; n_max = 1e6;

kappa_ias = 1000; kappa_oas = 1000; Delta_min = 1e-4

g_norm_tolerance = 1e-2; g_norm_criticality_tolerance = 10; iteration_max = 10000

""" NEW parameter used in PoisedSet method: how many observed points to re-use

when = 1 we use every point that is closest and at most 5%Delta distance to the ideal poised set

when = 0 we use the ideal poised set itself """

"""COUNT VARIABLES """

stop = 0; re_used = 0; total_samples = 0; total_reps = 0

if model_order == 1:

p = f_dim + 1

else:

p = (f_dim + 1)*(f_dim +2)/2

l = [0]*p

"""OTHER SETTINGS """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

total_reps_max = total_reps_maxes[-1] #assuming it is sorted

if os.path.exists(str(prob_name)+’.4plot.txt’): os.remove(str(prob_name)+’.4plot.txt’);

if os.path.exists(str(prob_name)+’.4plot.grad.txt’): os.remove(str(prob_name)+’.4plot.grad.txt’);

record_file = open(str(prob_name)+’.4plot.txt’, ’a+’)

grad_file = open(str(prob_name)+’.4plot.grad.txt’, ’a+’)

record_res = [0]*len(total_reps_maxes)

grad_res = [0]*len(total_reps_maxes)

total_record_res =[]

total_grad_res = []

if test_set:

print ’seed\t iter\t Delta\t\t f_hat\t\t f\t\t |g_hat|\t |g|\t\t max_error\t min_dist/Delta\t

total_samples\t total_work’

res_file.write(’\nseed\t iter\t Delta\t\t f_hat\t\t f\t\t |g_hat|\t |g|\t\t max_error\t

min_dist/Delta\t total_samples\t total_work’)
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final_gnorm = []; final_f = []

g_norm_sum = 0

for seed_init in iseeds:

"""RESET"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

stop = 0; re_used = 0; total_samples = 0; total_reps = 0; record_res_count = 0

iseed = seed_init

x_init = x_0

Delta = Delta_0

g_norm = 1e6; """ dummy g_norm """

iteration = 1

All_Y = []

All_Values = []

points_rec = 0

Y = [[0.0]*f_dim]*p

FY = [0.0]*p

x_inc = x_init

Delta_tilda = Delta

[n, FY[0]] = AdaptiveSampling(jl, x_inc, 1, Delta, kappa_oas, noise, n_max, total_reps_maxes)

f_inc = FY[0]

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc)

if stop: break;

""" print the first iteration """

if test_set:

print ’%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \t\t%8d’ \

% (seed_init, iteration, round(Delta_tilda,4), round(f_inc,4), round(obj_determ,4), round(

g_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

abs(f_inc - obj_determ), 0, total_samples, total_reps)

res_file.write(’\n%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \

t\t%8d’ \

% (seed_init, iteration, round(Delta_tilda,4), round(f_inc,4), round(obj_determ,4),

round(g_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

abs(f_inc - obj_determ), 0, total_samples, total_reps))

while iteration <= iteration_max and Delta < Delta_max and Delta > Delta_min and total_reps <

total_reps_max and g_norm > g_norm_tolerance:

if noise == 0:

inflator = 1; """ deterministic case """

else:
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inflator = max(1,ceil(pow(iteration, 1+epsilon)))

if g_norm <= g_norm_criticality_tolerance:

freshpoised_per = 1

else:

freshpoised_per = 0

""" INNER LOOP """""""""""""""""""""""""""""""""""""""""""""""""""""

innerloop = 1

if noise > 0: improve = 1;

else: improve = 1; """ this is no not always improve the model by resampling when

deterministic.. don’t have this yet in stochastic """

Delta = Delta_tilda; """ keeping last final Delta to compare with new one """

""" CRITICALITY STEP """""""""""""""""""""""""""""""""""""""""""""""

""" if the model gradient is large, just replace the best point with the current iterate

and replace the current iterate with the farthest point in the current pool (can also

replace with the farthest from the new iterate) """

""" re-build the model at the current points without extra observations """

while innerloop:

if noise == 0:

if g_norm <= 1:

improve = 1

if improve:

Y = PoisedSet(Delta_tilda, LagrangeEval, x_inc, freshpoised_per);

for i in range(p):

[n, FY[i]] = AdaptiveSampling(jl, Y[i][:], inflator, Delta_tilda, kappa_ias,

noise, n_max, total_reps_maxes)

f_inc = FY[0]

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc)

if stop: break;

if stop: break;

[c, g, A] = ModelConstruction(Y, FY, model_order, p)

g_norm = linalg.norm(g)

if mu*g_norm < Delta_tilda:

Delta_tilda *= w

else:

Delta = min(Delta,max(beta*g_norm, Delta_tilda))

innerloop = 0; """ terminate inner loop """

if stop: break;

""" INNER LOOP """""""""""""""""""""""""""""""""""""""""""""""""""""

errors = []

for i in range(p):
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errors += [FY[i] - CUTEObjEval(jl, Y[i], 0) ]

if max(errors) > 10 and show_error:

print ’FY ’+str(FY)

min_dist = Delta

for i in range(len(Y)):

for j in range(i+1, len(Y)):

dist = linalg.norm(subtract(asarray(Y[i]),asarray(Y[j])))

if dist < min_dist: min_dist = dist;

""" OUTER LOOP """""""""""""""""""""""""""""""""""""""""""""""""""""

[s, model_reduction] = SubProblem(x_inc, c, g, A, Delta)

if model_reduction > 0 and show_error: print ’ALARMMMMMMM’;

x_candidate = (asarray(x_inc)+asarray(s)).tolist()#[xi+ si for xi, si in zip(x_inc, s)]

[n, f_hat_new] = AdaptiveSampling(jl, x_candidate, inflator, Delta, kappa_oas, noise, n_max

, total_reps_maxes)

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc)

if stop: break

rho_hat = (f_hat_new-FY[0])/model_reduction

visited_min_index = list.index(FY, min(FY))

""" UPDATE: if success, check min(FY) """

if rho_hat >= eta_1 and model_reduction < 0:

Delta_tilda = min(Delta_max, gamma_1*Delta)

if min(FY) < f_hat_new:

x_inc = Y[visited_min_index][:]

f_inc = FY[visited_min_index]

else:

x_inc = x_candidate[:]

f_inc = f_hat_new

else:

Delta_tilda = gamma_2*Delta

x_inc = Y[0][:]

f_inc = FY[0]

""" include the candidate point in the set if not accepted

replace with the farthest point

or replace with the point that has the highest objective function,

if the candidate point has a lower objective function """

if not x_inc == x_candidate:

dist_new = linalg.norm(subtract(asarray(x_inc),asarray(x_candidate)))

dist_max = 0

for point_in_Y in range(p):
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dist_in_Y = linalg.norm(subtract(asarray(x_inc),asarray(Y[point_in_Y])))

if dist_in_Y > dist_max: dist_max = dist_in_Y; dist_argmax = point_in_Y;

if dist_max > dist_new:

Y[dist_argmax] = x_candidate[:]

FY[dist_argmax] = f_hat_new

elif f_hat_new < max(FY):

Y[dist_argmax] = x_candidate[:]

FY[dist_argmax] = f_hat_new

""" OUTER LOOP """""""""""""""""""""""""""""""""""""""""""""""""""""

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc)

if test_set:

print ’%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \t\t

%8d’ \

% (seed_init, iteration, round(Delta_tilda,4), round(f_inc,4), round(obj_determ,4),

round(g_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

round(abs(max(errors, key=abs)),2), min_dist/Delta, total_samples, total_reps)

res_file.write(’\n%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t

%4d \t\t%8d’ \

% (seed_init, iteration, round(Delta_tilda,4), round(f_inc,4), round(obj_determ,4),

round(g_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

round(abs(max(errors, key=abs)),2), min_dist/Delta, total_samples, total_reps))

iteration += 1

obj_determ = CUTEObjEval(jl, x_inc, 0)

grad_determ = CUTEGradEval(jl, x_inc)

if iteration < iteration_max:

if test_set:

print ’%4d \t%4d \t%7.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%9.4f \t%4d \t\t%8d’

\

% (seed_init, iteration-1, round(Delta_tilda,4), round(f_inc,4), round(obj_determ,4),

round(g_norm,4), \

round(linalg.norm(asarray(grad_determ)),4),\

round(abs(max(errors, key=abs)),2), min_dist/Delta, total_samples, total_reps)

if test_set:

res_file.write(’\n\n x_inc ’+str(x_inc)+’\n f_hat ’+str(round(f_inc,4))+\

’\n f ’+str(round(obj_determ,4))+’\n g_hat ’+str(round(g_norm,4))+\

’\n g ’+str(round(linalg.norm(asarray(grad_determ)),4))+’\n Delta ’+str(round(Delta_tilda

,4)))

if iteration > iteration_max:
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if test_set:

print ’iterations maxed.’

res_file.write(’\niterations maxed.’)

elif Delta >= Delta_max:

if test_set:

print ’Delta maxed.’

res_file.write(’\nDelta maxed.’)

elif Delta <= Delta_min:

if test_set:

print ’Delta mined.’

res_file.write(’\nDelta mined.’)

elif total_reps >= total_reps_max:

if test_set:

print ’replications maxed.’

res_file.write(’\nreplications maxed.’)

elif g_norm <= g_norm_tolerance:

if test_set:

print ’g_norm mined.’

res_file.write(’\ng_norm mined.’)

""" at the end of each sample path save the true G Vector """

final_gnorm += [round(linalg.norm(asarray(grad_determ)),4)]

""" at the end of each sample path save the true f Value """

final_f += [abs(round(linalg.norm(asarray(obj_determ)),4)-optimum)]

g_norm_sum += g_norm

total_record_res += [record_res[:]]

total_grad_res += [grad_res[:]]

""" not the pre-processing but the actual processing """

if test_set:

record_file.write(str(total_record_res)+’\n’)

grad_file.write(str(total_grad_res)+’\n’)

B = asarray(total_record_res)

G = asarray(total_grad_res)

""" initiate """

col1 = []

col2 = []

B_new = zeros((len(iseeds),len(total_reps_maxes)))

G_new = zeros((len(iseeds),len(total_reps_maxes)))

for i in range(len(total_reps_maxes)):

col1 = B[:,i].tolist()

col2 = G[:,i].tolist()

col1.sort()
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col2.sort()

B_new[:,i] = asarray(col1)

G_new[:,i] = asarray(col2)

if len(iseeds) >= 10:

rows = [int(floor(len(iseeds)*.25)),int(floor(len(iseeds)*.5)),int(floor(len(iseeds)*.75)),

int(floor(len(iseeds)*.9))]

plt.figure()

plt.plot(total_reps_maxes, B_new[rows[0],:].tolist(), ’r’, total_reps_maxes, B_new[rows

[1],:].tolist(), \

’g’,total_reps_maxes, B_new[rows[2],:].tolist(), ’b’,total_reps_maxes, B_new[rows[3],:].

tolist(), ’k’)

plt.xlabel(’Simulation Budget’)

plt.ylabel(’Optimality Gap’)

plt.savefig(str(prob_name)+’_og_plot_.jpg’)

plt.figure()

plt.plot(total_reps_maxes, G_new[rows[0],:].tolist(), ’r--’, total_reps_maxes, G_new[rows

[1],:].tolist(), ’g--’,\

total_reps_maxes, G_new[rows[2],:].tolist(), ’b--’,total_reps_maxes, G_new[rows[3],:].

tolist(), ’k--’)

plt.xlabel(’Simulation Budget’)

plt.ylabel(’Gradient Norm’)

plt.savefig(str(prob_name)+’_grad_plot_.jpg’)

record_file.close()

grad_file.close()

return g_norm_sum/len(iseeds)

def main(prob_name, noise, iseeds, total_reps_maxes, show_factor):

global f_dim, p, m_o, All_Y, All_Values, freshpoised_per, show_error

All_Y = []; All_Values = [];

iseeds_list = ast.literal_eval(iseeds)

total_reps_maxes_list = ast.literal_eval(total_reps_maxes)

if os.path.exists(str(prob_name)+’.log.txt’):

os.remove(str(prob_name)+’.log.txt’)

res_file = open(str(prob_name)+’.log.txt’, ’a+’)

jl = julia.Julia()

jl.call(’using CUTEst’)

jl.call(’nlp = CUTEstModel("’+str(prob_name)+’")’)

f_dim = jl.eval(’nlp.meta.nvar’)
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res_file.write(’\nProblem: ’+str(prob_name)+’\ntotal_reps_max: ’+str(total_reps_maxes_list[0]))

res_file.write(’\npre-processing\n-----------------’)

print ’pre-processing\n-----------------’

""" pre-processing """

for noise in [1]:

All_Y = []; All_Values = [];

print ’noise is ’+str(noise)

x_0_vals = [-16.0,16.0]

Delta_0s = [5,15]

g_norms = []

g_min = 1e20

freshpoised_per = 1

for x_0_val in x_0_vals:

for Delta_0 in Delta_0s:

g_new = ASTRO(jl, [x_0_val]*f_dim, Delta_0, noise, [10], [500], show_factor, res_file,

prob_name, 0)

g_norms += [g_new]

if g_new < g_min:

g_min = g_new

x_0_val_best = x_0_val

Delta_0_best = Delta_0

print ’\ng_norms ’+str(g_norms)

print ’g_min ’ + str(min(g_norms))

print ’x_0_val_best ’+str(x_0_val_best)

print ’Delta_0_best ’+str(Delta_0_best)

""""""""""""""""""""""""

print ’\nfinal results \n-----------------’

res_file.write(’\nfinal results \n-----------------’)

ASTRO(jl, [x_0_val_best]*f_dim, Delta_0_best, noise, iseeds_list, total_reps_maxes_list,

show_factor, res_file, prob_name, 1)

jl.call(’cutest_finalize(nlp)’)

os.remove(’AUTOMAT.d’)

os.remove(’OUTSDIF.d’)

os.remove(’lib’+str(prob_name)+’.dylib’)

res_file.close()

global f_dim, p, m_o, All_Y, All_Values, kappa_ias, kappa_oas, \

total_samples, total_reps, iseed, stop, re_used, total_reps_max, \

previous_success, x_candidate, l, model_order, p, iseed, show_error,\

record_res_count, x_inc, optimum, record_res, grad_res

show_error = 0
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All_Y = []; All_Values = [];

l = []

x_inc = []

record_res = []; grad_res = []

optimum = 0

model_order = 0; p = 0

re_used = 0

total_samples = 0; total_reps = 0

iseed = 0

stop = 0

total_reps_max = 0; record_res_count = 0
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APPENDIX B

QUANTILE PLOTS OF ASTRO AND ASTRO-DF

The quantile plots of ASTRO for the suite of low to moderate dimensional problems of the

CUTEst framework are collected here. The red, green, blue and black plots are the 25%,

50%, 75% and 90% quantiles respectively. The solid lines (left plots) are the optimality

gaps and the dashed lines (right plots) are the gradient norms.
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BEALE BEALE

BIGGS6 BIGGS6

BOX3 BOX3

Figure B.1. Quantile plots of ASTRO for the functions BEALE, BIGGS6 and
BOX3.
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BROWNDEN BROWNDEN

CUBE CUBE

DENSCHNB DENSCHNB

Figure B.2. Quantile plots of ASTRO for the functions BROWNDEN, CUBE
and DENSCHNB.
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DENSCHNC DENSCHNC

DENSCHND DENSCHND

DENSCHNE DENSCHNE

Figure B.3. Quantile plots of ASTRO for the functions DENSCHNC, DEN-
SCHND and DENSCHNE.
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DENSCHNF DENSCHNF

ENGVAL2 ENGVAL2

HATFLDD HATFLDD

Figure B.4. Quantile plots of ASTRO for the functions DENSCHNF, ENGVAL2
and HATFLDD.
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HATFLDE HATFLDE

HELIX HELIX

HIMMELBF HIMMELBF

Figure B.5. Quantile plots of ASTRO for the functions HATFLDE, HELIX and
HIMMELBF.
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KOWOSB KOWOSB

PALMER5C PALMER5C

PALMER6C PALMER6C

Figure B.6. Quantile plots of ASTRO for the functions KOWOSB, PALMER5C
and PALMER6C.
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PALMER7C PALMER7C

PALMER8C PALMER8C

ROSENBR ROSENBR

Figure B.7. Quantile plots of ASTRO for the functions PALMER7C,
PALMER8C and ROSENBR.
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S308 S308

SINEVAL SINEVAL

YFITU YFITU

Figure B.8. Quantile plots of ASTRO for the functions S308, SINEVAL and
YFITU.
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The quantile plots of ASTRO-DF are shown in the following. Again the red, green,

blue and black plots are the 25%, 50%, 75% and 90% quantiles respectively. The solid

lines (left plots) are the optimality gaps and the dashed lines (right plots) are the gradient

norms.
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BEALE BEALE

BIGGS6 BIGGS6

BOX3 BOX3

Figure B.9. Quantile plots of ASTRO-DF for the functions BEALE, BIGGS6
and BOX3.
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BROWNDEN BROWNDEN

CUBE CUBE

DENSCHNB DENSCHNB

Figure B.10. Quantile plots of ASTRO-DF for the functions BROWNDEN,
CUBE and DENSCHNB.
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DENSCHNC DENSCHNC

DENSCHND DENSCHND

DENSCHNE DENSCHNE

Figure B.11. Quantile plots of ASTRO-DF for the functions DENSCHNC,
DENSCHND and DENSCHNE.
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DENSCHNF DENSCHNF

ENGVAL2 ENGVAL2

HATFLDD HATFLDD

Figure B.12. Quantile plots of ASTRO-DF for the functions DENSCHNF, EN-
GVAL2 and HATFLDD.
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HATFLDE HATFLDE

HELIX HELIX

HIMMELBF HIMMELBF

Figure B.13. Quantile plots of ASTRO-DF for the functions HATFLDE, HELIX
and HIMMELBF.
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KOWOSB KOWOSB

PALMER5C PALMER5C

PALMER6C PALMER6C

Figure B.14. Quantile plots of ASTRO-DF for the functions KOWOSB,
PALMER5C and PALMER6C.
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PALMER7C PALMER7C

PALMER8C PALMER8C

ROSENBR ROSENBR

Figure B.15. Quantile plots of ASTRO-DF for the functions PALMER7C,
PALMER8C and ROSENBR.
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S308 S308

SINEVAL SINEVAL

YFITU YFITU

Figure B.16. Quantile plots of ASTRO-DF for the functions S308, SINEVAL
and YFITU.
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