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ABSTRACT

Qu, Simeng PhD, Purdue University, December 2016. Functional Regression Models
in the Frame Work of Reproducing Kernel Hilbert Space . Major Professor: Xiao
Wang.

The aim of this thesis is to systematically investigate some functional regression

models for accurately quantifying the effect of functional predictors. In particular,

three functional models are studied: functional linear regression model, functional

Cox model, and function-on-scalar model. Both theoretical properties and numerical

algorithms are studied in depth. The new models find broad applications in many

areas.

For the functional linear regression model, the focus is on testing the nullity of the

slope function, and a generalized likelihood ratio test based on easily implementable

data-driven estimate is proposed. The quality of the test is measured by the minimal

distance between the null and the alternative space that still allows a possible test.

The lower bound of the minimax decay rate of this distance is derived, and test with

a distance that decays faster than the lower bound would be impossible. It is shown

that the minimax optimal rate is jointly determined by the reproducing kernel and

the covariance kernel and our test attains this optimal rate. Later, the test is applied

to the effect of the trajectories of oxides of nitrogen (NOx) on the level of ozone (O3).

In the functional Cox model, the aim is to study the Cox model with right-censored

data in the presence of both functional and scalar covariates. Asymptotic properties

of the maximum partial likelihood estimator is established and it is shown that the

estimator achieves the minimax optimal rate of convergence under a weighted L2-

risk. Implementation of the estimation approach and the selection of the smoothing

parameter are discussed in detail. The finite sample performance is illustrated by

simulated examples and a real application.



xiii

The function-on-scalar model concentrates on developing the simultaneous model

selection and estimation technique. A novel regularization method called the Grouped

Smoothly Clipped Absolute Deviation (GSCAD) is proposed. The initial problem

can be transferred into a dictionary learning problem, where the GSCAD can be

directly applied to simultaneously learn a sparse dictionary and select the appropriate

dictionary size. Efficient algorithm is designed based on the alternative direction

method of multipliers (ADMM) which decomposes the joint non-convex problem with

the non-convex penalty into two convex optimization problems. Several examples are

presented for image denoising and image inpainting, which are competitive with the

state of the art methods.
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1. INTRODUCTION

1.1 Functional Data

Functional data refer to data in form of functions such as curves, surfaces or more

general objects, where a sample element is considered to be a function. The con-

cept of functional data can be broad. Traditional functional data can be described

as observations of trajectories at discrete points along time line (or more general

continuum), where the trajectories are generated from underlying smooth stochas-

tic process. They typically consist of a random sample of independent real-valued

functions, X1(t), ..., Xn(t), on a compact interval I = [0, T ] on the real line. These

real-valued functions can be viewed as the realizations of a one-dimensional stochastic

process X(t). This type of functional data is also referred to as the first general func-

tional data [1]. Typical examples include children’s growth curves, daily temperature

and precipitation records. Figure 1.1 shows the mean monthly temperature curves

for four selected Canadian weather stations. Functional data is also very common in

various medical and biomedical fields. These data can take fairly simple forms, such

as 2-dimensional electrocardiogram (ECG) and electroencephalogram (EEG) traces,

or be highly complex, like functional magnetic resonance imaging data (fMRI). Such

functional data are also referred to as the next generation functional data, that are

part of complex data objects, and possibly are multivariate, correlated, or involve

images or shapes.

As modern technology produces increasingly larger volumes of functional data

with higher quality, demand for more powerful and sophisticated statistical methods

is growing rapidly.
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Figure 1.1. Mean monthly temperatures for four selected Canadian
weather stations.
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1.2 Reproducing Kernel Hilbert Space

Reproducing kernel Hilbert space (RKHS) has been an important tool to studying

functional data. In this section, we will introduce some basic concepts of RKHS and

list a few properties that we will use in later sections. More details about RKHS can

be found in [2] and [3].

1.2.1 Definition

RKHS is a Hilbert space of functions in which point evaluation is a continuous

linear functional. That is, if two functions f and g in the RKHS are close in norm,

i.e., ||f − g|| is small, then f and g are also pointwise close, i.e., |f(x)− f(g)| is small

for all x. The reverse may not be true. Definition of RKHS is described as follows

and we will give out two examples of RKHS later in section 1.2.3.

Definition 1.1 A reproducing kernel Hilbert space is a Hilbert space H of functions

on domain X , such that for each x ∈ X , the evaluation function Lx : Lxf = f(x), is

a bounded linear functional. The boundedness means that there exists an M = Mx,

such that

|Lxf | = |f(x)| ≤M ||f ||, for all f ∈ H, (1.1)

where || · || is the norm in the Hilbert space.

The condition of Lx being bounded is equivalent to that of Lx being continuous in

H, and some references also define RKHS by Lx being continuous. By the Riesz

representation theorem of Hilbert space, for every x ∈ X , there exists an element

Kx ∈ H with the property that

Lxf = 〈Kx, f〉 = f(x), ∀f ∈ H.

Kx is called the representer of evaluation at x. Here 〈·, ·〉 denote the inner product

of H. The symmetric bivariate function K(x, y) = 〈Kx, Ky〉 is called the reproducing

kernel of the space H as it has the reproducing property that,

〈K(x, ·), f(·)〉 = f(x) ∀x ∈ X , and ∀f ∈ H.
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In fact K(x, y) is a non-negative definite function, and there is a one-to-one correspon-

dence between reproducing kernel Hilbert spaces and non-negative definite functions.

Theorem 1.2.1 For every RKHS H of functions on X , there corresponds a unique

non-negative definite reproducing kernel K(x, y); conversely, given a non-negative

definite function K on X × X , we construct a unique RKHS H, that has K(x, y) as

its reproducing kernel.

1.2.2 Useful Properties

Suppose reproducing kernel K(x, y) is continuous and satisfying∫
X

∫
X
K2(x, y)dxdy <∞. (1.2)

By Mercer theorem [4], there exist eigenvalues λ1 ≥ λ2 ≥ ... ≥ 0, and an orthonormal

sequence of continuous eigenfunctions φ1, φ2, ... in the L2 space whose elements are

functions defined on X , such that∫
X
K(x, y)φv(y)dy = λvφv(x), v = 1, 2, ...,

K(x, y) =
∞∑
v=1

λvφv(x)φv(y),

∫
X

∫
X
K2(x, y)dxdy =

∞∑
v=1

λ2
v <∞.

Then it is easy to verify the following proposition.

Proposition 1.2.1 Suppose (1.2) holds. Let fv =
∫
X f(x)φv(x)dx, then f ∈ H(K)

if and only if
∞∑
v=1

f 2
v

λv
<∞,

and

||f ||2K =
∞∑
v=1

f 2
v

λv
.

Here || · ||K denote the norm defined by RKHS H(K).
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Proposition 1.2.1 shows that, if we begin with K satisfying 1.2, we can construct

an RKHS of functions as

{f | f(·) =
∞∑
v=1

fvφv(·) and
∞∑
v=1

f 2
v

λv
<∞}.

The following theorem shows that RKHS can be decomposed into tensor sums.

Proposition 1.2.2 If the reproducing kernel K of a RKHS H on domain X can be

decomposed into K = K0 + K1, where K0 and K1 are both non-negative definite,

K0(x, ·), K1(x, ·) ∈ H, for every x ∈ X , and 〈K0(x, ·), K1(x, ·)〉 = 0, for every

x, y ∈ X , then the spaces H0 and H1 corresponding respectively to K0 and K1 form

a tensor sum decomposition of H. Conversely, if K0 and K1 are both non-negative

definite and H0∩H1 = {0}, then H = H0+H1 has a reproducing kernel K = K0+K1.

Proposition 1.2.2 will make constructing estimators for coefficient functions in func-

tional regression models a lot easier, as will be presented in later sections. In general,

we assume the coefficient functions (denoted as β) reside in a RHKSH(K), andH(K)

can be decomposed according to a penalty function J , which is applied to control the

smoothness of β. More specifically, H(K) = H0(K0) +H1(K1), where H0 is the null

space of J ,

H0 = {β ∈ H(K) : J(β) = 0},

and H1 is its orthogonal complement in H. Then coefficient function β can be rep-

resented by a finite set of basis consisting basis of K0 and inner products of K1

and observed predictor functions. In this case, the infinite target space H has been

reduced to a subspace spanned by a finite set of basis.

1.2.3 Examples of RKHS

Before introducing any examples, I would like to point out that the familiar Hilbert

space L2[0, 1] of square integrable functions on [0, 1] is not a RKHS as it does not

satisfy condition (1.1). In fact, elements in L2[0, 1] are not even defined point-wise.
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A finite-dimensional Hilbert space, on the other hand, is always a reproducing kernel

Hilbert space since all linear functionals are continuous.

Consider the continuous function space C(m)[0, 1] defined as

C(m)[0, 1] = {f : [0, 1]→ R|f, f ′, ..., f (m−1) are absolutely continuous and f (m) ∈ L2[0, 1]}.

I am going to introduce two inner products, equipped with either of which, space

C(m)[0, 1] becomes a RKHS.

A nature way to construct a RKHS on space C(m)[0, 1] is based on taylor expan-

sion. For f ∈ C(m)[0, 1], Taylor expansion gives

f(x) =
m−1∑
v=0

xv

v!
f (v)(0) +

∫ 1

0

(x− u)m−1
+

(m− 1)!
f (m)(u)du,

where (·)+ = max(0, ·).

Example 1.2.1 If we define inner product of C(m)[0, 1] as

〈f, g〉 =
m−1∑
v=0

f (v)(0)g(v)(0) +

∫ 1

0

f (m)(x)g(m)(x)dx, f, g ∈ C(m)[0, 1],

then C(m)[0, 1] becomes an RKHS with kernel

K(x, y) =
m−1∑
v=0

xv

v!

yv

v!
+

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du.

To check this, using the fact that K
(v)
x (0) = x(v)/v!, v = 1, ...,m − 1, K

(m)
x (y) =

(x− y)m−1
+ /(m− 1)!, therefore

〈K(x, y), f〉 =
m−1∑
v=0

xv

v!
f (v)(0) +

∫ 1

0

(x− u)m−1
+

(m− 1)!
f (m)(u)du

= f(x).

Write K as K = K0 +K1, with

K0(x, y) =
m−1∑
v=0

xv

v!

yv

v!
,
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and

K1(x, y) =

∫ 1

0

(x− u)m−1
+

(m− 1)!

(y − u)m−1
+

(m− 1)!
du.

K0 corresponds to a polynomial spaces H0,

H0 = {f : f (m) = 0},

with inner product

〈f, g〉0 =
m−1∑
v=0

f (v)(0)g(v)(0),

and K1 associates with its orthogonal complement H1

H1 = {f : f (v)(0) = 0, v = 1, ...,m− 1,

∫ 1

0

(f (m))2dx <∞},

with inner product

〈f, g〉1 =

∫ 1

0

f (m)g(m)dx.

Since K0 and K1 are both non-negative definite and H0 ∩ H1 = {0}, by Proposition

1.2.2, we can decompose H(K) = H0(K0) +H1(K1).

When m = 1, K0(x, y) = 1 and

K1(x, y) =

∫ 1

0

I[u<x]I[u<y]du = x ∧ y,

where x ∧ y = min(x, y). When m = 2, K0(x, y) = 1 + xy and

K1(x, y) =

∫ 1

0

(x− u)+(y − u)+du

= (x ∧ y)2(3(x ∨ y)− (x ∧ y))/6,

where x ∨ y = max(x, y).

We can also construct another RKHS on C(m)[0, 1] by assigning it a different inner

product.

Example 1.2.2 If we define inner product of C(m)[0, 1] as

〈f, g〉 =
m−1∑
v=0

(

∫ 1

0

f (v)dx)(

∫ 1

0

g(v)dx) +

∫ 1

0

f (m)(x)g(m)(x)dx, ∀f, g ∈ C(m)[0, 1],

(1.3)

then C(m)[0, 1] is an RKHS.
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We now decompose H as H = H0 +H1 and obtain its reproducing kernel in form of

K = K0 +K1. Define H0 = {f : f (m) = 0} with inner product

〈f, g〉0 =
m−1∑
v=0

(

∫ 1

0

f (v)dx)(

∫ 1

0

g(v)dx), (1.4)

and let H1 be

H1 = {f :

∫ 1

0

f (v)dx = 0, v = 1, ...,m− 1, f (m) ∈ L2[0, 1]}, (1.5)

with inner product

〈f, g〉1 =

∫ 1

0

f (m)g(m)dx.

Denote

kr(x) = −(
−1∑

µ=−∞

+
∞∑
µ=1

)
exp(2πiµx)

(2πiµ)r
, r = 1, 2, ...,

where i =
√
−1. The kr functions are actually scaled Bernoulli polynomials, kr(x) =

Br(x)/r!. They are well defined, real-valued and periodic with period 1. Moreover,

kv, v = 0, ...,m − 1, form an orthonormal basis of H0 and the reproducing kernel of

H0 under norm (1.4) can be represented as

K0(x, y) =
m−1∑
v=0

kv(x)kv(y).

For H1 in (1.5), its reproducing kernel is given by

K1(x, y) = km(x)km(y) + (−1)m−1k2m(x− y),

and finally, the reproducing kernel of H = C(m)[0, 1] with norm (1.3) can be obtained

as K = K0 +K1.

Here are a few examples of function kr(x),

k0(x) = 1

k1(x) = x− 0.5, x ∈ (0, 1)

k2(x) =
1

2

(
k2

1(x)− 1

12

)
k4(x) =

1

24

(
k4

1(x)− k2
1(x)

2
+

7

240

)
.
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When m = 1, K0(x, y) = 1 and

K1(x, y) = k1(x)k1(y) + k2(x− y).

When m = 2, K0(x, y) = 1 + k1(x)k1(y) and

K1(x, y) = k2(x)k2(y)− k4(x− y).

1.3 Overview of Later Chapters

Three functional regression models are covered in this thesis.

Chapter 2 introduces Functional Linear Regression Model, which is a core tech-

nique in functional data analysis(FDA). My focus is on testing the nullity of the slope

function. In Section 2.2, a smoothing spline estimate for the slope function is intro-

duced, and a generalized likelihood ratio test based on this smoothing spline estimate

is proposed. The quality of the test is measured by the minimal distance between the

null and the alternative space that still allows a possible test. In Section 2.3, a lower

bound of the minimax decay rate of this distance is derived. Test with a distance

that decays faster than the lower bound would be impossible. We will also show that

the minimax optimal rate is jointly determined by the reproducing kernel and the

covariance kernel and our test attains this optimal rate. Section2.4 demonstrates the

finite sample performance of the test under different simulated setups. Then the test

is applied to study the effect of the trajectories of oxides of nitrogen (NOx) on the

level of ozone (O3) in an California air quality example. All the proofs are displayed

in Section 2.6.

In Chapter 3, the Functional Cox Model is studied and our work has been pub-

lished in [5]. Functional covariates are common in many medical, biodemographic,

and neuroimaging studies, while Cox proportional hazard model has been widely

used in survival analysis. The Functional Cox Model incorporates functional covari-

ates in to Cox model, and models the right-censored survival response with both

functional and scalar covariates. Section 3.2 summarizes the asymptotic properties of
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the maximum partial likelihood estimator that we established. It is shown that the

estimator achieves the minimax optimal rate of convergence under a weighted L2-risk.

Implementation of the estimation approach is discussed in Section 3.3, including a

generalized cross-validation (GCV) method to select the smoothing parameter and a

method of calculating the information bound of θ based on the alternating conditional

expectations (ACE) algorithm. Section 3.4 contains numerical studies, including sim-

ulations and a data application. All the proofs are relegated to Section 3.5.

The model being considered in Chapter 4 is the Function-on-scalar Model. In this

Chapter, we concentrated on developing the simultaneous model selection and esti-

mation technique. It starts with the Function-on-scalar Model with both model selec-

tion and knots selection problems. This motives me to develop a novel regularization

method called the Grouped Smoothly Clipped Absolute Deviation (GSCAD), which

tackles both model selection and knots selection problems simultaneously. Function-

on-scalar Model, and GSCAD are introduced in Section 4.1 and Section 4.2. It turns

out the initial problem can be transferred into a dictionary learning problem, where

the GSCAD can be directly applied to simultaneously learn a sparse dictionary and

select the appropriate dictionary size. Formulation of the dictionary learning problem

under matrix factorization framework is introduced in Section 4.3. Efficient algorithm

is designed based on the alternative direction method of multipliers (ADMM) which

decomposes the joint non-convex problem with the non-convex penalty into two con-

vex optimization problems. Synthetic Experiments are presented in Section 4.4, fol-

lows by image denoising application in Section 4.5 and image inpainting application

in Section 4.6.
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2. OPTIMAL GLOBAL TEST FOR FUNCTIONAL LINEAR

REGRESSION

2.1 Introduction

2.1.1 Functional Linear Regression Model

Functional linear regression model, which relates functional predictors to a scalar

response, is one of the most useful tools in FDA. The model is stated as follows,

Y = α0 +

∫ 1

0

β0(t)X(t)dt+ ε, (2.1)

where Y is a scalar response, X : [0, 1]→ R is a square integrable random functional

predictor, α0 ∈ R is the intercept, β0 : [0, 1] → R is the slope function, and ε is

the random error with mean zero and variance σ2. Since our main focus is on the

coefficient function β(t), we assume both X and Y are centered, i.e., E(Y ) = 0 and

E(X(t)) = 0 for all t, and therefore by taking expectation over both sides of (2.1),

we have α0 = 0. Let (Xi, Yi), i = 1, . . . , n be independent and identically distributed

observations sampled from the model. Then model (2.1) can be rewritten as

Yi =

∫ 1

0

β0(t)Xi(t)dt+ εi, i = 1, . . . , n. (2.2)

2.1.2 Motivation

Although the asymptotic properties of estimators of β0 are widely discussed in

the literature, there is little research on testing whether β0 resides in a given finite

dimensional linear subspace, or more specifically, β0 ≡ 0.

Take the study of California air quality data as an example. In this study, we focus

on the effect of the trajectories of oxides of nitrogen (NOx) on the levels of ozone (O3).
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Figure 2.1. Left: the daily trajectories of NOx levels. Right: average
O3 level each day.

Levels of ground-level concentrations of NOx in the city of Sacramento is observed

hourly every day from June 1 to August 31 in 2005, and records of Sacramento’s daily

average ground-level concentrations of O3 during the same time period are obtained.

Figure 2.1 displays the daily trajectories of NOx levels as well as the daily average

O3 levels. We are interested in whether the level of NOx trajectory has any effect on

the O3 level and, if it does, how long this effect lasts.

If we take daily NOx trajectory as predictor X(t) and average O3 level as Y ,

then an absent effect will be indicated by a zero slope function in model (2.2). The

estimated slope functions are shown in Figure 2.2. We see that when response Y is

taken as the O3 level of the same day as NOx level, the estimated slope function has

a large magnitude and a clear curve, which indicates that the true slope function in

this model is very unlikely to be a zero function. On the other hand, when response is

taken as the O3 level five days later after the recorded NOx trajectory, the estimated

slope function stays close to zero. The slight curvature of this estimated slope function

maybe due to randomness of the data, with the true β0 residing in a zero null space.

However to draw a statistical conclusion under a certain significant level on whether

there is still some effect on the O3 level from the NOx level five days ago, we need a

well-designed testing procedure.
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Figure 2.2. The estimated slope functions. Left panel: response Y is
taken as the average O3 level of the same day as NOx level. Right
panel: response Y is taken as the average O3 level 5 days later after
the recorded NOx trajectory.

2.1.3 Related works

[6] proposed a test statistic based on the first k functional components of X, and

derived a limiting distribution under the null and the corresponding power. It is well-

known that selection of k is a difficult problem. Some computational methods have

been studied to resolve this issue without theoretical guarantee on the power ( [7,8]).

For more recent work, [9] used the functional principle component approach to test

the nullity of the slope function, and established that their procedures are minimax

adaptive to the unknown regularity of the slope. In particular, they assumed that

β0 ∈ Ea(L) where

Ea(L) =
{
β ∈ L2[0, 1] :

∞∑
k=1

a−2
k

〈
β, ϕk

〉2 ≤ L2
}
,

with 〈β, ϕk〉 =
∫ 1

0
β(t)ϕk(t)dt, and ϕk’s are eigenfunctions of the covariance Γ. The

smoothness of β0 is characterized by the decay rate of ak. Ea(L) is essentially a

reproducing kernel Hilbert space (RKHS), denoted by H(K), with a specific repro-

ducing kernel K(t, s) =
∑∞

k=1 a
2
kϕk(t)ϕk(s). When their underline assumption that,

kernel K and Γ are well aligned, is not satisfied, their methods may not perform
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well. [10] developed a method simultaneously testing the slope vectors in a sequence

of functional principal components regression models, and showed that under cer-

tain conditions, his method is uniformly powerful over a class of smooth alternatives.

However, the principal-component-based methods are successful upon the assumption

that the slope function β(t) can be well represented by the leading functional principal

components of X. [11] showed that, for the benchmark Canadian weather data, the

estimated Fourier coefficients of the slope function with respect to the eigenfunctions

of the sample covariance function do not decay at all, which is a typical example

for the case that the slope function is not well represented by the leading principal

components.

For nonparametric regression, the nonparametric testing has been studied by a

series of papers of [12–15]. Other related papers include [16], [17], [18] and [19]. For

a more detailed review, see [20].

2.1.4 Problem statement

We study adaptive and minimax optimal testing procedures on detecting the nul-

lity of the slope function in functional linear model within the framework of reproduc-

ing kernel Hilbert space. Let Γ(s, t) denote the covariance function of X. Γ can also

be taken as a nonnegative definite operator with Γf =
∫ 1

0
Γ(·, t)f(t)dt for f ∈ L2.

We wish to test the null hypothesis H0 : β ≡ 0 against the composite nonparametric

alternative that β0 is separated away from zero in terms of a L2-norm induced by the

operator Γ, i.e. ‖β0‖Γ ≥ %n, where ‖β‖2
Γ = 〈Γβ, β〉 with 〈β, γ〉 =

∫ 1

0
β(t)γ(t)dt. Then

assuming that the unknown slope function β0 possesses some smoothness properties

such that it belongs to a reproducing kernel Hilbert space H(K) with a reproducing

kernel K, therefore, we arrive at the following alternative:

H1 : FK,Γ(ρn) =
{
β ∈ H(K) : ‖β‖Γ ≥ ρn

}
.

It should be emphasized that in the present paper we do not consider the usual L2

norm in the alternative when specifying β0 being separated away from zero. On one
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hand, if there is no additional condition linking the smoothness of β0 to the random

curve X, ‖β̂ − β0‖2
2 may not even be consistent by some standard approaches ( [21]).

On the other hand, the ||·||Γ norm is a more natural option in the sense that ‖β̂−β0‖2
Γ

represents prediction error.

The radius ρn characterizes the sensitivity of the test. We investigate the optimal

decay rate of the radius ρn, under which the test with prescribed probabilities of errors

is still possible. The minimax rate is established in a general setting with no constraint

on the relationship between the reproducing kernel K and the covariance function Γ

of the random predictor X. We show that the optimal ρn is jointly determined by

both kernels K and Γ. In particular, the alignment of K and Γ can significantly affect

the optimal rate of ρn. Similar phenomena occurs when studying prediction in the

functional linear model ( [11,21,22]). In particular, the optimal rate for prediction is

associated with the decay rate of the eigenvalues of operator K1/2ΓK1/2.

We also propose a testing procedure that is shown to be asymptotically optimal

by obtaining the previously described minimax optimal rate of ρn. We first develop

a new smoothing spline estimator of the slope function β, and then construct a

generalized likelihood ratio test statistic based on the estimated slope function β̂. It

is worth mentioning that this testing procedure can be easily generalized to the case

when functional predictor is observed with a measurement error. In this case, on top

of the proposed testing procedure, we only need to add a step to estimate the true

predictor functions, which could be done by the commonly used regularized method.

The optimal properties of our test are expected to be maintained.

2.2 Generalized Likelihood Ratio Test

2.2.1 Notation and definitions

We focus on the Sobolev space Wm
2 of order m as the parameter space, defined by

Wm
2 =

{
β : [0, 1]→ R

∣∣∣β, β′, . . . , β(m−1) are absolutely continuous and β(m) ∈ L2[0, 1]
}
.
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Wm
2 is a reproducing kernel Hilbert space H(K) with the reproducing kernel ( [2])

K(t, s) =
m−1∑
k=0

sktk

(k!)2
+R(t, s),

where

R(t, s) =

∫ 1

0

(s− u)m−1
+ (t− u)m−1

+

{(m− 1)!}2
du.

Let T0 and T1 be operators on L2[0, 1] such that

T0X(t) =

∫ t

0

X(s)ds and T1X(t) =

∫ 1

t

X(s)ds.

It follows Fubini’s theorem that 〈f, T0g〉 = 〈T1f, g〉, and thus T0 is the adjoint operator

to T1. Further, define that T k0 X(t) = T0T
k−1
0 X(t) and T k1 X(t) = T1T

k−1
1 X(t) for

k ≥ 2. Therefore, T k0 is the adjoint operator to T k1 , and

T k0 X(t) =

∫ 1

0

(t− s)k−1
+

(k − 1)!
X(s)ds, T k1 X(t) =

∫ 1

0

(s− t)k−1
+

(k − 1)!
X(s)ds.

In particular,

R = Tm0 T
m
1 .

Observe that R differs from K only by a polynomial of degree less than or equal to

m. Therefore, their eigenvalues have the same decay rate.

The following notations will be used in estimating slope function and then con-

structing test statistic. Denote X(t) = (X1(t), . . . , Xn(t))T and sample covariance

function Γ̂(t, s) = n−1X(t)TX(s). Let X̃(1) ∈ Rm×n be an m by n matrix with

the (i, j)′s element (X̃(1))i,j = T i0Xj(1) and Ĥ = n−1X̃(1)X̃(1)T . Define a matrix

B̂ = 1
n
X̃(1)T Ĥ−1X̃(1), then B̂ is an n× n idempotent matrix with B̂2 = B̂. Finally,

define an operator Q̂ as Q̂(t, s) = n−1Û(t)T Û(s), where Û(t) is a random function

vector such that

Û(t) = (In − B̂)Tm0 X(t).

It is easy to see that

Q̂ = n−1Tm0 XT (In − B̂)Tm0 X = Tm0
(
Γ̂− Γ̂0

)
Tm1 ,
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where

Γ̂0(t, s) =
1

n
X(t)TBX(s),

is a degenerated operator with at most m eigenvalues. Hence, the eigenvalues of Q̂,

Tm0 Γ̂Tm1 and further TΓT ∗ have the same decay rate.

2.2.2 The smoothing spline estimator

In this section, we study the smoothing spline estimate which will be used to

construct the generalized likelihood ratio test in the next session. Let β̂ be the

smoothing spline estimate such that β̂ ∈ Wm
2 minimizes

1

n

n∑
i=1

{
Yi −

∫ 1

0

β(t)Xi(t)dt
}2

+ λ

∫ 1

0

{
β(m)(s)

}2

ds, (2.3)

where λ > 0 is the smoothing parameter. Next theorem provides the characterization

of β̂.

Theorem 2.2.1 Denote Y = (Y1, . . . , Yn)T and operator Q̂+ = (λI + Q̂)−1.

(a). The mth derivative of β̂ is

β̂(m) = (−1)m
1

n
Q̂+ÛTY.

(b). Let Υ̂(1) =
[
β̂(1),−β̂′(1), . . . , (−1)m−1β̂(m−1)(1)

]T
. We have

Υ̂(1) =
1

n
Ĥ−1X̃(1)

{
In −

1

n

∫ 1

0

Tm0 X(s) Q̂+Û(s)Tds
}

Y.

Theorem 2.2.1 provides a brand new approach to compute β̂ explicitly over the

infinitely dimensional function space H(K). This observation is important to both

numerical implementation and asymptotic analysis. The explicit formula for β̂ is

β̂(t) = Υ̂(1)T ζ(t) + (−1)m
∫ 1

0

β̂(m)(s)
(s− t)m−1

+

(m− 1)!
ds = ΠtY (2.4)

where ζ(t) =
[
1, (1− t), (1−t)2

2!
, . . . , (1−t)m−1

(m−1)!

]T
, and

Πt =
1

n
ζ(t)T Ĥ−1X̃(1)

{
In −

1

n

∫ 1

0

Tm0 X(s) Q̂+Û(s)Tds
}

+
1

n
Tm1 Q̂

+Û(t)T .

Therefore, β̂ is a linear function of the response Y with Πt as the hat matrix.
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2.2.3 Generalized likelihood ratio test

Assuming that εi follows normal distribution, the conditional log-likelihood func-

tion for (2.2) becomes

`n(β, σ) = −n log(
√

2π σ)− 1

2σ2

n∑
i=1

(
Yi −

∫
βXi

)2

.

Define the residual sum of squares under the null and alternative hypothesis as follows:

RSS0 =
n∑
i=1

Y 2
i , RSS1 =

n∑
i=1

(Yi −
∫
β̂Xi)

2.

Then the logarithm of the conditional maximum likelihood ratio test statistic is given

by

τn,λ = `n(β̂, σ̂1)− `n(0, σ̂0) =
n

2
log

RSS0

RSS1

, (2.5)

where σ̂2
1 = RSS1/n and σ̂2

0 = RSS0/n. Define an n× n matrix An = An(X) as

An =
1

n

∫ 1

0

Û(t)Q̂+Û(t)Tdt− 1

2n

∫ 1

0

∫ 1

0

Q̂+Û(t)Q̂(t, s)Q̂+Û(s)Tdtds+
1

2
B̂.

Next theorem shows the properties of the test statistic τn,λ.

Theorem 2.2.2 . If tr(An) = op(n), we have the following results,

(a). Under H0 : β ≡ 0, the likelihood ratio test statistic τn,λ is of the form

τn,λ = zTAnz + op
(
1
)
,

where z = ε/σ. Furthermore, if εi, i = 1, ..., n are independent and identically dis-

tributed following N (0, σ2), then τn,λ has an asymptotic normal distribution with mean

µn = tr(An) and variance σ2
n = 2 tr(A2

n).

(b). Under H ′1 : F ′K,Γ(ρn) =
{
β ∈ H(K) : ‖β‖Γ = ρn

}
, if ρ2

n = o(n−1/2) and

λ = o(n−1/2), then

τn,λ = zTAz +
n

2σ2
‖β0‖2

Γ̂
+Op

(
nλ+ n1/2λ1/2 + n1/2‖β0‖Γ̂

)
.
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The condition that tr(An) = op(n) in Theorem 2.2.2 can be satisfied in many

cases. In fact, tr(An) can be computed explicitly. Consider the spectral decom-

position of operator Q̂, Q̂(t, s) =
∑∞

j=1 κ̂jφ̂j(t)φ̂j(s), where (κ̂j, φ̂j) are (eigenvalue,

eigenfunction) pairs, ordered such that κ̂1 ≥ κ̂2 ≥ · · · ≥ 0. We may write ÛXi(t) =∑∞
k=1 ξ̂ikφ̂k(t). Since Q̂(t, s) = n−1

∑n
i=1 ÛXi(t)ÛXi(s), we have n−1

∑n
i=1 ξ̂

2
ik = κ̂k and

n−1
∑n

i=1 ξ̂ikξ̂ij = 0 for k 6= j. It is not hard to obtain that

tr(An) =
∞∑
k=1

κ̂k(λ+ 1
2
κ̂k)

(λ+ κ̂k)2
+
m

2
.

Proposition 2.2.1 If λ−1 = O(n), then tr(A) is of the same order of
∑∞

k=1
sk

λ+sk
.

Proposition 2.2.1 shows that tr(An) is determined by the order of λ and the decay

rate of sk, the sorted eigenvalues of linear operator TΓT ∗. More specifically, if sk has

a polynomial decay rate as sk � k−2r, for some r > 1/2, then tr(An) = Op(λ
−1/2r),

while if sk has an exponential decay rate as sk � e−2rk for some r > 0, then tr(An) =

O(log λ−1). In both cases, tr(An) = op(n) will be satisfied once we choose a proper λ.

The optimal order of λ will be shown later in Theorem 2.3.2, followed by a data-driven

procedure of choosing λ.

Based on Theorem 2.2.2, we have an α level testing procedure that, we reject

H0 when
τn,λ−µn

σn
> zα where zα is the upper α quantile of the standard normal

distribution. In the next section, we will show that the power function of this test is

asymptotically one at the minmax optimal rate.

2.3 Optimal Test

2.3.1 Minimax lower bound

Let φn be a measurable function of the observations taking values at two points

{0, 1}. We accept H0 if φn = 0, and reject H0 if φn = 1. The probability of type I

error, denoted by α0(φn), is

α0(φn) = P0(φn = 1),
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where P0 is the probability measure on the space of observations corresponding to

H0. The probability of type II error, denoted by α1(φn), is

α1(φn, ρn) = sup
β∈FK,Γ(ρn)

Pβ(φn = 0),

where Pβ is the probability measure corresponding to a particular slope function β.

Let

γn(φn, ρn) = α0(φn) + α1(φn, ρn),

which measures the error of the test φn by summarizing probability of the type I and

type II errors. Fix a number 0 < γ < 1. A sequence ρn → 0 as n → ∞ is called the

minimax rate of testing if:

(i) For any sequence ρ′n such that ρ′n/ρn → 0, we have lim infn→∞ infφn γn(φn, ρ
′
n) ≥

γ;

(ii) There exists a test φ∗n such that lim supn→∞ γn(φ∗n, ρn) ≤ γ.

For the given reproducing kernel K, let T and T ∗ be two operators acting on L2[0, 1]

such that K = TT ∗, where T ∗ is the adjoint operator to T with 〈f, Tg〉 = 〈T ∗f, g〉.

Consider the linear operator TΓT ∗. It follows from the spectral theorem that

TΓT ∗(t, s) =
∞∑
k=1

skϕk(t)ϕk(s),

where s1 ≥ s2 ≥ · · · > 0 are the eigenvalues of the operator TΓT ∗ and ϕk’s are the

corresponding eigenfunctions. For any two sequences ak, bk > 0, ak � bk means that

ak/bk is bounded away from zero and infinity as k →∞.

Theorem 2.3.1 Assume εi, i = 1, ..., n are independent and identically distributed

following N (0, σ2). Let {sk : k ≥ 1} be the sorted eigenvalues of the linear operator

TΓT ∗.

(a). When sk � k−2r for some constant r > 1/2, let

ρn = n−2r/(1+4r). (2.6)
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If ρ′n is such that ρ′n/ρn → 0 as n→∞, then

lim inf
n→∞

inf
φn
γn(φn, ρ

′
n) ≥ 1.

(b). When sk � e−2rk for some constant r > 0, let

ρn =
( log n

2rn2

)1/4

. (2.7)

If ρ′n is such that ρ′n/ρn → 0 as n→∞, then

lim inf
n→∞

inf
φn
γn(φn, ρ

′
n) ≥ 1.

The cholesky decomposition of the operator K = TT ∗ is not unique, and T is not

necessarily a symmetric operator. If we would like T to be a symmetric operator, we

may choose T = T ∗ = K1/2. It is shown in the next proposition that the decay rate

of the eigenvalues of the operator TΓT ∗ and K1/2ΓK1/2 have the same asymptotic

order.

Proposition 2.3.1 Let K = TT ∗, where T ∗ is adjoint to T . The eigenvalues of the

two operators TΓT ∗ and K1/2ΓK1/2 have the same decay rate.

The minimax lower bound for the excess prediction risk has been established

by [11]. Suppose the kth eigenvalues of the linear operator K1/2ΓK1/2 is of order k−2r

for some constant 0 < r <∞, then

lim
a→0

lim
n→∞

inf
β̂

sup
β0∈H(K)

P
(∥∥β̂ − β0

∥∥
Γ
≥ an−

r
2r+1

)
= 1.

It turns out that the optimal separating rate ρn for testing differs from the optimal rate

for the problem of prediction. Similar situation arises in the setting of nonparametric

regression.

Consider a special case that the reproducing kernel K is perfectly aligned with

Γ, i.e., K(s, t) =
∑∞

k=1 a
2
kψk(t)ψk(s) and Γ(t, s) =

∑∞
k=1 ηkψk(t)ψk(s). In this case,

it is easy to see that K1/2ΓK1/2(t, s) =
∑∞

k=1 ηka
2
kψk(t)ψk(s), which indicates that

sk = ηka
2
k. This special case has been studied in [9].
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2.3.2 Optimal adaptive test

Now back to the generalized likelihood ratio test. Recall that the test statistic

τn,λ has an asymptotic normal distribution with mean µn = tr(An) and variance

σ2
n = 2 tr(A2

n). Concerning the distribution of the random function X, we shall

assume that

(A1). X has a finite fourth moment, i.e.,
∫ 1

0
E(X4) <∞ and

E
(〈
X,ψk

〉4
)
≤ C

(
E
〈
X,ψk

〉2
)2

for k ≥ 1,

where C > 0 is a constant and ψk’s are eigenfunctions of Γ.

Theorem 2.3.2 Assume (A1) holds and εi, i = 1, ..., n are independent and identi-

cally distributed following N (0, σ2). Let {sk : k ≥ 1} be the sorted eigenvalues of the

linear operator TΓT ∗.

(a). When sk � k−2r for some constant r > 1/2. Choose

λ = cn−4r/(4r+1),

for some c > 0. Then µn and σ2
n are of order Op(n

2/(4r+1)), and for any sequence

cn → ∞, the power function of the generalized likelihood ratio test is asymptotically

one:

inf
β∈FK,Γ(cn·ρn):‖β‖Γ≥cnn−2r/(4r+1)

Pβ
(τn,λ − µn

σn
> zα

)
−→ 1,

where zα is the upper α quantile of the standard normal distribution and ρn is given

in (2.6).

(b). Assume sk � exp(−2rk) for some constant r > 0. Choose λ such that

log λ−1 = O(log n), λ−1n−1 = O(1), and λ = o(n−1/2).

Then µn and σ2
n are of order Op{log n/(2r)}, and for any sequence c̃n →∞,

inf
β∈FK,Γ:‖β‖Γ≥c̃n{logn/(2rn2)}1/4

Pβ
(τn,λ − µn

σn
≥ zα

)
−→ 1.
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The optimal smoothing parameters for prediction and testing are different. When

κk � k−2r, if we choose λ = λ̃ to be of order n−2r/(2r+1), which is the optimal order

for prediction, the rate of the testing will be slower than the optimal rate given in

Theorem 2.3.1. Specifically, there exists a β ∈ FK,Γ satisfying ‖β‖Γ = n−(r+d)/(2r+1)

with d > 1/8 such that the power function of the test at the point β is bounded by

α, namely

lim sup
n→∞

Pβ
(
τn,λ̃ > µn + zασn

)
≤ α.

As we see in part (b), when sk is exponentially decayed, the choice of λ is more

flexible. For example, any nd for −1 ≤ d < −1
2

, could guarantee an optimal test.

Considering λ∗ such that

λ∗ = arg min
λ≥0

(
λ+

1

n

∞∑
k=1

κk√
λ+ κk

)
,

where κk’s are eigenvalues of Q = Tm0 ΓTm1 . λ∗ is well-defined, since

∞∑
k=1

κk =

∫ 1

0

Q(t, t)dt = E
〈
Tm0 X,T

m
1 X

〉
≤ C1

∫ 1

0

E(X2) <∞.

It is not hard to see that λ∗ � n−4r/(4r+1) if κk � k−2r, while λ∗ � n−1 if κk � e−2rk.

Therefore an estimated λ∗ can be used as our choice of the smoothing parameter. It

is natural to use Q̃ = Tm0 Γ̂Tm1 as an estimate of Q. The following Theorem gives an

adaptive estimation of λ.

Theorem 2.3.3 Assume (A1) holds. Denote by κ̃1 ≥ κ̃2 ≥ · · · ≥ 0 the eigenvalues

of Q̃. Choosing λ̃ as

λ̃ = arg min
λ≥0

(
λ+

1

n

∞∑
k=1

κ̃k√
λ+ κ̃k

)
. (2.8)

When sk � k−2r for some constant r > 1/2, there exist constants 0 < c1 < c2 < ∞

such that

lim
n→∞

P
(
c1 <

λ̃

λo
< c2

)
= 1

where λo = cn−4r/(4r+1) for some c > 0.
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Theorem 2.3.3 verifies that λ̃ chosen by (2.8) is of the proper order. Simulations

also show that as long as X(s) and Y are at a proper scale, say ranging at the level of

[−10, 10], we can directly use the λ̃ without worrying about multiplying a constant.

However we need to be more careful when X and Y are numerically at a different

scale. As for the case when κk is exponentially decayed, the proper λ has a much

larger range. We can still use (2.8) to get a proper λ.

2.4 Numerical Studies

2.4.1 Simulation

Consider the case that slope function β(t) is in the Soblev space W 2
2 . The penalty

function in (2.3) becomes λ
∫ 1

0
β
′′
(s)2ds. Following a similar setup as that in Yuan

and Cai (2010), we generate the covariate function X(t) by:

X(t) =
50∑
k=1

ζkZkφk(t).

where Zk’s are independently sampled from Unif [−
√

3,
√

3] and φk’s are Fourier basis

with φ1 = 1 and φk+1(t) =
√

2 cos(kπt) for k ≥ 1. We have two settings for ζk. For

setup 1, let

ζk = (−1)k+1k−v/2/||ζ||

where ζ = (ζ1, ..., ζ50)T and || · || indicates L2 norm. The normalizing term ||ζ||−1 is

added to rule out the potential effect from the magnitude of X(s). For setup 2, ζ is

chosen as

ζk =


1

0.2(−1)k+1(1− 0.0001k)

0.2(−1)k+1[5(k/5)]−v/5 − 0.0001(kmod 5)

k = 1

2 ≤ k ≤ 4

k ≥ 5

.
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Table 2.1.
Size of the test under setup 1.

n=50 n=100 n=200

ν=1.1 0.087 0.089 0.067

ν=1.5 0.085 0.078 0.072

ν=2 0.076 0.085 0.079

ν=4 0.075 0.070 0.079

The eigenvalues of the covariance function of X(t) are ζ2
k ’s, the decay rate of which is

determined by ν. In both cases, let ν = 1.1, 1.5, 2, 4. With the same basis, the true

slope function β0 is generated as:

β0 = B ·
50∑
i=1

(−1)k+1k−2φk

where B is a constant to control the norm of β0. For both setups, a set of B ranging

from 0 to 1 is examined. Response Y is generated through the functional regression

model with ε ∼ N(0, 1). Sample size n = 50, 100, 200 are adopted to appreciate the

effect of sample size.

For each simulated dataset, smoothing parameter λ is chosen based on (2.8), β̂(t)

is estimated by (2.4), and the testing statistic τn,λ is calculated as shown in (2.5).

According to Theorem 2.2.2, we reject H0 if
τn,λ−µn

σn
> zα, with α = 0.05. To estimate

the size and power of our testing procedure, each setting is repeated 1000 times to

get the percentage of rejecting H0.

For setup 1, Table 2.1 shows the size of the test under different decay rate ν and

sample size n. As we see, the size of test is slightly larger than what we expect under

α = 0.05. The reason is that with a finite sample size, τn,λ tends to be slightly larger

than a random variable that follows exactly normal distribution. Recall Theorem

2.2.2, we conclude that under H0, τn,λ = zTAnz + op(1), where the quadratic form

zTAnz is asymptotic normal. The small positive term op(1), that we drop, plays its
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Table 2.2.
Size of the test under setup 1 using the correction rule.

n=50 n=100 n=200

ν=1.1 0.066 0.058 0.059

ν=1.5 0.048 0.055 0.041

ν=2 0.051 0.055 0.045

ν=4 0.067 0.053 0.041
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role, when we treat τn,λ as the quadratic form zTAnz. To make a correction, we can

use a two-sided test instead, which is to reject H0 if | τn,λ−µn
σn
| > zα/2. Under this

correction rule, the size of the test stays closer around 0.05 as shown in Table 2.2.

Under alternative hypothesis H1 : β0 ∈ FK,Γ(ρn), the power function of test under

different decay rate ν and sample size n are shown in Figure 2.3. It is very clear

that as B increases, ||β0||Γ increases, and therefore the power of the test increases to

1. Also as expected, under the same setting, when sample size n goes up, the power

should increase, which manifests a steeper slope of the power function in the figure.

What is more interesting in the figure, is how the power is affected by the decay rate

of the eigenvalues of Tm0 ΓTm1 , which in our setting is determined by ν. As shown

in the figure, power function with ν = 4 always lies on top while that with ν = 1.1

always stays the lowest, which perfectly matches Theorem 2.3.1 that the larger the

ν, the faster the decay rate, and therefore the more powerful the test.
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Figure 2.3. power function of the test under setup 1 for n=50, 100, 200

For setup 2, the size of the test and its correction version are shown in Table 2.3

and Table 2.4. Plots of power functions for different sample size n and decay rate ν

are shown in Figure 2.4. Similarly as the previous results of setup 1, the power of the

test goes up when sample size n and ||β0||Γ increase. However the effect of the decay
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rate ν can be hardly seen this time. The reason is that when choosing ζ we did not

normalize it as we did in setup1. Therefore even though a larger ν could lead to a

more powerful test, the magnitude of X(s) is significantly decreased due to the faster

decay rate, and this counter balanced the effect of ν.

Table 2.3.
Size of the test under setup 2.

n=50 n=100 n=200

ν=1.1 0.094 0.074 0.079

ν=1.5 0.088 0.067 0.073

ν=2 0.090 0.066 0.070

ν=4 0.091 0.066 0.065

Table 2.4.
Size of the test under setup 2 using the correction rule.

n=50 n=100 n=200

ν=1.1 0.065 0.052 0.054

ν=1.5 0.063 0.046 0.057

ν=2 0.059 0.051 0.051

ν=4 0.065 0.044 0.050

2.4.2 California air quality data

Back to the California air quality example, as mentioned in the introduction, we

are interest in testing the effect of trajectories of oxides of nitrogen (NOx) on the

level of ground-level concentrations of ozone (O3). Data we are using is from the

database of California Air Quality Data. NOx levels and O3 levels of city Sacramento
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Figure 2.4. Power function of the test under setup 2 for n=50, 100, 200.

are recorded from June 1 to August 31 in 2015. There are 91 days on the record, and

3 days are removed due to severe missing data. For the rest 89 days, levels of NOx

are observed at each hour except for 4am and average O3 level can also be obtained

through the recorded data. The left panel of Figure 2.1 displays the daily trajectories

of NOx levels, and the right panel shows the average O3 level each day during the

same time period. When applying the proposed testing procedure, every record is

rescaled by multiplying 100 due to the small magnitude.

Let Xi(s), i = 1, ..., 89 denote the daily trajectories of NOx levels after pre-

smoothing and centering, and rescale s so that s ∈ [0, 1]. In the introduction, two

types of response variables are considered, the average O3 level of the same day as the

NOx level, and the average O3 level five days later after the recorded NOx trajectory.

More generally we can examine the relation between the O3 level of a certain day and

the NOx level d days before that day. If we take Yi, i = 1, ..., 89 as the corresponding

O3 level of the day when Xi is recorded. Then the regression function is written as

Yi+d =

∫ 1

0

Xi(s)β(s)ds+ εi,

for a fixed d.
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Table 2.5.
P-value

d 0 1 2 3 4 5 6

p-value 3.07e-5 6.78e-9 2.30e-5 3.13e-4 0.0031 0.36 0.70

We go through the proposed testing procedure for d = 0, 1, ..., 5 and all the p-value

are listed in Table 2.5. We can see that for d up to 4, the test returns a significant

result at level α = 0.05, which indicates that daily NOx level is significantly related

to the O3 level up to four days later. Noting that Bonferroni correction for multiple

comparison is applied here when identifying significance. It is also interesting to see

that the smallest p-value occurs at d = 1. A possible way to interpret it is that

instead of the current NOx level, the average O3 level depends more on the NOx level

the day before. That is to say there is a delayed effect of NOx level on O3 level.

2.5 Discussion

We have so far focused on the case with continuously observed functional pre-

dictors. If we have densely observed functional predictors, our framework can be

applied similarly. An interesting extension of the current work would be to study

the case when having sparsely observed functional predictors with/without measure-

ment error. The ideas of [23] can be applied. A common strategy is to first have

a pre-smoothing step and then apply our methodology. How the number of sparse

observations affects the power of the test is beyond the scope of this paper and will

be explored in future works.

A continuation of this paper is to study the optimal testing for the generalized

functional linear model with a scalar response and a functional predictor ( [24]). Given

the functional predictor, the response is assumed to follow some distribution from the

exponential family. The main difficulty is that the characterization conditions of the



31

slope estimator becomes complex and nontrivial. This problem hinders further studies

in the asymptotic properties. We conjecture that the generalized likelihood ratio test

will achieve the optimal rate of testing and the optimal rate still depends on the decay

rate of K1/2ΓK1/2. This issue will be addressed in detail in the future.

2.6 Proofs of Theorems

2.6.1 Proof of Theorem 2.2.1

We prove this theorem using the calculus of variation. Denote

L(β) =
1

n

n∑
i=1

{
Yi −

∫ 1

0

Xi(s)β(s)ds
}2

+ λ

∫ 1

0

{
β(m)(s)

}2

ds.

For any β, β1 ∈ Wm
2 and δ ∈ R,

L(β + δβ1)− L(β) = 2δL1(β, β1) +O(δ2), (2.9)

where

L1(β, β1) = − 1

n

n∑
i=1

{
Yi −

∫ 1

0

Xi(s)β(s)ds
}{∫ 1

0

Xi(s)β1(s)ds
}

(2.10)

+ λ

∫ 1

0

β(m)(s)β
(m)
1 (s)ds.

By Lemma 1, if L1(β, β1) = 0 for all β1 ∈ Wm
2 , letting I1 = {t ∈ [0, 1] : L2(β) 6= 0}

and β
(m)
1 (t) = −II1(t) gives

L1(β, β1) =

∫
I1
L2(β)dt 6= 0,

unless I1 is of measure zero. This shows L2(β) = 0 a.e.. This complete the proof of

the first part of the theorem.

If β̂ is the optimal solution, we have

β̂(m) =
(−1)m

n
Q̂+ÛTY.

It follows from (2.19) that

ĤΥ̂(1) +
(−1)m

n
X̃(1)

∫ 1

0

Tm0 X(s)β̂(m)(s)ds =
1

n
X̃(1)Y.
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Therefore, the second part of the theorem follows from these two facts.

2.6.2 Proof of Theorem 2.2.2

For part (a), under H0 with β0 ≡ 0, we have

1

n
RSS0 =

1

n
εT ε,

1

n
RSS1 =

1

n
εT ε+ ‖β̂ − β0‖2

Γ̂
− 2

n
εT
∫

(β̂ − β0)X.

It follows from Lemma 2 that,

1

n
RSS1 −

1

n
RSS0

=‖β̂ − β0‖2
Γ̂
− 2

n
εT
∫

(β̂ − β0)X

=
1

n2
εT
{∫ 1

0

∫ 1

0

Q̂+Û(t)Q̂(t, s)Q̂+Û(s)Tdtds− 2

∫ 1

0

Û(t)Q̂+Û(t)Tdt
}
ε

− 1

n2
εT X̃(1)T Ĥ−1X̃(1)ε

=− 2

n
εTAnε = op(n

−1/2),

provided that tr(A2
n) = o(n). Hence, with the fact that under H0, σ2 = RSS0/n +

Op(n
−1/2), the likelihood ratio test statistic τn,λ becomes

τn,λ = −n
2

log
RSS1/n

RSS0/n
= − n

2σ2

( 1

n
RSS1 −

1

n
RSS0

)(
1 + op(n

− 1
2 )
)

= zTAnz + op(1),

where z = ε/σ.

To show that τn,λ has an asymptotic normal distribution with mean µn = tr(An)

and variance σ2
n = 2tr(A2

n), we need to show that

Trace(A4
n)/σ4

n → 0.

Let

AI =
1

n

∫ 1

0

Û(t)Q̂+Û(t)Tdt− 1

2n

∫ 1

0

∫ 1

0

Q̂+Û(t)Q̂(t, s)Q̂+Û(s)Tdtds,
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and

AII =
1

2
B.

So tr(A) = tr(AI) + tr(AII). Noting that tr(AII) = m/2, tr(A) is of the same order

as tr(AI). Recall that Q̂(t, s) =
∑∞

j=1 κ̂jφ̂j(t)φ̂j(s). and ÛXi(t) =
∑∞

k=1 ξ̂ikφ̂k(t) with

n−1
∑n

i=1 ξ̂
2
ik = κ̂k and n−1

∑n
i=1 ξ̂ikξ̂ij = 0 for k 6= j. Therefore

(AI)ij =
1

n

∞∑
k=1

(2λ+ κ̂k)ξ̂ikξ̂jk
2(λ+ κ̂k)2

.

Further

tr(AI) =
∞∑
k=1

κ̂k(2λ+ κ̂k)

2(λ+ κ̂k)2
�

∞∑
k=1

κ̂k
λ+ κ̂k

.

Similarly, we can show that

(A2
I)ij =

1

n

∞∑
k=1

(2λ+ κ̂k)
2κ̂kξ̂ikξ̂jk

4(λ+ κ̂k)4
, (A4

I)ij =
1

n

∞∑
k=1

(2λ+ κ̂k)
4(κ̂k)

3ξ̂ikξ̂jk
16(λ+ κ̂k)8

,

and

tr(A2
I) �

∞∑
k=1

κ̂2
k

(λ+ κ̂k)2
, tr(A4

I) �
∞∑
k=1

κ̂4
k

(λ+ κ̂k)4
.

Since
κ̂4
k

(λ+κ̂k)4 ≤
κ̂2
k

(λ+κ̂k)2 , therefore tr(A4
n) = O(σ2

n), and further tr(A4
n)/σ4

n → 0.

For part (b), Under H ′1,

1

n
RSS0 =

1

n
εT ε+ ‖β0‖2

Γ̂
+

2

n
εT
∫
β0X,

1

n
RSS1 =

1

n
εT ε+ ‖β̂ − β0‖2

Γ̂
− 2

n
εT
∫

(β̂ − β0)X

= σ2 − 2

n
εTAε

+ λ2

∫ 1

0

∫ 1

0

Q̂(t, s)Q̂+β
(m)
0 (t)Q̂+β

(m)
0 (s)dtds

+ (−1)m
2λ

n
εT
∫ 1

0

Û(t)Q̂+β
(m)
0 (t)dt− 2

n
εT
∫
β0X

+ (−1)m+1 2λ

n
εT
∫ 1

0

∫ 1

0

Q̂(t, s)Q̂+β
(m)
0 (t)Q̂+Û(s)dtds.

For 1
n
RSS0,

V ar(
2

n
εT
∫
β0X) =

4

n2
V ar(

n∑
i=1

εi

∫
β0Xi) =

4σ2

n2

n∑
i=1

{
∫
β0(s)Xi(s)ds}2 = O(

1

n
||β0||2Γ̂).
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For 1
n
RSS1, write β

(m)
0 (t) =

∑∞
j=1 η̂jφ̂j(t). Since β

(m)
0 ∈ L2, we have

∑∞
j=1 η̂

2
j <∞.

In the above expansion of 1
n
RSS1,

λ2

∫ 1

0

∫ 1

0

Q̂(t, s)Q̂+β
(m)
0 (t)Q̂+β

(m)
0 (s)dtds

=λ2

∞∑
j=1

κ̂j η̂
2
j

(λ+ κ̂j)2
≤ λ2

∞∑
j=1

η̂2
j sup
x≥0

x

(λ+ x)2
≤ λ

4

∞∑
j=1

η̂2
j = O(λ).

Further,

(−1)m
2λ

n
εT
∫ 1

0

Û(t)Q̂+β
(m)
0 (t)dt = (−1)m

2λ

n

n∑
i=1

εi

∞∑
k=1

ξ̂ikη̂k
λ+ κ̂k

,

and its variance is

4λ2σ2

n

∞∑
k=1

κ̂kη
2
k

(λ+ κ̂k)2
≤ 4λ2σ2

n
sup
x≥0

x

(λ+ x)2

∞∑
j=1

η̂2
j ≤

λσ2

n

∞∑
j=1

η̂2
j = O(λ/n).

The last term becomes

(−1)m+1 2λ

n
εT
∫ 1

0

∫ 1

0

Q̂(t, s)Q̂+β
(m)
0 (t)Q̂+Û(s)dtds = (−1)m+1 2λ

n

n∑
i=1

εi

∞∑
k=1

κ̂kη̂kξ̂ik
(λ+ κ̂k)2

.

Since
∑∞

k=1
κ̂kη̂k ξ̂ik
(λ+κ̂k)2 ≤

∑∞
k=1

η̂k ξ̂ik
λ+κ̂k

, the variance of last term is controlled by O(λ/n).

So altogether,

1

n
RSS1 −

1

n
RSS0 = − 2

n
εTAε− ‖β0‖2

Γ̂
+O

(
λ
)

+Op

(
n−1/2λ1/2

)
+Op

(
n−1/2‖β0‖Γ̂

)
.

Since ρ2
n = o(n−1/2) and λ = o(n−1/2), therefor 1

n
RSS1 − 1

n
RSS0 = op(n

−1/2) and

τn,λ = zTAz +
n

2σ2
‖β0‖2

Γ̂
+O

(
nλ
)

+Op

(
n1/2λ1/2

)
+Op

(
n1/2‖β0‖Γ̂

)
.

2.6.3 Proof of Theorem 2.3.1

The proof follows [15]. First show part (a). Let

ρn = n−2r/(1+4r),
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and suppose that ρ′n/ρn → 0. We show that, for any test φn,

lim inf
n→∞

γn(φn, ρ
′
n) ≥ 1.

The idea of deriving the lower bound is standard. Let πn be a probability measure

on FK,Γ(ρ′n). Then the lower bound is based on the inequality

sup
f∈FK,Γ(ρ′n)

Pf (φn = 0) ≥ Pf,πn(φn = 0),

where Pf,πn =
∫
Pfdπn. Write

γn,πn = P0(φn = 1) + Pf,πn(φn = 0).

Denote by `n,πn the likelihood ratio,

`n,πn =
d Pf,πn
d P0

=

∫
d Pf
d P0

dπn.

For any f ∈ FK,Γ(ρn), direct calculation yields that

log
d Pf
d P0

=
1

σ2

n∑
i=1

Yi

∫
Xif −

n

2σ2
‖f‖2

Γ̂
,

where Γ̂ is the empirical covariance function such as

Γ̂(t, s) =
1

n

n∑
i=1

Xi(t)Xi(s).

It is convenient to use the following inequalities [14]:

γn,πn(φn, ρ
′
n) = 1− 1

2
var(P0,Pf,πn) ≥ 1− 1

2
δn,πn ,

where var(P0,Pf,πn) stands for L1 distance between two measures, and

δ2
n,πn = E0(`n,πn − 1)2.

In the following, we select a probability measure πn for which γn,πn can be effec-

tively estimated. Recall that K = TT ∗, where T ∗ is the adjoint operator to T such
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that 〈f, Tg〉 = 〈T ∗f, g〉. Define the linear operator T Γ̂T ∗ and let ŝ1 ≥ ŝ2 ≥ · · · ≥ 0 be

the eigenvalues of T Γ̂T ∗ and the ϕ̂k be the corresponding eigenfunctions. Consider

fξ = u

M∑
k=1

ξkgk, (2.11)

where ξ = (ξ1, . . . , ξM) and ξk = ±1 with probability 1/2, and gk = ŝ
−1/2
k T ∗ϕ̂k. In

(2.11), we choose M = 2n2/(4r+1) and u = n−1/(4r+1)ρ′n. Note that〈
gk, gj

〉
Γ̂

= (ŝkŝj)
−1/2

〈
T ∗ϕ̂k, T

∗ϕ̂j

〉
Γ̂

= (ŝkŝj)
−1/2

〈
T Γ̂T ∗ϕ̂k, ϕ̂j

〉
L2

= δjk,

where δjk = 1 for j = k, and 0 for j 6= k. Further,〈
gk, gj

〉
H(K)

= (ŝkŝj)
−1/2

〈
T ∗ϕ̂k, T

∗ϕ̂j

〉
H(K)

= (ŝkŝj)
−1/2

〈
ϕ̂k, ϕ̂j

〉
L2

= (ŝkŝj)
−1/2δjk.

It is easy to check that

‖fξ‖2
H(K) = u2

M∑
k=1

ŝ−1
k ≤ u2Mŝ−1

M = 2(ρ′n)2s−1
M (1 + op(1)),

which is bounded since sM has the same order with ρ2
n = n−4r/(4r+1) and ρ′n/ρn = o(1).

For any ϕ ∈ L2, T ∗ϕ ∈ H(K) ( [25]). Therefore, fξ ∈ H(K). On the other hand,

‖fξ‖2
Γ̂

= Mu2 = 2(ρ′n)2.

So, ‖fξ‖2
Γ = 2(ρ′n)2(1 + o(1)) ≥ (ρ′n)2 and it shows that fξ ∈ FK,Γ(ρ′n).

For this case, the likelihood ratio is

`n,πn = Eξ
d Pfξ
d P0

= exp
(
− nMu2

2σ2

)
Eξ exp(

u

σ2

M∑
k=1

n∑
i=1

Yixikξk)

= exp
(
− nMu2

2σ2

) M∏
k=1

cosh(
u

σ2

M∑
k=1

Yixik).
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where xik is denoted as xik =
∫
Xigk. Note that

∑n
i=1 x

2
ik = n‖gk‖2

Γ̂
= n. Given

X1, . . . , Xn, we have

E0

(
`n,πn

∣∣∣X1, . . . , Xn

)
= E0Eξ

d Pfξ
d P0

= EξE0

d Pfξ
d P0

= exp
(
− nMu2

2σ2

)
Eξ

n∏
i=1

E0 exp(
u

σ2

M∑
k=1

ξkxik · Yi)

= exp
(
− nMu2

2σ2

)
Eξ

n∏
i=1

exp{1

2
σ2(

u

σ2

M∑
k=1

ξkxik)
2}

= exp(−nMu2

2σ2
) exp(

nMu2

2σ2
) = 1.

Noting that

`2
n,πn = exp

(
− nMu2

σ2

) M∏
k=1

cosh(
u

σ2

M∑
k=1

Yixik)
2

= exp
(
− nMu2

σ2

) M∏
k=1

(
1

4
e

2u
σ2

∑M
k=1 Yixik +

1

4
e−

2u
σ2

∑M
k=1 Yixik +

1

2
)

= exp
(
− nMu2

σ2

)
Eς exp(

2u

σ2

M∑
k=1

n∑
i=1

Yixikςk),

where random variable ς takes value −1, 0, 1 with probability 1/4, 1/2, 1/4. Therefore

we can calculate E0

(
`2
n,πn

∣∣∣X1, . . . , Xn

)
as

E0

(
`2
n,πn

∣∣∣X1, . . . , Xn

)
= E0 exp

(
− nMu2

σ2

)
Eς exp(

2u

σ2

M∑
k=1

n∑
i=1

Yixikςk)

= exp
(
− nMu2

σ2

)
Eς

n∏
i=1

E0 exp(
2u

σ2

M∑
k=1

xikςk · Yi)

= exp
(
− nMu2

σ2

)
Eς exp(

2u2n

σ2

M∑
k=1

ς2
k)

= exp
(
− nMu2

σ2

) M∏
k=1

{1

2
exp(

2u2n

σ2
) +

1

2
}

= {cosh(
u2n

σ2
)}M ,
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and

E0(`n,πn − 1)2 = E0

(
`2
n,πn

∣∣∣X1, . . . , Xn

)
− 2E0

(
`n,πn

∣∣∣X1, . . . , Xn

)
+ 1

= {cosh(
u2n

σ2
)}M − 1.

Using the inequality log coshx ≤ Bx2 for a certain B,

{cosh(
u2n

σ2
)}M − 1 ≤ exp

(BMu4n2

σ4

)
− 1.

Hence

E0(`n,πn − 1)2 ≤ exp
(Bn2Mu4

σ4

)
− 1.

Our choices of M and u guarantees that n2Mu4 → 0, so lim infn→ γn(φn, ρ
′
n) = 1.

This completes the proof of part (a).

Next, we prove part (b). The proof is similar. In particular, in (2.11) we

choose M = log n/(2r) and u = 2ρ′n
√

2r/ log n, where ρ′n/ρn → 0 with ρn =

n−1/2(log n/(2r))1/4. It is easy to see that n2Mu4 → 0, so that lim infn→ γn(φn, ρ
′
n) =

1. This completes the proof of part (b).

2.6.4 Proof of Theorem 2.3.2

Recall that H ′1 : F ′K,Γ(ρn) =
{
β ∈ H(K) : ‖β‖Γ = ρn

}
, we only need to show

that

lim
cn→∞

inf
β0∈F ′K,Γ(cnρn)

Pβ0

(τn,λ − µn
σn

> zα

)
= 1.

The power function under H ′1 can be written as

Pβ0

(τn,λ − µn
σn

≥ zα

)
=Pβ0

{zTAz − µn
σn

+

n
2σ2‖β0‖2

Γ̂
+O

(
nλ
)

+Op

(
n1/2λ1/2

)
+Op

(
n1/2‖β0‖Γ̂

)
σn

≥ zα

}
.

Recall that σ2
n = tr(A2) = O(tr(A)) as shown in the proof as Theorem 2, and by

Lemma 3, we have

µn = Op(
∞∑
k=1

sk
λ+ sk

) and σ2
n = Op(

∞∑
k=1

sk
λ+ sk

).
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Therefore µn and σ2
n are of orderOp(λ

−1/2r) when sk � k−2r, or of orderOp{(2r)−1 log λ−1}

when sk � e−2rk. Recall that when κk � k−2r, the optimal λ is of order n−4r/(4r+1);

when κk � exp−2rk, log λ−1 = O(log n). So, when κk � k−2r,

lim
cn→∞

inf
β∈FK,Γ:‖β‖Γ≥cnn−2r/(4r+1)

Pβ
(τn,λ − µn

σn
≥ zα

)
= 1,

and when κk � e−2rk,

lim
cn→∞

inf
β∈FK,Γ:‖β‖Γ≥cn{logn/(2rn2)}1/4

Pβ
(τn,λ − µn

σn
≥ zα

)
= 1.

This finishes the proof of the theorem.

2.6.5 Proof of Theorem 2.3.3

First noting that sk and κk have the same decay rate, so we can replace sk in

condition sk � k−2r by κk.

Given a symmetric bivariate function M , let |||M ||| = (
∫ ∫

M2)1/2. Define δk =

min1≤j≤k(κj − κj+1) which is of order k−2r−1. ∆̃ = |||Q̃−Q|||, ∆̃j = ‖
∫

(Q̃−Q)φj‖,

and

∆̃jj =

∫ 1

0

∫ 1

0

(Q̃(t, s)−Q(t, s))φj(t)φj(s)dtds.

It follows from Equation (5.7) of [26] that∣∣∣κ̃j − κj − ∆̃jj

∣∣∣ ≤ δ−1
j ∆̃(∆̃ + ∆̃j),

and we also have E∆̃2
jj ≤ C1n

−1κ2
j and E(∆̃2 + ∆̃2

j) ≤ C2n
−1 where C1 and C2 do not

depend on j. Observe that

%∑
j=1

|κ̃j − κj| ≤
%∑
j=1

|∆̃j|+ ∆̃

%∑
j=1

δ−1
j (∆̃ + ∆̃j).

Further,
∑%

j=1 |∆̃jj| is of order Op(n
−1/2) since

E
%∑
j=1

|∆̃jj| ≤
%∑
j=1

√
E∆̃2

jj ≤ C1n
−1/2

%∑
j=1

κj = O(n−1/2),
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and ∆̃
∑%

j=1 δ
−1
j (∆̃ + ∆̃j) is or order Op(n

−1%2r+2) since

E
%∑
j=1

|δ−1
j (∆̃ + ∆̃j)| ≤

%∑
j=1

δ−1
j

√
2E(∆̃2 + ∆̃2

j) ≤
√

2C2n−1

%∑
j=1

δ−1
j = O(n−1/2%2r+2).

Hence,
%∑
j=1

∣∣∣κ̃j − κj∣∣∣ = Op

(
n−1/2 + n−1%2r+2

)
.

On the other hand, since E(Q̃−Q)2 = O(n−1) uniformly on [0, 1]2,∣∣∣ ∞∑
j=%+1

(κ̃j − κj)
∣∣∣ =

∣∣∣ ∫ ∫ (Q̃−Q)(s, t)dsdt−
%∑
j=1

(κ̃j − κj)
∣∣∣

≤ [

∫ ∫
(Q̃−Q)2]1/2 +

∣∣∣ %∑
j=1

(
κ̃j − κj

)∣∣∣
= Op(n

−1/2 + n−1%2r+2).

If we choose ρ � n1/(4r+1), we have∣∣∣ %∑
j=1

(κ̃j − κj)
∣∣∣ = Op(n

(−2r+1)/(4r+1)),
∣∣∣ ∞∑
j=%+1

(κ̃j − κj)
∣∣∣ = Op(n

(−2r+1)/(4r+1)).

Define the event E% by

E% = E%(n) = {1

2
κ% ≥ ∆̃}.

Since supk≥1 |κ̃k − κk| ≤ ∆̃ [27], if E% holds, we have κ̃k ≥ 1
2
κk for 1 ≤ k ≤ %.

Here, we choose % � n1/(4r+1), which implies that n1/2κ% → ∞ as n → ∞. Since

∆̃ = Op(n
−1/2), we have P(E%) → 1. Therefore, since the result we wish to prove

only relates to probabilities of differences (not to moments of differences), it suffices

to work with bounds that are established under the assumption that E% holds. The

optimal choice λ̃ is the root of

1

n

∞∑
k=1

κ̃k

(
√
λ+ κ̃k)2

= 2
√
λ.
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In the following, we derive the asymptotic order of
∑∞

k=1
κ̃k

(
√
λ+κ̃k)2 . Note that

∞∑
k=1

κ̃k

(
√
λ+ κ̃k)2

=

%∑
k=1

κ̃k

(
√
λ+ κ̃k)2

+
∞∑

k=%+1

κ̃k

(
√
λ+ κ̃k)2

≤
%∑

k=1

κ̃−1
k + λ−1

∞∑
k=%+1

κ̃k

≤ 2

%∑
k=1

κk + λ−1

∞∑
k=%+1

κk + λ−1
∣∣∣ ∞∑
j=%+1

(κ̃j − κj)
∣∣∣

= Op

(
n(2r+1)/(4r+1) + λ−1n(−2r+1)/(4r+1)

)
. (2.12)

We also need the lower bound for
∑∞

k=1
κ̃k

(
√
λ+κ̃k)2 . This follows from

∞∑
k=1

κ̃k

(
√
λ+ κ̃k)2

≥
∞∑

k=%+1

κ̃k

(
√
λ+ κ̃k)2

≥ 1

(
√
λ+ κ̃%)2

∞∑
k=%+1

κ̃k

≥ 1

2(λ+Op(n−4r/(4r+1)))
Op(n

(−2r+1)/(4r+1)). (2.13)

Combining (2.12) and (2.13), we obtain that λ̃ is of order Op(n
4r/(4r+1)).

2.6.6 Proof of Proposition 2.2.1

In Theorem 2, we have shown that

tr(A) = O(
∞∑
k=1

κ̂k
λ+ κ̂k

).

Define that Q̃ = Tm0 Γ̂Tm1 . Noting that the eigenvalues of Q̂ = Tm0
(
Γ̂− Γ̂0

)
Tm1 and Q̃

have the same decay rate. If we write Q̃(t, s) =
∑∞

j=1 κ̃jφ̃j(t)φ̃j(s), then tr(A) is of the

same order as
∑∞

k=1
κ̃k

λ+κ̃k
. On the other hand, recall that linear operator Q = Tm0 ΓTm1 .

Following spectral theorem, we have Q(t, s) =
∑∞

j=1 κjφj(t)φj(s). {κk} and {sk} have

the same decay rate. So we only need to show that
∑∞

k=1
κ̃k

λ+κ̃k
= Op(

∑∞
k=1

κk
λ+κk

).
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Let Q+ = (Q + λI)−1 and Q̃+ = (Q̃ + λI)−1. It is easy to see that Q+(t, s) =∑∞
j=1

1
λ+κj

φj(t)φj(s) and Q̃+(t, s) =
∑∞

j=1
1

λ+κ̃j
φ̃j(t)φ̃j(s). Then

∞∑
k=1

κ̃k
λ+ κ̃k

=

∫ ∫
Q̃(s, t)Q̃+(s, t)dsdt

=

∫ ∫
Q(s, t)Q+(s, t)dsdt

+

∫ ∫
Q+(s, t)(Q̃−Q)(s, t)dsdt+

∫ ∫
(Q̃+ −Q+)(s, t)Q(s, t)dsdt

+

∫ ∫
(Q̃−Q)(s, t)(Q̃+ −Q+)(s, t)dsdt.

We are going to show that all four terms above in the last equation are either of the

same order of or of
∑∞

k=1
κk

λ+κk
or smaller than that.

For the first term, it is easy to see that∫ ∫
Q(s, t)Q+(s, t)dsdt =

∞∑
k=1

κk
λ+ κk

.

For the second term, let ∆(s, t) = (Q̃−Q)(s, t) and ∆̂jk = |
∫ ∫

∆(s, t)φj(s)φk(t)dsdt|.

It follows Section 5.3 of [26] that

∆̂jj = |
∫ ∫

∆(s, t)φj(s)φj(t)| = Op(n
−1/2κj).

And similarly we can show that ∆̂jk = Op(n
−1/2κ

1/2
j κ

1/2
k ) for any j 6= k, which will be

used later in calculating the order of the fourth term. The second term becomes∫ ∫
Q+(s, t)(Q̃−Q)(s, t)dsdt

=
∞∑
k=1

1

λ+ κk

∫ ∫
∆(s, t)φj(s)φj(t)dsdt

≤ Op(n
−1/2

∞∑
k=1

κk
λ+ κk

).

For the third term, we refer to (6.7) of [28] that ||(I + Q+∆)−1|| = Op(1). Here

|| · || as a norm of a functional from L2[0, 1] to itself, is defined as

||χ|| = sup
φ∈L2[0,1],||φ||=1

||χ(φ)||.
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Noting that Q̃+ −Q+ = −(I +Q+∆)−1Q+∆Q+, then∫ ∫
(Q̃+ −Q+)(s, t)Q(s, t)dsdt

= −
∞∑
k=1

κk

∫ ∫
(I +Q+∆)−1Q+∆Q+(s, t)φk(s)φk(t)dsdt

= −
∞∑
k=1

κk
λ+ κk

∫ ∫
(I +Q+∆)−1Q+∆(s, t)φk(s)φk(t)dsdt

≤
∞∑
k=1

κk
λ+ κk

||(I +Q+∆)−1Q+∆(s, t)φk(s)|| ||φk(t)||

= Op(
∞∑
k=1

κk
λ+ κk

).

The last equation follows from the fact that

||(I +Q+∆)−1Q+∆(s, t)φk(s)||

= ||φk(s)− (I +Q+∆)−1φk(s)||

≤ ||φk(s)||+ ||(I +Q+∆)−1|| ||φk(s)||

= 1 + ||(I +Q+∆)−1||.

For the last term, by Cauchy-Schwarz inequality∫ ∫
(Q̃−Q)(s, t)(Q̃+ −Q+)(s, t)dsdt

≤
{∫ ∫

(Q̃−Q)2(s, t)dsdt ·
∫ ∫

(Q̃+ −Q+)2(s, t)dsdt
}1/2

≤ n−1/2
{∫ ∫

(Q̃+ −Q+)2(s, t)dsdt
}1/2

= n−1/2
{ ∞∑
k=1

|| − (I +Q+∆)−1Q+∆Q+φk||2
}1/2

≤ n−1/2||(I +Q+∆)−1||−1/2
{ ∞∑
k=1

||Q+∆Q+φk||2
}1/2

.
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Recall that ∆̂jk = Op(n
−1/2κ

1/2
j κ

1/2
k ) for any j 6= k. Then,

||Q+∆Q+φk||2 =

∫ {∫ ∫
Q+∆(s, u)

∞∑
j=1

1

λ+ κj
φj(u)φj(t)φk(t)dtdu

}2
ds

=
1

(λ+ κk)2

∫ {∫
Q+∆(s, u)φk(u)du

}2
ds

=
1

(λ+ κk)2

∫ {∫ ∫ ∞∑
j=1

1

λ+ κj
φj(s)φj(v)∆(v, u)φk(u)dudv

}2
ds

=
1

(λ+ κk)2

∞∑
j=1

∆̂2
jk

(λ+ κj)2

= Op(
κk

(λ+ κk)2
n−1

∞∑
j=1

κj
(λ+ κj)2

)

= Op

(
n−1λ−2(

∞∑
j=1

κj
λ+ κj

)
κk

λ+ κk

)
.

Therefore ∫ ∫
(Q̃−Q)(s, t)(Q̃+ −Q+)(s, t)dsdt = Op(n

−1λ−1

∞∑
j=1

κj
λ+ κj

).

All together we show that
∑∞

k=1
κ̃k

λ+κ̃k
= Op(

∑∞
k=1

κk
λ+κk

) provided that λ−1 = O(n).

2.6.7 Proof of Proposition 2.3.1

Let Dk = span{f1, . . . , fk : K1/2fj = T ∗ϕj, j = 1, . . . , k}. It follows from the

minimax principal that

s̃k ≤ sup
f∈D⊥k

〈
K1/2ΓK1/2f, f

〉
〈f, f〉

= sup
f∈D⊥k

〈
ΓK1/2f, K1/2f

〉
〈f, f〉

= sup
g∈D̃⊥k

〈
ΓT ∗g, T ∗g

〉
〈g, g〉

〈g, g〉
〈T ∗g, T ∗g〉

≤ csk,

where s̃k is the kth eigenvalue of K1/2ΓK1/2, D̃k = span{ϕ1, . . . , ϕk} and the constant

c > 0 does not depend on k. Using a similar argument, we may show that sk ≤ cs̃k.

Therefore, the eigenvalues of TΓT ∗ and K1/2ΓK1/2 have the same decay rate.
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2.6.8 Proof of Lemmas

Lemma 2.1 The following statements are true:

(a). The β ∈ Wm
2 minimizes L(β), if and only if, L1(β, β1) = 0 for all β1 ∈ Wm

2 .

(b). If β ∈ Wm
2 minimizes L(β), then for all β1 ∈ Wm

2 ,

L1(β, β1) =

∫ 1

0

L2(β)(t) β
(m)
1 (t)dt, (2.14)

where

L2(β) = (λI + Q̂)β(m) − (−1)m

n
ÛTY. (2.15)

Proof First show part (a). If β̂ ∈ Wm
2 minimizes L(β), then L(β̂ + δβ1)−L(β̂) ≥ 0

for all β1 ∈ Wm
2 and any δ ∈ R. Then L1(β̂, β1) = 0 follows since δ can be either

negative or positive. On the other hand, if L1(β̂, β1) = 0, we have L(β̂+δβ1)−L(β̂) ≥

0 by (2.9). Thus, β̂ minimizes L(β). Therefore, part (a) follows.

Let β1(t) = t(k−1), k = 1, . . . ,m in (2.10). If β̂ minimizes L(β), then

1

n

n∑
i=1

{
Yi −

∫ 1

0

Xi(s)β̂(s)ds
}{∫ 1

0

Xi(s)s
(k−1)ds

}
= 0. (2.16)

Let X
(−k)
i (t) = T k0 Xi(t) =

∫ 1

0

(t−s)(k−1)
+

(k−1)!
Xi(s)ds. When k = 1,

∫ 1

0
Xi(s)s

(k−1)ds =

X
(−1)
i (1) and further (2.16) becomes

1

n

n∑
i=1

X
(−1)
i (1)

{
Yi −

∫ 1

0

Xi(s)β̂(s)ds
}

= 0.

When k = 2, we have

1

n

n∑
i=1

{
Yi −

∫ 1

0

Xi(s)β̂(s)ds
}{∫ 1

0

Xi(s)sds
}

= − 1

n

n∑
i=1

{
Yi −

∫ 1

0

Xi(s)β̂(s)ds
}{∫ 1

0

Xi(s)(1− s)ds
}

= − 1

n

n∑
i=1

{
Yi −

∫ 1

0

Xi(s)β̂(s)ds
}{
X

(−2)
i (1)

}
.

Hence,
1

n

n∑
i=1

X
(−2)
i (1)

{
Yi −

∫ 1

0

Xi(s)β̂(s)ds
}

= 0.
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Following the same procedure, it can be shown that

1

n

n∑
i=1

X
(−k)
i (1)

{
Yi −

∫ 1

0

Xi(s)β̂(s)ds
}

= 0, k = 1, . . . ,m. (2.17)

Considering that

β1(s) =
m−1∑
k=0

(−1)k
β

(k)
1 (1)

k!
(1− s)k + (−1)m

∫ 1

0

β
(m)
1 (t)

(m− 1)!
(t− s)m−1

+ dt.

Therefore

∫ 1

0

Xi(s)β1(s)ds

=
m−1∑
k=0

(−1)kβ
(k)
1 (1)

∫ 1

0

Xi(s)
(1− s)k

k!
ds

+ (−1)m
∫ 1

0

∫ 1

0

Xi(s)
β

(m)
1 (t)

(m− 1)!
(t− s)m−1

+ dtds

=
m∑
k=1

(−1)k−1β
(k−1)
1 (1) X

(−k)
i (1) + (−1)m

∫ 1

0

β
(m)
1 (t)X

(−m)
i (t)dt. (2.18)

If (2.17) holds, direct calculation yields

1

n

n∑
i=1

{
Yi −

∫ 1

0

Xi(s)β̂(s)ds
}{∫ 1

0

Xi(s)β1(s)ds
}

=
(−1)m

n

n∑
i=1

{
Yi −

∫ 1

0

Xi(s)β̂(s)ds
}{∫ 1

0

X
(−m)
i (t)β

(m)
1 (t)dt

}
.

Recall the definition of L2(β), we have

L2(β̂) = λ β̂(m)(t) +
(−1)m

n

n∑
i=1

X
(−m)
i (t)

{∫ 1

0

Xi(s)β̂(s)ds− Yi
}

= λ β̂(m)(t) +
(−1)m

n
T

(m)
0 X(t)T

{∫ 1

0

X(s)β̂(s)ds−Y
}
.

Similar to (2.18),∫ 1

0

Xi(s)β̂(s)ds = Υ̂(1)T X̃i(1) + (−1)m
∫ 1

0

X
(−m)
i (s)β̂(m)(s)ds, j = 1, . . . ,m.
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which gives ∫ 1

0

X(s)β̂(s)ds = X̃(1)T Υ̂(1) + (−1)m
∫ 1

0

Tm0 X(s)β̂(m)(s)ds.

This, combining (2.17), gives

ĤΥ̂(1) +
(−1)m

n
X̃(1)

∫ 1

0

Tm0 X(s)β̂(m)(s)ds =
1

n
X̃(1)Y. (2.19)

So for β ∈ Wm
2 minimizes L(β),

L2(β) = λ β(m) + Q̂β(m) − (−1)m

n
ÛTY.

So, part (b) follows.

Lemma 2.2 Let ε = (ε1, . . . , εn)T . The following statements hold:

(a)∫ 1

0

X(t)
{
β̂(t)− β0(t)

}
dt (2.20)

= (−1)m+1λ

∫ 1

0

Û(t)Q̂+β
(m)
0 (t)dt+

1

n

{∫ 1

0

Û(t)Q̂+Û(t)Tdt+ X̃(1)T Ĥ−1X̃(1)
}
ε;

(b)∥∥∥β̂ − β0

∥∥∥2

Γ̂
= λ2

∫ 1

0

∫ 1

0

Q̂(t, s)Q̂+β
(m)
0 (t)Q̂+β

(m)
0 (s)dtds (2.21)

+
1

n2
εT
{∫ 1

0

∫ 1

0

Q̂+Û(s)Q̂(t, s)Q̂+Û(t)Tdsdt+ X̃(1)T Ĥ−1X̃(1)
}
ε

+ (−1)m+1 2λ

n
εT
∫ 1

0

∫ 1

0

Q̂(t, s)Q̂+β
(m)
0 (t)Q̂+Û(s)dtds.

Proof Denote

Υ0(1) =
[
β0(1),−β′0(1), . . . , (−1)m−1β

(m−1)
0 (1)

]T
.

Direct calculation yields

1

n
X̃(1)Y = ĤΥ0(1) + (−1)m

1

n
X̃(1)

∫ 1

0

Tm0 X(s)β
(m)
0 (s)ds+

1

n
X̃(1)ε.
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Combining this with (2.19) gives

Υ̂(1)−Υ0(1) = (−1)m+1 1

n
Ĥ−1X̃(1)

∫ 1

0

Tm0 X(s)
{
β̂(m)(s)−β(m)

0 (s)
}
ds+

1

n
Ĥ−1X̃(1)ε.

Therefore,∫ 1

0

X(s)
{
β̂(s)− β0(s)

}
ds

= X̃(1)T
{

Υ̂(1)−Υ0(1)
}

+ (−1)m
∫ 1

0

Tm0 X(s)
{
β̂(m)(s)− β(m)

0 (s)
}
ds

= (−1)m
∫ 1

0

Û(s)
{
β̂(m)(s)− β(m)

0 (s)
}
ds+

1

n
X̃(1)T Ĥ−1X̃(1)ε. (2.22)

Recall that Q̂+ = (λI + Q̂)−1. It follows from Theorem 1 that

β̂(m) − β(m)
0 = (−1)mn−1YT Q̂+Û − β(m)

0

=
(−1)m

n
Q̂+ÛT{

∫ 1

0

X(s)β0(s)ds} − β(m)
0 + (−1)m

1

n
εT Q̂+Û

=
(−1)m

n
Q̂+ÛT X̃(1)TΥ0(1) + Q̂+Q̂β

(m)
0 − β(m)

0 + (−1)m
1

n
εT Q̂+Û

= −λQ̂+β
(m)
0 + (−1)m

1

n
εT Q̂+Û .

The last equation follows from the fact that X̃(1)Û(s) = 0. Then, this, combing with

(2.22), leads to part (a). Furthermore, part (b) follows that∥∥∥β̂ − β0

∥∥∥2

Γ̂
=

1

n

[ ∫ 1

0

X(t)T
{
β̂(t)− β0(t)

}
dt
] [ ∫ 1

0

X(s)
{
β̂(s)− β0(s)

}
ds
]
.

This completes the proof of the lemma.
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3. OPTIMAL ESTIMATION FOR THE FUNCTIONAL COX

MODEL

3.1 Introduction

3.1.1 Background

The proportional hazard model, known as the Cox model, was introduced by [29],

where the hazard function of the survival time T for a subject with covariate Z(t) ∈ Rp

is represented by

h(t|Z) = h0(t)eθ
′
0Z(t), (3.1)

where h0 is an unspecified baseline hazard function and θ0 ∈ Rp is an unknown

parameter. Some or all of the p components in Z may be time-independent, meaning

that they are constant over time t, or may depend on t.

Many people have studied parametric, nonparametric, or semiparametric modeling

of the covariate effects using the Cox model (e.g. [30–34] and references therein) and

Cox ( [29]) proposed to use partial likelihood to estimate θ in (3.1). The advantage

of using partial likelihood is that it estimates θ without knowing or involving the

functional form of h0. The asymptotic equivalence of the partial likelihood estimator

and the maximum likelihood estimator has been established by several authors (

[35–39]).

3.1.2 Functional Cox Model

The aim of my work is to develop a different type of model, the functional Cox

model, by incorporating functional predictors along with scalar predictors. [40] first

proposed such a model when studying the survival of diffuse large-B-cell lymphoma
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(DLBCL) patients, which is thought to be influenced by genetic differences. The

functional predictor, denoted by X(·) : S → R on a compact domain S, is a smooth

stochastic process related to the high-dimensional microarray gene expression of DL-

BCL patients. The entire trajectory of X has an effect on the hazard function, which

makes it different from the Cox model (3.1) with time-varying covariates, where only

the current value of X at time t affects the hazard function at time t.

Specifically, the functional Cox model with a vector covariate Z and functional

covariate X(t) represents the hazard function by

h(t |X) = h0(t) exp
{
θ′0Z +

∫
S
X(s)β0(s)ds

}
, (3.2)

where β0 is an unknown coefficient function. Without loss of generality, we take S to

be [0, 1].

Under the right censorship model and letting T u and T c be, respectively, the

failure time and censoring time, we observe i.i.d. copies of (T, ∆, X(s), s ∈ S),

(T1, ∆1, X1), . . . , (Tn, ∆n, Xn), where T = min{T u, T c} is the observed time event

and ∆ = I{T u ≤ T c} is the censoring indicator.

3.1.3 Problem statement

Our goal is to estimate α0 = (θ0, β0(·)) to reveal how the functional covariates

X(·) and other scalar covariates Z relate to survival.

Let α̂ = (θ̂, β̂(·)) be an estimate from the data. It is critical to define the risk

function to measure the accuracy of the estimate. Let W = (Z,X) and

ηα(W ) = θ′Z +

∫ 1

0

β(s)X(s)ds.

Define an L2-distance such that

d2(α̂, α0) = E
{

∆
(
ηα̂(W )− ηα0(W )

)2}
. (3.3)
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Based on this L2-distance, we show that the accuracy of θ̂ is measured by the usual L2-

norm ‖θ̂− θ‖2 and the accuracy of β̂ is measured by a weighted L2-norm ||β̂−β0||C∆
,

where

C∆(s, t) = Cov
(

∆X(s), ∆X(t)
)
, and ‖β‖2

C∆
=

∫ ∫
β(s)C∆(s, t)β(t)dsdt.

It worth noting that we do not consider the convergence of β̂ with respect to the usual

L2-norm in the present paper. In general, ‖β̂ − β0‖2
2 =

∫ 1

0
(β̂(t) − β0(t))2dt may not

converge to zero in probability, and to obtain the convergence of ‖β̂−β0‖2
2 one needs

additional smoothness conditions linking β to the functional predictor X; see [41] for

a discussion of this phenomenon for functional linear models. On the other hand,

in the presence of censoring, the Kullback-Leibler distance between two probability

measures Ph0,α̂ and Ph0,α0 is equivalent to the L2 distance d in (3.3). When failure

times T u are fully observed, i.e. ∆ = 1 is true regardless of X(s), the ‖ · ‖C∆
norm

becomes ‖·‖C , where C(t, s) = Cov(X(t), X(s)) is the covariance function of X. This

norm ‖ · ‖C has been widely used for functional linear models (e.g. [42]).

Recently, [43] studied a similar functional Cox model to establish some asymptotic

properties but without investigating the optimality property. Moreover, their estimate

of the parametric component converges at a rate which is slower than root-n. Thus,

it is desirable to develop new theory to systematically investigate properties of the

estimates and establish their optimal asymptotic properties. In addition, instead of

assuming that both β0 and X can be represented by the same set of basis functions,

we adopt a more general reproducing kernel Hilbert space framework to estimate the

coefficient function.

In this chapter, we will discuss the convergence of the estimator α̂ = (θ̂, β̂) under

the framework of the reproducing kernel Hilbert space and the Cox model. The true

coefficient function β0 is assumed to reside in a reproducing kernel Hilbert space

H(K) with the reproducing kernel K, which is a subspace of the collection of square

integrable functions on [0, 1]. There are two main challenges for our asymptotic

analysis, the nonlinear structure of the Cox model, and the fact that the reproducing

kernel K and the covariance kernel C∆ may not share a common ordered set of
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eigenfunctions, so β0 can not be represented effectively by the leading eigenfunctions

of C∆. We obtain the estimator by maximizing a penalized partial likelihood and

establish
√
n-consistency, asymptotic normality, and semi-parametric efficiency of the

estimator θ̂ of the finite-dimensional regression parameter.

A second optimality result is on the estimator of the coefficient function, which

achieves the minimax optimal rate of convergence under the weighted L2-risk. The

optimal rate of convergence is established in the following two steps. First, the con-

vergence rate of the penalized partial likelihood estimator is calculated. Second, in

the presence of the nuisance parameter h0, the minimax lower bound on the risk

is derived, which matches the convergence rate of the partial likelihood estimator.

Therefore the estimator is rate-optimal. Furthermore, an efficient algorithm is devel-

oped to estimate the coefficient function. Implementation of the estimation approach,

selection of the smoothing parameter, as well as calculation of the information bound

I(θ) are all discussed in detail.

3.2 Main Results

We estimate α0 = (θ0, β0) ∈ Rp ×H(K) by maximizing the penalized log partial

likelihood,

α̂λ = arg minα∈Rp×H(K)ln(α) + λ J(β), (3.4)

where the negative log partial likelihood is given by

ln(α) = − 1

n

n∑
i=1

∆i

{
ηα(Wi)− log

∑
Tj≥Ti

exp(ηα(Wj))
}
, (3.5)

J is a penalty function controlling the smoothness of β, and λ is a smoothing param-

eter that balances the fidelity to the model and the plausibility of β. The choice of

the penalty function J(·) is a squared semi-norm associated with H and its norm. In

general, H(K) can be decomposed with respect to the penalty J as H = NJ +H1,

where NJ is the null space defined as

NJ = {β ∈ H(K) : J(β) = 0},
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and H1 is its orthogonal complement in H. Correspondingly, the kernel K can be

decomposed as K = K0 +K1, where K0 and K1 are kernels for the subspace NJ and

H1 respectively. For example, for the Sobolev space,

W2,m =
{
f : [0, 1]→ R| f, f ′, . . . f (m−1)are absolutely continuous, f (m) ∈ L2

}
,

endowed with the norm

||f ||W2,m =
m−1∑
v=0

f (v)(0) +

∫ 1

0

(f (m)(s))2ds, (3.6)

where the penalty J(·) in this case can be assigned as J(f) =
∫ 1

0
(f (m)(s))2ds.

We first present some main assumptions:

(A1) Assume E(∆Z) = 0 and E(∆X(s)) = 0, s ∈ [0, 1].

(A2) The failure time T u and the censoring time T c are conditionally independent

given W .

(A3) The observed event time Ti, 1 ≤ i ≤ n is in a finite interval, say [0, τ ], and

there exists a small positive constant ε such that: (i) P(∆ = 1|W ) > ε, and (ii)

P(T c > τ |W ) > ε almost surely with respect to the probability measure of W .

(A4) The covariate Z takes values in a bounded subset of Rp, and the L2-norm ||X||2
of X is bounded almost surely.

(A5) Let 0 < c1 < c2 <∞ be two constants. The baseline joint density f(t,∆ = 1)

of (T,∆ = 1) satisfies c1 < f(t,∆ = 1) < c2 for all t ∈ [0, τ ].

Condition (A1) requires Z and X to be suitably centered. Since the partial likeli-

hood function (3.5) does not change when centering Zi as Zi −
∑

∆iZi/
∑

∆i or Xi

as Xi −
∑

∆iXi/
∑

∆i, centering does not impose any real restrictions. In addition,

centering by E(∆Z) and E(∆X), instead of centering by E(Z) and E(X), simpli-

fies the asymptotic analysis. Conditions (A2) and (A3) are common assumptions

for analyzing right-censored data, where (A2) guarantees the censoring mechanism
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to be non-informative while (A3) avoids the unboundedness of the partial likelihood

at the end point of the support of the observed event time. This is a reasonable

assumption since the experiment can only last for a certain amount of time in prac-

tice. Assumption (A3)(i) further ensures the probability of being uncensored to be

positive regardless of the covariate and (A3)(ii) controls the censoring rate so that

it will not be too heavy. Assumption (A4) places a boundedness restriction on the

covariates. This assumption can be relaxed to the sub-Gaussianity of ||X||2, which

implies that with a large probability, ||X||2 is bounded. Condition (A5) and condition

(A1) together guarantee the identifiability of the model. Moreover the joint density

f(T, Z,X,∆ = 1) is bounded away from zero and infinity under assumptions (A3)-

(A5), which is used to calculate the information bound and convergence rate later in

Theorem 3.2.1 and Theorem 3.2.2.

Let r(W ) = exp(ηα(W )), then the counting process martingale associated with

model (1) is:

M(t) = M(t|W ) = ∆I{T ≤ t} −
∫ t

0

I{T ≥ u}r(W )dH0(u),

where H0(t) =
∫ t

0
h0(u)du is the baseline cumulative hazard function. For two se-

quences ak : k ≥ 1 and bk : k ≥ 1 of positive real numbers, we write ak � bk if there

are positive constants c and C independent of k such that c ≤ ak/bk ≤ C for all

k ≥ 1.

Theorem 3.2.1 Under (A1)-(A5), the efficient score for the estimation of θ is

l∗θ(T,∆,W ) =

∫ τ

0

(Z − a∗(t)− ηg∗(X))dM(t)

where (a∗, g∗) ∈ L2 ×H(K) is a solution that minimizes

E
{

∆‖Z − a(T )− ηg(X)‖2
}
.

Here a∗ can be expressed as a∗(t) = E[Z − ηg∗(X)|T = t, ∆ = 1]. The information

bound for the estimation of θ is

I(θ) = E[l∗θ(T,∆,W )]⊗2 = E{∆[Z − a∗(T )− ηg∗(X)]⊗2},
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where y⊗2 = yy′ for column vector y ∈ Rd.

Recall that K and C∆ are two real, symmetric, and nonnegative definite functions.

Define a new kernel K1/2C∆K
1/2 : [0, 1]2 → R, which is a real, symmetric, square

integrable, and nonnegative definite function. Let LK1/2C∆K1/2 be the corresponding

linear operator L2 → L2. Then Mercers theorem [4] implies that there exists a set

of orthonomal eigenfunctions {φk : k ≥ 1} and a sequence of eigenvalues s1 ≥ s2 ≥

. . . > 0 such that

K1/2C∆K
1/2(s, t) =

∞∑
k=1

skφk(s)φk(t), LK1/2C∆K1/2(φk) = sk.

Theorem 3.2.2 Assume (A1)-(A5) hold.

(i) (consistency) d(α̂, α0)
p→ 0, provided that λ→ 0 as n→∞.

(ii) (convergence rate) If the eigenvalues {sk : k ≥ 1} of K1/2C∆K
1/2 satisfy sk �

k−2r for some constant 0 < r <∞, then for λ = O(n−
2r

2r+1 ) we have

d(α̂, α0) = Op(n
− r

2r+1 ).

(iii) If I(θ) is nonsingular, then ‖θ̂ − θ0‖2 = Op(n
− r

2r+1 ) and

lim
A→∞

lim
n→∞

sup
β0∈H(K)

Ph0β0

{
‖β̂λ − β0‖C∆

≥ An−
r

2r+1

}
= 0.

Theorem 3.2.2 indicates that the convergence rate is determined by the decay

rate of the eigenvalues of K1/2C∆K
1/2, which is jointly determined by the eigenvalues

of both reproducing kernel K and the conditional covariance function C∆ as well

as by the alignment between K and C∆. When K and C∆ are perfectly aligned,

meaning that K and C∆ have the same ordered eigenfunctions, the decay rate of

{sk : k ≥ 1} equals to the summation of the decay rates of the eigenvalues of K

and C∆. [42] established a similar result for functional linear models, for which the

optimal prediction risk depends on the decay rate of the eigenvalues of K1/2CK1/2,

where C is the covariance function of X.

The next theorem establishes the asymptotic normality of θ̂ with root-n consis-

tency.
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Theorem 3.2.3 Suppose (A1)-(A5) hold, and that the Fisher information I(θ0) is

nonsingular. Let α̂ = (θ̂, β̂) be the estimator given by (3.4) with λ = O(n−
2r

2r+1 ). Then

√
n(θ̂ − θ0) = n−1/2I−1(θ0)

n∑
i=1

l∗θ0(Ti,∆i,Wi) + op(1)
d→ N (0,Σ),

where Σ = I−1(θ0).

For the nonparametric coefficient function β, it is of interest to see whether the

convergence rate of β̂ in Theorem 3.2.2 is optimal. In the following, we derive a

minimax lower bound for the risk.

Theorem 3.2.4 Assume that the baseline hazard function h0 ∈ F = {h : H(t) =∫ t
0
h(s)ds < ∞, for any 0 < t < ∞}. Suppose that the eigenvalues {sk : k ≥ 1} of

K1/2C∆K
1/2 satisfy sk � k−2r for some constant 0 < r <∞. Then,

lim
a→0

lim
n→∞

inf
α̂

sup
α0∈Rp×H(K)

sup
h0∈F

Pα0,h0

{∥∥β̂ − β0

∥∥
C∆
≥ an−

r
2r+1

}
= 1,

where the infimum is taken over all possible predictors α̂ based on the observed data.

Theorem 3.2.4 shows that the minimax lower bound of the convergence rate for

estimating β0 is n−r/(2r+1), which is determined by r and the decay rate of the eigen-

values of K1/2C∆K
1/2. We have shown that this rate is achieved by the penalized

partial likelihood predictor and therefore this estimator is rate-optimal.

3.3 Computation of the Estimator

3.3.1 Penalized partial likelihood

In this section, we present an algorithm to compute the penalized partial likelihood

estimator. Let {ξ1, . . . ξm} be a set of orthonormal basis of the null space with m =

dim(NJ). The next theorem provides a closed form representation of β̂ from the

penalized partial likelihood method.
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Theorem 3.3.1 The penalized partial likelihood estimator of the coefficient function

is given by

β̂λ(t) =
m∑
k=1

dkξk(t) +
n∑
i=1

ci

∫ 1

0

Xi(s)K1(s, t)ds, (3.7)

where dk (k = 1, . . .m) and ci (i = 1, . . . n) are constant coefficients.

Theorem 3.3.1 is a direct application of the generalized version of the well-known

representer lemma for smoothing splines (see [44] and [45]). We omit the proof

here. In fact, the algorithm can be made more efficient without using all n bases∫ 1

0
Xi(s)K1(s, t)ds, i = 1, . . . , n in (3.7). [3] showed that, under some conditions, a

more efficient estimator, denoted by β∗λ, sharing the same convergence rate with β̂λ,

can be calculated in the data-adaptive finite-dimensional space

H∗ = NJ ⊕
{
K1(X̃j, ·), j = 1, . . . , q

}
,

where {X̃j} is a random subset of {Xi : ∆i = 1} and

K1(X̃j, ·) =

∫ 1

0

X̃j(s)K1(s, ·)ds.

Here, q = qn � n2/(ps+1)+ε for some s > 1 and p ∈ [1, 2], and for any ε > 0. Therefore,

β∗λ is given by

β∗λ(t) =
m∑
k=1

dkξk(t) +

q∑
j=1

cjK1(X̃j, t).

The computational efficiency is more prominent when n is large, as the number of

coefficients is significantly reduced from n+m to q +m.

For the Sobolev space W2,m, the penalty function J(·) is J(f) =
∫ 1

0
(f (m)(s))2ds,

and (3.4) becomes

(θ̂, β̂λ) = arg min
θ∈Rp,β∈W2,m

− 1

n

n∑
i=1

∆i

{
ηα(Wi)− log

∑
Tj>Ti

exp(ηα(Wj)
}

+λ

∫ 1

0

(β(m)(s))2ds. (3.8)

Let ξν = tν−1/(ν − 1)!, ν = 1, . . .m, be the orthonormal basis of the null space

NJ =
{
β ∈ W2,m,

∫ 1

0

(β(m)(s))2ds = 0
}
.
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Write Gm(t, u) = (t− u)m−1
+ /(m− 1)!, then the kernels are in forms of

K0(s, t) =
m∑
ν=1

ξν(s)ξν(t), and K1(s, t) =

∫ 1

0

Gm(s, u)Gm(t, u)du.

Hence, the estimator is given by

β̂λ(t) =
m∑
ν=1

dvξν(t) +
n∑
i=1

ci

∫ 1

0

Xi(s)K1(s, t)ds. (3.9)

We may obtain the constants ci and dj as well as the estimator θ̂ by maximizing the

objective function (3.8) after plugging β̂λ(t) back into the objective function.

3.3.2 Choosing the smoothing parameter

The choice of the smoothing parameter λ is always a critical but difficult question.

In this section, we borrow ideas from [3] and provide a simple GCV method to choose

λ. The key idea is to draw an analogy between the partial likelihood estimation

and weighted density estimation, which then allows us to define a criterion analogous

to the Kullback-Leibler distance to select the best performing smoothing parameter.

Below we provide more details.

Let i1, . . . iN be the index for the uncensored data, i.e ∆ik = 1, for k = 1, . . . N

and N =
∑n

1 ∆i. Define weights wik(·) as wik(t) = I{t ≥ Tik} and

fα|ik(t, w) =
wik(t)e

ηα(w)∑N
k=1wik(t)e

ηα(w)
.

Following the suggestion in Section 8.5 of [3], we extend the Kullback-Leibler

distance for density functions to the partial likelihood as follows,

KL(α̂λ, α) =
1

N

N∑
k=1

Efα0|ik

{
log

fα0|ik(Tik ,Wik)

fα̂|ik(Tik ,Wik)

}
=

1

N

N∑
k=1

Efα0|ik

{
log

eηα0 (Wik
)∑n

j=1 wik(Tj)e
ηα0 (Wj)

− log
eηα̂λ (Wik

)∑n
j=1wik(Tj)e

ηα̂λ (Wj)

}
.
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Dropping off terms not involving α̂λ, we have a relative KL distance

RKL(α̂λ, α) = − 1

N

N∑
k=1

Efα0|ik
ηα̂λ(W ) +

1

N

N∑
k=1

log
n∑
j=1

wik(Tj)e
ηα̂λ (Wj).

The second term is ready to be computed once we have an estimate α̂λ, but the first

term involves α0 and needs to be estimated. We approximate the RKL by

R̂KL(α̂λ, α0) = − 1

n

n∑
i=1

η
[i]
α̂λ

(Wi) +
1

N

n∑
i=1

∆i log
∑
Tj≥Ti

exp{ηα̂λ(Wj)}.

Based on this R̂KL(α̂λ, α0), a function GCV(λ) can be derived analytically when

replacing the penalized partial likelihood function by its quadratic approximation,

GCV (λ) = − 1

n

n∑
i=1

ηα̂λ(Wi) +
1

n(n− 1)
tr[(SH−1S)(diag∆−∆1′/n)]

+
1

N

n∑
i=1

∆i log
∑
Tj≥Ti

exp{ηα̂λ(Wj)}.

Details of deriving GCV(λ) are given in Section 3.5.5.

3.3.3 Calculating the information bound I(θ)

To calculate the information bound I(θ), we apply the ACE method [46], the

estimator of which is shown to converge to (a∗, g∗). For simplicity, we take Z as

a one-dimensional scalar. When Z is a vector, we just need to apply the following

procedure to all dimensions of Z separately.

Theorem 3.2.1 shows that

I(θ) = E{∆[Z − a∗(t)− ηg∗(X)]⊗2}

with (a∗, g∗) ∈ L2 ×H(K) being the unique solution that minimizes

E
{

∆||Z − a(T )− ηg(X)||2
}
.

Furthermore, the proof of Theorem 3.2.1 reveals that this is equivalent to the follow-

ing: (a∗, g∗) is the unique solution to the equations:

E(Z − a∗ − ηg∗|T,∆ = 1) = 0, a.s. P
(u)
T ,
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E(Z − a∗ − ηg∗|X,∆ = 1) = 0, a.s. P
(u)
X ,

where P
(u)
T and P

(u)
X represent, respectively, the measure space of (T,∆ = 1) and

(X,∆ = 1).

The idea of ACE is to update a and g alternatively until the objective function

e(a, g) = E∆||Z − a(T )− ηg(X)||2 stops to decrease. In our case, the procedure is as

follows:

(i) Initialize a and g,

(ii) Update a by

a(T ) = E(Z − ηg|T,∆ = 1)

(iii) Update g such that

ηg(X) = E(Z − a|X,∆ = 1)

(iv) Calculate e(a, g) = E∆||Z−a(T )−ηg(X)||2 and repeat (ii) and (iii) until e(a, g)

fails to decrease.

In practice, we replace E∆||Z − a(T )− ηg(X)||2 by the sample mean

e(a, g) =
1

n

n∑
i=1

∆i||Zi − a(Ti)− ηg(Xi)||2.

As for a and g, we need to employ some smoothing techniques. For a given g ∈ H(K)

we calculate

ãi =
∑
Tj=Ti

∆j[Zj − ηg(Xj)]/
∑
Tj=Ti

∆j,

and update a(t) as the local polynomial regression estimator for the data (T1, ã1), ..., (Tn, ãn).

For a given a ∈ L2 we calculate

yi = Zi − a(Ti), for all ∆i = 1,

and update g by fitting a functional linear regression

y =

∫
g(s)X(s)ds+ ε,
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based on the data (yi, Xi) with ∆i = 1. More details can be find in [45]. When (a∗, g∗)

is obtained, I(θ) is estimated by

Î(θ) =
1

n

n∑
i=1

∆i[Zi − a∗(Ti)− ηg∗(Xi)]
⊗2.

3.4 Numerical Studies

In this session, we first carry out simulations under different settings to study

the finite sample performance of the proposed method and to demonstrate practical

implications of the theoretical results. In the second part, we apply the proposed

method to data that were collected to study the effect of early reproduction history

to the longevity of female Mexican fruit flies.

3.4.1 Simulations

We adopt a similar design as that in [45]. The functional covariate X is generated

by a set of cosine basis functions, φ1 = 1 and φk+1(s) =
√

2 cos(kπs) for k ≥ 1, such

that

X(s) =
50∑
k=1

ζkUkφk(s),

where the Uk are independently sampled from the uniform distribution on [−3, 3] and

ζk = (−1)k+1k−v/2 with v = 1, 1.5, 2, 2.5. In this case, the covariance function of X

is C(s, t) =
∑50

k=1 3k−vφk(s)φk(t). The coefficient function β0 is

β0 =
50∑
i=1

(−1)kk−3/2φk,

which is from a Sobolov space W2,2. The reproducing kernel takes the form:

K(s, t) = 1 + st+

∫ 1

0

(s− u)+(t− u)+du,

and K1 =
∫ 1

0
(s − u)+(t − u)+du. The null space becomes NJ = span{1, s}. The

penalty function as mentioned before is J(f) =
∫

(f ′′)2. The vector covariate Z is set
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to be univariate with distribution N (0, 1) and corresponding slope θ = 1. The failure

time T u is generated based on the hazard function

h(t) = h0(t) exp
{
θ′Z +

∫ 1

0

X(s)β0(s)ds
}
,

where h0(t) is chosen as a constant or a linear function t. Given X, T u follows an ex-

ponential distribution when h0 is a constant, and follows a Weibull distribution when

h0(t) = t. The censoring time T c is generated independently, following an exponen-

tial distribution with parameter γ which controls the censoring rate. When h0(t) is

constant, γ = 19 and 3.4 lead to censoring rates around 10% and 30% respectively.

Similar censoring rates result from γ = 15 and 3.9 for the case when h0(t) = t. (T,∆)

is then generated by T = min{T u, T c} and ∆ = I{T u ≤ T c}.

The criterion to evaluate the performance of the estimators β̂ is the mean squared

error, defined as

MSE(β̂) =
{ 1∑n

i=1 ∆i

n∑
i=1

∆i

(
ηβ̂(Xi)− ηβ0(Xi)

)}1/2

,

which is an empirical version of ||β̂ − β0||C∆
. To study the trend as the sample size

increases, we vary the sample size n according to n = 50, 100, 150, 200 for each value

v = 1, 1.5, 2, 2.5. For each combination of censoring rate, h0, v and n, the simulation

is repeated 1000 times, and the average mean squared error was obtained for each

scenario.

Note that for a fixed γ, E(∆|X) is roughly a constant for different values of v.

Therefore C∆(s, t) is approximately proportional to C(s, t) =
∑50

k=1 k
−vφk(s)φk(t).

In this case, v controls the decay rate of the eigenvalues of C∆ and K1/2C∆K
1/2. It

follows from Theorem 3.2.2 that a faster decay rate of the eigenvalues leads to a faster

convergence rate. Figure 3.1 displays the average MSE based on 1000 simulations.

The simulation results are in agreement with Theorem 3.2.2; it is very clear that when

v increases from 1 to 2.5 with the remaining parameters fixed, the average MSEs

decrease steadily. The average MSEs also decrease with the sample sizes. Besides, for

both the exponential and Weibull distribution, the average MSEs are lower for each
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Figure 3.1. The average MSE based on 1000 simulations. The top
panel is for the constant baseline hazard function and the bottom
panel is for the linear baseline hazard function. For each panel, from
left to right, the censoring rate is controlled to be around 10% and
30%. The sample sizes are n = 50, 100, 150, 200 and the decay rate
parameters are v = 1, 1.5, 2, 2.5.
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setting at the 10% censoring rate comparing to the values for the 30% censoring rate.

This is consistent with the expectation that the lower the censoring rate is, the more

accurate the estimate will be.

Averages and standard deviations of the estimated θ̂, for each setting of v and

n over 1000 repetition for the case of h0 = c and 30% censoring rate, are given in

Table 3.1. For each case of v, as n increases, the average of θ̂ gets closer to the true

value and the standard deviation decreases. Noting that the results do not vary much

across different values of v, as v is specially designed to examine the estimation of β

and has little effect on the estimation of θ.

For each simulated dataset, we also calculated the information bound I(θ) based

on the ACE method proposed in Section 3.3. The inverse of this information bound,

as suggested by Theorem 3.2.3, can be used to estimate the asymptotic variance of

θ̂. We further used these asymptotic variance estimates to construct a 95% confi-

dence interval for θ. Table 3.2 shows the observed percentage the constructed 95%

confidence interval covered the true value 1 for the various settings. As expected, the

covering rates increase towards 95% as n gets larger. Results for other choices of h0

and censoring rates were about the same and are omitted.

3.4.2 Mexican Fruit Fly Data

We now apply the proposed method to the Mexican fruit fly data in [47]. There

were 1152 female flies in that paper coming from four cohorts, for illustration purpose

we are using the data from cohort 1 and cohort 2, which consist of the lifetime and

daily reproduction (in terms of number of eggs laid daily) of 576 female flies.

We are interested in whether and how early reproduction will affect the lifetime

of female Mexican fruit flies. For this reason, we exclude 28 infertile flies from cohort

1 and 20 infertile flies from cohort 2. The period for early reproduction is chosen to

be from day 6 to day 30 based on the average reproduction curve (Figure 3.2), which

shows that no flies laid any eggs before day 6 and the peak of reproduction was day
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Table 3.1.
Average and standard deviation of θ̂. (h0 = c, 30% censoring rate)

n v = 1 v = 1.5 v = 2 v = 2.5

50
1.061 1.064 1.064 1.065

(0.264) (0.265) (0.264) (0.265)

100
1.027 1.030 1.031 1.031

(0.164) (0.164) (0.164) (0.163)

150
1.013 1.016 1.017 1.018

(0.133) (0.132) (0.131) (0.131)

200
1.011 1.013 1.015 1.016

(0.111) (0.111) (0.110) (0.110)

Table 3.2.
Covering rate of the 95% confidence intervals for θ. (h0 = c, 30% censoring rate)

n v = 1 v = 1.5 v = 2 v = 2.5

50 91.5% 91.9% 92.0% 91.5%

100 93.3% 92.4% 92.4% 93.0%

150 93.5% 93.1% 93.9% 93.4%

200 93.6% 93.7% 93.9% 93.8%
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Figure 3.2. Average number of eggs laid daily for both cohorts

30. Once the period of early reproduction was determined to be [6, 30], we further

excluded flies that died before day 30 to guarantee a fully observed trajectory for all

flies and this leaves us with a total of 479 flies for further exploration of the functional

Cox model. The mean and median lifetime of the remaining 224 flies in cohort 1 is

56.41 and 58 days respectively; the mean and the median lifetime of the remaining

255 flies in cohort 2 is 55.78 and 55 days respectively.

The trajectories of early reproduction for these 479 flies are of interest to re-

searchers but they are very noisy, so for visualization we display the smoothed egg-

laying curves for the first 100 flies (Figure 3.3). The data of these 100 flies were

individually smoothed with a local linear smoother, but the subsequent data analysis

for all 479 flies was based on the original data without smoothing.

Using the original egg-laying curves from day 6 to day 30 as the longitudinal co-

variates and the cohort indicator as a time-independent covariate, the functional Cox

model resulted in an estimate θ̂ = 0.0562 with 95% confidence interval [−0.1235, 0.2359].

Since zero is included in the interval, we conclude that the cohort effect is not sig-

nificant. Figure 3.4 shows the estimated coefficient function β̂ for the longitudinal



67

10 15 20 25 30
0

50

100

150

Age(days)

nu
m

be
r 

of
 e

gg
s 

la
id

Covariate functions for the first 100 obeservations

Figure 3.3. Pre-smoothed individual curves for the first 100 observations.
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Figure 3.4. Estimated coefficient function β̂(s) using all 479 observa-
tions and 95% pointwise c.i. for β(s).

covariate. The shaded area is the 95% pointwise bootstrap confidence interval. Un-

der the functional Cox model, a positive β̂(s) yields a larger hazard function and a

decreased probability of survival and vice versa for a negative β̂(s).

Checking the plot of β̂(s), we can see that β̂(s) starts with a large positive value,

but decreases fast to near zero on day 13 and stays around zero till day 22, then

declines again mildly towards day 30. The pattern of β̂(s) indicates that higher early

reproduction before day 13 results in a much higher mortality rate suggesting the high

cost of early reproduction, whereas a higher reproduction that occurs after day 22

tends to lead to a relatively lower mortality rate, suggesting that reproduction past

day 22 might be sign of physical fitness. However, the latter effect is less significant

than the early reproduction effect as indicated by the bootstrap confidence interval.

Reproduction between day 13 and day 22 does not have a major effect on the mortality

rate. In other words, flies that lay a lot of eggs in their early age (before day 13) and

relatively fewer eggs after day 22 tend to die earlier, while those with the opposite

pattern tend to have a longer life span.
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Table 3.3.
Values of fixed cut-off point and parameters for generating random
cut-off point, followed by the actual censored percentage for both
cohorts and the whole data.

fixed cut-off point random cut-off point

T c = 71 T c = 62 T c ∼ exp(450) T c ∼ exp(150)

(10%) (30%) (10%) (30%)

Cohort 1 0.138 0.339 0.0.071 0.353

Cohort 2 0.067 0.259 0.110 0.251

Total 0.100 0.296 0.092 0.300

The Mexfly data contains no censoring, so it is easy to check how the proposed

method works in the presence of censored data. We artificially randomly censor the

data by 10% and then again by 30% using an exponential censoring distribution with

parameter γ = 450 and 150, respectively. The estimated coefficient θ̂ and corre-

sponding 95% confidence intervals are given in Table 3.4. Regardless of the censoring

conditions, all the confidence intervals contain zero and therefore indicate a non-

significant cohort effect. This is consistent with the previous result for non-censored

data. The estimated coefficient functions β̂ and the corresponding pointwise boot-

strap confidence intervals are displayed in Figure 3.5. Despite the slightly different

results for different censoring proportions and choice of tuning parameters, all the β̂

have a similar pattern. This indicates that the proposed method is quite stable with

respect to right censorship, as long as the censoring rate is below 30%.

3.5 Technical Proofs

We first introduce some notations by denoting d(β1, β2) = ||β1 − β2||C∆
, for

any β1, β2 ∈ H(K); Y (t) = 1{T≥t}; Yj(t) = 1{Tj≥t}, 1 ≤ j ≤ n; and ηβ(Xi) =∫ 1

0
β(s)Xi(s)ds.
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Table 3.4.
The estimated θ̂ and 95% confidence interval for θ under different
censoring conditions.

10% censoring 30% censoring

fixed cut-off point
0.0929 0.0757

[-0.0914, 0.2772 ] [-0.1268 0.2870]

random cut-off point
0.0104 0.1863

[-0.1705, 0.1913] [-0.0177,0.3903]
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Figure 3.5. Estimation for β(s) with censored data and 95% pointwise c.i.
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Recall that W = (Z, X) represents the covariates, α = (θ, β) represents the

corresponding regression coefficient with θ the coefficient for Z and β the coefficient

function for X(·), and the true coefficient is denoted as α0 = (θ0, β0). The index

ηα(W ) = θ′Z +
∫ 1

0
β(s)X(s)ds summarizes the information carried by the covariate

W . To measure the distance between two coefficients α1 and α2 we use

d(α1, α2)2 = E(∆[ηα1(W )− ηα2(W )]2).

Furthermore, we denote

S0n(t, α) =
1

n

n∑
j=1

Yj(t)e
ηα(Wj), S0(t, α) = E{Y (t)eηα(W )},

and for α̃ ∈ L2 ×H(K),

S1n(t, α)[α̃] =
1

n

n∑
j=1

Yj(t)e
ηα(Wj)ηα̃(Wj)), S1(t, α)[α̃] = E[Y (t)eηα(W )ηα̃(W )].

Define

mn(t,W, α) = [ηα(W )− logS0n(t, α)]1{0≤t≤τ},

and

m0(t,W, α) = [ηα(W )− logS0(t, α)]1{0≤t≤τ}.

Let Pn and P be the empirical and probability measure of (Ti,∆i,Wi) and (T,∆,W ),

respectively, and P∆n and P∆ be the subprobability measure with ∆i = 1 and ∆ = 1

accordingly. The logarithm of the partial likelihood is Mn(α) = P∆nmn(·, α). Let

M0(α) = P∆m0(·, α). Note that P∆ is restricted to T ∈ [0, τ ] due to the 1{0 ≤ t ≤ τ}

term.

A useful identity due to Lemma 2 in [31] is

S1(t, α)[α̃]

S0(t, α)
= E[ηα̃(W )|T = t,∆ = 1]. (3.10)

3.5.1 Proof of Theorem 3.2.1

The log-likelihood for a single sample (t,∆, Z,X(·)) is

l(h0, θ, β) = ∆[log h0(t) + Z ′θ +

∫ 1

0

X(s)β(s)ds]−H0(t) exp[Z ′θ +

∫ 1

0

X(s)β(s)ds],
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where H0(t) =
∫ t

0
h0(u)du is the baseline cumulative hazard function. Consider a

parametric and smooth sub-model {h(µ1) : µ1 ∈ R} satisfying h(0) = h0 and

∂ log h(µ1)

∂µ1

(t)
∣∣∣
µ1=0

= a(t).

Let η(µ2)(X) = ηβ(X) + ηµ2g(X), for g ∈ H(K). Therefore η(0) = ηβ(X) and

∂η(µ2)

∂µ2

(X)
∣∣∣
µ2=0

= ηg(X).

Recall that r(W ) = exp(ηα(W )), and M(t) is the counting process martingale asso-

ciated with model (1),

M(t) = M(t|W ) = ∆I{T ≤ t} −
∫ t

0

I{T ≥ u}r(W )dH0(u).

The score operators for the cumulative hazard H0, coefficient function β, and the

score vector for θ are the partial derivatives of the likelihood l(h(µ1), θ, η(µ2)) with

respect to µ1, µ2 and θ evaluated at µ1 = µ2 = 0,

iHa := ∆a(T )− r(W )

∫ ∞
0

Y (t)a(t)dH0(t) =

∫ ∞
0

a(t)dM(t),

iβg := ηg(X)[∆− r(W )H0(T )] =

∫ ∞
0

ηg(X) dM(t),

iθ := Z[∆− r(W )H0(T )] =

∫ ∞
0

Z dM(t).

Define L(P
(u)
T ) := {a ∈ L2 : E[∆a2(T )] < ∞} and L(P

(u)
X ) := {g ∈ H(K) :

E[∆ηg(X)] = 0;E[∆η2
g(X) <∞]}. Let

AH = {iHa : a ∈ L(P
(u)
T )},

and

G = {iβg : g ∈ L(P
(u)
X )}.

To calculate the information bound for θ, we need to find the (least favorable) direc-

tion (a∗, g∗) such that iθ − iHa∗ − iβg∗ is orthogonal to the sum space A = AH +G.

That is, (a∗, g∗) must satisfy

E[(iθ − iHa∗ − iβg∗)iHa] = 0, a ∈ L(P
(u)
T ),
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E[(iθ − iHa∗ − iβg∗)iβg] = 0, g ∈ L(P
(u)
X ).

Following the proof of Theorem 3.1 in [34], we can show that (a∗, g∗) satisfies

E[∆(Z − a∗ − ηg∗)a] = 0, a ∈ L(P
(u)
T ), (3.11)

E[∆(Z − a∗ − ηg∗)ηg] = 0, g ∈ L(P
(u)
X ). (3.12)

Therefore, (a∗, g∗) is the solution to the following equations:

E(Z − a∗ − ηg∗|T,∆ = 1) = 0, a.s. P
(u)
T ,

E(Z − a∗ − ηg∗|X,∆ = 1) = 0, a.s. P
(u)
X .

So, (a∗, g∗) ∈ L(P
(u)
T )× L(P

(u)
X ) minimizes

E
{

∆
∥∥Z − a(T )− ηg(X)

∥∥2
}
. (3.13)

It follows from Conditions A3 and A4 that the space L(P
(u)
T )× L(P

(u)
X ) is closed, so

that the minimizer of (3.13) is well-defined. Further, the solution can be obtained by

the population version of the ACE algorithm of [46].

3.5.2 Proof of Theorem 3.2.2

For some large number M , such that ||θ0||∞ < M and ||β0||K < M , define RM =

{θ ∈ Rp, ||θ||∞ < M} and HM = {β ∈ H(K), ||β||K < M}. Let αM = (θM , βM) be

the penalized partial likelihood estimator with minimum taken over LM ×HM , i.e.

αM = arg min
α∈RM×HM

−n−1

n∑
i=1

∆i

{
ηα(Wi)− log

∑
Tj>Ti

exp{ηα(Wj)}
}

+ λ · J(β). (3.14)

We first prove that

sup
α∈RM×HM

|Mn(α)−M0(α)| P→ 0. (3.15)
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Observe that

|Mn(α)−M0(α)|

≤ |P∆nmn(·, α)− P∆nm0(·, α)|+ |P∆nm0(·, α)− P∆m0(·, α)|

≤ P∆n| logS0n(T, α)− logS0(T, α)|1{0≤T≤τ} + |(Pn − P )∆m0(·, α)|

. sup
0≤t≤τ

|S0n(t, α)− S0(t, α)|+ |(Pn − P )∆m0(·, α)|

= sup
0≤t≤τ

|(Pn − P )Y (t)eηα(W )|+ |(Pn − P )∆m0(·, α)|.

Lemma 3.3 shows that F1 = {∆m0(t,W, α) : α ∈ RM ×HM} and F2 = {Y (t)eηα(W ) :

α ∈ RM × HM , 0 ≤ t ≤ τ} are P-Glivenko-Cantelli, which means that both terms

on the righthand side above converge to zero in probability uniformly with respect to

α ∈ RM ×HM . Therefore (3.15) holds.

The definition of αM in (3.14) indicates that

−Mn(αM) + λJ(βM) ≤ −Mn(α0) + λJ(β0).

Rearranging the inequality with Mn(αM) on one side and the fact that λ → 0 as

n→∞ lead to

Mn(αM) ≥Mn(α0)− op(1). (3.16)

On the other hand, lemma 3.2 implies that supd(α,α0)≥εM0(α) < M0(α0). Com-

bining this with (3.15) and (3.16) and by the consistency result in [48, Theorem 5.7

on Page 45], we can show that αM is consistent, i.e. d(αM , α0)
P→ 0.

Part (i) now follows from

d(α̂, α0) ≤ d(α̂, αM) + d(αM , α0),

and P (α̂ = αM) = P (||β̂||K < M, ||θ̂||∞ < M) → 1, as M → ∞, i.e. d(α̂, αM) →

0 a.s..

For part (ii), we follow the proof of Theorem 3.4.1 in [49]. We first show that

E∗ sup
δ/2≤d(α,α0))≤δ

√
n|(Mn −M0)(α− α0)| . φn(δ), (3.17)
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where φn(δ) = δ
2r−1

2r . Direct calculation yields that

(Mn −M0)(α− α0)

= P∆nmn(·, α)− P∆nmn(·, α0)− P∆m0(·, α) + P∆m0(·, α0)

= (P∆n − P∆)(m0(·, α)−m0(·, α0))

+P∆n(mn(·, α)−mn(·, α0)−m0(·, α) +m0(·, α0))

= (P∆n − P∆)(m0(·, α)−m0(·, α0))

+P∆n(log
S0(T, α)

S0(T, α0)
− log

S0n(T, α)

S0n(T, α0)
)

= I + II.

For the first term, I = (P∆n − P∆)(m0(·, α)−m0(·, α0)). By Lemma 3.4, we have

sup
δ/2≤d(α,α0))≤δ

|I| = O(δ
2r−1

2r n−1/2).

For the second term II, we have

sup
δ/2≤d(α,α0))≤δ

|II|

≤ sup

δ/2 ≤ d(α, α0)) ≤ δ

t ∈ [0, τ ]

∣∣∣ log
S0(t, α)

S0(t, α0)
− log

S0n(t, α)

S0n(t, α0)

∣∣∣

≤ sup

δ/2 ≤ d(α, α0)) ≤ δ

t ∈ [0, τ ]

c
∣∣∣ S0n(t, α)

S0n(t, α0)
− S0(t, α)

S0(t, α0)

∣∣∣

= sup

δ/2 ≤ d(α, α0)) ≤ δ

t ∈ [0, τ ]

c
∣∣∣S0n(t, α)S0(t, α0)− S0n(t, α0)S0(t, α)

S0(t, α0)S0n(t, α0)

∣∣∣.
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For t ∈ [0, τ ], the denominator S0(t, α0)S0n(t, α0) is bounded away from zero with

probability tending to one. The numerator satisifes

S0n(t, α)S0(t, α0)− S0n(t, α0)S0(t, α)

= S0(t, α0)[S0n(t, α)− S0n(t, α0)− S0(t, α) + S0(t, α0)]

−[S0n(t, α0)− S0(t, α0)][S0(t, α)− S0(t, α0)].

For the first term on the right side, we have S0(t, α0) = O(1) and

[S0n(t, α)− S0n(t, α0)− S0(t, α) + S0(t, α0)]

= (Pn − P )
{
Y (t)

[
exp(ηα(W ))− exp(ηα0(W ))

]}
.

Define the above (Pn − P )
{
Y (t)

[
exp(ηα(W ))− exp(ηα0(W ))

]} def
= III.

Lemma 3.4 implies that

sup
δ/2≤d(α,α0))≤δ

|III| = O(δ
2r−1

2r n−1/2).

For the second term, the Central Limit Theorem implies S0n(t, α0) − S0(t, α0) =

Op(n
−1/2), and

|S0(t, α)− S0(t, α0)| ≤ E
{
Y (t)

∣∣ exp(ηα(W ))− exp(ηα0(W ))
∣∣}

.
(
E[ηα(W )− ηα0(W )]2

)1/2

. d(α, α0).

Therefore

sup
δ/2≤d(α,α0))≤δ

|II| ≤ O(δ
2r−1

2r n−1/2) +O(δn−1/2) = O(δ
2r−1

2r n−1/2).

Combining I and II yields

E∗ sup
δ/2≤d(α,α0))≤δ

√
n|(Mn −M0)(α− α0)| . O(δ

2r−1
2r ).

Furthermore, Lemma 3.2 implies

sup
δ/2≤d(α,α0))≤δ

P∆m0(·, α)− P∆m0(·, α0) . −δ2.
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Let rn = n
r

2r+1 . It is easy to check that rn satisfies r2
nφn( 1

rn
) ≤
√
n, and

Mn(α̂λ) ≥Mn(α0) + λ[J(β̂λ)− J(β0)] ≥Mn(α0)−Op(r
−2
n )

with λ = O(r−2
n ) = O(n−

2r
2r+1 ).

So far we have verified all the conditions in Theorem 3.4.1 of [49] and thus conclude

that

d(α̂, α0) = Op(r
−1
n ) = Op(n

− r
2r+1 ).

For part (iii), recall the projections a∗ and g∗ defined in Theorem 3.2.1, then

d(α̂, α0)2 = E∆[ηα̂(W )− ηα0(W )]2

= E∆[Z
′
(θ̂ − θ0) + (ηβ̂(X)− ηβ0(X))]2

= E∆[(Z − a∗(T )− ηg∗(X))
′
(θ̂ − θ0) + (a∗(T ) + ηg∗(X))(θ̂ − θ0)

+ (ηβ̂(X)− ηβ0(X))]2

= E∆[(Z − a∗(T )− ηg∗(X))
′
(θ̂ − θ0)]2

+ E∆[(a∗(T ) + ηg∗(X))(θ̂ − θ0) + (ηβ̂(X)− ηβ0(X))]2. (3.18)

Since I(θ) is non-singular, it follows that||θ̂−θ0||2 = Op(n
− 2r

2r+1 ). This in turn implies

d(β̂, β0)2 = Op(n
− 2r

2r+1 ).

3.5.3 Proof of Theorem 3.2.3

Let u = (t, Z,X(·)). For g ∈ H(K), define

sn(u, α)[g] = ηg(X)− S1n(t, α)[g]

S0n(t, α)
, s(u, α)[g] = ηg(X)− S1(t, α)[g]

S0(t, α)
,

and for Z ∈ Rd and the identify map I(Z) = Z, define

sn(u, α)[Z] = Z − S1n(t, α)[I]

S0n(t, α)
, s(u, α)[Z] = ηg(X)− S1(t, α)[I]

S0(t, α)
,

where S1n(t, α)[I] = 1
n

∑n
j=1 Yj(t)e

ηα(Wj)Zj and S1(t, α)[I] = EY (t)eηα(W )Z.



78

By analogy to the score function, we call the derivatives of the partial likelihood

with respect to the parameters the partial score functions. The partial score function

based on the partial likelihood for θ is

inθ(α) = P∆nsn(·, α)[Z].

The partial score function based on the partial likelihood for β in a direction g ∈ H(K)

is

inβ(α)[g] = P∆nsn(·, α)[g].

Recall that (θ̂, β̂) is defined to maximize the penalized partial likelihood, i.e.

−P∆nmn(·, θ̂, β̂) + λJ(β̂) ≤ −P∆nmn(·, θ, β) + λJ(β),

for all θ ∈ Rp and β ∈ H(K). Since the penalty term is unrelated to θ, the partial

score function should satisfy

inθ(α̂) = P∆nsn(·, α̂)[Z] = 0.

On the other hand, the partial score function for β satisfies

inβ(α̂)[g] = P∆nsn(·, α)[g] = O(λ) = op(n
− 1

2 ), for all g ∈ H(K).

Combining this with Lemma 3.5 and Lemma 3.6, we have

n1/2P∆{s(·, g0)[Z − h∗]}⊗2(θ̂ − θ0) = −n1/2P∆nsn(·, α0)[Z − g∗] + op(1).

Let

Mi(t) = ∆iI{Ti ≤ t} −
∫ t

0

Yi(u) exp(ηα0(Wi))dH0(u), 1 ≤ i ≤ n.

We can write

n1/2P∆nsn(·, α0)[Z − g∗] = n−1/2

n∑
i=1

∫ τ

0

[Zi − ηh∗(Xi)−
S1n(t, α0)[Z − g∗]

S0n(t, α0)
]dMi(t).

Thus

n1/2P∆nsn(·, α0)[Z − g∗]− n−1/2

n∑
i=1

∫ τ

0

[Zi − ηh∗(Xi)−
S1(t, α0)[Z − g∗]

S0(t, α0)
]dMi(t)

= n−1/2

n∑
i=1

∫ τ

0

[
S1(t, α0)[Z − g∗]

S0(t, α0)
− S1n(t, α0)[Z − g∗]

S0n(t, α0)
]dMi(t).
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Because

n−1

n∑
i=1

∫ τ

0

[
S1(t, α0)[Z − g∗]

S0(t, α0)
− S1n(t, α0)[Z − g∗]

S0n(t, α0)
]Yi(t) exp[ηα0(Wi)]dHi(t)

P→ 0,

by Lenglart’s inequality, as stated in Theorem 3.4.1 and Corollary 3.4.1 of [50], we

have

n1/2P∆nsn(·, α0)[Z − g∗]

= n−1/2

n∑
i=1

∫ τ

0

[Zi − ηh∗(Xi)−
S1(t, α0)[Z − g∗]

S0(t, α0)
]dMi(t) + op(1).

Recall that

S1(t, α0)[Z − g∗]
S0(t, α0)

= E[Z − ηg∗(W )]|T = t,∆ = 1] = a∗(t).

By the definition of the efficient score function l∗θ , we have

n1/2P∆nsn(·, α0)[Z − g∗] = n−1/2

n∑
i=1

l∗θ(Ti,∆i,Wi) + op(1)
d

→ N (0, I(θ0)) .

3.5.4 Proof of Theorem 3.2.4

To get the minmax lower bound, it suffices to show that, when the true baseline

hazard function h0 and the true θ0 are fixed and known, for a subset H∗ of H(K),

lim
a→0

lim
n→∞

inf
β̂

sup
β0∈H∗

Ph0,θ0,β0{d(β̂, β0) ≥ an−
r

2r+1} = 1. (3.19)

If we can find a subset {β(0), . . . , β(N)} ⊂ H∗ with N increasing with n, such that

for some positive constant c and all 0 ≤ i < j ≤ N ,

d2(β(i), β(j)) ≥ cγ
2r

2r+1n−
2r

2r+1 , (3.20)

and

1

N

N∑
j=1

KL(Pj, P0) ≤ γ logN, (3.21)
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then we can conclude, according to [51] (Theorem 2.5 on page 99), that

inf
β̂

sup
β∈H∗

P(d2(β(i), β(j)) ≥ cγ
2r

2r+1n−
2r

2r+1 ) ≥
√
N

1 +
√
N

(1− 2γ −
√

2γ

logN
),

which yields

lim
a→0

lim
n→∞

inf
β̂

sup
β0∈H∗

P(d(β(i), β(j)) ≥ an−
r

2r+1 ) ≥ 1.

Hence Theorem 3.2.4 will be proved.

Next, we are going to construct the set H∗ and the subset {β(0), . . . , β(N)} ⊂ H∗,

and then show that both (3.20) and (3.21) are satisfied.

Consider the function space

H∗ = {β =
2M∑

k=M+1

bkM
−1/2LK1/2ϕk : (bM+1, . . . b2M) ∈ {0, 1}M}, (3.22)

where {ϕk : k ≥ 1} are the orthonomal eigenfunctions of T (s, t) = K1/2C∆K
1/2(s, t)

and M is some large number to be decided later.

For any β ∈ H∗, observe that

||β||2K = ||
2M∑

k=M+1

bkM
−1/2LK1/2ϕk||2K

=
2M∑

k=M+1

b2
kM

−1||LK1/2ϕk||2K

≤
2M∑

k=M+1

M−1||LK1/2ϕk||2K

= 1,

which follows from the fact that

< LK1/2ϕk, LK1/2ϕl >K =< LKϕk, ϕl >K=< ϕk, ϕl >L2= δkl.

Therefore H∗ ⊂ H(K) = {β : ||β||k <∞}.

The Varshamov-Gilbert bound shows that for any M ≥ 8, there exists a set

B = {b(0), b(1), . . . , b(N)} ⊂ {0, 1}Msuch that

1. b(0) = (0, . . . , 0)′;
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2. H(b, b′) > M/8 for any b 6= b′ ∈ B, where H(·, ·) = 1
4

∑M
i=1(bi − b′i)

2 is the

Hamming distance;

3. N ≥ 2M/8.

The subset {β(0), . . . , β(N)} ⊂ H∗ is chosen as β(i) =
∑2M

k=M+1 b
(i)
k−MM

−1/2LK1/2ϕk,

i = 0, . . . N .

For any 0 ≤ i < j ≤ N , observe that

d2(β(i), β(j)) = E∆
(
ηβ(i)(X)− ηβ(j)(X)

)2

= ||L
C

1/2
∆

2M∑
k=M+1

(b
(i)
k−M − b

(j)
k−M)M−1/2LK1/2ϕk||2L2

=
2M∑

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1||L

C
1/2
∆
LK1/2ϕk||2L2

=
2M∑

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1sk.

On one hand, we have

d2(β(i), β(j)) =
2M∑

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1sk

≥ s2MM
−1

M∑
k=1

(b
(i)
k − b

(j)
k )2

= 4s2MM
−1H(b(i), b(j))

≥ s2M/2.

On the other hand, we have

d2(β(i), β(j)) =
2M∑

k=M+1

(b
(i)
k−M − b

(j)
k−M)2M−1sk

≤ sMM
−1

M∑
k=1

(b
(i)
k − b

(j)
k )2

≤ sM .

So altogether,

s2M/2 ≤ d2(β(i), β(j)) ≤ sM . (3.23)
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Let Pj, j = 1, . . . N, be the likelihood function with data {(Ti,∆i,Wi(s)), i =

1, . . . n} and β(j), i.e

Pj =
n∏
i=1

[
fTu|W (Ti)ST c|W (Ti)

]∆i ·
[
fT c|W (Ti)STu|W (Ti)

]1−∆i .

Let cT c =
∏n

i=1

[
ST c|W (Ti)

]∆i
[
STu|W (Ti)

]1−∆i , which does not depend on β(j), then

Pj = cT c
n∏
i=1

[
h0(Ti) exp(θ′0Zi + ηβ(j)(Xi))

]∆i · exp{−H0(Ti) · eθ
′
0Zi+ηβ(j) (Xi)}.

We calculte the Kullback-Leibler distance between Pj and P0 as

KL(Pj, P0) = EPj log
Pj
P0

= EPj
{

∆i

n∑
i=1

{ηβ(j)−β(0)(Xi)}+
n∑
i=1

H0(Ti) e
θ′0Zi [exp(ηβ(0)(Xi))

− exp(ηβ(j)(Xi))]
}

= nEPj∆[ηβ(j)−β(0)(X)] + nEPjH0(T ) eθ
′
0Z [exp(ηβ(0)(X))

− exp(ηβ(j)(X))]

= nEWPjE
T,∆
Pj
{H0(T ) |W} eθ′0Z [exp(ηβ(0)(X))− exp(ηβ(j)(X))]

]
,

where

ET,∆pj
(H0(T ) |W )=ET c

{
ET,∆pj

(H0(T ) |T c,W )
∣∣W}

= ET c
{∫ T c

0

H0(t)fTu|W (t)dt+H0(T c)P(T u > T c|T c,W )
∣∣W )

}
,

∫ T c

0

H0(t)fTu|W (t)dt

=

∫ T c

0

H0(t) · h0(t) exp[θ′0Z + ηβ(j)(X)] exp{−H0(t)e
θ′0Z+η

β(j) (X)}dt

= e
−θ′0Z−ηβ(j) (X)

∫ T c

0

e
θ′0Z+η

β(j) (X)
H0(T ) exp{−H0(T ) · eθ

′
0Z+η

β(j) (X)}

de
θ′0Z+η

β(j) (X)
H0(T )

= exp(−θ′0Z + ηβ(j)(X))

∫ a

0

ue−udu
∣∣∣
a=e

θ′0Z+η
β(j) (X)

H0(T c)

= exp(−θ′0Z − ηβ(j)(X))[1− e−a − a e−a]
∣∣∣
a=e

θ′0Z+η
β(j) (X)

H0(T c)
,
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and

P(T u > T c|T c,W ) = STu|W (T c)

= exp{−H0(T c)e
θ′0Z+η

β(j) (X)}.

Therefore

ET,∆pj
(H0(T ) |T c,W )

= e
−θ′0Z−ηβ(j) (X)

[1− exp{−H0(T c)e
θ′0Z+η

β(j) (X)}]−H0(T c)·

exp{−H0(T c)e
θ′0Z+η

β(j) (X)}+H0(T c) exp{−H0(T c)e
θ′0Z+η

β(j) (X)}

= e
−θ′0Z−ηβ(j) (X)

[1− exp{−H0(T c)e
θ′0Z+η

β(j) (X)}]

= e
−θ′0Z−ηβ(j) (X)

[FTu|W (T c)]

= e
−θ′0Z−ηβ(j) (X)P(T u ≤ T c|T c,W ),

and further

ET,∆pj
(H0(T ) |W )=ET c

{
ET,∆pj

(H0(T ) |T c,W )
∣∣W}

= e
−θ′0Z−ηβ(j) (X)P(T u ≤ T c|W )

= e
−θ′0Z−ηβ(j) (X)E[∆|W ].

Then the KL distance becomes

KL(Pj, P0) = nEWPjE[∆|W ]e
−θ′0Z−ηβ(j) (X)

eθ
′
0Z [exp(ηβ(0)(X))− exp(ηβ(j)(X))]

]
= nEW,∆Pj

∆[exp(ηβ(0)(X)− ηβ(j)(X))− 1
]

= nEW,∆Pj
[
1

2
∆(ηβ(0)(X)− ηβ(j)(X))2 + o(∆(ηβ(0)(X)− ηβ(j)(X))2)]

≤ nEXPj [
1

2
(ηβ(0)(X)− ηβ(j)(X))2 + o((ηβ(0)(X)− ηβ(j)(X))2)]

. nd2(β(j), β(0))

. nsM .

Therefore for some positive constant c1,

KL(Pj, P0) ≤ c1nM
−2r.
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By taking M to be the smallest integer greater than c2γ
− 1

2r+1n
1

2r+1 with c2 = (c1 ·

8 log 2)1/(1+2r), we verified (3.21) that

1

N

N∑
j=1

KL(Pj, P0) ≤ γ logN.

Meanwhile, since d2(β(i), β(j)) ≥ s2M/2 and s2M � (2M)−2r, condition (3.20) is

verified by plugging in M .

3.5.5 Derivation of GCV (λ)

Recall that given the observations {(Ti,∆i, Wi)}ni=1, β̂λ can be written in the form

of

β̂λ(t) =
m∑
k=1

dkξk(t) +
n∑
i=1

ci

∫ 1

0

Xi(s)K1(s, t)ds.

For simplicity, let ξk+j(t) =
∫ 1

0
Xj(s)K1(s, t)ds, j = 1, . . . n, then write β(t) =∑m+n

k=1 c
(β)
k ξk(t). In this way,

ηα(Wi) =

p∑
k=1

θkZik +
m+n∑
k=1

c
(β)
k

∫
Xi(t)ξk(t)dt.

Let S(β) be an n×(m+n) matrix with the (i, j)th entry defined as S
(β)
ij =

∫
Xi(s)ξj(s)ds,

and Z = (Z1, · · · , Zn)n×p. Denote S = (Z, S(β)), a n × (p + m + n) matrix, and

(ηα(W1), . . . ηα(Wn))T = S ·c with c = (c1, . . . , cp+n+m)T = (θ1, . . . θp, c
(β)
1 , . . . , c

(β)
m+n)T .

Since ξ1, . . . ξm are the bases of the null space with the semi-norm J(·), we can

write J as J(β) = cTQc, with Q a (p+m+ n)× (p+m+ n) diagonal block matrix

whose non-zero entries only occur in the n× n submatrix (Qi,j)
p+m+n
i,j=p+m+1.

Let ∆ = (∆1, . . . ,∆n)T and Yj(t) = I{t ≥ Tj}. Under the above expressions, we

can write the penalized partial likelihood as a function of the coefficient c:

Aλ(c) = −∆′S · c/n+
1

n

n∑
i=1

∆i log{
n∑
j=1

Yj(Ti)e
Sj·c}+ λcTQc,

where Sj· is the jth row of S.
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For any α ∈ Rp ×H(K), functions f, g ∈ H(K), and z, z∗ ∈ Rn×1 define

µα(f |t) =

∑n
j=1 Yj(t)e

ηα(Wj)ηf (Xj)∑n
j=1 Yj(t)e

ηα(Wj)
, µα(z|t) =

∑n
j=1 Yj(t)e

ηα(Wj)zj∑n
j=1 Yj(t)e

ηα(Wj)
,

and

µα(f, g|t) =

∑n
j=1 Yj(t)e

ηα(Wj)ηf (Xj) · ηg(Xj)∑n
j=1 Yj(t)e

ηα(Wj)
,

µα(z, z∗|t) =

∑n
j=1 Yj(t)e

ηα(Wj)zj z
∗
j∑n

j=1 Yj(t)e
ηα(Wj)

,

µα(f, z|t) =

∑n
j=1 Yj(t)e

ηα(Wj)ηf (Xj) zj∑n
j=1 Yj(t)e

ηα(Wj)
.

Define µα(g) = 1
n

∑n
i=1 µα(g|Ti), Vα(f, g|t) = µα(f, g|t)−µα(f |t)µα(g|t), and Vα(f, g) =

1
n

∑n
i=1 Vα(f, g|Ti), and define by analogy µα(z), Vα(z, z∗|t), Vα(f, z|t), Vα(z, z∗), and

Vα(f, z). Now take the derivative of Aλ(c) at α̃ = S · c̃ with respect to c, we have

∂Aλ(c)

∂c

∣∣
α̃

= −ST∆/n+ µα̃(ς) + 2λQc̃,

and
∂2Aλ(c)

∂c2

∣∣
α̃

= Vα̃(ς, ςT ) + 2λQ,

where ς = (Z·1, . . . , Z·p, ξ1(s), . . . , ξm+n(s))T . To obtain the minimum of Aλ(c), we

apply the Newton-Raphson algorithm to ∂Aλ(c)/∂c. That is,

[Vα̃(ς, ςT ) + 2λQ](c− c̃) = ST∆/n− µα̃(ς)− 2λQc̃.

To simplify the notations, let H = [Vα̃(ς, ςT ) + 2λQ] and h = −µα̃(ς) + Vα̃(ς, ςT )c̃, so

ĉ ≈ H−1(S ′∆/n+ h) and

ĉ[i] ≈ H−1(
ST∆−∆iS

T
i·

n− 1
+ h) = ĉ−∆i ·

H−1STi·
n− 1

+
H−1S ′∆

n(n− 1)
.

Then the first term of R̂KL becomes

n∑
i=1

η
[i]
α̃λ

(Wi) =
n∑
i=1

ηα̃λ(Wi)−
n∑
i=1

[∆i ·
Si·H

−1STi·
n− 1

+
Si·H

−1S ′∆

n(n− 1)
].

Simplifying this leads to

n∑
i=1

η
[i]
α̃λ

(Wi) =
n∑
i=1

ηα̃λ(Wi)−
1

(n− 1)
tr[(SH−1S)(diag∆−∆1′/n)],
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where diag∆ is an n× n diagonal matrix with diagonal entries ∆1, . . . ,∆n. Plugging

this back to R̂KL, then GCV (λ) is obtained.

If the efficient estimator β∗λ is used instead, the derivation and therefore the main

result remain the same by adjusting the definition of ξ and S(β) accordingly.

3.5.6 Proofs of Lemmas

Lemma 3.1 Following the former notations, for 0 ≤ s ≤ 1, let

g(t, s) =
S1(t, α0 + sα̃)[α∗]

S0(t, α0 + sα̃)
.

Denote Rs(t) = Y (t) exp(ηα0 + sηα̃)/S0(t, α0 + sα̃). We have

∂

∂s
g(t, s) = E[Rs(t)ηα̃ηα∗ ]− E[Rs(t)ηα̃]E[Rs(t)ηα∗ ]

= E
{
Rs(t)

(
ηα̃ − E[Rs(t)ηα̃]

)(
ηα∗ − E[Rs(t)ηα∗ ]

)
,

and

∂2

∂s2
g(t, s) = E[Rs(t)ηα∗η

2
α̃]− 2E[Rs(t)ηα̃]E[Rs(t)ηα∗ηα̃]

− E[Rs(t)ηα∗ ]E[Rs(t)η
2
α̃] + 2E[Rs(t)ηα∗ ]E[Rs(t)ηα̃]2.

Proof The lemma follows by direct calculation.

Lemma 3.2 Let α0 be the true coefficients. Under assumption A(1)-A(4), we have

P∆m0(·, α)− P∆m0(·, α0) � −d2(α, α0).

Proof Observe that

P∆m0(·, α)− P∆m0(·, α0)

= P∆(m0(·, α)−m0(·, α0))

= P∆{ηα−α0(W )− logS0(·, α) + logS0(·, α0)}1{0≤T≤τ}

= −P∆{logS0(·, α)− logS0(·, α0)}1{0≤T≤τ}.
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Let α̃ = (θ − θ0, β − β0) and G(t, s) = log(S0(t, α0 + sα̃)), then

P∆m0(·, α)− P∆m0(·, α0) = −P∆(G(·, 1)−G(·, 0))1{0≤T≤τ}.

For fixed t, take the derivative of G(t, s) with respect to s, we have

∂

∂s
G(t, s) =

S1(t, α0 + sα̃)[α̃]

S0(t, α0 + sα̃)

def
= g(t, s).

Noting that P∆
∂
∂s
G(·, 0) = P∆g(·, 0) = 0, then lemma 3.1 implies,

∂2

∂s2
G(t, s) =

∂

∂s
g(t, s) = E[Rs(t)η

2
α̃]−

(
E[Rs(t)ηα̃]

)2
= ERs(t)

(
ηα̃ − E[Rs(t)ηα̃]

)2
,

where Rs(t) = Y (t)e
ηα0+sη

α̃

S0(t,ηα0+sηα̃)
. Therefore for some γ ∈ [0, 1],

G(t, 1)−G(t, 0) = G′s(t, 0) +
1

2
G′′s(t, γ)

= g(t, 0) +
1

2
ERγ(t)

(
ηα̃ − E[Rγ(t)ηα̃]

)2

= g(t, 0) +
1

2
EWE

(
Rγ(t)|W

)(
ηα̃ − E[Rγ(t)ηα̃]

)2
.

By the definition of Rs(t),

E
(
Rγ(t)|W

)
= P (T ≥ t|W ) exp(ηα0+γα̃(W ))/S0(t, ηα0+γα̃).

By the assumptions and for t ∈ [0, τ ], there exists constants c1 > c2 > 0 not depending

on t, such that

c2 ≤ E[Rγ(t)|W ] ≤ c1.

On one hand,

G(t, 1)−G(t, 0)

≥ g(t, 0) +
1

2
c2E
(
ηα̃ − E[Rγ(t)ηα̃]

)2 ≥ g(t, 0) +
1

2
c2E∆

(
ηα̃ − E[Rγ(t)ηα̃]

)2

= g(t, 0) +
1

2
c2E∆η2

α̃ − 2E∆ηα̃E[Rγ(t)ηh] + E[Rγ(t)ηα̃]2

≥ g(t, 0) +
1

2
c2d

2(α, α0),

which follows from the fact that E∆ηα̃ = 0. So
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P∆m0(·, α)− P∆m0(·, α0) = −P∆{G(·, 1)−G(·, 0)}1{0≤T≤τ}

≤ −P∆d
2(α, α0)1{0≤T≤τ}

. −d2(α, α0). (3.24)

On the other hand,

G(t, 1)−G(t, 0) ≤ g(t, 0) +
1

2
c1E
(
η2
α̃ − E[Rγ(t)ηα̃]

)2

≤ g(t, 0) + c1{Eη2
α̃ + (E[Rγ(t)ηα̃])2}.

Since (E[Rγ(t)ηα̃])2 = (EWE[Rγ(t)|W ]2 · η2
α̃) ≤ c2

1ε
−1E∆η2

α̃, we arrive at

P∆m0(·, α)− P∆m0(·, α0) = −P∆{G(·, 1)−G(·, 0)}1{0≤T≤τ}

& −P∆d
2(α, α0)1{0≤T≤τ}

& −d2(α, α0). (3.25)

Combining (3.24) and (3.25) we have

P∆m0(·, α)− P∆m0(·, α0) � −d2(α, α0).

Lemma 3.3 F1 = {∆m0(t,W, α) : α ∈ RM × HM} and F2 = {Y (t)eηα(W ) : α ∈

RM ×HM , 0 ≤ t ≤ τ} are P-Glivenko-Cantelli.

Proof Given that ηα(W ) = θ′Z + ηβ(X) is bounded almost surely, it is easy to see

that ∆m0(t,W, α) = ∆[ηα(W )− logS0(t, α)]1{0≤t≤τ} and Y (t)eηα(W ) are bounded. So

following Theorem 19.13 in [48], it is sufficient to show that N (ε,Fi, L1(P )) <∞ for

i = 1, 2.
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For any f = ∆m0(t,W, α), and f1 = ∆m0(t,W, α1) in F1,

||f − f1||L1(P ) = P |f − f1| = P |∆m0(·, α)−∆m0(·, α1)|

= P |∆
[
ηα(W )− ηα1(W )− log

S0(·, α)

S0(·, α1)

]
1{0≤T≤τ}|

≤ P |ηα(W )− ηα1(W )|+ P |[logS0(·, α)− logS0(·, α1)]1{0≤T≤τ}|

. P |ηα(W )− ηα1(W )|+ sup
0≤t≤τ

|S0(t, α)− S0(t, α1)|

. P |ηα(W )− ηα1(W )|+ sup
0≤t≤τ

|E(Y (t)eηα(W ) − Y (t)eηα1 (W ))|

. P |ηα(W )− ηα1(W )|.

Therefore N (ε,F1, L1(P )) � N (ε, {ηα(W ) : α ∈ RM ×HM}, L1(P )).

Similarly for f = Y (t)eηα(W ), and f1 = Y (t)eηα1 (W ) : in F2,

||f − f1||L1(P ) = P |f − f1|

≤ P |eηα(W ) − eηα1 (W )|

. P |ηα(W )− ηα1(W )|,

and N (ε,F2, L1(P )) � N (ε, {ηα(W ) : α ∈ RM ×HM}, L1(P )).

So it suffices to show that N (ε, {ηα(W ) : α ∈ RM ×HM}, L1(P )) < ∞, which is

obvious since ηα(W ) is bounded almost surely for α ∈ RM ×HM .

Lemma 3.4 Let I and III be defined as

I = (P∆n − P∆)(m0(·, α)−m0(·, α0)),

III = (Pn − P )
{
Y (t)

[
exp(ηα(W ))− exp(ηα0(W ))

]}
,

and Bδ = {α ∈ Rp ×H(K) : δ/2 ≤ d(α, α0) ≤ δ}, then

sup
α∈Bδ

I = O(δ
2r−1

2r n−1/2),

sup
α∈Bδ

III = O(δ
2r−1

2r n−1/2), for for t ∈ [0, τ ].

Proof Consider

Mδ1 = {∆[m0(t,W, α)−m0(t,W, α0)]1{0≤t≤τ}, α ∈ Bδ},

Mδ2 = {Y (t)
[

exp(ηα(W ))− exp(ηα(W ))
]
, α ∈ Bδ, t ∈ [0, τ ]},
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with L2(P ) norm, i.e for any f ∈Mδ1, ||f ||P,2 = (
∫
f 2dP )1/2 =

(
Et,Wf 2(t,W, α)

)1/2
,

and for any f ∈ Mδ2, ||f ||P,2 = (
∫
f 2dP )1/2 =

(
ET,Wf 2(T,W, t, α)

)1/2
. Then it

suffices to show that

∣∣∣∣||Gn||Mδ1

∣∣∣∣
P,2

= O(δ
2r−1

2r ),

∣∣∣∣||Gn||Mδ2

∣∣∣∣
P,2

= O(δ
2r−1

2r ),

where Gn =
√
n(Pn − P ) and ||Gn||Mδi

= supf∈Mδi
|Gnf |, i = 1, 2.

We first show that

logN (ε,Mδ1, || · ||p,2) ≤ O((p+ ε−1/r) log(
δ

ε
)),

and

logN (ε,Mδ2(t), || · ||p,2) ≤ O((p+ ε−1/r) log(
δ

ε
)), for all t ∈ [0, τ ].

Suppose there exist functions f1, . . . , fm ∈Mδ1, such that

min
1≤i≤m

||f − fi||p,2 < ε, for all f ∈Mδ1.

This is equivalent to the existence of α1, . . . αm ∈ Bδ, s.t

min
1≤i≤m

∣∣∣∣∆[m0(·, α)−m0(·, αi)]1{0≤T≤τ}
∣∣∣∣
p,2
< ε, for all α ∈ Bδ.

Observe that

{∆[m0(t,W, α)−m0(t,W, αi)]1{0≤t≤τ}}2

= ∆
[
ηα(W )− ηαi(W )− log

S0(t, α)

S0(t, αi)

]
21{0≤t≤τ}

≤ 2∆{[ηα(W )− ηαi(W )]2 + [log
S0(t, α)

S0(t, αi)
]2}1{0≤t≤τ}

≤ 2∆{[ηα(W )− ηαi(W )]2 + c[S0(t, α)− S0(t, αi)]
2}1{0≤t≤τ}

= 2∆
{

[ηα(W )− ηαi(W )]2 + c[EY (t){exp(ηα(W ))− exp(ηαi(α))}]2
}

1{0≤t≤τ}

≤ 2∆
{

[ηα(W )− ηαi(W )]2 + cEY 2(t)E
[

exp(ηα(W ))− exp(ηαi(W ))
]

2
}

1{0≤t≤τ}

≤ 2∆
{

[ηα(W )− ηαi(W )]2 + c1EY (t)E
[
ηα(W )− ηαi(W )

]
2
}

1{0≤t≤τ}.
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Then

∣∣∣∣∆[m0(·, α)−m0(·, αi)]1{0≤T≤τ}
∣∣∣∣2
p,2

= P{∆[m0(·, α)−m0(·, αi)]1{0≤T≤τ}}2

. d2(α, αi).

Therefore, the covering number for Mδ1 is of the same order as that for Bδ. To be

more specific,

N(ε,Mδ1, || · ||p,2) ≤ N(ε/C,Bδ, d). (3.26)

In addition, we know that

d2(α, αi) ≤ 2E∆[(θ − θi)′Z]2 + 2d2(β, βi),

and it follows thatN(ε/C,Bδ, d) ≤ N(ε/2C,Bθδ , dθ)·N(ε/2C,Bβδ , dβ), where d2
θ(θ1, θ2) =

E∆[(θ1 − θ2)′Z]2 and dβ(β1, β2) = d(β1, β2). Here Bθδ and Bβδ are defined as

Bθδ = {θ ∈ Rp, dθ(θ, θ0)) ≤ δ}, Bβδ = {β ∈ H(K), dβ(β, β0) ≤ δ},

with Bθδ × B
β
δ ⊃ Bδ.

It is easy to see thatN(ε/2C,Bθδ , dθ) = O(( δ
ε
)p). ForN(ε/2C,Bβδ , dβ), noticing that

H(K) = LK1/2(L2) = {
∑

k bkLK1/2φk : (bk) ∈ l2}, then for any β =
∑

k≥1 bkLK1/2φk ∈

H(K), we have

d2(β, β0) = E∆η2
β−β0

(X)

= < β − β0, LC∆
β − β0 >L2

= <
∑
k≥1

(bk − b0
k)LK1/2φk,

∑
k≥1

(bk − b0
k)LC∆K1/2φk >L2

= <
∑
k≥1

(bk − b0
k)φk,

∑
k≥1

(bk − b0
k)LK1/2C∆K1/2φk >L2

= <
∑
k≥1

(bk − b0
k)φk,

∑
k≥1

(bk − b0
k)skφk >L2

=
∑
k≥1

sk(bk − b0
k)

2.
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If we further let γk =
√
skbk , then d(β, β0) =

∑
k≥1(γk− γ0

k)
2 and Bβδ = {β ∈ H(K) :

d(β, β0)) ≤ δ} can be rewritten as

Bδ = {β =
∑
k≥1

s
−1/2
k γkLK1/2φk : (s

−1/2
k γk) ∈ l2,

∑
k≥1

(γk − γ0
k)

2 ≤ δ2}.

Let M = ( ε
4C

)−1/r, and

Bβ∗δ = {β =
M∑
k=1

s
−1/2
k γkLK1/2φk : (s

−1/2
k γk)

M
k=1 ∈ l2,

M∑
k=1

(γk − γ0
k)

2 ≤ δ2}.

For any β =
∑

k≥1 s
−1/2
k γkLK1/2φk ∈ Bδ, let β∗ =

∑M
k=1 s

−1/2
k γkLK1/2φk ∈ B∗δ . It’s

easy to see that

d2(β, β∗) =
∑
k>M

γ2
k =

∑
k>M

skb
2
k ≤ sM

∑
k>M

b2
k �M−2r = (

ε

4C
)2,

where
∑

k>M b2
k is some small number when M is large, since (bk) ∈ l2 . So if we can

find a set {β∗i }mi=1 ⊂ B∗δ satisfying

min
1≤k≤m

d(β∗, β∗i ) ≤ ε/4C for all β∗ ∈ B∗δ ,

then it also guarantees that

min
1≤k≤m

d(β, β∗i ) ≤ min
1≤k≤m

[d(β, β∗) + d(β∗, β∗i )] . ε/2C for all β ∈ Bδ,

i.e.

N(ε/2C,Bβδ , dβ) . N(ε/4C,B∗δ , d). (3.27)

We know that N(ε/4C,B∗δ , d) ≤ (4δ+ε/4C
ε/4C

)M is the covering number for a ball in RM .

Therefore combining with (3.26), we have

logN (ε,Mδ1, || · ||p,2) ≤ logN(ε/C,Bδ, d)

≤ logN(ε/2C,Bθδ , dθ) + logN(ε/2C,Bβδ , dβ)

≤ (
ε

4C
)−1/r log(

4δ + ε/4C

ε/4C
) + logO((

δ

ε
)p)

= O((p+ ε−1/r) log(
δ

ε
)).
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Similarly,

∣∣∣∣Y (t)
[

exp(ηα1(W ))− exp(ηα2(W ))
]∣∣∣∣2

p,2

= P TW{Y (t)
[

exp(ηα1(W ))− exp(ηα2(W ))
]
}2

≤ Cd2(α1, α2), for all t ∈ [0, τ ].

Following the same procedure, we have

logN (ε,Mδ2, || · ||p,2) ≤ O((p+ ε−1/r) log(
δ

ε
)).

Now we are able to calculate J(1,Mδ1),

J(1,Mδ1) =

∫ 1

0

√
1 + logN (ε,Mδ1, || · ||p,2)dε

=

∫ 1

0

√
1 + (p+ ε−1/r) log(

δ

ε
)dε

�
∫ 1

0

√
ε−1/r log(

δ

ε
)dε,

and for u =

√
log(

δ

ε
), �

∫ ∞
√

log δ

(
δ

eu2 )−
1
2ru2 · 2δe−u2

du

= O(δ
2r−1

2r )

∫ ∞
√

log δ

(e−u
2

)(1− 1
2r

)u2 · du

= O(δ
2r−1

2r ), for r >
1

2
.

The last inequality follows from the fact that the integral above can be seen as the

second order moment of a standard normal times some constant, hence it is a constant

not depending on δ. Since functions in Mδ1 are bounded and J(1,Mδ1) = O(δ
2r−1

2r ),

Theorem 2.14.1 in [49] implies

∣∣∣∣||Gn||Mδ1

∣∣∣∣
P,2

. J(1,Mδ1) = O(δ
2r−1

2r ).

Similarly we have

∣∣∣∣||Gn||Mδ2(t)

∣∣∣∣
P,2

= O(δ
2r−1

2r ), for all t ∈ [0, τ ].
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Lemma 3.5

P∆n{sn(·, α̂)[Z]− sn(·, α0)[Z]} − P∆{s(·, α̂)[Z]− s(·, α0)[Z]} = op(n
−1/2), (3.28)

P∆n{sn(·, α̂)[g∗]− sn(·, α0)[g∗]} − P∆{s(·, α̂)[g∗]− s(·, α0)[g∗]} = op(n
−1/2). (3.29)

Proof We only prove (3.29) as the proof of (3.28) is similar. The right-hand side of

(3.29) can be bounded by the sum of the following two terms

I1n =
∣∣(P∆n − P∆){s(·, α̂)[g∗]− s(·, α0)[g∗]}

∣∣,
and

I2n =
∣∣P∆n{sn(·, α̂)[g∗]− sn(·, α0)[g∗]− s(·, α̂)[g∗] + s(·, α0)[g∗]}

∣∣.
We are going to show that I1n = op(n

− 1
2 ) and I2n = op(n

− 1
2 ).

For the first term, since S0(·, α̂), S0(·, α0) and S1(t, α0)[g∗] are bounded almost

surely, we have

I1n =
∣∣(Pn − P ){∆[

S1(·, α̂)[g∗]

S0(·, α̂)
− S1(·, α0)[g∗]

S0(·, α0)
]}
∣∣

=
∣∣(Pn − P ){∆[S0(·, α̂)]−1

[
S1(·, α̂)[g∗]− S1(·, α0)[g∗]

]
+ ∆[S0(·, α̂)S0(·, α0)]−1S1(·, α0)[g∗][S0(·, α̂)− S0(·, α0)]}

∣∣
.
∣∣(Pn − P ){∆

[
S1(·, α̂)[g∗]− S1(·, α0)[g∗]

]
}
∣∣

+
∣∣(Pn − P ){∆[S0(·, α̂)− S0(·, α0)]}

∣∣.
Considering Mδ3 =

{
∆
[
S1(t, α)[g∗] − S1(t, α0)[g∗]

]
, α ∈ Bδ

}
, for any f1, f2 ∈ Mδ1,

we have

||f1 − f2||p,2 = E∆2{S1(·, α1)[g∗]− S1(·, α2)[g∗]}2

= E∆,t,X∆{EY (t)(eηα1 (W ) − eηα2 (W ))ηg∗(X)}2

. d2(α1, α2).

Following the same proof as Lemma 3.4, we can show that

∣∣(Pn − P ){∆
[
S1(·, α̂)[g∗]− S1(·, α0)[g∗]

]
}
∣∣ = O(d

2r−1
2r (α̂, α0)n−

1
2 ) = op(n

− 1
2 ),
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given that d(α̂, α0) = Op(n
− 2r

2r+1 ). Similarly,∣∣(Pn − P ){∆[S0(·, α̂)− S0(·, α0)]}
∣∣ = op(n

− 1
2 ),

and altogether we have shown that I1n = op(n
− 1

2 ).

For the second term, the quantity inside the empirical measure P∆n is

II2n(t) :=
S1n(t, α̂)[g∗]

S0n(t, α̂)
− S1n(t, α0)[g∗]

S0n(t, α0)
− S1(t, α̂)[g∗]

S0(t, α̂)
+
S1(t, α0)[g∗]

S0(t, α0)
.

It follows from the same proof as in Lemma A.7 of [34] that

sup
0≤t≤1

|II2n(t)| = op(n
− 1

2 ).

Lemma 3.6

P∆{s(·, α̂)[Z − g∗]− s(·, α0)[Z − g∗]}

= P∆{s(·, α0)[Z − g∗]}⊗2(θ̂ − θ0) +O(||θ̂ − θ0||2 + ||β̂ − β)||2C∆
)

= P∆{s(·, α0)[Z − g∗]}⊗2(θ̂ − θ0) + op(n
−1/2).

Proof By lemma 3.1, direct calculation implies

P∆{s(·, α̂)[Z − g∗]− s(·, g0)[Z − h∗]}

=P∆{s(·, α0)[Z − g∗]s(·, g0)[α̂− α0]}+O(d2(α̂, α0))

=P∆{s(·, α0)[Z − g∗]s(·, g0)[Z]}(θ̂ − θ0)

+ P∆{s(·, α0)[Z − g∗]s(·, g0)[ηβ̂ − ηβ0 ]}

+O(d2(α̂, α0)),

while by (3.11) , (3.12) and (3.10), we have

P∆{s(·, α0)[Z − g∗]s(·, g0)[ηβ̂ − ηβ0 ]}

= P∆[Z − ηg∗(X)− S1(t, α0)[Z − g∗]
S0(t, α0)

][ηβ̂ − ηβ0 −
S1(t, α0)[β̂ − β0]

S0(t, α0)
]

= P∆{Z − ηg∗(X)− E[Z − ηg∗(X)|T,∆ = 1]}{ηβ̂−β0
(X)− E[ηβ̂−β0

(X)|T,∆ = 1]}

= P∆[Z − ηg∗(X)− a∗(T )][ηβ̂−β0
(X)− a(T )]

= 0,
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and

P∆{s(·, α0)[Z − g∗]s(·, g0)[Z]} = P∆{s(·, α0)[Z − g∗]}⊗2.

The lemma now follows from from Theorem 3.2.2 which asserts that d2(α̂, α0) =

op(n
−1/2).
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4. SIMULTANEOUS MODEL SELECTION AND ESTIMATION

WITH GSCAD

4.1 Simultaneously Model and Knots Selection in Function-on-scalar Re-

gression

4.1.1 Function-on-scalar regression model

Functional imaging data are common in various medical and biomedical fields,

where massive imaging data can be observed over both time and space. Such imag-

ing techniques include functional magnetic resonance imaging (fMRI), electroen-

cephalography (EEG), diffusion tensor imaging (DTI) among many other imaging

techniques. Along with the imaging data, scalar predictors such as age, gender, or

even gene expression information are recorded to explore their potential effects on

the functional response. Therefore, regression models with functional responses and

scalar predictors are routinely encountered in practice. A nature model to address

such problem is the function-on-scalar regression, stated as

Y (t) =

p∑
j=1

Xjβj(t) + ε(t) t ∈ T (4.1)

where Y (t) is the functional response on domain T , X1, ..., Xp are a large number of

scalar predictors. (xi,yi), i = 1, ..., n are n observations, with xi = (xi1, ..., xip)
T ∈ Rp

being a vector of scalar predictors and yi = (yi(t1), ..., yi(tM)), being real-valued

realization of function Y (t) at points tm ∈ T , m = 1, ...,M . ε(t) is the error function

with εi(tm)
iid∼ N (0, σ2),i = 1, ..., n and m = 1, ...,M . We can also take into account

the within-function covariance by adding a certain structure to the covariance of

ε(t) [52].
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4.1.2 Model selection in Function-on-scalar regression

Like many regression models with high dimensional predictors, function-on-scalar

regression faces the model selection challenge of how to identify the important pre-

dictors among a potentially large collection. Standard solution to deal with model

selection problem is to add a penalty function to the objective function. In case when

β(t) is assumed to be in an reproducing kernel Hilbert space H(K), we consider the

penalty corresponding to the norm of H(K), i.e. ||β(t)||K .

The objective function is stated as

min
β∈H(K)

1

2

n∑
i=1

M∑
m=1

(yi(tm)−
p∑
j=1

xijβj(tm))2 + λ

p∑
j=1

||βj(t)||K . (4.2)

Based on the properties of RKHS, we have the following representative theory.

Theorem 4.1.1 The solution of 4.2 is in form of

β̂j(t) =
M∑
m=1

bjmK(tm, t), j = 1, ..., p,

where bj = (bj1, ..., bjM)T ∈ RM .

Theorem 4.1.1 allows us to reformat the problem. Let y = (yT1 , ...,y
T
n )T ∈ R(mn) be

the vectorized observation of the functional response, b = (bT1 , ...,b
T
p )T ∈ R(mp) be

the vectorized coefficient for β(t), and K̃ = {K(ti, tj)}i,j=1,...,M be a M by M matrix

realization of kernel K at points t1, ..., tM ∈ T . Then (4.2) can be rewrite as

min
b

1

2
||y − (X � K̃)b||2 + λ

p∑
j=1

||bj||K̃ ,

where ⊗ is the Kronecker product and ||bj||K̃ = (bTj K̃bj)
1/2. Since K(·, ·) is the

reproducing kernel, matrix K̃ is symmetric and positive definite. Write the spectral

decomposition of K̃ as K̃ =
∑M

l=1 ρ̃lφ̃
T
l φ̃l, where (ρ̃l, φ̃l), l = 1, ...,M are pairs of

eigenvalue and eigenvector. Define K̃1/2 as

K̃1/2 =
M∑
l=1

ρ̃
1/2
l φ̃Tl φ̃l.
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Therefore K̃1/2 is also symmetric and positive definite, and satisfies K̃ = K̃1/2K̃1/2.

Make an transformation of bj as

αj = K̃1/2bj,

and let α = (αT1 , ..., α
T
p )T . Denoting D = X � K̃1/2, the objective function 4.2 can be

further simplified as

min
1

2
||y −Dα||2 + λ

p∑
j=1

||αj||2,

where || · ||2 is the L2 norm.

4.1.3 Knots selection in Function-on-scalar regressions

Unlike traditional models, functional-on-scalar regress, and more generally, func-

tional response models, face an additional challenge of knots selection. The urge of

knots selection comes from many aspects. For example, some functional responses

are spacial inhomogeneous with different smoothness level over it domain, like the

Doppler Curve shown in Figure 4.1 (left). In medical field, signals like EEG or ECG,

typically exhibit periodic sharp spikes between waves, see Figure 4.1 (right). Knots

selection technique can characterize such inhomogeneity by selecting more knots in

areas with dramatic changes, say around the spike in the ECG plot, while keep less

knots for smoother areas like the right side of the Doppler curve.

Besides, knots selection can lead to better interpretations of models. In the case

of function-on-scalar regression model in (4.1), a proper knots selection in coefficient

function β(t) can help us understand how each predictor affects the functional re-

sponse, and which specific region of the response, a predictor has the most effect

on.

One way to proceed knots selection is to represent the functional data by a set of

base functions with small supports, such as B-splines, and only select a small number

of corresponding coefficients to be non-zero. In the setting of function-on-scalar model
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Figure 4.1. Example of spacial inhomogeneous.
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(4.1), suppose {φ1(t), ..., φK(t)} is a set of such basis. The coefficient functions βj(t),

j = 1, ..., p can be expanded as

βj(t) =
K∑
k=1

bjkφk(t).

Hence, selecting knots for βj is equivalent to obtaining a sparse estimation of bj =

(bj1, ..., bjk).

Taking into account the need of model selection in function-on-scalar, we will

need a penalty function p(·) that could, (1) bring down some of the entire vectors bj

to zero to produce a zero coefficient function βj(t) = 0 and thus select the proper

predictor Xjs; (2) bring down only part of the elements bjks for βj(t) corresponding

to the important predictor Xj, to do knots selection and furthermore, to show which

region on T , predictor Xj has an effect on. Under such situation, Grouped Smoothly

Clipped Absolute Deviation(GSCAD) is developed to meet the need of simultaneously

selecting model and knots. In fact, GSCAD goes beyond function-on-scalar model

and can be applied to the more general problem setting of dictionary learning.

4.2 GSCAD Penalty

4.2.1 Review of the Smoothly Clipped Absolute Deviation (SCAD) penalty.

SCAD penalty is first proposed by [53] in the context of high dimensional linear

regression. SCAD has some desired properties: (i) Unbiasedness: the resulting es-

timator is nearly unbiased when the true unknown parameter is large; (ii) Sparsity:

The resulting estimator is able to sets small estimated coefficients to zero to reduce

model complexity; (iii) Continuity: The resulting estimator is continuous in data to

avoid instability in model prediction. Defined as

ψλ(d) =


λ|d|, if |d| ≤ λ

− |d|
2−2cλ|d|+λ2

2(c−1)
, if λ < |d| ≤ cλ

(c+1)λ2

2
, if |d| > cλ

, (4.3)
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for some λ > 0 and c > 2, the SCAD contains three segments. When d is small

(less than λ), it acts exactly like the Lasso penalty; when d is big (greater than

3λ), it becomes a constant so that no extra penalty is applied to truly significant

parameters; these two segments are connected by a quadratic function which results

in a continuous differentiable SCAD penalty function ψλ(·).

4.2.2 GSCAD penalty

Even though the SCAD penalty possesses many good properties, it only treats

parameters individually and does not address any group effect among parameters.

With respect to the structure of the dictionary, we propose a new penalty, GSCAD,

where G stands for group. Let θ be a vector in Rm. The GSCAD penalty is defined

as

Ψλ(θ) = log{1 +
m∑
k=1

ψλ(θk)},

where ψλ is the SCAD penalty defined in (4.3). It inherits all three merits of SCAD,

unbiasedness, sparsity and continuity, and at the same time takes into account both

individual parameters and group effect among parameters. Individually, the GSCAD

penalty tends to set small estimated θk to zero. Group-wise, if all elements in θ are

small, the penalty will penalize the entire vector θ to zero. In addition, if some of

the θk is significantly large, the penalty will have more tolerance of smaller elements

appearing in θ.

To better understand GSCAD, let us consider a penalized least squares problem

with an orthogonal design

min
θ

1

2
‖z − θ‖2

2 + pλ(|θ|),

where z and θ are vectors in Rm. For GSCAD, SCAD and LASSO, the penalty pλ(|θ|)

is, respectively,

pλ(|θ|) = log{1 +
m∑
k=1

ψλ(θk)}, pλ(|θ|) =
m∑
k=1

ψλ(θk), pλ(|θ|) =
m∑
k=1

|θk|.
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Figure 4.2. 1-dim threshold function.

Estimators of θ when m = 1 are shown in Figure 4.2, where GSCAD performs very

similar to SCAD. All three penalties shows sparsity properties since they all set θ̂ to

zero when |z| ≤ λ. While the soft-thresholding from LASSO has the inherent bias

issue, SCAD and GSCAD give θ̂ = z when |z| ≥ cλ and and avoid bias. In a two-

dimensional case when m = 2 and z = (z1, z2), we investigate partitions of the space

according to the number of non-zero element in the resulting estimator θ̂ = (θ̂1, θ̂2), see

Figure 4.3. While SCAD and Lasso treat each coordinate individually, GSCAD takes

into account the whole group. It is less likely to set the estimator of one coordinate

to zero as the estimator of another coordinate gets away from zero.

Convexity. Even though GSCAD is built upon the non-convex penalty function

SCAD, our development uncovers a surprising fact that the optimization problem of

GSCAD under orthogonal design is a convex problem. This will greatly facilitates

the implementation of GSCAD.

Theorem 4.2.1 Define θ̂ = (θ̂1, ..., θ̂m) as the minima of optimization problem

min
θ∈Rm

%

2

m∑
k=1

(zk − θk)2 + log{1 +
m∑
k=1

ψλ(θk)}, with constant % > 0. (4.4)
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Figure 4.3. Partitions of the 2-dim space (z1, z2) ∈ R2 according to
the number of nonzero elements in θ̂.
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Then,

(1) sign(θ̂k) = sign(zk), and |θ̂k| ≤ |zk|. Denote K̃ = {1 ≤ k ≤ K : zk 6= 0}, and

let Θk be the open interval between zk and 0. Then problem (4.4) is equivalent

to

min
θk∈Θk∪{0},k∈K̃

%

2

∑
k∈K̃

(zk − θk)2 + log{1 +
∑
k∈K̃

ψλ(θk)} (4.5)

(2) Let c0 = card(K̃), be the number of non-zero element in z. If

λ2 ≤ %c−1
0 and (c− 1){%(1 + λ2)2 − c0λ

2} ≥ 1 + λ2, (4.6)

then optimization problem (4.5) is convex, and θ̂ is continuous in data z.

Remarks on Theorem 4.2.1. (i) Adding a constant % in (4.4) makes the problem

more general such that the convexity result can be directly applied to the algorithms

in Section 4.3.3, where % plays a role of penalty parameter in the Augmented La-

grangian method. (ii) Condition (4.6) can be satisfied easily under a wide range of

circumstances. For instance, in the previous two-dimensional example with % = 1,

c0 = 2, and c = 3, Condition (4.6) will be satisfied as long as λ ≤ 2−1/2.

4.3 Dictionary Learning with GSCAD

4.3.1 Introduction to Dictionary Learning

Sparse coding, which represents signals as sparse linear combinations of basis in

a dictionary, has been successfully applied to many signal processing tasks, such as

image restoration [54,55], image classification [56,57], to name a few. The dictionary

is crucial to the success of sparse representation. Most of the compressive sensing

literatures take off-the-shelf bases such as wavelets as the dictionary [58, 59]. In

contrast, dictionary learning assumes that a signal can be sparsely represented by a

learned and usually over-completed dictionary. The pre-specified dictionary might be

universal but will not be effective enough for specific tasks such as face recognition
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[60, 61]. Instead, using the learned dictionary has recently led to state-of-the-art

results in many practical applications, such as image denoising [54, 62–64], image

inpainting [65–67], and image compression [68].

Determining a proper size for the to-be-learned dictionary is crucial for both preci-

sion and efficiency of the process. However, there is not much existing work discussing

the selection of the dictionary size while most algorithms fix the number of atoms in

the dictionary. In general, a two-stage procedure may be used to infer the dictionary

size, namely first learning a dictionary with a fixed size and then defining a new ob-

jective function penalizing the model complexity [69]. The Bayesian technique can

be also employed by putting a prior on the dictionary size [70].

Our work is to introduce the novel regularization method GSCAD to Dictionary

Learning, and propose an algorithm that could learn a sparse dictionary and select

the appropriate dictionary size simultaneously. The algorithm is based on the al-

ternative direction method of multipliers (ADMM) [71]. There are several merits of

our approach. First, it imposes sparsity-enforcing constraints on the learned atoms,

which improves interpretability of the results and achieves variable selection in the

input space. Second, this is a one-stage procedure to learn a sparse dictionary and

the dictionary size jointly. Third, the convexity property of GSCAD allow us to de-

compose the joint non-convex problem with the non-convex penalty into two convex

optimization problems, both of which can be solved easily and efficiently. Besides,

compared with other state-of-the-art dictionary learning methods, GSCAD has better

or competitive performance in image denoising and inpainting.

4.3.2 Matrix Factorization Framework

Dictionary learning problems are commonly specified under the framework of

matrix factorization. Consider a vectorized clean signal x ∈ Rm and a dictionary

D = (d1, ...,dp) ∈ Rm×p , with its p columns referred to as atoms. Sparse representa-
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tion theory assumes that signal x can be well approximated by a linear combination

of a few atoms in D, i.e.

x ≈ Dα,

where the number of non-zero elements in α is far less than the number of atoms m.

In most of the cases, the clean signal x won’t be available, and instead, we will only

be able to observe a noisy signal y = x + ε, where ε represents noise with mean zero

and variance σ2. Suppose we have n signals Y = (y1, ...,yn) ∈ Rm×n, and we want

to retrieve the corresponding clean signals X = (x1, ...,xn). This can be summarized

as a matrix factorization model

Y = DA + ε,

where A = (α1, ..., αm). To make the problem identifiable, we require the dictionary

D belongs to a convex set D

D = {D ∈ Rm×p s.t. ∀j = 1, ..., p, ||dj||∞ ≤ 1}.

Dictionary learning aims to obtain estimations of dictionary D̂ and sparse cod-

ing Â, and then reconstruct the clean signal as x̂ = D̂Â. This is usually done by

minimizing the total squared error:

min ||Y −DA||2F , subject to additional sparsity constrains on α,

where || · ||F is the Frobenius norm. Constrains such as ||α||0 ≤ L (l0-penalty ) and

||α||1 ≤ λ (Lasso penalty) for some positive constants L and λ are widely adopted by

dictionary learning literature. Experiments have shown that Lasso penalty provides

better results when used for learning the dictionary, while l0 norm should always be

used for the final reconstruction step [72].

4.3.3 Simultaneous Sparse Dictionary Learning and Pruning

Compared with sparse coding, regularization on dictionary size is less studied.

Most of the existing methods, such as K-SVD and Online Learning, estimate the
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dictionary directly with a fixed dictionary size. They usually require the size of the

dictionary to be specified before learning, and this will end up with a solution of

over completed dictionary with p > m, which may not be very helpful if we want to

better understand the mechanism. In addition, learning a sparse dictionary can lower

the model complexity and improve interpretability of the results. All these issues

can be addressed with the help of GSCAD penalty, that could reveal the real size

of the dictionary and at the same time obtain an estimated sparse dictionary. More

specifically, denote dictionary as D with p atoms di = (di1, . . . , dim)T ∈ Rm, 1 ≤ i ≤ p.

The GSCAD penalty on dictionary D is defined by

Ψλ(D) =

p∑
j=1

log{1 +
m∑
k=1

ψλ1(djk)}

where ψλ is the SCAD penalty defined in (4.3). The objective function for our problem

is formulated as

min
D∈D,αi∈Rp

1

2

n∑
i=1

||yi −Dαi||22 + Ψλ1(D) + λ2

p∑
j=1

||αj||1. (4.7)

Firstly, the GSCAD penalty tends to set small estimated dij to zero, and reduces

the complexity of the estimated dictionary. If all elements in di are small, GSCAD

will lead to di = 0. Therefore, when starting with a relatively large p, GSCAD will

be able to prune the dictionary by penalizing useless atoms to zero. In this way, the

true size of the dictionary can be approximated by the number of non-zero columns

in the resulting dictionary. In addition, if GSCAD detects some significant dijs in

di, it will exert less penalty on the whole di to avoid mistakenly truncating any real

signals.

To solve the optimization problem (4.7), we follow the classic iterative two steps

approach. Given the dictionary D, we update A = (α1, ..., αn) by solving the Lasso

problem,

min
αi∈Rp

1

2
||yi −Dαi||22 + λ2||αi||1

for all signals 1 ≤ i ≤ n. Given A, the optimization problem (4.7) becomes

arg min
D∈C

1

2

n∑
i=1

||yi −Dαi||22 + Ψλ1(D), (4.8)
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which is addressed by the ADMM algorithm. Once D is updated, we remove all

zero columns of D and reset p to the number of current atoms. Algorithm 1 demon-

strates this whole procedure. It should be noted that (4.8) is a non-convex problem.

Recently, the global convergence of ADMM in non-convex optimization is discussed

in [73], which shows that several ADMM algorithms including SCAD are guaranteed

to converge.

Problem (4.8) is equivalent to

min
1

2

n∑
i=1

||yi −D1αi||22 + Ψλ1(D2)

s.t. D1 = D2.

We form the augmented Lagrangian as

L%(D1,D2, ξ) =
1

2

n∑
i=1

||yi−D1αi||22 +
%

2
||D1−D2||2F +%||ξ ◦ (D1−D2)||F +Ψλ1(D2).

where ◦ is the element-wise multiplication operator of two matrices, and ξ ∈ Rd×p.

The ADMM algorithm consists three steps in each iteration

D1
(t+1) = arg min

D1

L%(D1,D2
(t), ξ(t)) (4.9)

D2
(t+1) = arg min

D2

L%(D1
(t+1),D2, ξ

(t)) (4.10)

ξ(t+1) = ξ(k) + (D1
(k+1) −D2

(k+1)).

Problem (4.9) bears an explicit solution

D1
(t+1) ← {yAT + %(D2

(t) − ξ(t))}(AAT + %Ip)
−1. (4.11)

D2 in (4.10) can be solved by column-wise optimization such as

d2
(t+1)
j = arg min

d2j

%

2
||d2j − (d1

(t+1)
j + ξ

(t)
j ||22 + log{1 + Ψλ1(d2j)},

for 1 ≤ j ≤ p. In theorem 4.2.1, we have shown that this is a convex problem under

Condition (4.6), and can be solved easily by exiting convex optimization algorithms.

The ADMM algorithm for updating dictionaries is summarized in Algorithm 2.
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Algorithm 1: Dictionary Learning with GSCAD

Input : Training samples Y = [y1, ...,yn], parameter λ1,λ2,c,m,p0

1 initialize D(0) ∈ Rm×p0 ;

2 while not converge do

3 Sparse Coding Stage: for i = 1, ..., n, update αi by solving Lasso problem

min
αi∈Rp

1

2
||yi −Dαi||22 + λ2||αi||1; (4.12)

Dictionary Update Stage: update D using Algorithm 2;

4 Number of atoms: p← # columns of D

5 end

Output: D, p

Algorithm 2: Update dictionary using ADMM

Input : Training samples Y, current A = (α1, ..., αn), parameter λ1,c,%

1 Initialize D2
(0) = ξ = 0 ∈ Rn×p, set t = 0

2 while not converge do

3 D1
(t+1) ← {yAT + %(D2

(t) − ξ(t))}(AAT + %Ir)
−1

4 Normalize each column of D1 as d1j ← 1
max(||d1j ||∞,1)

d1j;

5 Update D2: for 1 ≤ j ≤ p,

d2
(t+1)
j = arg min

d2j

%

2
||d2j − (d1

(t+1)
j + ξ

(t)
j )||22 + log{1 + Ψλ1(d2j)}; (4.13)

6 ξ(t+1) ← ξ(k) + (D1
(k+1) −D2

(k+1));

7 t = t+ 1;

8 end

9 Remove the zero columns of D2;

Output: D2
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We define the convergence of the algorithm by the differences of D and the dif-

ferences of A between two consecutive iterations. If they are both below a certain

threshold, the algorithm stops. However, in implementation, we add an extra rule on

the maximum number of iterations, since GSCAD may get stuck to a region where D

keeps alternating from two local minima and never converge due to a bad initiation.

Fortunately, the performance of local minima is mostly decent in terms of denoising.

During the dictionary updating stage after we obtain a new dictionary from ADMM,

if any two atoms are highly correlated, correlation greater than 0.95 for example, we

only keep one of them. Some experiments have shown that this does not have much

effect on the results, but will speed up convergence of the algorithm.

4.4 Synthetic Experiments

We design a simple example to check the performance of GSCAD from two aspects:

(i) whether GSCAD could recover the true size of the dictionary, and (ii) its denoising

performance compared with other methods.

Data is generate from dictionary D0 ∈ R10×100, which contains 10 atoms. Each

atom is a vectorized 10 × 10 patch shown in Figure 4.4. Then 1500 signals {yi}1500
i=1

in R100 are generated, each created by a linear combination of three different gener-

ating dictionary atoms picked randomly, with identically independently distributed

coefficients following Unif(0, 1/3). Gaussian noises εi ∼ N (0, σ2) are added, with

signal-to-noise ratio (SNR) controlled by the Gaussian variance σ2. Four levels of

noise σ ∈ {5, 10, 20, 50} are adopted for pixel values in the range [0,255].

In order to examine GSCAD’s ability to prune dictionaries to the right size, dic-

tionaries are initialized with varying number of atoms p0, namely, 10 (true size),

15, 20 and 50. Each setting is repeated 1000 times, and each time a dictionary

D̂ ∈ Rm×p̂ and its proper size p̂(≤ p0) are the learned. Table 4.1 summarizes the

size of the learned dictionary. It can be seen that when noise level is small to mod-
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p0\σ 5 10 20 50

10 9.98(0.14) 9.98(0.14) 9.99(0.10) 10(0)

15 10.45(0.59) 10.7(0.66) 11.3(0.80) 13.92(0.85)

20 10.71(0.77) 11.1(0.77) 11.74(0.85) 15.92(1.19)

50 11.29(0.10) 11.55(1.31 11.99(1.39) 19.77(2.21)

Table 4.1.

Average number of atoms in the resulting dictionary. Numbers in the
parenthesis are corresponding standard deviations.

Figure 4.4. From left to right, (1) the generating dictionary D0 (2)-
(5) learned dictionaries using clean data under initialization size p0 =
10, 15, 20, 50. Each atom corresponds to a 10 × 10 patch with white
region representing 1 and black region representing 0.

erate, GSCAD algorithm is able to recover the true size of the dictionary, and its

performance is stable across initial dictionaries with different sizes. The result also

indicates that as the noise level gets larger, a larger dictionary is needed to process

denoising task. Examples of the learned dictionaries with clean data (σ = 0) under

different initial size p0 are also shown in Figure 4.4.

For comparison, we also run the K-SVD algorithm using the Matlab Toolbox as-

sociated its original paper [64], and Online Learning algorithm [74] using the SPAMS
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package. Since neither K-SVD nor Online Learning would prune the dictionary, the

learned dictionary D̂ will be the same size as its initial value, i.e. p̂ = p0.

Once a dictionary D̂ is learned, we obtain the sparse coding α in two ways,

min
αi∈Rp̂

||αi||0 s.t. ||yi − D̂αi||22 ≤ ε, (4.14)

and

min
αi∈Rp̂

||yi − D̂αi||22 s.t. ||αi||0 = L, (4.15)

using the Orthogonal Matching Pursuit(OMP) algorithm. ε in (4.14) is set heuristi-

cally by ε = σ2F−1
m (τ) [75], where F−1

m is the inverse cumulative distribution function

of the χ-square distribution with m = 100 and τ = 0.9. L is set to 3 in (4.15). Then

denoised signals are reconstructed as x̂i = D̂α̂i, and PSNR is calculated as

PSNR = 10 log10(
2552

MSE
),

where MSE denotes the mean squared-error for images whose intensities are between

0 and 255.

Average PSNR over 100 repeats are shown in Figure 4.5(noting that the scale of

axis is shifted downwards figures in the last column). Generally, GSCAD performs

better than the other two methods across varying initial size p0 and SNR levels

controlled by σ(sigma). When σ is small, advantage of GSCAD is very clear; when

sigma reaches 50, all three method gives similar results with GSCAD performs slightly

better. Inspecting the result agains initial size p0, we find that the performance of

GSCAD is very stable across p0. Online Learning performs reasonable stable when

sigma is small, but when sigma goes as big as 50, a bad p0, say p0=50, hurts more

compared with GSCAD. In contrary, the performance of K-SVD depends largely on

the initial size of the dictionary; when sigma is small, it benefits more from a over-

sized initialization, but when sigma is large, an over-sized initialization does more

harm to it comparing with GSCAD. Finally, comparing the first row with the second

row of Figure 4.5, we can see that PSNRs obtained from (4.14) is smaller than that

from (4.15) for GSCAD, which goes along with our intuition that extra information
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Figure 4.5. Synthetic results. First row, sparse coding is obtained by
4.14. Second row, sparse coding is obtained by 4.15 with L = 3.

of L = 3 for (4.15) should lead to better results. However, results of the other two

methods seem not to follow this intuition. A possible explanation is that to benefit

from this extra information of L = 3, the learned dictionary needs to be close enough

to the truth, and this might not always be the case, especially for K-SVD.

4.5 Image Denoising with GSCAD

To denoise image using GSCAD, we follow the denoising scheme proposed by [54].

1. Split the corrupted image into
√
m ×

√
m overlapped patches, which will be

treated independently. Let yi ∈ Rm, i = 1, ..., n, denote the vectorized small

patches.
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2. Center yi as

yci = yi − µi1m with µi =
1

n
1Tmyi.

3. Train dictionary on the centered yci , i = 1, ..., n, using the proposed Algorithm

1. In the sparse coding step, (4.12) is replaced by its equivalent formula

min
αi∈Rp

λ2||αi||1, s.t. ||yi −Dαi||22 ≤ ε, (4.16)

with ε = σ2F−1
m (τ). Let D̂ denote the learned dictionary.

4. Estimate the final sparse coding α̂i by (4.14).

5. Add back the mean component to obtain the clean estimate x̂i:

x̂i = D̂α̂i + µi1m.

6. Reconstruct the image using the clean estimate x̂i. Since patches overlap, each

pixel belongs to m different patches and admits m estimates. The pixel is thus

estimated by the average of its m estimates.

More details about the scheme can be found in [72].

Now, we are ready to compare the denoising performance of GSCAD with K-SVD

and Online learning. We follow the same set-up as [72]. Twelve benchmarks images

are used in the image denoising, see Figure 4.6. Each image is corrupted with a set

of Gaussian noise with its standard deviation σ in {5, 10, 15, 20, 25, 50, 100}. Patch

size m is set to be {62, 82, 102, 122, 142, 162} separately. Dictionary size is initialized at

p0 = 256 for all three methods. For every noise level, the parameter m is selected such

that it maximizes the average PSNR obtained on the last 5 images of the dataset.

Then the mean PSNR over all 12 images are reported in Table 4.2. For K-SVD and

Online Learning, results are borrowed from [72]. For GSCAD, redundant DCT of size

p = 256 is used as initialization. For the penalty function, parameter c is set to 3.7

as [53] suggested and λ1 is picked from {0.1, 0.05, 0.01, 0.001}. In most cases, a λ1

of 0.05 would give descent results. The reported PSNR for GSCAD are the averages
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σ 5 10 15 20 25 50 100

GSCAD 37.53 33.79 31.75 30.36 29.26 25.81 22.37

Online 37.60 33.90 31.90 30.51 29.43 26.20 22.72

K-SVD 37.42 33.62 31.58 30.18 29.10 25.61 22.10

Table 4.2.
Denoising performance in PSNR

taken over the highest PSNR of each image. Results for all three methods are very

close to each other in general, with Online learning performs slightly better, then

follows GSCAD.

Figure 4.7 shows how the patch size m affects the denoising result under different

noise levels. We can see that when σ = 5, slitting image into smaller sized patches,

like m = 8×8, works better, and as noise level σ increases, this advantage of smaller m

diminishes. We also notice that the fingerprint image reacts differently to the change

of patch sizes. When σ is larger than 25, there is a clear pattern of PSNR increasing

with m. Besides, the pattern for the flinstones image also deviates slightly from the

majority for σ between 15 and 25. This is not surprising as the structure of both

images are quite different from all the other nature images. In general, m = 8×8 is a

decent choice for denoising under all noise levels, and for higher noise level (σ ≥ 20),

a patch of size 16× 16 can also be considered.

Under patch size m = 64, and penalty parameter λ1 = 0.05, we examine the

dictionary pruning effect of GSCAD. The size of the learned dictionary under different

noise levels are plotted in Figure 4.8. It is shown clearly that as noise level increases, a

larger-sized dictionary is expected. On the other hand, when the noise level is small,

GSCAD gives competitive denoising results with the learned dictionaries only half

the sizes of those used by the other two methods.

In the end, we are going to show some denoising examples. Image lena and house

are corrupted using Gaussian noise with σ = 25, see Figure 4.9. We denoise both
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(a) house (b) peppers (c) Cameraman

(d) lena (e) barbara (f) boat

(g) hill (h) couple (i) man

(j) fingerprint (k) bridge (l) flinstones

Figure 4.6. Benchmark images for image denoising.
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119

lena house

Figure 4.9. Corrupted Image using Gaussian Noise with σ = 25
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clean GSCAD(31.28)

Online (31.57) K-SVD (31.32)

Figure 4.10. Denise lena with patch size m = 64, noise level σ = 25.
Numbers in the parenthesis are the resulting PSNR.
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clean GSCAD(31.59)

Online(31.77) K-SVD(31.41)

Figure 4.11. Denise lena with patch size m = 256, noise level σ = 25.
Numbers in the parenthesis are the resulting PSNR.



122

clean GSCAD(32.02)

Online (32.54) K-SVD (31.96)

Figure 4.12. Denise house with patch size m = 64, noise level σ = 25.
Numbers in the parenthesis are the resulting PSNR.
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clean GSCAD(32.28)

Online(32.62) K-SVD(32.04)

Figure 4.13. Denise house with patch size m = 256, noise level σ = 25.
Numbers in the parenthesis are the resulting PSNR.
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images using patches of size m = 8 × 8 and m = 16 × 16 respectively. Denoised

images obtained using GSCAD, Online Learning and K-SVD are shown in Figure

4.10, Figure 4.11, Figure 4.12 and Figure 4.13.

4.6 Image Inpainting with GSCAD

Image inpainting refers to the task of filling in the missing pixels in a image. When

the missing pixels form small holes that are smaller than the patch sizes, the GSCAD

algorithm 1 can be easily extended to deal with such unobserved information like

many other dictionary learning methods. Define a binary mask M ∈ Rm×m such that

Mij =

1 if the jth pixel of yi is observed

0 otherwise.

Then the original dictionary learning formulation can be modified as

min
D∈D,αi∈Rp

1

2
||M ◦ (y −Dα)||2F + Ψλ1(D) + λ2

p∑
j=1

||αj||1. (4.17)

Following the previous two steps approach, given the dictionary D, we update A =

(α1, ..., α) by solving the masked Lasso problem,

min
αi∈Rp

1

2
||M·i ◦ (yi −Dαi)||22 + λ2||αi||1

for all signals 1 ≤ i ≤ n. And given A, the optimization problem (4.17) becomes

arg min
D∈C
||M ◦ (y −Dα)||2F + Ψλ1(D), (4.18)

which can still be addressed by the ADMM algorithm with a slightly modification for

updating D1. Now that mask M is involved in our ADMM, D1 needs to be updated

one row at a time. Let Mj· denote the jth row of mask M, and the rows of other

matrix defined in the same fashion. For sample yi’s, let y = (y1, ...,yn) ∈ Rm×n, so

yj· indicates the jth row of matrix y. For 1 ≤ j ≤ m, the jth row of D1 is updated as

D1
(t+1)
j· = {yj·diag(Mj·)A

T + %(D2
(t)
j· − ξ

(t)
j· )}{Adiag(Mj·)A

T + %Ip}−1.
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Algorithm 3: Dictionary Learning with GSCAD (Inpainting)

Input : Training samples Y = [y1, ...,yn], mask M, parameter λ1,λ2,c,m,p0

1 initialize D(0) ∈ Rm×p0

2 while not converge do

3 Sparse Coding Stage: for i = 1, ..., n, update αi by solving the masked

Lasso problem

min
αi∈Rp

1

2
||M·i ◦ (yi −Dαi)||22 + λ2||αi||1; (4.19)

Dictionary Update Stage: update D using the Algorithm 4;

4 Number of atoms: p← # columns of D

5 end

Output: D, p
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Algorithm 4: Update dictionary using ADMM (Inpainting)

Input : Training samples Y, mask M, current A = (α1, ..., αn), parameter

λ1,c,%

1 Initialize D2
(0) = ξ = 0 ∈ Rn×p, set t = 0

2 while not converge do

3 Update D1 row by row

D1
(t+1)
j· = {yj·diag(Mj·)A

T + %(D2
(t)
j· − ξ

(t)
j· )}{Adiag(Mj·)A

T + %Ip}−1.

4 Normalize each column of D1 as d1j ← 1
max(||d1j ||∞,1)

d1j;

5 Update D2: for 1 ≤ j ≤ p,

d2
(t+1)
j = arg min

d2j

%

2
||d2j − (d1

(t+1)
j + ξ

(t)
j )||22 + log{1 + Ψλ1(d2j)}; (4.20)

6 ξ(t+1) ← ξ(k) + (D1
(k+1) −D2

(k+1));

7 t = t+ 1;

8 end

9 Remove the zero columns of D2;

Output: D2
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The whole inpainting algorithm is summarized in Algorithm 3 and Algorithm 4.

When inpainting a corrupted image, we can follow a similar scheme as image

denoising with a few modification.

1. Split the corrupted image into
√
m ×

√
m overlapped patches, which will be

treated independently. Let yi ∈ Rm, i = 1, ..., n, denote the vectorized small

patches.

2. Center yi with respect to the missing pixels

yci = yi − µi1m with µi = MT
i yi/M

T
i 1m,

where Mi is the ith column of mask M.

3. Train dictionary on the centered yci , i = 1, ..., n, using the proposed Algorithm

3. In the sparse coding step, (4.12) is replaced by its equivalent formula

min
αi∈Rp

λ2||αi||1, s.t. ||Mi ◦ (yi −Dαi)||22 ≤ ε, (4.21)

with ε chosen heuristically as F−1
m (0.9). Let D̂ denote the learned dictionary.

4. Estimate the final sparse coding α̂i by

min
αi∈Rp

λ2||αi||1, s.t. ||Mi ◦ (yi −Dαi)||22 ≤ ε.

5. Add back the mean component to obtain the clean estimate x̂i:

x̂i = Mi ◦ yi + (1−Mi) ◦ (D̂α̂i + µi1m).

6. Reconstruct the image using the clean estimate x̂i. Since patches overlap, each

pixel belongs to m different patches and admits m estimates. The pixel is thus

estimated by the average of its m estimates.

Like other inpainting algorithms, when the missing wholes follow a regular pattern,

the proposed algorithm may face a possible problem of absorbing this pattern in
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Figure 4.14. Image Inpainting. Left: lena with 50% of the data re-
moved. Right: Inpainting result from global learned dictionary using
GSCAD.

its dictionary. The common strategy to fix this problem is to first learn a global

dictionary Dg using clean image from a standard image bank. Then take Dg as an

initial dictionary to learn an adaptive dictionary Da using patches extracted from

the corrupted image. When it comes to the step of recovering the missing pixels, the

joint dictionary Dg ∪Da is used.

As we need to update D1 one row at a time, the inpainting algorithm is slower than

the denoising one. However, experiments have shown that using the global learned

dictionary Dg directly to inpaint the corrupted image still gives decent results. Figure

4.14 and Figure 4.15 show some inpainting examples using global learned dictionary.

The global dictionary is learned from 240000 natural image patches of size m = 8× 8

extracted from the Kodak PhotoCD images. Algorithm 1 and the denoising scheme in

Section 4.5 are employed with parameters set to c = 3.7, λ = 0.05 and ε = F−1
m (0.9).

In Figure 4.14, 50% of the original pixels in image lena are removed randomly, and

in Figure 4.15, text with two fonts are added to the original image. The resulting

PSNR are 33.84 and 35.21 respectively.
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Figure 4.15. Text removal result from global learned dictionary using GSCAD
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4.7 The GSCAD Package

R package GSCAD is developed to run image denosing and inpainting task with

GSCAD. Major functions include gsacd.DL, an implementation of Algorithm 1, and

gsacd.DLmask, an implementation of Algorithm 3. Schemes of image denoising and

inpainting mentioned in Section 4.5 and Section 4.6 can be carried out by function

denoiseImage and inpaintImage. In addition, some basic evaluation functions are also

provided, such as function PSNR to calculated the PSNR for the processed image

and function plotDic to visualize a dictionary.

4.8 Discussion

The GSCAD method has been presented to learn a sparse dictionary and select

the dictionary size simultaneously. The experimental analysis has demonstrated very

encouraging results relative to the state-of-the-art methods. This new framework may

also be applied to the general subspace clustering problem for imaging clustering,

which assumes that similar points are described as points lying in the same subspace.

The proposed formulation can learn the clustering and the number of clusters at the

same time. This framework may also be applied to the architecture design of deep

learning. The new GSCAD penalty can learn a sparse connection between units of

two layers in the deep neural network to improve efficiency.

4.9 Proofs of Theorems

4.9.1 Proof of Theorem 4.1.1.

Let β̂j(s), j = 1, ..., p be the solution of 4.2. Since βj(s) ∈ H(K), we can write

β̂j(s) =
∞∑
l=1

b̂jlφl(s),
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and

||β̂j||2K =
∞∑
l=1

b̂2
jl/ρl

Denote β̂j(sm) = zm, m = 1, ...,M . Then b̂jl’s are the solution to

min
∞∑
l=1

b2
jr(l)/ρl s.t.

∞∑
l=1

bjlφl(sm) = zm, for all m = 1, ...,M.

Applying the largrange method, we have

L(bj, ζ) =
∞∑
l=1

b2
jl/ρl +

M∑
m=1

ζm{
∞∑
l=1

bjlφl(sm)− zm}.

Taking derivative

∂L

∂bjl
= 2bjl/ρl +

M∑
m=1

ζmφl(sm) = 0.

Therefore

b̂jl = −ρl
M∑
m=1

ζmφl(sm),

and

β̂j(s) =
∞∑
l=1

−{ρl
M∑
m=1

ζmφl(sm)}φl(s)

=−
M∑
m=1

ζm

∞∑
l=1

ρlφl(sm)φl(s)

=−
M∑
m=1

ζmK(sm, s).

4.9.2 Proof of Theorem 4.2.1.

1. When zk = 0, we have (zk − 0)2 ≤ (zk − θk)2, and further

log{1 + ψλ(0) +
∑
l 6=k

ψλ(θl)} ≤ log{1 + ψλ(θk) +
∑
l 6=k

ψλ(θl)},

for any θk ∈ R. When zk 6= 0, we have

{zk − sign(zk)|θk|}2 ≤ [zk − {−sign(zk)|θk|}]2,
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and further

log{1 + ψλ(sign(zk)|θk|) +
∑
l 6=k

ψλ(θl)} = log{1 + ψλ(−sign(zk)|θk|) +
∑
l 6=k

ψλ(θl)}.

Therefore to minimize 4.4, θ̂k has to satisfy that sign(θ̂k) = sign(zk). If we denote

K̃ = {1 ≤ k ≤ K : zk 6= 0} and Θk as the open interval between zk and 0, i.e.

Θk =

(0, zk), if zk > 0

(zk, 0), if zk < 0

,

then optimization problem (2) is equivalent to

min
θk∈Θk∪{0},k∈K̃

%

2

∑
k∈K̃

(zk − θk)2 + log{1 +
∑
k∈K̃

ψλ(θk)}.

2. To simplify the notation, we rewrite z = (zi1 , ..., zic0 ) ∈ Rc0 and θ = (θi1 , ..., θic0 ) ∈

Rc0 as with K̃ = {i1, i2, ..., ic0} and c0 = card(K̃). Define L : Rc0 → R as

L(θ) =
%

2
||zk − θk||2 + log{1 +

c0∑
k=1

ψλ(θk)}.

We expend Θk to the whole half plane as

Θ̃k =

(0,∞), if zk > 0

(−∞, 0), if zk < 0

.

If we can show that L is convex in Θ̃1 × ... × Θ̃c0 , this will imply that L is convex

over
∏c0

k=1 Θk ∪ {0}, asL is continuous all over Rc0 .

To show that the optimization problem within ×o = Θ̃1 × ...× Θ̃c0 is convex, we

are going to verify the inequality

L((1− t)x+ ty) ≤ (1− t)L(x) + tL(y), t ∈ [0, 1],

for any x, y ∈ Θo. This is trivial for x = y, and for x 6= y, we consider the following

cases.

Case 1: x, y ∈ ×o1 = {x ∈ ×o : |xi| /∈ {λ, cλ} for any 1 ≤ i ≤ c0}. Therefore only

a finite number of points in set {tx + (1− t)y : t ∈ [0, 1]} such that L does not have
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a second-order derivative. Let v = x − y. Define ϕ(t) = L(x + tv), t ∈ [0, 1]. If we

can show that ϕ′(t) is continuous on [0, 1], and ϕ′′(t) ≥ 0 except at a finite number

of points, therefore ϕ′(t) is non-decreasing. Furthermore ϕ(t) is convex on [0, 1]. By

definition, for any t ∈ [0, 1],

L((1− t)x+ ty) = L(x+ tv) = ϕ(t) ≤ tϕ(1) + (1− t)ϕ(0) = tL(y) + (1− t)L(x).

Therefore f is convex.

Now we are going to show that ϕ′(t) is continuous and ϕ′′(t) ≥ 0 except at a finite

number of points, where ϕ′′(t) does not exist. Taking derivative of L, we get

L′xi = sign(xi){%|xi|+
ψ̇λ(xi)

1 +
∑

k ψλ(xk)
} − %zk,

L′′xixi = %+
ψ̈λ(xi)

1 +
∑

k ψλ(xk)
− ψ̇2

λ(xi)

{1 +
∑

k ψλ(xk)}2
, |xi| /∈ {λ, cλ},

L′′xixj = − ψ̇λ(xi) · ψ̇λ(xj)
{1 +

∑
k ψλ(xk)}2

, |xi|, |xj| /∈ {λ, cλ}

where

ψ̇λ(xi) =


λ · sign(xi), if |xi| ≤ λ

cλ−|xi|
(c−1)

· sign(xi), if λ < |xi| ≤ cλ

0, if |xi| > cλ

and ψ̈λ(xi) =

−
1

(c−1)
, if λ < |xi| ≤ cλ

0, o.w.

.

Since L′xi is continuous for all 1 ≤ i ≤ c0 and x ∈ ×o,

ϕ′(t) =
∑
i

∂L

∂xi
(x+ tv) · vi
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is continuous. Except a finite number of t ∈ [0, 1], such that L′′xixj does not exist at

x+ tv, we have

ϕ′′(t) =
∑
i,j

∂2L

∂xi∂xj
(x+ tv)vivj

=

c0∑
i=1

{%+
ψ̈λ(xi)

1 +
∑

k ψλ(xk)
}v2

i − {1 +
∑
k

ψλ(xk)}−2{
c0∑
i=1

ψ̇λ(xi)vi}2

≥
c0∑
i=1

{%+
ψ̈λ(xi)

1 +
∑

k ψλ(xk)
}v2

i − {1 +
∑
k

ψλ(xk)}−2c0

c0∑
i=1

ψ̇2
λ(xi)v

2
i

=

c0∑
i=1

{%+
ψ̈λ(xi)

1 +
∑

k ψλ(xk)
− c0ψ̇

2
λ(xi)

{1 +
∑

k ψλ(xk)}2
}v2

i .

Let

fi(xi) = %+
ψ̈λ(xi)

1 +
∑

l ψλ(bl)
− c0 ψ̇

2
λ(xi)

{1 +
∑

l ψλ(bl)}2
, 1 ≤ i ≤ c0.

To show that ϕ′′(t) ≥ 0, we only need to show that fi(xi) ≥ 0. Since fi(xi) = fi(−xi),

without loss of generality, we are only going to show that fi(xi) ≥ 0, for xi > 0.

Take derivative of fi,

f ′i(xi) = − ψ̈λ(xi)ψ̇λ(xi)

1 +
∑

l ψλ(xl)
− 2c0 ψ̇

2
λ(xi)ψ̈λ(xi)

{1 +
∑

l ψλ(xl)}2
+

2c0 ψ̇
3
λ(xi)

{1 +
∑

l ψλ(xl)}3
, xi /∈ {λ, cλ}.

Since ψ̈λ(xi) ≤ 0 and ψ̇λ(xi) ≥ 0, we have f ′i(xi) ≥ 0 for all xi ∈ Θ̃k\{λ, cλ}. Observe

that fi(xi) is continuous on (0,∞). For xi ∈ (0, λ),

fi(xi) ≥ lim
xi→0+

fi(xi) = %− c0λ
2

{1 +
∑

l∈K̃,l 6=k pλ(xl)}2
≥ %− c0λ

2 ≥ 0.

For xi ∈ (λ, cλ)

fi(xi) ≥ lim
xi→λ+

fi(xi)

= %− 1

(c− 1){1 + λ2 +
∑

l 6=k ψλ(xl)}
− c0λ

2

{1 + λ2 +
∑

l 6=k ψλ(xl)}2

≥ %− 1

(c− 1)(1 + λ2)
− c0λ

2

(1 + λ2)2

=
%(c− 1)(1 + λ2)2 − (1 + λ2)− c0(c− 1)λ2

(c− 1)(1 + λ2)2

≥ 0.
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For xi ∈ (cλ,∞),

fi(xi) ≥ lim
xi→cλ+

fi(xi) = % > 0.

Therefore fi(xi) ≥ 0, for xi > 0. Furthermore, we show that ϕ′′(t) ≥ 0 except a finite

number of t ∈ [0, 1] and finish the proof of case 1.

Case 2: x ∈ ×o0 or y ∈ ×o0, where×o0 = ×o\×o1 = {x ∈ ×o : |xi| ∈ {λ, cλ} for some 1 ≤

i ≤ c0}. Without loss of generality, we assume that the last c0 − k, 1 ≤ k ≤ n ele-

ments of x and y are the same, and the rest are not, i.e. xi 6= yi for 1 ≤ i ≤ k and

xi = yi for k + 1 ≤ i ≤ c0. Let x∗ = (x1, ..., xk), y
∗ = (y1, ..., yk) and v∗ = y∗ − x∗.

Therefore only a finite number of t ∈ [0, 1] such that point (1− t)x∗ + ty∗ belongs to

Dk = {x ∈ Θ̃i1 × ...× Θ̃ik : |xi| ∈ {λ, cλ} for some 1 ≤ i ≤ k}.

Let w = (w1, ..., wk), and define g : Θ̃i1 × ...× Θ̃ik → R, as

g(w) = L((w, xk+1, ..., xc0)).

Define ϕ∗(t) = g(x∗ + tv∗), t ∈ [0, 1]. Then similar to Case 1, we can show that

dϕ∗

dt
=
∑
i

∂g

∂x∗i
(x∗ + tv∗) · v∗i =

k∑
i=1

∂L

∂xi

(
(x∗ + tv∗, xk+1, ..., xn)

)
· v∗i

is continuous, and

d2ϕ∗

dt2
=
∑
i,j

∂2g

∂x∗i∂x
∗
j

(x∗ + tv∗)v∗i v
∗
j

=
k∑

i,j=1

∂2L

∂xi∂xj

(
(x∗ + tv∗, xk+1, ..., xn)

)
v∗i v
∗
j

≥ 0

except a finite number of t ∈ [0, 1]. Therefore dϕ∗/dt is non-decreasing, and further

ϕ∗(t) is convex on [0, 1]. By definition, for any t ∈ [0, 1],

L((1− t)x+ ty) = L(x+ tv) = g(x∗ + tv∗)

= ϕ∗(t) ≤ tϕ∗(1) + (1− t)ϕ∗(0) = tL(y) + (1− t)L(x)
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